
Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Trial lecture

Discrete Optimization on GPUs (Graphics
Processing Units)

Jianyong Jin

Molde University College, Specialized University in Logistics, Norway

March 22, 2013

Discrete Optimization on GPUs (Graphics Processing Units) 1 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Outline

Discrete optimization

GPU computing

GPU computing in discrete optimization

Conclusions

Discrete Optimization on GPUs (Graphics Processing Units) 2 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Discrete optimization

The term discrete optimization is often used to describe
the class of optimization problems that can be solved by a
search through a finite set of variants(Leont’ev, 2007).

The variables used in the mathematical model are
restricted to assume only discrete values.

Opposed to continuous optimization where the variables
can assume real values.

Discrete Optimization on GPUs (Graphics Processing Units) 3 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Discrete optimization problem (DOP)

A DOP is either a minimization or maximization problem.

A mathematical formulation of a minimization problem:

min
x∈S

f (x)

The objective function f (x) is defined on a discrete set.

A finite set of feasible solutions S.

The goal is to find the optimal solution whose objective
function value is better than all other feasible solutions.

DOPs are often computationally hard.

Discrete Optimization on GPUs (Graphics Processing Units) 4 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Some discrete optimization problems

Integer linear programming.

Knapsack problem.

Assignment problem.

Traveling salesman problem.

Vehicle routing problem.

Minimum spanning tree problem.

Location problem.

Discrete Optimization on GPUs (Graphics Processing Units) 5 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Solution methods

Exact algorithms
Able to give the optimal solution.
Often can not solve large instances within a reasonable
computing time.

Approximate algorithms
Do not guarantee to find the optimal solution.
There is a bound on the solution quality.

Heuristic algorithms
Do not guarantee to find the optimal solution.
Do not have a bound on the solution quality.
In practice, heuristic algorithms, especially metaheuristics,
have been proved successful (Leont’ev, 2007).

Discrete Optimization on GPUs (Graphics Processing Units) 6 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Metaheuristics

Local search (LS) based
Start from an initial solution.
Move to another solution in the neighborhood of the current
solution iteratively.
Tabu search, simulated annealing, etc.

Population based
Maintain a population of solutions.
Replace some members of the population iteratively.
Genetic algorithm, etc.

Learning mechanisms based
Apply learning mechanism during the search.
Ant colony optimization, etc (Laporte, 2007).

Discrete Optimization on GPUs (Graphics Processing Units) 7 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel algorithms

For solving large or complex DOPs, parallel (exact or
heuristic) algorithms have been increasingly used.
Parallel algorithms are executed by multiple processes
(threads) simultaneously on multiple processors in order to
solve a given problem.
Opposed to sequential algorithms that are executed
sequentially on a single processor.

Discrete Optimization on GPUs (Graphics Processing Units) 8 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Goals of parallel algorithms

Speed up the search.
Improve the quality of the solutions obtained.
Improve the robustness of the algorithm.
Solve large scale problems (Crainic and Toulouse, 2010).

Discrete Optimization on GPUs (Graphics Processing Units) 9 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Major parallelization forms

Functional parallelism: different tasks are allocated to
different processors.
Data parallelism (domain decomposition): different
processors perform the same task on sub-problems
related to different data.
Algorithm parallelism: multiple algorithms are run in
parallel (Crainic and Toulouse, 2010) .

Discrete Optimization on GPUs (Graphics Processing Units) 10 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel computers

Multi-core computers.
Multi-computers, e.g. clusters, grids.
Specialized parallel computer architectures (e.g. Graphics
processing units (GPUs)) together with traditional
processors.

Discrete Optimization on GPUs (Graphics Processing Units) 11 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

GPU computing

Used in the past only for graphics and video applications.
Lately have been increasingly used for scientific
computing.
Release of the programming tools that enable the use of
GPUs for general purpose computing.
Easily accessible, large speedup.
GPU computing: the use of a GPU together with a CPU to
accelerate general-purpose scientific and engineering
applications.
Also known as General-Purpose computation on GPUs
(GPGPU) (Brodtkorb et al., 2013).

Discrete Optimization on GPUs (Graphics Processing Units) 12 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Major GPU vendors

Vendor Market
NVIDIA high-performance and discrete graphics
AMD high-performance and discrete graphics
Intel integrated and low-performance

Source: Brodtkorb et al., (2013).

Discrete Optimization on GPUs (Graphics Processing Units) 13 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Warp and wavefront

The most basic unit of scheduling of the GPU.
The minimum size of the data processed in SIMD fashion.
For NVIDIA GPUs, threads execute in 32-thread groups
called warps.
For AMD GPUs, threads execute in 64-thread groups
called wavefronts.
Divergence in a warp (wavefront) causes sequential
execution, and should be avoided.

Discrete Optimization on GPUs (Graphics Processing Units) 14 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

CPU vs GPU

CPU
Several arithmetic and logic units, a large cache and a
control unit.
Manage multiple and different tasks requiring lots of data.

GPU
A large number of arithmetic units with a limited cache and
few control units.
High memory bandwidth.
High floating point performance.
Address problems that can be expressed as data-parallel
computations (Luong, 2012).

Discrete Optimization on GPUs (Graphics Processing Units) 15 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

General GPU computing model

CPU works as a host and GPU is used as a device
coprocessor.
Data-parallel computations can be assigned to GPU.
Data must be transferred between CPU and GPU.
Processors on GPU support the single program multiple
data (SPMD) fashion.
Kernel is used to define the programs for GPU processors.
A kernel is a function callable from CPU and executed on
GPU simultaneously by multiple processors on different
data(Luong, 2012).

Discrete Optimization on GPUs (Graphics Processing Units) 16 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Programming language for GPU

For general-purpose computing:

Open Computing Language (OpenCL).

Microsoft DirectCompute.

Compute Unified Device Architecture (CUDA): created by
NVIDIA, is the most mature technology with the most
advanced development tools (Brodtkorb et al., 2013).

Discrete Optimization on GPUs (Graphics Processing Units) 17 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

NVIDIA GPU architecture

16 streaming multiprocessors (SMs), each SM has 32 streaming
processors(SPs). In total, 512 SPs.

Discrete Optimization on GPUs (Graphics Processing Units) 18 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

CUDA thread organization

Discrete Optimization on GPUs (Graphics Processing Units) 19 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

CUDA thread organization

Launching a kernel creates a grid of threads.
The threads are grouped into blocks, and the blocks
constitute the grid.
The threads within a block can synchronize and cooperate.
A block runs on a single multiprocessor.
Each block has an index within the grid, each thread has
an index within its block.
Each thread uses its block index and its thread index to
identify its position in the global grid (Brodtkorb et al.,
2013).

Discrete Optimization on GPUs (Graphics Processing Units) 20 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

CUDA memory model

Discrete Optimization on GPUs (Graphics Processing Units) 21 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

CUDA memory model

Memory Usage Scope Latency Size
Registers R/W Thread Very fast Very small

Local R/W Thread Medium Medium
Shared R/W Block Fast Small
Global R/W Grid+CPU Medium Big

Constant Read only Grid+CPU Fast Medium
Texture Read only Grid+CPU Fast Medium

Source: Kirk and Hwu (2010), Luong (2012).

Discrete Optimization on GPUs (Graphics Processing Units) 22 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

CUDA to OpenCL

CUDA OpenCL
Grid NDRange
Block Work-group
Thread Work-item
Registers Private memory
Shared memory Local memory
Global memory Global memory
Constant memory Constant memory
Texture memory Image memory

Source: Martinez et al. (2011)

Discrete Optimization on GPUs (Graphics Processing Units) 23 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Main design issues

Task partition between CPU and GPU.

Parallelism control.

Memory management (Luong, 2012).

Discrete Optimization on GPUs (Graphics Processing Units) 24 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Task partition

Select suitable tasks for GPU.
Optimize data transfer between CPU and GPU because it
is time consuming.

Discrete Optimization on GPUs (Graphics Processing Units) 25 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallelism control

Control the number of threads to satisfy memory
constraints.
Have enough threads to obtain the best multiprocessor
occupancy and to hide memory latency.
Use thread ID to map each thread to a specific piece of
data(Luong, 2012).
Consider cooperation among threads within a block.

Discrete Optimization on GPUs (Graphics Processing Units) 26 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Memory management

Consider memory constraints when defining kernels.

Minimize access to global memory.

Copy one part of global memory to a shared memory.

Global memory access coalescing: if threads in a warp can
access consecutive memory addresses, all the access can
be combined into a single request (Kirk and Hwu, 2010).

Discrete Optimization on GPUs (Graphics Processing Units) 27 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Speedup

Normally

Speedup =
the running time of the sequential version of the algorithm

the running time of the parallel version of the algorithm

For GPU-based algorithms

Speedup =
the running time of the CPU version of the algorithm
the running time of the GPU version of the algorithm

Discrete Optimization on GPUs (Graphics Processing Units) 28 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Amdahl’s law

Amdahl’s law states that the speedup achieved through
parallelization of a program is limited by the percentage of
its workload that is sequential.

We can get no more than a maximum speedup equal to

1

S + P
N

S is the percentage of the workload that remains
sequential, P is the percentage of the workload that can be
made parallel, N is the number of processors.

Discrete Optimization on GPUs (Graphics Processing Units) 29 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

GPU computing in discrete optimization

A literature survey in Schulz et al. (2013).

About 100 publications on GPU computing in discrete
optimization.

Published during 2002-2012.

Most papers discuss GPU implementation of
metaheuristics.

Discrete Optimization on GPUs (Graphics Processing Units) 30 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Discrete optimization problems studied

Shortest path problem

Traveling salesman problem

Vehicle routing problem

Task matching

Flowshop scheduling

Knapsack problem

Quadratic assignment problem

Graph coloring

...

Discrete Optimization on GPUs (Graphics Processing Units) 31 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Algorithms implemented on GPU

Ant colony optimization (23)

Particle swarm optimization (18)

Population based (like genetic algorithm) (41)

Local search (6)

Tabu search (3)

Simulated annealing (1)

...

Discrete Optimization on GPUs (Graphics Processing Units) 32 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Traveling salesman problem (TSP)

Next, three GPU based parallel metaheuristics for TSP.
Given a list of cities and the distances between each pair
of cities.
Find the shortest tour that visits each city exactly once and
returns to the origin city.

Discrete Optimization on GPUs (Graphics Processing Units) 33 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel ant colony optimization on GPU

Ant colony optimization is based on the cooperation of a set of
ants.

Discrete Optimization on GPUs (Graphics Processing Units) 34 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel ant colony optimization on GPU

Commonly put the tour construction on the GPU.
Most algorithms put pheromone update on the GPU.
A thread is assigned to compute the full tour of one ant
(one-ant-per-thread).
A thread computes only part of the tour and a whole block
is assigned per ant (one-ant-per-block).
One-ant-per-block approach seems to be superior to
one-ant-per-thread.
Speedup up to 29 for TSP (Schulz et al., 2013).

Discrete Optimization on GPUs (Graphics Processing Units) 35 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel LS based metaheuristic on GPU

Luong (2012) presents a template
for LS based metaheuristics.

CPU controls the whole sequential
part of the algorithm.

GPU does tasks like neighborhood
evaluation.

Suitable for best improvement.

A tabu search using 2-opt is
implemented for TSP.

Discrete Optimization on GPUs (Graphics Processing Units) 36 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel LS based metaheuristic on GPU

To put neighborhood generation and evaluation on GPU
can reduce data transfer.

For parallelism control, the total number of threads and the
number of threads per block are dynamically selected.

An approach to map each neighbor to each GPU thread.

Global memory accesses are coalesced.

Use texture memory to store problem inputs and solution
representations.

Speedup up to 19.9 for TSP.

Discrete Optimization on GPUs (Graphics Processing Units) 37 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel genetic algorithm on GPU

Based on the evolvement of a population of solutions:

Discrete Optimization on GPUs (Graphics Processing Units) 38 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Parallel genetic algorithm on GPU

CUDA-based genetic algorithm proposed by Chen et al.
(2011).

GPU does selection, crossover, mutation and evaluation.

For parallelism control, one individual to one thread.

Use shared memory to store part of the population.

Speedup up to 1.7 for TSP.

Discrete Optimization on GPUs (Graphics Processing Units) 39 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Conclusions

Easily accessible parallel resources.

Well-suited to address problems that can be expressed as
data-parallel computations.

May achieve significant speedup.

Discrete optimization on GPUs has become an interesting
research field, still at its early stage.

Hardware dependent, not easily portable.

Discrete Optimization on GPUs (Graphics Processing Units) 40 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

References
Brodtkorb, A.R., Hagen, T.R., and Særa, M.L.(2013). GPU programming strategies and
trends in GPU computing. Journal of Parallel and Distributed Computing, 73:4-13.
Crainic, T. G., and Toulouse, M.(2010). Parallel metaheuristics. In Gendreau, M. and
Potvin, J.-Y., editors, Handbook of Metaheuristics, pages 497Ű541, New York.
Springer.
Kirk, D., and Hwu, W.(2010) Programming Massively Parallel Processors: A Hands-on
Approach, Morgan Kaufmann Publishers, 2010.
Laporte, G.(2007). What you should know about the vehicle routing problem. Naval
Research Logistics, 54:811Ű819.
Leont’ev, V. K.(2007). Discrete optimization. Computational Mathematics and
Mathematical Physics,47:328-340.
Luong, T.V.(2012). Parallel metaheuristics on GPU. PhD thesis, Lille 1 University -
Science and Technology.
Martinez, G., Gardner, M., and Feng, W., CU2CL: A CUDA-to-OpenCL Translator for
Multi- and Many-Core Architectures, in Parallel and Distributed Systems (ICPADS),
2011 IEEE 17th International Conference on, dec. 2011, pp. 300 Ű307.
Schulz, C., Hasle, G., Brodtkorb, A. R., and Hagen, T. R. (2013. GPU Computing in
Discrete Optimization Part II: Survey Focused on Routing Problems. Submitted.
Chen, S., Davis, S., Jiang, H., Novobilski, A.(2011). CUDA-Based Genetic Algorithm
on Traveling Salesman Problem. In: R. Lee (ed.) Computer and Information Science
2011, Studies in Computational Intelligence, vol. 364, pp. 241-252. Springer Berlin
Heidelberg.

Discrete Optimization on GPUs (Graphics Processing Units) 41 / 42

Discrete optimization
GPU computing

GPU computing in discrete optimization
Conclusions

Thank you for your attention!

Discrete Optimization on GPUs (Graphics Processing Units) 42 / 42

	Discrete optimization
	GPU computing
	GPU computing in discrete optimization
	Conclusions

