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Abstract

This master thesis addresses both a combined production and distribution problem, The
Integrated Production-Distribution Problem(IPDP), and modernization of meta heuristic
algorithms by introducing parallelization.

The IPDP consists of two NP-hard problem types; Vehicle Routing Problems(VRP)
and Lot Sizing Problems(LSP). When these are combined the resulting problem gets even
harder to solve. The IPDP minimizes the total cost of both production and trasportation
in order to globally streamline the supply chain.

In the recent years there has been a generation change in the processor architecture
on personal computers. The clock frequency is not increasing much anymore, instead the
increased computational power is achieved by increasing the number of separate cpu-cores
inside the processor. To make applications able to unlock the increased computational
power these multicore processors offer, the applications must be multithreaded. This means
that applications must be developed with parallelization in mind. This thesis presents a
scaleable multithreaded tabu-search algorithm for solving the IPDP, which can fully utilize
all available cpu-cores in modern multicore processors. In this process several different and
interesting strategies for meta heuristic parallelization are discussed. The results obtained
and presented clearly shows that parallelization of meta heuristics is well worth the extra
effort.
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1 Introduction

1.1 Motivation and background

During the spring 2008 we attended the course heuristic optimization methods lectured by
professor Arne Løkketangen at Molde University College. This course was our introduction
to the world of combinatorial optimization and heuristics, and it sparked our interest in
this reaserch field. One part of the heuristics course was to apply a meta heuristic for
solving the 0/1 Multiple Knapsack Problem. This work should result in a scientific article.
It was during the work with our article Solving large Multiple Knapsack Problems using
tabu search (2008), we decided that we wanted a master thesis in the field of combinatorial
optimization using meta heuristics.

The choice of supervisor was then quite simple, professor Arne Løkketangen is one of
the leading reaserchers in combinatorial optimization and was therefore our main choice.
Arne Løkketangen had many proposals for a master thesis, and in cooperation with him
we finally chose the Integrated Production and Distribution Problem (IPDP) and solver
parallelization.

This thesis will continue the work presented in the Doctoral Thesis of Dr. Andre Shigue-
moto (2009) (at UNICAMP, Campinas, Brazil). In his thesis he proposes an integrated
model for the IPDP problem. This problem consists of the subproblems production and
distribution, and when combined the new problem has increased complexity.

Over the past couple of decades there has been a substantial increase in computing
power in normal personal computers, ranging from a few mega hertz to giga hertz, and the
computational power of modern PC’s can be multiplied with thousands over computers
from the early 90’s. A couple of years ago there was a generation change in the CPU
architecture which introduced the multi-core processors. As a result of this the clock-
frequency on new processors are not increasing very much, instead the number of CPU-cores
increases. These new multi-core processors are especially good on multi-tasking. Since all
CPU-cores operate in parallel, several tasks can be run at the same time. In theory a dual-
core CPU is twice as fast as a single-core CPU running at the same frequency. In practice
this is true for the whole system with all its running processes, but for running a traditional
single-threaded program, the performance gain a modern multi-core processor can give is
very small compared to a single-core processor running at the same clock-frequency. This
is because single-threaded applications only can utilize one CPU-core, which means that
for a quad-core processor, only 1/4 of the processing power will be utilized.
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In this thesis the focus will be on looking into different parallelization schemes for
modernizing meta heuristics to better utilize the increased computational power available
in new multi-core processors. We will develop a scaleable parallel tabu search for the IPDP
by splitting work into separate parallel tasks and solve the IPDP problem by cooperation
between these tasks.

1.2 Tools used

1.2.1 Applications and libraries

• Xcode 3.1

• Visual studio 2008

• Intel Threading Building Blocks libraries(TBB )

1.2.2 Compilers

• Gcc 4.0.1

• Gcc 4.3.3

• Intel c++ 11.0.072

• Microsoft Visual C++ 15.0.30729.1

1.3 Outline

The thesis is structured in the following way: In chapter 2 the Integrated Production
Distribution Problem, and its sub problems Vehicle Routing Problem and the Lot Siz-
ing Problem is described along with different inventory management policies. Chapter 2
also contains a brief summary of previous work on the IPDP. Chapter 3 discusses various
methods used for solving the IPDP, from exact methods to modern meta heuristics. Chap-
ter 4 adresses parallelization and its limitations and strong sides. Different strategies for
solver-parallelization is also discussed in this chapter. Chapter 5 contains the mathematical
formulation for the IPDP, followed by the implementation details and method description
of the presented tabu search algorithm in chapter 6. In chapter 7 the computational re-
sults obtained and test instances used are presented and described. Chapter 8 contains
conclusions and future work.
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2 Integrated Production-Distribution Problem

In the last couple of decades there has been an increased focus on optimizing and stream-
lining the supply chain in order to reduce costs. The advance in technology along with new
models and algorithms have given better information and communication systems that has
made coordination of the whole supply chain more manageable. Larger parts of the supply
chain is now optimized globally in one step. In the case of the IPDP this means that both
the manufacturing, inventory at the plant, the transportation and the inventory monitoring
at the retailers are considered at the same time. This is in contrast to the more traditional
decoupled two-step approach, where the production plan is produced first, and then a dis-
tribution plan is made based on the production plan. In most cases such global integrated
optimizing of the supply chain gives cost reductions far beyond traditional optimization
approaches.

As briefly mentioned, the Integrated Production-Distribution Problem considers both
the manufacturing of products at the plant, the distribution to the retailers and managing
their inventory levels. The IPDP can therefore be broken down to 1) Capacitated Lot
Sizing Problem (CLSP) with multiple products and periods, and 2) a multi period split
delivery CVRP. Each of these two sub-problems are considered to be computational hard
to solve, since both problems belong to the complexity class NP-Hard.

In the last couple of years there has been published some interesting articles regarding
solving the IPDP. Boudia et al. (2007) developed a reactive GRASP method for a combined
production-distribution problem where the goal is to minimize the sum of three costs,
namely: production, transportation and inventory costs. Later M. Boudia, C. Prins (2009)
developed and applied a Memetic Algorithm with Population Management (MA|PM) to
the exact same test-instances. These instances concern a single product and 50, 100 and
200 customers in a horizon of 20 time-periods. The results show a saving of 23 % or more,
over classical decoupled optimization methods.

Archetti et al. (2007) had another approach, they used an exact method, branch and
cut, for solving the problem to optimality while following and comparing three vendor
inventory management strategies. The first strategy is the order-up-to-level (VMIR-OU),
the second strategy allows for any delivery quantity as long as it is not violating the
minimum or maximum inventory levels at the vendor (VMIR-ML). The third strategy
is the same as the second strategy but disregards the vendors maximum inventory level
(VMIR).
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The work resulted in a comparizon of these inventory management strategies which
shows the effect relaxation of the shipment quantities has on the total cost. There was
large savings when the less constrained strategies were applied compared to the VMIR-OU.

Shiguemoto used a tabu search procedure to 1) compare the VMIR-OU and VMIR-
ML strategies, and 2) compare the integrated VMIR-ML strategy against the decoupled
VMIR-ML strategy. The results presented shows that the VMIR-ML yields significant
reduction in the cost compared to the more restrained VMIR-OU, and that the integrated
VMIR-ML approach is far superior to the decoupled approach.

The results and conclusions of the articles are all similar. They all conclude in that an
integrated approach between production and distribution planning in a supply chain can
give a substantial cost saving over traditional decoupled approaches.

2.1 Inventory management strategies

There are many different inventory management strategies, still all these strategies can
be divided into two main classes. The first class is the Retailer Managed Inventory
(RMI), which is often considered the traditional strategy where the retailers manages their
own inventory. This strategy is still common practice for many companies, depending on
their size and business segment. The second class is the Vendor Managed Inventory
(VMI), where the vendor is responsible for managing the retailers inventory. There are
many variants of VMI that are applied in different supply chains, and the most common
is listed below.

2.1.1 VMIR-OU (Order-up-to level)

The vendor must deliver a quantity that brings the inventory for each retailer after each
delivery, up to a predetermined level. This is a relatively constrained strategy due to the
predetermined level the inventory must have after each delivery. This gives less possible
solutions, and therefore this is depending on the inventory and vehicle capacity. This is
often an expensive policy since one can expect that shorter but more routes are needed to
satisfy the retailers delivery demand.

2.1.2 VMIR-FFD (Fill-Fill-Dump)

In this VMI strategy the quantities delivered to the retailers must bring the inventory level
up to a predetermined level, as in the VMI-OU, except for the last retailer at each trip.
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The quantity delivered to the last retailer on the route can be any quantity, typically the
remaining capacity of the vehicle.

2.1.3 VMIR -ML (Maximum level)

When this strategy is enforced it allows for any quantity to be delivererd as long as the
inventory bounds at the retailers are not violated after the delivery. The inventory must
also stay between these bounds until the next delivery. Compared to the VMI-OU, and
VMI-FFD strategies the VMI-ML is less constrained and more possible solutions exists.
This means that the cost will be less than with the VMI-OU and VMI-FFD strategies or
in worst case the same. This usually means that the optimal solution is harder to find, but
good solutions are easier found.

2.1.4 VMIR

A VMI strategy where the maximum inventory level is disregarded. The only constraint
is that the lower bound on the inventory levels must not be violated. This strategy is
often impractical because it requires unlimited storage capacity at the retailers. In most
real world situations this is not realistic since most retailers have a capacity limit on the
inventory.

2.2 VRP - Vehicle Routing Problem

The Vehicle Routing Problem was first formulated and described by Dantzig and Ramser
(1959). Since then the Vehicle Routing Problem has been a popular research topic in the
field of combinatorial optimization. The VRP is defined on a complete graph G = (N,A)

where N = {0, ..., n} is the set of Nodes, and A = {(i, j) : i, j ∈ N} is the arc set. Node 0
represents the depot and the rest of the nodes represent the retailers. The retailers have a
certain demand, di that must be fulfilled and the cost of travelling between node i and j
is defined by a cost cij.
The classical variant of the VRP is referred to as the capacitated VRP (CVRP). In most
VRP variants, the vehicle fleet is uniform, meaning that each vehicle is identical and have
a capacity q.

The objective of the classical VRP is to minimize the overall cost, usually the travel
distance, for the whole set of routes. All vehicles are required to start and end at the
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depot, and the total demand for each route can not exceed the capacity q of the vehicle.
Each retailer must be visited once by only one vehicle, and get their demand fulfilled.

Solving large VRP problems are considered to be a computational hard optimization
problem, because of the exponentional growth of the problem size. The VRP problem
belongs to the class of NP-Hard problems, which means that for larger problem instances,
heuristic methods usually must be applied as solver, as complete methods in general takes
too long time, or runs out of memory.

When heuristics are applied this usually means that the goal is to find good solutions
fast, rather than finding the global optimal solution.

To make the VRP models fit to real world applications better, the VRP has a variety of
extensions. These extensions adds complexity to the basic model which in general makes
it harder to solve to optimality.

2.2.1 Extensions

• Multiple periods. If the Planning period is longer than one day, the problem is
called a Periodic VRP. In a periodic vehicle routing problem the goal is to find the
optimal routes for a T-day period.

• Time Windows. If the retailers have certain time windows when they must be
served, constraints for this must be added. Such constraints can be either hard or
soft, depending on the real world problem. When time windows are implemented as
hard constraints, no violation of time windows are allowed in a feasible solution. Soft
constraints usually adds a penalty to the solution if there is a constraint violation,
meaning that the solution still is feasible.

• Distance or duration constraints. Typically maximum distance per route, or
maximum time consumption per route. This will of course have an influence on the
number of routes and the total cost for the whole set of routes.

• Heterogeneous vehicle fleet. In many real world situations, a company have
many types of vehicles. These vehicles can range from small to large, have different
purposes and varying cost efficiency.
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• Split delivery When split delivery is allowed, a customer can be visited by more
than one vehicle each period. The customer’s demand then gets fulfilled by one or
more deliveries. In real life this can often occur because of capacity limits on the
vehicles.

• Multiple depot. There might be more than one depot, which introduces the choice
of which depot that should supply which customer.

• Retailer preferences. Certain customers may want to be served from a specific
type of vehicle or a certain driver. In the real world, customer preferences can be
important for the supplier - customer relationship.

2.3 LSP - Lot Sizing Problem

The objective of the Lot Sizing Problem is to find the minimal cost for producing products
such that the demand for each period is met, and considers the setup costs, inventory
holding cost, production capacity and other costs that may apply to the production. This
problem is NP-hard if there are multiple periods and products. In order to apply to real
world situations the LSP has a number of extensions. These extensions constrains the
original problem. As a result the complexity increases and the new problem is harder to
solve.

2.3.1 Extensions

• Multiple products. More than one product must be produced. Different setup
costs, production costs and inventory holding costs may apply.

• Time windows. Certain products could only be produced in given time windows.
Any production of these products outside the time window is not allowed.

• Lead time. Different products can have different lead time, this can reduce the
possibilities for when to start production in order to meet the demand.

• Back orders. Back orders can be allowed for all or some of the products.
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3 Methods for solving IPDP, VRP, LSP

There are several different approaches for solving the IPDP or its sub problems, from exact
methods to modern meta heuristics. Exact methods are usually preferred if the problem size
is manageable because exact methods do guarantee to find the optimal solution. However
in real world situations the problem size is often very large and solving them with exact
methods will be impractical as they either take too long time or the method will run out
of memory. In such cases it is common to use heuristic methods to find good solutions.
Most heuristic methods have no guarantee for the solution quality, but in practice good
meta heuristic methods usually finds good or near optimal solutions.

3.1 Exact methods

Exact methods examines every possible solution, but can use cut-off mechanisms to re-
move uninteresting parts of the search space. Branch-and-bound and branch-and-cut are
examples of this. Memory problems and time consumption are the main issues for exact
methods. As a result exact methods are not suited to solve large instances of NP-hard
problems, but should be used over heuristic methods if the problem size is manageable.

3.2 Heuristics

Heuristics are methods that are used to find solutions to spesific problems. The different
heuristic methods use different techniques for reaching a solution for the same problem. Still
all heuristics use some knowledge of the problem to guide the search to a solution. Heuris-
tics can be divided into two groups, construction heuristics and improvement heuristics.
Construction heuristics create (feasible) solutions from the data input, and improvement
heuristics try to improve solutions that already exists.

3.2.1 VRP Construction heuristics

Typical construction heuristics for CVRP are algorithms like the sweep algorithm by Gillet
and Miller (1974) and the savings algorithm by Clarke and Wright (1964).

Sweep heuristic

The sweep heuristic is a construction heuristic that makes feasible VRP routes. Feasibility
is judged by given constraints that must be satisfied, like travel time, distance, capacity, or
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other constraints. A route is constructed by drawing a straight line away from the depot
or plant, then moving the line in one direction (left or right) while feasibility is still true
(figure 1).

Figure 1: Sweep algorithm

Savings heuristic

The savings heuristic is also a construction heuristic that makes feasible VRP routes. A
savings matrix is calculated before the algorithm is run. The matrix contains the distances
between all the customers and depots. The problem size is n2 if asymmetric and n2

2
if

symmetric. Initial routes are created for every customer, from depot to customer and back
to the depot again. If N denotes the number of customers, there will be N routes. After
this the algorithm checks if there will be a saving if two routes are merged. The saving is
computed from the formula Sij = Cdj + Cid − Cij. If the cost of the merged routes will be
less or equal than the two separate routes, they are merged. The highest saving will be
chosen first. When routes are merged, the total route cost will decrease and this reflects
back to the name, Savings heuristic.

Figure 2: Savings algorithm

Cdj = 4, Cid = 5, Cij = 3. The total cost of the two separate routes are 2∗4+2∗5 = 18.
The saving of merging these routes are Sij = 4+5−3 = 6. If there are no route combinations
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that give higher saving than 6, these two routes will be merged first, as seen in figure2.

3.2.2 VRP Improvement heuristics

Improvement heuristics like 2-OPT, 3-OPT and K-OPT can be applied after a VRP-
solution has been created, in order to improve the solution by reducing the travel distance
for the routes.

These improvement heuristics can be implemented as both intra-route and inter-route
optimization. With Intra-route optimization, one single route is optimized by changing
the order in which the customers are visited. The inter-route optimization goes beyond a
single route, including 2 or more routes and works by exchanging customers between the
routes to improve the total cost of the routes.

3.2.3 LSP Construction heuristics

In lot sizing problems, the most known construction heuristics is the orginal Wagner and
Whitin (1958) algorithm, and later the Evans (1985) heuristic which is an efficient reim-
plementation of the Wagner and Whitin algorithm.

Evans heuristic

The Evans heuristic is an efficient implementation of the Wagner-Whitin algorithm. The
heuristic calculates the cost of producing products for the next period(s) vs the cost of
producing it the period it is demanded. It does so in a recursive manner. Plant production
capacity and inventory capacity is not taken into consideration, and can create infeasible
solutions. This is a dynamic programming implementation that requires little memory and
is very fast.

3.2.4 IPDP heuristics

There are no known IPDP construction heuristics known to the authors of this article.
However since the IPDP is a combined production and transportation problem, an IPDP
solution can be generated by combining construction heuristics for LSP and VRP.

3.3 Meta heuristics

Classical construction heuristics can generate a solution, but usually get stuck in local
optima because it always choose a move that makes the objective value better than the
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previous. When no improving move is available the search stops. Meta-heuristics can
perform moves that will worsen the objective value, in order to get out of the local optima.

A meta-heuristic method is a strategy used to guide heuristics so that the heuristic can
continue past the local optima. Meta-heuristics have been developed and widely applied
to combinatorial optimization problems in the last couple of decades. Still most meta-
heuristics do not guarantee to find the global optimum solution, but good solutions can
often be obtained fast.

Meta-heuristics can be divided into two groups, local search based and population
based meta-heuristics.

Local search

There are a number of available local search versions, from purely deterministic to stocastic
moves. Examples of such versions are steepest descent and random walk. Steepest descent
evaluates all neighbors in each iteration and select the neighbor leading to the best solution.
Random walk selects its neighbor after a probability p. Depending on the probability for
the neighbor, the chosen move can be either greedy like the steepest descent or purely
random.

In order to perform a local search, four components must be defined.
1) A defined search neighborhood, 2) A defined move, which describes how to get from the
current solution to a neighboring solution, 3) A move evaluation function to evaluate the
possible moves, and finally choose the next move and 4) A stopping criterion which defines
when the search should terminate.

Tabu Search

The problem in regular heuristics is that you always use the same move-criteria, ie. the
best move. Tabu search was created by Glover (1986) as a means of getting out of local
optima.

The idea in tabu search is to set some of the attributes of the moves made in a tabu
status for a number of iterations, called tabu tenure. If a move is considered tabu, but will
give a new best solution, the move is chosen anyway. This is called the aspiration criteria.

Other strategies and penalties can be added to guide the search in other directions.
Two strategies are called intensification and diversification. The intensification strategy
uses recency memory. A number of solutions are kept in memory, and a counting is
performed on each value in them. The variable that has been in the solutions the longest
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will be held in place, while a search is performed in the remaining part of the solution. The
diversification strategy forces the search into other areas of the search space that is not yet
explored. This can be done by keeping a long term memory in form of a frequency table.
The table keeps track of the number of times an attribute has been in a solution. This
frequency can be added to the objective value, to make other attributes more attractive.
In meta-heuristics the solutions does not have to be feasible. Moving between feasible and
infeasible solutions can be done by using a process called strategic oscillation. Weights
are added to the infeasibility component of the objective value in a strategic manner. If
the solutions have been infeasible for a few iterations, the weight is increased. For feasible
solutions, the weight decreases to encourage the search to go infeasible.

Simulated Annealing

Simulated annealing (SA) is inspired by the cooling of metal (Kirkpatrick, Gelatt, and
Vecchi 1983). The algorithm is local-search based and allows non-improving moves to
avoid getting stuck in a local optima. The search chooses a random neighbor and if it gives
a new best solution f(s) < f(s), the move is taken unconditionally. If the move would give
a solution f(s) > f(s), a probability P (s, s, T ) is calculated based on the differences in the
objective value for the new solution and the incumbent solution, and the temperature T .
This probability is given to the solution s and is the probability for the move to be chosen.
The solution s with the highest probability is the move that eventually will be chosen. The
probability function makes SA able to escape local optima. If the temperature T is infinite
the algorithm is poorly stochastic and all moves are chosen randomly. However if T = 0

the algorithm becomes a greedy algorithm that can not escape local optima. Initially the
temperature T is often set high and a user specified cooling schedule is applied to gradually
reduce the temperature at a given distribution that ends with T = 0. It is proven that SA
will find the global optimum, but the run time needed could be infinite.

Population based

The most known population based meta heuristic is theGenetic algorithm introduced by
Holland (1975) and is based on analogies in biology. The idea behind is the survival of the
fittest, and terms from biology are used to describe the process of the algorithm. Initially
a population(set) of solutions is created. The initial population can be created randomly
or by a construction heuristic. An iteration consist of making a new generation. The
search is done by crossover or mutation to create new individuals. The crossover takes two
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individuals and switches some of the genes at a crossover-point. Some of the individuals
will be mutated. This means that a random gene will change value. The individuals are
encoded with binary values, 0 or 1. A mutation is done by flipping a value 0 to 1 or
1 to 0. There is usually a small probability that mutation will occur, and is used as a
diversification strategy. If there is a high diversification rate, many mutations will occur.
The offspring of the crossovers and mutations are evaluated by a fitness computation, and
the fittest individuals are chosen to be inserted into the new population.
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4 Parallelization

Today the frequency(Hz) of new processors are not increasing very much. The reason
for that is called electromigration. Electromigration is considered to be the result of mo-
mentum transfer from the electrons in the electric current. For semiconducting chips the
problem arises when the circuit size decreases and frequency increases over a certain point.
The result of electromigration is dramatically reduced life time or in worst case, a damaged
chip. To avoid this phenomena, new processors have an increased number of CPU-cores
placed inside the chip, rather than increasing the processor’s frequency. This way new
processors get increased computational power and still avoids electromigration.

Still, there is a drawback with this approach, namely that to make use of the in-
creased computational power several tasks must be run at the same time. Traditional
single threaded applications can only utilize one CPU-core, since one thread cannot be
split over several cores. This means that there will be next to no gain in computational
power for single threaded applications if run on a new 3 Ghz quad core CPU instead
of an older 3 Ghz single core CPU. To be able to unlock the increased computational
power these new multi-core processors have, the applications must be multi-threaded and
developed with parallelization in mind.

Developing for parallelization generates some questions. E.g. what part of the algorithm
should be run in parallel? Will parallelization give the wanted result? These questions are
not always trivial to answer, but is important to think through. Since work has to be done
simultaneously, data concurrency issues are due to arrive and the developer must apply
techniques to prevent data corruption. Splitting up work into several threads and join the
results generates administration work, called overhead. If the amount of overhead gets to
large compared to the actual task that should be performed, a parallel implementation
can actually be slower than a pure sequential implementation. Therefore the parts of an
algorithm that is the most beneficial to parallelize is the parts that contains the largest
work load.
Parallelization has been a popular research topic in computer science for many decades,
which has resulted in many observations and conclusions regarding the applications for
parallelization. According to Amdahl’s law (1967), a program where every component is
running with two parallel threads is twice as fast as a serial version of the program. One
could imagine that if only half of the program were speeded up by 2x, the total speed up
would be 1.5 over the serial version. However, this is not the case. A program where half of
the components are speeded up 2x, will run only 1.33 times faster than the serial version.

20



Even if the parallel half of the program could utilize an infinite amount of processors, the
program would not run faster than the remaining serial part of the program. In a way,
Amdahls law can be used as an argument against taking the effort of parallelizing programs
and applications, but there is another way to look at this, namely Gustafson’s observations.

Gustafson (1988) stated that parallelization is more useful when the workloads are
higher. He also noticed that as computers got more powerful, the applications became more
complex and gave computers a higher workload. The most interesting part of Gustafson’s
observations, is that as the workload or problem size grows, the part that can be parallelized
is the part that grows the most. Based on Gustavson’s observations, meta heuristics should
be able to get good profit from parallelization, since metaheuristics usually have no problem
with small workloads due to the combinatorial nature of the problems applied. In fact a
too large workload is usually the reason for why metaheuristics must be applied. Still,
there is reason to believe that the difference between a good parallel metaheuristic and a
serial version will grow with the problem size. This means that the usefulness of parallelism
increases with the problem size.

(Le Bouthilliera and Crainic 2005) uses a multi-search approach for the vehicle rout-
ing problem with time windows. It is based on a solution warehouse strategy where the
best solutions are kept. This multi-search approach is an attempt to solve problems more
generally than other parallelized metaheuristics. This is done mainly by running several
different methods in parallel, and applying some post optimization steps on each solution
before considering if the solution should be added to the solution warehouse. Doing this
will give a better chance of improving the solution. The results were quite good, and sug-
gests that cooperation between solvers should be further experimented with.

4.1 Parallelization strategies

There are many strategies for implementing parallel solvers. Earlier the effort was focused
around parallelization of the most computationally intensive step of the algorithm, using
traditional master-slave schemes. In meta-heuristics, the most computationally intensive
step usually is the neighborhood exploration. As the field of parallel metaheuristics evolved,
it became clear that it was possible to go much further if the low level parallelization
schemes, like master-slave, was abandoned. Schemes like master-slave give less CPU-
time than pure sequential implementations, but they have the same overall behavior e.g.
give the same search trajectories. It is clear that the sequential nature of these low level
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parallelization schemes is a performance limitation, but the lost opportunity to get more of
the search space explored at the same time is possibly the weakest point for these schemes.

4.2 More advanced parallelization schemes

Most of the research in the field of parallel metaheuristics in the last decade has been on
more high level parallelization approaches that give a new algorithmic behavior by let-
ting several parallel components explore different areas of the search space simultaneously.
When this type of search is done in a coordinated fashion, this approach becomes superior
to the traditional parallelization schemes.

(Crainic, Toulouse, and Gendreau 1997) introduced a taxonomy of parallel Tabu Search
approaches to classify known parallelization schemes and give researchers a better under-
standing of parallel tabu search. In addition the taxonomy should help point out interesting
research areas, that would help finding new and interesting search strategies. This taxon-
omy is based on a three dimensional classification of the algorithmic features in the different
parallel search schemes. Namely Control cardinality, Control and communication
type, and Search differentiation.

The control cardinality defines whether one process control the search, called 1-control
or in cooperation with other processes, called p-control. The control and communica-
tion type dimension, defines the level of communication and information sharing between
processes. Levels ranging from Rigid Synchronization(RS) to Knowledge Colle-
gial(KC), which in other words mean; from the traditional master-slave scheme to a
scheme that have asynchronous knowledge sharing between the processes in such fashion
that processes in a way help guide each other toward better solutions. The last dimension
in this taxonomy, search differentiation, addresses the following issues; Do the threads have
the same start solution, do they use the same search strategies etc.

4.3 Meta heuristic parallelization

There are several parallelization strategies that can be applied for development of a par-
allelized meta heuristic. Some interesting strategies are listed and briefly described below
ordered by implementation difficulty.
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Master-slave with post-optimization

The VRP and LSP solver could run in a decoupled master - slave scheme, where one solver
make a solution to use as input for the other solver. A separate task could be run in
parallel to improve the solution(s), as shown in figure 3.

Figure 3: Master-slave PDP-solver with optimization task

IPDP with post-optimization

Instead of a decoupled master-slave approach, an integrated approach where both produc-
tion and distribution is considered simultaneously can be considered. A separate asyn-
chronous post optimization task can also be applied to improve the incumbent solutions
in parallel with the main search.

Figure 4: Integrated PDP-solver with optimization task
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Split by problem size

The problem instances could be split in half by customer size, time periods or vehicles and
run in parallel by a master-slave or integrated scheme. Partial solutions will have to be
merged together in order to find the objective value for the instance as a whole. This is
seen in figure 5. A problem that may arise when opting for this scheme is that when a
problem instance is split each new part will be a new problem instance which does not
have the full knowledge of the original problem instance. This may result in that even if
each new part is solved to optimality, the merged result may not yield the optimal solution
for the orginal instance.

Figure 5: Split problem by customer

Asynchronous sub-problem solvers

One way of cooperation is to split the IPDP-solver into two solvers of each sub-problem
LSP and VRP. These solvers should run asynchronously and cooperate to find the global
IPDP optima. See figure 6. One issue with this scheme is the solver cooperation. Since
both parts are dependent on the other for producing a solution for the IPDP, it can be a
challenging task to get both solvers to run asynchronously. It is likely that an advanced
communication process must be applied if the sub-problem should be able to guide each
other towards the global IPDP optima in an asynchronous fashion.
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Figure 6: Running solvers in parallel

5 Mathematical model

This thesis uses Dr. Shiguemoto’s mathematical model of the Integrated Production Dis-
tribution Problem since the tabu search parallization introduced here is an extension to
his work.

The production-distribution problem (PDP) is defined on a complete graphG = (W,A).

Sets:
W - set of nodes, 0, ..., N

A - set of arcs, (k, l) : k, l ∈ W,k 6= l

J - set of products, 1, ..., J

N - set of customers, 1, ..., N

V - set of vehicles, 1, ..., V

T - time periods, 1, ..., T

Parameters:
p = capacity of the plant in time units
bj = time required to produce one unit of product j
hj0 = unit inventory cost of product j at the plant (k = 0: plant)
hjk = unit inventory cost for product j for customer k, k 6= 0

sj = setup cost if product j is produced in period t
djkt = demand of product j for customer k in period t
ljk = Lower bound on inventory for product j for customer k
ujk = Upper bound on inventory for product j for customer k
f = fixed cost if vehicle v is used in period t
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cjkl = cost of transporting product j along arc (k,l)
m = large number,

∑J
j=1

∑T
t=1

∑N
k=1 djkt

c = capacity of each vehicle.

Variables:
Pjt = quantity of product j produced in period t;
Ijkt = inventory of product j of customer k at the end of period t;

δjt =

 1 if product j is produced in period t
0 otherwise;

Qv
jkt = quantity of product j delivered to customer k by vehicle v in period t;

Xv
jklt = quantity of product j transported on arc (k,l) by vehicle v in period t;

εvklt =

 1 if vehicle v travels along arc (k,l) in period t
0 otherwise;

Formulation:

min
T∑

t=1


J∑

j=1

[
N∑

k=0

hjkIjkt + syδjt

]
+

V∑
v=1

 N∑
l=1

fεv0lt +
N∑

l=0,k 6=l

cklε
v
klt

 (1)

subject to

Pjt + Ij0,t−1 − Ij0t =
N∑

k=1

V∑
v=1

Qv
jkt t = 1, ..., T ; j = 1, ..., J (2)

V∑
v=1

Qv
jkt + Ijk,t−1 − Ijkt = djkt t = 1, ..., T ; j = 1, ..., J ; k = 1, ..., N (3)

J∑
j=1

bjPjt ≤ p t = 1, ..., T (4)

Pjt ≤ mδjt t = 1, ..., T ; j = 1, ..., J (5)
N∑

i = 0
i 6= k

Xv
jikt −

N∑
m = 0
m 6= k

Xv
jkmt = Qv

jkt t = 1, ..., T ; v = 1, ..., V ; j = 1, ..., J ; k = 1, ..., N (6)

N∑
i=1

V∑
v=1

Xv
ji0t −

N∑
m=1

V∑
v=1

Xv
j0mt = −

N∑
k=1

V∑
v=1

Qv
jkt t = 1, ..., T ; j = 1, ..., J (7)

J∑
j=1

Xv
jklt ≤ cεvklt t = 1, ..., T ; v = 1, ..., V ; k, l = 0, ..., N ; k 6= l (8)

N∑
l=1

εv0kt ≤ 1 t = 1, ..., T ; v = 1, ..., V (9)
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N∑
i = 0
i 6= k

εvikt −
N∑

m = 0
m 6= k

εvkmt = 0 t = 1, ..., T ; v = 1, ..., V ; k = 1, ..., N (10)

ljk ≤ Ijkt ≤ ujk, Pjt ≥ 0, Qv
jkt ≥ 0, Xv

jklt ≥ 0, δjt ∈ 0, 1, εvklt ∈ 0, 1,∀j, k, l, t (11)

The objective function (1) expresses the minimization of the setup costs, inventory costs
at the plant and customers, and transportation costs. Constraint (2) represent the
balance among production, inventory and deliveries at the plant, and constraints (3)
ensures that the customer demand is fulfilled each period. Constraints (4) limit the
production at the plant by the given capacity. Constraints (5) ensure that a setup cost is
incurred only if there is production. Constraints (6) and (7) express the commodity
conservation flow at the customers and at the plant. Constraints (8) represent the limited
vehicle capacity. Constraints (9) impose that, in each period, at most one trip can be
made by each vehicle. Constraints (10) ensure that each vehicle returns to the plant at
the end of the route. Constraints (11) indicate the type of variables. Inventory levels
have a lower and an upper bound.
Therefore, the PDP involves the following decisions: when to produce each product,
when to visit the customers, how much of each product to deliver, and the determination
of the vehicle routes.
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6 Implementation

In this chapter a detailed description of the implemented parallelized tabu search
procedure for the IPDP is given along with the chosen parallelization scheme and a
conceptual model for the solver.

6.1 Tabu search

The implemented tabu search procedure is based on Dr. Shiguemoto’s description of his
tabu search for the IPDP, but some improvements in the search procedure have been
implemented. The improvements and differences described in this thesis compared to Dr.
Shiguemoto’s description is stated in the method description. The tabu search procedure
described in this thesis also features a parallelized neighborhood exploration and
parallelized post-optimization procedures.

6.1.1 Initial solution

An initial feasible solution for the IPDP is created in the three following steps.

Step 1. Utilize custumers initial inventory

Use initial inventory at the customers to fulfill daily demand, and calculate inventory for
each successive period that is served by the initial inventory. The first period any
customer can not fulfill their demand from the initial inventory without violating the
minimum inventory level, will be the first period with delivery.

Step 2. Creation of routes in delivery periods

The initial routes for the periods where there is need for delivery to customers are created
by applying the savings construction heuristic. The created routes are feasible with
respect to vehicle capacity, and the delivered amount is equal to djkt − Ijkt−1 if customer
inventory in period t− 1 is greater than the minimum inventory bound, djkt otherwise.

Step 3. Determine a production plan for the distribution plan

The production plan is determined by Evan’s efficient implementation of the
Wagner-Whitin heuristic. The Evan’s heuristic is provided by the customers’ total
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demand for each period with delivery and then determines the production periods,
production quantities and the plant inventroy for all time periods.

6.1.2 Objective function

The objective function minimizes the total cost of production, transportation and holding
cost at the customers and at the plant.

6.1.3 Neighborhood

The neighborhood is the different solutions from all combinations of customers, products,
and time periods that can be reached in one move. The size of the neighborhood is stated
by the equation N ∗ J ∗ T 2. This differs slightly to Dr. Shiguemoto’s description where
the neighborhood size is equal to N ∗ J ∗ T ∗ T − 1, and results in a larger neighborhood
where moves within the same time period is allowed.

6.1.4 Move

In similarity with the construction procedure a move consists of a 3 step procedure.

Step 1, determine the shift quantity rjkt,t′

A move is defined as taking the maximum quantity rjkt,t′ of a product j to be delivered to
a customer k and move it from a period t to another period t′. This must be done
without violating upper and lower bounds on the customer’s inventory levels and the
customer demand must be fulfilled. If the selected period t′ is lower than period t, the
move will result in a customer inventory increase by the quantity rjkt,t′ for all periods t to
t′. Similar if the period t′ is a later period than period t, then there is a decrease of
quantity rjkt,t′ in the customer inventory for all periods t to t′.

Step 2, determine the cheapest insertion position

When a shift quantity rjkt,t′ is determined, the cheapest possible insertion position in
period t′ must be determined. If there are no open routes in period t′ a route to customer
k is opened. In situations where there exists one or more routes in period t′, the costs of
the following possibilities must be calculated, and the one that yields the lowest cost is
chosen.
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1. If there exists one or more routes that are visiting customer k in period t′, the cost
of adding the shift quantity rjkt,t′ to the vehicles is calculated.

2. If there are routes in period t′ but customer k is not visited, the cost of insertion of
customer k in every possible position in the existing routes are calculated.

3. The cost of opening a new route to customer k in period t′.

In Dr. Shiguemoto’s description possibility 1. is always chosen regardless of vehicle
capacity and cost if there exists routes visiting customer k in period t′. This differs
from the implementaion in this thesis, where all the possibilities above always are
evaluated.

Step 3, determine a new production plan

When both the shift quantity rjkt,t′ and an insertion position is determined, a new
production plan must be determined due to the changes in the delivery quantities in
periods t and t′. This production plan is determined by applying the Evan’s heuristic in a
similar fashion as in the construction procedure.
The combined move produced by the 3 step procedure above is calculated for all
customers k ∈ N , all products j ∈ J from all periods t ∈ T to all periods t′ ∈ T and the
move that produces the lowest cost is always chosen.

6.1.5 Move evaluation

The move that will be chosen is the move that gives the lowest total cost. The cost
includes inventory holding cost at the plant and at the customers, setup cost at the plant,
and travel cost for the vehicles. Let function c(s) be the objective function (1). The
function f(s) = c(s) + αg(s) + β(s) is the move evaluation function that incorporates the
penalties of infeasible routes with respect to the vehicle capacity and a diversification
penalty for moves with a high transition frequency. The transition frequency is the
number of times a move has been performed.

Infeasibilities

The delivery quantity exceeding the vehicle maximum load capacity will be multiplied
with a parameter α and added to the move evaluation function as a penalty. The
function g(s) = max(0,

∑V
v=1

∑T
t=1

∑N
k=1

∑J
j=1X

v
jklt − Cεvklt) denotes the total number of
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items exceeding vehicle capacity. When the solutions found in the last 5 iterations are
infeasible, the α value is set to be α = α ∗ 3, and similar if the solutions the last 5
iterations has been feasible the α value is set to α = α/3. This will encourage the search
to oscillate between feasible and infeasible solutions. This is regarded to be beneficial
since the best solutions are often found in the boundary between feasible and infeasible
regions in the search space.

Tabu status

In order to be able to avoid getting stuck in local optima, a short term memory structure
is applied by stating that when a move is performed, any reversing move is considered
tabu for a number of iterations. More precisely, when a move of a product j to a period t′

is performed, any move containing the product j from period t′ is considered tabu for
tabu tenure iterations.

Diversification process

In order to diversify the search and avoid that the search starts looping over the same set
of solutions, a long term memory is applied to the tabu search procedure. Each time a
delivery of any quantity of product j is moved from a customer k in a period t to another
period t′, a move counter for customer k, product j and time period t′ is incremented by
one and stored in a vector. This move counter is called the transition frequency ωjkt. A
multiplicator variable λ is used to control the degree of diversification, and the incumbent
solution f(s) is used in the scaling factor in order to incorporate solution variation to the
diversification process.
When a new solution f(s) is considered, the solution is penalized by the formula
β(s) = λωjkt

√
NJTV [f(s)− f(s)] and the penalty is added to the objective value. If the

solution f(s) is a new best solution, then β(s) = 0. The added penalty for solutions
obtained by frequently performed moves, will be less attractive over time compared to
moves performed less frequently. The scaling factor

√
NJTV [f(s)− f(s)] is adapted

from Taillard (1993) from his paper about the vehicle routing problem, and ensures that
the diversification factor is proportional to the problem size (NJTV ).
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Aspiration criterion

If a new best solution will be obtained by performing a move that is considered tabu, the
tabu status will be disrespected and the move will be performed.

Stop criteria

The tabu search procedure terminates when it reaches the maximum iteration number Θ

or when η iterations have elapsed without finding a new incumbent solution. Θ and η are
parameters supplied to the search procedure and controls the search duration.

6.2 Parallelization scheme

This implementation of tabu search for the Integrated Distribution and Production
Problem features a parallelized neighborhood exploration, which in each move considers
both distribution and production at the same time. According to Dr. Shiguemoto an
integrated approach is far superior over a decoupled approach where one plan is
determined before another. The IPDP solver described in this paper also feature a post
optimization procedure, which run in parallel with the main tabu search procedure. This
post optimization procedure is a two-opt improvement heuristic for the VRP. This
two-opt procedure collects the incumbent solution from the tabu search when it is
updated, optimizes the routes, and returns the improved set of routes to the tabu search
procedure.

6.2.1 Conceptual model for the parallelized IPDP solver

As seen from figure 7 the parallelized parts of the IPDP solver is chosen to be 1) The
tabu search procedure for the IPDP with parallelized neighborhood exploration, and 2) A
post-optimizer for the incumbent routes. A parallel implementation of the Evans
heuristic, was also implemented, but was abandoned because it gave no speedup
compared to the serial implementation. The post-optimizer is chosen to be a 2-OPT intra
route improvement heuristic for the VRP. The post-optimizer task starts up as an
asynchronous task along with the IPDP task. The post-optimizer blocks until a route has
been pushed onto a queue. The blocking mode means that the task waits until there is
something to optimize. It always runs in the background. When the task is in blocking
mode it does not use any CPU.
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There are 3 steps in the figure. The first step creates the objects that are used as shared
memory, and starts the two tasks. The second step shows how the communication works.
When the IPDP solver finds a feasible solution and it is set as the new best, the routes
are added to a queue. When routes are added, the 2-OPT task will remove these routes
from the queue and start to optimize them. After the optimization is done, the routes are
added to another queue, and the task goes back to the waiting state. After the IPDP
solver has added the routes to the queue, it continues the tabu search to find a new best
move. After the new move is applied, the second queue is checked to see if it contains any
routes. If there are any routes present, the IPDP task will take the routes out and apply
them to the incumbent routes and the current routes. The search and optimization
continues until the stopping criterion is met. Step 3 prints out the solution information.
Since these two tasks run asynchronously they must be synchronized before any attempt
to combine the results. This must be done to make sure that the tabu search procedure
has not updated the incumbent solution while the post-optimizer ran. If the incumbent
solution still remains the same, the improved routes from the post-optimizer is merged
with the incumbent solution. The optimized routes are also added to the current
solution, if the routes in the current solution have not been altered. If routes have been
altered since optimization started, they could make the customers inventory and
deliveries infeasible. The reason the solver only merges the optimized routes if the
incumbent solution has not changed, is that there are many situations where it can go
wrong. If a route has been added or removed since the optimizer started, the replacement
of a route could be very bad, because it would be replacing the wrong route. This also
applies if a route has been altered, a customer delivery could be removed from the route
if replaced. It is important to notice that both the neighborhood exploration task and
the post-optimizer task can utilize all available CPU-cores in the system. A task
scheduler provided in Intel Threading Building Blocks is responsible for assigning
CPU-cores to the tasks.
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main()

IPDP task2-OPT task

Concurrent_Queue twoOptQueue;
Concurrent_Queue          tsQueue;

Start IPDP task;
Start 2-OPT task;

Wait until both finishes.

Parallel 
search

Infeasible Feasible

Apply 
move

Push to 
twoOptQueue

Shared memory

Pop tsQueue 
if any routes

Apply optimized 
routes

Check 
feasibility

New best

Push optimized 
routes to tsQueue

Optimize routes

Wait for solution 
to Pop from

twoOptQueue

Print best solution 
information

STEP 1

STEP 2

STEP 3

Figure 7: Current solver scheme
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7 Computational experiments

7.1 Test Instances

Test instances used in this paper consists of two sets of single item instances generated by
Bertazzi et al. (2005). Both sets contains 96 instances divided into four classes. The first
set has T = 6 time periods, and N = 50,75,100,125,150 customers. The second set have
T = 30 time periods and N = 50 customers. The different classes have different costs for
the given parameters to emulate different situations in real world examples: unitary
production cost cp, fixed production cost per period fp, inventory holding cost at
customer k hk and fixed transportation cost per period f v. In class 1 these parameters
are set to h0 = 3, cp = 10h0, fp = 100cp and f v = 32181. For evaluation of situations
where there are no fixed transportation costs specified, class 2 has fixed transportation
cost f v = 0. To see what impact on the solution there will be if the production cost is
reduced compared to the inventory holding cost at the plant, the instances in class 3 have
a unit production cost cp = h0. In the last class the customer inventory holding cost
hk, k = 1, ..., N are set to zero. This will emulate situations where the plant does not have
to pay for customer inventory holding costs.
These instances have been applied by both Bertazzi and Shiguemoto in their papers
about the IPDP. Bertazzi used the more constrained VMI-OU and VMI-FFD strategies
in his paper, while Shiguemoto used the less constrained VMI-ML strategy to measure
the cost reduction this strategy gives over the results reported by Bertazzi. As mentioned
earlier the tests performed in this thesis uses the VMI-ML strategy which give a god
basis for result comparizon against results reported by Shiguemoto.

Computers used for testing

Intel Core 2 Duo , 3 Ghz
Intel Quad i7 920, 3.66 Ghz
MacBook Pro 2.2 Ghz Core 2 Duo

7.2 Parameter testing

Parameters for the solver presented in this thesis must be split in two parts, the first
regarding parameters for the parallelization and the other regarding parameters for the
tabu search procedure.
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Parallelization parameters

The Intel TBB library supplies methods for automatic creation of threads that will utilize
all the computational power available in multi-core or multi-processor system.
Parameters to these methods must be an object and the range of the object to divide into
threads, usually start and end indices. The splitting into threads can occur over 1, 2 or 3
dimensions, corresponding to the number of dimensions in a matrix.
Splitting does not have to be based on the dimensions of the matrix that is passed to the
function. A matrix with a single dimension can be passed to the function, and the second
dimension can be a loop where some calculations are performed.
Splitting over one and two dimensions have been tested. The testing shows that splitting
over more than one dimension increased the running time of the solver.
This indicates that the CPUs and cores are already fully utilized with splitting over a
single dimension, and the overhead of splitting over more dimensions increases running
time.

Grain size

The grain size parameter specify the amount of work that should be in each thread. If
the iteration space has more work than the grain size, the work is split into several
threads, each having a work load equal to the grain size.
Each thread requires a small portion of parallel scheduling work, known as parallel
scheduling overhead. If the work load for each thread is too small, the amount of
scheduling overhead can become large, and limit the performance of the algorithm.
Similar if the grain size is set too high the work will be executed serially in one thread,
and no parallelization will occur. A recommended rule of thumb is that the grain size
should be set such that each thread should have at least 10 - 100,000 instructions to
execute. If one should run through a loop 100 times, and in each round it executes 5,000
instructions, the total amount of work will be 100 ∗ 5000 = 500, 000. This means that any
grain size in the range [2, 20] will follow this rule and give a work load in the range 10 -
100,000 instructions per thread. A grain size of 1 would give 100 threads with a work
load of 5,000 instructions each, and a grain size of 100 would give one thread with a
massive 500,000 instructions.
The Intel Threading Building Blocks library supply objects for automatic grain size
detection, called the auto_ partitioner and simple_partitioner object. Intel strongly
recommend that an object for automatic grain size detection is used, so that the
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application has a better chance to deal with variable work loads and problem sizes. In
order to test the efficiency of these auto partitioner objects, a range of different static
grain sizes was tested against the two mentioned auto partitioner objects. The test was
executed on test instance "instance1_50_30.dat" with a maximum iteration limit of 10
iterations. The parallel neighborhood exploration procedure in the tabu search algorithm
has a one dimensional iteration space, with size equal to the number of VRP -routes in
the current solution.
The routes in the iteration space are the routes that needs to be examined in order to
determine a shift quantity to move to another route. For each route in the iteration
space, these calculations must be done: 1) determine a shift quantity for each customer in
the route for each time period. 2) For each shift quantity for each customer, all possible
insertion possibilities must be determined for the chosen period t’, including the
possibility of creating a new route. 3) For each possible move a production plan must be
determined.
It is therefore safe to say that there is a good portion of work to do for each iteration in
the iteration space.
Threads created in the parallel neighborhood exploration procedure, must be merged
together from right to left in order to find the best overall move with the lowest objective
value.

Table 2: Grain size parameter
Grain size No. threads Time consumption (sec)

1 81 6.3
5 18 5.95
10 10 5.6
15 8 5.55
20 6 5.55

25 - 45 4 7.15
50 2 7.4
100 1 9.6

auto/simple 11 5.6

Table 2 shows the number of threads that is executed, and the runtime with respect to
the given grain size. The number of routes in the current solution in the test was 81. The
fastest execution of the predetermined 10 iterations was done with a grain size of 15 and
20, which meant that the search for the best move was split into 8 and 6 threads divided
onto the 2 cpu-cores available on the test computer. With a smaller grain size of 5 and 1
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the execution time went up, which means that the amount of parallel overhead is
increasing in comparison to the original work load. In similar fashion when the grain size
is larger than 20, the work is split in too few threads with too large work load, and the
result is lost performance. The last row in table 2 is the result obtained when the grain
size is determined with an auto partitioner object, and as seen, the performance from this
auto partitioner object is quite good compared to the optimally tuned grain size for this
particular problem size. The auto partitioner works quite well, and since it can determine
a good value for the grain size for test instances with various problem sizes and
computers with different processors, it seems that Intel’s advice for using the auto
partitioner objects is well worth to follow.

Tabu search parameters

Different values of the tabu tenure, penalty variables and diversification variables have
been tested.

Tabu tenure

The range of tabu tenure values for the different test instances was obtained by the
expression used in Shiguemoto’s thesis:

[
d
√
NTJV /3

√
Ne, d

√
NTJV /

√
Ne

]
This

expression gives a range with uniform distribution that depends on the problem size. A
tabu tenure range of 2,3 and 4 was tested. The average results of the testing is shown in
table 3. These tests were run with GNU GCC in the Ubuntu linux distro. The columns
that describes time usage is shown in seconds from wall clock time, and is based on the
total running time of the solver. The test gave no evidence showing that one value is
better than the others, because there was no clear connection between problem size and
tabu tenure.

Table 3: Average results for each tabu tenure.

# Customers TT Avg Time Avg Cost
50 2 13.2 252901
50 3 14 251408
50 4 14.9 247597
75 2 27.9 391424
75 3 27.9 376354
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75 4 27.4 377587
100 2 40.6 536825
100 3 39.6 524664
100 4 40.9 525435
125 2 56.6 653458
125 3 60.1 651597
125 4 61.3 628065
150 2 84 845080
150 3 88.7 850166
150 4 85 845423

For the test instances with thirty time periods, no parameter tests weere performed due
to time limitations. The time limitations was due to some last minute changes in the
solver code. And since the tabu tenure parameter testing for the instances with six time
periods were inconclusive the importance of performing such a parameter test for these
instances seemed low. The tabu tenure value 10 was chosen from the uniform range of
values given by the expression stated earlier in this chapter, and was applied for the
instances with thirty time periods.

Penalty and diversification variables

The initial alfa value was set to 1.0 and for every 5 iterations the routes are infeasible,
the α value will increase by a factor of 3. Similarly, for every 5 iterations the routes are
feasible the α value will decrease by a factor of 3. This strategy seems to work very well
and produce a good mix of feasible and infeasible solutions.
The λ parameter contributes to the decision of which penalty that should be the most
decisive penalty. If λ is high, the penalty for infeasible routes easily gets overruled by the
increasingly dominating long term penalty. This usually gives poor results since some
routes are likely to be infeasible, and feasible solutions are harder to find. Another
problem that can arise when λ is set high is that the penalty added to the objective value
becomes larger than the double max value. This will if not handled in a proper way,
cause the solver to crash. Similarly, if the λ value is too low, the effect of the
diversification will be close to none. Based on these observations and small scale testing,
the initial λ value of 0.15 was chosen. If there has been 10000 iterations without finding a
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new best, the λ value is increased by 0.001. When a new best solution is found the
lambda parameter is set to initial value.
To prevent that the long term diversification penalty getting too dominant, a strategy for
resetting the diversification penalty was tried. The diversification matrix was reset when
a number of iterations had passed without finding a new best solution. This was done for
two reasons, 1) prevent the diversification penalty to become too large, and 2) give
promising but highly penalized moves a new chance. Testing showed that this did not
yield the wanted results and the diversification resetting was abandoned.
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7.3 Results

The results from the parallelized IPDP-solver is divided into two separate parts. Results
regarding task parallelization and CPU-scalability is discussed and interpreted in the first
part. In part two, the results obtained by the solver is compared against the results
presented by Dr. Shiguemoto in his article about the IPDP. The results were obtained by
using the VMIR-ML strategy.

7.3.1 Scalability

Tests show that the parallel version of the IPDP solver is able to utilize several
CPU-cores effectively. The gain in decreased wall-clock time is well worth the effort of
implementing a parallel solver. Solutions can be found faster or more work can be done
in the same amount of wall clock time compared to a serial version of the IPDP solver.
Figures 8, 9 and 10 shows the scaling when more than one core is utilized in a processor.
This chapter uses terms like thread and hardware-thread. They are not the same.
Normally there is one hardware-thread per core or per processor. Each processor has a
given amount of hardware-threads that are allowed to be run at the same time in a core.
An operating system has hundreds of threads waiting to be executed. While one thread
waits for data to be retrieved, another thread can use the processor. This can sometimes
reduce the running time of an application. Tests were performed with the new Intel Core
I7 processor. This processor has 4 cores with support for running 2 hardware-threads in
each core, called Hyper-Threading(HT ). Enabling or disabling these hardware-threads
will show if the implementation of parallel-enabled code gives any improvement on the
running time. Different problem sizes were used to see if the benefit of running parallel
solvers grow with the problem size.
Figures 8, 9 and 10 shows time usage when hardware-threads from one through eight are
enabled. If the number of running threads are less or equal than the number of cores or
processors, there will be one thread executed in each core or processor. The operating
system’s scheduler handles this. When 4 hardware-threads are enabled, one thread is
executed at each core (with this processor). The figures show wall clock time usage in
percent to make it easier to compare the results.
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Figure 8: 50 customers, 6 time periods

Figure 9: 150 customers, 6 time periods

Figure 10: 50 customers, 30 time periods
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The largest scaling improvement can be seen when the number of enabled
hardware-threads are increased from 1 to 2, 3 or 4. The time usage is reduced nearly 50%
on all three problem sizes when the hardware-threads are changed from 1 to 2, and
another 50% when the number of hardware-threads are changed from 2 to 4. The results
shows good scaling improvement when the number of hardware-threads are changed from
1 to 4, with a average reduction in wall clock runtime about 75% compared to the
sequentional one thread execution. The test with 150 customers and 6 time periods show
a slightly reduced scalability compared to the instances with less customers. One of the
reasons for this is due to the increased amount of serial work, such as feasibility checks
and inventory calculations, needed because of the increased number of customers. The
test of the instances with thirty time periods shows the same amout of scalability as the
instances with six time periods and 50 customers, which indicates that the amount of
serial work compared to parallel work is only sensitive to the number of customers not
number of time periods.
The test with 8 hardware-threads enabled showed a very small decrease in time usage, but
since there is a decrease and not increase in time usage, it suggests that running with two
hardware-threads in each core works better than using only one. This processor running
with 8 threads can not be compared to an 8-core processor or dual quad-core processors.
The gain with running 8 hardware-threads instead of 4 is about 5% which is not very
much compared to running 8 cores with one hardware-thread enabled in each core.

7.3.2 Solution quality

The results obtained from the parallel IPDP solver presented in this thesis are compared
to the results presented by Dr. Shiguemoto. For the instances with six time periods, the
results obtained are quite good. Since Shiguemoto presented only average results based
on problem size and class, the results presented in this section will also be based on
average results in order to compare the results obtained. For more detailed results we
refer to appendix A.4 which contains test results for each individual test instance. As seen
from table 4 the reduction in the objective value obtained ranges from 13.3% to 36.9%,
and interestingly the reduction in objective value increased with the increase in problem
size. The average reduction in wall clock time spent to achieve these results ranging from
94% on the instances with 50 customers to 83.3% for the instances with 150 customers.
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Table 4: Average solutions with 6 time periods

N Time Cost, Cost, % Cost Time, Time, % Time
horizon Shiguemoto This thesis Reduction Shiguemoto This thesis Reduction

50 6 288942.52 250635.3 13.3 235.39 14.03 94.0
75 6 483985.26 381788.3 21.1 267.69 27.70 89.6
100 6 670958.28 528974.7 21.2 302.76 40.36 86.6
125 6 905475.31 644373.3 28.8 396.52 59.3 85.0
150 6 1341683.49 846889.7 36.9 513.21 85.9 83.3

For the set of test instances with thirty time periods, the time available for testing was
very limited. As a result of this only one run of each test instance with only one set of
parameters were tested. Instance 1 through 62 is run with a maximum iteration count of
100000 as stopping criteria. Instance 63 through 96 is run with a maximum iteration
count of 20000 as stopping criteria. The average results based on class are presented in
table 5 along with comparison of the results obtained by Dr. Shiguemoto. The average
objective value obtained increased in the range of 68 - 394%, which means that the
solution quality obtained on this set of instances was quite the opposite to the solution
quality obtained on the instances with six time periods. It must be stressed that these
results were obtained in only one run for each test instance, and the possibility for
obtaining better results with more testing time should be great.

Table 5: Average solutions with 30 time periods

Instance Time Cost, Cost, % Cost Time, Time, % Time
horizon Shiguemoto This thesis Increase Shiguemoto This thesis Increase

1-24 30 1005561.73 2719086.46 170 732.5 1348.08 84
25-48 30 853992.30 1433292.71 68 732.5 1285.10 76
49-72 30 430232.99 1694823.00 394 732.5 1182.98 62
73-96 30 871478.11 2677775.00 307 732.5 350.12 -52

Post-optimization

Table 6 shows a sample comparison of time, iteration count and solution quality when
optimization is enabled and disabled. There is no clear evidence to suggest that the
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2-OPT task gives better results than using no optimization. When the 2-OPT task is
enabled the solution is sometimes worse than when there is no optimization enabled.
This is because of the stopping criterion that makes the solver stop when there are no
better solutions found after an amount of iterations. The search trajectory is also
changed when the post-optimized routes are used, which can lead the search in to less
promising parts of the search space.

Table 6: Solution comparisons

Instance 2-OPT Iteration Time no OPT Iteration Time
instance49_50_6 154109 20095 62 160016 3960 41
instance49_75_6 263312 1517 87 227174 8095 95
instance4_100_6 695456 1117 132 629917 1139 124
instance4_125_6 766533 5556 210 834273 758 178
instance4_150_6 1069761 2351 314 1051424 12137 345
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8 Conclusion and future work

The results obtained by the parallel IPDP-solver are quite interesting. Compared to the
results reported by Dr. Shiguemoto the solver presented in this thesis found very good
solutions for the instances with six time horizons. The solutions had an average of 13 -
36% decrease in objective value and the solver used about 80 - 95% less computational
time to obtain these results.
The instances with thirty time periods are very computational expensive, and due to late
changes in the code of the IPDP solver, there was only time for one run per test instance.
This meant that only one value for each parameter could be tested. The results from this
set of instances were not as good as the results reported by Dr. Shiguemoto. The average
objective value obtained for each instance class increased in the range 68 - 394%
compared to his results. It is hard to say what the reason for this is, but we believe that
our IPDP solver could achieve far better results if more testing had been done. Another
factor that might contribute to this result is that our method differs from his method by
allowing for moves within the same period, and only feasible start solutions are allowed.
Still we are reasonably satisfied with the results obtained.
The parallelization of the neighborhood procedure resulted in a large reduction of
computational time compared to a serial implementation. The solver scales very well over
the tested number of cpu-cores available on the test systems. On a dual-core system the
parallel implementation was about twice as fast as the serial implementation. On a
quad-core system the reduction in wall clock time was 75% compared to a sequential
implementation, and almost twice as fast as a dual-core system. Based on these
observations, the conclusion is that the parallelization was very successful and worth the
extra effort.
The parallel post optimization did not yield the desired results. The results varied a lot,
sometimes the solver gave better results with the post optimization enabled, sometimes it
gave worse results. There were no indications that the results are better when the post
optimization task is activated, than when it is deactivated. The post optimization task
also have a negative effect on the computational time needed for the tabu search, since
the post optimizer task uses computational power that otherwise could have been used
for the tabu search.
Still we think that task parallelization might be a good strategy if used differently. A
very interesting strategy is to have several tabu search tasks with different search
strategies to be able to search in different areas of the search space in parallel.
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Another interesting strategy is to utilize the large computational capacity of the modern
graphics cards in modern computers. Nvidia CUDA(CUDA ) is a framework for using the
GPU of Nvidia graphics cards for general purpose computing. The computational power
in new graphics cards are superior to ordinary CPUs in a computer, and can deliver up to
5 - 600 times speed up on certain algorithms. This makes CUDA a very interesting
framework to use for the neighborhood exploration procedure in the tabu search.

47



References

Amdahl, G. M. (1967, April). Validity of the single-processor approach to achieving
large scale computing capabilities. In AFIP Conference Proceedings, Volume 30,
Reston, VA, pp. 483–485. AFIPS Press.

Archetti, C., L. Bertazzi, G. Laporte, and M. G. Speranza (2007). A branch-and-cut
algorithm for a vendor-managed inventory-routing problem. Transportation
Sience 41, 382–391.

Armentano, V. and A. Shiguemoto (2009, Apr). A tabu search procedure for
coordinating production, inventory and distribution routing problems.

Bertazzi, L., G. Paletta, and M. Speranza (2005). Minimizing the total cost in an
integrated vendor-managed inventory system. Journal of Heuristics 11, 393–419.

Boudia, M., M. Louly, and C. Prins (2007). A reactive grasp and path relinking for a
combined production-distribution problem. Computers & Operations Research 34,
3402–3419.

Boudia, M. and C. Prins (2009). A memetic algorithm with dynamic population
management for an integrated production-distribution. European Journal of
Operational Research 195, 703–715.

Bævre, O., B. Gjengstø, and A. Løkketangen (2008). Solving large multiple knapsack
problems using tabu search. Available at:
http://home.himolde.no/~041072/NIK-2008-B-G-L.pdf.

Clarke, G. and J. W. Wright (1964, 8). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research 12 (4), 568–581.

Crainic, T. G., M. Toulouse, and M. Gendreau (1997). Towards a taxonomy of parallel
tabu search algorithms. INFORMS Journal on Computing 9(1), 61–72.

CUDA. Nvidia cuda. Available at: http://www.nvidia.com/object/cuda_home.html.

Dantzig, G. and J. Ramser (1959). The truck dispatching problem. Management
Science 6, 80–91.

Evans, J. R. (1985). An efficient implementation of thw wagner-whitin algorithm for
dynamic lot-sizing. Journal of Operational Management 5, 229–235.

Gillet, E. and L. R. Miller (1974, 3). A heuristic algorithm for the vehicle-dispatch
problem. Operations Research 22 (2), 340–349.

48



Glover, F. (1986). Future paths for integer programming and links to artificial
intelligence. Computers and Operations Research 13, 533–549.

Gustafson, J. L. (1988). Reevaluating amdahl’s law. Communications of the
ACM 31(5), 532–533.

Holland, J. H. (1975). Adaption in natural and artificial systems. The University of
Michigan Press, Ann Harbor, MI.

HT. Intel hyper-threading technology. Available at:
http://www.intel.com/technology/platform-technology/hyper-threading/.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983, May). Optimization by
simulated annealing. Science, New Series 220, 671–680.

Le Bouthilliera, A. and T. Crainic (2005). A cooperative parallel meta-heuristic for the
vehicle routing problem with time windows. Computers & Operations Research 32,
1685–1708.

Taillard, E. (1993). Parallel iterative search methods for vehicle routing problems.
Networks 23, 661–673.

TBB. Intel threading building blocks. Available at:
http://www.threadingbuildingblocks.org/.

Wagner, H. M. and T. M. Whitin (1958). Dynamic version of the economic lot size
model. Management Science 5, 89–96.

49



A Appendix

A.1 Visualization

A.1.1 SVG

Scalable Vector Graphics (SVG) is a language for the creation of graphical objects. The
objects are stored in XML format. SVG is used to represent the routes created from the
VRP solver. The visualization process here will make it easier to see if the route created
is a good route. It is easier to observe graphically rather than interpreting numbers in a
sequence. A big advantage about these graphical objects, are that they can also be used
by decision makers, not only for testing and debugging purposes.

Current SVG

An SVG file is created for each route and each period and an HTML file is created with a
select box (combobox/listbox) that contains the word "Route" and the number of the
route (Route0, Route1). The user can select each item in the box in order to show the
VRP route in a web browser. An example of how the routes looks is seen in figure 11
Figure 11(c) shows two routes from the same period. Here we can observe that the
routes are crossing each other and themselves. Both intra-route and inter-route
optimization could be applied here to make the solution better.
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(a) Good VRP
route

(b) Not so good VRP route

(c) two routes in one period. Over-
lapping.

Figure 11: VRP route examples
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A.2 TBB implementation

From the TBB library, the tbb::parallel_reduce, tbb::parallel_scan, tbb::blocked_range
and tbb::task classes have been used.

A.2.1 Parallel_reduce (used in VRP)

The theory in parallel_reduce is to split some work across several working threads. The
variables passed to the constructor must also be passed to the split function (if needed),
because the threads has its own memory space. When all the threads are finished, the
results are joined together (compared), and the best result is returned. The splitting can
be done on one, two or three-dimensional vectors/arrays. The current implementation
uses only one-dimensional vectors, and the splitting is done on the routes. The customers
must be examined individually, so it seemed like a natural place to split.
A new class is needed to create the parallel version. All the methods used in the serial
version must be copied and adapted to the parallel loops within the new class. There is
much to think about if the solver has to be able to reproduce the same results as the
serial solver version. The threads that are created are not started and ended serially. The
best solution found in a parallel_reduce loop therefore depends on the order in which the
threads returns.
A simple for loop and a parallel version of the for loop is seen below. The
blocked_range says where the for loop starts and ends.

for ( int i = 1; i < N; i++ ) {

//

}

———————-

void operator()( const blocked_range<int>& r) {

for ( int i = r.begin(); i < r.end(); i++ ) {

//

}

}

Things to beware of:
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1.) When variables are passed as reference, do not alter any of its content, it reflects onto
all the working threads. This is easy to see because you will get a different result each
time the solver is run. The reason for this is that the threads created do not start or
finish the same time each time you run the solver, and thus doesn’t alter the reference
variable the same place every time.
2.) Two parameters must be given when initializing the parallel_reduce function, start
and end indices of the routes. If there are 50 routes, (1,50+1) must be given as
parameters, because it uses an interval like this: [start,end).
3.) Because the threads does not end serially, care must be taken if the goal is to make
reproducable results.

A.2.2 Task

To create a task you create a new class which inherits task. Existing classes does not
need to be altered, they can be instantiated within the task. Tasks can be started
different ways. A single task can be started and waited for until it finishes, or several
tasks can be started at once and waited for until all tasks finishes before the solver can
continue. Starting with the wait function is like calling a regular function, it does not
return until the tasks are done running. There are also schemes where new tasks are
spawned within existing tasks.
In the solvers created in this thesis, tasks were used the following way:
Two tasks are created as root tasks, the IPDP tabu search and the 2-OPT algorithm. A
task_list is created, and the two tasks are inserted into the list. The list is then started
with a waiting function, spawn_root_and_wait( task_list_object );. This function
starts the tasks and wait until all of them are completed. Tasks complete when the tabu
search has reached its stopping criteria. The two tasks were created as root tasks because
only root tasks can be started simultaneously this way. The 2-OPT routine blocks until a
route is sent to it. The information exchange is handled by sending two
concurrent_queue objects as reference to each task; one that sends, and one that
receives data. The messaging is simply done by popping and pushing objects into queues.

A.2.3 Parallel_scan

This class is used in the parallel implementation of the recursive Evans algorithm.
Parallel scan computes a parallel prefix. This is an advanced concept in parallel
computing, but must be applied if the task performed has inherently serial dependencies.
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Examples of this are recursion and cumulative summation. The parallel prefix is an
associative operation, for instance a sum operator. Parallel scan must use two passes
through the whole loop in order to complete the scan, as a result of this it may do twice
the amount of calculations compared to a serial implementation of the loop. This
strongly limits the gain that is achievable by parallelizing this part of the algorithm, and
parallel scan is therefore better suited for future systems with many cpu-cores.
The use of the parallel implementation of the Evans heuristic was therefore abandoned,
since it provided no gain in comparison with the serial implementation.

A.3 Compiler differences

GNU gcc compiler runs 3.3 times faster than the Intel Compiler and 4.7 times faster than
the VC++ compiler. Table 7 shows the actual wall clock time used. VC++ and Intel
compilers were run on Windows Vista, and GCC was run with Ubuntu 9.04. GCC was
not compiled on the Windows platform because Intel TBB only supports Visual Studio
natively (yet).
The parameters for the test was 100000 iterations, tabu tenure 3, 8 enabled
hardware-threads in the I7 processor. The instance used was "instance1_50_6".

Table 7: Time used with different compilers

Compiler Time used
VC++ 71
Intel 50
GCC 15

A.4 Computational results

The figures 12, 13 and 14 shows the real values (run-time) for the figures 8 , 9 and 10 that
shows time decreases in percent. The values in the figures are seconds in wall clock time.
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Figure 12: 50 customers, 6 time periods

Figure 13: 150 customers, 6 time periods
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Figure 14: 50 customers, 30 time periods

Tables 8. 9. 10. 11 and 12 shows detailed information about the results for the 5 sets with
time horizon 6. The first column describes the instance. the following columns describe
time horizon. minimum. average and maximum solution cost and minimum and average
time usage. A stopping criteria of 100000 iterations is given as a parameter to these tests.

Table 8: 50 customers, time horizon 6

Instance T minCost avgCost maxCost minTime avgTime
instance1_50_6 6 192599 208813 227849 12.7 16
instance2_50_6 6 227748 234504 243750 12.3 13.7
instance3_50_6 6 227443 231472 236358 15.37 16.4
instance4_50_6 6 314386 336558 348159 12.3 12.5
instance5_50_6 6 341297 342372 344178 10.6 11.0
instance6_50_6 6 343372 354483 376620 11.8 12.3
instance7_50_6 6 160907 182160 193907 10.9 11.1
instance8_50_6 6 160717 185343 198326 12.4 12.5
instance9_50_6 6 170468 190781 203676 12.3 12.6
instance10_50_6 6 278215 303402 317718 11.1 11.3
instance11_50_6 6 284805 284971 285279 11.1 11.2
instance12_50_6 6 286485 307646 320107 11.8 12.2
instance13_50_6 6 330066 349611 388072 11.6 14.5
instance14_50_6 6 276214 333367 393462 11.9 16.1
instance15_50_6 6 347375 348292 349130 13.8 16.7
instance16_50_6 6 384131 427114 451411 10.9 11.1
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Table 8: 50 customers, time horizon 6

instance17_50_6 6 384971 434382 460888 11.1 11.1
instance18_50_6 6 465039 484168 520846 11.3 12.5
instance19_50_6 6 236011 302627 365492 10.4 10.4
instance20_50_6 6 237702 261237 302046 10.8 10.9
instance21_50_6 6 243492 289727 316568 11.2 11.9
instance22_50_6 6 358310 402673 426251 10.1 10.9
instance23_50_6 6 426990 427649 428387 10.3 10.5
instance24_50_6 6 362332 407875 432266 11.0 11.3
instance25_50_6 6 117970 117970 117970 11.2 11.4
instance26_50_6 6 119211 119211 119211 11.4 11.5
instance27_50_6 6 121151 121151 121151 12.2 12.4
instance28_50_6 6 240448 241775 242452 19.3 24.1
instance29_50_6 6 243707 244086 244378 13.9 21.0
instance30_50_6 6 244996 246058 247201 16.0 20.0
instance31_50_6 6 95826 96183 96565 13.0 16.3
instance32_50_6 6 97195 97370 97564 15.4 16.8
instance33_50_6 6 99678 99824 99994 13.8 17.1
instance34_50_6 6 213306 214004 214490 11.8 15.5
instance35_50_6 6 214566 215227 216122 10.2 14.4
instance36_50_6 6 219441 220253 221107 11.3 11.5
instance37_50_6 6 128578 128929 129406 10.9 12.6
instance38_50_6 6 131675 131992 132410 11.2 17.8
instance39_50_6 6 136972 137239 137520 11.6 15.2
instance40_50_6 6 248815 252193 254083 14.0 18.5
instance41_50_6 6 253693 255508 256885 12.7 17.8
instance42_50_6 6 260414 261112 261499 13.8 18.8
instance43_50_6 6 105271 105765 106076 11.2 14.6
instance44_50_6 6 107391 107890 108802 10.9 11.4
instance45_50_6 6 113485 114212 115081 16.9 17.6
instance46_50_6 6 223174 224329 226194 16.8 21.2
instance47_50_6 6 225162 226660 227547 11.4 16.2
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Table 8: 50 customers, time horizon 6

instance48_50_6 6 232827 235552 240659 11.5 13.7
instance49_50_6 6 139917 154974 163047 11.7 16.0
instance50_50_6 6 135257 155911 169208 12.1 13.7
instance51_50_6 6 160933 173780 197878 11.9 13.4
instance52_50_6 6 153027 164924 171003 13.4 16.5
instance53_50_6 6 171853 181541 200501 11.7 12.9
instance54_50_6 6 145106 164359 174060 17.6 19.1
instance55_50_6 6 97552 120523 134157 11.7 14.3
instance56_50_6 6 134420 136033 137269 12.6 13.3
instance57_50_6 6 137271 146172 162388 12.3 12.6
instance58_50_6 6 139128 143352 147237 11.6 12.9
instance59_50_6 6 147879 149887 151851 11.9 12.2
instance60_50_6 6 149455 152227 154005 12.7 15.8
instance61_50_6 6 270062 271947 273467 12.6 13.6
instance62_50_6 6 273240 281695 294073 11.7 13.5
instance63_50_6 6 283398 286133 291438 13.6 15.4
instance64_50_6 6 283096 305033 346169 11.7 12.1
instance65_50_6 6 283249 305843 348646 13.2 13.8
instance66_50_6 6 239858 279096 300920 18.2 21.3
instance67_50_6 6 235152 236615 237630 12.3 12.5
instance68_50_6 6 183951 222535 246368 12.5 15.2
instance69_50_6 6 244020 252408 258177 14.2 15.9
instance70_50_6 6 247307 248975 249857 12.6 12.6
instance71_50_6 6 248834 270437 312410 11.8 12.2
instance72_50_6 6 257218 281139 328541 12.5 17.2
instance73_50_6 6 177039 177484 178144 11.4 11.6
instance74_50_6 6 179415 179789 180364 10.3 10.7
instance75_50_6 6 181104 182901 184718 11.1 11.2
instance76_50_6 6 294068 294997 295788 11.3 11.3
instance77_50_6 6 297615 300589 305564 11.6 11.6
instance78_50_6 6 299727 299881 300077 11.8 13.2
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Table 8: 50 customers, time horizon 6

instance79_50_6 6 177039 177484 178144 12.2 12.5
instance80_50_6 6 179415 179789 180364 10.8 11.2
instance81_50_6 6 181104 182901 184718 11.6 11.8
instance82_50_6 6 294068 294997 295788 11.4 11.4
instance83_50_6 6 297615 300589 305564 11.2 11.2
instance84_50_6 6 299727 299881 300077 12.0 12.8
instance85_50_6 6 284482 285043 285406 11.7 12.1
instance86_50_6 6 287373 289371 291392 11.2 11.3
instance87_50_6 6 294513 317087 360849 12.0 15.8
instance88_50_6 6 402426 405088 406889 10.6 11.2
instance89_50_6 6 408064 411313 415972 11.0 11.3
instance90_50_6 6 411060 413281 414724 12.0 16.5
instance91_50_6 6 284482 285043 285406 11.0 11.7
instance92_50_6 6 287373 289371 291392 10.9 11.0
instance93_50_6 6 294513 317087 360849 11.9 12.0
instance94_50_6 6 402426 405088 406889 11.0 11.2
instance95_50_6 6 408064 411313 415972 10.8 11.2
instance96_50_6 6 411060 413281 414724 11.7 16.3

Table 9: 75 customers, time horizon 6

Instance T minCost avgCost maxCost minTime avgTime
instance1_75_6 6 318184 326927 333591 21.3 29.7
instance2_75_6 6 284483 318489 344805 22.7 29.6
instance3_75_6 6 328583 338028 352827 25.2 29.6
instance4_75_6 6 490621 491347 492078 19.5 20.1
instance5_75_6 6 509343 516542 522747 23.2 25.8
instance6_75_6 6 498685 526853 560820 24.8 25.5
instance7_75_6 6 279630 283286 290117 21.1 21.5
instance8_75_6 6 281325 304909 339990 23.2 24.5
instance9_75_6 6 289210 305558 333139 25.4 26.0
instance10_75_6 6 408503 424580 455701 20.0 20.4
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Table 9: 75 customers, time horizon 6

instance11_75_6 6 409576 428654 466261 20.8 22.3
instance12_75_6 6 417858 448023 463557 22.2 22.6
instance13_75_6 6 475819 482490 487130 25.1 28.9
instance14_75_6 6 497761 525080 578093 28.6 29.6
instance15_75_6 6 426158 480273 513078 25.7 27.0
instance16_75_6 6 650721 684661 741017 19.8 22.0
instance17_75_6 6 593303 640499 676712 21.6 21.9
instance18_75_6 6 660841 696238 760371 22.0 22.7
instance19_75_6 6 356036 413710 451233 21.3 22.8
instance20_75_6 6 438390 479633 544309 21.5 21.6
instance21_75_6 6 448964 518932 559520 21.4 27.8
instance22_75_6 6 529100 588837 624958 18.5 20.8
instance23_75_6 6 526222 586671 618027 19.2 19.4
instance24_75_6 6 626769 692727 729476 19.9 20.2
instance25_75_6 6 166707 166707 166707 22.4 22.6
instance26_75_6 6 168864 169041 169131 22.4 22.8
instance27_75_6 6 173129 173129 173129 23.7 23.8
instance28_75_6 6 348791 351719 354357 20.6 40.5
instance29_75_6 6 350814 350975 351270 44.8 52.2
instance30_75_6 6 355910 358250 360839 22.1 36.3
instance31_75_6 6 139372 140031 140719 28.1 53.3
instance32_75_6 6 142231 142650 142942 30.1 44.7
instance33_75_6 6 147762 148181 148554 21.5 26.8
instance34_75_6 6 315812 316483 317165 34.3 38.3
instance35_75_6 6 320792 321392 322576 24.2 25.0
instance36_75_6 6 324746 325410 326145 42.8 55.8
instance37_75_6 6 182099 182384 182942 21.1 21.5
instance38_75_6 6 186546 186794 186974 22.2 22.3
instance39_75_6 6 196653 196653 196653 23.1 23.3
instance40_75_6 6 362323 365929 368458 28.6 36.1
instance41_75_6 6 372165 373111 374395 20.4 37.1
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Table 9: 75 customers, time horizon 6

instance42_75_6 6 382124 383363 384363 22.5 42.1
instance43_75_6 6 153861 154533 155417 34.4 44.7
instance44_75_6 6 159946 160168 160585 20.2 20.3
instance45_75_6 6 168417 168876 169197 20.9 21.2
instance46_75_6 6 329464 330912 333452 42.0 48.3
instance47_75_6 6 334299 338144 340246 30.8 41.5
instance48_75_6 6 349071 350455 351518 28.8 31.6
instance49_75_6 6 227397 231700 233914 26.8 28.2
instance50_75_6 6 231512 245634 271598 21.2 27.1
instance51_75_6 6 229301 237314 246855 27.6 32.9
instance52_75_6 6 249923 253161 258071 23.6 24.9
instance53_75_6 6 243881 246223 248202 32.5 37.5
instance54_75_6 6 248938 257960 271192 23.4 26.5
instance55_75_6 6 193654 220743 235007 21.5 22.7
instance56_75_6 6 193262 194066 195250 33.6 35.7
instance57_75_6 6 200156 216074 243655 25.0 30.6
instance58_75_6 6 211876 214283 218622 23.0 29.9
instance59_75_6 6 213135 228544 256457 23.2 29.5
instance60_75_6 6 217530 218726 220827 30.4 34.3
instance61_75_6 6 382853 422455 480871 22.5 31.9
instance62_75_6 6 387023 397412 405188 26.9 27.6
instance63_75_6 6 332416 391650 427743 27.4 33.6
instance64_75_6 6 404259 439452 502842 24.3 28.1
instance65_75_6 6 421277 453254 505891 26.6 31.2
instance66_75_6 6 427178 479860 581603 26.4 27.9
instance67_75_6 6 435710 465422 523047 22.6 26.0
instance68_75_6 6 447381 500301 527126 22.2 26.5
instance69_75_6 6 538853 538853 538853 20.8 22.4
instance70_75_6 6 365491 460345 541907 21.5 28.2
instance71_75_6 6 373866 407517 469722 27.9 29.8
instance72_75_6 6 557713 557713 557713 23.3 23.5
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Table 9: 75 customers, time horizon 6

instance73_75_6 6 261282 277204 307644 18.9 19.2
instance74_75_6 6 263677 265189 266171 19.6 20.3
instance75_75_6 6 316234 316951 317410 20.3 20.7
instance76_75_6 6 436758 437565 438702 19.8 20.9
instance77_75_6 6 441426 457382 489130 20.8 24.0
instance78_75_6 6 394659 430242 448683 22.0 23.8
instance79_75_6 6 261282 277204 307644 20.2 20.3
instance80_75_6 6 263677 265189 266171 20.7 21.2
instance81_75_6 6 316234 317208 318181 21.7 27.6
instance82_75_6 6 436758 437565 438702 20.5 21.5
instance83_75_6 6 441426 457382 489130 21.0 23.9
instance84_75_6 6 394659 430242 448683 22.1 23.9
instance85_75_6 6 415257 417098 418149 20.2 20.5
instance86_75_6 6 421864 454754 516858 20.3 24.9
instance87_75_6 6 435968 497752 529944 22.3 24.6
instance88_75_6 6 500349 594405 690256 20.0 20.2
instance89_75_6 6 595669 598966 601251 20.4 20.7
instance90_75_6 6 608612 609752 611175 22.1 27.5
instance91_75_6 6 415257 417098 418149 19.6 19.8
instance92_75_6 6 421864 454754 516858 20.0 24.2
instance93_75_6 6 435968 497752 529944 21.8 24.5
instance94_75_6 6 500349 594405 690256 20.1 20.6
instance95_75_6 6 595669 598966 601251 20.1 20.4
instance96_75_6 6 608612 609752 611175 22.8 28.1

Table 10: 100 customers, time horizon 6

Instance T minCost avgCost maxCost minTime avgTime
instance1_100_6 6 409520 411621 415735 35.7 40.0
instance2_100_6 6 431136 439401 453250 41.9 46.1
instance3_100_6 6 428191 457022 491292 46.8 60.7
instance4_100_6 6 639132 662577 692552 32.5 43.8
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Table 10: 100 customers, time horizon 6

instance5_100_6 6 592893 628165 652825 35.0 44.5
instance6_100_6 6 647078 664856 673830 43.7 45.4
instance7_100_6 6 363832 388823 427149 31.8 34.5
instance8_100_6 6 377435 379467 381741 43.4 55.3
instance9_100_6 6 447397 484032 502475 38.1 39.7
instance10_100_6 6 585215 610018 653302 30.3 31.7
instance11_100_6 6 525840 572859 603448 32.9 38.9
instance12_100_6 6 596992 642030 665773 31.6 34.0
instance13_100_6 6 624127 634236 648258 39.8 45.3
instance14_100_6 6 629112 680073 759781 40.1 42.1
instance15_100_6 6 646116 800795 878135 38.3 41.5
instance16_100_6 6 857329 898648 966774 31.7 48.7
instance17_100_6 6 745612 898801 976322 31.5 33.8
instance18_100_6 6 760369 847564 893849 37.2 43.4
instance19_100_6 6 699641 708791 715886 32.6 35.4
instance20_100_6 6 468582 714647 837888 31.0 34.8
instance21_100_6 6 849171 849398 849620 33.5 33.9
instance22_100_6 6 668017 799031 926387 28.6 29.4
instance23_100_6 6 684586 810705 945047 30.1 30.9
instance24_100_6 6 709858 926198 1078791 25.4 28.7
instance25_100_6 6 204453 204480 204515 35.1 35.3
instance26_100_6 6 207833 207833 207833 35.0 35.8
instance27_100_6 6 212755 212755 212755 38.1 38.2
instance28_100_6 6 438256 438347 438526 33.4 33.6
instance29_100_6 6 441568 441692 441814 34.2 34.5
instance30_100_6 6 446970 446970 446970 35.9 36.5
instance31_100_6 6 174272 174678 175021 30.9 59.3
instance32_100_6 6 176980 177934 178472 32.7 49.6
instance33_100_6 6 184156 184226 184288 34.8 35.2
instance34_100_6 6 396837 397608 398792 65.0 81.7
instance35_100_6 6 402306 402755 403301 41.2 53.5
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Table 10: 100 customers, time horizon 6

instance36_100_6 6 406666 409125 411125 54.4 78.3
instance37_100_6 6 224643 224709 224824 33.3 33.8
instance38_100_6 6 231811 231907 231965 34.4 34.6
instance39_100_6 6 241835 241835 241835 37.3 37.5
instance40_100_6 6 458132 458296 458397 32.1 32.6
instance41_100_6 6 465145 465398 465788 34.0 48.1
instance42_100_6 6 476000 476000 476000 36.5 36.7
instance43_100_6 6 193637 193866 194090 31.4 38.5
instance44_100_6 6 199833 200520 201436 31.7 32.0
instance45_100_6 6 212049 212861 213430 33.5 33.7
instance46_100_6 6 415867 420303 424413 29.8 62.0
instance47_100_6 6 425523 427947 431407 29.7 49.4
instance48_100_6 6 438292 440036 443068 48.1 56.1
instance49_100_6 6 307729 339927 361390 32.7 39.5
instance50_100_6 6 297580 328594 372057 46.3 61.0
instance51_100_6 6 310196 343128 403899 38.3 53.7
instance52_100_6 6 311880 346717 375758 41.3 51.6
instance53_100_6 6 318957 343011 378103 39.3 60.7
instance54_100_6 6 321333 345235 384629 49.6 54.7
instance55_100_6 6 366523 366714 366818 30.4 32.2
instance56_100_6 6 259822 333787 370837 34.8 39.1
instance57_100_6 6 375412 375786 375974 31.5 35.4
instance58_100_6 6 332412 353914 390198 33.6 35.8
instance59_100_6 6 275432 354577 394217 33.8 39.2
instance60_100_6 6 398792 399166 399354 31.4 35.4
instance61_100_6 6 503996 551112 623191 37.4 48.4
instance62_100_6 6 510665 664873 741977 34.6 42.3
instance63_100_6 6 751664 751664 751664 37.8 37.8
instance64_100_6 6 525076 604148 759938 34.7 47.4
instance65_100_6 6 550690 655937 765357 38.2 39.9
instance66_100_6 6 431602 660563 775044 39.6 43.0
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Table 10: 100 customers, time horizon 6

instance67_100_6 6 703872 704179 704511 32.5 34.4
instance68_100_6 6 714340 714340 714340 36.2 36.3
instance69_100_6 6 723689 723689 723689 37.4 37.6
instance70_100_6 6 624924 693355 727891 31.8 40.2
instance71_100_6 6 737720 737720 737720 34.2 34.6
instance72_100_6 6 747069 747069 747069 37.2 37.5
instance73_100_6 6 406637 407224 407953 28.2 28.8
instance74_100_6 6 347144 369262 412485 29.8 33.0
instance75_100_6 6 356623 396751 417157 31.2 33.8
instance76_100_6 6 565652 588393 633424 28.6 29.8
instance77_100_6 6 566046 568989 570661 30.0 30.2
instance78_100_6 6 576915 599507 644210 34.1 34.6
instance79_100_6 6 406637 407224 407953 29.6 30.2
instance80_100_6 6 347144 369262 412485 30.6 33.6
instance81_100_6 6 356623 396751 417157 33.5 36.0
instance82_100_6 6 565652 588393 633424 31.6 33.4
instance83_100_6 6 566046 568989 570661 32.0 32.2
instance84_100_6 6 576915 599507 644210 34.3 35.4
instance85_100_6 6 552180 554140 555259 30.5 31.2
instance86_100_6 6 561629 604113 687870 31.1 31.5
instance87_100_6 6 705125 706738 707863 35.1 56.9
instance88_100_6 6 905073 906381 908543 29.5 30.3
instance89_100_6 6 781372 826112 913525 31.1 31.2
instance90_100_6 6 799807 843155 927964 33.9 34.3
instance91_100_6 6 552180 554140 555259 30.7 30.9
instance92_100_6 6 561629 604113 687870 30.3 30.8
instance93_100_6 6 704318 705768 707863 33.9 69.6
instance94_100_6 6 905073 906381 908543 29.2 30.0
instance95_100_6 6 781372 826112 913525 31.3 31.7
instance96_100_6 6 799807 843155 927964 33.5 33.9
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Table 11: 125 customers, time horizon 6

Instance T minCost avgCost maxCost minTime avgTime
instance1_125_6 6 491591 537872 591077 55.2 67.3
instance2_125_6 6 512693 516134 519268 60.9 68.3
instance3_125_6 6 504652 544219 583757 59.2 68.0
instance4_125_6 6 782339 793043 805274 54.6 74.4
instance5_125_6 6 775861 791317 805665 67.0 77.7
instance6_125_6 6 807891 845162 871955 60.3 79.8
instance7_125_6 6 445894 447533 448377 56.2 71.7
instance8_125_6 6 453533 499785 591593 57.7 63.9
instance9_125_6 6 461561 507728 533326 57.0 74.9
instance10_125_6 6 710115 763154 792347 45.8 46.7
instance11_125_6 6 711077 741975 788630 46.7 48.5
instance12_125_6 6 796057 796837 797917 49.3 50.8
instance13_125_6 6 898630 948969 1029105 46.4 50.5
instance14_125_6 6 781263 905930 1034973 53.0 63.0
instance15_125_6 6 788795 883612 1044091 45.0 55.7
instance16_125_6 6 1031710 1118873 1164845 44.0 47.5
instance17_125_6 6 1163201 1181378 1194242 47.1 55.2
instance18_125_6 6 1081177 1171510 1218453 55.4 61.0
instance19_125_6 6 546723 799668 989335 41.0 65.1
instance20_125_6 6 707339 900801 997533 46.0 55.3
instance21_125_6 6 1006531 1006531 1006531 44.2 48.2
instance22_125_6 6 961460 1061597 1112736 42.0 50.1
instance23_125_6 6 1117844 1129606 1147977 41.6 46.0
instance24_125_6 6 986667 1139934 1280898 44.9 53.3
instance25_125_6 6 246064 246064 246064 50.2 50.7
instance26_125_6 6 248563 248563 248563 51.0 51.4
instance27_125_6 6 253202 253202 253202 54.6 55.4
instance28_125_6 6 527796 527923 528068 47.3 47.7
instance29_125_6 6 530354 530550 530696 49.4 49.9
instance30_125_6 6 534921 535113 535210 54.8 54.9
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Table 11: 125 customers, time horizon 6

instance31_125_6 6 207912 208014 208110 45.7 47.0
instance32_125_6 6 210081 210172 210219 47.6 48.3
instance33_125_6 6 214356 214489 214569 51.9 52.4
instance34_125_6 6 478624 479003 479359 122.3 138.9
instance35_125_6 6 482176 482656 483335 111.7 120.4
instance36_125_6 6 488240 488391 488610 121.1 124.1
instance37_125_6 6 266491 266712 266840 48.4 48.8
instance38_125_6 6 272381 272524 272653 49.6 50.3
instance39_125_6 6 281791 281791 281791 54.3 54.7
instance40_125_6 6 548414 548427 548453 46.8 47.4
instance41_125_6 6 553850 554113 554439 49.9 50.4
instance42_125_6 6 562802 563010 563139 53.4 54.6
instance43_125_6 6 227035 227158 227366 44.5 45.0
instance44_125_6 6 231962 232358 232564 46.0 46.2
instance45_125_6 6 240900 241262 241973 50.5 50.7
instance46_125_6 6 496346 500949 505718 41.8 89.5
instance47_125_6 6 504742 505806 506875 56.2 89.0
instance48_125_6 6 522226 522361 522491 47.0 47.5
instance49_125_6 6 346558 378483 420921 53.1 64.6
instance50_125_6 6 349037 391790 476689 51.2 65.6
instance51_125_6 6 360656 422450 481457 55.1 88.3
instance52_125_6 6 372786 385991 398979 63.9 71.3
instance53_125_6 6 379129 388557 395698 70.5 79.7
instance54_125_6 6 408628 426403 459595 73.4 82.8
instance55_125_6 6 296350 345150 436126 48.3 70.7
instance56_125_6 6 301783 393393 439199 49.6 54.1
instance57_125_6 6 317444 401718 443855 48.5 56.2
instance58_125_6 6 328926 399401 464206 48.2 55.8
instance59_125_6 6 339641 424733 467279 49.7 64.6
instance60_125_6 6 413558 434082 471935 54.1 58.6
instance61_125_6 6 627763 757868 876785 48.3 74.0
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Table 11: 125 customers, time horizon 6

instance62_125_6 6 615972 749936 882609 50.8 65.1
instance63_125_6 6 891784 891784 891784 54.6 54.9
instance64_125_6 6 635420 642143 646958 74.6 88.0
instance65_125_6 6 634412 774473 910689 51.8 62.8
instance66_125_6 6 919864 919864 919864 59.0 60.0
instance67_125_6 6 836418 836559 836682 49.3 50.5
instance68_125_6 6 845169 845169 845169 51.0 52.4
instance69_125_6 6 851969 853472 854224 52.3 53.6
instance70_125_6 6 864498 864639 864762 46.4 47.3
instance71_125_6 6 873249 873249 873249 49.8 50.2
instance72_125_6 6 880049 881552 882304 53.3 54.9
instance73_125_6 6 484886 485908 487409 40.0 40.7
instance74_125_6 6 409295 411926 413675 42.5 51.3
instance75_125_6 6 417951 444635 496540 46.1 47.3
instance76_125_6 6 680804 733804 761039 42.8 51.4
instance77_125_6 6 682464 709094 759810 43.2 43.6
instance78_125_6 6 686405 714329 767788 47.3 47.9
instance79_125_6 6 484886 485908 487409 43.6 44.1
instance80_125_6 6 409295 411926 413675 43.2 50.9
instance81_125_6 6 417951 444635 496540 50.2 51.8
instance82_125_6 6 680804 733804 761039 44.2 54.5
instance83_125_6 6 682464 709094 759810 43.8 45.3
instance84_125_6 6 686405 714329 767788 49.5 50.7
instance85_125_6 6 655441 863721 968279 42.0 46.5
instance86_125_6 6 817675 819103 820563 60.6 80.4
instance87_125_6 6 679178 778348 828224 48.1 49.4
instance88_125_6 6 925815 980007 1087439 42.9 49.0
instance89_125_6 6 931213 986394 1089904 36.6 42.2
instance90_125_6 6 1096772 1099806 1103140 46.9 47.8
instance91_125_6 6 655441 863721 968279 41.5 45.7
instance92_125_6 6 817675 819103 820563 58.7 78.1
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Table 11: 125 customers, time horizon 6

instance93_125_6 6 679178 778348 828224 47.1 47.3
instance94_125_6 6 925815 980007 1087439 41.8 48.0
instance95_125_6 6 931213 935433 938066 45.0 47.7
instance96_125_6 6 1096772 1099806 1103140 47.6 48.0

Table 12: 150 customers, time horizon 6

Instance T minCost avgCost maxCost minTime avgTime
instance1_150_6 6 648553 687556 751588 110.0 110.9
instance2_150_6 6 694291 753139 818294 68.5 97.2
instance3_150_6 6 827689 827689 827689 78.8 80.6
instance4_150_6 6 1068043 1082040 1099223 63.6 75.7
instance5_150_6 6 996999 1064703 1109593 72.5 98.2
instance6_150_6 6 1016177 1083161 1117458 81.6 121.7
instance7_150_6 6 582172 612041 670961 94.3 101.2
instance8_150_6 6 578469 643214 769794 71.8 97.9
instance9_150_6 6 702868 728713 779082 82.4 93.3
instance10_150_6 6 912389 982491 1018480 66.0 67.4
instance11_150_6 6 820656 921588 1032270 70.8 79.9
instance12_150_6 6 937491 968034 1027982 75.0 78.3
instance13_150_6 6 972786 1107094 1345313 69.1 85.9
instance14_150_6 6 1216404 1264521 1352343 74.4 101.2
instance15_150_6 6 1196053 1312999 1371472 79.1 112.6
instance16_150_6 6 1320152 1402290 1545474 78.7 97.6
instance17_150_6 6 1327189 1343838 1362098 89.4 98.4
instance18_150_6 6 1387185 1448230 1549208 91.5 113.8
instance19_150_6 6 920406 1109836 1291165 63.2 105.8
instance20_150_6 6 923437 1175958 1302532 64.9 80.7
instance21_150_6 6 1322471 1322471 1322471 73.3 73.7
instance22_150_6 6 1041264 1244220 1440467 58.1 77.2
instance23_150_6 6 1026789 1311723 1455488 63.7 64.6
instance24_150_6 6 1473526 1608311 1675704 61.3 67.6

69



Table 12: 150 customers, time horizon 6

instance25_150_6 6 314270 314270 314270 68.8 69.3
instance26_150_6 6 317729 317729 317729 72.8 74.0
instance27_150_6 6 327124 327124 327124 80.0 80.6
instance28_150_6 6 667270 667270 667270 69.6 70.1
instance29_150_6 6 670729 670729 670729 74.8 74.9
instance30_150_6 6 680124 680124 680124 79.5 80.5
instance31_150_6 6 264899 264995 265072 65.1 66.5
instance32_150_6 6 268898 269014 269151 72.2 73.2
instance33_150_6 6 277926 278048 278260 75.8 76.4
instance34_150_6 6 606447 610782 614383 69.6 107.7
instance35_150_6 6 613270 615661 619575 77.0 166.1
instance36_150_6 6 628870 629622 630627 71.5 72.2
instance37_150_6 6 343428 343428 343428 67.5 68.1
instance38_150_6 6 350295 350447 350588 73.4 73.9
instance39_150_6 6 369008 369394 369587 79.3 80.0
instance40_150_6 6 696428 696428 696428 65.4 67.1
instance41_150_6 6 703431 703677 703801 71.5 72.3
instance42_150_6 6 721600 721915 722219 76.8 77.9
instance43_150_6 6 290442 290540 290734 61.7 63.1
instance44_150_6 6 299776 299899 300038 67.8 68.6
instance45_150_6 6 317936 318397 319145 73.9 74.3
instance46_150_6 6 642752 643232 643682 58.9 59.7
instance47_150_6 6 653116 653314 653476 64.9 66.1
instance48_150_6 6 671027 671459 672010 68.2 69.8
instance49_150_6 6 458672 498385 551034 84.4 89.8
instance50_150_6 6 495549 543366 627445 74.1 105.6
instance51_150_6 6 636836 636836 636836 79.2 79.8
instance52_150_6 6 490281 578225 659059 65.9 89.3
instance53_150_6 6 501549 564803 599943 117.6 143.0
instance54_150_6 6 539753 627818 671851 79.4 105.5
instance55_150_6 6 575361 575361 575361 65.4 66.2
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Table 12: 150 customers, time horizon 6

instance56_150_6 6 495365 551035 578895 66.8 97.3
instance57_150_6 6 587463 587940 588179 78.0 78.5
instance58_150_6 6 436235 552329 610376 66.9 77.8
instance59_150_6 6 524483 584084 613910 65.1 84.8
instance60_150_6 6 622478 622955 623194 77.7 78.6
instance61_150_6 6 644798 873022 1154522 66.5 89.0
instance62_150_6 6 841197 898463 996354 94.0 95.2
instance63_150_6 6 1180275 1180275 1180275 78.9 79.6
instance64_150_6 6 834517 904549 1016595 81.2 97.8
instance65_150_6 6 839499 869183 897874 98.1 113.3
instance66_150_6 6 1215290 1215290 1215290 87.4 87.6
instance67_150_6 6 1105736 1105736 1105736 70.2 70.6
instance68_150_6 6 1110754 1112344 1113140 70.9 71.9
instance69_150_6 6 1131205 1131501 1131650 76.9 78.4
instance70_150_6 6 1140751 1140751 1140751 65.6 66.9
instance71_150_6 6 1145769 1147359 1148155 70.3 72.5
instance72_150_6 6 1166220 1166516 1166665 67.8 75.4
instance73_150_6 6 531256 600203 635095 55.9 56.5
instance74_150_6 6 536516 604967 639232 61.5 116.3
instance75_150_6 6 650125 650871 651717 99.0 103.9
instance76_150_6 6 974406 1015453 1093896 56.9 83.9
instance77_150_6 6 877398 986634 1097836 59.2 74.4
instance78_150_6 6 887696 922660 992363 68.4 69.2
instance79_150_6 6 531256 600203 635095 60.2 62.1
instance80_150_6 6 536516 604967 639232 62.1 122.1
instance81_150_6 6 650125 651061 652288 72.8 97.5
instance82_150_6 6 974406 1015453 1093896 59.9 90.6
instance83_150_6 6 877398 986634 1097836 60.3 78.8
instance84_150_6 6 887696 922660 992363 69.8 70.7
instance85_150_6 6 1061862 1062568 1063812 56.4 63.4
instance86_150_6 6 869121 1005183 1073520 66.2 115.1
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Table 12: 150 customers, time horizon 6

instance87_150_6 6 629521 942110 1098760 84.2 90.4
instance88_150_6 6 1198798 1334249 1402522 57.8 57.9
instance89_150_6 6 1212647 1350197 1419004 59.8 96.9
instance90_150_6 6 1235375 1374318 1444626 66.4 101.1
instance91_150_6 6 1060916 1061603 1062031 57.7 77.7
instance92_150_6 6 869121 1005183 1073520 64.1 113.0
instance93_150_6 6 1098243 1163613 1293837 82.5 97.4
instance94_150_6 6 1198798 1334249 1402522 58.1 58.3
instance95_150_6 6 1212647 1350197 1419004 60.4 99.5
instance96_150_6 6 1235375 1374728 1444626 65.4 114.2

Table 13 shows results for the instances with 30 time periods. Instance 1 through 62 is
run with a maximum iteration count of 100000 as stopping criteria. Instance 63 through
96 is run with a maximum iteration count of 20000 as stopping criteria.

Table 13: 50 customers, time horizon 30

Instance T Cost Time
instance1_50_30 30 1722693 1771.0
instance2_50_30 30 1762331 1929.8
instance3_50_30 30 1759171 2487.3
instance4_50_30 30 2792085 1368.2
instance5_50_30 30 2772415 1795.2
instance6_50_30 30 2904943 943.9
instance7_50_30 30 1620674 672.4
instance8_50_30 30 1706871 733.4
instance9_50_30 30 1732038 860.8
instance10_50_30 30 2434295 1382.0
instance11_50_30 30 2607646 972.4
instance12_50_30 30 2677603 1248.5
instance13_50_30 30 2686181 2040.2
instance14_50_30 30 2772046 1552.3
instance15_50_30 30 2821388 1831.0
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Table 13: 50 customers, time horizon 30

instance16_50_30 30 3850498 1516.1
instance17_50_30 30 3892899 1295.5
instance18_50_30 30 3935440 1504.1
instance19_50_30 30 2673088 1161.7
instance20_50_30 30 2637425 1019.9
instance21_50_30 30 2822677 1024.1
instance22_50_30 30 3402043 1246.5
instance23_50_30 30 3543942 902.2
instance24_50_30 30 3727683 1095.5
instance25_50_30 30 827511 1046.1
instance26_50_30 30 837984 1097.9
instance27_50_30 30 857908 1267.0
instance28_50_30 30 1960913 1014.0
instance29_50_30 30 1976010 1088.2
instance30_50_30 30 1997910 1227.0
instance31_50_30 30 782561 1431.0
instance32_50_30 30 798746 1239.0
instance33_50_30 30 822497 2077.7
instance34_50_30 30 1875627 1274.9
instance35_50_30 30 1890156 1794.1
instance36_50_30 30 1924000 1227.3
instance37_50_30 30 928402 1073.0
instance38_50_30 30 948544 1070.3
instance39_50_30 30 994962 1261.3
instance40_50_30 30 2042933 1959.3
instance41_50_30 30 2079371 1269.0
instance42_50_30 30 2133906 1224.3
instance43_50_30 30 864469 1585.7
instance44_50_30 30 894420 1034.9
instance45_50_30 30 951698 1030.4
instance46_50_30 30 1962075 1413.1
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Table 13: 50 customers, time horizon 30

instance47_50_30 30 1993695 1058.3
instance48_50_30 30 2052727 1078.7
instance49_50_30 30 1143136 964.2
instance50_50_30 30 1154464 1017.0
instance51_50_30 30 1173909 1242.5
instance52_50_30 30 1259611 963.1
instance53_50_30 30 1241234 1820.6
instance54_50_30 30 1290384 1261.7
instance55_50_30 30 1083741 1950.9
instance56_50_30 30 1101545 1167.2
instance57_50_30 30 1147998 1187.6
instance58_50_30 30 1136145 2618.8
instance59_50_30 30 1216526 1196.6
instance60_50_30 30 1244256 1854.2
instance61_50_30 30 2079033 1790.8
instance62_50_30 30 2174297 1490.8
instance63_50_30 30 2218504 934.8
instance64_50_30 30 2260811 748.5
instance65_50_30 30 2280355 818.1
instance66_50_30 30 2273036 998.5
instance67_50_30 30 2066898 678.1
instance68_50_30 30 2162498 693.9
instance69_50_30 30 2208974 816.2
instance70_50_30 30 2190762 648.2
instance71_50_30 30 2278973 711.1
instance72_50_30 30 2288662 818.1
instance73_50_30 30 1628368 340.0
instance74_50_30 30 1643037 329.1
instance75_50_30 30 1666188 407.7
instance76_50_30 30 2691126 324.3
instance77_50_30 30 2737147 336.1
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Table 13: 50 customers, time horizon 30

instance78_50_30 30 2722436 393.9
instance79_50_30 30 1628368 333.6
instance80_50_30 30 1643037 320.0
instance81_50_30 30 1666188 399.7
instance82_50_30 30 2691126 322.4
instance83_50_30 30 2737147 334.6
instance84_50_30 30 2722436 393.4
instance85_50_30 30 2569788 308.7
instance86_50_30 30 2632737 329.8
instance87_50_30 30 2664987 404.6
instance88_50_30 30 3637921 307.6
instance89_50_30 30 3740214 347.2
instance90_50_30 30 3799351 391.7
instance91_50_30 30 2569788 305.3
instance92_50_30 30 2632737 333.1
instance93_50_30 30 2664987 398.4
instance94_50_30 30 3637921 306.6
instance95_50_30 30 3740214 344.4
instance96_50_30 30 3799351 390.7
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