HiMoldeMaster

MSc in Logistics

Vendor Managed Inventory (VMI) with Third Party Logistics (TPL) Services----Optimizing Inventory Model and Logistics Costs Comparison between Multi-Fineline Electronix Inc.and Delta International Logistics Co. Ltd.

Chengxian HUANG

Molde, 2008

Student Assignment for the Master Degree

Title: Vendor Managed Inventory (VMI) with Third Party Logistics (TPL) Services-----Optimizing Inventory Model and Logistics Costs Comparison between Multi-Fineline Electronix Inc. (MFLEX, China Branch) and Delta International Logistics Co. Ltd.

Author (-s): Chengxian HUANG

Subject code: LOG950

ECTS credits: $\mathbf{3 0 . 0 0}$

Year: 2008

Supervisor: Kewei FAN

```
Agreement on electronic publication of master thesis
Author(s) have copyright to the thesis, including the exclusive right to publish the
document (The Copyright Act §2).
All theses fulfilling the requirements will be registered in BIBSYS Brage, but will only be
published (open access) with the approval of the author(s).
Theses with a confidentiality agreement will not be published.
I/we hereby give HiM the right to, free of charge,
make the thesis available for publication on the Internet:
Is there an agreement of confidentiality?
(a supplementary confidentiality agreement must be filled in)
Can the thesis be published when the
period of confidentiality is expired?
Should the thesis be kept from public access?
(according to the Freedom of Information Act §5a
/ The Public Administration Act §13)
Date: 15/06/2008
```


Vendor Managed Inventory (VMI)

with Third Party Logistics (TPL) Services
-----Optimizing Inventory Model and Logistics Costs Comparison between Multi-Fineline Electronix Inc. (MFLEX, China Branch) and Delta International Logistics Co. Ltd.
(Case: A Current Project in Electronic Component Trade)

By

Chengxian Huang (061182)
Supervisor: Kewei Fan
Thesis
Presented to the Faculty of Economics
Of the Molde University college
In Partial Fulfillment

Of the Requirements
For the Degree of
Master of Science in Logistics
Molde University College at Molde, Norway

Acknowledgement

This work would not have been possible without the support and encouragement of my supervisor, Associate Professor Keiwei Fan, under whose supervision I chose this topic and began the thesis. Furthermore, he introduced me to research in Delta International Logistics Co., Ltd., where I could collect data to finish my thesis. Mr. James Zhou, my advisor in the research work, has also been abundantly helpful, including some data calculation and formulas functions, and in particular for allowing me to read as soon as they were available date copies of recent MRP plan in Multi-Fineline Electronix Inc. I would also like to thank to Oyvind Halskau, Heidi Bjørstad and Berit Helgheim, for their reading, suggestions and other supports, especially for their patient and hard education and courses plan in Model University College. Meanwhile, I want to express my gratitude to friends both in Delta International Logistics Co., Ltd and Muit-Finline Electronix Inc. With their help, I deeply understand the whole business, process and some basic knowledge.

I can not end without thanking my family, on whose constant encouragement and love I have relied throughout my time on researching.

Abstract

Purpose - This paper aims to increase the understanding of VMI model with TPL services, which can bring huge values in the whole supply chain.

Design/methodology/approach - Logistics costs in 3 different models will be compared with. Firstly, it is in the normal supply chain, which each part in the supply chain has their own inventory. Secondly, there is VMI situation in the supply chain. The third one is VMI model with TPL services. The logistics costs will be calculated by formulas. In the other hand, by researching in two different companies, Multi-Fineline Electronix Inc. (China Branch) and Delta International Logistics Co. Ltd. which one is a supplier for American market and the other is a TPL company, I got different costs data to analysis logistics costs in a real situation to find the problem there. At last, a comprehensive project will be introduced to embody some values of VMI with $T P L$ services.

Findings - Overall, with the comparison of logistics costs by equations, real data analysis and a case study, all these can prove the values of VMI with TPL services, which are lower logistics costs, efficiency transportation, lower purchase price by central buying and so on. On the other hand, creation of value added services are also a challenge for $T P L$ companies.

Originality/value - The idea of VMI with TPL services in a particular business. VMI with TPL services can reduce logistics costs and solve overstock problems in the Electronic Component Trading Business. TPL can offer creative services like E-hub.

Key Words

VMI, TPL, Logistics costs, Overstock, Electronic Component Trade.

Contents

Acknowledgements I
Abstract II
Key Words II
Contents III
1 Introduction 1
1.1Basic Concepts 1
1.1.1 Concept of Vendor Managed Inventory 1
1.1.2 Concept of Overstock. 1
1.1.3 Concept of Third Party Logistics 1
1.1.4 Concept of Electronic Component Trade 2
1.2 Chinese Logistics Industry(VMI \& TPL) 2
1.3 My Research Work 5
1.3.1 Research in Delta International Logistics Co., Ltd. 5
1.3.2 Research in Multi-Fineline Electronix Inc. 6
1.4 The Purpose of Paper 8
2 Literature Review. 10
2.1 Vendor Managed Inventory (VMI). 10
2.1.1 Definition of VMI 11
2.1.2 Values Created by VMI 11
2.2 Third Party Logistics (TPL) 14
2.2.1 Definition of TPL 14
2.2.2 TPL Services in the World 14
2.2.3 Benefits Brought By TPL 16
3 Problem Description 18
3.1 Problem Description 18
3.2 Methods to Solve Problem 18
3.3 Advantages of VMI with TPL Services 20
4 Logic Proof with Models and Real Data Analysis 21
4.1 Models and Costs Comparisons 21
4.1.1 Logistics Costs Notation 21
4.1.1.1 VMI Model and Its Logistics Costs 23
4.1.1.2 Logistics Costs Before and After Using VMI 24
4.1.1.3 Logistics Costs Comparison 26
4.1.2 VMI with TPL Services Model 27
4.1.2.1 Logistics Costs with TPL Services 28
4.1.1.2 Logistics Costs Comparison 29
4.1.3 Short Conclusion 29
4.2 Real Data Analysis 30
4.2.1 Company Snapshot 30
4.2.2 Logistics Costs Analysis 31
4.2.2.1 Logistics Costs in Multi-Fineline Electronix Inc.(Suzhou). 31
4.2.2.2 Logistics Costs with Delta International Logistics Co,. Ltd. 34
5 Case Study 38
5.1 Background 38
5.1.1 Keep up a Steady Increase in Demand 39
5.1.2 Intensified Competition and Falling Rate of Sales Profit 40
5.1.3 Overstock Situation in Electronic Component Market 41
5.2 Project of Electronic Component Trade 42
5.3 Feasibility Analysis of Project (VMI with TPL Services) 43
5.3.1 Main idea 43
5.3.2 Market 46
5.3.3 Competitive Advantage 46
5.3.4 Proforma 48
6 Conclusion 49
Reference 50
Appendix A 55
Appendix B 56
Appendix C 57
Appendix D 61
Appendix E 69
Appendix F 75

1 Introduction

1.1 Basic Concepts

1.1.1 Concept of Vendor Managed Inventory

Amy E. Murphy defined in "Vendor Managed Inventory. Com" (2005) as "A means of optimizing Supply Chain performance in which the manufacturer is responsible for maintaining the distributors' inventory levels. The manufacturer has access to the distributors' inventory data and is responsible for generating purchase orders."

VMI -- where a supplier manages its customer's inventories of its products, including setting inventory level targets, usually based on achieving a level of service specified by the customer. The inventories might be held on consignment (i.e., owned by the supplier) or owned by the customer. (Source: Lapide, 2002)

1.1.2 Concept of Overstock

Carrying more products on a particular area or warehouse than it can support for any length of time.

1.1.3 Concept of Third Party Logistics

Third Party Logistics (TPL) is the function by which the owner of goods (The Client Company) outsource various elements of the supply chain to one TPL company that can perform the management function of the clients inbound freight, customs, warehousing, order fulfillment, distribution, and outbound freight to the clients customers. (Source: A comprehensive TPL directory for supply chain and logistics decision makers, 2005)

Africk and Calkins (1994) defined TPL as "A relationship between a shipper and a third party which, compared with basic services, has more customized offerings, encompasses
a broader number of service functions and is characterized by a longer-term, more mutually beneficial relationship."

1.1.4 Concept of Electronic Component Trade

Electronic Component Trade is a part of Electronic Product Exchange Business trading capacitors, Integrated circuits, transistors, resistors... (See, Fig.1) Component trade is a huge globe business. There are manufacturers, distributors and retailers in the market, who compose the supply chain.

Fig. 1 Components (John Hewes 2008, The Electronics Club)

1.2 Chinese Logistics Industry (VMI \& TPL)

Nowadays, in China there are many transnational corporations using VMI. For the local Chinese companies especially medium and smaller ones, they are still exploring ways of changing. It is said by Southern China Medicine Hub (STCMH) that, the retailers who using the VMI model are only 3% in China. VMI is an efficient way for some companies, and Chinese companies should try to use it in a suitable way. However, I think it is not suitable for all companies. Each company has his own characteristic, and different ways to operation.

As a matter of fact, VMI has its merits and faults in the real operation. The most important thing is to recognize its functions in the company, and then to optimize the advantages. There is one solution to optimize the advantages, which is using the $T P L$ services. As a middle operation stage, TPL can offer professional information technologies and transportation methods to save the costs.

According to the Chinese official statistics, expenditure on logistics for 2005 was 483.71 billion USD. The logistics cost was 18.5% of GDP. Until 2001, the market scope of the real $T P L$ in the Chinese market was 5 billion dollars. 70% of the $T P L$ had 30% average
increasing range in the business during the past 3 years. While, for the whole TPL market in China from 2000 to 2005, the annual increasing range was 25\%. (Data from STCMH)

From 2004 to 2007, Gross Domestic Logistics Costs in China (GLC) increased year after year, especially from 2005 to 2006, increasing by 13.5%. Until 2007, the price and competition in the market were changed, and the speed of increasing was slow. However, it will be still growing because of economic growing and Olympic games, and other events. (See Fig.2)

Fig. 2 Gross Domestic Logistics Costs in China (Data from OCN)

In 2006, GLC was 18.3% of GDP in China. In the other hand, the structure of the GLC was changed. The transportation costs were 30.03 billion USD, 55% of the whole costs; the warehouse costs were 17.62 billion USD, 32% of the whole costs; the management costs were 7.24 billion USD, 13\% of the whole costs. (See Fig.3)

The Structure of Logistic Costs in 2006

Fig. 3 The Structure of Logistics Costs in 2006
(Data from OCN)

According to an investigation of China Association of Warehouses and Storage (CAWS), in Chinese Industrial Enterprise, 82\% of the raw material logistics are responded by themselves or suppliers. An investigation (2005) to 450 medium and large enterprises in China by CAWS said that 45% enterprises wanted to chose new logistics companies, and 75% of them would like to corporate with new-type logistics companies instead of old warehousing or transportation companies. What's more, 60% of the enterprises would like to outsource all the integrated logistics business to the new-type logistics company like TPLs, so that they could reduce the costs of inventory, transportation, distribution, information service and so on. (Data from STCMH)

China has a huge logistics market in the world. It has already attracted a lot of famous big companies into the market. In the future, the speed of development of Chinese logistics will rapidly accelerate. Especially the development of TPL, it is predicted (2007) that the profits from Chinese Logistics Business will increase by 171.4 billion USD, until 2008 the demand for Olympic Games will up to 39.43 billion USD. (Data from STCMH) The logistics market will becarved up into more pieces or be integrated, as its increasing and competition going up. The environment of development of logistics in China is improving in policies, therefore, this business will be rapidly growing in the future.

1.3 My Research Work

For proving my idea and finishing thesis, I had been looked for chances to work in a particular industry which could have more details to understand the whole supply chain. Therefore, I found chances to research in Delta International Logistics Company and Multi-Fineline Eliectronix Inc. (Suzhou Branch) for about 4 months. After researching I have deeply understood for Electronic Component Trade and had basic operation knowledge about the whole supply chain, because of the relationship between these two companies. Done some operation works could help me understand the process, problems and so on. Meanwhile, I could collect data to help me finish my thesis.

1.3.1 Research in Delta International Logistics Co., Ltd.

For one reason is that this company gave me a good opportunity and conditions to research, and I could learn different experience in three departments, operation department, warehouse department, and sales department, which can help me have a great chance to collect data of TPL process and VMI operation process.

For another reason is that this company is invested by government, which has unique and traditional characteristics. It has a quite influence for the whole Chinese Logistics Business. In the other hand, it is located closed to Shanghai, a city with huge logistics business, and also one of the centers of Chinese economy.

Delta International Logistics Co., Ltd. is in the Suzhou Bonded Logistics Center (BLC) in Suzhou Industry Park (SIP). BLC gives him special opportunities to development including policies, funds and human resource advantages.

SIP (Suzhou Industry Park)

In Feb. 1994, Chinese and Singapore governments signed the Agreement on Joint Development of SIP. The project commenced in May 1994 with the area if 288 sq. km and registered population of 260000 .

Within Suzhou Industrial Park, there are various functional parks, such as China-Singapore science hub, Suzhou logistics center, Export processing zone, International science park, and so on.

SLC/BLC (Bonded Logistics Center)

BLC was approved by Customs General Administration in May 11, 2004. It passed the united inspection made by CGA, Ministry of Finance, State Administration of Taxation and State Foreign Administration Bureau in August 18, 2004. Meanwhile, in October 12, 2004, it was approved to have trial operation. Furthermore, Interim Measures for BLC (B type) was published by Customs General Administration and was implemented on July 1, 2005.

Main Favorable Policies for BLC: Abroad inbound goods are kept bonded; No customs duty or VAT required; Domestic inbound products are regarded as exports and will enjoy VAT rebate; Cargos in BLC are allowed to combine, transfer and store for two years.

Delta International Logistics Co., Ltd.:

It was founded on April 18, 2005, providing professional TPL services as a subsidiary of SEALL (A stated owned company by SIPAC with registered Capital 5million RMB.) The service range includes warehousing, distribution, transportation, customs clearance and diverse value-added logistics service, e.g. packaging, labeling, I\&E trading, etc.

Warehouse Facilities has around 10,000 sq. m Non-bonded warehouse and 10,000 sq. m Bonded warehouse.

1.3.2 Research in Multi-Fineline Electronix Inc.

For another company, Multi-Fineline Electronix Inc. (MFLEX), it's been adventure to finish my thesis, because it was necessary for me to look for a new manufacturer for more information and data to analysis. At last, I found MFLEX, and the material manager is very kind and agreed to help me with some real inventory data. Actually, I have got a

MRP system of this company. Multi-Fineline Electronix Inc. is a big transnational corporation, which established branch companies in China. Suzhou is one of the branches. There are warehouses and factories in Suzhou.

MFLEX was founded in 1984 with targeting that position in the marketplace. It has grown to become one of the largest flex circuit manufacturers and assemblers worldwide. Through partnerships with their customers and six plants worldwide, MFLEX continues to proudly serve their prestigious list of satisfied customers spanning the Asian, North American, South American and European continents. (Introduction form www. mflex. com)

The research had been done in the end of April. On $3^{\text {rd }}$ Mar., 2008, which was during my research time, in Delta International Logistics Co., Ltd., they had a new business project related with establishment of Chinese EPEC (Electronic Products Exchange Center). Delta wants to get more profits by offering services to EPEC. Considering overstock problems in this industry, acting as a trader offering VMI services to the manufacturers like MFLEX and other upper or downstream companies is a new idea in this industry. In this situation, Delta can be a trade hub of the electronic components. In the paper, I will introduce some parts of the project with the help of staffs in the company and help people understand the situations in China. In the mean while, this project gives a good example in my thesis.

1.4 The Purpose of Paper

The purpose of this paper is to introduce the VMI with TPL services by logistics costs comparison, real data analysis, and a current project introduction. Comparing with the different models of inventory management with formulas to give a logic proof. VMI with TPL services can enhance the competition of the supply chain. By reading the paper, the vendors can clear their situation in the whole supply chain, and increasing the benefits in a better way. The most Important is that this comparison and improvement will be discussed in the Electric Component Exchange Business, which can bring new chances to $T P L$.

In the other hand, I hope this research can help some TPL companies in China deeply understand how to create new profits in the supply chain, and increase the efficiency and quality in the whole business operation or in this high competitive world. Especially, in the Electronic Component Exchange Business, as a real project, the relationship among the suppliers, TPLs, and customers will be stronger than before because of the services of TPLs. What's more, the benefits for all points of the supply chain can be clearly found increased.

It always has these kind of situations during the operation activities in the company: It needs several days even months to make raw material into the finished goods, while the producing time just takes about several minutes or hours; The retails almost have 10 weeks inventory, but manufacturers can produce every week. The operator used to judging the value of production instead of the satisfaction of the customers. These problems can be concluded into how to balance the material flow and the cash flow among the suppliers, manufacturers, retailers and the final customers. By research VMI model with services, the problems can be improved.

VMI is a strategic behaviour between the joint partner. It is using the systematic and integrated thoughts to manage inventory. At the same time, it is optimizing the supply chain system. For example, it helps the suppliers or upper stream companies understand
the production and inventory information of downstream customers by some information technology. While in the other hand, the upper stream companies can monitor the inventory situation, give a quick response, and reduce the inventory costs of both sides. However, as a matter of fact, Yan Dong and Kefeng Xu (2002) found that VMI increases the cost of supplier in the short term, which is a disadvantage of himself. Or there is another question, can all the points in the supply chain get the benefits by VMI? It is studied that when the buyer can't get the benefits, it makes him lack of participation enthusiasm. Some of these problems are happening in the supply chain.

Therefore, these disadvantages of VMI are already be found by some researches. However how to improve the VMI is another problem. In the paper, the point is VMI model with TPL services is a good way to optimize VMI. How this new model works and what kind of functions and what kind of value can be created in the whole supply chain management should be noticed. Meanwhile, the problems in how to improve the TPL services and make the supply chain more efficiency are also included.

In another aspect, though real data analysis and Electronic Component Trade project researching, TPL operation functions are clearly mainfasted in the entire business. In this way we can create more meaningful and profitable services to facilitate the whole supply chain in a smooth way.

2 Literature Review

2.1 Vendor Managed Inventory (VMI)

As the development of global economy, any single company can't be on the top in each business. It needs corporation among the upperstream and downstream companies. Supply chain management is very important to enhance the competition of the company and the whole supply chain which will quickly reply the changes of the market and satisfaction of customers. The competition in the future will be not only between the companies but between the supply chains.

In the traditional supply chain management, each company in the supply chain had his own inventory and managed them by himself. It always had some problems such as uncorrected predication, unstable supply, lake of corporation between the companies, lack of information, Bullwhip Effect. Supply Chain Management (SCM) focus on the efficiency and benefit on the whole supply chain. VMI (Vendor Managed Inventory) is suggested in this situation.

After suggesting VMI concept by Magee (1958), B \& G and Wal-Mart develop a VMI system which had a great success. Since then, VMI became a hot topic in the logistics business. Gerber (1991) found VMI was more efficient than JIT and ZERO-Inventory by a special investigation. Andel (1996) though a survey of retailers discovered that most of the companies would operate the VMI program in the future several years. Cottrill (1997) thought that VMI would popular in the business, and could bring a revolutionary change to the distribution canal. Some of the researchers gave the explicit reports on reducing the Bullwhip Effect and logistics costs in the supply chain, such as LEE (1997), S.M.DISNEY(2002), Huashi Ma (2000), Lindu Zhao (2003).

2.1.1 Definition of VMI

Seldon and Affiliates (2000) pointed in their research "VMI - Fad or Future" that VMI was mainly used in car-manufacturing business, especially in low priced and easily worn parts. It is a kind of strategy that the user want to reduce the management costs, operation costs and responsible time.

Disney and Towill (2002) told us that though different people had varied views about VMI in different area and market environment, they had one common characteristic which is on the basic of transparency of stock position and demand rates in each point of supply chain. VMI was a production/ distribution and inventory control system. They also give examples of VMI from different types of inventory management thoughts, such as Synchronized Consumer Response, Continuous Replenishment Programs, Efficient Consumer Response, Centralized Inventory Management.

American Production and Inventory Control Society (APICS) have this definition of VMI, Under VMI model, supplier collects inventory data of user and maintains inventory level to optimize operation performance of supply chain. Checking user's inventory at regular intervals is an important method. Then they can quickly response to get higher service level or customer satisfaction.

2.1.2 Values created by VMI

Nowadays, VMI is widely used in many companies, such as Kmart, Dilllar, Dell, JCpenny, Lenovo, which they all got great success. The values created by VMI are as follow:

Reducing Inventory; Close to JIT

Suppliers make an inventory plan and deliver goods to retailers in time according to the entail production and sales and market situation. In the other hand, it is not necessary for retailers to keep large inventory in order to satisfy the demand changing. Efficiency
prediction makes suppliers doing good production plan, and the inventory level will be reduced.

For manufacturers, VMI gives their changes to manage inventory in the long distance by internet tools, which they can finish the replenishment circles, and the replenishment time will he delayed to the production time at latest. For suppliers and retailers or distributors, VMI can make lower inventory level, even JIT.

Eliminate Bullwhip Effect

Ever since a long time ago, all companies in supply chain separately managed their inventory by themselves. Suppliers of raw material, manufacturers, logistics centers, distributors all can have their own inventory with a certain safety inventory. Because of that, demand will be distorted inevitably, which means enlarging the demand. This phenomenon can be called "Bullwhip Effect" in the supply chain, and it makes more serious of the supply and inventory risk to suppliers. With VMI model, inventory can be integrated and this Bullwhip Effect will be eliminated.

Increasing Customer Service Level (CSL)

As we all know, there are contradictions of inventory and services level. To improve the customer service level, they need more cushion inventory to reduce the stock-out situation, in order to speed up the delivery goods in time.

Suppliers and retailers establish strategic joint relationship, and then on the basic of common benefit they can give a quick response to the customers when the demand of the customers and market is changing. What's more, they can reorganize the production and sales tactic in order to satisfy the customers better. Using VMI model, suppliers can decide which orders are more important, how many the goods and which deliver will be the fist according to variety of information. Meanwhile, they can increase the service level according to its production capacity and retailers’ demand, which is reducing the stock-out situation of retailers and satisfying the customers.

Optimizing Business Flow; Increasing Efficiency of Supply Chain

In the VMI model, by connecting and integrating some business flows, the business flows of suppliers and retailers can be optimized. Get rid of some steps which can not bring values, then flows will be more smooth and convenient. At the same time, the dealing speed and quality of services can be improved to be more sensitive, soft and competitive.

2.2 Third Part Logistics (TPL)

2.2.1 Definition of TPL

TPL as an outsourcing business has about hundred years history in Europe. Most of the famous companies offered normal services such as transportation, warehouse long time ago, like Schenker AG. However, it became a formal business since 1980s in U.S.A.
B.S.Sahay and Ramneesh Mohan (2006) told us in their research, "TPL logistics services are widely prevalent in North America (Lieb, 1992; Lieb and Randall, 1996) and Europe (Lieb et al.,1993) and have been examined in a number of previous studies. Similar studies have focused on logistics issues in Bulgaria (Bloomen and Petrov, 1994), South Africa (Cilliers and Nagel, 1994), Australia (Dapiran et al., 1996), Korean (Kim, 1996), Asia Pacific (Millen and Sohal, 1996), Singapore (Bhatnagar et al., 1999), and Indochina (Goh and Ang, 2000). These countries have availed large benefits of TPL services over the last few years..."

Wikipedia (2003) defines TPL in this way, "A third-party logistics provider (abbreviated $T P L$) is a firm that provides outsourced or 'third party' logistics services to companies for part, or sometimes all of their supply chain management function. Third party logistics providers typically specialize in integrated warehousing and transportation services that can be scaled and customized to customer's needs based on market conditions and the demands and delivery service requirements for their products and materials."

2.2.2 TPL Services in the World

Europe: TPL has a long history in Europe. Its ancestor offered assembling, warehouse, transportation, and clearance services among hundreds of dukedom and marquess areas. Currently, the percentage of TPL is larger than America. There are generally four levels for the European TPL companies: 1. Global services offering companies; 2. Traditional services offering companies; 3. Newly developing TPL companies; 4. TPL companies
with government investment. Furthermore, the major customers in Europe are automobile manufacturers and electrical manufacturers.

North America: TPL had a double-digit continual development since 1980s. After cold war, the world economic center trended to America. Each kind of business went ahead of other countries in the world, logistics business as well. Many companies focused on TPL to occupy larger market, by its advantages of information corresponding. In the notes and comments of Robert Lieb and Karen Butner (2007) that nineteen companies reported North American revenue data. The annual revenues for 2005 reported by the respondents ranged from 290 million USD to 7.0 billion USD, with the average being 1.045 billion USD.

TPL services are widely used in the world, and the busiest relationship is between Asia and North America. According to a report released in April 2007 by supply chain management firm Armstrong \& Associates. "Most of the growth in the 3PL arena will come from doing business abroad, and we don't see that changing anytime soon," says Evan Armstrong, president of Armstrong \& Associates. "The international management transportation segment had a net revenue gain of 18 percent last year. If you break down the global 3PL market in terms of gross revenue, it comes to $\$ 139$ billion for Europe, \$37 billion for Japan, and $\$ 30$ billion for China, with the rest comprising other geographic areas and individual countries," adds Armstrong. "Most major global players saw their significant gains in the Asia/Pacific to U.S. trade lanes." (Source: John Paul Quinn 2007)

Global Estimates of TPL revenues in 2006 can be shown in Tab.1, and Fig.4. Most of the contract logistics are in Europe, which will be 98 billion USD. China is the no. 4 in the table. As the development of Asia/pacific to U.S. trade lanes, in the furture it will be one of the largerest "Cakes" in the world. (See Tab. 1 and Fig.4, source John Paul Quinn 2007)

Tab. 1 Global Estimates of 3PL Revenues--2006 (\$ Billions)

	Gross Revenue	Net Revenue	ITM	Contract Logistics
Europe	139	68	41	98
U.S.	114	53	42	72
Japan	37	17	7	30
China	30	15	10	20
Other Asia Pacific	18	9	6	12
Other Americas	24	12	8	16
Other	29	14	10	19
Totals	391	188	124	267

Fig. 4 Global Estimates of 3PL Revenues (Surce John Paul Quinn 2007)

2.2.3 Benefits Brought By TPL

Firstly, with the helps of TPL, companies can focus on their major business and optimize the allocation of resources. They can put limited human resources, financial resources to the core competitive business to development new technologies or products.

Secondly, TPL companies can save costs through increasing usages of resources in each part of supply chain and reduce risks. Professional TPL services can help companies get profits from different types of costs by professional mass production and costs advantages.

Thirdly, inventory which companies can not undertake for a long time can be reduced by

TPL services. Some inventory or materials are high value which should be delivered on time to make sure the minimum quantity. TPL can improve cash flow of cooperate company by offering elaborate logistics plans, timing transport methods and good warehousing.

Last but not the least, cooperated with TPL can foster a good and healthy company image. TPL are not competitors of companies, and they offer services on the side of customers, which mean that the management process can be transparent by global internet information technology. Logistics experts in TPL can control the whole supply chain by perfect equipments and bridle-wise staff.

3 Problem Description

3.1 Problem Description

All the successful cases prove that VMI is a high economic value inventory management method. Upper stream companies own and manage the inventory, and down stream companies only need to help the upper stream companies make plan, in order to realize the Zero-Inventory in the down stream companies. However, there are still some limitations by using VMI model.

Firstly, the cooperation between suppliers and retailers is limited. Secondly, VMI needs high trust for the relationship between the companies. Thirdly, although in the protocol of VMI it needs agreements by both of them, suppliers is still in a leading position, which is lack of negotiation during the decision process, therefore, it is difficult to avoid mistakes. At last, implementing VMI can reduce the total inventory costs, but in the VMI system inventory costs, transportation costs and unexpected loss are responsible by suppliers instead of users.

In order to control the risks I have mentioned, other advanced inventory controlling methods should be used together with VMI, like JMI (Jointly Managed Inventory), or TPL.

3.2 Methods to Solve Problem

I have mentioned the merits and faults with VMI model. The problem is that we must optimize using advantages, and reduce the affect of disadvantages.

Most of the researches on VMI has been done from the aspect of vendors. Some researchers focus on process control over VMI (Wei Jian, Xue Yuncan, Qian Jixin, 2004). Xie Meiping, Davia L. Olson (2006) used the mathematic models and simulation models to research the values of VMI in the retail supply chain. They construct a model of a supply chain with m suppliers and n retailers. Based on the model, the economic result of VMI has been appraised in their paper.

Two Ways to Optimizing VMI Model

Actually, there are two basic ways to optimize VMI model in my opinion: firstly, the disadvantages of increasing suppliers’ short-term costs can be improved; secondly, we can reduce the logistics costs in the process of VMI.

For the first one, we can reduce buyers' order costs and apportion the fix costs for cars, in order to lower the suppliers' unit inventory cost. In this way, the suppliers' short-term costs can be brought down, and suppliers can get more profits.

Reducing buyers' order costs can be realized by means of information technology, so that order dealing will be more informatization and standardization. To apportion the fix costs, we can enhance the scope of transportation and optimize the delivery plan and routing problem. ---- These methods all can be realized by TPL though my research in the TPL company.

For the second one, the traditional VMI model is made up 2 parts, suppliers and buyers. Suppliers will manage the warehouse, transportation and delivery. Once there are problems in suppliers, it will make big mistakes in the whole system. Therefore, suppliers can outsource the packing, warehouse, transportation, and delivery to TPL, which can transfer the risks, and reduce the costs. ---- TPL function.

Optimizing VMI model can be sample like this as follow, with TPL services. (See Fig 5)

Fig. 5 A sample VMI with TPL model

3.3 Advantages of VMI with TPL Services

From $T P L$ side, if they can corporate with customers using VMI, they can satisfy customers by inventory controlling, which this kind of relationship can optimize the value of supply chain management. At the same time, they can make profits for themselves as well. In a word, VMI is a important method that companies can transform their inventory management costs and risks, while, in the other hand, whether $T P L$ companies can integrate VMI or not is a key factor of core competition for the whole supply chain.

VMI model with TPL services can bring a lot of economic value to customers, as follow.
> Reducing inventory;
> Reducing purchase price by central buying;
> Reducing total purchase amount by establishing corporation relationship;
> Reducing suppliers’ number;
> Saving purchasing time by improving process between suppliers and between suppliers and customers;
> Enhancing suppliers' fellowship;
> Reducing risks of inventory out of date;
> Improving product quality by cooperated with suppliers;
> Reducing costs for ordering, invoice, payment, transportation, and receiving.

4 Logic Proof with Models and Real Data Analysis

In this section, there are two parts. In the first part, I will introduce the models in different situations: one is a normal VMI situation, while the other is a VMI model with TPL services. Actually, the service is differently in different company, but I got the research analysis in Delta International Logistics Co., Ltd., so that I could put the VMI into the certain TPL companies in a certain situation. The most important is that the EOQ models can be established, and I calculated the costs in three situations, without using VMI, after using VMI, VMI with TPL model. All these models with its logistics costs can be shown as follow, in this way, I can compare the difference and the benefits in the models

In the second part, I tried to use real data in Multi-Fineline Electronix Inc. and Delta International Logistics Co. Ltd. to prove what I have found and the difference between the real situation and models.

4.1 Models and Costs Comparisons

4.1.1 Logistics Costs Notation

In a traditional way, logistics costs are made up order costs and inventory costs. There are buyers and suppliers in the market. Therefore, I can show in this way, order cost $\left(O_{S}, O_{B}\right)$, and inventory cost $\left(h_{S}, h_{B}\right)$. Here, I want introduce TPL into the logistics costs, therefore the transportation costs are separated, which means that there are three different parts in the logistics costs: Order costs $\left(O_{S}, O_{B}\right)$, Inventory costs $\left(h_{S}, h_{B}\right)$, and Transportation costs. In the other hand, there are fix costs $\left(T_{f}\right)$ and variable $\operatorname{costs}\left(T_{v}\right)$ in transportation costs.

For further research, here is the list of the notation: (See Tab.2)

Tab. 2 A list notation

Parameter			
B	Buyer	P	Production costs of supplier
S	Suppliers	F	Commission for TPL
d	Buyers' demand in a certain time	Π_{B}	Buyers' profit
OS	Order costs of supplier	Π_{S}	Suppliers' profit
O_{B}	Order costs of buyer	$\Pi_{B}{ }^{\text {C }}$	Buyers' profit under VMI
h_{S}	Inventory costs of supplier	$\Pi_{S}{ }^{\text {C }}$	Suppliers' profit
h_{B}	Inventory costs of buyer	G_{B}	Logistics costs for buyer
T_{f}	Fix transportation costs	Gs	Logistics costs for supplier
T_{v}	Variable transportation costs	$G_{B}{ }^{V}$	Logistics costs for buyer with VMI
p	Market price of product	$G_{S}{ }^{V}$	Logistics costs for supplier with VMI
u	Contract price of product	$G_{S}{ }^{T}$	Logistics costs for supplier under
u_{v}	Contract price under VMI		VMI with TPL services
α	TPL cost coefficient for	ΔG_{S}	Difference of logistics costs
	holding buyers' inventory		Between VMI model
Q_{B}	$E O Q$ of buyer		and VMI with TPL model
$Q_{B}{ }^{V}$	$E O Q$ of buyer under VMI	L	Total logistics costs without VMI
$Q_{B}{ }^{T}$	$E O Q$ of buyer under VMI		or TPL
	with TPL services	L_{V}	Total logistics costs for VMI model
		L_{T}	Total logistics costs for
			VMI with TPL Model

4.1.1.1 VMI Model and Its Logistics Costs

A sample VMI solution is shown as follow (See Fig.6)

Fig. 6 A sample VMI model solution

Disadvantages of VMI:

The main job of VMI is to reduce the cost in the short term by optimizing the quantity, which means the buyer can get largest profit in this process-the cost of buyer will always lower than before implement VMI. However, in the short term the supplier can not get any benefit during this process. The reason is that supplier responsible for the logistics cost of inventory transforming, which means that the cost of supplier will be increased in the normal condition. Yan Dong and Kefeng Xu (2002) found in their research that even in the long term, it is not sure for the supplier whether the profit will be increase or not. This profit uncertainty will directly lead to indifference of supplier's participations.

4.1.1.2 Logistics Costs Before and After Using VMI

Here, I will use the Economic Order Quantity (EOQ) as a basis for purchasing model, with one buyer and one supplier. (Lal and Staelin, 1984 and Weng, 1995) However, there are some assumptions as follow.

Assumptions:

> Certain demand
$>$ No stock out situation
$>$ Certain ahead time
> Buyer purchases final products from supplier, and sales amount equals to purchasing quantity, or they have a certain percentage.
$>$ Buyer will pay for the transportation costs

Before using VMI

According to the EOQ model, I can get the buyer's EOQ. A basic EOQ order size can be given by:

$$
\begin{equation*}
Q_{B}=Q_{B}^{E}=\sqrt{\frac{2\left(O_{B}+T_{f}\right) d}{h_{B}}} \tag{1}
\end{equation*}
$$

In this situation, the logistics costs for buyer and supplier will be as follow, with the $E O Q$ order size Eq. (1). Buyer will pay for the transportation costs.

$$
\begin{gather*}
G_{B}=\frac{O_{B} d}{Q_{B}}+\frac{h_{B}}{2} Q_{B}+\frac{\left(T_{f}+T_{v} Q_{B}\right) d}{Q_{B}}=\sqrt{2 h_{B}\left(O_{B}+T_{f}\right) d}+T_{v} d \tag{2}\\
G_{S}=\frac{O_{S} d}{Q_{B}}+\frac{h_{S}}{2} Q_{B}=\sqrt{\frac{h_{B}\left(O_{B}+T_{f}\right) d}{2}}\left(\frac{O_{S}}{O_{B}+T_{f}}+\frac{h_{S}}{h_{B}}\right) \tag{3}
\end{gather*}
$$

The total logistics costs in this model:

$$
\begin{equation*}
L=\sqrt{2 h_{B}\left(O_{B}+T_{f}\right) d}+T_{v} d+\sqrt{\frac{h_{B}\left(O_{B}+T_{f}\right) d}{2}}\left(\frac{O_{S}}{O_{B}+T_{f}}+\frac{h_{S}}{h_{B}}\right) \tag{4}
\end{equation*}
$$

Therefore, the profit for buyer and supplier can be easily found as follow.

$$
\begin{gather*}
\Pi_{B}=p d-u d-\sqrt{2 h_{B}\left(O_{B}+T_{f}\right) d}-T_{v} d \tag{5}\\
\Pi_{S}=u d-P-\sqrt{\frac{h_{B}\left(O_{B}+T_{f}\right) d}{2}}\left(\frac{O_{S}}{O_{B}+T_{f}}+\frac{h_{S}}{h_{B}}\right) \tag{6}
\end{gather*}
$$

Under VMI model

Under VMI model, inventory will be charge of supplier instead of buyer. Supplier will decide inventory level, order quantity, and delivery time. The order costs will be ($O_{S}+O_{B}$), and the inventory costs will be $\left(h_{S}+h_{B}\right)$. According to the new situation, there are some assumptions: In the initial stage, the order costs and inventory holding costs will not be changed.

Therefore, the EOQ will be as follow:

$$
\begin{equation*}
Q_{B}=\sqrt{\frac{2\left(O_{S}+O_{B}+T_{f}\right) d}{h_{B}+h_{S}}} \tag{7}
\end{equation*}
$$

Then, the logistics costs for buyer and supplier can be found, with new Order Quantity Eq. (7). And the transportation costs will be responsible for supplier.

$$
\begin{gather*}
G_{B}^{V}=0 \tag{8}\\
G_{S}^{V}=\sqrt{2\left(O_{S}+O_{B}+T_{f}\right)\left(h_{s}+h_{B}\right) d}+T_{v} d \tag{9}
\end{gather*}
$$

The total logistics costs under VMI model:

$$
\begin{equation*}
L_{V}=G_{S}^{V}+G_{B}^{V}=\sqrt{2\left(O_{S}+O_{B}+T_{f}\right)\left(h_{S}+h_{B}\right) d}+T_{v} d \tag{10}
\end{equation*}
$$

Therefore, the profit for supplier and buyer are as follow.

$$
\begin{gather*}
\Pi_{B}^{V}=p d-u_{V} d \tag{11}\\
\Pi_{S}^{V}=u_{V} d-P-\sqrt{2\left(O_{S}+O_{B}+T_{f}\right)\left(h_{S}+h_{B}\right) d}-T_{v} d \tag{12}
\end{gather*}
$$

4.1.1.3 Logistics Costs Comparison

Total logistics costs comparison

Before using VMI, total logistics cost is L, Eq. (4). In the other hand, when they using VMI model, the logistics cost is L_{V}, Eq. (10), therefore, we can get the difference between them, as follow.

$$
\begin{align*}
L-L_{V}= & \sqrt{2 h_{B}\left(O_{B}+T_{f}\right) d}+T_{v} d+\sqrt{\frac{h_{B}\left(O_{B}+T_{f}\right) d}{2}}\left(\frac{O_{S}}{O_{B}+T_{f}}+\frac{h_{S}}{h_{B}}\right) \\
& -\sqrt{2\left(O_{S}+O_{B}+T_{f}\right)\left(h_{S}+h_{B}\right) d}+T_{v} d \\
= & \frac{1}{2} \sqrt{2\left(O_{B}+T_{f}\right) h_{B} d}\left(\sqrt{1+\frac{O_{S}}{O_{B}+T_{f}}}-\sqrt{1+\frac{h_{S}}{h_{B}}}\right)^{2} \geq 0 . \tag{13}
\end{align*}
$$

According to calculation of Eq. (13), it is clearly that $L \geq L_{V}$, only when under this condition $\frac{O_{S}}{O_{B}+T_{f}}=\frac{h_{S}}{h_{B}}$ is set up, then $L=L_{V} \cdot \frac{O_{S}}{O_{B}+T_{f}}=\frac{h_{S}}{h_{B}}$ means that both of supplier and buyer have same rate of order costs and inventory holding cost.

In the other hand, I can see, only when this two inventory systems of buyer and supplier are not exactly the same situation, which means $\frac{O_{S}}{O_{B}+T_{f}} \neq \frac{h_{S}}{h_{B}}$, there are always profits inside.

Supplier's logistics costs comparison

Integrated inventory costs can be reduced by VMI, but it is not represent that it will
inevitably bring benefits from reducing inventory costs of suppliers. On the contrary, the inventory costs of suppliers will increase under most of situations. Only when it is in a certain condition, it will be reduced. We can clearly see the difference between logistics costs of suppliers in two situations, Eq. (3) and Eq. (9) as follow.

$$
\begin{equation*}
G_{S}^{V}-G_{S}=T_{v} d+\sqrt{\frac{\left(O_{B}+T_{f}\right) h_{B} d}{2}}\left[2-\left(\sqrt{1+\frac{O_{S}}{O_{B}+T_{f}}}-\sqrt{1+\frac{h_{S}}{h_{B}}}\right)\right] \tag{14}
\end{equation*}
$$

According to the formula, the difference is not sure by larger than zero or smaller than zero. Only when the formula smaller than zero, the logistics costs of suppliers will be reduced. Therefore, we can see the limitation of VMI.

4.1.2 VMI with TPL Services Model

$T P L$, as a medium operation stage, can depend on its strong information technology to deal with the EDI orders, which can make them quick and standard to reduce the order cost of buyers. What's more, TPL can increase the scale of transportation and optimize the distribution plan and routing to re-plan the fix cost of transportation.

Model (see Fig.7)

Fig. 7 A sample VMI solution with TPL services model

4.1.2.1 Logistics Costs with TPL Services

From the supplier's side, can he use TPL services, which depends on if they can reduce logistics costs or not. To put this situation in a sample way, I assumed that TPL only responsible for transportation and inventory holding. In that situation, TPL can get commissions as follow.

$$
\begin{equation*}
F=T_{v} d+\frac{T_{f} d}{Q_{B}}+\alpha\left(h_{s}+h_{B}\right) \frac{Q_{B}}{2} \tag{15}
\end{equation*}
$$

In the equation, " α " is cost coefficient for holding buyers’ inventory for TPL. Obviously, because of scale advantage of TPL, " α " will be among 0 to 1 .

Therefore, when $Q_{B}=Q_{B}^{E}$, the logistics costs for supplier will be found.

$$
\begin{equation*}
G_{s}^{T}=\frac{\left(O_{S}+O_{B}\right) d}{Q_{B}}+F=\frac{\left(O_{S}+O_{B}\right) d}{Q_{B}}+T_{v} d+\frac{T_{f} d}{Q_{B}}+\alpha\left(h_{S}+h_{B}\right) \frac{Q_{B}}{2} \tag{16}
\end{equation*}
$$

After this, I can get first derivative from above formula. In this situation, I have Q_{B}^{T}.

$$
\begin{equation*}
Q_{B}^{T}=\sqrt{\frac{2\left(O_{S}+O_{B}+T_{f}\right)}{\alpha\left(h_{S}+h_{B}\right)}} \tag{17}
\end{equation*}
$$

According to Q_{B}^{T}, we can put Eq. (17) to Eq. (15) as follow:

$$
\begin{equation*}
F=T_{V} d+\left(O_{S}+O_{B}+2 T_{f}\right) \sqrt{\frac{\alpha\left(h_{S}+h_{B}\right) d}{2\left(O_{S}+O_{B}+T_{f}\right)}} \tag{18}
\end{equation*}
$$

Therefore, we can get the supplier's logistics costs with Eq. (16) and Eq. (18).

$$
\begin{align*}
G_{S}^{T} & =\left(O_{S}+O_{B}\right) d \sqrt{\frac{\alpha\left(h_{S}+h_{B}\right)}{2\left(O_{S}+O_{B}+T_{f}\right)}}+T_{V} d+\left(O_{S}+O_{B}+2 T_{f}\right) \sqrt{\frac{\alpha\left(h_{S}+h_{B}\right) d}{2\left(O_{S}+O_{B}+T_{f}\right)}} \\
& =T_{V} d+\sqrt{2 \alpha d\left(h_{S}+h_{B}\right)\left(O_{S}+O_{B}+T_{f}\right)} \tag{19}
\end{align*}
$$

4.1.2.2 Logistics Costs Comparison

Comparing with supplier's logistics costs in two different models, one is VMI model and the other is VMI with TPL services model. We can clearly see the difference of supplier's logistics costs between them, with Eq. (7) and Eq. (19).

$$
\begin{equation*}
\Delta G_{S}=G_{S}^{V}-G_{s}^{T}=(1-\sqrt{\alpha}) \sqrt{2\left(O_{S}+O_{B}+T_{f}\right)\left(h_{s}+h_{B}\right) d} \tag{20}
\end{equation*}
$$

ΔG_{s} is larger than 0 , which means G_{s}^{V} larger than G_{s}^{T}, because α is among 0 to 1 . Obviously, VMI with TPL services will reduce the supplier's short-term logistics costs.

4.1.3 Short Conclusion

According to logistics cost comparisons, 3 different situations have been considered. In the first situation, it is no VMI model in supply chain. Compared with second situation with VMI, only when this two inventory systems of buyer and supplier are not exactly the same, then there are always costs which can be reduced. In the real world, the things are more completed. That is to say, the inventory systems are always not the same, which means that VMI can bring profits to the whole supply chain. However, in the aspect of supplier, can VMI always bring profits to supplier? It is hard to say. Only when the formula Eq. (14) smaller than zero, the logistics costs of suppliers will be reduced. Therefore, we can see the limitation of VMI. Well, in the other hand, the third situation VMI with TPL services can change VMI model, reducing the short-term logistics costs of supplier, which makes the supply chain more efficiency.

4.2 Real Data Analysis

4.2.1 Company Snapshot

Multi-Fineline Electronix Inc.

Multi-Fineline Electronix engages in the engineering, design, and manufacture of flexible printed circuit boards and value-added component assembly solutions for electronics industry. Its products include mobile phone and smart mobile devices, bar code scanners, personal digital assistants, computer-storage products, printed circuits for medical applications, and blood oxygen sensors. The company serves original equipment manufacturers, electronic manufacturing services providers, and display manufacturers in mobile phones, smart mobile devices, portable bar code scanners, personal digital assistants, data storage devices, power supplies, and consumable medical sensor sectors. It sells products through in-house design and application engineers in the U.S. and China. The company was founded in 1984 and is headquartered in Anaheim, Calif. Multi-Fineline Electronix is 61% owned by WBL Corp. (Data provided by Capital IQ; Source Business week, 2006)

With help of Material Fulfillment Manager James Zhou in Multi-Fineline Electronix Inc. (Suzhou branch), I got supply, demand, transportation costs and inventory holding costs data, which can help me to prove my models. As a supplier for American market, MFLEX has it own warehouses and factories in Suzhou.

Delta International Logistics Co., Ltd.

Delta International Logistics company as a TPL company with government investment has its own advantages and disadvantages. Firstly, with government investment it is not only with money but also with policies advantages. It has special rights or privileges, which will easy for him to operation. However, as a matter of fact, TPL business has huge competition in the market, and a lot of companies can do such services like
organizing delivery, warehouse, or clearance.

When I was in the company, I realized that the competition among them, small advantages will be ahead of others. Delta International Logistics Co., Ltd. has such advantages: Free charge of renting warehouse, which belong to them; Good relationship with customs; Good location and so on.

4.2.2 Logistics Costs Analysis

4.2.2.1 Logistics Costs in Multi-Fineline Electronix Inc. (Suzhou)

In Multi-Fineline Electronix, I have been reading MPR plan for RIM company. Here, I will give the entire tables in the appendixes. What I want to prove is if there is any space in costs can be reduced.

The real situation is more complicated, because different companies have different business, which means that each order needs special care. Therefore, I will take one order for example to calculate logistics costs.

Tab. 3 Transportation Cost-1 for One Order from HongKong to Shanghai

Transportation Cost-1				
HKG-SH	From HKG to SH			
Order Number	Shipment Number			
774-60360775	04544713			
Number of Packages	Net Weight	Gross Weight	Port of Shipment	
16	91.00	122.50	HKG	
International Transportation Fee	Fuel Cost	Safety-check Cost	Total	Currency
612.50	392.00	61.25	1065.75	HKD
International Transportation Fee	Draw sheet Cost	Airport Fee	Total	Currency
961.20	100.00	100.45	1161.65	RMB

According to Tab.3, this material with 122.5 kg from Hong Kong Port to Shanghai Port needs about 303.7USD (1065.75HKD+1161.65RMB) with exchange rates of 1:0.128, 1 : $0.144,\left(25^{\text {th }}\right.$, May, 2008). Order cost is 20USD.

Then, this material will be sent from Shanghai Port to Suzhou, where is the factory. Therefore, this part of transportation fee will be paid by this company as well.

Tab. 4 Transportation Cost-2 for One Order from Shanghai to Suzhou

	Transportation Cost-2			
SH-SU	From Shanghai to Suzhou			
Weight	Customs Clearance Fee	Customs Transit Fee	Inspection Application Fee	Regular Goods
91	120	100	50	TRANS Fee
Entering Fee	Yard charge of controlled area	Quarantine Charge	36.4	
10	20	0	336.4	Currency

According to Tab.4, transportation costs and clearance fee from Shanghai to Suzhou will be $336.4 R M B$, which is $48.44 U S D$ (Exchange rate is on the same condition).

All in all, the total cost for one order from Hong Kong to Suzhou about 91kg material is 352.14USD. This total cost will be responsible by this electronic company.

In other hand, I need to find inventory holding cost about this 91kg material. According to the information (See Tab. 5) from factory in Multi-Fineline Electronix, material "Dome sheet" 5 kpcs equals to 4 kg . 91 kg will be 113750pcs ($91 \mathrm{~kg} * 5 \mathrm{k} / 4 \mathrm{~kg}$).

Tab. 5 Information about material: HDW-16045-001_1 and HDW-13551-001_1 at 5/5/2008

Unconfirmed PO	In transit	Need to order this week	push out	need to cancel	hold
1(4062)			Part\#/Lead Time		Week
	Buyer	Project/Supplier			Date
	Gao ying	13432\#/12589\#	HDW-16045-001_1	Demand	
	Gao ying	G-Ray Front Frame;Saturn Front Frame	HDW-16045-001_100136	Open PO	1,000,000
	Gao ying	Panasonic Ca	Dome sheet	Delivery Sch	
	Gao ying	MPQ:4k/reel	L/T: 8wks (original 10wks)	Stock carry forward	133,371
2(4062)	yang jing	13432\#/12589\#	HDW-13551-001_1	Demand	
	yang jing	G-Ray Front Frame;Saturn Front Frame	HDW-13551-001_100196	Open PO	559,000
	yang jing	Tradex	Foam	Delivery Sch	
	yang jing	MPQ:100k/box; MOQ: 300K	L/T 3wks with 3 months forecast	Stock carry forward	157,198

In Multi-Fineline Electronix, Material Manager will order amount according to its lead
time or special orders from customers. Then, here in order to make this problem easy to clearly find the different costs, I will consider about $E O Q$ model.

In another hand, Material Manager told me that it is easy to understand that they have inventory value with 10% of inventory holding cost per period. That is to say, when I can find the inventory value for one particular material, then I can get its holding costs.

On the basis of inventory table in Appendix B, I took one material: HDW-16045-001_1 for example. Unit cost is 2.1518 USD (See Tab.6). That is to say, the inventory holding cost per period will be $0.21518 U S D$.

Tab. 6 Inventory Valuation Analysis-HDW-16045-001_1 at 5/5/2008

Inventory Valuation Analysis -EXPORT

Short Item Number	Item Number	Description	UM	Branch/Plant	Quantity	Unit Cost
\ldots						
461229	HDW-16045-001_1	Dome 0.15mm 1.35N	EA	4062	133371	2.1518

After that, the demand situation is important to find as well. With the explanation of Material Manager, I found the demand of material HDW-16045-001_1 at 5/5/2008. (See Tab. 8). The green part is product group which needs material HDW-16045-001_1.According to Tab.7, I can get average demand for two months about 126,829 pcs, which is 83.5 kg .

Tab7 Demand situation of material: HDW-16045-001_1 at 5/5/2008

Material Demand		wk19	wk20	wk21	wk22	wk23	wk24	wk25	wk26	wk27
Component Lead time : 1wks		5-May	12-May	19-May	26-May	2-Jun	9-Jun	16-Jun	23-Jun	30-Jun
HDW-16045-001_1 Yeild	0.94									
POP-13432-002_A		21,256	21,256	21,256	21,256	21,256	15,942	18,068	15,942	10,628
11951-005_B										
ASY-12669-001										
ASY-13842-001_B										
POP-12589-003_B		116,909	106,281	95,653	90,339	85,025	85,025	138,166	138,166	119,035
Total Demand		138,166	127,537	116,909	111,595	106,281	100,967	156,233	154,108	129,663

All the information or parameters I have got are as follow: Order quantity: 4856pcs (according to EOQ model); Weight: 83.5kg; Demand: 126,829pcs; Unit order cost: 20 USD; Unit inventory holding cost: 0.21518USD; Transportation cost: 323.25USD (from Hong Kong to Suzhou). Therefore, total logistics costs for one material with 83.5kg from Hong Kong to Suzhou will be as follow (See Tab.8).

Tab. 8 Total logistics costs for one order

Item	Value	
Demand	126.829	$P C S$
Order quantity	4856	$P C S$
Unit order cost	20	USD
Inventory holding cost per period	0.21518	USD
Order costs	522.36	USD
Inventory holding costs	522.46	USD
Transportation costs	323.25	USD
Total costs	1368.07	USD

In this situation, I have got total logistics costs in this company about 1368.07USD for one order from Hong Kong to Suzhou. Material Manager told me that, they had VMI model in another factory. They put some local production material in supplier's factory, which could save transportation costs and purchasing price as well. Next step is to find total logistics costs in TPL company to see if there is any different in TPL's warehouse.

4.2.2.2 Logistics Costs with Delta International Logistics Co., Ltd.

In Delta International Logistics Company, logistics costs will be counted by a completed way, which is different from manufacturers like MFLEX. Since Delta offers some special services for customers, the result for different customers is not the same.

Some normal services like clearance, warehousing, transportation and so on. Some special services for special customers like packing, assembling and so on. These special services are called value-added services, which depend on customers or contracts, and it is a way to expend market shares in TPL world as well. In this case, logistics costs which we can not just call it like that, has more completed meanings here. Furthermore, it is obvious that logistics costs in TPL companies include warehousing, transportation,
packing, assembling... However, here what I want to prove is just about one order. I want to discuss that if MFLEX using TPL services and VMI model to manage inventory and purchasing, what will happen then?

Therefore, I searched the financial tables in Delta, and tried to find some companies like MFLEX. In another hand, I tried to find the basic costs for different items such as clearance fee, inspection fee, warehousing fee...I collected some data in Tab. 10 about one month operation details in Delta. (See Tab. 9) It is shown the entire table in Appendix.

Tab. 9 Some parts of operation details for one month ($R M B$)

Form the table, It is clearly to find that some basic costs in Delta are lower than the ones in MFLEX. For example, custom clearance is $90 R M B$ which is lower than $120 R M B$ in

MFLEX. In another hand, since TPL uses scope of operations, other price is lower as well. That is to say, when Delta gets a lot of orders or service requires then they can operate them as a big order to downstream companies. In that case, costs will be lower according to the contracts between TPL with downstream companies. That is also called economies of scale.

Therefore, order costs and transportation costs can be reduced by TPL services. Then how about warehousing or inventory holding costs. Tab. 10 have some data about warehousing costs which I collected in the company, well, in TPL company, the costs turns to be incomes.

Tab. 10 A part of income in Delta for one month (RMB)

Project 1		International Transportation								
Customer	Customer 1	Customer 2	Customer 3	Customer 4	Customer 5	Customer 6	Customer 7	Customer 8	Total	
Warehouse Type	In bond									
Entering Weight (kg)	527	27.354	2899.24	4.88	600.86	14	3158	40.3332		
Entering Order Number	297	9	95	8	77	5	9	2		
Entering Warehouse		780.69	29983.78	5661.6		250		605.7		
Entering Warehouse Management	6231.42	247.8	2916.1	2253	6859	100		300.03		
Delivery Weight (kg)	1068	271.657	1961.04	341.3	946.41	8	2474	41		
Delivery Order Number	366	2	111	47	105	5	7	8		
Delivery out of Warehouse		826.69	36403.78	1768.04		200		665.28		
Delivery Management	10983.79	287.99	3316.27	1807.44	10372	80		357.83		
Value Added										
Packing				4500		1100				
Inventory holding cost	17215.21	1335.28	57904	1220	7440	10230	11200	6370.5		
Total Income	28822.42	3478.45	130523.93	17210.08	24671	11960	11200	8299.34	236165.22	

Since the warehouse is mixed with a lot of different kind of products. It is difficult to find the exactly electronic products. That is to say in this case, I can consider about the weight. How many products have how much inventory holding costs.

According to Tab. 11 for different customers with different products, it is completed to calculate the inventory holding costs because of varied weights, types and volume. There is a standard rule to calculate the inventory costs when there is different kind of products. The rule is that compared with weight and volume with an equal: " $1000 \mathrm{~kg}=6$ cubic meters", which is a approximate way, then, we need to find which one is larger. When
weight is larger than volume weight we need to calculate by weight, and vice versa. For example, customer3 has 2899.24 kg products which has inventory holding costs $57904 R M B$. That is to say, if there is 83.5 kg products, it will have $1667.67 R M B$ inventory holding costs, which is $240.15 U S D$. (Exchange rate is on the same condition) Comparing with the inventory holding costs in MFLEX, 522.46USD, it is lower. However, there is a lot of conditions to affect this changes. According to my way, I find the result that it will have lower inventory holding costs in TPL warehouse.

As a matter of fact, in Delta warehouse, there are 3 different warehouses to deal with everyday orders. Two of them is smaller than the other one, and they are professional ones dealing with special customers. The other one is mixed warehouse with different characteristic goods, such as $L C D$, Electronic Components, screws, steel wires...Therefore, in this mixed warehouse, they have a system with ABC strategy. It will be more complicated calculation.

Actually, in the real world, there are many reasons causing costs lower or higher. We need to consider a lot of factors to deicide to using new strategies. Many researchers have done such researches how to deicide the new strategies. Everything has its two sides, but the most important is that what kind of loss is under your floor level.

5 Case Study

5.1 Background

For the past few years, manufacturers for electronic information products face a fierce competition. Production rate and management efficiency become to be the key of competition. High speed updating, short life cycle of products, are huge challenges for the whole business. Electronic components supply chain has the problems of shortage and surplus.

China has become a huge ICT (Information and Communications Technology) goods exporter. It is reported by OECD (Organisation for Economic Co-operation and Development) located in Paris that,
"As of 2004, China has become the biggest exporter of ICT goods (USD 180 billion), surpassing Japan and the European Union in 2003 and taking the lead over the United States in 2004, While Chinese ICT imports (totalling USD 149 billion in 2004), over the last few years export growth of $I C T$ goods has passed imports and exports reached USD 180 billion in 2004." (Source from: OECD)

OECD ICT indicators

Imports and exports of ICT goods, billions of USD in current prices, 1996-2004 (US, China, EU15, Japan)
Current USD billions

Fig. 8 Imports and exports of ICT goods in the world

According to its report, the main destinations for Chinese ICT exports are the United States (24\% of total ICT exports), Hong Kong, China (23\%), EU 15 (20\%), and Japan (10\%) with Hong Kong, China losing its place as the number one export destination. On the other hand, the major sources of China's ICT imports are Japan (18\%), Chinese Taipei (16\%), Korea (13\%) and Malaysia (8\%). (Source from: OECD)

It is reported detail products of imoprt and export as well. (See Tab.11) Main imports are Integrated circuits (61.7\%) and main exports are automatic data process machines, magnetic reader, etc.

Tab. 11 Top 6 Chinese ICT import and export items by 4-digit HS code (in billion USD), 2004

Main Imports		Main Exports	
8542 Integrated circuits	61.7	8471 automatic data process machines, magnetic reader, etc. computer hardware	59.9
8471 automatic data process machines, magnetic reader, etc. computer hardware)	14.5	8473 parts etc for typewriters \& other office machines computer accessories	24.0
8473 parts etc for typewriters \& other office machines computer accessories	14.4	8525 transmission apparatus for radio telephony/telegraphy/broadcasting, television	21.8

Source: OECD, ITS database

It is "a big cheese" in China, and a lot of manufacturers, suppliers, distributors, and TPLs who want to share this "Cheese" are in a high competitive situation. Efficiency supply chain is very important for them. Well, this cheese has its own characteristics or problems as follow.

5.1.1 Keep up a Steady Increase in Demand

As function of information technology is widely used in economy and military filed, market of Electronic Component is rapidly expend in the world. Since we already step into a new generation of Electronic Component times, many brand new products are produced, which effectively expands the market filed and scope.

By the year 2005, the world market demand for Electronic Components are 300 billion USD, which is 15% of the whole Electronic products in the world with an estimated rate
of 10% growing per year. The increasing speed of demand for new type electronic components is the fastest one. It is predict that global electronic information manufacturing market will be up to 1905.5 billion USD in 2010. There is 14.7% of this market belonging to electronic components, which is 280 billion USD. In the other hand, the world production rate of chip components will be increasing from 1500 billion in 2005 to 2500 billion in 2010, with a rate of 13\% growing per year. (Data from Dai Junli 2005)

In China, information technology is rapidly developed. Demand for electronic components by the end of 2005 was approximately 42.9 billion USD, which is 18% to 20\% of total domestic electronic products. Demand for new type of electronic components is approximately 22.9 billion USD, which is 60% to 70% of total domestic electronic components. (Data from Chu Xuejian and Zhou Yuechao, 2006)

Electronic components productions have reach a plateau of development in China. Output of products in China is 30% of global output, which leaps into the front ranks of the world. Semiconductor devices, integrated circuits and prefabricated circuits are lightspots in Chinese electronic components. In 2006, from January to June, value of gross output of Chinese electronic products accumulates to 62.8 billion USD. (Data from Logistics Technology 2006)

5.1.2 Intensified Competition and Falling Rate of Sales Profit

For fitting into high speed development, in every electronic company, investments for development and research are increasing all the time. Therefore, periods of development and mass production are greatly cut down. Furthermore, expanding of economics of scale makes this market more competitive. In another hand, price of complete appliances is kept down because of competition, which gives an huge pressure to the price of electronic components as well.

Due to double-acting supraposition of supply and demand, average price of electronic
products leads to decrease uninterruptedly. In contrast, costs of energy, raw material and human resource are continually increasing. Under these conditions, the necessary outcome is a fall in rate of return on sales of electronic products.

5.1.3 Overstock Situation in Electronic Component Market

Overstock situation is a huge problem in Electronic Component Business in the world. As the development of electronic business, there are huge amount of electronic products in the warehouse, which is overstock because of the fast changing market. These kind of overstock makes a lot of hidden troubles and obstacles in Chinese market. It is reported by Dai Junli in 2005 that there are 5.7 USD overstock in the market. The main overstocks are from big and middle companies in China. Huge overstocks make cash sedimentation, which reduce the cash flow inside the company. Problems are also in nonfluency information and unrestricting fakes, which influences the overstock products to be consumed.

Another overstock amount is from purchasing. Because some of the electronic components is small piece with higher price. When you are purchasing these kind of products, you will be given a minimum order quantity ($M O Q$) which you do not need all of these during production, even you just need one piece of that to produce. That is another source of overstock.

In this situation, we need a new type of project to solve this problem in 2 different aspects. Therefore, I think that VMI can solve the problem of some normal over stock in the supply chain. Due to VMI is a integrated management thought, which can efficiently manage inventory. In the other hand, TPL can act as a purchasing hub to arrangement the purchase amount which can satisfy all the demand, meanwhile, it can reduce the overstock situations.

5.2 Project of Electronic Component Trade

This project is related with the establishment of Electronic Products Exchange Center (EPEC) and function of Bonded Logistics Center (BLC), which I have mentioned before. What I'm thinking can be embodied in this project, which can solve overstock problem in Electronic Components Trade and make supply chain more efficiency as well.

It is reported that there will be an International EPEC beside Suzhou Bonded Logistics Center, which will be the first one in the whole country, and it is invested by government. This establishment has started at 3rd March, 2008.

In this International EPEC, there is an Electronic Product Exchange Market, which includes all kinds of electronic products, such as electronic components, production equipment, raw material...It will attract a lot of famous OEMs, EMSs and distributors all over the world. What's more, it will become an international electronic fair, which is opened all the time.

Early on 21st Fab.2008, MII (Ministry of Information Industry of the People’s Republic of China) approved the establishment of EPEC in the area of BLC, which makes Suzhou become the first city with international electronic product exchange market. In this EPEC, there will be offices for approved electronic product suppliers, and price index of Chinese Electronic Product Market, which will be the reference price for the whole country or any related countries.

The area of International EPEC is 26000 squeal meters. According to its operation range, there will be a modernization scope economic cycle, which includes international information technology, exchange, fair and so on. Nowadays, some famous manufacturers and distributors want to enter into this center such as, ADI, NXP, Fuji... Furthermore, they can establish an international electronic products exchanging bridge by setting up an E-business stage.

Some experts said that by establishing the exchange center, it can service for companies
to make arrangement of global resource well by attracting related companies into the supply chain.

According to the benefits from EPEC, electronic companies and TPLs in logistics center are attracted as well. For example, this project is on the basic of establishment of EPEC. How to get more profits in this competitive world is always the question for managers. With the chances of EPEC, Delta can become a "Middleman" to rearrange the structure of supply chain.

5.3 Feasibility Analysis of Project (VMI with TPL services)

This new business venture will develop a new service for TPL companies in China, especially TPLs in Suzhou BLC. The reason is that they have a location advantage, establishment of EPEC brings a lot of business chances and profit to electronic companies and other related partners. Here, for the particular TPL company, Delta International Logistics Co., Ltd., who has a priority right to do this business, whether they can get more profits or not depends on their creative services.

5.3.1 Main idea

The main idea is as a TPL company to offer a new service for OEM, EMS, distributors or retailers. Acting as a trading hub, offering special warehouse space for business traders and organizing products outflow will be the main new services for the electronic products business supply chain as well.

I can explain in this way, the normal way is that $O E M$ will purchase products from EMS or distributors. (See Fig.10). However, with the new services of Delta, who can be a trading hub, dealing with different types of products with unlimited order quantity, and trading with different layers in supply chain. (See Fig.10)

Fig. 10 Normal model to a new model

Different functions can be integrated in Delta, such as information hub, purchasing hub, trading hub, transportation hub...Delta has its location, facility, policies advantage, and it is possible to integarted all these functons together to offer creative service methods. Therefore, order of this business will be standard, which make it more efficiency.

According to this project, Delta needs establish their own systems, purchasing system, stock system, transportation system and finance system. These systems are cooperated together with material flow and information flow. As a new service, it should be entered into the other services. It is necessary to have a new group to maintain systems. According to this chance and situation in Delta, I drew a simple system function map to show this new service entering into current system. (See Fig.11)

Since Delta has enough warehouse space to stock products and operate the orders, they need to get necessary information to make it working, for example, order quantity, price, lead time and so on. Information system will be the most important factor inside of company.

Fig. 11 Inside system function map - VMI model in TPL company

VMI model in TPL companies can be also understood that VMI with TPL services. According to the Fig.11, both of VMI and TPL functions are optimizing the whole supply chain. In Delta, they already have stock system, transportation and finance system. Implement this project will put purchasing system into the whole model. That is to say, their information flow and material flow will be changed.

Coorporation between stock system and purchasing system is the key for the new project, because of new purchasing system entering. However, these 4 systems are connect to each other. If TPL companies can offer these kind of services which is complicated to operate, they can get more profits from these actions. In another hand, buyers can reduce their costs by accepting packages of services, and they can focus on their core competitive products or services.

5.3.2 Market

Considering about the establishment of EPEC, the electronic products market will be changed. EPEC will be one of the biggest trading canters in the whole country. In the other hand, China is a big electronic products manufacturer in the world, and there are huge trading business everyday. Demand keeps on increasing. In China, information technology is rapidly developed. Demand for electronic components by the end of 2005 was approximately 42.9 billion USD, with 10% growth each year. (Data from ChinaEM) I had already given the market information above. (See Tab.12)

Tab. 12 Electronic component market in China (Billion USD)

Year	2005	2006	2007	2008	2009	2010	2011	2012
Revenue	42.9	47.19	51.91	57.10	62.81	69.09	76.00	83.60

"Milddleman" is suggested by Michael Glinski, CEO of American II (AII). AII helps main OEM and manufacturers in the world to solve overstock and shortage problems. They offer components, raw materials. When there is changes in the market, they will purchase overstock from OEM, offer to other OEM or manufacturers who need these. In this way, they can solve overstock problem, in the other hand, they can offer products to the shortage market in a low price. Therefore, unbalance of area, time, usage, upgrade of products will be solved. Here, Delta can be this function, furthermore, Delta can also be a function of TPL with warehousing, transportation, and clearance functions, which will bring more profits to itself and to the whole supply chain.

5.3.3 Competitive advantages

All though there are several major competitors in BLC, none of them has attempted to offer such package services including purchasing. Some reasons are that they need to consider about the investment and costs inside, and others maybe consider about the warehouse space and management problem.

Survey

For further market research, in Delta, I did a small survey by email to find the demand situation. I sent 50 question mails to different managers of large and small OEMs, EMSs, and other distributors. There are 33 reply mails, but only 28 mails are valid. These objects are all willing to enter into the EPEC, and they want to get more profits inside of this market. After researching, 68\% of managers are willing to buy this TPL services, because they have overstock problems, which they are always looking for ways to solve. Meanwhile, they also suggest that they need a purchasing hub to exchange the overstock products to shortage products. According to their replying, most of overstock problems are from purchasing. 29\% of managers thought that they will consider about it, since they already had a stable system for stock and purchase, but they still want to change. Some manager thought whether they can get a package service including clearance services, transportation services and purchasing services in a lower price or not.

If we assume that Delta can get 1% of the Suzhou market which is 5% of domestic market in the first year, and the market growth is estimated to be 10% which is the rate competing with the distributors in Suzhou (See Tab.13).

Tab. 13 First 5 years revenue predict for Delta in Suzhou (USD)

Year	1	2	3	4	5
Matket	57100000000	62810000000	69091000000	76000100000	83600110000
Suzhou Market	2855000000	3140500000	3454550000	3800005000	4180005500
Revenue	28550000	31405000	34545500	38000050	41800055

5.3.4 Proforma

Tab. 14 First 5 years performas (USD)

Year	1	2	3	4	5	NOTES
Sales	28550000	31405000	34545500	38000050	41800055	20\% Increase
COSS	14275000	15702500	17272750	19000025	20900027.5	50% of Revenue
Gross Profit	14275000	15702500	17272750	19000025	20900027.5	Sales-COSS
Operating Expenses (O.E.)						
Warehousing	480000	504000	529200	555660	583443	5\% Increase
Depreciation cost	388800	408240	612360	918540	1377810	5\% Increase
Labor	1434240	1577664	1735430.4	1908973.44	2099870.78	10\% Increase
Utilities	172800	181440	190512	200037.6	210039.48	5\% Increase
Advertising	600000	630000	661500	694575	729303.75	5\% Increase
Admin.	110000	115500	121275	127338.75	133705.69	5\% Increase
Misc.	500000	525000	551250	578812.5	607753.13	5\% Increase
Total O.E.	3685840	3941844	4401527.4	4983937.29	5741925.83	
Interest on Debt	1500000	1500000	1500000	1500000	1500000	7500000
EBT	9089160	10260656	11371222.6	12516087.71	13658101.67	
Taxes	2726748	3078196.8	3411366.78	3754826.31	4097430.50	Assume 30\%
EAT	6362412	7182459.2	7959855.82	8761261.40	9560671.17	

*COSS: Costs of Services Sold; Misc.: Miscellaneous; EBT: Earnings Before Tax; EAT: Earning After Tax;
*Taxes include Value-added Tax, Turnover Tax, Income Tax and others.

According to the current situation and information inside of Delta, I calculated the first 5 years performas to show values may be brought by this project. (See Tab.14) It is approximate values. The financials in this project look good, but it depends on the investment of this business in Delta.

6 Conclusion

On the basic of other scholars' researches, this paper is established on the formula calculation and real data analysis of VMI with TPL services in Delta International Logistics Co. Ltd and Multi-Fineline Electronix Inc.

On the supplier side in VMI model, it is not easy for them to get profits in the short term. By formula calculation, supplier's logistics costs can be reduced by $T P L$ services. As a supplier for American market, MFLEX has its own operations of warehousing and transportation. After real data analysis, the costs of these processes can be reduced by TPL services.

On the TPL side, for having long development in an intense competition, they need to create new services to satisfy the market demand. Offering warehousing services to customers is hot in the market, which is widely used in BLC, Suzhou. As a trading hub in Electronic Component Trade which is a new idea, Delta International Logistics Co., Ltd. will obtain benefits through it. Meanwhile, with this VMI and TPL package service, overstock problem in this industry will be improved.

In my opinion, the most important benchmarking in any business is how much the benefits. In this situation, how to increase profits and reduce costs will always be the researching focus. In my paper, I put the logistics problem in a particular industry, which can clearly show where is the benefits, and where is the costs. In another hand, after researching in different companies, I have learned a lot useful knowledge about business, which will be helpful for my further development. At last, I hope this paper will be useful to the Chinese Logistics Business and Electronic Component Trade.

Reference

A. Gunasekaran, E.W.T. Ngai (2003), The Successful Management of a Small Logistics Company. International Journal of Physical Distribution \& Logistics Management, Vol. 33, No. 9/10:825-842.

Africk, J. and Calkins, C. (1994), Does asset ownership mean better service? Transportation and Distribution 35: 49-61.

Amy E. Murphy, Definition of VMI. Problem on line: VMI.COM. Available from URL: www.vendormanagedinventory.com/definition.htm [Accessed 6th, March, 2008]

Anthony Sydney White, Michael Censlive (2006) Observations on Modeling Strategies for VMI. Journal of Manufacturing Technology Management, Vol. 17, No. 4:496-512.

Anonymous (2007), Third-Part Partner. Retail Merchandiser, Vol. 47, No. 4:S6.
B.S. Sahay and Ramneesh Mohan (2006), 3PL practices: an Indian perspective, International Journal of Physical Distribution \& Logistics Management Vol. 36 No. 9:666-689

Bryan Ashenbaum, Arnold Maltz, Elliot Rabinovich, (2005) Studies of trends in third part logistics usage: what can we conclude? Transprotation Journal, Vol. 44, No. 3:39.

Btrian Marsden (2007), On Demand Opens New Opportunities for Supply Chain Collaboration. Supply Chain Europe, Vol. 16. No. 4:30-33.

Chu Xuejian and Zhou Yuechao (2006), Research on competition status and countermeasures of China electronic units SC, Logistics Technology, No.11:99-101.

Dai Junli (2005), Overstock problems in Chinese electronic component trade, ChinaEM, Dec.: 35-36.

Damien Power and Moosa Sharafali and Vikram Bhakoo (2007), Adding value through
outsourcing - contribution of 3PL services to customer performance, Management Research News, Vol. 30, No.3: 228-235.

Disnew, S.M., and Towill, D.R., A discrete transfer function model to determine the dynamic stability of a vendor managed inventory supply chain, International Journal of Production Research, Vol.40, No.1:179-204.

Dougla J. Thomas, John E. Tyworth (2007), Is pooling Lead-time Risk by Splitting Orders Simultaneously Worthwhile? Journal of Business Logistics, Vol. 28, No. 1:169-194.

Gao Yuanyang, Zhang Meiyan, (2007), Research on Improving VMI model by introducing third-part logistics, Chinese Journal of Management, Vol.4, No.1, Jan:53-56.

Gerbert N. (1991), Objective Comparisons of Consignment, Just in time, and Stockless. Hospital Material Management Quarterly, 13(1): 10-17.

Hokey Min and Seong Jong Joo (2006), Benchmarking the operational efficiency of TPL providers using data envelopment analysis, Supply Chain Management: An International Journal, 11/3: 259-265.

Huang Juisheng, Fun Yupen, Li Changchung (1995), Inventory management in the consignment system, Production and Inventory Management Journal, Fourth Quarter, Vol. 36, No. 4:1.

Ji Shoufeng (2005), The value created by 3pl implementing VMI, Value Engineering, No.7:18-21.

Jian Wei, Xue Yuancan, Qian Jixin (2004), An Application of Algebraic Petri Nets Specification for Vendor Management Inventory. [Online] 0-7803-8566-7/04:4547-4552. Available from: IEEE International Conference on Systems. [Accessed 12 December 2007] John Hewes (2008), The Electronics Club, www.kpsec.freeuk.com

John Paul Quinn (2007), Global 3PL Growth Taking Off, Logistics Management,

Highland Ranch, Vol. 46, No. 6:1S

Kim Dorling, John Scott and Eric Deakins (2006), Determinants of successful vendor managed inventory relationships in oligopoly industries. International Journal of Physical Distribution \& Logistics Management, Vol. 36, No. 3:176-191.

Lan Zhengdong, Zhou Yaolie (2005), Optimal VMI Technology. Technoeconomics \& Management Research, No.5:53-54.

Lapide, L. (2002), New Development in Business Forecasting. VMI can be good for your Forecasting Health. The Journal of Business Forecasting, Vol. 20: 11-12, 36

Laurie Turnbull (2007), Compliance and Global Logistics. Canadian Transportation Logistics, Vol. 110, No. 8:46.
M. Sadiq Sohail, Rohit Bhatnagar, and Amrik S. Sohal (2006), A comparative study on the use of third party logistics services by Singaporean and Malaysian firms, International Journal of Physical Distribution \& Logistics Management, Vol. 36, No.9: 690-701.

Magee J F. (1958), Production Planning and Inventory Control. New York: McGraw Hill Book Company: 80-83.

Manus Rungtusanatharn, Elliot Rabinovich, Bryan Ashenbaum, Cynthia Wallin (2007), Vendor-owned Inventory Management Arrangement in Retail: An Agency Theory Perspective. Journal of Business Logistics, Vol. 28, No. 1:111-136.

Maria Danielsson \& Anna Lundqvist (2005), VMI and its Effects on the Small and Medium-sized Supplier, Ekonomiska institutionen 58183 LINKÖPING.

Michael J. Maloni, Craig R. Carter (2006), Opportunities for research in third part logistics, Transportation Journal, Vol. 45, No. 2:23-38.

Mohammed Rafiq, Harlins S. Jaafar (2007), Measuring Customer’s Perceptions of

Logistics Service Quality of 3PL Service Providers. Journal of Business Logistics, Vol. 28, No. 2:159-175.

OCN (2008), Chinese TPL Business Analysis and Investment Consultation Report From 2007 to 2008 Problem on line: OCN. Available from URL: www.ocn.com.cn/reports/2006109disanfangwuliu.htm [Accessed 25th, Feb. 2008]

OCN (2008), Chinese Logistics Business Analysis and Investment Consultation Report in 2008, Problem on line: OCN. Available from URL: www.ocn.com.cn/reports/2006129wuliu.htm [Accessed 25th Feb. 2008]

OECD (2004), OECD finds that China is biggest export of Information Technology Goods in 2004, surpassing US and EU. Problem on line: OECD. Available from URL: www.oecd.org/document/8/0,2340,en_2649_201185_35833096_1_1_1_1,00.html [Accessed $14^{\text {th }}$, March, 2008]

Pilar Arroyo, Juan Gaytan, Luitzen de Boer (2006), A survey of third party logistics in Mexico and a comparison with reports on Europe and USA, International Journal of Operations \& Production Management, Vol.26: 639-667.

Roberet Lieb, Brooks A. Bentz (2005), The Use of Third-Part Logistics Services by Large American Manufacturers: The 2004 Survey. Transportation Journal, Vol. 44, No. 2:5-15.

Robert Lieb, Brooks A.Bentz, (2005), The north American third party logistics industry in 2004:the provider CEO perspective, International Journal of Physical Distribution \& Logistics Management, Vol. 35, No. 7/8:595-611.

Robert Lieb \& Karen Butner (2007), The North American Third-Party Logistics Industry in 2006: The Provider CEO Perspective, Transportation Journal, Vol.46, No.3:40-52.

Seldon \& Affiliates (2000), Vendor Managed Inventory - Fad or Future, Supply Chain Management, No.5:84-86.

Shtikant Jarugumilli, Scott E. Grasman, Sreeram Ramakrishnan (2006), A Simulation Framework for Real-time Management and Control of Inventory Routing Decisions. Proceedings of the 2006 Winter Simulation Conference.1485-1492.

STCMH (2005). Problem on line : STCMH (Southern China Medicine Hub). Available from URL: www.zgygw.com/LogisticsService/345/2005-12/131984.shtml [Accessed 10 January, 2008]

Suo Hansheng, Wang Jingchun and Jin Yihui (2004), Coordinating a loss-averse newsvendor with vendor managed inventory. International Conference on System: 6026-6030

Waller M, Johnson M E, Davis T. (1999) Vendor managed Inventory in the Retail Supply Chain. Journal of Business Logistics, 20(1):183-203.

Xie Meiping, Davia L. Olson (2006), Modeling and Values of Vendor Managed Inventory in the Retail Supply Chain. [Online], 1-4244-0318-9/06. Available from: IEEE. [Accessed 15 December 2007]

Yan Dong \& Kefeng Xu (2002), A supply chain model of vendor managed inventory, Transportation Research Part E: Logistics and Transportation Review, Vol.38, Issue 2:75-95.

Appendix A

Special terms

APICS: American Production and Inventory Control Society
BLC: Bonded Logistics Center
CAWS: China Association of Warehouse and Storage
CGA: Customs General Administration
CSL: Customer Service Level
EMS: Electronic Manufacture Supplier
EOQ: Economy Order Quantity
EPEC: Electronic Products Exchange Center
GDP: Gross Domestic Product
GLC: Gross Domestic Logistics Costs
ICT: Information and Communications Technology
JIT: Just In Time
MFLEX: Multi-Fineline Electronix Inc.
MII: Ministry of Information Industry of the People's Republic of China
MOQ: Minimum Order Quantity
MRP: Material Resource Planning
OCN: China Investment Consulting Net
OECD: Organization for Economic Co-operation and Development
OEM: Original Equipment Manufacturer
RIM: Research In Motion
STCMH: Southern China Medicine Hub
SIP: Suzhou Industry Park
SCM: Supply Chain Management

Appendix B: Survey Mail

Dear Madam/Sir:
This is a survey mail from Delta International Logistics Co., Ltd. in BLC. We are glad to inform you that we have new services nearby.

As you all know the establishment of EPEC, we will have contracts with them, offering VMI including purchasing services. In another word, a package service including clearance, warehousing, transportation, packing, separation, assembling, purchasing services will be offered.

Here are some survey questions for further development and our relationships.

1) Which part are you in the supply chain?
A OEM
B EMS
C Distributor
D Components supplier
2) Have you brought our services before?
A YES
B NO
3) Would you buy our new service?

A YES B NO
a) If you answered yes to the question, what would you be willing to pay for the product?
b) What suggestions would make you want to buy our services?
c) If you did not want to buy our services, why?
4) Any other services you want to have?
5) If you are our customer, what kind of factors in our relationship will you pay more attention to?

Thanks for reading!
Looking forward to your answers!
Regards
Suzhou Delta International Logistics Co., Ltd
Add: No.313/315, 88 Xiandai Avenue Suzhou, China. Postcode: 215121
Tel: 86-512-62586586 6258658162586503 Fax: 62586559
Mail: delta@delta-logistics.cn Website: www.delta-logistics.cn

Appendix C

Appendix D

R5541592

Short Item Number	Item Number	Description UM
358310	$0185923 C 04$	40 Pin Connector EA
474741	0201YC101KAT2A	Cap, 100pF, 16V, 10\%, X7R, 0201 EA
330077	04025A101JAT2A	Cap, 0402 100pF 50V 5\% EA
330106	04025A330JAT2A	Cap, 0402 33pF 50V 5\% EA
186520	0402YC103KAT2A	CAP, X7R EA
137787	0402ZD104KAT2A	Cap, 0.1uF, 10V, 0402 EA
330093	06036D225KAT2A	Cap, 2. 2uF, 0603, Cer, X5R EA
359700	0613952 Q25	Res, 10 Ohm, 0402 EA
332785	$0613952 Q 33$	Resistor EA
412890	0613952 Q37	RES $04025 \% 330 \mathrm{HM}$ EA
368956	$0613952 Q 53$	Resistor EA
355848	0613952 289	Res, $4.7 \mathrm{~K} 0 \mathrm{hm}, 0402 \mathrm{EA}$
360479	0613952 291	Res, 5.6K, 5\%, 0402 EA
350828	0613952 295	Resistor EA
357333	0613952R04	Resistor EA
455822	0613952R06	Resistor EA
375460	0613952R14	Resistor EA
462328	0613952R17	Res, 47K, 1/16W, 5\%, 0402 EA
375478	0613952R22	Resistor EA
347055	0613952R34	RES, MF, 240K0HM, 5%, . 0625W, EA
332515	$0613952 R 43$	Res 0402 560K EA
304354	$0613952 R 56$	Res 0402, 2M 0hm, 5\% EA
356331	0613952R61	Res, 3.3M 0hm, 5\%, 0402 EA
304320	$0613952 \mathrm{R66}$	Res 0402, 00 hm EA
332646	6. $60 \mathrm{E}+06$	Resistor EA
242384	0662057M34	Resistor, 0402, 22 ohm EA
157286	0662057M98	Resistor 0402, 10 K 0 hm EA
480083	0662057N01	Resistor, 0402, 12k, 1/16W 5\% EA
242405	0662057N23	Res 100K ohm 5\% 040L EA
370693	7. $72 \mathrm{E}+06$	Alternate Ground Contact EA
377908	$0903564 C 03$	Connector, Camera Socket EA
410667	0915254H04	Switch EA
394484	0971457D01	connector EA
445659	0971726 C07	Connector EA
490679	0971961L01	Connector 21Pin EA
370571	0975073B01	EMU Connector EA
370589	0975675A01	Audio Jack EA
489029	0975675A02	Connector, Aud Cust 0 Row JcEA
289916	0987817K07	34 Pin Connector EA
316531	0988248Y01	Connector 17 Pin ZIFF EA
316611	0988252L01	Socket Coin Cell Battery EA
289852	0988866N01	Connector EA
437739	0988866N07	Connector EA
435784	0989245Y02	SUD Under 25 HGT EA
435910	0989851N06	Connector EA
460402	1000-0051. 1	Cap, 0402, 1. 0uF, X5R, 6. 3V +/-1EA
477845	1000-0087. 1	Diode SOD-523 EA
460429	1000-0178. 1	Res 0201560 ohm $+/-5 \%$ EA
460331	1000-0282. 1	Diode, High Speed EA
473166	1000-0334	Cap 0603 1.0uF EA
460437	1000-0336. 1	Cap $04021000 \mathrm{nF} \quad 10 \mathrm{~V}+/-10 \%$ EA
460445	1000-0378. 1	Res 0201 10ohm 5\% EA
460728	1000-4039. 1	Res 0201 330ohm 5\% EA
460701	1000-4228. 1	Res 0402 33ohm 5\% EA
460411	1000-6839.1	Cap 02017 nF X7R 6.3V +/-10\%EA
460517	1000-6901. 1	Cap 0402 2. 2uF 6. $3 \mathrm{~V}+/-20 \%$ EA
460461	1000-7609. 1	Diode schottky0, SOD 523 EA
479955	1000-7708. 3	11PIN M2 Memory Holder EA
456788	1000-8971. 1	Conn shield EA
241411	1001AS220M=P5	Inductor Power 22Uh +/-20\% EA
487111	109-00113-01	Thermistor 10k 0402 EA
476762	109-00127-01	Resisitor, 3300HM, $1 \mathrm{~W}, 2512$ SMD EA
438539	114S0527	Resistor EA
501631	116 S 0077	RES 0402 3.0K OHM 5\% HF EA
424031	1170315 D 60	PSA EA
424049	1170315 D 61	PSA EA
328866	11750002	RES, MF, 1/20W, 0.0 OHM, 5 EA
328874	117S0004	RES 0201 100HM 5\% HF EA
328891	117S0006	RES, MF, 1/20W, 1K 0HM, 5 EA
328903	117S0007	RES, MF, 1/20W, $10 \mathrm{~K} 0 \mathrm{HM}, 5$ EA
328920	117S0009	RES 0201 1M OHM 5\% HF EA
382580	117S0056	Res, MF, 1/20W, 2.2 Ohm, 5 EA
328962	117S0082	RES 0201 3.3K OHM 5\% HF EA
368868	117S0101	RES 02014.7 OHM 5\% HF EA
328997	117S0103	RES, MF, 1/20W, 470 OHM, 5 EA
379452	117S0104	Res, mF, 1/20W, 4. $7 \mathrm{~K} 0 \mathrm{hm}, 5$ EA
329009	117S0105	RES 0201 47K 0HM 5\% HF EA
355549	117S0129	Res, MF, 1/20W, 68K 0 hm, 5 EA
372963	$1188432 Z 16$	Adhesive EA
252312	1189617N04	Adhesive Speaker Razor EA
370837	11850011	RES 0201 1000HM 1\% HF EA
368964	11850013	RES 0201 10K OHM 1\% HF EA
353931	11850014	RES 0201 100K OHM 1\% HF EA
379698	118 S 0118	Res, mF, 160 Ohm, 1, 1/20W, 0201 EA
329025	118 S 0174	RES, MF, 2. OKOHM, 1, 1/20W EA
399605	$118 \mathrm{S0192}$	Res, MF, $22.00 \mathrm{hm}, 1,1 / 20 \mathrm{~W}, 0201 \mathrm{EA}$
379305	11850193	Res, MF, 2200HM, 1, 1/20W, 0201 EA
379487	$118 \mathrm{S0196}$	Res, mF, 220K $0 \mathrm{hm}, 1,1 / 20 \mathrm{~W}$ EA
384008	118 S 0258	Res, mF, $2800 \mathrm{hm}, 1,1 / 20 \mathrm{~W}, 0201 \mathrm{EA}$
369211	11850271	RES 0201 294K 0 HM 1\% HF EA
379356	11850280	Res, MF, 30.1K Ohm, 1, 1/20W, 020EA
447507	118 S 0392	RES 0201 470HM 1\% HF EA
369094	118S0394	RES 0201 4.7K OHM 1\% HF EA

			Unit Cost	Page Extended Dollars
UM	Branch/P1	uantity	Standard - 1	Standard - Burdened
EA	4062	62075	0. 9225	57264.19
EA	4062	53532	0.0643	3442.11
EA	4062	9055	0. 0326	295.19
EA	4062	8820	0. 0326	287.53
EA	4062	8350	0. 0163	136. 11
EA	4062	8585	0. 0668	573.48
EA	4062	3525	0. 3163	1114.96
EA	4062	107190	0. 0037	396.6
EA	4062	1792139	0.0036	6451.7
EA	4062	1723852	0.0036	6205.87
EA	4062	124000	0. 0054	669.6
EA	4062	115691	0.0028	323.93
EA	4062	37472	0.0028	104.92
EA	4062	1005	0. 0038	3.82
EA	4062	49792	0. 0037	184.23
EA	4062	1	0.0006	
EA	4062	72052	0.0045	324.23
EA	4062	175	0.0005	0. 09
EA	4062	72666	0. 003	218
EA	4062	120000	0.0056	672
EA	4062	210724	0.0036	758.61
EA	4062	190942	0.0036	687.39
EA	4062	177031	0.0036	637.31
EA	4062	149004	0.0028	417.21
EA	4062	7812	0.0122	95.31
EA	4062	1597	0. 0037	5.91
EA	4062	17905	0. 0082	146.82
EA	4062	20869	0. 0038	79.3
EA	4062	17764	0. 0057	101.25
EA	4062	16635	0. 8999	14969. 84
EA	4062	101622	2. 6961	273983.07
EA	4062	40834	2. 3618	96441.74
EA	4062	33479	2. 7295	91380.93
EA	4062	38015	1. 2249	46564.57
EA	4062	682	1. 649	1124.62
EA	4062	38383	0.61	23413.63
EA	4062	216	1. 2851	277.58
cEA	4062	49936	1. 1774	58794.65
EA	4062	123017	1. 4792	181966. 75
EA	4062	42784	1. 2272	52504. 52
EA	4062	296524	0. 5075	150485.93
EA	4062	64341	1. 4225	91525.07
EA	4062	65338	0.8104	52949. 92
EA	4062	16653	1. 6595	27635.65
EA	4062	88802	0. 8612	76476.28
1 EA	4062	257191	0. 0205	5272.42
EA	4062	165602	0. 1041	17239. 17
EA	4062	328594	0. 0078	2563.03
EA	4062	378719	0. 1156	43779. 92
EA	4062	804	0. 0205	16.48
EA	4062	148558	0. 0065	965.63
EA	4062	555175	0. 0078	4330.37
EA	4062	208308	0. 0078	1624.8
EA	4062	196576	0.0026	511.1
\% EA	4062	65050	0. 0089	578.95
EA	4062	127084	0. 0917	11653.6
EA	4062	3174	0. 1123	356. 44
EA	4062	7552	2. 1765	16436. 93
EA	4062	60397	0. 2129	12858. 52
EA	4062	3382	1. 82	6155.24
EA	4062	5483	0. 1359	745.14
EA	4062	4233	0. 7265	3075. 27
EA	4062	147372	0. 247	36400. 88
EA	4062	536930	0. 0028	1503.4
EA	4062	1042	0. 0309	32.2
EA	4062	270	0.0286	7.72
EA	4062	49847	0.0108	538.35
EA	4062	211113	0.0106	2237.8
EA	4062	20000	0	
EA	4062	848530	0. 0108	9164.12
EA	4062	261930	0.0106	2776. 46
EA	4062	1090000	0.0117	12753
EA	4062	913382	0.0106	9681.85
EA	4062	184178	0.0106	1952.29
EA	4062	20000	0	
EA	4062	1340000	0.0117	15678
EA	4062	181050	0.0106	1919. 13
EA	4062	188608	0. 0109	2055.83
EA	4062	78730	0.6907	54378.81
EA	4062	20504	0.0472	967.79
EA	4062	507708	0. 0134	6803.29
EA	4062	688275	0. 0134	9222.89
EA	4062	1810983	0.0134	24267. 17
EA	4062	660000	0.0156	10296
EA	4062	540000	0.0156	8424
1 EA	4062	1190000	0.0156	18564
EA	4062	640000	0.0156	9984
EA	4062	5460000	0.0156	85176
EA	4062	770000	0. 1875	144375
EA	4062	260207	0.0134	3486.77
0EA	4062	640000	0.0156	9984
EA	4062	179469	0.0134	2404.88
EA	4062	185996	0. 0134	2492. 35

4062	246	0. 9721	239.
4062	37865	0.8774	33222.75
4062	42665	2. 0709	88354.95
4062	8945	1. 4685	13135.73
4062	33648	0. 9721	32709. 22
4062	9967	2. 1051	20981.53
4062	775	14. 5301	11260.83
4062	7799	3. 8079	29697. 81
4062	4891	17. 0995	83633.65
4062	5326	2. 3248	12381.88
4062	233825	1.8453	431477.27
4062	52718	0. 3269	17233.51
4062	12168	0. 2831	3444.76
4062	60928	0.5046	30744.27
4062	1090443	0.1816	198024. 45
4062	161702	0. 0632	10219. 57
4062	375550	0. 0632	23734.76
4062	265342	1. 6039	425582.03
4062	52319	4. 1411	216658.21
4062	278893	1. 3579	378708.8
4062	242600	2. 484	602618.4
4062	1300	2. 0741	2696. 33
4062	4000	1. 2438	4975. 2
4062	19076	3. 242	61844.39
4062	14304	4. 5315	64818.58
4062	386195	0.6394	246933.08
4062	631	15.6132	9851.93
4062	37278	1. 2149	45289.04
4062	3621	13.7604	49826.41
4062	1216	2. 9388	3573.58
4062	15250	0. 0201	306. 53
4062	47138	0. 1709	8055. 88
4062	35412	0. 0847	2999. 4
4062	61559	0. 3075	18929. 39
4062	19936	0.0778	1551.02
4062	88215	0. 2877	25379. 46
4062	33236	0.6538	21729.7
4062	68139	7. 385	503206. 52
4062	223545	0. 9225	206220. 26
4062	114	0.8124	92.61
4062	51338	0.8219	42194.7
4062	42165	0. 2107	8884.17
4062	6017	0.7148	4300.95
4062	67715	0.5612	38001.66
4062	22295	0.8551	19064.45
4062	6200	0	
4062	11749	0. 3109	3652.76
4062	2284	1. 0892	2487.73
4062	5607	1. 6568	9289.68
4062	330	2. 5552	843.22
4062	1714	4. 5641	7822.87
4062	3863	1. 5162	5857.08
4062	713	1. 4706	1048.54
4062	185	1. 4345	265. 38
4062	7685	3. 1684	24349.15
4062	154	3.073	473.24
4062	24417	3. 4504	84248.42
4062	2450	9. 7804	23961.98
4062	21832	3. 48	75975. 36
4062	1500	2. 6688	4003.2
4062	1281	2. 4485	3136. 53
4062	19198	2. 6688	51235.62
4062	528	3. 7492	1979.58
4062	6923	3. 3473	23173. 36
4062	4674	0.0041	19. 16
4062	670989	3. 1013	2080938. 19
4062	46235	0. 3028	13999. 96
4062	50004	2. 062	103108. 25
4062	5721	2. 062	11796.7
4062	20837	3. 687	76826.02
4062	2048	5. 0293	10300. 01
4062	1713	4. 8614	8327.58
4062	1300	2. 0581	2675. 53
4062	209	1. 7743	370.83
4062	233	1. 0171	236. 98
4062	12818	0.8263	10591.51
4062	188956	2. 1291	402306. 22
4062	91780	0.8516	78159.85
4062	22926	2. 8056	64321.19
4062	48157	3. 7833	182192. 38
4062	11876	1. 0216	12132. 52
4062	1015	0. 2334	236.9
4062	3486	2. 2001	7669.55
4062	3486	2. 2001	7669.55
4062	623	8. 5728	5340.85
4062	652	3. 4065	2221.04
4062	1276	0.5393	688.15
4062	895	3. 5485	3175.91
4062	614	1. 8452	1132.95
4062	2298	93.0596	213850.96
4062	1289	4. 9484	6378.49
4062	1500	0	
4062	1500	4. 6758	7013.7
4062	899	2. 9586	2659.78
4062	201	1. 5812	317.82
4062	15880	3. 687	58549.56
4062	2434	5. 2162	12696. 23
4062	63326	0	
$\begin{aligned} & 4062 \\ & 4062 \end{aligned}$	8049 8184	$\begin{aligned} & 0.3797 \\ & 0.3776 \end{aligned}$	3056.21 $\text { 3090. } 28$

506124	63709_01	PCB $0.315^{\prime \prime} * 0.315^{\prime \prime}$ EA	4062	17947	1. 183	21231.3
495921	63846_05	MOUNT 2, TINY PLCC EA	4062	75000	0. 5029	37717.5
402747	6475243B01-T4	EMU backer 3D Stiffener EA	4062	52277	0. 2586	13518.83
345834	700-09788-01	DIE, G3.5 16 Channel EA	4062	667	42.5815	28401.86
417367	700-11962-01	Die EA	4062	390	44.3141	17282.5
497475	705S0130	SW SLIDE 2 POS 1. 5MM TRVL 1. EA	4062	23884	1. 6678	39833.74
371311	740S0022	Fuse, 32V, V/FA, 0402, 1A EA	4062	20000	3. 2593	65186
444904	7503526501	FILM ADHESIVE 9492UP EA	4062	2820	0.0981	276.64
443012	7503539501	Foam EA	4062	25525	0.0788	2011.37
413913	7503623 B 31	Poron Pad EA	4062	29060	0. 0232	674.19
448235	7671093 L 02	FLTR EA	4062	36044	0. 0359	1293.98
347098	7. $69 \mathrm{E}+07$	Ferrite Bead EA	4062	122063	0. 0453	5529.45
382969	805-7448	Shield EA	4062	6597	0.8779	5791.51
382951	805-7449	Shield EA	4062	7956	0. 8779	6984.57
371910	8-5353164-6	Connector, 80 Pin EA	4062	10079	19.9423	200998. 44
373042	870-1346	Dome EA	4062	183169	0.7185	131606. 93
436550	870-1493	Dome EA	4062	624004	1. 0777	672489.11
475170	870-1561	DOME 6UM 400G 0.23TRVL EA	4062	25206	0.5748	14488.41
478240	870-1562	DOME4MM*0.17MM 400G EA	4062	59250	1. 2349	73167.83
491006	870-1603	SPRING FINGER 2. $08 \times 0.8 \times 1$ EA	4062	265504	0. 6955	184658. 03
508138	870-1621	DOME 4MM*0.17MM 200G EA	4062	51250	2. 0226	103658.25
377975	9164824H04	FLTR EMI 6.3V-dC, 50MA, 4PF EA	4062	170930	0. 4182	71482.93
377983	9171527C04	FLTR EMI/RFI, 0603/M1608, QUADEA	4062	58308	0.4182	24384.41
448227	$9175636 \mathrm{B01}$	FLTR EA	4062	87554	0. 6204	54318.5
437721	9188975Y03	Filter EA	4062	70451	0. 3363	23692.67
378100	A3212EELLT-T	IC EA	4062	548	1. 0128	555.01
426765	AF216M245001	Antenna, Helical, 2.4GHZ EA	4062	3575	1. 0898	3896. 04
493757	ANA-00019-001	IC Ana LDO fast RF 2.8 V EA	4062	33000	1. 0646	35131.8
394450	ANA-00221-001	IC EA	4062	1044500	0. 9936	1037815.2
353244	ANA-00221-001 (G-RAY) (CF)	IC Magneto-Electric SW 5 PinEA	4062	45182	0	
440794	ANA-00251-001	IC EA	4062	317998	0.9445	300349. 11
353252	ANA-00251-001 (G-RAY) (CF)	IC ANA Hall-Effect Switch EA	4062	12000	0	
393481	ANA-00352-001 (CF)	Cap, 6. 8pF, 50V, 0402 EA	4062	30000	0	
494506	ANA-00476-001	Class D mono audio amplifierEA	4062	36000	3. 102	111672
498718	ANA-00629-001	IC Ana LDO 200 mA Ultra EA	4062	12000	2. 2449	26938.8
427151	APT1608-WWX58	LED EA	4062	75040	0. 1846	13852. 38
380509	ASY-12120-001	Rec $1.5 * 0.6 \mathrm{~cm}$ 23+/-2.5dBPaEA	4062	94349	3. 8749	365592.94
467313	ASY-13747-001_1	Frame Front EA	4062	5784	16.968	98142.91
474661	ASY-14132-001_1	Frame Front EA	4062	42315	17. 1213	724487.81
367523	AXK8L2012MT1	Connector EA	4062	4876	0.9107	4440.57
308911	AXT480124MT1	80 Pin PCB Connector EA	4062	2587	2. 9777	7703.31
502385	AYG-526K	SPRING contact EA	4062	71	0.7041	49.99
499403	BLM15HB121SN1D	Inductor $04021200 \mathrm{HM} \pm 25 \% 300 \mathrm{EA}$	4062	10000	0. 1076	1076
441121	BLM18BD252SN1D	Ferrite Chip, 2500 Ohm, 50MAEA	4062	7739	0.032	247.65
394388	CAP-00330-003	Cap, 0402, 33pF, COG, 50V +/-5\% EA	4062	176618	0. 0078	1377.62
438977	CAP-00680-002	Capacitor EA	4062	296269	0. 0079	2340.53
492674	CAP-01000-006	Cap Ceramic 100pF 5\% 50V EA	4062	50000	0. 0079	395
394370	CAP-01003-010	Capacitor EA	4062	2656075	0. 0093	24701.5
353295	CAP-01003-010 (G-RAY) (CF)	Cer Cap 0.1uF 10\% 10V X5R 04EA	4062	28786	0	
424559	CAP-01004-017	Cap, 0402, luF, X5R, $6.3 \mathrm{~V}+/-10 \%$ EA	4062	141021	0. 0276	3892. 18
345210	CAP-02R20-005 (CF)	Cap uW Sub Cer 2. $2 \mathrm{pF}+/-0.1 \mathrm{pEA}$	4062	93031	0	
393422	CAP-02R70-007	Capacitor EA	4062	159119	0. 0151	2402.7
394396	CAP-03302-003	Capacitor EA	4062	393182	0.0151	5937.05
368809	CAP-03R90-007 (CF)	Cap uW Sub Cer 3.9pF +/-0.1pEA	4062	90604	0	
394409	CAP-06R80-007	Capacitor EA	4062	159924	0. 0151	2414.85
385246	CAP-06R80-007 (CF)	Capacitor EA	4062	345	0	
494039	CAP-10060-001	CAP tantalum EA	4062	17500	0. 6251	10939. 25
493386	CC7V-T1A-0. 5	Crystal 32.738KHz 12.50pF EA	4062	42715	3. 6928	157737.95
224207	CL-470S-2WD-D-T	LED EA	4062	5437	6. 5202	35450. 33
439419	CON-00083-001	Connector EA	4062	215084	1. 7243	370869.34
353164	CON-00083-001 (G-RAY) (CF)	Conn, Low Profile 2 X 20 Male EA	4062	1225	0	
444875	CON-00092-001	CONNECTOR EA	4062	141834	0. 9699	137564.8
359195	CON-00092-001 (CF)	Ultra Miniature SMT Coax ConEA	4062	4364	0	
430300	CON-00149-001	Connector EA	4062	86179	1. 0535	90789. 58
493765	CON-00168-001	1.8mm spring contact meteor EA	4062	61200	0. 3633	22233.96
493749	CON-00185-001	2. 5 mm spring contact meteor EA	4062	12000	0. 3633	4359.6
494021	CON-00211-001	CONNECTOR, 60 pin, header EA	4062	17660	2. 7804	49101.86
492746	CON-00235-001	Socket for 3MP SMIA85 EA	4062	1800	2. 0117	3621.06
394610	CPB7324-0250F	24 Pin BD-to-BD Connector ReEA	4062	54	0. 8981	48.5
394855	CPB7380-0250F	Connector, 80 Pin ReceptacleEA	4062	54	2. 5527	137.85
405446	CRCW0402100KJNED	Res, 100K 0hm, 5\%, 0402 EA	4062	232205	0.0148	3436. 63
405438	CRCW040210K0JNED	Res, 10K $0 \mathrm{hm}, 5 \%, 0402$ EA	4062	33158	0. 0071	235.42
464008	CRCW04021K00JNED	Res, 0402, 1 K EA	4062	53890	0. 0148	797.57
356576	CRCW080564R9FKEA	Resistor EA	4062	30000	0. 0231	693
252224	DF23B (1.8)-10DS-0. 5 V (61)	Socket EA	4062	11971	1. 7931	21465.2
118914	DF30FC-30DP-0. 4V (51)	CONNECTOR EA	4062	31670	1. 1392	36078.46
395647	DF30RB-40DP-0. 4 V (81)	connector EA	4062	28000	1. 9969	55913.2
410659	DIO-00032-001	Diode EA	4062	1429938	0.1561	223213. 32
493870	DI0-00039-001	Schottky barrier triple diodEA	4062	16000	0. 3545	5672
119327	DS-570/XCN	13MM PIN TYPE RECEIVER EA	4062	62499	3. 0604	191271.94
221081	DTC144EMT2L	Lead Free Tranistor EA	4062	6550	0. 1331	871.81
319118	500027-7041	Connector, 70 Pin Plug EA	4062	51	2. 1985	112. 12
448622	EVK105CH010BW	1 pF EA	4062	725	0.0709	51.4
446117	EVK105CH0R5BW	0. $5 \mathrm{pF}+/-0.1 \mathrm{pF}$ en	4062	10000	0.0743	743
452015	EVK105CH1R1BW	Capacitor 1.1pF EA	4062	10836	0.0743	805.11
446109	EVK105CH1R5BW	1.5pF EA	4062	10000	0.0743	743
280815	EvPAA603W	Razor Side Swich EA	4062	182601	0.7482	136622.07
367726	FH23-23S-0. 3SHW (05)	Purchased Component EA	4062	9820	0	
369748	FH23-27S-0. 3SHW (05)	Connector 27 Pin EA	4062	10000	2. 9339	29339
377271	FH23-33S-0. 3SHI (05)	Conn FPC 33P0S . 3MM Tin SMD EA	4062	10000	3. 4228	34228
362212	FH26-39S-0.3SHW	Connector EA	4062	4945	3. 1571	15611.86
493802	FIL-00109-001	Fil Ferrite EMI Supp 0402 EA	4062	30000	0.1146	3438
345973	gM5Bw05341A	Led EA	4062	1104	8. 9653	9897.69
343986	GNM1M2R61A105ME17D	CAPACITOR EA	4062	1795	0. 106	190. 27
358053	GRv0332C1E390JD01D	Capacitor, 39pF, 0201, 6V, 5EA	4062	134279	0. 0145	1947.05
389423	GRN0335C1E220JD01D	Capacitor EA	4062	6000	0.0151	90.6
297502	GRN033R60J104KE19D	Capacitor, 0201, 0.1uF, 6.3VEA	4062	215710	0. 0159	3429.79
385385	GRM033R60J224ME15D	Cap, 220nF, 20\%, 6. 3V, 0201 EA	4062	108	0.1006	10.86
379401	GRM033R61A103KA01D	CAP, CER, .01UF, 10, 10V, X5R EA	4062	61438	0.0115	706.54
297810	GRM1555C1H180JZ01D	Cap, 0402, 18pF, 50V, 5\% EA	4062	10000	0.0106	106

4062	110656	0. 2679	29644.74
4062	127016	0. 4117	52292.49
4062	99136	0.791	78416. 58
4062	110656	0. 2679	29644.74
4062	86962	0.7452	64804.08
4062	69937	0.0475	3322.01
4062	56648	0.0496	2809. 74
4062	80594	0.0475	3828. 22
4062	84915	0. 3549	30136. 33
4062	83850	0. 0383	3211.46
4062	129760	0. 2247	29157. 07
4062	129760	0. 181	23486. 56
4062	129760	0. 2471	32063.7
4062	124731	0.0669	8344.5
4062	88279	0.0218	1924.48
4062	250	0. 1747	43.68
4062	83024	0. 1263	10485. 93
4062	45365	0. 0781	3543.01
4062	84535	0. 0213	1800.6
4062	20	0. 2524	5. 05
4062	2200	0. 2507	551.54
4062	2200	0.5531	1216.82
4062	25720	0. 2161	5558.09
4062	42344	1. 4683	62173.7
4062	335	1. 3655	457. 44
4062	53460	0. 1468	7847.93
4062	120	0. 1901	22.81
4062	8091	0.0605	489.51
4062	10100	0.0509	514.09
4062	10100	0.0516	521. 16
4062	14016	0.0601	842.36
4062	44113	0.0505	2227.71
4062	39132	0.0575	2250.09
4062	13932	0. 0587	817.81
4062	14033	0.0622	872.85
4062	14125	0.0608	858.8
4062	39352	0.0392	1542.6
4062	111352	0.0425	4732.46
4062	230	0. 4081	93.86
4062	3769	4.7419	17872. 22
4062	2000	0. 2991	598.2
4062	633	1. 6301	1031.85
4062	668	0. 122	81.5
4062	3198	0.0056	17.91
4062	9860	0. 0053	52.26
4062	9855	0.0053	52.23
4062	4845800	0.0507	245682.06
4062	4002359	0. 0951	380624.34
4062	3287283	0. 0078	25640.81
4062	4538007	0.0078	35396. 45
4062	2827255	0. 0078	22052. 59
4062	90000	0. 0051	459
4062	16711	0	
4062	420675	0. 0051	2145.44
4062	22230	0	
4062	13312	0	
4062	150221	0. 0051	766.13
4062	93827	0.0051	478.52
4062	179660	0. 0051	916.27
4062	202658	0. 0051	1033.56
4062	198225	0. 0051	1010. 95
4062	18826	0	
4062	2571946	0. 0051	13116. 92
4062	197284	0. 0051	1006. 15
4062	475	0	
4062	198957	0. 0051	1014.68
4062	20000	0. 0167	334
4062	848760	0.021	17823.96
4062	100000	0. 0224	2240
4062	30000	0.0214	642
4062	60000	0.021	1260
4062	463995	0.0294	13641.45
4062	20000	0. 0214	428
4062	10000	0.0214	214
4062	464107	0.0184	8539.57
4062	20000	0.0036	72
4062	1785543	0. 0089	15891.33
4062	570319	0.0087	4961.78
4062	227527	0.018	4095. 49
4062	959350	0.0537	51517.1
4062	99818	0. 0057	568.96
4062	317	0. 0082	2.6
4062	10000	0.004	40
4062	378856	0.0148	5607.07
4062	60000	0.0078	468
4062	20000	0.0078	156
4062	20000	0.0078	156
4062	30000	0. 0082	246
4062	12000	0.0615	738
4062	3086568	0. 1549	478109.38
4062	1770355	1. 2774	2261451.48
4062	9998644	0. 3129	3128575.71
4062	76800	3. 0785	236428.8
4062	227349	3. 8653	878772.09
4062	1659831	0. 4641	770327.57
4062	773848	0. 4365	337784.65
4062	165962	2. 1765	361216. 29
4062	465410	2. 1385	995279. 29
4062 4062	454626 445174	1. 1.8184	462991.12 821435.06

393633	RNV799041	Conn 24pin Recept EA	4062	1580343	0. 8871	1401922. 28
388033	RNV799041 (CF)	Connector, 24 Pin, Recep, BTEA	4062	1	0	
393799	RNV799044	Connector, 80 Pin Receptacle EA	4062	2109	2. 3974	5056. 12
410755	RNV79985R1A	Conn 100 Pin B2B EA	4062	465885	3. 1079	1447923. 99
476789	RPV79982/24R1A	Conn 24pin Plug B2B EA	4062	544419	1. 1	598860. 9
393650	RPV79984	Conn 80 Pin, Plug, B2B, 0.8MEA	4062	58603	2. 7683	162230.68
470635	RYT113955/1	IC Vreg CS-4 EA	4062	166340	0.6179	102781. 49
341411	SDRP0615FJ02	Speaker EA	4062	91015	3. 185	289882. 78
356031	SDRP0615KJ02	Speaker EA	4062	117824	2. 6374	310749.02
491938	SF-2529-14BA-002	Battery, 14MAH, Solicore EA	4062	45827	7. 3857	338464.47
313120	SKRKAEE010	Switch EA	4062	6730	0. 4641	3123.39
409391	SSAD120100	Switch, Slide, SW4, 1.4MM EA	4062	23701	0. 9625	22812. 21
440567	SSSS811101	Switch, SMD Slide, 1.5 mm EA	4062	3294	1. 3484	4441.63
440330	SWT-00008-001	Switch EA	4062	618	0.6183	382.11
353236	SWT-00008-001 (G-RAY) (CF)	Switch 2.4N Light Touch EA	4062	206	0	
494987	SWT-00025-002	Switch EA	4062	133364	1. 8453	246096. 59
393801	SXA1097277	Navigation Domefoil EA	4062	284896	1. 48	421646.08
394599	SXA1097320	Main Keypad Dome Foil AssembEA	4062	590658	1. 6668	984508.75
393676	SXA1097326	Antenna Substrate EA	4062	261226	0. 431	112588.41
412582	SXA1097832	Al Foil EA	4062	30286	0. 3691	11178.56
427362	SXA1097835	Keypad Metal Foil EA	4062	209336	0. 3122	65354.7
406799	SXA1097835 (CF)	Al Foil EA	4062	78	0	
450301	SXA1098151	PSA EA	4062	16043	0. 1163	1865.8
343610	V33834BB	Dome array with EL panel EA	4062	2422	17. 6046	42638.34
343572	VDZT2R-33B	DIODE EA	4062	6515	0. 1858	1210. 49
341067	VLF3010AT-220MR33	Inductor EA	4062	27	2. 0376	55.02
362491	VMT-04C	AAC vib Motor EA	4062	635	3. 9736	2523.24
438598	X812921-001	HP Jack EA	4062	2958	1. 1495	3400.22
440348	XDR-00010-001	Microphone EA	4062	883	2. 062	1820.75
440356	XDR-00011-001	Microphone EA	4062	57121	4. 124	235567
			MFC2 Bonded Transfer			46257477. 2
			Report total			46257477. 2

Appendix E

		${ }^{8900^{\prime} 68 \Sigma^{\prime} \tau}$	¢99986t＇	$\left.\right\|^{18882824}$					$\left.\right\|_{\text {¢8t＇rzz\％}} ^{\text {beto }}$		$\frac{\mid 2962 L T T}{}$			$908^{\prime} \tau 68^{\prime} \tau$ $8 T Z^{\prime} \downarrow 6 G^{\prime} \tau$	${ }^{88 Z^{\prime} \text { To＇} 2}$	
		－														
		ع19\％9\％	т6T＇zzz	289＇162	L89262	t62＇88t	¢6L＇88T	Tot＇gzz	666 ＇292	T6T＇zzz	L89 262	L89＇66	L89262	L89＇162	L8S 162	
	tet＇s	9tL＇96	296＇00	606＇97t	Les＇ż	606＇9T	ع99＇zr	80t＇tst	ع8＇29st	L99＇000	T82＇90，	96s＇tit	606＇9t	LE＇LzT	999＇88ז	
	คte＇s	920＇s8	920＇98	${ }^{899} 96$	T88＇90\％	te8＇90\％	se8＇6it	99788t	99t 885	920＇s8	szo＇s8	688^{06}	\＆99＇96	т88＇90т	6069tr	
	－	т69Tt	2r6＇st	9s\％＇tz	998＇Tz	$829^{\circ} \mathrm{T}$	829 ¢	2b6＇st	${ }^{890}$＇8t	2b6＇st	99\％＇Tz	952^{\prime} T2	998^{\prime}	958 ＇t2	952^{\prime} T2	
	9S＇Tr	00TO¢¢	00TO¢8	2T9 288	sticcr	ŠT＇şt	Otrigt	299 z9s	299795	0otoor	000＇0\％8	95c＇T98	2t9z88	SET＇Sct	L29 296	
		p92＇90	692 ＇ 89	sz0＇98	szo＇s8	2tszd	2tszt	692 ＇E9	tız＇zL	692 ＇89	920＇s8	920＇s8	s20＇s8	szo＇s8	920＇98	
ssr＇s	ptz＇86	88626	20¢＇Et	TL＇\＆z1	zot＇grt	\＆L＇SzT	988＇6it	9tS＇Tst	$888^{\prime 2}$	800＇80\％	Ltz＇80T	200＇git	TLL＇8̇	tzo＇tet	88626	
sst＇s	かLて＇z8	tıt＇z8	p8L＇26	80＇ 80 （	860＇80	rgt＇sti	tzo＇ber	Tzo＇ter	pLt＇z8	tLt＇z8	629 28	ャ8L＇z6	860＇80	20¢＇ET	0zE＇LL	
	O¢E＇tr	t9t＇st	$6{ }^{69} 9$	$6^{69}{ }^{\circ} \mathrm{O}$	$6^{60} 0^{\circ}$	608＇0	t9t＇st	9zS＇LT	pob＇st	$6 \mathrm{trg}^{\circ} \mathrm{O}$	6 6t9 ${ }^{\circ}$	$6{ }^{69}{ }^{\circ}$	$6 \mathrm{t9}{ }^{\circ} \mathrm{O}$	6т9${ }^{\circ} \mathrm{O}$	$6{ }^{69} 9$	
																160
			${ }^{2996007}$		$\frac{\angle \& \varepsilon^{\prime} L z \tau}{\tau 8 z 90 \tau}$				$\frac{\varepsilon \varepsilon \varepsilon^{\prime} 995}{99 \tau^{\prime g e r}}$	${ }^{\text {L99＇00才 }}$	$\frac{\text { rez'900 }}{\text { szo }}$	$\begin{array}{l\|l} \hline \text { S6S'ITT } \\ \hline 6 \varepsilon \varepsilon^{\prime} 06 \end{array}$		$\frac{\angle 8 S^{\prime} \angle \tau}{\text { ter }}$		
		T69＇ti	2v6＇st	992＇tz	9s＇Tz	8290\％	889%	2v6＇st	890＇85	zb6＇st	99\％＇tz	9s\％＇tz	9st＇rz	9s＇tr	9s2＇tz	
	tie＇s									296＇00t	т8＇900	s6s＇tit	606＇9tr			v60
	¢EE＇s	sz2＇98	szo＇98	¢99956	T88290	ז82900	980＇it	99t＇88t	99788 T	980＇s8	9z0＇98	688^{06}	89996	ז82900	6069Tt	
		т69\％	286 ＇st	998＇tz	992＇Tz	$829^{\circ} \mathrm{T}$	889 \％	276＇st	89088	266＇st	998＇tr	998＇tz	998 ＇Tz	958 Tr	992＇r2	
6nv－8t	6nv－Tt	Sny－t	inc－82	inc－tz	nc－ti	${ }_{\text {nc－L }}$	unc－os	unc－z	unc－9t	unc－6	unc－z	Kew－92				
DEMM	हу＞M	z8\％M	זع\％	08 M	627 M	887 M	Lz7M	927 M	sz7m	trim	ع 27 m	zz7M	זz＞M	027M	6 r 7 M	

	ع80＇69	LOE＇LSZ＇T	ELS＇zte＇t	T28＇6TS＇T	L86＇LS9＇T	Tz8＇6TS＇T	029＇S89＇T	Tot＇E00＇Z	＋80＇teo＇z	ELS＇zTE＇T	999＇t88＇T	68L＇OSt＇T	Tz8＇6TS＇T	L86＇LS9＇T	Est＇96L＇T			
	880＇69	sz＇＇Sot＇	s๕8＇SOT＇T	06t＇Eถて＇T	999 ＇t88＇T	999＇t88＇ז	Sst＇Lts＇	EST＇96L＇T	EST＇96L＇T	szz＇Sot＇t	¢z＇＇Sot＇t	LOt＇$\angle 1$ I＇$^{\prime}$	06t＇Eচて＇T	999＇t88＇T	tz8＇6TS＇t		$\mathrm{g}^{-800-68 S ¢ T-d O d ~}$	
			－														T00－6992T－MS	
																	8－ 900 －Ts6Tt	
		286＇TST	8tて＇L0Z	โદย＇92\％	โع์＇9Lz	99T＇88โ	99t＇88T	8 8て＇L02	โ88＇\＆ะ	8tz＇ 202	โع＇9L2	т\＆と＇92\％	โદ\＆＇92\％	โع̌＇9Lz	โع̌＇9Lz		－ $200-\mathrm{z} \mathrm{\varepsilon t} \mathrm{\varepsilon} \mathrm{\tau}$－dOd	
																t6\％	pl！j	T00－0tts0－S3y bi
	2t6＇ST	${ }^{8 t t^{\prime} 062}$	T06＇208	82L＇098	2t9＇288	8zL＇098	686＇888	عとદ＇29t	002＇89t	T06＇208	セャ8＇8te	98L＇¢¢	82L＇098	2t9＇z88	L6t＇tit		риеura［е\％）	
	2セ6＇ST	9L0＇s92	SL0＇992	656＇982	ャャ8＇8¢	ャャ8＇8t¢	S0t＇LS	L6t＇tIt	L6t＇TTV	9L0＇s92	9L0＇s92	LTO＇TLZ	656＇982	ャヤ8＇8t¢	82L＇098		9－E00－68S己T－dOd	
																	9－ $00-2 t 88 T-$ St	
																	T00－6992T－MS	
		ELO＇G ε	Lz8＇LV	69L＇E9	69L＇E9	ャ88＇TE	ャ88＇TE	Lz8＇LD	802＇ts	Lz8＇LD	69L＇E9	69L＇E9	69L＇E9	69L＇E9	69L＇E9		\forall－ $200-2 ¢ ¢ \varepsilon$－dod	
																t6\％	pl！oर	200－9t000－097］\＆
	0LS＇92	08¢＇ 888	${ }^{9888 \text {＇tos }}$	Lts＇t8s	L89＇L89	LtS＇t8S	Ste＇889	${ }^{688^{\prime} 0} \mathbf{L}$	L97＇t8L	${ }^{988}$＇tos		${ }^{9666^{\prime} \text { LS }}$	LtS＇t89	L89＇L¢9	${ }^{828}{ }^{\circ} 069$			
	0LS＇92	SZT＇szt	str＇czt	997＇82	90t＇ז8s	90才＇tes	SLT＇S6s	$888^{\prime} 069$	888 ＇069	szt＇szt	S2T＇szt	s69＇Tst	997＇8L	90¢＇TES	Lts＇t8s		9－E00－68Sで－dOd	
																	9－T00－2t8ET－ S $^{\text {d }}$	
		－															T00－6992T－MSV	
																	9－ 900 －Ts 6 TI	
		SSt＇89	TTL＇6L	т82＇90т	T82＇90T		TtT＇Es	TTL＇6L	$68 \varepsilon^{\prime} 06$	TTL＇62	T8＇90才	T82＇90才	т8＇＇90	т8＇90т	т8＇90т			
，	ャt＇̇＇s	9TL＇96	296＇00T	606＇9tT	LE＇ 2 IT	606＇9tt	ع99＇62T	80T＇tgT	عह＇＇99T	196＇00T	T8Z＇90T	G6G＇tit	606＇9tT		99T＇88T	t6\％	риешәa plop	800－00000－097 2τ
	¢te＇s	szo＇s8	szo＇s8	£99＇c6	т8＇90¢	т8＇＇90т	¢80＇6Tt	99t＇88T	997＇88T	szo＇s8	¢z0＇98	${ }^{688} 8^{\circ} 06$	¢99＇c6	\％8z＇90\％	606＇9t		$\mathrm{a}^{-800-685 z T-d o d ~}$	
																	8－T00－2t88T－MS	
	－																T00－6992T－SS甘	
	T	T69＇ti	2t6＇st	99z＇tz	99z＇tz	829＇0т	829＇0	276＇st	890＇8\％	276＇st	99z＇tz	9¢z＇tz	99z＇tz	99z＇tz	99z＇tz			
																v60	pl｜a入	T00－88t2T－MaH τ
	TtT＇Es	899＇＇S96	62L＇E66	LE8＇Lt＇t	8ti＇tŞ＇T	99t＇8st＇r	800＇982＇T	9Et＇sz＇T	992＇trs＇T	62L＇E66	9SS＇tuo＇T	L69＇t60＇T	L88＇LLT＇T	8it＇tSZ＇T	00t＇098＇T			
－	Tbt＇Es	osz＇0s8	0sz＇098	זE¢＇9s6	2T8＇z90＇T	2T8＇z90＇T	0s8＇06t＇T	999＇ 888^{\prime}＇	999＇T88＇T	0sz＇098	OSZ＇098	068 ＇806	זE¢＇9s6	2T8＇Z90＇T	ع60＇69t＇T		g－E00－68SzT－dOd	
																	T00－6992T－MS	
																	9－ 900 －Ts 6 TI	
		8tz＇ 50τ	08t＇\＆切	908＇t6T	908＇t6T	ع99＇s6	\＆s9＇s6	08t＇\＆切	079＇29T	08t＇$¢ 6 \mathrm{~L}$	908＇t6T	908＇T6T	908＇t6T	908＇T6T	908＇t6T		\forall－ $200-\mathrm{z} \mathrm{\ell t} \mathrm{\varepsilon} \mathrm{\tau}$－dOd	
	ャte＇s	97L＇96	296＇00T	606＇9ti	LES＇LZT	606＇9TI	ع99＇62T	80t＇tSt	عยて＇99t	296＇00T	T82＇90т	s6s＇tit	606＇9t	LES＇LZT	99T＇88โ	t6\％	${ }_{\text {риенад }}^{\text {pile }}$	too－z8000－010 ot
	ャTE＇s	szo＇G8	szo＇g8	£99＇G6	ธ8z＇90¢	т8＇＇90才	980＇6TT	99t＇88ז	999＇88T	9zo＇s8	9zo＇s8	$688^{\prime} 06$	ع99＇G6	т8＇＇90t	606＇9tt		g－E00－68SzT－dOd	
																	9－T00－2t88T－MS	
																	T00－6992T－ S	
		T69＇ti	z76＇GT	9Gz＇tz	99z＇tz	$829{ }^{\circ} 0$	829＇0	Z 66 ＇st	890＇81	276 ＇GT	9cz＇tz	9¢z＇Tz	9cz＇Tz		9Gz＇tz		9－ 900 －Ts6TI	
					9St								9St	95\％ 2	95212	t6\％	\forall coozerct－diod	T00－88000－NOJ 6
	82900	て\＆t＇E6T	ャ86＇T02	6 ¢8＇$£ 8$ \％	SLO＇s92	6 68＇$¢ 8$	928＇692	9 9z＇808	L9わ＇で¢	ャ\＆6＇T0Z	29s＇ztz	T6T＇\＆zz	6 68＇$¢ 8 \%$	9L0＇scz	โ\＆์＇9Lz			
	829＇0才	OSO＇0＜L	OSO＇OLI	908＇＇6T	z99＇ztz	z99＇ztz	020＇88	T\＆＇9L	ธ\＆\＆＇92	oso＇oli	oso＇0＜t	829＇08T	908＇t6T	z99＇ziz	678＇ 8 ¢		9－800－68SZT－dOd	
																	9－100－2t88T－ CSt	
																	too－6992T－Mst	
																	9－ 900 －Ts6TI	
		288＇$¢$	ャ88＇โ	2ts＇zt	2ts＇zt	9Sz＇tz	9sz＇tz	¢88＇โ	9ε T＇98	¢88＇โ¢	2ts＇zt	2TS＇2t	2ts＇zt	2ts＇zt	2TS＇2t		\forall－ 200 －zとを¢T－dOd	
																t60	plla人	800－zo880－dVO 8
	†โع＇s	9tL＇96	L96＇00T	606＇9Tt	LEs＇LZT	606＇9tt	899＇62T	80t＇tst	عย̌＇99T	299＇00t	T88＇90T	96s＇tit	606＇9TI	LES＇LZI	999＇88T		риеura［е\％）	
	†t¢＇s	szo＇s8	szo＇s8	ع99＇ 96	t88＇90¢	เ88＇90t	980＇6IT	99t＇88t	99T＇88	szo＇s8	9zo＇98	$68 \varepsilon^{\prime} 06$	89996	t82＇90t	606＇9Tt			
																	T00－6992T－MSt	
																	9－ $900-\mathrm{Ts} 6$ TI	
		T69＇ti	2t6＇st	9Sz＇tz	9Sz＇tz	829＇0才	829＇0т	2t6＇st	890＇81	276＇st	9Sz＇tz	9sz＇tz	9Sz＇Tz	9sz＇Tz	9Sz＇tz		－ $\mathbf{- 2 0 0 - z \varepsilon ¢ E T - d O d ~}$	
																560	pl｜o人	$800-08800-\mathrm{dtv}$ L
6nt－8t	${ }^{6 n \square} \forall$－TI	6nv－b	nc－8z	Inc－tz	mc－tt	Inc－L	unc－0¢	unc－ε ¢	unc－9t	unc－6	unc－z	Kew－92	KeW－6t	Kew－zt	Kew－s		ऽумт ：	1 1uzuoduos
๖¢४M	عє४М	г¢४м	ธ¢४М	овум	627M	$82 \times$ M	LZYM	9г7M	sz＞M	ャгヤM	عг犭M	zz＞M	זг＞M	0z7M	6г7M			

																＋60	pıla ${ }^{\text {a }}$	TT0－TOZ80－anl ε ¢
	गte＇s	9TL＇96	L96＇00才	606＇9tI	LES＇LZI	606＇9ti	899＇62T	80＇t＇ST	EとZ＇99T	296＇00t	t8z＇90t	96S＇tti	606＇9tt	L\＆＇LZI	99t＇88t		риеura［e\％ol	
	ャt＇＇s	¢zo＇s8	szo＇s8	£99＇s6	T88＇90］	โ88＇90T	S80＇6It	99t＇88t	99t＇88t	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇901	606＇9Tt		g^{-}－00－8¢tET－dOd	
																	9－ $000-2788 \mathrm{~T}-\mathrm{SSt}$	
																	T00－6997T－MSt	
		T69＇ti	266＇st	99z＇tz	9Sz＇tz	82900	82900	2t6＇st	890＇85	2t6＇st	9sz＇tz	9S2＇tz	9Sz＇tz	9Sz＇tz	9sz＇tz		9 9 90－TS6tt	
																	\forall－ $200-$－zter－dOd	
																＋6．0	Pila ${ }^{\text {a }}$	L00－0L4z0－d\＃O zz
	${ }^{82790}$				SLO＇9S2		${ }^{928} 698$		Let＇ri	¢¢6＇T02	299\％İ			$\frac{\text { SLO＇GSZ }}{\text { 299＇ziz }}$				
																	－－Too－zt88T－＜S	
																	T00－6992T－MS	
		$288 ' \varepsilon z$	ャ88＇โ¢	2tS＇zt	2ts＇zt	9SZ＇tz	992＇tz	ャ88＇โ	98t＇98	ャ88＇โ	2ts＇zt	2tS＇2t	2ts＇zt	2ts＇2t	2ts＇zt		$\mathrm{g}^{-1} 900$－Ts6TI	
																${ }^{6} 6^{\circ}$	p！！ax	TOO－GLZOT－MAH IZ
	เธモ＇s	9tL＇96	296＇00T	606＇9tI	LEs＇LZT	606＇9tt	ع99＇62T	80t＇tst	عย2＇99T	L96＇00T	T8Z＇901	96S＇tit	606＇9Tt	L\＆＇ 2 \％	999＇88T		риешәa［е¢0」	
	†t＇＇s	szo＇s8	szo＇s8	\＆99＇¢6	T82＇900	ז88＇90¢	980＇6IT	99t＇88t	99T＇88T	szo＇s8	szo＇s8	6^{68}＇06	\＆99＇s6	I88＇900	606＇9tI		a^{-}－Too－E¢tET－dOd	
																	9－ $000-2 t 885-\wedge$ St	
																	T00－6992T－SSV	
		T69＇TT	206＇st	9Sz＇tz	9sz＇tz	829＇0才	829＇0t	266＇st	890＇8i	$276{ }^{\text {cs }}$	9sz＇tz	9Sz＇tz	9Sz＇tz	9S2＇tz	9Sz＇tz		g － 900 －ts6tI	
	－																	
	ャt¢＇s	9tL＇96	L96＇00T	606＇9Tt	LE¢＇LZI	606＇9ti	ع99＇62T	80T＇tst	عยz＇99T	L96＇00T	T8Z＇90т	969＇tti	606＇9Tt	L\＆G＇LzI	999＇88T	16.0	$\begin{gathered} \text { pilad } \\ \text { pueuad perool } \end{gathered}$	too－tzStt－MaH 0 O
－	๑โE＇s	¢zo＇s8	szo＇s8	¢99＇S6	T8＇＇90¢	ธ88＇90¢	${ }_{\text {c }} \mathrm{E} 0^{\prime} 6 \mathrm{TIT}$	999＇88t	997＇88！	szo＇s8	¢zo＇s8	$688^{\prime} 06$	ع¢9＇s6	т8z＇90т	606＇9т		$\mathrm{g}^{-100-\varepsilon ¢ t ¢ T-d O d ~}$	
																	T00－6992T－MS	
	，	T69＇TI	2t6＇st	9S2＇tz	9sz＇tz	$829^{\circ} 0$	$8290{ }^{\circ}$	2t6＇st	890＇8t	276＇st	9sz＇tz	9Sz＇tz	9sz＇tz	9sz＇t2	9sz＇tz		9－900－Ts6Tt	
																	∇^{-}z00－z¢øET－dOd	
		T69＇ti	266＇st	9Sz＇tz	9Sz＇tz	829＇01	829＇0¢	2t6＇st	890＇8ז	2r6＇si	9Sz＇tz	9Sz＇Tz	9sz＇tz	9sz＇tz	9s＇＇tz	160	puewaa plilon	T00－26000－NOJ 6τ
\square																	9－T00－zt88T－MSt	
																	T00－6992T－MS	
		T69＇tt	2t6＇st	9S2＇tz	9Sz＇tz	82900	829＇0	2t6＇st	890＇8t	2t6＇st	9¢z＇tz	992＇tz	9Sz＇tz	9SZ＇tz	9SZ＇tz		\forall zoo－zとをET－dOd	
	ャtع＇s	9tL＇96	L96＇00T	606＇9tt	LEs＇LZT	606＇9ti	ع99＇62T	80T＇tST	عยz＇99T	L96＇00T	T8Z＇90T	96S＇tit	606＇9Tt	L\＆＇\angle \％T	999＇88T	160	${ }_{\text {puruara }}^{\text {pila }}$	too－0t000－40X 8 8
	๑TE＇s	szo＇g8	9zo＇s8	ع99＇G6	T88＇90¢	ธ8z＇90¢	980＇6TT	997＇88t	997＇88t	szo＇s8	szo＇g8	$68 \varepsilon^{\prime} 06$	ع99＇G6	T88＇90¢	606＇9tt		9－ $000-685$ ET－dOd	
																	T00－6992T－MS	
		T69＇Tt	2セ6＇St	9Sz＇tz	9sz＇tz	82900	829＇0	2t6＇st	890＇85	266＇st	9sz＇tz	9S2＇tz	9sz＇tz	9sz＇tz	9Sz＇tz		∇^{-}zoo－z¢¢ET－dod	
																＋6．0	p！！习入	T00－80000－1MS <1
		288＇દz	ャ88＇โع	2TS＇zt	2TS＇2t	9Sz＇tz	9sz＇tz	¢88＇โ	$98 \tau^{\prime} 98$	ャ88＇TE	2ts＇2t	2ts＇zt	2ts＇2t	2ts＇zt	2T¢＇2t			
																	8－800－68SIT－dOd	
																	－ －00－2t88T－ St	
																	too－6992T－Mst	
																	g － 900 －Ts6Tt	
		288＇६z	ャ88＇โ	2ts＇zt	2ts＇zt	9̧z＇tz	9¢z＇tz	ャ88＇โع	98ז＇98	ャ88＇TE	2TS＇2t	2TS＇zt	2ts＇zt	2TS＇zt	2Ts＇zt		\forall－ $200-$－z¢ET－dOd	
																160	plla	200－ttzzo－Sヨy 9t
	${ }^{829}{ }^{\circ} \mathrm{O}$ T	とを¢＇$¢ 6 \tau$	¢86＇toz	6¢8＇£๕\％	S20＇ssz	${ }^{\text {628＇} 288}$	${ }^{9888^{\prime} 698}$	${ }^{\text {972＇808 }}$	L9t＇zTE	${ }^{\text {¢ }}$ ¢＇toz	z99＇ztz	т6T＇غzz	698＇£̌\％	S20＇scz	Tع¢＇9L2			
	82900	oso＇0＜L	0so＇02L	908＇T6T	299＇ztz	z99＇ztz	020＇88	T\＆＇92\％	T\＆と＇92\％	oso＇02I	oso＇02I	829＇08t	908＇t6T	299＇ztz	6 68＇$¢ 8 \%$			
																	T00－6992T－MSt	
																	9－ $900-\mathrm{Ts} 6$ TI	
		288＇๕	¢88＇โ	2TS＇zt	2TS＇2t	9Sz＇tz	9sz＇tz	¢88＇โ	98T＇98	¢88＇โ	2ts＇zt	2ts＇zt	2ts＇zt	2ts＇zt	2ts＇zt			
6nt－8t	Snv－Tt	6nv－t	｜nc－8z	inc－Tz	inc－tr	nc－L	unc－08	unc－$-\varepsilon$	unc－9t	unc－6	unc－z	Kew－92	Kew－6t	Kew－zt	Kew－S	＋60	symi ：	T00－z8tzo－S3y st
D¢YM	عу才M	г¢才M	โ¢¢M	08٪M	627M	82才M	Lz＞M	927M	szıM	๖てヤM	عг犭M	てzıM	זz＞M	0гヌM	$6 \mathrm{~T} \times \mathrm{M}$			－ן！ıәдеN

 웅
 \qquad $\%$

 용 \qquad － \％ \qquad 0 \qquad 0 \qquad 0

21,256	21,256	21,256	21,256

		T69＇TT	2t6＇st	｜9SZ＇tz	｜9SZ＇Tz	1829＇0т	｜829＇0T	276＇st	｜890＇8T	2t6＇st	19SZ＇tz	｜9SZ＇tz	｜99Z＇tz	｜9Sz＇tz	｜9Sz＇tz		∇^{-}200－2¢tET－dOd
																160	pl｜${ }^{\text {¢ }}$
	†tع＇S	9T＜＇96	L96＇00才	606＇9tt	L\＆S＇LZT	606＇9Tt	E99＇62T	80T＇tSt	E\＆て＇9ST	L96＇00T	T8z＇90T	S69＇tit	606＇9TT	L\＆＇\angle＇LT	999＇88t		puemad reto
	†te＇s	szo＇s8	szo＇s8	عS9＇S6	T88＇90才	I8Z＇90才	S80＇6IT	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع¢9＇S6	T88＇90T	606＇9TI		a^{-}－00－68SLT－dOd
																	9－T00－2t8ET－\langle S
				－													T00－6992T－ASt
		I69＇TI	2セ6＇st	9Sて＇tz	9SZ＇tz	829＇0	889＇0т	2t6＇st	890＇8T	2セ6＇st	9Sz＇tz	9¢z＇tz	9¢Z＇tz	9Sz＇tz	9Sz＇tz		∇^{-}－00－2¢をET－dOd
																＋6．0	p！！ox
	8z9＇01	2\＆ゅ＇\＆6โ	｜¢ ¢＇toz	688＇£ ${ }^{\text {c }}$	9L0＇s9z	6T8＇\＆ะz	9zع＇69z	9たて＇808	L9カ＇てṫ	＋E6＇T0Z	Z9s＇ztz	T6T＇غzz	6T8＇દยz	SLO＇s9z	Tદย＇9LZ		
	829＇0¢	Oso＇02L	0so＇oLI	908^{\prime}＇6¢	299＇zI2	299＇zt2	0L0＇882	т ε＇＇9Lz	т ε＇＇9Lz	0so＇02I	0so＇02I	829＇08T	$90 \varepsilon^{\prime}$＇t6	299＇zTZ	6 68＇$غ \varepsilon$ ¢		a^{-}－00－68SZT－dOd
			－														T00－6992T－MS
																	g soo－ts6 Tt
	－	288＇$¢ 乙$	†88＇TE	2TS＇2t	てTS＇Zす	9¢z＇tz	9Sて＇tz	†88＇TE	$9 \varepsilon \underbrace{\prime} 9 \varepsilon$	†88＇t¢	2TS＇Zt	2TS＇Zt	2TS＇で	2TS＇Zt	2TS＇zt		∇^{-}Z00－z८tET－dOd
																t60	p！od
	†te＇S	9T＜＇96	L96＇00T	606＇9tT	L\＆S＇LZT	606＇9TI	E99＇62T	80才＇tST	عદて＇9St	L96＇00T	T8z＇90¢	S6S＇tIt	606＇9TI	L\＆＇\angle LT	999＇88t		
	†t\＆＇S	Szo＇s8	szo＇s8	عg9＇s6	т88＇90才	T88＇90才	980＇6TI	99т＇88โ	997＇88	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90才	606＇9TI		a^{-}T00－EStET－dOd
																	T00－6992T－\SV
	－	I69＇IT	2セ6＇ST	9Š＇tz	9SZ＇tz	829＇0T	8290 ${ }^{\circ}$	2v6＇st	890＇8T	$2 \succ 6 ' \mathrm{ST}$	9SZ＇tz	9SZ＇tz	9SZ＇tz	9Sz＇tz	9Sz＇tz		9－ $900-\mathrm{Ts6TI}$
－		1															
																t60	plid
\bigcirc										でく＇tz	Lヤて＇80T	20t＇\＆tI	20カ＇ETI	860＇ 80τ	ع60＇ 80τ		
	－									608 ＇0	629＇L8	ャ8L＇26	ャ8L＇z6	ヤくす＇て8	†くす＇Z8		
																	g－T00－2t8ET－\langle SV
										ع\＆t＇vt	6T9＇02	6T9＇02	699＇02	6T9＇02	6T9＇02		T00－6992T－\S
																	∇^{-}200－zとtET－dOd
																16.0	p！！${ }^{\text {¢ }}$
	0ャع＇тT	t9t＇ST	6T9＇02	6T9＇02	608＇0T	$60 \varepsilon^{\prime} 0 \tau$	t9t＇st	9zs＇LT	｜ 9 t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇0z	6T9＇02	6T9＇0z		
	$0 \downarrow \varepsilon$＇TI	t9t＇ST	6T9＇02	6 69＇02	$60 \varepsilon^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	$92 S^{\prime} \angle$ L	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		g－t00－2t8ET－ CSV
																	T00－6992T－\S
																	g soo－ts6tt
																16.0	p！｜e人
GSt＇s	¢t8＇$¢ 6$	886＇L6	20ヵ＇\＆tI	tuL＇\＆	20ヵ＇ETI	ELL＇SZT	98t＇6ヶT	9ts＇TST	886＇L6	860＇E0T	くヤて＇80T	20t＇\＆tI	TTL＇\＆てT	TマO＇¢\＆โ	$886{ }^{\prime} L 6$		риешәа［е\％O＿
SST＇s		かくずて8	カ8L＇z6	ع60＇\＆0	860＇E0т	t9t＇stI	ธマO＇ャะโ	тマO＇セ¢โ	ヤくガて8		6z9＇L8	ャ8L＇26	860＇ 80τ	20カ＇とII	0zع＇LL		W－ 000 －ttzet－${ }^{\text {chs }}$
	0ヶE＇TI	ャ9t＇ST	6T9＇02	6T9＇02	$608^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	9zs＇LT	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		
																	T00－6992T－\SV
																	9 500－ts6tI
																	∇^{-}200－zとtET－dOd
																260	p！ı̇
	†te＇s	9T＜＇96	L96＇00T	606＇9tt	L\＆S＇LZT	606＇9TI	E99＇6ZT	80T＇tST	عとて＇9ST	L96＇00T	T8z＇90¢	S6S＇tII	606＇9TI	LES＇LZI	999＇88t		риеuəa 1e\％ol
	†tع＇s	Szo＇s8	9zo＇s8	\＆s9＇s6	โ88＇90T	โ88＇90т	980＇6TI	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		－${ }^{-100-\varepsilon ¢ t E T-d O d ~}$
																	9－T00－2t8ET－ d $^{\text {d }}$
																	T00－6992T－${ }^{\text {S }}$
		I69＇It	2ャ6＇st	9SZ＇tz	9SZ＇TZ	829＇0T	8290 0	2t6＇ST	890＇8t	2t6＇st	9SZ＇TZ	9Sz＇tz	9¢Z＇tz	9Sz＇tz	9¢Z＇tz		g ${ }^{-900-t s 6 T t}$
																	∇^{-}200－zとtET－dOd
																260	plı］
	†tદ＇S	9TL＇96	296＇00T	606＇9tt	L\＆s＇LZT	606＇9TI	E99＇62T	80T＇tSt	عยて＇99т	L96＇00T	T82＇90T	S6S＇tIt	606＇9TI	LES＇LZT	999＇88T		
	†tع＇s	¢zo＇s8	Szo＇s8	\＆s9＇s6	т88＇90T	โ88＇90т	980＇6TI	99т＇88โ	997＇88	szo＇s8	¢zo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		8^{-}Too－EStET－dOd
																	T00－6992T－${ }^{\text {SV }}$
		I69＇тT	2セ6＇st	9Š＇tz	9Sz＇tz	8z9＇0	8290 0	てt6＇st	890＇8t	2t6＇st	9Sz＇tz	9Sz＇tz	9Sて＇tz	9SZ＇TZ	9Sz＇tz		g $=$ S00－ts6TI
																	－ $200-2$ をもET－dOd
6пท－8T	6n \downarrow－TI	6nv－t	Inc－8z	Inc－tz	Inc－t	Inc－L	unc－0¢	unc－ε ¢	unc－9t	unc－6	unc－z	Kew－9z	KeW－6T	KeW－ZT	Ken－s		SצMI ：
เعฯM	عह才м	टعฯм	тع才м	0¢צм	62＞M	827M	LzYM	92＞M	szıM	ャてヤM	عг犭м	ट乙ヶм	тZ犭M	0г¢M	6โ＞M		

606 ＇9tı范

		T69＇TT	2t6＇st	｜9SZ＇tz	｜9SZ＇Tz	1829＇0т	｜829＇0T	276＇st	｜890＇8T	2t6＇st	19SZ＇tz	｜9SZ＇tz	｜99Z＇tz	｜9Sz＇tz	｜9Sz＇tz		∇^{-}200－2¢tET－dOd
																160	pl｜${ }^{\text {¢ }}$
	†tع＇S	9T＜＇96	L96＇00才	606＇9tt	L\＆S＇LZT	606＇9Tt	E99＇62T	80T＇tSt	E\＆て＇9ST	L96＇00T	T8z＇90T	S69＇tit	606＇9TT	L\＆＇\angle＇LT	999＇88t		puemad reto
	†te＇s	szo＇s8	szo＇s8	عS9＇S6	T88＇90才	I8Z＇90才	S80＇6IT	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع¢9＇S6	T88＇90T	606＇9TI		a^{-}－00－68SLT－dOd
																	9－T00－2t8ET－\langle S
				－													T00－6992T－ASt
		I69＇TI	2セ6＇st	9Sて＇tz	9SZ＇tz	829＇0	889＇0т	2t6＇st	890＇8T	2セ6＇st	9Sz＇tz	9¢z＇tz	9¢Z＇tz	9Sz＇tz	9Sz＇tz		∇^{-}－00－2¢をET－dOd
																＋6．0	p！！ox
	8z9＇01	2\＆ゅ＇\＆6โ	｜¢ ¢＇toz	688＇£ ${ }^{\text {c }}$	9L0＇s9z	6T8＇\＆ะz	9zع＇69z	9たて＇808	L9カ＇てṫ	＋E6＇T0Z	Z9s＇ztz	T6T＇غzz	6T8＇દยz	SLO＇s9z	Tદย＇9LZ		
	829＇0¢	Oso＇02L	0so＇oLI	908^{\prime}＇6¢	299＇zI2	299＇zt2	0L0＇882	т ε＇＇9Lz	т ε＇＇9Lz	0so＇02I	0so＇02I	829＇08T	$90 \varepsilon^{\prime}$＇t6	299＇zTZ	6 68＇$غ \varepsilon$ ¢		a^{-}－00－68SZT－dOd
			－														T00－6992T－MS
																	g soo－ts6 Tt
	－	288＇$¢ 乙$	†88＇TE	2TS＇2t	てTS＇Zす	9¢z＇tz	9Sて＇tz	†88＇TE	$9 \varepsilon \underbrace{\prime} 9 \varepsilon$	†88＇t¢	2TS＇Zt	2TS＇Zt	2TS＇で	2TS＇Zt	2TS＇zt		∇^{-}Z00－z८tET－dOd
																t60	p！od
	†te＇S	9T＜＇96	L96＇00T	606＇9tT	L\＆S＇LZT	606＇9TI	E99＇62T	80才＇tST	عદて＇9St	L96＇00T	T8z＇90¢	S6S＇tIt	606＇9TI	L\＆＇\angle LT	999＇88t		
	†t\＆＇S	Szo＇s8	szo＇s8	عg9＇s6	т88＇90才	T88＇90才	980＇6TI	99т＇88โ	997＇88	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90才	606＇9TI		a^{-}T00－EStET－dOd
																	T00－6992T－\SV
	－	I69＇IT	2セ6＇ST	9Š＇tz	9SZ＇tz	829＇0T	8290 ${ }^{\circ}$	2v6＇st	890＇8T	$2 \succ 6 ' \mathrm{ST}$	9SZ＇tz	9SZ＇tz	9SZ＇tz	9Sz＇tz	9Sz＇tz		9－ $900-\mathrm{Ts6TI}$
－		1															
																t60	plid
\bigcirc										でく＇tz	Lヤて＇80T	20t＇\＆tI	20カ＇ETI	860＇ 80τ	ع60＇ 80τ		
	－									608 ＇0	629＇L8	ャ8L＇26	ャ8L＇z6	ヤくす＇て8	†くす＇Z8		
																	g－T00－2t8ET－\langle SV
										ع\＆t＇vt	6T9＇02	6T9＇02	699＇02	6T9＇02	6T9＇02		T00－6992T－\S
																	∇^{-}200－zとtET－dOd
																16.0	p！！${ }^{\text {¢ }}$
	0ャع＇тT	t9t＇ST	6T9＇02	6T9＇02	608＇0T	$60 \varepsilon^{\prime} 0 \tau$	t9t＇st	9zs＇LT	｜ 9 t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇0z	6T9＇02	6T9＇0z		
	$0 \downarrow \varepsilon$＇TI	t9t＇ST	6T9＇02	6 69＇02	$60 \varepsilon^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	$92 S^{\prime} \angle$ L	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		g－t00－2t8ET－ CSV
																	T00－6992T－\S
																	g soo－ts6tt
																16.0	p！｜e人
GSt＇s	¢t8＇$¢ 6$	886＇L6	20ヵ＇\＆tI	tuL＇\＆	20ヵ＇ETI	ELL＇SZT	98t＇6ヶT	9ts＇TST	886＇L6	860＇E0T	くヤて＇80T	20t＇\＆tI	TTL＇\＆てT	TマO＇¢\＆โ	$886{ }^{\prime} L 6$		риешәа［е\％O＿
SST＇s		かくずて8	カ8L＇z6	ع60＇\＆0	860＇E0т	t9t＇stI	ธマO＇ャะโ	тマO＇セ¢โ	ヤくガて8		6z9＇L8	ャ8L＇26	860＇ 80τ	20カ＇とII	0zع＇LL		W－ 000 －ttzet－${ }^{\text {chs }}$
	0ヶE＇TI	ャ9t＇ST	6T9＇02	6T9＇02	$608^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	9zs＇LT	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		
																	T00－6992T－\SV
																	9 500－ts6tI
																	∇^{-}200－zとtET－dOd
																260	p！ı̇
	†te＇s	9T＜＇96	L96＇00T	606＇9tt	L\＆S＇LZT	606＇9TI	E99＇6ZT	80T＇tST	عとて＇9ST	L96＇00T	T8z＇90¢	S6S＇tII	606＇9TI	LES＇LZI	999＇88t		риеuəa 1e\％ol
	†tع＇s	Szo＇s8	9zo＇s8	\＆s9＇s6	โ88＇90T	โ88＇90т	980＇6TI	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		－${ }^{-100-\varepsilon ¢ t E T-d O d ~}$
																	9－T00－2t8ET－ d $^{\text {d }}$
																	T00－6992T－${ }^{\text {S }}$
		I69＇It	2ャ6＇st	9SZ＇tz	9SZ＇TZ	829＇0T	8290 0	2t6＇ST	890＇8t	2t6＇st	9SZ＇TZ	9Sz＇tz	9¢Z＇tz	9Sz＇tz	9¢Z＇tz		g ${ }^{-900-t s 6 T t}$
																	∇^{-}200－zとtET－dOd
																260	plı］
	†tદ＇S	9TL＇96	296＇00T	606＇9tt	L\＆s＇LZT	606＇9TI	E99＇62T	80T＇tSt	عยて＇99т	L96＇00T	T82＇90T	S6S＇tIt	606＇9TI	LES＇LZT	999＇88T		
	†tع＇s	¢zo＇s8	Szo＇s8	\＆s9＇s6	т88＇90T	โ88＇90т	980＇6TI	99т＇88โ	997＇88	szo＇s8	¢zo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		8^{-}Too－EStET－dOd
																	T00－6992T－${ }^{\text {SV }}$
		I69＇тT	2セ6＇st	9Š＇tz	9Sz＇tz	8z9＇0	8290 0	てt6＇st	890＇8t	2t6＇st	9Sz＇tz	9Sz＇tz	9Sて＇tz	9SZ＇TZ	9Sz＇tz		g $=$ S00－ts6TI
																	－ $200-2$ をもET－dOd
6пท－8T	6n \downarrow－TI	6nv－t	Inc－8z	Inc－tz	Inc－t	Inc－L	unc－0¢	unc－ε ¢	unc－9t	unc－6	unc－z	Kew－9z	KeW－6T	KeW－ZT	Ken－s		SצMI ：
เعฯM	عह才м	टعฯм	тع才м	0¢צм	62＞M	827M	LzYM	92＞M	szıM	ャてヤM	عг犭м	ट乙ヶм	тZ犭M	0г¢M	6โ＞M		

		T69＇TT	2t6＇st	｜9SZ＇tz	｜9SZ＇Tz	1829＇0т	｜829＇0T	276＇st	｜890＇8T	2t6＇st	19SZ＇tz	｜9SZ＇tz	｜99Z＇tz	｜9Sz＇tz	｜9Sz＇tz		∇^{-}200－2¢tET－dOd
																160	pl｜${ }^{\text {¢ }}$
	†tع＇S	9T＜＇96	L96＇00才	606＇9tt	L\＆S＇LZT	606＇9Tt	E99＇62T	80T＇tSt	E\＆て＇9ST	L96＇00T	T8z＇90T	S69＇tit	606＇9TT	L\＆＇\angle＇LT	999＇88t		puemad reto
	†te＇s	szo＇s8	szo＇s8	عS9＇S6	T88＇90才	I8Z＇90才	S80＇6IT	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع¢9＇S6	T88＇90T	606＇9TI		a^{-}－00－68SLT－dOd
																	9－T00－2t8ET－\langle S
				－													T00－6992T－ASt
		I69＇TI	2セ6＇st	9Sて＇tz	9SZ＇tz	829＇0	889＇0т	2t6＇st	890＇8T	2セ6＇st	9Sz＇tz	9¢z＇tz	9¢Z＇tz	9Sz＇tz	9Sz＇tz		∇^{-}－00－2¢をET－dOd
																＋6．0	p！！ox
	8z9＇01	2\＆ゅ＇\＆6โ	｜¢ ¢＇toz	688＇£ ${ }^{\text {c }}$	9L0＇s9z	6T8＇\＆ะz	9zع＇69z	9たて＇808	L9カ＇てṫ	＋E6＇T0Z	Z9s＇ztz	T6T＇غzz	6T8＇દยz	SLO＇s9z	Tદย＇9LZ		
	829＇0¢	Oso＇02L	0so＇oLI	908^{\prime}＇6¢	299＇zI2	299＇zt2	0L0＇882	т ε＇＇9Lz	т ε＇＇9Lz	0so＇02I	0so＇02I	829＇08T	$90 \varepsilon^{\prime}$＇t6	299＇zTZ	6 68＇$غ \varepsilon$ ¢		a^{-}－00－68SZT－dOd
			－														T00－6992T－MS
																	g soo－ts6 Tt
	－	288＇$¢ 乙$	†88＇TE	2TS＇2t	てTS＇Zす	9¢z＇tz	9Sて＇tz	†88＇TE	$9 \varepsilon \underbrace{\prime} 9 \varepsilon$	†88＇t¢	2TS＇Zt	2TS＇Zt	2TS＇で	2TS＇Zt	2TS＇zt		∇^{-}Z00－z८tET－dOd
																t60	p！od
	†te＇S	9T＜＇96	L96＇00T	606＇9tT	L\＆S＇LZT	606＇9TI	E99＇62T	80才＇tST	عદて＇9St	L96＇00T	T8z＇90¢	S6S＇tIt	606＇9TI	L\＆＇\angle LT	999＇88t		
	†t\＆＇S	Szo＇s8	szo＇s8	عg9＇s6	т88＇90才	T88＇90才	980＇6TI	99т＇88โ	997＇88	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90才	606＇9TI		a^{-}T00－EStET－dOd
																	T00－6992T－\SV
	－	I69＇IT	2セ6＇ST	9Š＇tz	9SZ＇tz	829＇0T	8290 ${ }^{\circ}$	2v6＇st	890＇8T	$2 \succ 6 ' \mathrm{ST}$	9SZ＇tz	9SZ＇tz	9SZ＇tz	9Sz＇tz	9Sz＇tz		9－ $900-\mathrm{Ts6TI}$
－		1															
																t60	plid
\bigcirc										でく＇tz	Lヤて＇80T	20t＇\＆tI	20カ＇ETI	860＇ 80τ	ع60＇ 80τ		
	－									608 ＇0	629＇L8	ャ8L＇26	ャ8L＇z6	ヤくす＇て8	†くす＇Z8		
																	g－T00－2t8ET－\langle SV
										ع\＆t＇vt	6T9＇02	6T9＇02	699＇02	6T9＇02	6T9＇02		T00－6992T－\S
																	∇^{-}200－zとtET－dOd
																16.0	p！！${ }^{\text {¢ }}$
	0ャع＇тT	t9t＇ST	6T9＇02	6T9＇02	608＇0T	$60 \varepsilon^{\prime} 0 \tau$	t9t＇st	9zs＇LT	｜ 9 t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇0z	6T9＇02	6T9＇0z		
	$0 \downarrow \varepsilon$＇TI	t9t＇ST	6T9＇02	6 69＇02	$60 \varepsilon^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	$92 S^{\prime} \angle$ L	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		g－t00－2t8ET－ CSV
																	T00－6992T－\S
																	g soo－ts6tt
																16.0	p！｜e人
GSt＇s	¢t8＇$¢ 6$	886＇L6	20ヵ＇\＆tI	tuL＇\＆	20ヵ＇ETI	ELL＇SZT	98t＇6ヶT	9ts＇TST	886＇L6	860＇E0T	くヤて＇80T	20t＇\＆tI	TTL＇\＆てT	TマO＇¢\＆โ	$886{ }^{\prime} L 6$		риешәа［е\％O＿
SST＇s		かくずて8	カ8L＇z6	ع60＇\＆0	860＇E0т	t9t＇stI	ธマO＇ャะโ	тマO＇セ¢โ	ヤくガて8		6z9＇L8	ャ8L＇26	860＇ 80τ	20カ＇とII	0zع＇LL		W－ 000 －ttzet－${ }^{\text {chs }}$
	0ヶE＇TI	ャ9t＇ST	6T9＇02	6T9＇02	$608^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	9zs＇LT	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		
																	T00－6992T－\SV
																	9 500－ts6tI
																	∇^{-}200－zとtET－dOd
																260	p！ı̇
	†te＇s	9T＜＇96	L96＇00T	606＇9tt	L\＆S＇LZT	606＇9TI	E99＇6ZT	80T＇tST	عとて＇9ST	L96＇00T	T8z＇90¢	S6S＇tII	606＇9TI	LES＇LZI	999＇88t		риеuəa 1e\％ol
	†tع＇s	Szo＇s8	9zo＇s8	\＆s9＇s6	โ88＇90T	โ88＇90т	980＇6TI	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		－${ }^{-100-\varepsilon ¢ t E T-d O d ~}$
																	9－T00－2t8ET－ d $^{\text {d }}$
																	T00－6992T－${ }^{\text {S }}$
		I69＇It	2ャ6＇st	9SZ＇tz	9SZ＇TZ	829＇0T	8290 0	2t6＇ST	890＇8t	2t6＇st	9SZ＇TZ	9Sz＇tz	9¢Z＇tz	9Sz＇tz	9¢Z＇tz		g ${ }^{-900-t s 6 T t}$
																	∇^{-}200－zとtET－dOd
																260	plı］
	†tદ＇S	9TL＇96	296＇00T	606＇9tt	L\＆s＇LZT	606＇9TI	E99＇62T	80T＇tSt	عยて＇99т	L96＇00T	T82＇90T	S6S＇tIt	606＇9TI	LES＇LZT	999＇88T		
	†tع＇s	¢zo＇s8	Szo＇s8	\＆s9＇s6	т88＇90T	โ88＇90т	980＇6TI	99т＇88โ	997＇88	szo＇s8	¢zo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		8^{-}Too－EStET－dOd
																	T00－6992T－${ }^{\text {SV }}$
		I69＇тT	2セ6＇st	9Š＇tz	9Sz＇tz	8z9＇0	8290 0	てt6＇st	890＇8t	2t6＇st	9Sz＇tz	9Sz＇tz	9Sて＇tz	9SZ＇TZ	9Sz＇tz		g $=$ S00－ts6TI
																	－ $200-2$ をもET－dOd
6пท－8T	6n \downarrow－TI	6nv－t	Inc－8z	Inc－tz	Inc－t	Inc－L	unc－0¢	unc－ε ¢	unc－9t	unc－6	unc－z	Kew－9z	KeW－6T	KeW－ZT	Ken－s		SצMI ：
เعฯM	عह才м	टعฯм	тع才м	0¢צм	62＞M	827M	LzYM	92＞M	szıM	ャてヤM	عг犭м	ट乙ヶм	тZ犭M	0г¢M	6โ＞M		

		T69＇TT	2t6＇st	｜9SZ＇tz	｜9SZ＇Tz	1829＇0т	｜829＇0T	276＇st	｜890＇8T	2t6＇st	19SZ＇tz	｜9SZ＇tz	｜99Z＇tz	｜9Sz＇tz	｜9Sz＇tz		∇^{-}200－2¢tET－dOd
																160	pl｜${ }^{\text {¢ }}$
	†tع＇S	9T＜＇96	L96＇00才	606＇9tt	L\＆S＇LZT	606＇9Tt	E99＇62T	80T＇tSt	E\＆て＇9ST	L96＇00T	T8z＇90T	S69＇tit	606＇9TT	L\＆＇\angle＇LT	999＇88t		puemad reto
	†te＇s	szo＇s8	szo＇s8	عS9＇S6	T88＇90才	I8Z＇90才	S80＇6IT	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع¢9＇S6	T88＇90T	606＇9TI		a^{-}－00－68SLT－dOd
																	9－T00－2t8ET－\langle S
				－													T00－6992T－ASt
		I69＇TI	2セ6＇st	9Sて＇tz	9SZ＇tz	829＇0	889＇0т	2t6＇st	890＇8T	2セ6＇st	9Sz＇tz	9¢z＇tz	9¢Z＇tz	9Sz＇tz	9Sz＇tz		∇^{-}－00－2¢をET－dOd
																＋6．0	p！！ox
	8z9＇01	2\＆ゅ＇\＆6โ	｜¢ ¢＇toz	688＇£ ${ }^{\text {c }}$	9L0＇s9z	6T8＇\＆ะz	9zع＇69z	9たて＇808	L9カ＇てṫ	＋E6＇T0Z	Z9s＇ztz	T6T＇غzz	6T8＇દยz	SLO＇s9z	Tદย＇9LZ		
	829＇0¢	Oso＇02L	0so＇oLI	908^{\prime}＇6¢	299＇zI2	299＇zt2	0L0＇882	т ε＇＇9Lz	т ε＇＇9Lz	0so＇02I	0so＇02I	829＇08T	$90 \varepsilon^{\prime}$＇t6	299＇zTZ	6 68＇$غ \varepsilon$ ¢		a^{-}－00－68SZT－dOd
			－														T00－6992T－MS
																	g soo－ts6 Tt
	－	288＇$¢ 乙$	†88＇TE	2TS＇2t	てTS＇Zす	9¢z＇tz	9Sて＇tz	†88＇TE	$9 \varepsilon \underbrace{\prime} 9 \varepsilon$	†88＇t¢	2TS＇Zt	2TS＇Zt	2TS＇で	2TS＇Zt	2TS＇zt		∇^{-}Z00－z८tET－dOd
																t60	p！od
	†te＇S	9T＜＇96	L96＇00T	606＇9tT	L\＆S＇LZT	606＇9TI	E99＇62T	80才＇tST	عદて＇9St	L96＇00T	T8z＇90¢	S6S＇tIt	606＇9TI	L\＆＇\angle LT	999＇88t		
	†t\＆＇S	Szo＇s8	szo＇s8	عg9＇s6	т88＇90才	T88＇90才	980＇6TI	99т＇88โ	997＇88	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90才	606＇9TI		a^{-}T00－EStET－dOd
																	T00－6992T－\SV
	－	I69＇IT	2セ6＇ST	9Š＇tz	9SZ＇tz	829＇0T	8290 ${ }^{\circ}$	2v6＇st	890＇8T	$2 \succ 6 ' \mathrm{ST}$	9SZ＇tz	9SZ＇tz	9SZ＇tz	9Sz＇tz	9Sz＇tz		9－ $900-\mathrm{Ts6TI}$
－		1															
																t60	plid
\bigcirc										でく＇tz	Lヤて＇80T	20t＇\＆tI	20カ＇ETI	860＇ 80τ	ع60＇ 80τ		
	－									608 ＇0	629＇L8	ャ8L＇26	ャ8L＇z6	ヤくす＇て8	†くす＇Z8		
																	g－T00－2t8ET－\langle SV
										ع\＆t＇vt	6T9＇02	6T9＇02	699＇02	6T9＇02	6T9＇02		T00－6992T－\S
																	∇^{-}200－zとtET－dOd
																16.0	p！！${ }^{\text {¢ }}$
	0ャع＇тT	t9t＇ST	6T9＇02	6T9＇02	608＇0T	$60 \varepsilon^{\prime} 0 \tau$	t9t＇st	9zs＇LT	｜ 9 t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇0z	6T9＇02	6T9＇0z		
	$0 \downarrow \varepsilon$＇TI	t9t＇ST	6T9＇02	6 69＇02	$60 \varepsilon^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	$92 S^{\prime} \angle$ L	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		g－t00－2t8ET－ CSV
																	T00－6992T－\S
																	g soo－ts6tt
																16.0	p！｜e人
GSt＇s	¢t8＇$¢ 6$	886＇L6	20ヵ＇\＆tI	tuL＇\＆	20ヵ＇ETI	ELL＇SZT	98t＇6ヶT	9ts＇TST	886＇L6	860＇E0T	くヤて＇80T	20t＇\＆tI	TTL＇\＆てT	TマO＇¢\＆โ	$886{ }^{\prime} L 6$		риешәа［е\％O＿
SST＇s		かくずて8	カ8L＇z6	ع60＇\＆0	860＇E0т	t9t＇stI	ธマO＇ャะโ	тマO＇セ¢โ	ヤくガて8		6z9＇L8	ャ8L＇26	860＇ 80τ	20カ＇とII	0zع＇LL		W－ 000 －ttzet－${ }^{\text {chs }}$
	0ヶE＇TI	ャ9t＇ST	6T9＇02	6T9＇02	$608^{\prime} 0 \tau$	$608^{\prime} 0 \tau$	t9t＇st	9zs＇LT	t9t＇st	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02	6T9＇02		
																	T00－6992T－\SV
																	9 500－ts6tI
																	∇^{-}200－zとtET－dOd
																260	p！ı̇
	†te＇s	9T＜＇96	L96＇00T	606＇9tt	L\＆S＇LZT	606＇9TI	E99＇6ZT	80T＇tST	عとて＇9ST	L96＇00T	T8z＇90¢	S6S＇tII	606＇9TI	LES＇LZI	999＇88t		риеuəa 1e\％ol
	†tع＇s	Szo＇s8	9zo＇s8	\＆s9＇s6	โ88＇90T	โ88＇90т	980＇6TI	99T＇88โ	997＇88โ	szo＇s8	szo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		－${ }^{-100-\varepsilon ¢ t E T-d O d ~}$
																	9－T00－2t8ET－ d $^{\text {d }}$
																	T00－6992T－${ }^{\text {S }}$
		I69＇It	2ャ6＇st	9SZ＇tz	9SZ＇TZ	829＇0T	8290 0	2t6＇ST	890＇8t	2t6＇st	9SZ＇TZ	9Sz＇tz	9¢Z＇tz	9Sz＇tz	9¢Z＇tz		g ${ }^{-900-t s 6 T t}$
																	∇^{-}200－zとtET－dOd
																260	plı］
	†tદ＇S	9TL＇96	296＇00T	606＇9tt	L\＆s＇LZT	606＇9TI	E99＇62T	80T＇tSt	عยて＇99т	L96＇00T	T82＇90T	S6S＇tIt	606＇9TI	LES＇LZT	999＇88T		
	†tع＇s	¢zo＇s8	Szo＇s8	\＆s9＇s6	т88＇90T	โ88＇90т	980＇6TI	99т＇88โ	997＇88	szo＇s8	¢zo＇s8	$68 \varepsilon^{\prime} 06$	ع99＇s6	T88＇90T	606＇9TI		8^{-}Too－EStET－dOd
																	T00－6992T－${ }^{\text {SV }}$
		I69＇тT	2セ6＇st	9Š＇tz	9Sz＇tz	8z9＇0	8290 0	てt6＇st	890＇8t	2t6＇st	9Sz＇tz	9Sz＇tz	9Sて＇tz	9SZ＇TZ	9Sz＇tz		g $=$ S00－ts6TI
																	－ $200-2$ をもET－dOd
6пท－8T	6n \downarrow－TI	6nv－t	Inc－8z	Inc－tz	Inc－t	Inc－L	unc－0¢	unc－ε ¢	unc－9t	unc－6	unc－z	Kew－9z	KeW－6T	KeW－ZT	Ken－s		SצMI ：
เعฯM	عह才м	टعฯм	тع才м	0¢צм	62＞M	827M	LzYM	92＞M	szıM	ャてヤM	عг犭м	ट乙ヶм	тZ犭M	0г¢M	6โ＞M		

 －N \square

 24 IND－01002－010

 0 $\stackrel{\circ}{\circ}$ \because 0.97 \begin{tabular}{|c|r|}
\hline 0.94 \&

\hline \& 233,819

\hline

\hline 0.94 \& 116,909

\hline \& 116,909

\hline 0.94 \&

\hline
\end{tabular} $\%$ $\stackrel{\circ}{\circ}$ \square $\stackrel{\circ}{0}$

共为 L

	9¢Z＇tz	t98＇988	698＇E0t	LE9＇L9t	OST＇OTS	LE9＇L9t	299＇8TS	โعt＇9T9	†と6＇tて9	698＇E0t	SZT＇GZt	T88＇9tt	Lع9＇L9t	OST＇OTS	Z99＇ZS9
	9¢Z＇tz	00T＇0ヶ¢	00t＇0ヶ\＆	てT9＇288	sZT＇SZt	SZT＇sZt	OせT＇9くt	Z99＇ZSS	299＇ZS9	00t＇0ヶ\＆	00T＇0ヶ¢	9¢8＇т98	2T9＇Z88	SZT＇SZt	LE9＇L9＊
		t9L＇9t	69L＇E9	SZ0＇s8	Szo＇s8	てTS＇Zち	てTS＇Zす	694＇E9	TLZ＇ZL	694＇E9	¢Z0＇s8	SZ0＇s8	¢Z0＇s8	¢Z0＇S8	SZo＇s8
	†Tع＇S	9Tく＇96	L96＇00T	606＇9TT	LEs＇LZT	606＇9TT	E99＇62T	80t＇tST	عยて＇9st	L96＇00才	T8て＇90才	969＇tIT	606＇9TT	LES＇LZT	99T＇8ET
		SZ0＇s8	SZ0＇¢8	£¢9＇¢6	T82＇90T	182＇90才	980＇6IT	99T＇88T	99T＇88T	SZ0＇s8	SZ0＇s8	$68 \varepsilon^{\prime} 06$	ع¢9＇S6	T8Z＇90T	606＇9TT
6nv－8t	6nv－tt	6nv－t	Inc－8z	Inc－tz	Inc－t	Inc－L	unc－0	unc－εz	unc－9t	unc－6	unc－z	Kew－9Z	KeW－6T	KeW－ZT	Kew－s
ธ¢४м	ع८犭M	乙Е४м	โع才м	0ع४м	629M	8z＞M	LZYM	92才М	sz＞M	†て》M	عг犭м	乙乙૪м	тZ＞M	0z＞M	$6 \tau \times M$

[^0]$$
49 \text { PTC5083-12/NC }
$$

50 PTC0458－11／B

$$
\forall / \tau \tau-6\rangle t 00 \perp d 8
$$

ASY－1
ASY－1
Total
Yeild
ASY－1
ASY－1
Total
Yeild
ASY－1
Total
Yeild
ASY－1
ASY－1
Total
Yeild
ASY－1
ASY－1
Total
Yeild
PCB－1
Total
Yeild
PCB－1
Total
Yeild
PCB－1
Total
Yeild
PCB－1
Total
Yeild
PCB－1
Total
Total
YTCD
Toild
Yeild
PCB－1
Total
Total
Yeild
Yeild
PCB－1
Total
Total
Yeild
RES－
Total
Yeild

47 PTC5072－12／A

too－080st－MaH 96
too－ttLLT－MAH St
too－zsoot－Sヨy $\varepsilon \downarrow$

			－				88t＇0］	SLI＇t	｜ett＇9	998＇$¢$	608＇0¢	โह¢＇غ์	608＇0¢	999＇6	｜とかt＇9	
			，				88t＇0t	SLI＇tI	\＆tt＇9	$998{ }^{\prime} \varepsilon$	608＇0т	โعg＇દโ	608＇01	999＇6	\＆tt＇9	
																160
							Sos＇¢8	20才＇EIt	9ts＇ts	${ }^{826} 0$	｜ 2 ¢＇z8	LLて＇80T	tLt＇z8	0zE＇LL	9rs＇Ts	
							sos＇¢8	20才＇EtI	9tS＇Ts	826＇08	ロくずて8	LLて＇80T	ヤくずて8	оzع＇LL	9rs＇Ts	
																26°
							Tz0＇t\＆	809＇Est	988＇902	TTL＇\＆${ }^{\text {ct }}$	L68＇6z8	066＇z\＆t	L68＇678	8LZ＇60E	988＇902	
		／						809＇Est	98t＇902		L68＇628	066＇žt	268＇6z\％	82L＇608	98 T＇902 $^{\prime}$	
																260
		－						｜88L＇z6	860＇80т	E60＇\＆ot	ع60＇E0T	｜08＇9zz	｜08＇9zz	｜08＇9zz	089＇20z	
			－					p8L＇z6	ع60＇80т	ع60＇\＆0t	ع60＇ 80τ	ャ08＇9zz	ャ08＇92\％	t08＇92z	089＇202	
																160
			，					｜88L＇z6	860＇ 80τ	ع60＇\＆0T	ع60＇ 80 T	to8＇9zz	to8＇9zz	＋08＇9zz	089＇z02	
	\square							†8L＇z6	860＇ 80 T	860＇\＆0т	860＇ 801	ャ08＇9zz	ャ08＇9zz	ャ08＇9zz	089＇202	
																26°
		9LT＇TtT	${ }^{0000} \mathbf{0} 002$	${ }^{000}$＇002	${ }^{0000} 1002$	${ }^{1000} \mathbf{0} 002$	${ }^{1000} \mathbf{0} 002$	000＇002	TLt＇9LI	TLT＇92L	${ }^{\text {b6z＇şz }}$	92I＇tot	＋28＇89\％	2゙ゅ＇6ze	Tt6＇Z98	
		9LT＇TtI	000＇002	000＇002	000＇002	000＇002	000＇002	000＇002	TLT＇9LT	TLT＇9LI	ャ6て＇s¢z	94L＇ttI	†28＇892	ごヤ＇6てを	Tセ6＇2¢8	
																580
	，										8\％ع＇tot	LS6＇98	${ }^{96969} 8$	${ }^{68 L^{\prime} \text {＇TLI }}$	zS9＇S6T	
\square										68L＇9t	88 ¢＇00	Ls6＇98	$96980{ }^{\text {d }}$	$68 L^{\prime \prime T L Z}$	299＇56T	
																26.0
\square						${ }^{898}$＇L	289＇29	289＇29	Sot＇rt	289＇zs	289＇z9	9zs＇0才	z89＇z9	8st＇غ9	6LS＇TE	
						898＇L	289＇zs	289＇2s	Sot＇zt	289＇z9	289＇zs	92S＇0才	289＇zs	8ST＇E9	62S＇โ	
	－	92L＇tti	000＇00z	000＇002	000＇002	000＇002	000＇00z	000＇00z	TLt＇9LT	TLt＇g2t	｜68z＇şz	92I＇tot	＋28＇892	ごゅ＇6z8	＋67＇ 282	960
		924 T＇tt	000＇002	000＇002	000＇002	000＇002	000＇002	000＇002	TLt＇9LT	TLL＇9LI	b6て＇s¢z	9LT＇TtI	†28＇892	ごゅ＇6てE		
																980
－									O90＇t＇t	${ }^{689}{ }^{69} 6$	${ }^{689}{ }^{\circ} \mathrm{Gz}$	${ }^{689}{ }^{\prime \prime} 62$	099＇88	9zs＇zt	${ }^{8866 L D}$	
$\underline{7}$									09t＇г	689＇62	168962	689＇62	099＇88	9zS＇zt	1886＇Lt	
											000＇08t	8LLCLL	ع\＆＇ε ¢	てzz＇zz＊	000＇00s	26.0
											000＇08T	8LL＇LL		てzでてzャ	000＇009	
																00°
												$\frac{18 L L^{\prime} \varepsilon}{18}$	${ }_{\text {SST＇S }}^{\text {STI＇s }}$	${ }^{2 \varepsilon L^{\prime} L}$	92E＇8	
												LEL＇ε	Sst＇s	$28 L^{\prime}$	9LE＇8	
																L6\％
								$\left.\right\|_{\text {z68＇9t }} ^{\text {2\％}}$	${ }^{\text {9tSS＇TS }}$	${ }_{\text {Ots }}^{\text {9ts＇Ts }}$	${ }^{\text {9tg＇ts }}$－${ }^{\text {9ts }}$	20t＇${ }^{\text {zoti }}$	20t＇\＆ז1		O¢ع＇TOT	
																16.0
								268＇99	19tS＇TS	${ }^{\text {9tss＇ts }}$	${ }^{\text {9tS＇ts }}$	zot＇ 8 TI	20ヵ＇ 2 IT	20才＇ETI	Ot\＆＇TOT	
								268＇97	9tS＇Ts	9ts＇Ts	9tS＇Ts	20才＇ε II	20＇\＆โt	20t＇EtI	ObE＇T0T	
																260
																16.0
									tot tot＇sts	$\underbrace{\text { tot＇sts }}_{\text {t9t＇sts }}$	${ }_{\text {b9t＇sis }}^{\text {det＇sts }}$	Tzo＇t\＆¢＇T	Tz0＇\＆ז＇T			
										t9t＇sts		tzo＇®̇t	Tzo $\begin{gathered}\text { tet }\end{gathered}$	tzo ¢ $^{\text {ct }}$		
																160
								${ }^{\text {268＇9t }}$ 2t	9tS＇ts	${ }^{\text {9tss＇ts }}$	${ }^{\text {9tSS＇ts }}$	zot＇${ }^{\text {ctit }}$	200＇\＆tI	20t＇gTt	Otع＇tot	
								268＇9t	96S＇ts	9ts＇ts	9tS＇Ts	20才＇$¢$ IT	20t＇\＆tt	20才＇ETI	O¢E＇TOT	
6nv－8t	6nv－tr	6nv－b	｜nc－8z	Inc－tz	$1 \mathrm{nc}-\mathrm{t} \mathrm{\tau}$	Inc－L	unc－08	unc－zz	unc－9t	unc－6	unc－z	Ken－92	KeN－6t	Ken－zt	Kew－s	
เยหМ	عと४M	乙と४M	โยหМ	08YM	6 7 M	82才M	LZYM	927M	sz＞M	ャて×M	عट｀M	ट乙＞M	זでM	027M	$6 \mathrm{~T} \times \mathrm{M}$	

$$
\begin{aligned}
& \text { ON/GZ-90G0 }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { PCB-15033-001_ } \\
\text { Total Demand } \\
\text { Yeild } \\
\text { PCB-14992-001_ } \\
\text { Total Demand }
\end{array}
\end{aligned}
$$

Appendix F

Operation details for one month									
Receiving Date	Order number	Quanitity	Weight (kg)	Legal Inspection Fee	Commodity Inspection Fee	Inspection Application Fee	Customs Clearance Fee	Revising Fee	Total
1-2-07	WBBW07010596	7	83.88				90.0		90.0
1-2-07	WBBW07010605	22	20953			,	90.0		90.0
1-2-07	WBAW07020005	30	5546.5				90.0		90.0
1-2-07	WBBW07020006	2	201				90.0		90.0
1-2-07	WBBW07020007	1	96				90.0		90.0
1-2-07	WBBW07020008	2	179				90.0		90.0
1-2-07	WBBW07020009	64	588				90.0		90.0
1-2-07	WBBW07020010	22	120.6				90.0		90.0
1-2-07	WBBW07020011	2	219				90.0		90.0
1-2-07	WBBW07020012	3	13.74				90.0		90.0
1-2-07	WBBW07020013	3	13.74				90.0		90.0
1-2-07	WBBW07020014	131	284.27				90.0		90.0
1-2-07	WBBW07020015	6	2140				90.0		90.0
1-2-07	WBBW07020020	50	9641.2	709.0	15.0	50.0	90.0		864.0
1-2-07	WBBW07020021	1	310				90.0		90.0
1-2-07	WBBW07020022	1	52.8	92.0	15.0	50.0	90.0		247.0
1-2-07	WBBW07020023	4	1299.5				90.0		90.0
1-2-07	WBBW07020032	1	248.76	6.0	15.0	50.0	90.0		161.0
1-2-07	WBBW07020033	5	27.3	6.0	15.0	50.0	90.0		161.0
1-2-07	WBBW07020034	3	11.51				90.0		90.0
1-2-07	WBBW07020036	12	4381				90.0		90.0
1-2-07	WBBW07010600	8	927				90.0		90.0
2-2-07	WBBW07020042	4	1719.74				90.0		90.0
2-2-07	WBBW07020044	3	49				90.0		90.0
2-2-07	WBBW07020045	11	1575				90.0		90.0
2-2-07	WBBW07020046	2	824				90.0		90.0
2-2-07	WBBW07020047	6	2919				90.0		90.0
2-2-07	WBBW07020050	4	173.5				90.0		90.0
2-2-07	WBBW07020052	6	2919				90.0		90.0
2-2-07	WBBW07020053	2	920				90.0		90.0
2-2-07	WBBW07020054	35	320.6				90.0		90.0
2-2-07	WBBW07020055	2	920				90.0		90.0
2-2-07	WBBW07020056	15	81	6.0	15.0	50.0	90.0		161.0
2-2-07	WBBW07020057	1	400				90.0		90.0
2-2-07	WBBW07020058	4	17.24				90.0		90.0
2-2-07	WBBW07020059	2	824				90.0		90.0
2-2-07	WBBW07020060	4	17.24				90.0		90.0
2-2-07	WBAW07020061	24	174.7				90.0		90.0
2-2-07	WBBW07020072	10	1807.86	6.0	15.0	50.0	90.0		161.0
2-2-07	WBBW07020073	4	1720				90.0		90.0
2-2-07	WBBW07020077	14	5391.68				90.0		90.0
5-2-07	WBBW07020078	3	1460	6.0	15.0	50.0	90.0		161.0
5-2-07	WBBW07020081	57	569.8				90.0		90.0
5-2-07	WBBW07020082	7	821				90.0		90.0
5-2-07	WBBW07020083	14	5391.68				90.0		90.0
5-2-07	WBBW07020086	1	6.7				90.0		90.0
5-2-07	WBBW07020087	5	29.76				90.0		90.0
5-2-07	WBBW07020088	5	29.76				90.0		90.0

5-2-07	WBBW07020089	13	2839.8	92.0	15.0	50.0	90.0	247.0
5-2-07	WBBW07020090	59	353.5				90.0	90.0
5-2-07	WBBW07020092	6	2000.06				90.0	90.0
5-2-07	WBBW07020093	3	1460	6.0	15.0	50.0	90.0	161.0
5-2-07	WBBW07020101	64	288	816.0	15.0	50.0	90.0	971.0
5-2-07	WBBW07020102	6	2000				90.0	90.0
6-2-07	WBBW07020104	29	293.5				90.0	90.0
6-2-07	WBBW07020105	10	8292.8				90.0	90.0
6-2-07	WBBW07020106	10	8292.8				90.0	90.0
6-2-07	WBBW07020107	10	54.7				90.0	90.0
6-2-07	WBBW07020108	19	100.8	6.0	15.0	50.0	90.0	161.0
6-2-07	WBBW07020109	4	645				90.0	90.0
6-2-07	WBBW07020110	6	21.5				90.0	90.0
6-2-07	WBBW07020111	11	81.2				90.0	90.0
6-2-07	WBBW07020112	8	1015				90.0	90.0
6-2-07	WBBW07020113	3	49				90.0	90.0
6-2-07	WBBW07020114	2	12.32				90.0	90.0
6-2-07	WBBW07020115	2	12.32				90.0	90.0
6-2-07	WBBW07020116	2	920				90.0	90.0
6-2-07	WBBW07020117	2	920				90.0	90.0
6-2-07	WBBW07020118	29	1054.79				90.0	90.0
6-2-07	WBBW07020119	22	8810.08	6.0	15.0	50.0	90.0	161.0
6-2-07	WBBW07020121	18	87				90.0	90.0
6-2-07	WBBW07020122	3	21.5				90.0	90.0
6-2-07	WBBW07020123	11	81.2				90.0	90.0
6-2-07	WBBW07020124	3	52				90.0	90.0
7-2-07	WBBW07020125	278	2037				90.0	90.0
7-2-07	WBBW07020126	10	34				90.0	90.0
7-2-07	WBBW07020127	32	294	427.0	15.0	50.0	90.0	582.0
7-2-07	WBBW07020128	519	4527				90.0	90.0
7-2-07	WBBW07020129	7	821				90.0	90.0
7-2-07	WBBW07020130	5	23.1				90.0	90.0
7-2-07	WBBW07020131	16	6559.08				90.0	90.0
7-2-07	WBBW07020132	16	6608.95				90.0	90.0
7-2-07	WBBW07020133	7	3040.5				90.0	90.0
7-2-07	WBBW07020134	1	176.5				90.0	90.0
7-2-07	WBBW07020135	2	824				90.0	90.0
7-2-07	WBBW07020136	32	28.62				90.0	90.0
7-2-07	WBBW07020137	80	351				90.0	90.0
7-2-07	WBBW07020138	2	866				90.0	90.0
7-2-07	WBBW07020139	5	18.92				90.0	90.0
7-2-07	WBBW07020140	5	18.92				90.0	90.0
7-2-07	WBBW07020141	7	3040.5				90.0	90.0
7-2-07	WBBW07020142	29	293.5				90.0	90.0
7-2-07	WBBW07020143	7	40.5				90.0	90.0
8-2-07	WBBW07020144	22	7914	6.0	15.0	50.0	90.0	161.0
8-2-07	WBBW07020145	22	10970	6.0	15.0	50.0	90.0	161.0
8-2-07	WBBW07020146	20	6377	6.0	15.0	50.0	90.0	161.0
8-2-07	WBBW07020147	4	18				90.0	90.0
8-2-07	WBBW07020148	6	2472				90.0	90.0

8-2-07	WBBW07020149	6	2472				90.0	90.0
8-2-07	WBBW07020150	48	441				90.0	90.0
8-2-07	WBBW07020151	27	1081	6.0	15.0	50.0	90.0	161.0
8-2-07	WBBW07020152	4	281			/	90.0	90.0
8-2-07	WBBW07020153	2	824				90.0	90.0
8-2-07	WBBW07020154	1	10.2	6.0	15.0	50.0	90.0	161.0
8-2-07	WBBW07020155	1	430	563.0	15.0	50.0	90.0	718.0
8-2-07	WBBW07020156	32	5134.6				90.0	90.0
8-2-07	WBBW07020157	150	645	6.0	15.0	50.0	90.0	161.0
8-2-07	WBBW07020158	39	10113				90.0	90.0
8-2-07	WBBW07020159	12	2888.89				90.0	90.0
8-2-07	WBBW07020160	3	1038.1				90.0	90.0
8-2-07	WBBW07020161	1	50.8				90.0	90.0
8-2-07	WBAW07020162	12	2888.89				90.0	90.0
8-2-07	WBBW07020163	4	15.82				90.0	90.0
8-2-07	WBBW07020164	4	15.82				90.0	90.0
8-2-07	WBBW07020165	60	342.8	461.0	15.0	50.0	90.0	616.0
8-2-07	WBBW07020166	65	543.4				90.0	90.0
8-2-07	WBBW07020167	53	1038				90.0	90.0
9-2-07	WBAW07020168	37	7902.5				90.0	90.0
9-2-07	WBBW07020169	10	3749.6				90.0	90.0
9-2-07	WBBW07020170	1	6.7				90.0	90.0
9-2-07	WBBW07020171	4	2330	6.0	15.0	50.0	90.0	161.0
9-2-07	WBBW07020172	1	444.92				90.0	90.0
9-2-07	WBBW07020175	1	6.12				90.0	90.0
9-2-07	WBBW07020176	1	6.12				90.0	90.0
9-2-07	WBBW07020177	1	176.5				90.0	90.0
9-2-07	WBBW07020178	95	773.16				90.0	90.0
9-2-07	WBBW07020179	124	743.8				90.0	90.0
12-2-07	WBBW07020180	4	557				90.0	90.0
12-2-07	WBAW07020181	20	3712				90.0	90.0
12-2-07	WBBW07020182	2	18.12				90.0	90.0
12-2-07	WBBW07020183	3	950.67				90.0	90.0
12-2-07	WBBW07020184	3	1236				90.0	90.0
12-2-07	WBBW07020185	1	413				90.0	90.0
12-2-07	WBBW07020186	1	413	6.0	15.0	50.0	90.0	161.0
12-2-07	WBBW07020187	3	950.67				90.0	90.0
12-2-07	WBBW07020188	3	1236				90.0	90.0
12-2-07	WBBW07020189	10	3749.6				90.0	90.0
12-2-07	WBBW07020190	14	5392	6.0	15.0	50.0	90.0	161.0
12-2-07	WBBW07020191	13	69.2	6.0	15.0	50.0	90.0	161.0
12-2-07	WBBW07020192	7	39.6	6.0	15.0	50.0	90.0	161.0
12-2-07	WBBW07020193	3	594				90.0	90.0
12-2-07	WBAW07020194	39	10129.9				90.0	90.0
12-2-07	WBBW07020195	49	245.8				90.0	90.0
12-2-07	WBBW07020196	21	445				90.0	90.0
12-2-07	WBBW07020197	2	2.1				90.0	90.0
12-2-07	WBBW07020198	10	130.1				90.0	90.0
12-2-07	WBBW07020199	1	120.54	6.0	15.0	50.0	90.0	161.0
12-2-07	WBBW07020200	3	190.4	6.0	15.0	50.0	90.0	161.0

12-2-07	WBBW07020201	9	57.7				90.0	90.0
12-2-07	WBBW07020202	4	2330	6.0	15.0	50.0	90.0	161.0
12-2-07	WBBW07020203	2	12.32				90.0	90.0
12-2-07	WBBW07020204	2	12.32			/	90.0	90.0
12-2-07	WBBW07020205	95	738				90.0	90.0
12-2-07	WBBW07020206	1	400				90.0	90.0
12-2-07	WBBW07020207	9	57.7				90.0	90.0
13-2-07	WBBW07020208	2	18.12				90.0	90.0
13-2-07	WBBW07020209	2	197				90.0	90.0
13-2-07	WBBW07020210	23	123.4				90.0	90.0
13-2-07	WBBW07020211	25	217.5				90.0	90.0
13-2-07	WBBW07020212	2	32				90.0	90.0
13-2-07	WBBW07020214	2	430	6.0	15.0	50.0	90.0	161.0
13-2-07	WBBW07020215	4	1340				90.0	90.0
13-2-07	WBBW07020216	2	430				90.0	90.0
13-2-07	WBBW07020217	5	2060				90.0	90.0
13-2-07	WBBW07020218	5	2060				90.0	90.0
13-2-07	WBAW07020219	20	3646				90.0	90.0
13-2-07	WBAW07020220	1	1750				90.0	90.0
13-2-07	WBBW07020222	2	831				90.0	90.0
13-2-07	WBBW07020223	3	12.52				90.0	90.0
13-2-07	WBBW07020224	3	12.52				90.0	90.0
13-2-07	WBBW07020226	135	580.5	6.0	15.0	50.0	90.0	161.0
13-2-07	WBBW07020227	4	1639.1				90.0	90.0
13-2-07	WBBW07020228	5	24.1				90.0	90.0
14-2-07	WBBW07020229	1	1				90.0	90.0
14-2-07	WBBW07020230	8	42.3	6.0	15.0	50.0	90.0	161.0
14-2-07	WBBW07020231	34	205.9	6.0	15.0	50.0	90.0	161.0
14-2-07	WBBW07020232	2	169				90.0	90.0
14-2-07	WBBW07020233	1	99				90.0	90.0
14-2-07	WBBW07020234	3	52				90.0	90.0
14-2-07	WBBW07020235	1	15.64	6.0	15.0	50.0	90.0	161.0
14-2-07	WBBW07020236	5	2060				90.0	90.0
14-2-07	WBBW07020237	5	2060				90.0	90.0
14-2-07	WBBW07020238	24	117				90.0	90.0
14-2-07	WBBW07020239	18	172.9				90.0	90.0
14-2-07	WBBW07020240	25	27034				90.0	90.0
14-2-07	WBBW07020241	1	99				90.0	90.0
14-2-07	WBBW07020242	25	217.5				90.0	90.0
14-2-07	WBBW07020243	12	132.2				90.0	90.0
14-2-07	WBBW07020244	51	465.6				90.0	90.0
14-2-07	WBBW07020245	11	1926.6	92.0	15.0	50.0	90.0	247.0
14-2-07	WBBW07020246	1	22.2	6.0	15.0	50.0	90.0	161.0
14-2-07	WBBW07020247	2	23				90.0	90.0
14-2-07	WBBW07020248	80	1639				90.0	90.0
14-2-07	WBBW07020249	2	316.3				90.0	90.0
14-2-07	WBBW07020250	5	2060				90.0	90.0
14-2-07	WBBW07020251	1	2.1				90.0	90.0
14-2-07	WBBW07020252	8	3296				90.0	90.0
14-2-07	WBBW07020253	1	5.89				90.0	90.0

15-2-07	WBBW07020255	16	6609	6.0	15.0	50.0	90.0	161.0
15-2-07	WBBW07020256	16	4548	6.0	15.0	50.0	90.0	161.0
15-2-07	WBBW07020257	16	6559				90.0	90.0
15-2-07	WBBW07020258	15	68			/	90.0	90.0
15-2-07	WBBW07020259	53	244				90.0	90.0
15-2-07	WBBW07020260	78	2693	6.0	15.0	50.0	90.0	161.0
15-2-07	WBAW07020261	28	64.64				90.0	90.0
15-2-07	WBBW07020262	2	32				90.0	90.0
15-2-07	WBBW07020263	2	316.3				90.0	90.0
15-2-07	WBBW07020264	4	1569.68				90.0	90.0
15-2-07	WBBW07020265	11	4189				90.0	90.0
15-2-07	WBBW07020266	1	5.89				90.0	90.0
15-2-07	WBAW07020267	10	55.4				90.0	90.0
15-2-07	WBBW07020268	20	9114	6.0	15.0	50.0	90.0	161.0
15-2-07	WBBW07020269	20	7477	6.0	15.0	50.0	90.0	161.0
15-2-07	WBBW07020270	32	29	6.0	15.0	50.0	90.0	161.0
15-2-07	WBBW07020271	33	1273				90.0	90.0
16-2-07	WBBW07020272	4	1648				90.0	90.0
16-2-07	WBBW07020273	20	112.9				90.0	90.0
16-2-07	WBBW07020274	2					90.0	90.0
16-2-07	WBBW07020275	1	529.4				90.0	90.0
16-2-07	WBBW07020276	41	659				90.0	90.0
16-2-07	WBBW07020277	29	953	6.0	15.0	50.0	90.0	161.0
16-2-07	WBBW07020278	11	4189				90.0	90.0
16-2-07	WBBW07020279	1	529.4				90.0	90.0
16-2-07	WBBW07020280	4	1570				90.0	90.0
16-2-07	WBBW07020281	1	5.89				90.0	90.0
16-2-07	WBBW07020282	4	594.55				90.0	90.0
16-2-07	WBBW07020283	20	9419	6.0	15.0	50.0	90.0	161.0
16-2-07	WBBW07020284	4	1570				90.0	90.0
25-2-07	WBBW07020285	1	96				90.0	90.0
25-2-07	WBBW07020286	2	201				90.0	90.0
25-2-07	WBBW07020287	4	1339				90.0	90.0
25-2-07	WBBW07020288	16	7903				90.0	90.0
25-2-07	WBBW07020289	4	1339				90.0	90.0
25-2-07	WBBW07020290	2	12				90.0	90.0
25-2-07	WBBW07020291	5	808.02				90.0	90.0
25-2-07	WBBW07020292	4	1648				90.0	90.0
25-2-07	WBBW07020293	9	1227				90.0	90.0
25-2-07	WBBW07020294	1	248.76	6.0	15.0	50.0	90.0	161.0
26-2-07	WBBW07020295	1	73.96	6.0	15.0	50.0	90.0	161.0
26-2-07	WBBW07020296	2	264				90.0	90.0
26-2-07	WBBW07020297	14	2236	6.0	15.0	50.0	90.0	161.0
26-2-07	WBBW07020299	60	808				90.0	90.0
26-2-07	WBBW07020300	20	3636.2	1225.0	15.0	50.0	90.0	1380.0
26-2-07	WBBW07020301	3	1419	6.0	15.0	50.0	90.0	161.0
26-2-07	WBBW07020302	5	39.3				90.0	90.0
26-2-07	WBBW07020303	4	47.7				90.0	90.0
26-2-07	WBBW07020304	7	34.4				90.0	90.0
27-2-07	WBBW07020306	1	38				90.0	90.0

27-2-07	WBBW07020307	3	1460	6.0	15.0	50.0	90.0		161.0
27-2-07	WBBW07020308	1	36.2				90.0		90.0
27-2-07	WBBW07020309	1	128				90.0		90.0
27-2-07	WBBW07020310	2	824			/	90.0		90.0
27-2-07	WBBW07020311	2	824				90.0		90.0
27-2-07	WBBW07020312	1	128	6.0	15.0	50.0	90.0		161.0
27-2-07	WBBW07020313	32	537.6				90.0		90.0
27-2-07	WBBW07020314	4	23.68				90.0		90.0
27-2-07	WBBW07020315	14	2175				90.0		90.0
27-2-07	WBBW07020316	16	2570				90.0		90.0
27-2-07	WBBW07020317	5	1906.8				90.0		90.0
27-2-07	WBBW07020318	9	87				90.0		90.0
27-2-07	WBBW07020319	2	10				90.0		90.0
27-2-07	WBBW07020320	176	976.2				90.0		90.0
27-2-07	WBBW07020321	186	1314.6				90.0		90.0
28-2-07	WBBW07020322	6	37				90.0		90.0
28-2-07	WBBW07020323	3	166				90.0		90.0
28-2-07	WBBW07020324	34	205.9	6.0	15.0	50.0	90.0		161.0
28-2-07	WBBW07020325	3	1030				90.0		90.0
28-2-07	WBBW07020326	2	24.71				90.0		90.0
28-2-07	WBBW07020327	4	1293.6				90.0		90.0
28-2-07	WBBW07020328	3	1030				90.0		90.0
28-2-07	WBBW07020329	1	36.2	6.0	15.0	50.0	90.0		161.0
28-2-07	WBBW07020330	76	959				90.0		90.0
28-2-07	WBBW07020331	50	646				90.0		90.0
28-2-07	WBBW07020332	5	1545.4				90.0		90.0
28-2-07	WBBW07020333	13	5947				90.0		90.0
28-2-07	WBBW07020334	3	1460	6.0	15.0	50.0	90.0		161.0
28-2-07	WBBW07020335	360	10454	6.0	15.0	50.0	90.0		161.0
28-2-07	WBBW07020336	50	814				90.0		90.0
28-2-07	WBBW07020337	3	784.5				90.0		90.0
28-2-07	WBBW07020338	2	12.36				90.0		90.0
28-2-07	WBBW07020340	60	258	6.0	15.0	50.0	90.0		161.0
28-2-07	WBBW07020341	2	18.5				90.0		90.0
28-2-07	WBBW07020342	15	15296				90.0		90.0
								100.0	100.0
								100.0	100.0
								100.0	100.0
								100.0	100.0
One Inspection Document								200.0	200.0
Total				4759.0	840.0	2800.0	25470.0	600.0	34469.0

[^0]: OZYM 6TYM

