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On routing and safety using helicopters in a hub and spoke fashion in 

the off-shore petroleum’s industry. 

by 

Øyvind Halskau sr. 
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Abstract: Helicopters are often used for transportation of the workers to and from off-shore 

installations. Flying helicopter can be a risky business and is often considered as one of the 

main risk factors in this industry. By applying different routing policies for these services, the 

expected number of fatalities can be influenced. The present paper is dealing with different 

routing policies for minimizing the expected number of fatalities where the transportation is 

performed in a hub and spoke fashion from a land based heliport to a set of off-shore 

installations either using the heliport as a hub or using one or more off-shore installations as 

hubs. Some theoretical results are offered as well as an exact model when one operates with 

more than one off-shore hub. In addition several naïve heuristics are offered for finding good 

solutions for the multi-hub situation. 

1. Introduction 

In the off-shore oil and gas industry oil companies most often use helicopters in order to bring 

the crews that are working on the off-shore installations out to the oil and gas platforms and 

back again. This is a fairly quick and efficient way to serve these installations both with the 

people who operate them on a daily base, but also bringing maintenance people and experts to 

platforms for shorter or longer times, performing special tasks. However, this type of 

transportation is often perceived by the workers to be uncomfortable and unpleasant due to 

the noise of the helicopter and turbulence that can be violent when the weather is bad. In 

addition, flying helicopter is a fairly risky activity and much more risky than flying an 

ordinary plane or driving a car. For more details about this see Qian et al (2011, 2012a and 

b)and Qian (2012) The risk during landings and take-offs are considered to be substantially 

larger than during cruising between the heliport (HP) and the installations or between the 

installations. This is especially true when it comes to landings or take-offs on the platforms, 

where the helicopter deck is narrow with a lot of equipment like cranes and containers create 

big challenges for the pilots. In the scenarios treated by Qian et al risks connected with both 

take offs/ landings as well as cruising risks are considered simultaneously and different 

routing policies are considered in order to minimize the expected number of fatalities. In this 

paper the same is done, but in contrast to Qian et al, we will consider other routing policies.  

An accident is called fatal when one or more people die or is seriously injured in an accident. 

Routing of helicopters can neither decrease nor increase the probability that an unwanted 

fatality takes place. But – as described in the articles mentioned so far – by applying special 

routing policies the expected number of fatalities can be reduced. However, this will often 

lead to increased costs / increased number of flying hours. In Qian et al several different 
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routing policies are considered. Basically all of them are variations of classical vehicle routing 

problems with pick-up and delivery demands under capacity restrictions on the helicopters. 

All helicopters start from a HP serving a subset of the off shore installations and return to the 

HP with the people that have been picked up from the installations out in the sea. In many 

cases the helicopters perform a flight from the heliport to a single customer, deliver whatever 

number of people and picks up those who are going back on shore and returns to the HP. In 

other cases the routes can be small cycles visiting two to three installations before returning to 

the HP. All the installations in such routes are usually visited exactly once, that is, the pick-up 

and delivery services are performed simultaneously. In some cases an installations may be 

visited twice. In such a case the out-bound passengers are delivered on the first visit and the 

home-bound passengers are picked up on the second visit. 

In the present working paper we will consider some different options. The first option is to 

perform the required service in a hub and spoke fashion from the HP. That is, each and every 

installation (customer node) is served exclusively by a helicopter. This solution can be very 

expensive and time consuming, but it is proved in Qian et al that this solution outperforms any 

other routing policies treated in the traditional VRPPD way, whether the service is 

simultaneously or non-simultaneously performed given that the objective is to minimize the 

expected number of fatalities.  

The new and different approach is to select one or more of the off-shore installations as hubs. 

The out-bound passengers are taken from the HP to one of these off shore hubs and then 

brought to their final destinations from this hub by exclusive flights to each of the spoke 

nodes that are assigned to this off-shore hub. The home-bound passengers are brought back to 

the off shore hub, and will wait there until all the spoke nodes are visited. Then finally all the 

home-bound passengers will be brought back together to the HP. 

The rest of this paper is organized as follows: In section 2 using the HP as a hub is compared 

to a situation where a single installation is chosen as an off-shore hub. In section 3, two or 

more off-shore installations are chosen as a hub and heuristics for making these choices and 

how to assign the remaining installations as spoke nodes to one of the chosen off-shore hubs 

are offered. In section 4 small examples are offered in order to illustrate the different 

heuristics. 

2.  Two different single hub and spoke solutions 

In Qian et al it is shown that using a single helicopter performing the services in a hub and 

spoke fashion outperformance the results compared to a Hamiltonian cycle. In this paper we 

will compare two hub and spoke situations. The first will be the situation where the HP is 

used as the hub, that is, all the installations will be served directly from the HP. In the second 

situation one of the installations will be chosen as a hub. All passengers will be brought from 

the HP to this installation and from this node be brought by single flights to their final 

destinations where the pick-up passengers are collected and brought back to the hub. When all 

installations have been visited, all the pick-up passengers will be brought back to the HP with 



 

 

the helicopter. See figure 1a and b below. The rectangle symbolizes the HP and the circles the 

customer nodes/ installations. 

 

 

 

 

 

 

Fig 1 a and b. The two single hub solutions. Figure 1a to the left and 1b to the right. 

Notation: We will denote the nodes by i = 0,1,2,….,n where 0 denotes the HP and the other 

are the customers nodes. Each node has a certain delivery demand id , and a certain pick up 

demand ip , such that 0 ii pd . We will assume that each of the nodes that are not a hub 

will be visited only once, hence, for customer nodes not chosen to be a hub, the service will 

be simultaneous. We will let Dd
n

i

i 
1

and Pp
n

i

i 
1

. Further, we let Q denote the capacity 

of the helicopter and assume that QD   and QP  . 

As mentioned in the introduction, choosing different routings for the helicopter(s) can only 

influence the expected number of fatalities, not the probabilities that some accident happens 

due to bad weather, mistakes made by the pilots or problems based on some technology 

breaking down. Until further notice, we will not consider the probabilities for fatal accidents 

neither during cruising time nor during landings or take offs. These probabilities will be 

different. It may even happen that there are different probabilities for landing and take offs on 

different installations due to the space on the platform deck and other equipment close to the 

helicopter deck. There will also be different probabilities concerning the installations and the 

land based HP. Hence there will be only three concepts that will be of interest in this working 

paper. 

Let C=[ ijc ] )1()1(  nxn  the cost matrix of travelling from node i to node j and 

niicii ...,2,1,0,,0  .The costs can be given as a distance, a certain amount of money or 

time, but in order to avoid confusion we will interpret these costs as distances. Further, we let





n

j

jii cCR
0

,)( , that is the row sums in the cost matrix C, and   



n

j

iji cCR
1

)0\( which is the 

row sums for the matrix C restricted to the customer nodes. 
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Costs 

HPC is the cost of using helicopter(s) when the services are performed from the HP in a hub 

and spoke fashion (fig.1a) 

niCi ,...,2,1,   is the cost of using helicopter(s) when the services are performed from 

installation i, bringing all out-bond passengers from the HP to installation i, i acting as a hub 

for the other installations, collecting all the pick-up demands here before bringing them back 

to the HP via the hub (fig.1b). 

Number of passengers taking part in landings and take offs. 

HPPL  is the number of passengers taking part in landings when the HP is used as a hub. 

iPL  is the number of passengers taking part in landings when installation i is used as a hub. 

Number of passengers on board the helicopter multiplied with the flying distance they 

stay on board. 

HPPC is the number of passengers multiplied with the flying distance they stay on board when 

the HP is used as a hub. 

iPC  is the number of passengers multiplied with the flying time they stay on board when 

installation i is used as a hub. 

Note that these two last definitions can be interpreted as the transportation work performed by 

the helicopter and will be referred to as transportation work below. 

From the definitions above the following expressions are straightforward, starting with the 

situation that the HP is the hub. 

02     )1( RCHP  

  PDpdPL
n

i

iiHP 
1

     )2(  

 



n

j

jjjHP pdcPC
1

0    )3(   

From (3) we can derive some simple upper and lower bounds on the transportation work 

performed by the helicopter: 

   
00 maxmin     )4( RpdPCRpd jj

j
HPjj

j
  

Combining (1) and (4), we get the following inequalities: 
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1
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     )5(

 

(5) gives an upper and lower bound for the fraction of the transportation work relative to the 

flied distance.  

Again from (3) we can obtain the inequalities in (6) 

     PDcPCPDc jHPj
j

  maxmin     )6( 0
j

0  

which in combination with (2) can be transformed to 

    maxmin     )7( 00 j
j

HP

HP
j c

PL

PC
c

j



 

(7) gives an upper and lower bound for the fraction of the transportation work relative to the 

number of passengers taking part in landings and take-offs. 

Combining (5) and (6) we get an upper and lower bound for the number of passenger landings 

relatively to the distance the helicopter has to fly. 

 

 

 

 
j

j

jj
j

HP

HP

j
j

jj
j

c

pd

C

PL

c

pd

00 min

max

2

1
 

max

min

2

1
     )8(





 

The expressions (9) to (11) below give similar formulas for the three concepts defined in (1) – 

(3) when an off-shore installation i* is chosen as a hub. 

  ***,0* 2)0\(22     )9( iiii RCRcC   

)()(2)()()(     )10( ***** iiiii pdPDpdPDPDPL   

 



n

j

jijjii cpdcPDPC
1

*,*,0* )(    )11(

 

(11) can easily be reformulated into (12) giving upper and lower bounds for  the 

transportation work performed from the chosen hub i* to the other installations. Further, (12) 

shows that if one wants to have as small upper bound as possible, the hub should be chosen 

such that the sum of the distances from the hub to the other off-shore installations should be 

as small as possible. A reasonable interpretation of this will be to choose the hub among the 

installations located in the middle of all the off-shore installations. On the other hand, this 

upper bound will increase if the chosen hub is far from the HP.  

       )0\(max)()0\(min)(     )12( **,0***,0 CRpdcPDPCCRpdcPD ijj
j

iiijj
j

i 
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Combining (12) with (9) we get (13) 

   jj
j

ii

ii

jj
j

pd

cC

cPDPC
pd 




 max

2

1

)(
min     )13(

*,0*

*,0*

 

Further, (11) can also easily be reformulated into (14). 

   
ji

j
i

i
ji

j
cc

PD

PC
c *,*,0

*
*, maxmin     )14( 




 

Note that if the maximal and minimal distances from the chosen hub to the other off-shore 

installations are not very different, the upper and lower bounds given by (14) could be fairly 

close. 

Lemma 1 

If one chooses a customer node as a hub, the number of passenger landings will be minimized 

by choosing a node k such that  jj
j

kk pdpd  max . 

Proof:  

The result follows directly from (10). 

Hence, it is straight forward to find the best off-shore hub if we restrict our selves only to look 

at the number of passenger landings. 

Choosing different off-shore installations as the hub will of course give different 

transportation work. This can be calculated by (11). Since we have only n off-shore 

installations the one generating the smallest transportation work can be easily found. 

However, we cannot á priory find which one that is the best as we could for the passenger 

landing. Lemma 2 below gives an upper bound on the difference between two choices for the 

transportation work. 

Let        
j

j
j

j
cccc .0min0.0max0 min and max  . Further let    

ij

ji
ji

ji

ji
ji

cccc

0,
,

min.

0,
,

max min and max





Lemma 2 

Let i and k be two off-shore nodes. Then 

   PDcPCPCPC ikkiik  2  

Proof: 

It is easily shown, using (11), that  



 

 

     



n

j

jjkjijkiki pdccPDccPCPC
1

,0,0  

By the triangle inequality we have that ikkjijikki cccccc   and ,0,0 . Substituting these into 

the expression for the difference between the two hub choices we get that 

       

     PDcpdcPDc

pdcPDcpdccPDccPC

ik

n

j

jjikik

n

j

jjikik

n

j

jjkjijkiik













2
1

1

,0,0

 

The lemma shows that if two potential choices for a hub are close to each other, the difference 

between the transportation works for the two choices will be small.  

Above we have looked at the two situations – HP as a hub and an off-shore installation as a 

hub – separately. Below two lemmas are given saying something about the relationship 

between the two choices. 

Lemma 3 

If the triangle inequality holds for the cost matrix C, the following inequality holds for any 

choice k as a hub among the customer nodes. 

HPk PCPC   and HPi PLPL   

Proof: 

By (10) we have 

 

     

     HPk

n

j

jjkjk

n

j

jj

n

j

kjjj

n

k

kkk

n

j

jkjjkk

PCcpdccpd

cpdcpdcpdcPDPC













0

1

0

1

11

.0

1

,,0)(

 

The second inequality follows immediately by comparing (2) and (10) 

Hence, as a consequence, choosing the heliport as a hub will always outperform choosing a 

customer node as a hub in terms of number of passenger landings and transportation work. 

Lemma 3 

The following inequalities hold: 

       PDcPCPDc HP 
max0min0  

        niiPDccPCPDcc i ,...,2,1,,maxmax0minmin0   
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Corollary 1 

The following inequality holds for all i =1,2,…,n: 

 
 

 
 

nii
c

cc

PC

PC

c

cc

HP

i ,...,2,1,,
min0

maxmax0

max0

minmin0 





 

Above we have discussed the two of the three concepts. The third concept is the distance the 

helicopter has two fly or the time it has to be in the air. Comparing the flight hours when the 

HP is used as a hub with the flight hours used when a customer node is used as a hub is 

difficult and will rely heavily on how the customer nodes and the HP is located relatively to 

each other. In off-shore oil and gas activity the HP is often located close to the coast with all 

the installations out in the sea - broadly speaking – in the same direction. Hence, in this case 

the flight hours needed to serve the installations using the HP as hub often will lead to a large 

number of flying hours and much bigger than if some centrally located installation is used as a 

hub. Actually the node with the smallest row sum in the cost matrix C will be the optimal 

location for the hub if one wants to minimize the number of flying hours. This will not 

necessarily be the HP but could often be an installation out in the sea. 

Algorithm for finding the best off-shore hub –single hub case. 

Let CL   and be the probabilities for a fatal accident during landings and cruising, 

respectively. We want to minimize the following objective, the total probability of having a 

fatal accident, TP. 

      













 



n

j

jijjiCiiLiCiL cpdcPDpdPDPCPLTP
1

,,0)(2    )14( 

 

Since we have n off-shore installations, we can calculate (14) for each of them and choose the 

one with the smallest probability. Hence, the algorithm is polynomial with complexity )(nO . 

The optimal solution will of course depend partly on the demand pattern. As a consequence 

the off-shore hub can change form one time horizon to the next. It may also happen that some 

of the off-shore installations are not suited as a hub due to different reasons like special 

activities going on making hindrances for frequent landing and take offs, that the number of 

people on board the platform is too big compared to the capacity of the life boats or that a 

platform does not have equipment for re-fueling the helicopter. Of course such platforms have 

to be excluded from the calculations above, even if they otherwise are good candidates for a 

temporarily hub. 

A single helicopter performing all the visits may run out of time during the given time 

horizon. If this is the case we need two or more helicopters to perform the services. This 

situation will be treated in the next section. 

 

 



 

 

3. Multiple helicopters and multiple hubs among the customer nodes 

In this section we will assume that we have two or more helicopters performing the pick-up 

and delivery service. We will assume that the service is performed simultaneously, that is, 

every node is visited one and only one time by a helicopter except the chosen hubs that of 

course have to be visited several times. 

There will be three basically different situations: 

1. All the helicopters use the HP as a hub, visiting disjunctive sub-sets of the customers. 

2. Each helicopter has different off-shore installation as its hub, starting from the HP 

with the delivery demands that belong to their specific disjunctive sub-sets of the 

customers in a hub and spoke fashion and bringing all the pick-up demands back to 

the HP.  

3. A subset of the helicopters is using the HP as a hub and the remaining subset of the 

helicopters is using specific customer nodes as their hubs. 

All the helicopters are using the HP as a hub 

In this case the flying distance, the number of passenger landings and the transportation work 

will be the same as in the single helicopter case, that is, (1), (2), and (3) are still valid. The 

flying distance or the time used to serve the off-shore installation may become large, but 

using the HP as a hub having several helicopters will still outperform case 2 and 3 when it 

comes to passenger landings and transportation work. Using more than one helicopter one 

tacitly assumes that there is some restriction on time (or distance) that each helicopter can use 

to perform its service. If this time restriction is small, then one may have to use n helicopters, 

one for each of the off-shore installations. If it is somewhat bigger a helicopter can serve more 

than one installation during the given time horizon. It will be a separate problem to find which 

installations to combine such that the number of necessary helicopters will be minimized.  

Using several helicopters each choosing a customer node as a hub 

Assume that we have k=1,2,…,m helicopters. Let ki be the customer node chosen as the hub 

for helicopter number k. Let kN be a subset of  0\N such that  , lkØNN lk  and 

 0\...21 NNNN m  . kN denotes the customer nodes that is served by helicopter k, 

starting from the HP with all the passengers that are going to the nodes in kN , then using node 

k as a hub bringing all the delivery demands from k to the other nodes in kN and bringing the 

pick-up demands back to k and bringing all pick up demands back to the HP. 

The different concepts for this situation are given in the expressions (15) – (17) below. 


 


m

k Nj

ji

m

k

i

m

k

i

k

kkk
ccCC

1

,

1

,0

1

22      )15(  



 

10 
 

   

     







 


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k
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k
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1
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Corollary 2 

In order to minimize the number of passenger landings, the hubs chosen among the customer 

nodes should be done by choosing the nodes with the m biggest demands. If the number of 

helicopters is increased to n, the number of passenger landings becomes D+P, which is the 

minimal number of passenger landings that is possible. 

Proof  

The two statements follow directly from (16) 

Note: The second part of the corollary shows that choosing each and every customer node as a 

hub, the hub concept degenerates and becomes identical with using the HP as a hub. In a way, 

using the HP as a hub will be identical with using all customer nodes as hubs.  

Now, assuming that one wants two or more off-shore hubs, the following two decisions have 

to be made under the restriction of not violating the helicopters capacities: 

1. Which installations to choose as off-shore hubs 

2. Which installations should be assigned to which hub 

We will assume that the demands during the time horizon are given as D and P, but are so big 

that they cannot be handled by a single helicopter. Further it is assumed that the number of 

helicopters is the smallest integer number m, such that  PDmQ ,max , where Q is the 

capacity for a single helicopter, all helicopters are uniform. 

Lemma 5 

For a given choice of m off-shore installations, the number of passenger landings will be 

independent of the way the spoke nodes are assigned to the off-shore hubs. 

Proof: 

Follows directly by (16). 

 



 

 

An exact model for deciding which off-shore installation that should be chosen as hubs, 

when the number of helicopters, that is the number of off-shore hubs, is given. 

In addition to the notation already given the following notation will be used: 

m is a parameter denoting the number of helicopters. 

Variables: 

PL the number of passenger landings 

PC the transportation work 

1iU if node i is chosen as an off-shore hub and 0 otherwise, i = 1,2,…,n 

1ikW if node k is served from the off-shore hub i, and 0 otherwise, i, k =1,2,…,n 

)min(     )19( PCPL CL    

Subject to 
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
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n

i

iii UpdPDPL
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1 11 1

,0      )21(  
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nkiUW iik ,...,2,1,,       )23(   

niQUdWd iiik
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The objective (19) minimizes the expected number of fatalities depending on the number of 

passenger landings and cruising distance multiplied with the number of passenger on board. 

(20) and (21) give the number of passenger landings and transportation work, respectively. 

(22) specifies the number of helicopters. (23) says that if an off-shore installation is not 

selected as a hub, no transportation can take place from this hub to any of the other off-shore 

installations. (24) and (25) ensure that the capacities of the helicopters are not violated, 

neither for the out-bound nor the homebound demands, respectively. Finally, (26) and (27) 

ensure that all the necessary transportation take place, both for the out-bound and the home 

bound traffic, respectively. 

The above model is an integer program. As the number of installations increases, the number 

of 0/1 variables will also increase and solving the model to optimality may become difficult or 

take too long time, even if the model is treated as a tactical or strategically tool. If the model 

is used on a day to day basis where the hubs can be changed from one day to the next, time 

for solving the model can be limited, and a quicker way to find feasible solutions may be 

necessary. It is then necessary to rely on some heuristics to find feasible solutions. In the next 

section some heuristics are offered. 

4. Heuristics for the multiple hub situations 

Below several heuristics will be offered. They will all be of a naïve kind and based on the 

results above and/or inspired by heuristics from vehicle routing problems (VRP). Whether 

using an exact model or a heuristic two decisions have to be made in our context. As 

mentioned in section 3 these two decisions can be summarized as: 

Assuming that one wants two or more off-shore hubs, the following two decisions have to be 

made under the restriction of not violating the helicopters capacities: 

1. Which installations to choose as off-shore hubs 

2. Which installations should be assigned to which hub 

This opens up for two different approaches: 

1. First one decides which installations that should be chosen as the off-shore hubs and 

then one decides which installations that should be assigned to which hub under the 

restriction of not violating the helicopters capacity, or alternativly 

2. First one decides which off-shore installation that should belong to the same off-shore 

hub, given that the capacity of the helicopter is not violated and then one decides 

which node among the chosen ones that should serve as the off-shore hub. 

Below both approaches are used. 

Heuristic 1 

This heuristic is based on the fact that the probability of an unwanted incident is much larger 

when landing on a platform than when the helicopter is cruising between the nodes. As a 



 

 

consequence the number of passenger landings should be minimized in order to minimize the 

number of expected fatalities. 

Based on corollary 2 we then pick out off-shore installations with large demands. 

Step 1:  Choose the off shore installation with largest demands as a hub 

Step 2:  From this hub, assign the k nearest off-shore installations to the hub not 

assigned to any other hub, such that the demands between the HP and the hub 

is not violating the helicopters capacity, but is as big as possible. Go to step 3, 

unless all nodes are assigned to a hub. If so, stop. 

Step 3:  From the off-shore installations not used as a hub or assigned to a hub, choose 

as the next hub the remaining off-shore installation with the largest demand. 

Return to step 2. 

Variety of heuristic 1: Instead of choosing the hubs one by one and for each of the hubs 

assigning the spoke nodes, one can instead choose the m nodes with the largest demands as 

the hubs á priory and then assigning the spoke nodes to the chosen hubs in one sequence or 

another, of course avoiding the nodes that are already chosen as hubs. Sub-variations of the 

assignment approach will then be how to assign spoke nodes to the chosen hubs. Several 

different approaches are possible.  

Remark: According to lemma 5 and (16) the number of passenger landings will remain 

constant as soon as the off-shore hubs are fixed. The number of passenger landings could 

change if another choice of off-shore hubs is made.  

Heuristic 2 

This heuristic is inspired by the well known sweep heuristic in VRP. In addition we use the 

observation that usually in the off-shore industry the HPs are based on land with all the oil 

and gas installation out in the sea within in a certain sector that often will cover less than 180 

degrees as is the case in figure 1 in section 4. For ease of exposition we will assume that all 

the installations are north of the HP and distributed from east to west out in the sea. 

The heuristic will consist of two steps: 

- First a clustering step, clustering the nodes such that the helicopters 

capacity is not violated. 

- Second, choosing a hub for each of the clusters and assigning the other 

nodes belonging to the given cluster to this hub. 

More formally: 

Step 1:  Start the sweep with a line starting from the HP and being east of all the off-

shore installations. 
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Step2:  Sweep clockwise towards west collecting nodes until the helicopters capacity is 

violated. This will be the first cluster. Repeat step 2 by continuing westward 

until all nodes are belonging to a cluster. 

Step 3: In each cluster, choose the node with the biggest demand as the hub. Assign the 

other nodes in the cluster as spoke nodes to the chosen hub. 

Of course one may start the sweep from west and sweeping counterclockwise creating. 

Heuristic 3  

This heuristic is inspired by the well known Fisher-Jaikumars (FJ) heuristic (Fisher and 

Jaikumar, 1981) for the classical VRP. This heuristic introduces so-called seeds nodes, one 

for each vehicle that is needed to perform either a delivery service or a pick-up service from a 

central depot to a set of customers. With the help of the chosen m seed nodes, the set of 

customers is clustered into m disjunctive subsets such that the vehicles capacities are not 

violated. The depot is then added to each of the clusters and m different Travelling Salesman 

Problems (TSPs) are solved for each of the subsets. Note that the clustering process has 

circumvented the capacity problem and as a consequence it is not necessary to solve VRPs, 

but only TSPs.  

The present heuristic will first choose the seed nodes. These can be seen as the off-shore hubs 

and then a clustering will be performed in the FJ-fashion. In our case however, we have both 

delivery demands and pick-up demands. In their original paper Fischer and Jaikumar have 

several ways of finding good and suitable seed nodes. In our case we use the simple result of 

corollary 2 in order to keep the number of passenger landings as small as possible. Also note 

that as soon as the hubs are fixed by step 1 below, the number of passenger landings is given 

and will be independent on the assignment of the other off-shore installations to the hubs, see 

lemma 5. 

Step 1:  Choose the m off-shore nodes with the largest demands taken together 

The clustering part can be performed in three different ways in our case. First we define the 

decision variables isW = 1 if off-shore node i should be served from hub s and 0 otherwise, 

si  . 

FJ-heuristic, clustering part for variant 1 

The first case is a direct extension of the original FJ-heuristic. For each of the off-shore nodes, 

not being chosen as a hub, we calculate the following cost elements. These cost elements are 

given by the formula below and is identical with the so-called savings for the cost matrix 

based on the HP. We assume a symmetric cost matrix. For further information about the 

saving values, see Clark and Wright, 1964. 

simsnisiccc siisis  ,,...,2,1,,...,2,1,,          )28( 00  

We then solve the following IP model: 
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The objective (29) tries to maximize the savings which is another way of minimizing the 

costs. (30) says a spoke node should be assigned to exactly one seed node / hub. (31) and (32) 

ensure that the helicopters’ capacities are not violated. Solving the model (29) – (32) will 

create a cluster where the two types of demands will not exceed the helicopters capacity and 

each of the off-shore installations not chosen as a hub will be assigned to exactly one off-

shore hub. In our case it is not necessary to solve TSPs since now sequencing is necessary in a 

hub and spoke situation. 

FJ-heuristic, clustering part for variant 2 

In variant 1 the saving costs given by (28) is clearly associated with a VRP-context. In our 

situation we have a hub and spoke situation where we want to minimize the expected number 

of fatalities. Since the number of passenger landings is decided in step1, we can only 

influence the transportation work through the clustering process. Hence it seems to be 

reasonable to replace the cost elements in (28) with cost elements that directly have 

something to do with the transportation work that has to be performed. We therefore propose 

the following cost elements: 

 iiisis pdc      )33(  

We then replace the parameters in the objective (29) in the previous model and minimize 

instead of maximizing with (34) and keep the restriction (30) – (32). 


 


n

i

m

s

isisW
1 1

min     )34(  

FJ-heuristic, clustering part for variant 3 

In heuristic 1 the hubs are chosen in the same way as it is done for the two variants for the FJ-

heuristics. However, in heuristic 1 the clustering part is done in a sequential way by for 

example starting with one of the chosen hubs and the assign other off-shore installations to 

this hub if they are close to the hub. This assignment process can be done in many different 

ways and can be regarded as fairly naïve. To ensure that all possibilities are considered we 
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can use the FJ-models above replacing the parameters in (34) with .isc Actually one could use 

(33) in heuristic 1 and have another variation of this heuristic. 

4 Examples 

Below some examples are offered in order to illustrate the theoretical approaches treated in 

section 2 and 3. The examples are based on a small graph consisting of 7 nodes, 6 off-shores 

and one HP. The off-shore installations are all located “north” of the HP, see figure 2 for a 

map of the relative positions and the given distance matrix in table 1. 
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Figure 2: The map of the HP and the six off-shore installations 

Table 1: Cost matrix for the graph in figure 2 

 0 1 2 3 4 5 6 Row 

sum 

0 - 28 40 36 45 67 71 287 

1 28 - 28 41 60 64 91 312 

2 40 28 - 22 45 36 76 247 

3 36 41 22 - 22 32 54 207 

4 45 60 45 22 - 41 32 245 

5 67 64 36 32 41 - 64 304 

6 71 91 76 54 32 64 - 388 

 

Example 1 

This example refers to the situation in section 2, where either the HP or one of the off-shore 

installations is chosen as a single hub for the helicopters. The demands are given in table 2 

below and the results in table 3. 

HP 



 

 

Table 2 Pick-up and delivery demands for example1 

Node Delivery demand Pick-up demand Sum 

HP (0) - - - 

1 3 4 7 

2 1 3 4 

3 2 2 4 

4 6 5 11 

5 4 1 5 

6 4 5 9 

Sum 20 20 40 

 

Table 3: The costs, number of passenger landings and transportation work 

Node chosen as hub Distance / costs Number of passenger 

landings 

Transportation work 

HP 574 40 1969 

1 624 73 3195 

2 494 76 3243 

3 414 76 2703 

4 490 69 2981 

5 608 75 4475 

6 776 71 4669 

 

As can be seen from table 3, the HP outperforms – as expected – all the off-shore installations 

as hubs apart from the travelling distances. This is in accordance with the theory given above. 

Choosing node 3 as a hub will minimize the travelling distance and will give the smallest 

transportation work among the off-shore installations, and choosing 4 as the off-shore hub 

will give the minimum number of passenger landings among the these potential hubs. Note 

that it is especially the passenger landings that will increase substantially using an off-shore 

installation as a hub compared to using the HP as a hub. 

Examples for multiple hubs 

Below several examples are given illustrating cases when one assumes multiple off-shore 

hubs based on the heuristics given in section 4. In all the examples the demands given in table 

4 are used. As can be seen from this table, the demands can basically be handled by two 

helicopters, each with a capacity of 20 passengers. 
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Table 4 Pick-up and delivery demands for example 2 – 5.3 

Node Delivery demand Pick-up demand Sum 

HP (0) - - - 

1 2 5 7 

2 9 8 17 

3 8 7 15 

4 8 6 14 

5 8 5 13 

6 2 7 9 

Sum 37 38 75 

 

Example 2 based on heuristic 1 – basic version 

Following the algorithm for heuristic 1, evidently node 2 will be the chosen hub by step 1. 

Then assigning node 1 and 3 as spoke nodes to node 2, the capacity is not violated, but there 

is not possible to assign any other node to this hub without violating the helicopter’s capacity. 

Hence, node 2 is the first hub and node 1 and 3 are its spoke nodes. 

Retreating to step 2 in the heuristic node 4 will be the remaining node with the largest 

demands and will then be the second hub. Assigning node 5 and 6 as the spoke nodes for this 

hub will not violate the helicopter’s capacity. The result of this is given in table 5. 

Table 5 The results of applying heuristic 1 – basic version to the data. 

Hub Distance / costs Number of passenger 

landings 

Transportation work 

2 (with spoke nodes 

1 and 3) 

180 61 2086 

4 (with spoke nodes 

5 and 6) 

236 58 2441 

Sum 416 119 4527 

HP as hub for two 

helicopters 

574 75 3658 

 

Example 3 based on heuristic 1 – variant 

In this heuristic we first decide which off-shore installations that should act as hubs giving 

priority to those with the largest demands. From table 4 we get that the two nodes with the 

largest demands are node 2 and 3. We now have several choices as far as assigning spoke 

nodes to the two hubs. Alternative 1 will be to assign spoke nodes to the chosen hubs in a 

decreasing order when it comes to the total demands handled by the helicopters. In our 

example that will be assigning spoke nodes to node 2 first and then node 3. If one has more 

than two hubs there will exists m! different ways of doing this. Alternative 2 will be to start 

with the node that is closest to any of the chosen hubs and assigning this to the hub, then 

searching for the next one etc, until the helicopters’ capacities are violated. 



 

 

We will use both approaches starting with alternative 1. 

Example 3.1 based on heuristic 1 – variant with alternative 1, sequence 1 

The two nodes serving as hubs will be node 2 and 3. Then, starting with assigning spoke 

nodes to node 2, the two nodes closest to node 2 not serving as hubs will be node 1 and 5. It 

will be sufficient capacity to serve these three nodes, but adding another spoke node will 

violate the helicopter’s capacity. Hence, the second hub – node 3 – will be the hub for nodes 4 

and 6. The capacity will not be violated in this case either. The results are summarized in table 

6. 

Table 6 The results of applying heuristic 1 – variant with alternative 1 starting with node 2 as 

a hub to the data. 

Hub Distance / costs Number of passenger 

landings 

Transportation work 

2 (with spoke nodes 

1 and 5) 

208 57 2144 

3 (with spoke nodes 

4 and 6) 

224 61 2162 

Sum 432 118 4306 

HP as hub for two 

helicopters 

574 75 3658 

 

As can be seen from table 6 using HP as a hub will still be better than using two off-shore 

hubs. Comparing the results from table 6 with the results in table 5 as far as using two off-

shore hubs, the results show that the in table 6 is slightly larger than in table 5, the number of 

passenger landings is marginally better in the latter case and the transportation work is 

somewhat better. The latter will give a lower expected probability for the number of fatalities. 

Example 3.2 based on heuristic 1 – variant with alternative 1, sequence 2 

In this case we will start with the same nodes as the off-shore hubs, but we will start with 

assigning spoke nodes to node 3 first. As shown in section 3 the number of passenger 

landings will be the same as in table 6.  

Table 7 The results of applying heuristic 1 – variant with alternative 1, starting with node 3 as 

a hub to the data. 

Hub Distance / costs Number of passenger 

landings 

Transportation work 

3 (with spoke nodes 

1 and 4) 

198 57 1891 

2 (with spoke nodes 

5 and 6) 

304 61 2712 

Sum 502 118 4603 

HP as hub for two 

helicopters 

574 75 3658 
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Comparing table 6 and 7, we see that the results are worse – apart from the passenger landings 

– in the latter case. 

Example 3.3 based on heuristic 1 – variant with alternative 1, no priority between the 

hubs. 

In this case we assign the spoke nodes to the closest hub, not necessarily utilizing the capacity 

for a helicopter before we start on the next one.  

From the cost matrix we find that node 4 is the closest to any of the hubs and is closest to 

node 3. The next spoke node will be node 1, which will be assigned to node 2- The next one 

will be node 5 which should be assigned to hub 3, but this violates the capacity of the 

helicopter and must then be moved to node 2 as a spoke node. Finally node 6 will be a spoke 

node to hub 3. The assignment will be identical with the assignment in table 6. 

Example 4 – The sweep heuristic, heuristic 2 

Starting the sweep in a clockwise fashion we get nodes 1, 2 and 5 as the first cluster. Trying to 

add node 3 to this cluster will violate the helicopters capacity. The next cluster will be node 3, 

4 and 6. In the first cluster node 2 has the largest demand and will be the hub with node 1 and 

5 as spoke nodes. In the second cluster node 3 has the largest demand and node 4 and 6 will 

be assigned to this hub. The result will be the same as in table 6 above. 

Trying to sweep counter clockwise will give the same clusters and hence the same results. 

Example 5 – The Fischer-Jaikumar heuristic, heuristic 3 

In all the three variants of heuristic 3, step 1 is common. With the demands taken from table 

4, node 2 and 3 will be the hubs or the seed-nodes.  

Example 5.1 Heuristic 3, variant 1 

In this variant we use (28) to find the parameters used in the objective (29). These parameters 

are given in table 8. 

Table 8. The savings for the assignment model with objective (29) 

 0 1 2 3 4 5 6 

Seed 

node 2 

0 40 80 54 40 71 35 

Seed 

node 3 

0 23 54 72 59 71 53 

 

Note that the shaded elements cannot be used in the optimization / assignment problem, since 

node 2 and 3 are seed nodes and shall not be assigned to each other. 



 

 

Solving the associated model gives that 153435212  WWWW and all other variables are 

zero. This will be the same result as in table 6. 

Example 5.1 Heuristic 3, variant 2 

In this case we calculate the parameters in the second model with the help of (33) and 

minimize the objective. The parameters are given in table 9. 

Table 9. The savings for the assignment model with objective (33) 

 0 1 2 3 4 5 6 

Seed 

node 2 

0 196 0 330 630 468 684 

Seed 

node 3 

0 287 374 0 308 416 486 

 

Note that the shaded elements cannot be used in the optimization / assignment problem, since 

node 2 and 3 are seed nodes and shall not be assigned to each other. 

Solving the associated model gives that 153435212  WWWW and all other variables are 

zero. This will be the same result as for variant 1 and the details are shown in table 6. 

Example 5.2 Heuristic 3, variant 2 

In this case we calculate the parameters in the second model with the help of (33) and 

minimize the objective. The parameters are given in table 9. 

Table 9. The savings for the assignment model with objective (33) 

 0 1 2 3 4 5 6 

Seed 

node 2 

0 196 0 330 630 468 684 

Seed 

node 3 

0 287 374 0 308 416 486 

Table 9. The parameters for the assignment model with objective (33) 

 0 1 2 3 4 5 6 

Seed 

node 2 

0 196 0 330 630 468 684 

Seed 

node 3 

0 287 374 0 308 416 486 

 

Solving the associated model gives that 153435212  WWWW and all other variables are 

zero. This will be the same result as for variant 1 and the details are shown in table 6. 
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Example 5.3 Heuristic 3, variant 3 

In this case we use the distances from the seed nodes as parameters in the assignment model 

and minimize the objective. The parameters are given in table 10. 

Table 10. The parameters for the assignment model when distances from the seed nodes are 

used 

 0 1 2 3 4 5 6 

Seed 

node 2 

40 26 0 22 45 36 76 

Seed 

node 3 

36 41 22 0 22 32 54 

 

Solving the associated model gives that 153435212  WWWW and all other variables are 

zero. This will be the same result as for variant 1 and the details are shown in table 6. 
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