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Summary 

This master degree thesis introduces a new dimension to the Fleet Size and Mix 

Vehicle Routing by adding Simultaneous Pickups and Deliveries (FSMVRPPD) at the 

customers. A literature study has been conducted to investigate the previous work on the 

particular problem. The idea to explore this particular problem has come from the 

transportation structure of two different local industries. Although, these have no direct or 

indirect association with this thesis. A mathematical model has been presented to define the 

problem in full. This particular problem has the nature of combinatorial optimization and 

combines two NP-hard problems. Therefore, an Iterated Local Search algorithm has been 

proposed to investigate results conducted on the standard benchmark instances for the Fleet 

Size and Mix problems. These benchmark instances were modified to fit with the 

FSMVRPPD. An analysis of the outcomes from the ILS algorithm was conducted to see the 

change in the objective value and the structure of the solution. The investigation also led to 

observe the how challenging the results are from the ILS approach.  
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1.0 Introduction 

In the present market, the oil price crises put many companies to revise their 

transportation costs to be stable in the business. The transportation costs should require 

the attention of management as it, in general, is considered to account for about 20% of 

the total cost of a product (Hoff et al. 2010). Emergent economy, mounting consumption, 

and globalization give an increasing focus on transport solutions. Fierce competition 

between transporters and producers results in efficiency, better end-user service, on-time 

delivery and of course the need to cut off the transportation cost. By now, there are 

several tools, methods, models and software available in the market for improving 

transport efficiency and reducing the transportation costs, also by considering other 

aspects of better service such as on-time delivery, customer service, quality service etc.  

 

A very central issue when improving the transport efficiency is finding the optimal 

way of visiting customers described as the Vehicle Routing Problem (VRP). The general 

VRP was first defined by (Dantzig and Ramser 1959) as the problem of minimizing the 

costs of routing a fleet of vehicles to serve a set of customers with a given demand. The 

demand could be either pickup or delivery of goods, and the vehicles were assumed to 

have a fixed and homogeneous capacity. Later, several extensions of the VRP is 

described in the research literature, but real-world problems are in general complex and 

contains different constraints and requirements which make the standard models 

insufficient.  

 

In this thesis, we are going to discuss a more realistic aspect of transportation by 

combining two of the earlier defined extensions of the VRP. The thesis is focusing on 

selecting a fleet of different vehicles and creating routes where the demand of several 

customers is going to be fulfilled. The customers can have both a pickup and delivery 

demand at the same time, which makes it necessary to check the vehicle capacity at any 

point during the routes. We call this problem the Fleet Size and Mix Vehicle Routing 

Problem with Pickups and Deliveries (FSMVRPPD), which can be seen as a 

combination of two earlier defined variants of the VRP. These are the Fleet Size and 

Mix VRP (FSMVRP) described by (Gheysens, Golden, and Assad 1984) and VRP with 

Pickup and Delivery (VRPPD) described by (Alfredo Tang Montané and Galvão 2006). 

The problem is related to the design of distribution networks for businesses. The 
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distribution networks require a significant share of investment; therefore, it is a 

precarious issue for many companies. 

The motivation to study this problem comes in particular from by looking at the 

general transportation of two local businesses. One is a bakery, and another is a cold 

drink factory both located in the town of Molde. The bakery distributes products to a 

smaller region as compared to the cold drinks factory. They both have a diversified fleet 

of vehicles but in limited numbers. Both of them deliver their products in plastic crates 

and then collect these containers (empty or sometimes with returned products) from the 

customers. Depots are located at the same location as the production factory. These 

aspects in the VRP terminology are described as heterogeneous vehicle fleet, single 

supply station or distribution center and customers with two types of demand, i.e. Pickup 

and Delivery, simultaneously. Study of the previous literature revealed that the 

FSMVRPPD has not been studied significantly in the research literature. The examples 

mentioned above are two specific situations from the real world industries that are 

relatively close to the FSMVRPPD. But the FSMVRPPD could be actual for a load of 

similar companies and also in other variants of industries. 

 

In this thesis, we are going to make decisions on the selection of an appropriate 

vehicle fleet from the available alternative vehicle types. Also, as this transportation 

network is going to serve the customers, finding optimal routes with the chosen vehicle 

fleet is a priority. The demand of the customers is the main focus in this problem 

solution. Each customer has some delivery demand or some pickup demand or both. 

 

The first aspect of the problem is to choose the best suitable vehicle fleet. A 

homogeneous vehicle fleet can do the job in more general cases. However, this is usually 

not the case for real industrialized problems, where adopting a fleet of similar vehicles 

would not be cost efficient. Therefore, the inclusion of heterogeneous vehicles in the 

fleet would be more profitable and reflect the real industrialized problems. It is also a 

fact that the vehicles usually are acquired over a long period; thus, mechanical and 

technological developments in that time period leads to vehicles of different features and 

properties. There are three main categories to differentiate aspects of vehicle types (Hoff 

et al. 2010): 
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 Physical Dimensions 

 Compatibility Constraints 

 Costs of Operation 

 

Physical characteristics of a vehicle put constraints on the capacity of the 

vehicle. Not only the physical appearance affects the capacity, but some technical 

issues also control the load capacity. The speed of a vehicle can also be identified 

as a physical restriction. 

 

Compatibility constraints deal with the different types of commodities to be 

loaded on the vehicles. Compatibility issues concern most when commodities of 

the different state are going to be shipped, such as Liquids, Gasses and Solid 

materials. Solid materials are most compatible to transport while liquids and 

gasses call for some special kind of tanks and chambers to fill in. Another issue 

is to deal with items those strictly need different storage environment such as 

cold storage, pressure tanks, vacuum, etc. The food items which require freezer 

trucks while transportation is the typical example of this constraint. 

 

The operational cost of the vehicles is also an important factor when selecting 

the fleet. As all efforts of operational research and decision support systems are 

to come up with a cost-efficient and profit oriented solution. Costs include the 

acquisition cost, depreciation cost, maintenance cost, and environmental cost. 

 

In this thesis, we have considered the two primary aspects of heterogeneous 

vehicles, which is deemed to be the loading capacity and the operational cost of 

vehicles. 

 

 In this thesis, a mathematical model is formulated to describe the problem. Smaller 

instances are solved to optimality by using the exact mathematical model, and a 

metaheuristic is developed to solve larger instances of the problem. I chose to use a variant 

of the metaheuristic Iterated Local Search to solve the large problem instances as mentioned 

by (Subramanian et al. 2012) and (Lourenço, Martin, and Stützle 2010). Results from both 

the exact method and the metaheuristic are achieved and compared to the solution of 
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standard instances for the FSMVRP to see how the pickup and delivery constraints affect 

the objective value and composition of fleet and routes.  

 

 In the next chapter, a discussion on the background of FSMVRPPD has been written, 

which also includes a review of various related papers. The FSMVRPPD is described in 

Chapter 3. In Chapter 4, we present the mathematical model following by the Iterated Local 

Search metaheuristic in Chapter 5. Chapter 6 will cover the computations, interpretation, 

and comparison of results using the methods described in Chapters 4 and 5. At last, a 

conclusion will be presented in Chapter 7 in combination with suggestions for further 

research on the problem. 

 

2.0 Problem Background and Literature study 

In this chapter, we will discuss the history of routing problems thoroughly, starting from 

the first time when this problem was introduced. It means that we are going to address the 

problem from its basis until the current situation. The focus of this thesis is to define the 

problem as well as possible. Therefore, a classification scheme of previous VRP work 

concentrates on the nature, characteristics and application scenarios of the problems.  

 

2.1 VRP 

Vehicle Routing Problems are concerned with the delivery of some commodities from 

one or more depots to a number of customer locations with known demand. Such problems 

arise in many physical systems dealing with distribution networks. For example, delivery of 

commodities such as mail, food, newspapers, etc. The specific problem which arises is 

dependent upon the type of constraints and management objective. This definition is given 

by (Achuthan, Caccetta, and Hill 1997).  

 

 (Lin et al. 2014) Categorized the following extensions to VRP in their survey on 

Green Vehicle Routing Problem. They have reviewed the last 50 years of VRP, which 

enlightens the way to study the history of VRP and its extensions and to define the current 

problem presented in this thesis. 
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2.2 Extensions to VRP 

 

i. Capacitated VRP (CVRP) 

(Dantzig and Ramser 1959) First introduced the vehicle routing problem by 

describing a real world problem of gasoline delivery to a large number of small-

sized service stations from a big size distribution terminal. As we know, when 

we have a large number of customers to be served, the number of possible routes 

are also increased exponentially. This results in difficulties in finding the optimal 

routing for the problem. They developed an algorithm approach based on a linear 

mathematical formulation to produce a near to the optimal solution to the 

problem. In their problem, the delivery trucks had a loading capacity which 

makes the problem a Capacitated VRP. By analyzing the cost matrix for the 

travel distances, the CVRP can be categorized into Symmetric CVRP and 

Asymmetric CVRP depending on the distance between two nodes are the same 

independent of direction or not (Toth and Vigo 2002), they used the branch and 

bound algorithms to solve the problems. 

 

 

ii. Time-dependant VRP (TDVRP) 

In this type of vehicle routing problem, the real world traffic effects the traveling 

time of the vehicles in between various nodes. The increase in traffic density can 

reduce the vehicle speed and travel time would be increased. Traditionally, in the 

VRP, Euclidean distances between nodes are predicted as constant, but this is 

usually not the situation in a real world case. As a consequence, the actual 

traveling cost can be calculated completely wrong (Polimeni and Vitetta 2013). 

A method to generate travel times based on the area or location of the vehicle 

and on the time of day is proposed by (Lecluyse, Sörensen, and Peremans 2013). 

They found out that previous work was not good enough to generate time-

dependent travel times. The method proposed by them is able to create travel 

time profiles for all the edges in a traveling network where congestion areas can 

be defined by users. Also (Cooke and Halsey 1966) stated that the constant 

traveling time between two nodes (vertices) is not true for many real world 

applications. Therefore, they proposed an iteration scheme to find the shortest 
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path by considering variable travel times between nodes. Another extension to 

Time-dependant VRP is discussed by (Solomon 1987) as VRP with scheduling 

and Time Windows constraints. (Figliozzi 2012) solve the time dependent 

problems with hard time windows. The proposed algorithm can handle both 

constant and variable speed as well as hard and soft time windows.  

 

iii. Pickup and Delivery VRP (VRPPD) 

There is a huge collection of research papers available on pickup and delivery 

problems. (Lin et al. 2014) presented a classification of these type of problems, 

which can be seen in  

Figure 1. They referred this classification from (Parragh, Doerner, and Hartl 

2008a, b). The first time pickup and delivery problems were described by 

(Wilson and Weissberg 1967)as a dial-a-ride problem. 

 

 

Figure 1. Classification of Pickup and Delivery problem (ref. Lin et al. 2014) 

 Transportation from/to depot. There are four specific problems specified when 

transporting goods from or to a depot.  

(a.) VRP with Clustered Backhauls (VRPCB) states that the group or cluster of linehaul 

(delivery) customers should be served before starting to visit backhaul (pickup) customers. 

In VRPCB, the customers can have either delivery demand or pickup demand, but not both. 

(b.) VRP with Mixed Linehauls and Backhauls (VRPMLB) allow mixed visits to 

customers. This means vehicles are allowed to visit customers in any sequence, but in one 

visit only one of the operation performed that could be either delivery or pickup. 

(c.) VRP with Divisible Delivery and Pickup (VRPDDP) some customers are visited first 

for only delivering the goods without any pickup. After that, the remaining customers are 
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visited to perform both delivery and pickup operation. On the way back, before the vehicle 

return to the depot, the remaining pickups, which were left at the start of the route are 

processed. 

(d.) VRP with Simultaneous Delivery and Pickup (VRPSDP). Both the delivery and 

pickup operations must be performed in a single visit to each customer. VRPSDP is the 

variant considered in the FSMVRPPD.  

 

 Transportation between Customers is classified into three problems.  

(a.) Pickup and Delivery VRP (PDVRP). A vehicle traverses across a route to transport 

the goods, which consists of unpaired pickup and delivery points. Here it is assumed that 

every unit picked up can be used to satisfy every delivery customer’s demand (Parragh, 

Doerner, and Hartl 2008a).  

(b.) Classical Pickup and Delivery problem (PDP) this problem can be simplified by 

considering the example of a bus. A bus driver picks up passengers from different locations 

and transport them to other locations, where, the driver could have another pickup or not. 

Means there is no central location/depot of goods. They are distributed over the network of 

nodes.  

(c.) Dial-a-Ride Problem (DARP) points to routing and scheduling of vehicles to fulfil the 

pickup and delivery requests of customers between the start and end point of travel (Cordeau 

and Laporte 2007). Problems of this kind arise, e.g., in connection with the transportation of 

handicapped or elderly persons. Another possible application is, the transportation of 

perishable goods, that also requires maximum ride time limits (Parragh, Doerner, and Hartl 

2008a). 

 

iv. Fleet Size and Mix VRP (FSMVRP) 

Fleet Size and Mix VRP (FSMVRP) is a situation where one has to decide the 

fleet composition from the available vehicle fleet and routing of the vehicles 

simultaneously (Golden et al. 1984). (Baldacci, Battarra, and Vigo 2009) have 

solved FMSVRP based on two-commodity network flow by proposing a mixed 

integer programming formulation. (Liu, Huang, and Ma 2009) proposed a 

genetic algorithm based heuristic to FSMVRP with and without fixed cost. They 

demonstrate that genetic algorithm approach is as competitive as other, a 

mathematical programming based and local search based approaches. The 

FSMVRP with Time Windows has been deeply studied over the past decade. 
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Some recent studies on FSMVRPTW are done by (Repoussis and Tarantilis 

2010) and (Belfiore and Yoshizaki 2013).  

 

v. Multi-depot VRP (MDVRP) 

MDVRP is an extension to the CVRP by introducing more than one depot 

location. Every customer is visited by a vehicle assigned to one of the depots. 

Origin and destination for a vehicle route must be same depot (Lin et al. 2014).  

 

vi. Stochastic VRP 

When one or more components in the VRP are uncertain. SVRP can contain 

stochastic customers, where probability determines the presence of the customer 

or not, or the problem can have stochastic demand. Service time and travel time 

could also be random variables (NEO 2013). 

 

vii. Location Routing Problem (LRP) 

Two main decisions have to be taken; one is to select the appropriate depot 

location and another one is to construct the routes to service the customers. A 

half century ago (Boventer 1961) introduced the idea of combining location and 

routing decisions, later, as more rich research known as Location Routing 

Problem (LRP). Most recent search can be observed from the articles (Koç et al. 

2016), (Prodhon and Prins 2014). 

 

viii. Periodic VRP (PVRP) 

The objective of PVRP is to find feasible routes such that total routing cost during 

the time horizon could be minimized. Other important aspects in PVRP are that 

customers do not need to be visited in every period and the routes can be different 

in various periods. (Beltrami and Bodin 1974) has proposed algorithms to solve 

out the municipal waste collection routing problem. They consider time 

constraint, where locations of waste require a different number of visits and also 

different combinations of days in a week for a visit. Many real-world situations, 

such as waste collection, industrial gas distribution, grocery industry and picking 

up raw materials from suppliers (Alegre, Laguna, and Pacheco 2007), has 

inspired to study PVRP significantly. 
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ix. Dynamic VRP 

The situation in real world VRP problems is not always constant or static. Over 

the time, conditions could be different because of uncertainty such as vehicle 

breakdown, continually getting customer’s orders, traffic control etc. (Lin et al. 

2014). In a dynamic VRP, the routes can be changed while executed due to such 

unplanned situations. 

 

x. Inventory Routing Problem 

The products are transported from supplier to customer to fulfil the customer’s 

demand over a time period. The customer’s demand is deterministic and the time 

period can be finite or infinite. Transportation is done by a fleet of capacitated 

vehicles. The inventory cost is applied to customers as well as the supplier. The 

purpose is to minimize the total routing cost including inventory cost by dealing 

with time horizon constraint (Bertazzi and Speranza 2012). Typical for these type 

of problems is that they are not driven by customer orders, but by the customers 

size of inventory. Thus, it is the supplier who has to make sure that the customers 

are resupplied before they get out of stock. 

 

xi. Split delivery VRP (SDVRP) 

In SDVRP, a fleet of homogeneous vehicles serve the customers, but different 

from the classical VRP the customers can be visited more than once. This 

situation occurs where customers may have larger demand than the capacity of 

the vehicle but not necessarily. Each vehicle must have the same depot as starting 

and ending point (Archetti and Speranza 2008). The SDVRP was first introduced 

by (Dror and Trudeau 1989). They showed that one could have savings in cost 

by splitting the deliveries. (Archetti, Savelsbergh, and Grazia Speranza 2008) 

wrote in their paper that savings depend on the features of the instance. They 

found that it could be more beneficial if the average customer demand is slightly 

more than the half of the vehicle capacity and the variance in customer demand 

is small. 

2.3 Solution methods 

From the study of literature available in the previous section, it is clear that the 

standard VRP is a combinatorial optimization type and therefore NP-hard as described by  
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(Stutzle 1998).  The  FSMVRPPD combines two variants i.e. VRPPD and FSMVRP which 

makes the problem even harder. Thus, developing a good solution method is not an easy 

process. There are numerous papers pointing to various approaches to follow while finding 

the best solution for these types of problems. In general, the vehicle routing problems can 

be handled through two main classes of solution methods as shown below: 

(i) Exact Methods 

(ii) Approximation Methods 

 Heuristics 

 Meta-heuristics 

 

2.3.1 Exact Methods 

Finding the exact optimal solution by using some mathematical techniques 

know as exact methods. In exact methods, there are some functions which follow the 

mathematical rules for calculations to develop the solutions. For limited size 

instances, an exact simple method could be to enumerate all possible solutions fully. 

But, using such type of methods is in practice infeasible for larger instances due to 

the exponential size of the solution space. The best known exact method for 

optimization problems is the Branch and Bound algorithm (Stutzle 1998). 

Researchers have always been challenged to solve NP-hard optimization problems 

to optimality since computers can be used to solve these problems. Noteworthy 

progress has been made for solving these problems in recent time span, but still only 

smaller instances can be solved. Vehicle routing problems belong to a class of 

problems that has proved to be difficult to solve. Only moderately sized problems 

can be solved to optimality consistently (Ropke 2005). FSMVRPPD is a 

combinatorial optimization problem that combines the aspects of two other 

combinatorial problems. Therefore, we cannot expect an instant optimal solution for 

large or moderate instances of this problem.  

    

Three main classes of exact methods for VRP are proposed by (Toth and 

Vigo 2002); Branch and Bound, Branch and Cut and Set Covering based algorithm. 

 

Branch and Bound Algorithms are based on the idea of divide and conquer. 

A large solution space is divided into smaller subproblems for solving them 
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separately. A lower bound is found by a linear relaxation of the original 

problem to determine whether to continue the decomposition of the problem 

or if optimal solution which satisfies all the constraints, has been reached. 

(Laporte and Nobert 1987) has done a detailed study on the branch and bound 

algorithm. 

Branch and Cut Algorithms are likely to branch and bound algorithm but 

use a cutting plane algorithm to get linear constraints which are satisfied by 

all feasible integer values, but excludes present fractional solutions. The 

inequalities added to the problem yields a less fractional solution. The 

problem then divided in two and solved again. This process is repeated until 

a solution satisfying all the integer constraints is found. 

Set Covering based algorithms are based on the enumeration technique, 

where all feasible routes in the problem are enumerated and the best possible 

solution set covering all the customers is selected. Enumeration is a time-

consuming process and even enumerating a small instance is not easy. The 

column generation heuristic can overcome this problem by enumerating only 

a small subset as the possible routes. In Column Generation, the idea is to 

generate only those routes which have the potential to decrease the total cost. 

Firstly, a master problem (original problem) is solved to obtain the value for 

each constraint. A negative reduced cost is obtained from the subproblem 

which is obtained from the master problem. Then the negative reduced cost 

is added to the master problem and the master problem is resolved. This 

process is repeated until the subproblem generates no negative cost. Each 

column represents a feasible route for a vehicle and the set of routes covering 

all customers exactly once represent a feasible solution.  

2.3.2 Heuristics 

Solving large combinatorial optimization problems by using exact methods 

is not easy. So heuristics are commonly used as rules of thumb to solve large 

instances on these type of problems and produce good solutions in short time. 

Heuristics can be categorized as: 

 Constructive heuristics 

 Improvement heuristics 
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A constructive heuristic is initialized by building the solution from a fresh 

starting point and adding the most acceptable components step by step until a full 

solution is constructed. The most famous constructive heuristics are the Sweep 

algorithm and Clarke and Wright Savings algorithm. 

In the Sweep Algorithm, a straight line is imagined from the starting point 

(depot) of a route and then, it is swept across the area around the origin point. The 

sweeping could be clockwise or anti-clockwise. Nodes are added to the route due to 

the angle of the sweeping line, and when the capacity of a vehicle is reached a new 

vehicle is introduced 

In Clarke and Wright Savings Algorithm (Clarke and Wright 1964), the 

idea is to obtain maximum cost savings by combining two routes into a single route 

as shown in Figure 2. 

 

Figure 2 Clark and Wright Savings Algorithm (Ref. Clarke and Wright (1964) 

In Figure 2(a) two separate routes for nodes i and j are shown. But i and j can 

be visited in single route as shown in Figure 2(b). To combine two routes into one 

route, the cost savings is calculated for nodes included in the routes. The formula to 

calculate the savings is: 

 𝑆 = 𝑐𝑖,0 +  𝑐0,𝑗 −  𝑐𝑖,𝑗 

Where, c denotes the cost of traveling to related nodes in the routes. 

 

An improvement heuristic focuses on to improve an existing solution by 

applying changes within a vehicle route or in between different vehicle routes. These 

changes or modifications could be moving a customer to another route, exchange 

customers between two routes, change in the visiting sequence in one route, etc. A 

Local Search implements the modifications to one local solution in expectation of 
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finding improved solution. The Local Search will stop if no improvement solution is 

found. The Local Search relies on the definition of a neighbourhood which is the 

possible new solutions that can be reached from a solution by performing one move. 

Then the resulting solution is defined as a local optimum.  

2.3.3  Metaheuristics 

The idea is to combine two or more heuristics to generate high-quality 

solutions. The term metaheuristic was introduced by Fred Glover in 1986 and is 

defined by (Glover and Kochenberger 2003) as:  

 “ Metaheuristics, in their original definition, are the solution methods that 

orchestrate an interaction between local improvement procedures and higher 

level strategies to create a process capable of escaping from local optima 

and performing a robust of a solution space. 

 Over time, these methods have also come to include any procedures that 

employ strategies for overcoming the trap of the local optimality in the 

complex solution spaces, especially those procedures that utilize one or more 

neighbourhood strucutures as a means of defining admissible moves to 

transition from one solution to another, or to build or destroy solutions in 

constructive and destructive processes. “ 

 

Metaheuristics can be classified into three categories: Local search based, 

Constructive and Population-based. 

 

2.3.3.1 Local Search based metaheuristics 

These type of heuristics are starting from an initial solution and moving to a 

neighbouring solution while applying minor changes to the solution until the given 

number of iterations come to an end. Some good known types of Local search are: 

 Iterated Local Search 

 Tabu Search 

 Simulated Annealing 

 Guided Local Search 

 Variable Neighbourhood Search 
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Iterated Local Search (ILS): This metaheuristic extends the local search 

method to avoid getting stuck in a local optimum, where improving neighbors 

are not available. ILS modifies the method by repeated calls to the Local 

Search method. Each time it starts from a new initial solution which usually 

will end up in a different local optimum.The best of the local optima found 

is stored and returned when the search is completed. 

Tabu Search: Tabu search allows the modifications to the solution which 

not necessary leads to a better solution. Thus, the method can avoid being 

stuck in a local optimum, by preventing the search from coming back to 

previously visited solutions. Tabu search uses memory to keep track of 

already explored solutions and stores components from the most recent 

moves in a tabu list to prevent them from being part of a new move within a 

given time frame. The best solution found overall in the search is stored and 

returned when the search is usually completed after a given number of 

iterations.  

Simulated Annealing: This metaheuristic is used to solve the type of 

problems, where finding a good solution in a short time period is important. 

Simulated Annealing selects a possible move at random, and  uses probability 

to decide whether to accept a solution or not if the quality is poorer than the 

previous one. The probability factor decreases during the search, which leads 

to only good quality solutions will be accepted at the end of the search.  

Guided Local Search (GLS): GLS uses penalties to help escape a Local 

Search method from local optima and progress to find global optima. These 

penalties are calculated while searching the solution space. The idea is to add 

penalties to the cost function employed by the Local Search method. A given 

number of times the repetitions are performed on the Local Search by using 

local optima and the enlarged cost function that directs the search away from 

local optima. 

Variable Neighborhood Search: VNS is different from other local search 

based meta-heuristics because it does not explore one single neighborhood, 

but alters between several different predefined neighborhoods. This means 
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that it can escape from a local optimum in one neighborhood by introducing 

another one. 

2.3.3.2 Constructive Meta-heuristics 

The complete solution is not considered in this type of metaheuristics. The 

solution is constructed by addition of one element in each iteration. Unlike the 

constructive heuristics, global memory is used between several runs of the 

construction process to store information about the quality of the components. The 

objective value of a solution is not given until the solution is completed, but then it 

can be used for guiding the next run of the process. These metaheuristics are 

constructed in a greedy way, and examples are: 

 Greedy Randomized Adaptive Search Procedure(GRASP) 

 Ant Colony Optimization 

Greedy Randomized Adaptive Search Procedure (GRASP) is based on 

the repeated sampling of random greedy solutions and improve those 

solutions by using a local search approach to find local optima. The sampling 

function builds a Restricted Candidate List (RCL) that controls the selection 

of the components of a solution. A threshold on the cost of including the 

component to the candidate solution defines the greediness of the sampling 

method. 

Ant Colony Optimization uses the search history and heuristic information 

to build the candidate solution and keep the knowledge from solution 

construction into the history. The solutions are developed separately one at a 

time by using probability. The selection of component is based on the 

involvement of component to the overall solution cost and quality of the 

historic solution from which the component has been included. 

2.3.3.3 Population-based Meta-heuristics 

These metaheuristics strategy is to look into a group of different solutions. 

While, other metaheuristics try to improve individual solutions. The objective here 

is to find high-quality solutions by interchanging the characteristics between existing 

solution. The idea is that combining the characteristics of two good solutions could 

lead to an even better solution. Types of these metaheuristics are: 

 Genetic algorithm 
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Genetic Algorithm can solve both constrained and unconstrained 

optimization problems which imitate the way of natural selection. The 

genetic algorithm randomly selects the component from the population of the 

solutions and then produce the offspring of the selected components by 

considering them as parents. As the offsprings are generated over and over, 

the original population progress towards an optimal solution. 

3.0 Problem Description 

3.1 Problem Definition 

 

The problem (FSMVRPPD) considered in this thesis includes two major decisions. 

First, the construction of a fleet consisting of different types of vehicles, and then routing 

the heterogeneous fleet of vehicles such that all customer’s demand is fulfilled 

completely. The storage capacity at customers is not included in the problem. As the 

fleet includes heterogeneous vehicles, thus each vehicle type has different loading 

capacity. 

 

 Then the question is why a business or company wants networks to design this 

distribution? The answer is to optimize the transportation costs and to run the business 

successfully. As the companies have the main goal to achieve the profit from the 

investments and transportation cost in general accounts for about 1/5th of the total cost. 

 

 Therefore, the objective of FSMVRPPD is to minimize the total cost while fulfilling 

the customers’ demand. The cost includes the operational cost of using the 

heterogeneous fleet of vehicles for traveling between the depot and customers in a route, 

in addition to a fixed cost of acquiring/owning the vehicles in the fleet.  

 

For a general understanding, we can present the objective function as the cost 

function below: 
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The cost function includes the costs of only those vehicles selected for the fleet, in order 

to serve the customers and the traveling cost for routing the vehicles between the depot and 

the customers. There will be some decision criteria to find the optimal results about 

travelling routes and vehicle fleet. 

 

The total cost is calculated by summing up the cost of each route found in the solution. 

There are chances that the same type of vehicle can be used on various routes, assuming that 

the possible number of each vehicle type is unlimited. Therefore, the fixed cost of the 

selected vehicle type is counted for every route it is assigned to. We can describe the problem 

by looking at the following rules/constraints: 

 There exist a set of heterogeneous vehicle types with different load capacity 

and fixed cost. 

 Only one vehicle can serve a route at a time. 

 The fleet can consist of a combination of any number of all vehicle types, 

and not all vehicle types need to be included in the fleet. 

 A customer should be served in only one route.  

 All the customers are served from single un-capacitated distribution point/ 

depot. Each route must start and finish at the depot. 

 Customers can have two types of demand; one is delivery, and another is the 

pickup. 

 Some customers can have delivery only and some can have pickup only. 

 Both delivery and pickup demand must be fulfilled on a single visit to the 

respective customer. 

 The vehicle capacity cannot be exceeded at any customer in the route. 

 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹𝑐 =   𝐹𝑣 +  𝑇𝑟  

   

 Where, 𝐹𝑐 – total cost (sum of both cost factors) 

  𝐹𝑣 – Fixed dispatch cost of vehicles 

  𝑇𝑟 – Travelling cost between all nodes 
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3.2 Example 
In this section, a small example is presented to make an easier explanation of the 

FSMVRPPD. In this example, there are five customers with both pickup and delivery 

demands, two vehicle types with the different capacity fleet and a depot. Figure 3 represent 

the scenario of the problem. A triangle shape denoted with D accounts for the depot node 

from where the customers are going to be served. The five rectangles represent the five 

different customers as c1, c2, c3, c4 and c5. Each customer has a delivery demand denoted 

as ‘d’ and a pickup demand denoted as ‘p’. The values for each demand are shown near to 

respective customer.  

 

Figure 3 A VRP problem scenario 

Now we create routes to fulfill the customer demands by using the two types of vehicles V1 

and V2, with capacities of 35 and 40 respectively. According to the FSMVRPPD explained 

above, the solution for this example would be as shown in Figure 4. 
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Figure 4 Vehicle routing solution to example 

The scenario has been solved by using both the vehicles. There are two different 

routes RED and GREEN, represented by red and green arrows. V1 is assigned to RED and 

V2 to GREEN. Vehicle V1 serves two customer c2 and c3, while vehicle V2 serves the three 

remaining customers c1, c4, and c5. On the RED route, the customer has the total delivery 

demand of 32 units and total pickup demand of 34 units. If vehicle V1 starts from the depot 

with 32 units, visits c3 where it delivers 15 and picks up 16 units. The load is now 33 units, 

which still is below the total capacity of 35. Next c2 is visited where 17 units are delivered, 

and 18 are picked up. The total load is increased to 34 and the vehicle returns to the depot. 

On the other hand, vehicle V2 serves the GREEN route. Both delivery and pickup demand 

is the same i.e. 40 units, so the vehicle is fully loaded when leaving as well as when returning 

to the depot. We can, however, see that c1 cannot be visited as the first customer on the route 

since the pickup demand is higher than the delivery demand, which would lead to overload 

on the vehicle. In this example, c5 is chosen as the first customer on the route, and then the 

only option to avoid overload is to visit c4 next. Thus, the routes would be: 

 

 RED: D c3 c2 D; d=32, p =34; vehicle = V1 (capacity 35) 

 GREEN: D c5 c4 c1 D; d=40, p=40; vehicle= V2 (capacity 40) 
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These routes are a feasible solution to the problem and do not violate any of the 

constraints of the FSMVRPPD. Still better solutions exist for this instance. 

 

 

4.0  Mathematical Model for FSMVRPPD 

In this section, the mathematical formulation for the FSMVRPPD is presented. This 

formulation is an extension of the FSMVRP proposed by (Gheysens, Golden, and Assad 

1984). Their FSMVRP model has been modified to meet the current problem situation, and 

the pickup and delivery demand constraints have been formulated and added into the 

FSMVRP model. In this formulation, each customer is going to be served for both demands 

(i.e. pickup and delivery) at the same time, or in other words, both pickup and delivery are 

going to be performed in single visit to the particular customer.  

 To implement the pickups and deliveries in FSMVRP the following rules have been 

taken into account: 

(i) Feasibility: A solution is feasible if the total quantity assigned to each route does 

not exceed the capacity of the vehicle which services the route and the vehicle 

has enough capacity for picking-up the commodities at customers. 

 

(ii) Delivery-feasible: This case means that the total amount of commodities to 

deliver in a route must not exceed the vehicle’s capacity. 

 

(iii) Pickup- feasible: This rule ensures that the vehicle has enough capacity to pick-

up the goods of all the customers of the route. 

 

(iv) Load feasible: The vehicle’s capacity is not violated at any node of the route. 

Such a violation can depend on the sequence of the customers even if the route 

is both Pickup- and Delivery feasible  (NEO 2013). 

 

 

The following are the notations used in the FSMVRPPD formulation: 

 

n – total number of customers 

N – set of the nodes, including depot node 0,     N= 0,1,….n  
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A – set of arcs of traveling possibilities between nodes (i, j), where 𝑖 ≠ 𝑗, ∀ 𝑖 ∈ 𝑁, ∀ 𝑗 ∈ 𝑁 

C – set of customers, C=1….n 

V – set of vehicle types 

𝑄𝑣 – capacity of a vehicle of type 𝑣,  ∀𝑣 ∈  𝑉 and 𝑄1 <  𝑄2 < ….<𝑄𝑣  

𝑓𝑣 – fixed operation cost of vehicle type 𝑣,  ∀𝑣 ∈  𝑉 and 𝑓1 <  𝑓2 < ….<𝑓𝑣   

𝑑𝑗 – delivery demand of customer 𝑗, ∀ 𝑗 ∈ 𝐶 

𝑝𝑗 – pickup demand of customer 𝑗, ∀ 𝑗 ∈ 𝐶 

𝑇𝑖,𝑗 – cost of traveling from customer 𝑖 to customer 𝑗 , ∀ (𝑖, 𝑗) ∈ 𝐴 

 

𝑌𝑖,𝑗  - delivery load from customer 𝑖 to customer 𝑗 , ∀ (𝑖, 𝑗) ∈ 𝐴 

𝑍𝑖,𝑗  - pickup load from customer 𝑖 to customer 𝑗 , ∀ (𝑖, 𝑗) ∈ 𝐴 

𝑋𝑖,𝑗,𝑣 – 1 if vehicle of type 𝑣 travels directly from customer 𝑖 to customer 𝑗, 0 otherwise  

                                                                                 ∀ (𝑖, 𝑗) ∈ 𝐴 , ∀𝑣 ∈  𝑉 

 

 

 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  ∑ ∑ 𝑓𝑣

𝑗 ∈ 𝑁

 𝑋0,𝑗,𝑣

𝑣 ∈ 𝑉

+ ∑ ∑ 𝑇𝑖,𝑗

(𝑖,𝑗) ∈ 𝐴

 𝑋𝑖,𝑗,𝑣 

𝑣 ∈ 𝑉

  

 

Subject to 

 

∑ ∑ 𝑋𝑖,𝑗,𝑣

𝑖 ∈ 𝑁

 

𝑣 ∈ 𝑉

= 1,     ∀ 𝑗 ∈ 𝐶 

 

∑ 𝑋𝑖,𝑗,𝑣

𝑖 ∈𝑁

−  ∑ 𝑋𝑗,𝑖,𝑣

𝑖 ∈𝑁

= 0,      ∀ 𝑗 ∈ 𝐶, 𝑣 ∈ 𝑉  

 

∑ 𝑌𝑖,𝑗

𝑖 ∈𝑁

− ∑ 𝑌𝑗,𝑖

𝑖 ∈𝑁

= 𝑑𝑗 ,      ∀ 𝑗 ∈ 𝐶  

 

∑ 𝑍𝑗,𝑖

𝑖 ∈𝑁

−  ∑ 𝑍𝑖,𝑗

𝑖 ∈𝑁

= 𝑝𝑗 ,      ∀ 𝑗 ∈ 𝐶  

 

𝑌0,𝑗 ≤  ∑ 𝑄𝑣

𝑣 ∈𝑉

 𝑋0,𝑗,𝑣 ,           ∀ 𝑗 ∈ 𝐶 

 

𝑍𝑗,0 ≤  ∑ 𝑄𝑣

𝑣 ∈𝑉

 𝑋𝑗,0,𝑣 ,           ∀ 𝑗 ∈ 𝐶 

 

(1) 

 

 

 

 

(2) 

 

 

(3) 

 

 

(4) 

 

 

 

(5) 

 

 

(6) 

 

 

(7) 
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𝑌𝑖,𝑗 +  𝑍𝑖,𝑗 ≤  ∑ 𝑄𝑣

𝑣 ∈𝑉

 𝑋𝑖,𝑗,𝑣 ,           ∀ (𝑖, 𝑗) ∈ 𝐴 

 

𝑌𝑖,𝑗 ≤  ∑ 𝑀

𝑣 ∈𝑉

 𝑋𝑖,𝑗,𝑣 ,           ∀ (𝑖, 𝑗) ∈ 𝐴 

 

𝑍𝑖,𝑗 ≤  ∑ 𝑀

𝑣 ∈𝑉

 𝑋𝑖,𝑗,𝑣 ,           ∀ (𝑖, 𝑗) ∈ 𝐴 

 

𝑌𝑖,𝑗 ≥ 0,      ∀ (𝑖, 𝑗) ∈ 𝐴  

 

𝑍𝑖,𝑗 ≥ 0,      ∀ (𝑖, 𝑗) ∈ 𝐴 

 

𝑋𝑖,𝑗,𝑣  ∈ (0,1),      ∀ 𝑣 ∈ 𝑉, (𝑖, 𝑗) ∈ 𝐴 

 

(8) 

 

 

(9) 

 

 

 

(10) 

 

 

(11) 

 

(12) 

 

(13) 

 

The objective function (1) outputs the total cost of servicing all the customers to fulfill 

their demand. The total cost consists of fixed operational cost of vehicles used and the 

variable cost of the routes used in the solution. Constraint (2) guarantees that every customer 

is serviced only once, in other words, pickup and delivery operations are performed in the 

single visit. Constraint (3) states that same type of vehicle that reach a customer must leave 

the same customer, while constraints (4) and (5) are the flow equations for both delivery and 

pickup demands of customers, respectively. In constraint (6), it is stated that total delivery 

load must not exceed the vehicle capacity while leaving the depot. On the other hand, 

constraint (7) shows that when the vehicle arrives at the depot after serving customers, the 

pickup load should not violate the vehicle’s capacity. While Constraint (8) ensures that the 

vehicle capacity must not be violated during the visit to customers on the route. Constraints 

(9) and (10) represent, respectively, that no delivery and pickup operation will be performed 

on arc 𝑖 𝑡𝑜 𝑗 if that arc is not served by any of the vehicles. Constraints (11) and (12) state 

that variables for delivery load and pickup load must be positive number, and in (13), the 

route decision variable must hold a binary value either 0 or 1. 

 

5.0 Iterated Local Search 

In this chapter, we will see the implementation of an Iterated Local Search algorithm 

on our current problem, and analysis/interpretation of results produced by the algorithm.   



 23 

5.1 ILS Algorithm 

ILS is a simple metaheuristic approach for solving combinatorial optimization 

problems. ILS helps a traditional Local Search method to avoid getting stuck in a local 

optimum by applying some simple modifications to it. The changes to the Local Search 

method consists in repetitions of it, every time commencing from a new initial point. The 

starting points are obtained by applying perturbation to the current solution or eventually 

choosing a random one. Thus, it does not use information obtained from previous Local 

Search stages but uses memory about previously found local optima to develop better 

starting points for a Local Search.  

 

5.1.1 General ILS Procedure 

This section presents a general procedure for iterated local search as shown in Figure 

5: 

 

 General Algorithm: Iterated Local Search 

1. 

2. 

 

3. 

4. 

 

5. 

6. 

7. 

Generate: INITIAL_SOLUTION si 

s*  LOCAL_SEARCH (si) 

- Local solution driven from si 

ITERATE until END CONDITION 

         s'  MODIFY (s*) 

- Modifies the solution s* to obtain a random starting point 

         s*'  LOCAL_SEARCH (s') 

         s*   ACCEPTANCE_CRITERION (s*, s*') 

EXIT 

 

Figure 5 General Procedure for Iterated Local Search 

In general, this procedure is implemented as a problem-specific optimization 

algorithm. By the repetitions of the algorithm, one could obtain significantly good results, 

but it needs improvements in the search space.  

Usually, this algorithm is implemented to optimize cost for combinatorial optimization 

problems. Suppose, we have a candidate solution s and the set S which contains all possible 

solutions. 
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Let C be a cost function that is to be minimized. The algorithm takes a solution s’ as input 

to the local search algorithm, then the local search produces the solution s*’ with lower or 

equal cost value than C(s). After each performance of the local search, the resulting solution 

s*’ is compared to the previous s*, and if fulfilling the acceptance criterion (i.e. best so far in 

the search), it replaces the previous as s*. (Lourenço, Martin, and Stützle 2010) presented 

the basin of attraction in Figure 6. 

 

 

Figure 6 Probability densities of costs 

The curve labelled s indicates the left tail of the cost density function for all solutions, 

while the curve labelled s* indicates the cost density function for the solutions that are local 

optima (Lourenço, Martin, and Stützle 2010). 

 

In Iterated Local Search the set S* of all solutions s*’ is explained as walking from 

one s* to a neighbouring one. It is implemented heuristically as below: 

 

- It applies a change or modification to s* (current given) which results as s'  

- LOCAL_SEARCH operates on s' and produces a solution s*' 

- If s*' qualifies the acceptance test, it becomes the next solution to be used as a 

basis for the search, otherwise s* remains the basis. 

 

This procedure should lead to a large exploration of the solution space if the 

modifications/perturbations are not too small. In our approach, we are obtaining random 

solutions by making large modifications to the current solution. On the other hand, smaller 

modification would often lead the solution back to s* and explore very limited area of the 

current solution. Diagrammatically the ILS procedure could look as shown in Figure 7. 
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Figure 7 ILS procedure 

In Figure 7, Starting with a local minimum s*, we apply a perturbation leading to a 

solution s'. After applying LOCAL_SEARCH, we find a new local minimum s*' that may be 

better than s* (Lourenço, Martin, and Stützle 2010). 

As a summary of this section, we can say that ILS is more efficient when it has biased 

exploration of the set of local optimal solutions. The exploration effectiveness is directly 

influenced by the modifications to solutions and acceptance conditions, but the resulting 

solutions can be better by adjusting the ILS building blocks. 

 

5.2 ILS for FSMVRPPD 

This section describes the simple Iterated Local Search (ILS) algorithm implemented 

for solving the FSMVRPPD. The ILS algorithm follows a very simple technique to iterate 

over a Local Search method by taking a random starting point every time. The algorithm 

follows the major steps from Figure 5 where four important procedures have to be defined. 

These are: INITIAL_SOLUTION, LOCAL_SEARCH, MODIFY and 

ACCEPTANCE_CRITERION. 

 

 The initial starting point is generated through the procedure INITIAL_SOLUTION 

by randomly selecting customers to be served in the routes and assigning vehicle types that 

meet the demand in each route. Afterwards, there is feasibility check on the generated routes 

to make sure that the solution is feasible and if so the solution value is calculated. Then the 

LOCAL_SEARCH is applied on the solution generated by INITIAL_SOLUTION to find 
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the local optimum s*. Now, the ILS goes under the iteration phase where MODIFY performs 

perturbation to the local solution s* from LOCAL_SEARCH and outputs a changed solution 

s' as a basis for the next LOCAL_SEARCH call. Again, LOCAL_SEARCH is applied to the 

new solution s' and generates another local optimum s*'. Afterwards, the procedure 

ACCEPTANCE_CRITERION compares s* and s*' to take a decision on which solution is 

going to be explored further and which one is going to be discarded. The repetition is 

bounded by a given number of iterations. 

 

5.2.1 INITIAL_SOLUTION 

The ‘init()’ procedure is shown by pseudocode in Figure 8 and starts by initializing 

the current solution with the total possible number of routes in the given problem. Total 

maximum routes are calculated by dividing the total delivery demand of all customers by 

the capacity of the smallest available vehicle, and two extra routes are added to account for 

differences in delivery and pickup demand. Then the procedure ‘rndSolution()’, described 

in Figure 9, generates some routes by randomly distributing customers to different vehicle 

routes until all the customers are assigned to vehicle routes. Afterward, a procedure 

‘adjustVehicle()’ in Figure 10 assigns vehicles of the necessary capacities to the routes for 

meeting the customer’s demands. A solution Si is obtained from the above process and 

checked for the feasibility on all feasibility constraints. If Si violates one of the feasibility 

constraints, then the procedure ‘isFeasiblePD()’shown in Figure 11, returns that the solution 

is infeasible. If solution Si is infeasible, then a large penalty is added to the solution’s 

objective value to make sure that the solution is not considered as the overall best found 

during the search. On the contrary, an infeasible solution can still be a good basis for finding 

good feasible solutions after the Local Search. In Figure 12 the procedure 

‘TotalRoutingCost()’ which calculate the total cost of a solution is shown. 

 

 

 Procedure: init () 

1. 

2. 

3. 

4. 

maxRoutes  (sum of total delivery / smallest vehicle capacity) + 2 

SET infeas = TRUE 

CALL rndSolution(CurSol_) 

CALL adjustVehicle(CurSol_) 
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5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

IF CALL isFeasiblePD(CurSol_) = TRUE THEN 

- SET infeas = FALSE 

CALL totalRoutingcost(CurSol_) 

SET CurSolVal_ = total cost of solution ‘CurSol_’ 

IF CALL  isFeasiblePD(CurSol_) = TRUE THEN 

- PASS feasible_  TRUE 

ELSE PASS feasible_  FALSE 

Apply infeasible penalty to ‘CurSolVal_’ 

ADD big amount to cost of solution 

EXIT. 

Figure 8 Initialization procedure 

 

 Procedure: rndSolution(Solution &SOL) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Set vIter 

Set noVehicle  number of routes from SOL -1 

Repeat FOR matrix size ‘n()’ 

- temp  dimension value of matrix 

END of FOR loop 3. 

DO WHLE ‘count’ > 1 

- count  size of matrix  

- randNo  random number in range of ‘count’ +1 

- vIter  point to ‘randNo’ 

IF randNo does not point to depot node 

- vTyp  random vehicle type +1 

- RouteNo  random number in range of ‘noVehicle’ +1 

- CALL setVehtypRoute (RouteNo, vTyp) 

- CALL addCusRoute (RouteNo, temp[randNo]) 

END of IF 

Delete element pointed by ‘vIter’ 

END of DO-WHILE loop 6. 

Figure 9 Procedure for creating a random solution 
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 Procedure: adjustVehicle(Solution &SOL) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

vsize  Get number of routes in SOL 

Repeat FOR vsize 

- cRoute  Get number of customers in current route ‘vsize’ 

Repeat FOR cRoute 

- t_demand  calculate total delivery 

- t_pickup  calculate total pickup 

END of FOR loop 3. 

Get total vehicle type ‘noVtypes()’ 

Repeat FOR noVtypes 

- IF t_demand & t_pickup <= capacity of current vehicle ‘k’ 

- Change vehicle type to ‘k’ in route ‘vsize’ 

- BREAK 

- END of IF 

END of FOR loop 6. 

END of FOR loop 2. 

Figure 10 procedure for adjusting the vehicle to the best fitted for meeting the customer demand on the route 

 

 Procedure: isFeasiblePD (Solution &SOL) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

vsize  get number of routes in SOL 

IF vsize == 0 THEN return FALSE and exit. 

Repeat FOR each route ‘vsize’ 

- vType  number of vehicle type 

- capacity  capacity of vehicle type ‘vType’ 

- cRoute  number of customers in route ‘vsize’ 

Repeat FOR each customer ‘cRoute’ 

- sumDemand  calculate total delivery demand in route ‘vsize’ 

- sumPickup  calculate total pickup in route ‘vsize’ 

- IF sumDemand OR sumPickup > capacity THEN return FALSE and exit. 

END of FOR loop 7. 

INITIALIZE currLoad  sumDemand 

Repeat FOR each customer ‘cRoute’ 

- Subtract delivery ‘d_’ for each customer from ‘currLoad’ 
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15. 

16. 

17. 

18. 

19. 

- Add pickup ‘p_’ for each customer into ‘currLoad’ 

- IF currLoad > capacity THEN return FALSE and exit. 

END of FOR loop 13. 

END of FOR loop 3. 

Return TRUE. 

Figure 11 Procedure for checking whether a solution is feasible or not 

 

 

 Procedure: totalRoutingcost (Solution &SOL) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

INITIALIZE sum =0 

Repeat FOR each route ‘vsize’ 

- cRoute  number of customers in route ‘vsize’ 

Repeat FOR each customer in ‘vsize’ 

- sum  calculate edge cost 

END of FOR loop 4. 

typ  vehicle type in route ‘vsize’ 

cost  fixed cost of vehicle type ‘typ’ 

sum  sum + cost 

END of FOR loop 2. 

RETURN sum. 

Figure 12 Procedure for calculating the total cost of a solution 

 

5.2.2 LOCAL SEARCH 

The pseudo code for the Local Search is shown in the procedure ‘runSolver ()’ in 

Error! Reference source not found.. The local search procedure ‘runSolver()’ in explores 

the neighbourhoods until an un-improved solution is found. In the very beginning of 

‘runSolver’ procedure, the random initial solution Si set to be the current best solution s*. 

Then, the repetition starts to perform the local search while the solutions are getting 

improved. Next step is to collect information from the current solution s*  and pass that 

information to the appropriate variables used in the local search procedure ‘runSolver’. A 

very large value (i.e. DBL_MAX) is initialized as the best neighbourhood value BN, so that 

the solutions with large values could be explored. Next, the repetition on the total number 

of routes in the current solution s* begins to explore the neighbourhoods inside the current 



 30 

solution space. Inside the loop over the routes, an another loop is used to get the customers 

from the current route. Further inside the loop over number of customers, the number of total 

routes are repeated to get two different neighbourhoods for exploration. The information on 

the vehicle’s capacity for the current route is collected. Then, a conditional statement 

validates the vehicle capacity constraint. The vehicle capacity constraint should not be 

violated. If the conditional statement mentioned in later sentence outputs a Boolean TRUE 

value, then a neighbourhood N1 by adding the current customer to the current route will be 

used. Otherwise, a neighbourhood N2 by swapping the customers between two different 

routes will be used. The optimization procedures from Error! Reference source not found. 

are applied to the neighbour N1 or N2 to obtain the optimality. Afterwards, the feasibility 

procedure in Error! Reference source not found. checks whether the new solution s*' is 

acceptable or not. If the solution s*' found from the neighbourhood N1 or N2 is feasible and 

better than the best neighbourhood value BN, then the best neighbourhood value BN will be 

initialized with the current found solution s*'. Otherwise, the infeasible solution s*' would 

lead to add penalty to objective value to escape from the infeasible solution space. After the 

completion of the repetitions on all of the routes in the solution s*, the best neighbourhood 

value BN is compared with value of the current solution s*'. If the best neighbourhood value 

BN is better than the value of the solution s*' and if the solution s*' from the neighbourhood 

is feasible, then the best neighbourhood value BN will be set as the new current best solution 

s* value and search will continue to improve the solution further. Otherwise, if no 

improvement is found from the neighbourhood N1 or N2, the local search will be stopped 

and output the current best value as the solution to the current search. 

 

 Procedure: runSolver() 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

START clock 

noRoutes  number of routes in ‘CurSol_’ 

SET BestSol_ = CurSol_ 

SET BestSolVal_ = CurSolVal 

SET BestNeighborVal_ = very large value 

WHILE improving = TRUE 

SET improving = FALSE 

- Previous solution  Current solution  

- Get maximum value for neighbour 

Repeat FOR each route I in ‘noRoutes’ 



 31 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

- Current solution  Previous solution 

- noCust1  number of customers in route ‘noRoutes’ 

Repeat FOR each customer J in ‘noCust1’ in route ‘noRoutes’ 

- SET emptyRoute = FALSE 

- currCust1  current customer 

Repeat FOR each route K in ‘noRoutes’ 

- Current solution  Previous solution 

- IF number of customers <= 2 (only depot) THEN emptyRoute = TRUE 

- END of IF 18. 

- currVehicle type of current vehicle in route K 

- currCapacity  capacity of vehicle ‘currVehicle’ 

- IF delivery at ‘currCust1’ <= ‘currCapacity’ THEN 

- IF  I != K THEN 

- INSERT ‘currCust1’ to route K 

- REMOVE customer J from route K 

- CALL optimizeTwoRoute(CurSol_, I, K) 

- CALL adjustVehicle(CurSol_) 

- CALL optimizeTwoRoute(CurSol_, I, K) 

- CurSolVal_  cost of solution ‘ CurSol_’ 

- IF CALL  isFeasiblePD(CurSol_) = TRUE THEN 

- PASS feasible_  TRUE 

- ELSE PASS feasible_  FALSE 

- Apply infeasible penalty to ‘CurSolVal_’ 

- END of IF 30. 

- IF CurSolVal_ < BestNeighborVal THEN 

- BestNeighbor_  CurSol_ 

- BestNeighborVal_  CurSolVal_ 

- END of IF 35. 

- END of IF 23. 

- END of IF 22. 

- CurSol_ PrevSol_ 

- CurSolVal_  PrevSolVal_ 

- noCust2  number of customer in route K 
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44. 

45. 

46. 

47. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

74. 

75. 

76. 

- Repeat FOR customer L in ‘noCust2’ (start from 2) 

- IF (K > I && !emptyRoute) THEN 

- CurSol_ PrevSol_ 

- CurSolVal_  PrevSolVal_ 

- currCust1  customer J 

- currCust2  customer L 

- SWAP ‘currCust1’ with ‘currCust2’ in route I and K 

- CALL adjustVehicle(CurSol_) 

- CALL optimizeTwoRoute(CurSol_, I, K) 

- CurSolVal_  cost of ‘CurSol_’ 

- IF CALL  isFeasiblePD(CurSol_) = TRUE THEN 

- PASS feasible_  TRUE 

- ELSE PASS feasible_  FALSE 

- Apply infeasible penalty to ‘CurSolVal_’ 

- END of IF 54. 

- IF CurSolVal_ < BestNeighborVal THEN 

- BestNeighbor_  CurSol_ 

- BestNeighborVal_  CurSolVal_ 

- END of IF 59, 45. 

- END of FOR loop 44, 16, 13, 10. 

CurSol_  BestNeighbor_ 

CurSolVal_  BestNeighborVal_ 

IF BestNeighborVal_ < BestSolVal_ THEN 

- improving  TRUE 

- IF CALL isFasible(BestNeighbor_)  TRUE THEN 

- BestSol_  BestNeighbor_ 

- BestSolVal_  BestNeighborVal_ 

- “Best solution found” 

- END of IF 68, 66. 

END WHILE loop 6. 

Apply infeasible penalty to ‘CurSolVal_’ 

STOP clock and Calculate time consumed. 

EXIT. 

Figure 13 Local Search procedure 
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To make sure that each route has a close to optimal performance, a separate Local 

Search is performed on each route affected by a move. This search is described by the 

procedures OptimizeTwoRoutes, and OptimizeOneRoute in Figure 14. This separate Local 

Search uses the 2-opt neighbourhood (Flood 1956),which changes the position of two nodes 

in a single route and reverses the routing of the nodes between them. 

 

 Procedure: optimizeTwoRoute (Solution &SOL, route1, route2) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

size1  number of customers in ‘route1’ 

size2  number of customers in ‘route2’ 

avector  all customers I from ‘size1’ 

avector  CALL optimizeOneRoute(avector) 

REPLACE customers in ‘route1’ 

bvector  all customers I from ‘size2’ 

bvector  CALL optimizeOneRoute(bvector) 

REPLACE customers in ‘route2’ 

CLEAR ‘avector’ and ‘bvector’ 

 Procedure: optimizeOneRoute (vector<int> vec) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

SET improving = TRUE 

orgvector = vec 

prevector = vec 

orgval = route cost of ‘vec’ 

preval = orgval 

bestvector = vec 

bestval = orgval 

rSize  number of nodes(customers) in vector ‘vec’ 

WHILE improving == TRUE 

- improving FALSE 

- Repeat FOR customer I in ‘rSize’-1 (start from node 2) 

- Repeat FOR customer J in ‘rSize’ (next to customer I) 

- tempvector  REVERT order of all customers from I to J 

- tempval  route cost of ‘tempvector’ 

- IF tempval < bestval THEN 

- improving  TRUE 
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17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

- bestvector  tempvector 

- bestval  tempval 

- END of IF 15. 

- END of FOR loop 12. 

- END of FOR loop 11. 

prevector  bestvector 

preval  bestval 

END of WHILE loop 9. 

CLEAR prevector, tempvector and orgvector 

RETURN bestvector 

Figure 14 Procedure for optimizing single routes using the 2-opt neighbourhood 

 

5.2.3 MODIFY 

To avoid the same local optima, the MODIFY procedure should perform 

perturbations on the solution s* . In our implementation of the search, this is done in a simple 

way, by creating a new solution by random and starting the Local Search from that spot. 

During the local search the MODIFY procedure takes place as the part of procedure 

‘runSolver()’ in Error! Reference source not found.. The modifications could be 

performed on single route by adding new customers, this results into a neighbourhood for 

local search. Another way to implement the modifications is by swapping customers in 

between two different routes, which is rather a neighbourhood for local search.  

5.2.4 ACCEPTANCE_CRITERION 

To validate whether the new solution s*’ obtained by LOCAL_SEARCH is better 

than current best solution s*, the ACCEPTANCE_CRITERION is implemented. In this 

procedure, the new obtained solution s*’ value is compared with the previous best solution 

s* value. If the new solution s*’ value is better than s*, it is stored as the best solution to our 

problem.  In our FSMVRPPD the objective is to minimize the total cost, so the acceptance 

test is represented below (Lourenço, Martin, and Stützle 2010):  

 

𝐴𝐶𝐶𝐸𝑃𝑇𝐴𝑁𝐶𝐸_𝐶𝑅𝐼𝑇𝐸𝑅𝐼𝑂𝑁(𝑠∗, 𝑠∗′) =  {𝑠∗′            𝑖𝑓 𝐶(𝑠∗′) < 𝐶(𝑠∗)
𝑠∗                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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5.2.5 ILS Algorithm Steps 

This section states the abstract from the ILS algorithm process for the FSMVRPPD. 

The flow of the algorithm is briefed as below: 

- A random seed value is passed to get a random starting point 

- The problem instance is loaded and read 

- The random initial solution si is generated by using init() in Error! Reference 

source not found. 

- The initial solution is set as the current solution i.e. s* =  si 

- WHILE s* is getting improved, REPEAT local search in Error! Reference 

source not found. 

- Perform modifications to get the neighbourhoods (i.e. routes) 

- Implement separate Local Search to optimize the routes as in Error! Reference 

source not found. 

- s*' = solution after route optimization 

- IF s*' < s* and s*' is Feasible THEN (if improvement found in solution) 

- Set s* = s*' and go to WHILE 

- ELSE s* is the best solution so far 

- End of WHILE 

- Print solution and EXIT. 

 

 

6.0 Computations 

This chapter shows the information on the results obtained from the mathematical 

model and the Iterated Local Search algorithm for the FSMVRPPD.  

6.1 Test Instances 

20 standard FSMVRP test instances shown in Table 4 in the Appendix are modified 

to include pickup demand. The pickup demands are created by considering the original 

delivery demands and multiplying the delivery demands alternately by 0.8 and 1.2. I.e. with 

an original delivery demand of 10 the pickup demand will be either 8 or 12. If the index 

number of node is odd then the original demand will be multiplied by 0.8 and otherwise by 

1.2. These modifications has earlier been implemented for the VRPPD by (Hoff et al. 2009). 

The modified test instances have been solved by the ILS algorithm and compared to 



 36 

solutions to the similar instances without pickup demand (Pasha, Hoff, and Løkketangen 

2013).  

For the mathematical model for the FSMVRPPD some very small self-defined 

instances have been used, since solving large instances to optimality in reasonable time is 

not possible using CPLEX. 

6.2 Experimental Results 

6.2.1 Mathematical Model: Results 

To validate the proposed mathematical model for FSMVRPPD presented in Chapter 

4.0, some small data instances were created. The formulation solved the smallest instances 

to optimality and found the minimum cost in short time, but when trying to extend the data 

sets by including more customers, the CPU execution time increased exponentially.  

    

 

D_scen #C #vT CPU #R #vTu MIP BnB 

1 5 3 0.202 2 2 4781 173 

2 7 3 0.968 3 1 28167 989 

3 10 4 428.379 5 1 6611600 113537 

4 10 3 681.562 5 2 12495963 279649 

5 10 4 4108.47 3 2 67238267 1162535 
 

Table 1  AMPL results for the FSMVRPPD 

Table 1 shows the optimal results obtained from AMPL model for FSMVRPPD by 

using CPLEX solver. In the first row of the Table 1, the reference headers to the 

corresponding columns are presented. The header D_scen denotes the data scenario index 

number #C is the total number of customers in the instance and #vT denotes the total number 

of vehicle types in the instance. CPU shows the time (in seconds) used to by the computer 

to produce the optimal result. #R is the total number of routes and #vTu the number of 

vehicle types used in the optimal solution.  MIP is the total number of MIP simplex iterations 

performed and BnB the total number of Branch and Bound nodes occurred while solving the 

AMPL model.  

By a glance at Table 1 one can easily understand how complex the FSMVRPPD is. 

A slight increase in the number of nodes makes the CPU time explode. Here, trying to solve 

FSMVRPPD instances with 10 customers and 3 and 4 types of vehicle was very time 
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consuming. The variance in both demands also effects the execution time. The instances 

with a low variance (3) in both types of demands used very short time to produce the optimal 

results compared to the instance with a high variance (5) even if the number of customers 

and vehicle types were the same.  

 

6.2.2 ILS Heuristic: Results  

The ILS solver is coded in C++ by using Microsoft Visual Studio 2012 running on 

Intel ® Core™ m3-6Y30 (4 CPUs) machine with 0.90 GHz (turbo boost up to 1.5 GHz) 

processor, 8 GB of RAM and Microsoft Windows 10 operating system. The solver was also 

executed on the same machine to obtain the results. 

 

For all the 20 benchmark instances the local search were run 20 times with different 

seed values. The seed value is the input for the random generator, which makes sure that the 

algorithm achieves a different initial solution for every ILS run. The different initial 

solutions mean that for all executions of the local search, a different area of the solution 

space will be explored. 

 

During these 20 different runs, most initial solution constructed were feasible, but 

sometimes the solver generated an infeasible solution. A huge value of 1,000,000 was added 

to the objective value on the infeasible solutions to make sure that any feasible solution 

would be preferred during the search. If the search did not find any feasible solution before 

the local optimum, the solution was discarded. 

 

The results for the FSMVRPPD were obtained by choosing the best result from all 20 

runs of the program. The results are presented in Table 2, and a description of the column’s 

headers is as follows: 

- Instance : states the name of the standard benchmark instance (originally taken 

from Golden et al. (1984)). 

- FSMVRPPD ILS: states the best obtained solution from our algorithm for the 

FSMVRPPD version of the instance. 

- Iteration : the number of iterations in the local search which provides the best found 

solution 

- Search time : total time (in seconds) taken by the program to get the best result 
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Instance 
FSMVRPPD 

ILS Iteration Search time 

Golden01 662 6 0 

Golden02 778 5 0 

Golden03 1152 6 0 

Golden04 7446 7 0 

Golden05 1214 7 0 

Golden06 7509 10 0 

Golden07 8404 13 0 

Golden08 3272 19 3 

Golden09 3093 10 0 

Golden10 3447 9 0 

Golden11 5477 14 2 

Golden12 4689 11 0 

Golden13 3482 4 1 

Golden14 10483 7 3 

Golden15 3215 11 4 

Golden16 3293 23 3 

Golden17 2886 13 7 

Golden18 3595 16 19 

Golden19 10502 17 79 

Golden20 5239 27 33 
 

Table 2 Results from the ILS solver for the FSMVRPPD 

 

 

In the analysis of the results from the Table 2, it can be seen that the solver can 

generate a good solution for the largest instance with the dimension of 101 nodes in 79 

seconds, which is rather reasonable time to solve large instances. Most of the instances with 

the dimension up to 31 nodes were solved in less than one second for each, except instance 

Golden08 and Golden11, which took 3 seconds and 2 seconds respectively. The instances 

with the dimension of 51 nodes and more used minimum search time of 1 second for 

Golden13 and maximum 79 seconds for one of the largest instance Golden19. The variance 

of the searching time depends upon the structure of the problem instance. A Local Search 

on larger routes takes more time than on smaller routes. By considering the two largest 

instances Golden19 and Golden20, this situation can be understood. Both instance are of 

dimension of 101 nodes, 3 vehicle types and same demand at the customers. But the 

capacities of the vehicles in Golden19 are much higher than in Golden20, which lead to 

larger routes than in the Golden20 test instance. 
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The number of iterations performed to find the best solution varies for all the 

instances, and is very dependent on the initial solution. In the Table 2, we can observe that 

situation. Some of the small instances used more iterations than the larger instances. For 

example, instance Golden08 with a dimension of 31 nodes used 19 iterations to find the local 

optimum, while the larger instance Golden19 with 101 nodes used only 17 iterations. 

 

6.2.2.1 Competitiveness of the results obtained from FSMVRPPD algorithm 

 

To observe the competitiveness of the solution after including pickup demand, the 

results from the FSMVRPPD algorithm were compared with the output from the ILS 

algorithm for the FSMVRP (without pickup demand) and the results for the FSMVRP from 

the previous literature. By following the same procedure as in the original FSMVRPPD, the 

FSMVRP program was also run with 20 different seed values on the same benchmark 

instances as used in the FSMVRPPD.  

 

Instance 
Best 

FSMVRP Br PHB 
FSMVRPPD 

ILS 
FSMVRP-ILS 

Golden01 602 602 602 662 602 

Golden02 722 722 722 778 724 

Golden03 961.03 961.03 971.87 1152 1019 

Golden04 6437.33 6437.33 6437.33 7446 6446 

Golden05 1007.05 1007.05 1008.59 1214 1108 

Golden06 6516.47 6516.47 6516.47 7509 6519 

Golden07 7273 7273 7295 8404 7542 

Golden08 2346 2347 2347 3272 2622 

Golden09 2209 2209 2209 3093 2410 

Golden10 2355 2355 2358 3447 2459 

Golden11 4755 4755 4755 5477 4901 

Golden12 4080 4080 4096 4689 4309 

Golden13 2406.36 2406.36 2468.08 3482 2748 

Golden14 9119.03 9119.03 9154.64 10483 9124 

Golden15 2586.37 2586.37 2601.57 3215 2766 

Golden16 2720.43 2728.14 2783.88 3293 2903 

Golden17 1734.53 1734.53 1745.39 2886 2189 

Golden18 2369.65 2369.65 2428.54 3595 2845 

Golden19 8661.81 8661.81 8850.34 10502 8739 

Golden20 4032.81 4042.59 4137.07 5239 4336 

Average 
Deviation  1.0003 1.0079 1.2674 1.0684 
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Table 3 Comparison of results from the FSMVRP literature 

Although, a direct comparison of the results from the FSMVRPPD with the 

outcomes of the FSMVRP is unfair, because these two problems are different from each 

other. However, to validate that our implementation of the algorithm is competitive, the 

results found by other researchers for the FSMVRP on the same instances are presented here. 

Table 3 shows the results from previous research on the FSMVRP. The column headers of 

Table 3 are described below: 

Br – results from (Brandão 2009) using Tabu Search 

PHB – results from (Pasha, Hoff, and Løkketangen 2013) 

FSMVRPPD-ILS – the best results from our algorithm on FSMVRPPD instances 

FSMVRP-ILS – the best results from our algorithm on FSMVRP instances 

 

The average deviation of 6.84% from the best know solution was achieved when the 

algorithm was run for the FSMVRP (without pickup demand). Although, a deviation of 

6.84% from the best know results is not bad for the simple Local Search algorithm as ours. 

However, the recommendation is to use some structured or intelligent technique to generate 

initial solutions rather than the random ones.  

 

By analysing the results from the FSMVRPPD method, the average deviation was 

26.74% from the best know solution. Thus, by including a pickup demand of +/-20% on an 

original delivery routing and fleet composition problem, one can expect an increase of 

around 25% in the transportation cost. 

 

In the wrap up of this section, it would be appropriate to say that one could achieve 

less searching time by constructing the initial solution in a more intelligent way. One 

approach could be to use the search history so that one can produce a better intelligent initial 

solution for the next run of the Local Search based on the solution found in the previous 

Local Search. While, the use of a greedy construction heuristic for developing the initial 

solution could decrease the improvement steps, as a result the Local Search would require 

less searching time. A way to improve the performance of the proposed ILS algorithm would 

be to apply small modifications to a local optimum found in one run and use the modified 

solution as a starting solution for the next run. That would probably be better than using 

random solutions both with respect to searching time and solution quality. 
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7.0 Conclusion and Further Research 

Altogether, this thesis wraps up the study on a new variant of Vehicle Routing Problems 

by introducing simultaneous Pickups and Deliveries to the Fleet Size and Mix VRP 

(FSMVRPPD). There are loads of papers available Vehicle Routing Problems and its 

various variants. However, there was no literature found which can particularly point to the 

FSMVRPPD. The objective of the FSMVRPPD is to find the best fleet composition and 

routing of the vehicles in such a way that customer’s demand can be fulfilled with minimum 

transportation cost. When constructing the routes, one need to hold focus on the vehicle load 

at each visit of a node to make sure that the vehicle’s capacity is not exceeded. A 

mathematical formulation has been presented to define the FSMVRPPD in a more 

sophisticated way. Whereas, the achievement of optimal results for significant instances by 

using exact mathematical methods is very time-consuming, some small instances are solved 

to optimality. Thus, a simple heuristic approach has also been proposed by the use of Iterated 

Local Search (ILS) metaheuristic. The heuristic has been tested on standard FSMVRP 

instances and compared to previous research on that problem to show that it gave reasonable 

results.  When running the ILS algorithm on instances for the FSMVRPPD where a pickup 

of +/-20% of the delivery demand has been included to corresponding the FSMVRP 

instances, slightly more than 26% increase in the total cost was observed. These results were 

the average over the whole instance set, but the variation between single instances is in the 

range of 7% to 66%. 

 In suggestion to get improved results, a more advanced version of the ILS could be 

implemented by utilizing the ideas of this method better. Improved solutions could probably 

be achieved if the initial solutions for Local Search are derived from previous search results, 

rather than generating random solution each time.  

 For future research, I would suggest to try solving the FSMVRPPD with other local 

search based metaheuristics, and more advanced hybrid metaheuristic approaches. 

Extensions to the FSMVRPPD could be explored by including other aspects from real world 

problems in the problem definition. The most realistic extension, in my opinion, could be by 

introducing Location Routing and Time Windows for the customers into the problem.   
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Appendix 

 

Instance 
name Dimension 

Vehicle 
Types 

Vehicle capacity Cost of the vehicle 

Golden01 13 3 15,35,60 20,50,100 

Golden02 13 3 30,40,110 60,90,300 

Golden03 21 5 20,30,40,70,120 20,35,50,120,225 

Golden04 21 3 60,80,150 1000,1500,3000 

Golden05 21 5 20,30,40,70,120 20,35,50,120,225 

Golden06 21 3 60,80,150 1000,1500,3000 

Golden07 31 5 40,100,140,200,300 150,500,800,1200,2000 

Golden08 31 4 10,50,150,400 15,50,200,600 

Golden09 31 5 40,100,140,200,300 30,100,160,240,400 

Golden10 31 4 40,100,140,200 30,100,160,240 

Golden11 31 4 30,80,200,350 60,200,700,1500 

Golden12 31 6 30,50,75,120,180,250 40,80,150,300,500,800 

Golden13 51 6 20,30,40,70,120,200 20,35,50,120,225,400 

Golden14 51 3 120,160,300 1000,1500,3500 

Golden15 51 3 50,100,160 100,250,450 

Golden16 51 3 40,80,140 100,200,400 

Golden17 76 4 50,120,200,350 25,80,150,320 

Golden18 76 6 20,50,100,150,250,400 10,35,100,180,400,800 

Golden19 101 3 100,200,300 500,1200,2100 

Golden20 101 3 60,140,200 100,300,500 

 

Table 4 The benchmark instances from (Golden et al. 1984) 


