Master’s degree thesis

LOG950 Logistics

An Adaptive Large Neighborhood Search Heuristic for

Periodic Supply Vessel Planning Problem
Almiashev Rushan

Number of pages including this page: 70

Molde, 24.05.2016

@

Molde University College

Specialized University in Logistics

Mandatory statement

Each student is responsible for complying with rules and regulations that relate to
examinations and to academic work in general. The purpose of the mandatory statement is
to make students aware of their responsibility and the consequences of cheating. Failure to

complete the statement does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6 below.

1. | I/we hereby declare that my/our paper/assignment is my/our own

work, and that I/we have not used other sources or received other

help than mentioned in the paper/assignment. X
2. | I/we hereby declare that this paper Mark each
1. Has not been used in any other exam at another | box:
department/university/university college 1. X
2. Is not referring to the work of others without
acknowledgement 2. X
3. Is not referring to my/our previous work without
acknowledgement 3. X
4. Has acknowledged all sources of literature in the text and in
the list of references 4. X
5. Is not a copy, duplicate or transcript of other work
5. X

| am/we are aware that any breach of the above will be considered
3. | as cheating, and may result in annulment of the examination and
exclusion from all universities and university colleges in Norway

for up to one year, according to the Act relating to Norwegian

Universities and University Colleges, section 4-7 and 4-8 and | [X

Examination regulations section 14 and 15.

4. | | am/we are aware that all papers/assignments may be checked for

plagiarism by a software assisted plagiarism check

5. | | am/we are aware that Molde University College will handle all

cases of suspected cheating according to prevailing guidelines. X

6. | I/we are aware of the University College’s rules and regulation for

using sources X

http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://kvalitet.himolde.no/KS_UNL115
http://www.himolde.no/index.cfm/pageID/2298
http://www.himolde.no/index.cfm/pageID/2298

Publication agreement

ECTS credits: 30

Supervisor: Irina Gribkovskaia

Agreement on electronic publication of master thesis

Author(s) have copyright to the thesis, including the exclusive right to publish the document (The
Copyright Act 82).

All theses fulfilling the requirements will be registered and published in Brage HiM, with the approval
of the author(s).

Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of
charge, make the thesis available for electronic publication: [Jyes X]no

Is there an agreement of confidentiality? Xyes [Ino
(A supplementary confidentiality agreement must be filled in)

- If yes: Can the thesis be online published when the
period of confidentiality is expired? Xyes []no

Date: 24.05.2016

Abstract

In the upstream offshore petroleum logistics supply vessels play the most important
role, being the largest cost contributor. For this reason careful supply vessel planning is of
vital importance for this industry. In the literature this problem is known as Periodic Supply
Vessel Planning Problem (PSVPP). The problem involves determination of the fleet
composition, vessels schedules and voyages. For large size instances optimal solutions are
unachievable and for this reason we developed meta-heuristic algorithm. For heuristic
validation we developed a two-phase approach which provides optimal solutions for small
and medium size instances. Experiments show that developed metaheuristic algorithm
provides optimal and near optimal solutions within short times.

Keywords: offshore logistics; periodic routing; adaptive large neighborhood search;

fleet composition; routing and scheduling; adaptiveness.

Acknowledgment

First of all, Id like to express gratitude to my supervisor Irina Gribkovskaia for the
provided problem that was studied in this thesis and for the data that was used in the
experiments. As well | want to thank PhD student Yauheni Kisialiou who taught me
combinatorial optimization methods used in this thesis and supplied with ideas during the
development phase.

| am also thankful to Norwegian government which provide me with financial
support under the quota scheme.

| want also thank the Norwegian government for providing me financial support
under the Quota Scheme so that it became possible to study in Norway. In addition I would
like to express special gratitude to my teacher from Moscow Dmitriev M. G. and who
provided good recommendations to Molde University College authorities.

My special thanks to my classmate Lena Marder, who encouraged me on hard
working during the whole study process.

Finally, I am very grateful to my family and my friends for their moral support and

believing in me.

Contents

0O 11 oo [0 Tox 1 o] ST U U PR USRS 1
2.0 ProjeCt deSCIIPLION.....ceeiiieieciece ettt ae e ra e ae e reeeeaneenneas 3
2.1 Periodic Supply Vessel Planning ..o 3
2.1 1 SUPPIY BASE....ceiiiiiiiieeee e 4

N B V0 V- T [LS PSP PPRPPRUPRRPIS 4
2.1.3 Offshore INStallatioNScoeiiiiiiiiiiee e 4
2.1.4 SUPPIY VESSEL... .o 5
2.1.5 Weekly Sailing Plan........ccoooiiiiiiiiie e 6

2.2 ODJECLIVE ..ottt ae e nre s 7
3.0 LITEratUre FEVIBWicviieieiieiieie ittt sttt st bbb 9
O I |V 1= 1 g oo (o] [0 | SO SPSOP 11
5.0 RESBAICN TASK ..eouviiuiiiiieitieie e sie ettt ste et te e sse e st aeeneesreeteeneeareenneens 15
6.0 SOIULION @PPIOACK.......ccuiiiiiiiiete e 16
6.1 TwWO-phase Methodcoiiiiiiee e e 16
6.1.1 Voyage generation algorithmc..cccooiiiiiii i, 16
6.1.2 Voyage-based MOdel...........cocoriiiiiiiiii s 18

6.2 ALNS NEUIISTIC. ...vvevieiiieiieie ettt ste e nreeee e 20
6.2.1 HEUIISLIC OVEIVIBW.eiviiiiiiecie s 20
6.2.2 INItIAL SOIULION .o s 23
6.2.3 DESLIOY OPEIAIOISeeeuiiiieieieeteee sttt 25
6.2.4 REPAIN OPEIALOIS ..cvviieieeteieeet ettt bbbt 27
6.2.5 Selection of destroy and repair OPerators............cccovevveveeieeiesee s, 30
6.2.6 IMProvement OPEIatOrSuoiiuieiiiieiieee e e see e siee e e e aeeeanaeas 31
6.2.7 Route optimization operator and evaluations.cccccoeverenieninenieeienenns 36
6.2.8 ACCEPIANCE CIIEITA. . c.viueertiieieiii e 39

7.0 Computational EXPerimeNntS.........cooveiiieiieiiie ettt 41
7.1 TUNING INSTANCESecvvieitie ettt ettt et e et e et e e a e e sae e e e e s reeennee e 41
711 Parameters tUNINGccoooueiiiierieiisie et 41
7.1.2 ALNS parameters tuning reSUISc.coereiiiiiiiinineee e 41

T2 RESUILS .ttt bbbt ae e 42
721 TESLINSTANCES ...eveiiieiieee sttt ettt et b e 42

7.2.2 INPUL AIA.....etiiieiiiiieieiee bbb 43

7.2.3 Comparative analysis and reSUlS.........cccceveiieiiere e 44

8.0 Conclusions and FUINEr TESEAICHeeee et 50
R B I EINICES ... ettt 52
APPENAIX A ottt bbb bbbt bRt 54

APPENTIX B ..ottt nae e nre e re e re e 60

List of figure

Figure 1 An example of Weekly sailing plan...........ccoooieiiiiiiiiiiece e, 6
Figure 2 An example of weekly schedule with coupled VesSels..........ccccoccviviiieveccicieenenn, 7
Figure 3 “Swap” improvement procedure (Briaysy and Gendreau 2005)ccceevevveennnen. 34
Figure 4 Relocate insertion procedure (Braysy and Gendreau 2005)c.ccocevvrvenennn 34
Figure 5 Location of offshore installations and Mongstad supply base............cc.ccocvvvenene. 43
Figure 6 Input data example for offshore installationsccccovevviieiiciiicc e 44
Figure 7 Input data example for SUPPIY VESSEIS.ccveiviieiiecececeee e 44
Figure 8 Input data example for visit day’s combinations.cecvvrveriniiiecninieeseennn, 44
Figure 9 Example of tight SChedule ... 48

Figure 10 Trade-off analyse for the instance with 26 installations...............cccccooeiiiiennn, 49

file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831384
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831386
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831387
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831388
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831389
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831393

List of table

Table 1 — Types of parameters that increase the score of a heuristiC..............ccocvevevieennenn. 31
Table 2 - Experimental value for each parameter ... 42
Table 3 - Best founded parameters SEttiNG.........ccevveieiieeiecie e 42
Table 4 — Comparative analisis between two-phase approach and ALNS heuristic........... 45

Table 5 - A heat map of the gap from best-found solution with respect to the instance size
and NUMDBDET OF HEFALIONS.cciviiiieciic e be et eene e 47

Table 6-Comparison results of the Shushou LNS heuristic and represented ALNS heuristic

FOr 1arge SiZE INSTANCES.veiveeie ettt e e e ste e reenre e 49
Table 7 Experiments results for param tuning ALNS heuriStiC.........c.ccocvvvvvienrvnieeseennnnn, 59
Table 8 Results for 14-26 instances with 100 — 300 iterationscccoceeeiereresieneninenns 60
Table 9 Results for 14 — 26 instances with 400 - 600 Iterationscccoevvereresieneniennnns 60
Table 10 Results for 14-26 instances with 700 — 900 Iterationscccceevvererenieseniennns 61

Table 11 Results for 14-26 instances with 1000 iterationsoooevveeeeeeeee 61

file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451837445
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451837445

1.0 Introduction

Many oil and gas producers operate offshore installations which require regular
supplies of commodities from land. For this purpose, oil companies hire special supply
vessels, which deliver cargo to and collect from installations. However, this resource is
rather costly both in terms of hiring cost and in terms of operating costs (fuel costs).
Therefore, it is of vital importance to define the fleet required to provide regular supply of
offshore installations and achieve efficient utilization of all platform supply vessels (PSVs).

In offshore petroleum logistics, supply vessel planning represents an actual problem.
The problem considered in this thesis comes from a real-world problem faced by Norwegian
oil and gas company Statoil ASA. The oil field located in the North Sea and serviced from
the onshore supply base located in Mongstad, is selected as the one for which delivery
problem is studied. The planning of deliveries is performed on the tactical level with one
week planning horizon. Each installation has a requirement for the number of visits during
the week. A weekly sailing plan is used repetitively over several months and then subject to
revision. Construction of the sailing plan requires consideration of the following problems:
allocation of voyages (a voyage represents a certain sequence of platforms served by a
vessel) to vessels, sequencing of voyages (routing problem) and definition of departure times
(scheduling problem) for each vessel on its voyages during the week. All these sub-problems
should be solved so that the total sailing cost and vessels charter cost are minimized. The
problem relates to the class of Vehicle Routing Problems and in the context of its practical
aspects, in the literature, is referred to as Periodic Supply Vessel Planning Problem (PSVPP).
The term “periodic” means that the problem is solved for a certain planning horizon. Each
of the above mentioned sub-problems (packing, routing and scheduling) represents NP-hard
combinatorial problem. Problems of a large size cannot be solved by exact methods within
a reasonable time. The problem we consider involves planning deliveries for 26 installations
during one week, where each installation requires from 1 to 5 visits. Therefore, development
of some efficient heuristic approach is required to obtain a good solution within a reasonable
time.

In this master thesis we develop an Adaptive Large Neighbourhood Search Heuristic
for PSVPP that might be used as a decision support tool by delivery planers at Statoil ASA
for organizing of an efficient supply of offshore installations. For validation of the heuristic,
we develop two-phase exact approach providing optimal solutions for small and medium

size instances within reasonable time.

In chapter 2, we provide description of the studied problem, its main characteristics,
constraints and the objective. In chapter 3 we provide the review of the literature relevant to
the problem and compare the studied problem to those similar found in the literature. In
chapter 4 we review solution methods which are used for similar problems and analyse
methodology which could help to solve our problem. In chapter 5 we state the objective of
this master thesis which relates to development of the algorithm, its validation and results
analysis. In chapter 6 we present developed solution approaches with detailed description of
theirs logic. In chapter 7 we perform fine tuning of the developed heuristic approach,
described test instances and provide analysis of the conducted experiments. In chapter 8 we
summarize the work conducted in this thesis and provide some directions for the futures
research. Finally, list of references and tables with complete results of the experiments
accomplish the master thesis.

2.0 Project description

Research that we conduct in this thesis is dedicated to real-life problem faced by Statoil
ASA. Statoil ASA employs more than 22000 employees, and it’s total revenue is more than
600 billions, being the largest oil and gas operator in Norway. Furthermore, Statoil ASA
operates in more than 30 countries around the world and is number one in offshore oil and
gas extraction in terms of technologies, effectiveness and efficiency (Statoil 2016).

In this master thesis, we study the problem of suppling offshore oil and gas installations,
encountered by Statoil on the Norwegian continental shelf. We focus our research on asingle
supply base located in Mongstad, from which installations, assigned to this base, receive all
the necessary materials and equipment. Supply of offshore installations is provided by a
special fleet of supply vessels. However, hiring cost of a supply vessel is very expensive and
therefore care should be taken when defining the fleet size. In addition to vessels’ charter
cost, the cost of supply includes vessels fuel costs. As follows, optimal sequences of visiting
installations are required to minimize such costs. Furthermore, downtime cost of an offshore
installation is enormous and should be avoided. Hence, Statoil strives to construct efficient
schedule for suppling offshore installations with minimal costs, while not allowing for the
downtime.

The problem of supplying offshore installation, which we study in this thesis, is known
as Periodic Supply Vessels Planning Problem (PSVPP). Efficient solution to this problem
can reduce the logistical costs drastically and in the same time ensure high service level.

Further, in this section we provide the main elements, characteristics and constraints
inherent to this problem. In addition, in the end of the section we provide an example of a
vessels schedule.

2.1 Periodic Supply Vessel Planning

The supply vessel planning problem involves identification of the optimal fleet
composition, necessary to serve a given set of offshore installations from a single onshore
supply depot, and at the same time development of schedules and routes for vessels, so that
vessels charter and fuel costs are minimized. In this problem, under routes are understood
the voyages, starting and ending at the depot, and sailed by a particular vessel during the
planning horizon. Each voyage, in turn, is defined by a set of installations in a certain
sequence of visiting them. Each voyage has a specific departure time from the depot. A

vessel’s schedule is than defined as collection of voyages departing from a supply base at

specific times. The objective of PSVPP is to construct a least cost schedule for a fleet of
supply vessels, for a given planning horizon.

The studied problem is of a tactical level, where the planning horizon is considered
to be one week. Such schedule is repeated for several months and revised with the aim of
adaptation to some changes. Such changes involve changes: in demand of installations,
incorporation of a new installation into a schedule, changes in the required number of visits
for some installations during the week, time windows, etc.

More properly, description of the main problem’s elements and constraints is

provided as follows.

2.1.1 Supply Base

The onshore supply base has opening hours from (8:00-18:30), during which loading
and unloading operations are performed. In addition, personal availability and limited
number of berths set a limit on the number of vessels that can be served during a day. The
turnaround of a vessel on the base i.e. the time required for loading and unloading operations
is assumed to be 8 hours. There is a specific set of possible departure times for vessels on
their voyages. The reason for haven this such departure time options is twofold. On the one
hand adjustment of departure time for a voyage may lead to cost reduction in case of
installation(s) with time windows on this voyage. The waiting time in this case may be
reduced and as follows the cost of a voyage. On the other hand such “flexible departures”
allow to exploit more efficiently work force by avoiding performance of the same operations
for different vessels in parallel. In our case, the set of possible departure times is 16:00,
17:00 and 18:30.

2.1.2 Voyages

Voyages are defined as a sequence of installations to be visited by a particular vessel.
Each voyage starts and ends at the depot and has specific departure time The maximum
voyage duration is set to three days or 72 hours (counting the time for loading/unloading in
the base), which is explained by maximum lead time requirements. In addition, there is a
requirement to the minimum and maximum number of installations per voyage, 1 and 7
respectively. A vessel’s schedule should be constructed so that the voyages it sails are not

overlapped in time.
2.1.3 Offshore installations

Offshore installations play the main role for oil and gas production. Each installation

has specific visit frequency during the week i.e. the number of visits it should receive from

supply base. There are two types of offshore installations. The first type performs drilling
operations and is characterized by larger and more variable demand, and higher visits
frequency. The second type is represented by platforms performing oil and gas extraction.
This type is characterize by relatively stable demand and low visits frequency. The weekly
demand of a platform is assumed to be evenly distributed between visits. Furthermore, those
installations having more than one visit per week require even spread of departures to them.
For example, installations with three visits per week should be assigned to voyages in such
a way that departure to these installations is performed at least 1 time during 3 days. Such
requirements are set to each visit frequency. Therefore, it’s not an easy task to assign
installations with different visit frequencies to voyages while maintaining even spread of
departures. Commonly in periodic routing problem planners are concerned by even spread
of visits to customers rather than spread of departures. In PSVPP requirement to even spread
of departures is explained by the fact that installations know when it is the latest to submit
demand request before a vessel starts a voyage. Taking is to account that the maximum lead
time is assumed to be three days, such system proves to be quite convenient.

Furthermore, all offshore installations are divided in to two categories: with
possibility for night service and without it (with time window and without it). For
installations without time window, a vessel may come for service at any time during the day.
However, for offshore installations, which cannot be serviced at night time (19:00 — 7:00),
there are several situations are possible. If a vessel arrives to offshore installation after
closing time (and of course before its opening time), then it must wait till the opening time.
As well, there may be a situation when a vessel arrives within the time window, but the time
required to perform service before installation is closed, is not enough. In this case, the vessel
should wait till the next opening time.

2.1.4 Supply vessel

A fleet of supply vessels is performs delivery of equipment and materials to
installations and collection of used. Each platform supply vessel (PSV) may have its own
sailing speed and different deck capacity. This means that some PSV are unable to sail some
voyages. The cost of PSV is composed of two types of costs: vessel weekly charter cost and
fuel cost. Fuel cost is a variable cost and depends on the vessel’s speed and type of operation
performed. There are different fuel consumption rates for loading/unloading operations at

the base, during sailing and during loading/unloading at an installation.

2.1.5 WeeKkly sailing plan

The weekly sailing plan is composed of weekly sailing plan of all vessels. On the
example below PSV1, PSV2 and PSV3 (Error! Not a valid bookmark self-reference.).
Weekly sailing plan of a vessel is defined by a set of voyages, consequently assigned to
specific departure times and not overlapping in time. Each voyage starts and ends at the
supply base (FMO). If a vessel, for example, is supposed to start its voyage at 17:00 then,
taking into account turnaround time, it is assumed start loading operations at 9:00. Therefore,
it should have come back from previous voyage (if any) before 9:00. From the perspective
of each PSV collection of voyages of a vessel represents vessel’s route. For example, the
route for PSV2 involve 3 voyages, starting on Tuesday, Thursday and Saturday. Each
voyage in turn represents a consecutive collection of installations, starting from depot. For
example first voyage of PSV 1 starts at 16:00 on Monday from FMO and visits installations
TRO, COl, OSE in the given sequence. On the schedule below the service at supply base is
marked green, sailing times are marked yellow and service it installations mark dark blue.
There are situations called “end-of-week” effect when a voyage starts at the end of the week
and finishes on the next week. For example the third voyage of PSV2 starts on Saturday,

serve installation COI on Sunday, and installations OSE, KVB on Monday.

Monday Tuesday Wendsday Thursday Friday Saturday Sunday
s[16[24 s 16] 24 s[16[24 8| 16] 24 s[16 24 s 16] 24 s 16] 24
8| 16| 24| 3] 40| 48] 56| 64| 72| 80| s8] 96| 104] 112] 120 128] 136] 144] 152[160] 168
PV 1 FMO rd_Jcol OSE I FMO s18 | [sTA][sTC
psv2 |osg [kve] [I [ose] [kve] [[Frvo | Jose] [col] [[Fvo | [col]
Psv3 [Fvo | [st8] [sta]stc] [Fvo | iR [col [[Fvo | [tro[Tkve] [

Figure 1 An example of Weekly sailing plan.

There is one thing, on which we have to stress our attention. As it was mentioned above,
the planning horizon for installations is assumed to be one week. Nevertheless, the planning
horizon for vessels is extended up to two weeks. Such planning is explained by dealing with
a specific situation that may happen, called “end-of-week” effect. On the Figure 2 is
described the situation when the last voyage of PSV2 starts on Saturday and ends on
Monday, while its first voyage starts on Monday. As we see, voyages of the same vessel are
overlapped in time, which is not allowed. To circumvent such situation vessels PSV2 and
PSV3 may swap voyages on the second week. The only condition for possibility of swapping
is that the first voyage of PSV3 should start later than the end of the last voyage of PSV2.
In this case, PSV2 and PSV3 exchange by voyages on each week. Such approach may be

viewed as the relaxation of the voyage overlap constraint for each vessel in case of the “end-

of-week” effect, that may lead to the cost and even fleet size reduction.

Monday Tuesday Wendsday Thursday Friday Saturday Sunday
s[16[24 8] 16] 24 s[16[24 8] 16] 24 s[16] 24 8] 16] 24 8] 16] 24
3 16 24 32] a0l 48] se] ea] 72| 80| s8] 96| 104] 112 120 128] 136] 144] 15[160] 169

PSV 1 FMO [Bio] [st8[[st] [sto] [FMO bof [sto| [stof FMO bo [sto] [sto]
8| 16| 24 3] ao] 48] s6] 64 72[80| s8] o6] 104] 112] 120] 128] 136] 144] 152[160] 168
PSV2 [Frvo | [coi] [rro] Josg [] rvo coll [stB] Jose] [siD] [rvo | R0 [stB] [sTO
8] 16] 24 3] 40| 48] 56| 4] 72[80| s8] 96] 104] 112 120 128] 136] 144] 152] 160] 168
Psv3 [sto] | [Frvo | [sto] [sop] [sto] [[rvo | IrRd Josg] | Frvo | [coi] Josd [sin]

Figure 2 An example of weekly schedule with coupled vessels

2.2 Objective

The objective of the PSVPP is to construct a weekly sailing plan with minimal total
vessels charter and sailing cost taking into account base capacity constraint, requirements
for the even spread of departures, visit frequencies, vessels capacities, maximum voyage
duration and maximum number of installations per voyage, and voyage overlap constraint.

Taking into account problem dimensions and the size we may conclude that some
optimization-based design support tool is required which is able to provide the solution of a
good quality in a short time. The output of this tool should be weekly vessels schedule.

Below are summarized the main characteristics of the problem:
e The planning horizon of 7 working days (one week).
e Set of installations to be served and supply base, and theirs coordinates.
e Number of visits for each installation per week.
e Weekly demand for each installation.

e Average service time of each installation, required for loading/unloading

operation.

e Fuel consumption rate of a vessel when sailing, servicing at installation and

servicing at supply base.
e Fuel cost per ton.
e Set of available departure times during a day.
The objective of the problem is to:
e Construct weekly delivery schedule for the given set of installations.
e Find the fleet size and build voyages for each PSV.

¢ Find departure time of each voyage.

Minimize total vessel charter and fuel cost.

Constraints on solution:

Supply base constraints

Maximum number of vessel that can departure during a day.
Supply base working hours.

A vessel turnaround time.

Voyage constraints

Maximum number of installations on a voyage.

Maximum voyage duration.

Vessel constraints

Capacity of a vessel.

Offshore installations constraints

Departures to each installation should be evenly spread during the week.

Working hours of each installation during a day.

3.0 Literature review

The literature dedicated to PSVPP is relatively scarce. Bellow we provide some papers
on the PSVPP topic, which appear in the literature for the last several decades. PSVPP relates
to vehicle routing problem (VRP) type and namely to periodic VRP, where routes should be
constructed for a planning horizon. The main different PSVPP from periodic VRP is that
PSVPP routes (or voyages) last more than one day. The literature on the PSVPP topic is as
follows.

Fagerholt and Lindstad (2000) presented a paper dedicated to “Optimal policies for
maintaining a supply service in the Norwegian Sea”. The authors develop two-phase exact
method to solve the problem. On the first stage, a feasible set of candidate voyage is
generated for each vessel. On the second stage, the set generated of voyages is used as an
input to the integer optimization model. In the literature, the model is known as set partition
model. However, the authors formulated a simplified version of PSVPP, ignoring constraint
on the spread of departures. Their approach does not provide vessel schedule and just
handles the problem of assignment voyages to vessel.

Gribkovskaia, Laporte, and Shlopak (2008) represented “A tabu search heuristic for a
routing problem arising in servicing of offshore oil and gas platforms.” The authors study
pickup and delivery problem encounters upstream offshore supply in the Norwegian Sea.
The problem is operational planning. A single vessel should provide pickup and deliveries
of cargo from several offshore installations. The authors develop tabu search for a single
base.

Halvorsen-Weare et al. (2012) considered “Optimal fleet composition and periodic
routing of offshore supply vessels”, where the authors took into consideration the aspects
omitted by the Fagerholt and Lindstad (2000). In this article, the authors as well use the same
two-phase exact method to obtain optimal solution accounting spread of departures
constraints. In addition, authors deal of the weather uncertain that may result in delays of
vessel on theirs voyages. Authors handle uncertainty by adding a slack in the end of a
voyage. Developed approach may be applied to medium and large size instances.

Korsvik and Fagerholt (2010) considered a problem in a shipping trade dealing with
transportation of bulk products. Shipping companies derive some additional income for
optional spot contracts. The authors developed an efficient tabu-search algorithm as a
decision support tool, ensuring quick decisions for the planners. The output of their tool

represents a schedule with a minimal fleet of vessels required to perform a certain task.

Shyshou et al. (2012) proposed a Large Neighbourhood Search (LNS) heuristic with
the aim to solve large instances of PSVPP, taking into account all the constraints handled
Halvorsen-Weare et al. (2012). Heuristics is able to define optimal or near-optimal solutions
for small-medium size problem and as well is able to construct schedule for large size
problem within a reasonable time.

As well, there are several papers dealing with weather uncertainty in PSVPP and as
well, those taking into account environmental issues. Halvorsen-Weare and Fagerholt (2011)
developed three-phase approach able to define optimal solution of the problem by
introducing robust measure to voyages. Norlund and Gribkovskaia (2013) considered the
problem of minimization of supply vessel emissions by optimizing using the same,
mentioned above, two-phase approach.

As we see, there is only one approach to PSVPP that deals with the problem similar to
ours in terms of the problem type and instance size. Namely the approach by Shyshou et al.
(2012). This solution approach turned out to be quit efficient for small and medium problem
sizes, although the running time for large instances is relatively high. As well, there are
several differences between the problem formulated in our thesis and the problem
formulated by Shyshou et al. (2012). In Shyshou et al. (2012) vessels departures on voyages
are single and fix during a day, while in our problem a vessel have a set of departure options
manually defined by a planner. In addition, planning horizon for vessel in our problem is
extended to two weeks, with the aim of handling “end-of-week” effect issue.

As we see the LNS heuristic by Shyshou et al. (2012) was quite successful for the
PSVPP. Therefore, we may use this heuristic, as a starting point for the development of ours
own algorithm. In the next section, we consider methodology related to LNS and some
known approaches for improvement of its efficiency.

10

4.0 Methodology

In this section we cover solution approaches developed for PSVPP and study some
methodology that maybe useful for our future metaheuristic.

Halvorsen-Weare et al. (2012) presented two-phase mathematical modelling based
approach. On first stage, the authors generate all possible sets of installations satisfied
minimum and maximum requirements for the voyage size and capacity. These sets are
generated out of the set I of all installations. Then for each set TSP with time windows is
solved. The output of the algorithm is the set R of all candidate voyages a vessel may sail,
where each voyage represent the optimal permutation for the corresponding set of
installations. As well, based on the generated voyages binary parameter a; - is created. a; ,.
is equal 1 if installation i is on the voyage r, i € I, € R. On the second stage the output of
the voyage generation algorithm is used as the set-covering voyage-based model. The model
selects a set of voyages out of the whole set R of available voyages taking into account
spread of departures, overlap constraints and based capacity constraint. Each voyage is
assigned specific departure day. The output of the model is a weekly vessel schedule.

Advantage of this approach compared to the full enumeration is that mathematical
model uses only feasible and shortest voyages (provided by the voyage generation
algorithm) and thus reducing computational time of the second phase. The solution achieved
on the second stage is optimal.

Since we agreed above to develop an algorithm using the Large Neighbourhood Search
methodology, we first consider its main principles.

LNS heuristic was first presented by Shaw in (Shaw 1997) and (Shaw 1998). Heuristic
was applied to VRPTW (Vehicle Routing Problem with Time Window) and showed very
good results. Below we briefly consider the main idea of the LNS. The pseudocode for LNS

is as follows (Procedure 3.1).

11

Procedure 3.1 Basic LNS heuristic
1: Function LNS (s € {solutions},q € N)

2: solution spee = S;

3 do

4 s'=s;

5 remove q request from s’
6: reinsert removed requests into s’
7 if (f(s’) < f(sbest)) then
8 Spest = s’

9: end if

10: if accept(s’,s) then

11 s=5s';

12 end if

13: while stop-criterion met

14: return spes ;

The algorithm starts with the generation of a random initial solution, which is supposed
to be further improved. Then, “destroy” operator removes g humber of visits (requests) from
solution s’. Further, repair operator inserts removed visits (requests) back into solution. If
the new solution s’ is the better than the best found solution s, then the solution s’ is set
as the best s, Otherwise, if the solution s’ is worse than solution s, then solution s’ is
accepted subject to some accepted criteria (user defined), the algorithm proceeds to the next
iteration and so on until stop-criteria is met.

As it was mentioned in the previous section, Shyshou et al. (2012) developed Large
Neighbourhood Search heuristic for PSVPP. The algorithm is run for a given number of
restarts and iterations. At each restart an initial (feasible) solution is randomly generated.
Then, for the given number of iterations an attempt is made to improve this initial solution.
At the beginning of each iteration, we make a move from the current solution (at the first
iteration the current solution is the initial solution) to one of in its neighbourhood. This is
done with the use of destroy and repair operators. Destroy operator randomly selects a
certain number of voyages (user defined) and then in each voyage a random number of visits
is removed and placed into pool S of uninserted visits. After that, repair operator tries to
insert visits, contained in the pool S, back into the schedule. If the attempt is successful i.e.
all visits are inserted back and all constraints are satisfied, then the algorithm proceeds to
the improvement phase. On the improvement phase, the solution obtained after a move is
tried to be improved by subsequently applying several improvement procedures. The first
procedure tries to reduce number of voyages in the schedule and thus making the idle time
of vessels larger. The second procedure tries to reduce total duration of all voyages by

12

relocation visits between them. The relocation of visit from one voyage to another is
accepted if the net duration of both voyages is reduced by at least one day. The third
procedure represent a deep greedy algorithm, which tries to relocate visits in the schedule
while the cost of the schedule reduces. As well, after each of the described above procedures
an attempt is made to reduce the fleet size by relocation of voyages between vessels
including those ones, which are not in the schedule. The set of improvement procedures is
applied in the loop in the predetermined sequence while the cost of the schedule reduces.

After the improvement phase the algorithm attempts to reduce the fleet size again. If
the number of vessels in the solution is above the predefined lower bound (the lower bound
is defined before the initial solution is created) than the algorithm defines the vessel out of
which it is possible to relocate the largest number of visits to other vessels. Those visits,
which were not relocated from this vessel, are placed into pool S of uninserted visits. If the
number of voyages turns out to be lesser than the predefined lower bound then the flag
indicating the state of the schedule in terms of the number of voyages relative the lower
bound on the number of voyages, is set to “true”. The algorithm proceeds to the next
iteration. At the beginning of each iteration, after application of destroy operator, the
algorithm cheeks whether the flag was set to “true” at the previous iteration. If the flag is set
to “true” then the algorithm creates empty voyages to ensure feasibility of the schedule after
the repair operator is applied. And the algorithm proceeds to the improvement phase as
described above.

The algorithm proved to be quite efficient on small and medium size instances showing
optimal and near optimal results. As regards larger instances, efficiency of the algorithm is
not proved due to the absence of the optimal solutions. Solutions for large instances were
obtained within high computational times.

Ropke and Pisinger (2006) presented “An Adaptive Large Neighbourhood Search
Heuristic for the Pickup and Delivery Problem with Time Windows”. In this article, the
authors supplemented the LNS by a new approach to search neighbourhood solutions.
Developed heuristic was called adaptive LNS. This approach implies several destroy and
repair operators which paschal destroy and then repair the solution that is called “a move”.
The main idea of “adaptiveness” is to keep track on the performance on destroy and repair
operators. Since there are several destroy and repair operators and only one of each type
should be selected at the beginning of an iteration, destroy and repair operators are assigned
corresponding probabilities according to which they are supposed to be selected are equal
and updated after certain number of iterations (segment). At each iteration selected destroy

13

and repair operators receive certain rates based on their performance. These weight are
accumulated within a segment. And in the end of each segment each operator receive the
total score and probabilities are updated. Those operators, with good performance and, of
course, with higher score are assigned higher probabilities for the next segment of iterations.
Thus, the algorithm tries to adapt to better search of neighbourhoods based on the
performance of destroy and repair operators within last segment of iterations.

Furthermore, the authors propose an approach to avoid trapping into local minimum.
To do this, the authors take the idea from simulated annealing. The idea is to accept solution
s’ with some probability, if it is worse than the solution s with some probability. Probability

f(s")-1(s)
isdefinebye™™ 7 , where the temperature T > 0and 0 < ¢ < 1isthe cooling rate.

In each iteration temperature decreases by multiplication by ¢ .So the lower the value of c,
the higher the cooling rate and probability of acceptance of worse solution reduces faster as

the algorithm proceeds for one iteration to another.

14

5.0 Research Task

The primary goal of this thesis is to develop an Adaptive Large Neighbourhoods
heuristic (ALNS) for the described above PSVPP taking into account all the problem’s
specific constraints, which is able to solve large size problem instances within a relatively
short time. Since we need to validate the algorithm and test its efficiency, we need to
compare it to some exact approach. For this purpose we develop two-phase exact solution
approach based on the approach by Halvorsen-Weare et al. (2012) and adapted to the

specifics of our problem (flexible departures and coupled vessels).

15

6.0 Solution approach
In this section, we provide the description of our modification of two-phase exact

approach and detailed description of developed ALNS heuristic.
6.1 Two-phase method

6.1.1 Voyage generation algorithm

The main idea of the voyage-generation algorithm is based on dynamic programing
or the concept of recursive call. The input information involves sets of offshore installations
and supply vessels, coordinates of offshore installations, vessels capacities and maximum
voyage duration. The algorithm starts from generation of all sets (combinations) of
installations. The number of sets is denoted by K and set N (k) represents the collection of
installations ina set k, k € 1.. K. The size of the sets is limited by minimum and maximum
number of installations in a voyage and vessel capacity (Procedure 6.1.1 Line 5). Then, for
each combination N (k) the Travel Salesman Problem with Time Window (TSPTW) is
solved by dynamic programming (Procedure 6.1.2) i.e. for each set N(k) the shortest
permutation is defined.

Procedure 6.1.2 takes one by one all sets of installations from the set N(k) as an
input. Each installation in a set N (k) is removed and sent into recursive procedure. In this
procedure this installation is added into a voyage which is defined globally in the procedure
(initially this voyage is empty and contains only the depot). After the installation is added to
the voyage, duration and sailing of this partial voyage (since it does not contain all
installation) are calculated. And then, for this partial voyage procedure 6.1.2 is called again
(recursively). After the partial voyage is sent into recursive procedure, installation is
removed from this partial voyage and is placed back into set N (k). For the partial voyage
which was send into recursive procedure (and which contains this installation) all this steps
are repeated again starting from line 5. When at some recursive call into it turns out that all
installations from the set N(K) present in the voyage then duration of the voyage with this
sequence is compared to the previously found voyage with the shortest duration. If the
duration of the voyage with the new sequence is shorter than the previously best found, then

this voyage is stored and set as the best. So, this recursive procedure dynamically enumerates

16

all possible permutations of installations for each set N (k) and returns the shortest. The

output of the algorithm is the set of shortest voyages for each vessel.

Procedure 6.1.1 Voyage-generation algorithm. Main code

1:Function VoygeGeneration(Vessels V, Departure Time T, Installations IW)

2:

3
4:
5 -
6

7:
8:
9.

10:
11:
12:
13:
14:

Array R = @: array, which containing all feasible routes;
for each j in V
for each t in T
do
Construct unique combination of installations,
which satisfy constraints for vessel capacity and
maximum and minimum number of visits during one
voyage. And it places on set N(k);
Solve TSPTW for set N(k) by Procedure 6.1.2;
if solution founded
place solution on set R;
end if
while(!all combination of Installations not created)
end for
end for
return R;

Procedure 6.1.2. Recursive solve TSPTW.

VoOoNOOTUVLD, WNER

Route: R(k) = Globally defined route;
Route BR(k) = Globally defined best route;
Bcost = Globally define Best cost;
Function SolveTSPTW (PoolOfInstallations N(k), MaximumDuration maxDur)
for i = 0 to N(k)
Installation: C = N(k);;
set R = RUC;
set N(k) = N(k)\C;
cost = Compute sailing cost for route R;
dur = compute route R duration;
if(cost < Bcost and dur < maxDur)
if(IN| == 0)
Bcost =
BR = R;
end if
else

cost;

Recursively run SolveTSPTW (N(k),maxDur);
end If
end if
set R = R\(C;
set N(k)=N(k)UC;
end for

: End Function;

17

6.1.2 Voyage-based model

In this section, we provide mathematical formulation of the PSVPP. We use as the

input the set of voyages from the voyage generation algorithm, which was described above,

and their corresponding costs. As well based on the set of generated voyages we define

binary parameters E, ,.,,» and A,,; - which are described below. The notations for the sets,

parameters and variables are as follows.

Sets: Notations:

N Set of installations

Ny Set of installations, which require f visits during the week, f € {2..5}, Ny €
N .

%4 Set of PSV types
Set of potential departure days, during the week (Working days in Supply
base)

T Set of possible departure times during the week

T, Set of possible departure times during the day w,w € W, T, € T.

T, Set which involve possible departure times, after departure time t, when PSV
may not have returned to the supply base from voyages, which have started
intimet,t e T, T, cT.

R Set of all possible voyages

R,, Set of voyages, which may be assigned by a PSV type v, at departure time ¢,
veEV,teT,R,, SR.

Td;s Set of departure times after t, which represented time horizon, when PSV
may not start or oblige to start from supply base, depended from spread of
departure required for visit frequency f,t € T, f € {2..5}, T, c T.

q. Available quantity of PSVs of type, v € V.

cre Weekly charter cost for PSV of type, vv € V.

cs, Precalculated sailing, service and base costs for voyage r, which associated
on PSV of type v,v € V,r € R.

B, Maximum number of departure from the supply base during the day w, w €
14

F; Required number of visits during the week for installation i, i € I .

18

Air Binary parameter equal 1, if and only if installation i have visits by voyage

reN,reR.

E,rut Binary parameter equal 1 if voyage r, which sailing by PSV of type v, start

possible departure time t, and O otherwise,v e V,r e Ru€eT,t €T,.

in time u and will not have returned from voyage to the supply base in

Xyrt Binary variable equal 1, if and only if PSV type v start voyage r in departure

time t, and O otherwise, v €V, r€R, teT.

Yo Integer variable which represent quantity PSV of types v, v € V .

Mathematical model:

mianJC Y, +ZZZcfxm

veV veV reR teT
subject to
ZZZA/HXVI'I = Fi’ \V/l € N
veV teT teR,
D Y EuXw SV, WVEV, VteT
teT, reRy,

>3 > X <B,, YWweW

VeV teT, reR,

X . <1VieN, yweW
ZZZA’” vrt

VeV teT, reR,

DY DAL X SLViEN, teT

VeV reR, ; UeT; ,

Z Z ZA\/,r,in,r,u 21’Vi € N3,t eT

VeV reR, ; UeT; 5

z Z ZA/,r,in,r,u >2NVie N4,'[eT

veV reR, ; UeT; 4

Z z ZA\/,I’,in,r,u ZLVi € N5,t eT

VeV reR, ; UeT; 5

. <q,, veV
y, ez
XVI’I E{O’l}

Constraints description:

1)

)

(3)

(4)

()
(6)
(7)
(8)
©)

(10)
(11)
(12)

19

The objective function (1) expresses minimization of total vessels charter and sailing
Costs.

Constraints (2) state that each installation receives the required number of visits
during the week. Inequalities (3) ensure that at each time interval t, the number of voyages
sailed by vessels of type v is less or equal than the number of PSVs of type v used in the
schedule. If, for example, integer variable y,, equals to 2 for vessel type v, then there are two
vessels of the same type are used in the schedule, which means that these vessels are coupled
and may sail each other voyages. If for each type v of vessels, y, is equal to one then there
are no coupled vessels in the schedule and inequality states that voyages of the same vessel
are not overlapped in time. Constraints (4) sets the limit on the number departures from
supply base during the day. Constraints (5) grantee, there is possible only 1 departure to each
installation, from the supply base during the day. Constraints (6)-(9) grantee, evenly spread
of departures for installations with visits frequency f. For example group of constraints (7)
ensure even spread of departures for installations with visits frequency 3, stating that there
should be at least 1 departure within 3 days is required for each installation in set Nj.
Constraints (10) state that number of vessels of type v is can not be more maximum available
number of vessels of type g,.Finally, constraints (11) and (12) set the integer and binary

requirements for the y, and x,,., variables respectively.

6.2 ALNS heuristic.

In this section we provide detailed description of the ALNS heuristic. Heuristic is
developed with the use of C# programming language with Microsoft visual studio 2013.
Below are provided the pseudo-code of the main algorithm and pseudocodes of the main

procedures, and theirs descriptions.

6.2.1 Heuristic overview.

The algorithm is applied for a given number of iterations which are defined by a user.
The first phase in the algorithm is generation of initial solution z, which is purely randomly.
Then, this solution is supposed to be improved over the given number of iterations. At the
beginning of the each iteration for the current solution z (at the first iteration z = z;) its
neighbourhood N(z) is defended. Under the current solution z is understood the solution
with which the algorithm is currently working or tries to improve. As well z* is defined as
the best found solution up to current iteration. Since the aim of the algorithm is to improve
the current solution, at the beginning of each iteration transition from the solution z to

solution z’ in neighbourhood N (z) is performed with the use of destroy and repair operators.

20

Transition to the neighbourhood solution z’ is called a move. The move is performed by the
means of removing of some number of visits with the use of some destroy operator and then
reinserting these visits back into the schedule with one of the repair operators. The number
of visits to be removed is defined randomly between minimal and maximum values defined
by a user (average 15% - 20% of the total number of visits). Selection of destroy and repair
operators is performed according by assigned to them probabilities, which are initially equal.
There are three destroy and three repair operators in the algorithm. The destroy operators
are: worst removal (Ropke and Pisinger 2006), Shaw removal (Ropke and Pisinger 2006)
and random voyage removal. The repair operators are: deep greed insertion, 2-regret
insertion and 3-regret insertion (Ropke and Pisinger 2006).As it was mentioned above, each
destroy and repair operator has its own probability of being selected. The sum of
probabilities of destroy operators equal to 1.The same is for the repair operators. These
probabilities are recalculated after each (user defined) number of iterations based on their
previous performance. Proper description of the adaptiveness mechanism is provided below.
For detailed description of the mechanism of adaptiveness see Ropke and Pisinger (2006),
Pisinger and Ropke (2010). If the move to the neighbourhood solution z’' is performed
successfully (Pseudocode 6.2.1 line 12) i.e. all the removed visits are inserted back into the
schedule, the algorithm proceeds to the improvement phase. At the improvement phase, the
solution z’ is tried to be improved by the set of improvement operators: reduce number of
voyages, reduce number of vessels, swap visits between voyages and relocate visits between
voyages (Pseudocode 6.2.1 lines 13-20). These procedures are located in certain sequence
of the algorithm, and applied cyclically while the solution can be improved. The first
procedure reduce number of voyages aims to decrease number of voyages in the schedule
by relocating visits from some voyage to other voyages in the schedule. This is done with
the aim to reduce the sailing cost and the fleet size, since the idle time of some vessels
reduced (if some voyages were eliminated). The fleet size reduction is provided by the
procedure reduce number of vessels, which attempts to reassign all voyages from some
vessel to other vessels. If such vessel is found, and voyages are reassigned, then this vessel
is marked as unused. Procedure swap visits between voyages analyses all combinations of
swapping two visits between all voyages. The aim of this procedure is to reduce the cost of
the schedule, which is, of course, dependent on the duration of the voyages. Therefore, if the
cost is reduced and as follows, durations of voyages, then vessels’ idle time is increased.
Moreover, there is a possibility to decrease the fleet size again, which is done by the

mentioned above procedure reduce number of vessels. And, the last procedure — relocate

21

visits tries to find best relocation of visits between voyages. After this procedure as well
applied the procedure reduce number of vessels. Detailed pseudocodes of these improvement
procedures are provided bellow in section 6.2.6.

After the improvement phase solution z’ is compared to solution z (solution which
was before the move at the beginning of the current iteration) and z* (the best found solution
which was found over the all iterations). If 22 < z* then, we have found the new best
solution, z* = z’. And z = Z’ i.e. the current solution is made equal to this new solution z’
and is supposed to be improved further on the next iteration. If zZ > z* and zZ < z then
z = z'and z* remains the same (since it was not improved). If zZ > z*and zZ > zthenZ’
is accepted (z = z’) with some probability (acceptance criteria), (see Pseudocode 6.2.1 line
25). If Z' is not accepted then the algorithm proceeds to the next iteration with the solution
that was at the beginning of the current i.e. current solution z remains unchanged. The logic
of the acceptance criteria is explained further (see Section 6.2.7). If a certain number of
iterations (&) passed after the last update of weights, than the weights are updated again (see
Pseudocode 6.2.1 lines 30-31 and section 6.2.5). The algorithm proceeds to the next
iteration. After the last iteration, the algorithm returns the best found solution.

22

Procedure 6.2.1 Main ALNS heuristic for PSVPP

1:z « Construct initial solution (Procedure 6.2.2.);

2:Initialize the weight m;

3:set the temperature T;

4:set z¥ « z;

G:for i = 0 to N

6: z' « z;

7: Qiter <Select number of visits to be removed;

8: Opryem <Select removal operator;

9: z' < Optyem(Z', Qiter S) (Procedures in section 6.2.3);

10: Oprins < Select insert operator;

11: 7z’ « Oprys(2,S) (Procedures in section 6.2.4);

12: if S==0 and z' is feasible then

13: do

14: Reduce number of routes (Procedure 6.2.6.1);
15: Reduce number of vessels (Procedure 6.2.6.2);
16: Swap visits between voyages (Procedure 6.2.6.3);
17: Reduce number of vessels (Procedure 6.2.6.2);
18: Relocate visits between voyages (Procedure 6.2.6.4);
19: Reduce number of vessels (Procedure 6.2.6.2);
20: while z improves;

21: if ¢(z") <c(z*) then

22: AR

23: ze«7;

24: end if

25: if Accept(z,z') then (Described in section 6.2.7)

26: ze«7;

27: end if

28: end if

29: if i/6 == 0 then

30: Update weightsm (Described in section 6.2.5);

31: end If

32: T<T+c;

33:Next i;

34:return s*;

6.2.2 Initial solution

Here we described the procedure for generate randomly feasible initial solution
(schedule). The initial solution contains a set of voyages with a certain departure time during
the week and sailing by the specific vessels. Represented schedule satisfy spread of
departure constraint and contain required number of visits for each installation. The

procedure for generation of the feasible initial solution is described below (Procedure 6.2.2).

23

Procedure 6.2.2. Construct initial solution for ALNS.

1: Function ConstructInitialSolution(installations I, Vessels V, maximum
number of departure per day udep,maximum installations per route pinst)
2: Array: R = an array containing all routes;

3: do

4: R= 0

5 Bool Flag: f = true;

6 for each i €1l

7: Randomly generate departure day pattern with respect to visit
frequency;

8: VisComb,; =1 if installation i is assigned on departure day
t,0 otherwise;

9: end for

10: for each teT

11: Define number of visits per departure day t: q = Y VisComb;
12: if g > udep * pinst then

13: f = false;

14: end if

15: Define number of voyages per day: p = [q/uinst]

16: Define number of visits per route: 7 =[q/pl;

17: for k = 0 to p

18: Create empty voyages r;

19: Counter: v = 0

20: do

21: Installation: i = [,;

22: if VisComb,; ==1 then

23: Assign visit to installation i on route r;
24: end if

25: set v=v+1;

26: while v < |I|and |r| < T;

27: Call procedure 6.2.7.1 for route r;

28: R=RUr;

29: end for

30: end for

31: for each r €R

32: Bool flag: possible = false;

33: for each vevV

34: if voyage r is possible to assign on vessel v then
35: voyage r is assigned to vessel v;

36: possible = true;

37: exit for;

38: end if

39: end for

40: if possible == false then

41: f = false;

42: end if

43: end for

44: while f == false
45: z, < R;

46: return z,;

24

6.2.3 Destroy operators
This section describes three destroy operators. All three removal operators return the
solution z and pool of uninserted visits S as an output. More detailed description of all

removal operators is provided below.
6.2.3.1 Shaw removal

Shaw removal heuristic was first presented by in Shaw (1997),Shaw (1998).The
main objective of the Shaw removal operator is to remove visits which are similar i.e. close
in servicing time, location etc. For more detail description, see Ropke and Pisinger (2006).
This approach provides easier possibility to insert all visits back into the schedule and
perhaps better neighbor solution. For determining somewhat similar visits we define a
related measure R(i, j). This measure expresses a relatedness between two visits i and j and

is computed by a given formula:

RGi, j)=a(d,)+ B(T, -T))) 13)

This formula contains two terms:d; ; which denotes the travel distance between
installations visits and T; indicates departure time to installation i. Both terms are weighted
by the weights a and . The procedure for removing visits from schedule by shaw removal

is presented below in Pseudocode 6.2.3.1.

Pseudocode 6.2.3.1. Shaw Removal.

1:Function ShawRemoval(solution z, number of visits q)
2: visit : v = a randomly selected visit from z;

3: pool of visits: § = {v};

4 remove visit v from the soltution z;

5: while |S| < gdo

6: r = a randomly selected request from S;

7.

8

9

Array : V = an array containing all visits from z not in S;
Array : R = an array containing rank for each visit in z;
: Counter: i = 0;
10: while i < |V]| do

11: R; = a(dy,,;) + B(Ty, — T);

12: i=i+1;

13: end while

14: sort R such that i <j=R; <Rj;

15: Insert in Pool § first visit in array R;

16: end while
16:return z,S;

25

6.2.3.2 Random Voyage removal

The random voyage removal operator simply selects g random voyages from the
solution z, and then place all visits from voyages into pool S and remove voyages from the

solution. Pseudocode of this procedure is shown below (Pseudocode 6.2.3.1).

Pseudocode 6.2.3.2. Random Voyage removal.

1:Function VoyageRemoval(solution z, number of voyages remove q)
2:pool of visits: S = @;

3:Counter: i = 0;

4:while i < q do

5: r = a randomly selected voyage from z;

6: Array : V = an array containing all visits from r;
7: S=S5uUVl;

8: remove r from solution z;

9: i =i+1;

10:end while
11:return z,S;

6.2.3.3 Worst Removal

The general idea of the worst removal operator is to remove visits with the maximum
cost reduction values, i.e. remove visits with high cost. In presented pseudocode 6.2.3.3. for
each visit one by one cost ¢’ (schedule cost without visit) is computed. Visit with lowest cost
¢’ is removed from the solution z. Algorithm repeats while number of visits in pool S less

than q.

Pseudocode 6.2.3.3. Worst removal.

1: Function Worst Removal (solution z, number of visits q)
2: Pool of visits :S = @;

3: while |S| < g do

4: Array : V = contains all visits from solution z;
5: Cost: = c¢c(2) ;

6: 9 = 0;

7: for each vevV

8: remove visit v from solution z;

9: Cost: ¢ =c(2);

10: if ¢’ < ¢ then

11: Y =v;

12 c =3

13: end if

14: insert visit v back into the solution z;
15: end for

16: S=Su{v};

17: remove visit ¥ from solution z;

18: end while
19: return S,z;

26

6.2.4 Repair operators

General idea of repair operators is insertion back into schedule all visits from the

pool of uninserted visits S. We provide below descriptions for 2 repair operators with their

pseudocodes: deep greedy insertion and k-regret insertion (which represent the class of

regret operators, depending of the value of the parameter k).

6.2.4.1 Deep Greedy insertion

The deep greedy insertion is a simple construction heuristic. Heuristic contains

several number of iterations. An Heuristic contains several number of iterations. At each

iteration algorithm tries to insert each visit from pool S into the schedule and if insertion is

possible, then procedure computes schedule cost with this insertion. In the end of iteration,

an algorithm inserts visit into the schedule with the minimal cost increase and removes visit

from S. Pseudocode of the algorithm is showed below (Procedure 6.2.4.1).

Procedure 6.2.4.1 Deep greedy insertion

1:Function DeepGreedyInsertion(solution z, Visits Pool §)
2:Best evaluation: & = @;

3:Array : R = an array containing all voyages from z;
3:do

4. e = 0;

5: Counter: i = 0;

6: while i < |S| do

7: Counter j = 0;

8: while j < |R|

9: Evaluation: e« get evaluation by
procedure 6.2.7.2 for R}, Si;

10: ife #0 and c(e) <c(e) then

11: E =e¢;

12: end if

13: j=j+1;

14: end while

15: i =i+1;

16: end while
17: if ¢ # @ then

18: r « target route in evaluation ¢;
19: v < insertion visit in evaluation ¢;
20: Insert visit v in voyage r;

21: Call procedure 6.2.7.1. for route r;
22: Remove visit v from pool S;

23: end if

24: while ¢ # @ and |S| > 0;
25: return zS;

calling

27

6.2.4.2 Regret-k insertion heuristic

The regret heuristic represents an evolution of the deep greedy heuristic by making a
kind of look ahead when selecting a visit for insertion. Let Af;x the change in the objective
function resulted after the insertion of a visit i into voyage k. We define xik €{1,..,n} as a
variable indicating the route for which insertion of a visit i has the k’th lowest insertion cost
(variables are sorted in increasing order of the value of the objective function). If k <k’ then

Afix, < Aﬁ'xik’. So, we can we define c¢; = Af;,,, — Af;,, as the difference between

the best and the second to the best insertion options for visit i or in other words we define
c; as aregret value.
During the search for better visit for insertion, the regret heuristic, at each iteration,
selects the visit so that:
max c; (14)
In other words, we strive to insert a visit which we would regret if we do not insert it
now. When inserting a visit i into route k, the visit is inserted into the minimum cost position.
Perusing this logic the heuristic can be extended by defining a class of regret heuristics. The

k-regret heuristic aims to insert a visit such that:
max (T, (Afi ;= Bfix,)] (15)
this means that we take into account insertion options of visit i for the first best k
insertions. If, applying k-regert, some visits cannot be inserted into n-k+1 number of routes
then the request with the fewest number of routes for insertion. For this heurist, at least two
insertions options required to perform the assessment. Formulation (15) represents regret-2
heuristic, since it consider the two best routes for insertion of a visit. The k-regret heuristic
considerers for each visit i the best k routes for insertion and selects the one with maximal
cost difference of insertion into k-1. Pseudocode (6.2.4.2) presents the logic of k-regret
insertion procedure, adopted for our heuristic.

28

Procedure 6.2.4.2. Regret-k insertion

1: Function RegretInsertion(solution z, number of visits g, regret k)
2: do

3: Highest regret value: o =0;

4. Best evaluation: &= 0@;

5: Counter: i =0;

6: while i < |S| do

7: Counter: j = 0;

8: Array : E = possible evaluation for visit i;

9: Array: := containing all voyages in solution z;

10: while j < |R| do

11: evaluation: e «get evaluation by calling
procedure 6.2.7.2 for R;, Si;

12: ife #90 then

13: E =E U{e};

14: end if

15: j=j+1;

16: end while

17: sort E such that a<b= f(E,) > f(Ep);

18: if |E| = k then

19: Counter: j=0;

20: Accumulated regret value: 6 =0;

21: while j <k do

22: 0 =0+ ((E)—c@);

23: j=j+1;

24: end while

25: if (6 >0) then

26: o= 0;

27: e= Ey;

28: end If

29: else if |[E| >0

30: e= Ey;

31: break while;

32: end If

33: i =i+1;

34: end while

35: if ¢ # @ then

36: r « target route in evaluation ¢;

37: v « insertion visit in evaluation ¢;

38: Insert visit v in voyage r7;

39: Call procedure 6.2.7.1. for route r;

40 Remove visit v from pool S;

41: end if

42: while ¢ # 0;
43: return z,S;

29

6.2.5 Selection of destroy and repair operators.

In section 6.2.3. we described three destroy operators (Shaw, random voyage and
worst removal) and in section 6.2.4. we provide three repair operators (deep greedy, regret-
2 insertion and regret-3). In this section, we provide selection mechanism that is used for
both groups of operators. We remind that selection of destroy and repair operator take place

at the beginning of each iteration.

6.2.5.1 Probability recalculation.

All operators are selected according to probabilities which depends on their
performance during the run of the algorithm. Probabilities are equal at the first iteration. Let
K be the set of operators (either destroy or repair), j € K. P; — probability of selection of
operator j. In order to select an operator we assign a weight to each of the operators wi. The
probability of selection of an operator j is then calculated according to the following

formulation (see Ropke and Pisinger (2006)):
= (16)

N.B! Probabilities are defined separately for destroy and repair operators.

pj

6.2.5.2 Weights adjustment.

In the above section we described weights and probability calculation for destroy
and repair operator. In this section we describe how these weights are adjusted for each
operator during the algorithm run. The main idea of weight adjustment is to record
performance of each operator and assign different score depending on the performance
efficiency. The search is divided into a number of segments. Each segment corresponds 50
or 100 iterations (user defined). Since the initial probabilities are equal for each operator,
the score for each operator is set to zero. The score of an operator increases by o1, o2, Or 63

depending on the following conditions:

Parameter | Description

01 After applying the last remove-insert operators the algorithm found new

global best solution.

0y After applying the last remove-insert operators the algorithm found new
solution that has not acceptance before, worse than global best solution, but

better than current.

30

O3 After applying the last remove-insert operators the algorithm found new

solution that has not acceptance before, worse than current solution, but

solution was accepted.

Table 1 — Types of parameters that increase the score of a heuristic

At the end of each segment the weight of an operator i is recalculated based on its
score. Let wijbe the weight of operator i and the jssegment. The weight is used in formulation
(17) for probability calculation. When the segment j is over, the weight of operator i within
the next segment j+1is defined as follows:

Wi =wi(1—1)+ rg—z (17)

Where =i corresponds to the total score of the an operator i for the last segment j. 6;
represents the number of times the operator i was used during the last segment. As well,
there is reaction factor r which defines the degree of reaction of weights adjustment. For
example if we set r to O, the scores are not used at all and the algorithm uses those initial
weights. For more information see (Ropke and Pisinger 2006).

6.2.6 Improvement operators

This section describes following set of improvement operators: reduce number of
voyages, reduce number of vessels, swap visits between voyages and relocate visits between
voyages. The general idea of represented operators is schedule cost decrease after made
move to the neighborhood by efficient application improvement procedures. Swap visits
and relocate visits are aimed to reduce voyages durations and sailing costs. Reduce number
of vessels tries to reduce charter cost of the schedule by minimizing fleet size composition.
While reduce number of voyages simultaneously reduce sailing and charter costs by
minimizing number of routes. More detail descriptions and pseudocodes for each

improvement operator are provided below.

31

6.2.6.1 Reduce number of Voyages.

Procedure 6.2.6.1. tries to reduce number of voyages in the schedule by a relocation

all visits from each voyage into another voyages. This procedure allows increasing an idle

time between voyages and decrease total schedule cost.

Procedure 6.2.6.1. Reduce number of voyages

OooONOUVTPAWNER

21:
22:
23:
24:
25:

Function ReduceNuberOfvoyages (solution z)

Array : K = set containing all voyages from the solution;

Index of voyage: ¢ =—1;
do
e=—1;
Schedule Cost Change: A =0;
Counter i =0;
while i < |K| do
Solution: z' = Copy of the solution z;
Array: S = an array containing all visits from voyage K;;
Remove voyage K; from the solution z';;
Try insert visits from S into solution z' (Procedure 6.2.4.1);
if S== 0 and A< c(z) —c(z)then
A=c(z) —c(z);
E=1;
end if
i =i+1;
end while
if € >0 then
Array: S = an array containing all visits from voyage K.;
Remove voyage K. from the solution z;
Insert visits from S into solution z (Procedure 6.2.4.1);
end if
while £¢>0
return z;

6.2.6.2 Reduce number of Vessels

This procedure tries to reduce fleet size by reassigning each voyage from one vessel

to other vessels. If it is performed then the total schedule cost are sufficiently reduced.

Pseudocode of this procedure are provided below. (Procedure 6.2.6.2.)

32

Procedure 6.2.6.2. Reduce number of vessels

1: Function ReduceNumberOfVessels(solution z)

2: z' = copy of the solution z;

3: Set: V = a set containing all vessels from solution Zz';

4: 60 = M;

5: Counter: k = 0;

6: while k < |R|

7: U < Insert value which is containing overlap in time if all

voyages from vessels V; will be reassigned to another vessels
in schedule Z’;

8: if u< 6 then

9: 9 =1,

10: u=0;

11: end if

12: k=k+1;

13: end while

14: Array R = an array containing all voyages from vessel Vgy;

15: Pool of visits S = @;

16: k=0;

17: while k < |R|

18: Remove voyage R, from vessel Vg;

19: Insert voyage R, into the vessel V;

20 Move each voyage during a day in vessel V, for reducing overlap
in time;

21: Array: P an array containing all voyages from vessel V;;

22: Counter m = 9;

23: while m < |P|

24: if voyage P, is overlapped in time then

25: Visit: v = worst visit in voyage P,;

26: Remove visit v from voyage P, ;

27: Insert visit v in Pool of visits S;

28: else

29: m=m+ 1;

30: end if

31: end while

32: k = k + 1;

33: end while;

34: remove vessel Vy from the solution Zz’;

35: Call regret-2 insertion for Pool of visits S and solution Z

(Procedure 6.2.4.2)
36: if S=0 then
37: z = 7;
38: end if
39: return z

33

6.2.6.3 Swap visits between voyages

Swap procedure is based on the one presented by Braysy and Gendreau (2005). The
main idea of the procedure is in the swap of customers between two any routes. Which
customers should be selected for swapping is decided either heuristically (randomly) or by
enumerating all possible combination and the selecting the most cost efficient. Figure 3

i-1 i+l i-1 i+1

J-1 b+l

Figure 3 “Swap ” improvement procedure (Braysy and Gendreau 2005)

presents the example of swap procedures by (Braysy and Gendreau 2005) which is executed
under 6 edges. It consist of two figures, the left one demonstrates two routes before the
application of the procedure, the right figure shows how routes were modified after “Swap”.
The edges (i — 1,i), (i,i + 1), G —1,j)and (j,j + 1) are replaced (i — 1,j), (j,i + 1), (j —
1,i)and (i,j + 1), i.e., two visits from different voyages are simultaneously inserted into the
other voyages. Proposed in this master thesis procedure (Procedure 6.2.6.3) tries to swap

two visits between voyages while cost decreasing is possible it possible.

6.2.6.4 Relocate visits between voyages

This procedure tries to reduce cost by insertion each visit from each voyage into
another voyage. For example, in Figure 4 the right side shows the picture after execution of
the procedure, the edges (i — 1,i), (i,i + 1) and (j,j + 1) arereplaced by (i — 1,i + 1), (j, i)
and (i,j + 1), i.e., visit i from the origin voyage is inserted into the destination voyage.
Procedure repeats while the total schedule cost decreases. Pseudocode of this porcedure is
described in Procedure (6.2.6.4).

i-1 i+1 i-1 i+l
/ —iff} =
i [%_/
: = —=§ :
J A J Jtl

Figure 4 Relocate insertion procedure (Braysy and Gendreau 2005)

34

Procedure 6.2.6.3. Swap visits between voyages

1: Function SwapVisits (z € {solution})

N

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38

39:

40

41:
42:
43:
44

e =0;
Array : R = an array containing all voyages from z;
do

A=0;
e =0;
i=0;

while i < |R| do
Array : V = an array containing all visits from voyage

j=20;
while j < |V| do
k=1i+1;
while k < |R| do
[l = 0;
Array : Y = all visits from voyage Ry;
while [< |Y| do
if V; #Y; then
evaluation e « get evaluation
by calling procedure 6.2.7.3
for R, Vi, Ry, Yy 5
If e+ @ and c(z) —c(e) > Athen
A= c(z) —c(e);
e=e;
end if
end if
l=14+1;
end while
k=k+1;
end while
J=it1;
end while
i=i+1;
end while

if ¢ # 0 then
rl « route r1 in evaluationc¢;
r2 « route r2 in evaluation ¢;
vl «<visit vl from route r1 in evaluationce¢;
v2 «visit v2, from route r2 in evaluation ¢;
remove visit vl from route ril;
remove visit v2 from route r2;
insert visit vl in route r2;
insert visit v2 in route r2;
Call procedure 6.2.7.1. for route r1;
Call procedure 6.2.7.1. for route r2;

end if

while ¢ # 0

45: return z;

35

Procedure 6.2.6.4. Relocate visits between voyages

1:
2:

3
4
5:
6:
7-
8
9

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

37

10:
11:
12:
13:
14:
15:

Function RelocateVisits(z € {solution})
Evaluation: & = @;
Array : R = an array containing all voyages from z;
do
Cost decrease value A= 0;
e =0;
Counter: i =0;
while i < |R| do

Counter: j = 0;
while j < |V| do
Counter: k = 0;
while k < |R| do
if k #i then
Evaluation: e= Get evaluation
insertion visit V; from route R;
route R, (Procedure 6.2.7.2.);

if e+ 0 and c(z) —c(e) > Athen
A= c(z) —c(e);
E=e;
end if
end if
k=k+1;
end while
j=j+1;
end while
i=i+1;
end while

if ¢ # @ then
sr « source route in evaluation ¢;
tr « target route in evaluation ¢;
Y « visit in evaluation & from route sr;
remove visit 9 from route sr;
insert visit 9 in route tr;
Call procedure 6.2.7.1. for route sr;

Call procedure 6.2.7.1. for route tr;
end if
while ¢ # 0
: return z;

Array: V = an array containing all visits from voyage R;;

for
into

6.2.7 Route optimization operator and evaluations.

In this section are detailed described route optimization procedure and “Insert visit

Evaluation” and “Swap Visits Evaluation”.

36

6.2.7.1 Intra-voyage optimization procedure

The general idea of intra-voyage optimization procedure (Procedure 6.2.7.1) is
determination an optimal sequence of installations in voyage r by solving TSPTW. This
algorithm is frequently called from other procedures. In this regard, we made this procedure
more simply with the aim to decrease computational time. The algorithm uses first-accept
strategy while constructs an optimal visits sequence, i.e. procedure places each visit in first
possible position in sequence if voyage duration is reduced.

Procedure(6.2.7.1) Intra-voyage optimization.
1:Function VoyageOptimization(voyage r)

2:do

3: flag: improve = false;

4: V « set of visits in voyager;

5: Counter: i = 0;

6: do

7: flag: stepimprove = false;

8: d < voyage duration;

9: set v=1V;;

10: Counter: j = 0;

11: do

12: visit v removed from position i;
13: visit v is placed on position j;
14: nd « voyage duration;

15: if nd <d then

16: stepimprove = true;

17: if j > i then

18: i =1i-1;

19: end if

20: else

21: visit v removed from position j;
22: visit v is placed on position i;
23: end if

24: j=j+1

25: while j < |V| and stepimprove == false ;
26: if stepimprove == true then

27: improve = true;

28: end if

29: i=i+ 1

30: while i < |V];

31: while improve == true;

32: return r;

37

6.2.7.2 Insert evaluation procedure.

This procedure (procedure 6.2.7.2.) is called from procedures 6.2.4.1 and 6.2.4.2.
The aim of this procedure is compute the evaluation of insertion visit 9 into the voyage tp.
If it possible under several restrictions (which are described in pseudocode) a procedure
inserts visit into the voyage, computes schedule cost, and removes visit from the voyage. In
the end procedure returns evaluation ¢ of insertion, which is empty if insertion is impossible.

Pseudocode of the procedure is provided below (Procedure 6.2.7.2).

Procedure(6.2.7.2) Inert visit evaluation

1: Function GetlInsertEvaluation(solution z, voyage tp, visitd, voyage sp
(optionally))

2: Evaluation: & =0;

3: Bool : w =true if insert visit is possible under vessels capacity
constraint, false otherwise;

4. Bool : y =true if insert visit is possible under maximum number of
visits per voyage constraint, false otherwise;

5: Bool : @ =true if visit 9 1is not already on voyage tp, false

otherwise;

6: Bool :A =true if insert visit is possible under spread of departures
constraint, false otherwise;

7: if w==true and y ==true and 6 ==true and A == true then

8: if sp!= @ then

9: Remove visit ¥ from voyage sp;

10: Call procedure 6.2.7.1. for voyage sp;

11: end if

12: Insert visit J in voyage tp;

13: Call procedure 6.2.7.1. for voyage tp;

14 Bool : o =true if voyage tp is possible under maximum route

duration constraint, false otherwise;
15: Bool :u =true if voyagetp is not overlapped in schedule during
the planning horizon, false otherwise;

16: if u==true and o == true then

17: & «voyages tp and sp ,visit 9 , and c(2);

18: end if

19: Remove visit J from voyage tp;

20: Insert visit 9 in voyage sp;

21: Call procedure 6.2.7.1. for voyage tp;

22: Call procedure 6.2.7.1. for voyage sp;

23: end if

24: return g

6.2.7.3 Swap evaluation procedure.

This procedure (procedure 6.2.7.2.) is called from procedure 6.2.6.3. The aim of this
procedure is compute the evaluation of insertion visit 91 into the voyage r2 and 92 into the
voyage r1. If it possible under several restrictions (which are described in pseudocode) a

procedure Swaps visits between voyages, computes schedule cost, and returnt visit back into

38

original voyages. In the end procedure returns evaluation & of swap visits, which is empty if

swap is impossible. Pseudocode of the procedure is provided below (Procedure 6.2.7.3).

Procedure(6.2.7.3) Swap visits evaluation

1: Function GetSwapEvaluation(solution z, voyagel rl,visitl vl, voyage2
r2, visit2 v2)

2: e=0;

3: Bool : w =true if swap visits is possible under vessels capacity
constraint, false otherwise;

4: Bool : y =true if swap visits is possible under maximum number of
visits per voyage constraint, false otherwise;

5: Bool : 6 =true if visit vl is not already on voyager2 and visit v2
is not on voyagerl, false otherwise;

6: Bool :A =true if swap visits is possible under spread of departures
constraint, false otherwise;

7 if w ==true and y ==true and 0 == true and A == true then

8: Remove visit vl from voyagerl;

9: Remove visit v2 from voyage r2;

10: Insert visit v2 in voyagerl;

11: Insert visit vl in voyager2;

12: Call procedure 6.2.7.1. for voyage (rl);

13: Call procedure 6.2.7.1. for voyage (r2);

14: Bool : o =true if voyagesrl and r2 are possible under maximum

route duration constraint, false otherwise;
15: Bool :u=true if voyages rl and r2 1is not overlapped in
schedule during the planning horizon, false otherwise;

16: if yu==true and o == true then

17: € «voyages rl and r2, visitl vl and v2, and c(2);

18: end if

19: Remove visit v2 from voyagerl;

20: Remove visit vl from voyage r2;

21: Insert visit vl in voyagerl;

22: Insert visit v2 in voyage r2;

23: Call procedure 6.2.7.1. for voyage (rl);

24: Call procedure 6.2.7.1. for voyage (r2);

25: end if

26 return ¢;

6.2.8 Acceptance criteria

Since we need to diversify the search and strive to avoid local optimum, we need
some mechanism enabling us to do so. The simplest way is to accept at the end of each
iteration only those solutions, which are better than the current solution. This (as we
convinced) leads to trapping into some local optimum neighbourhood. Therefore, we take
the idea of solution acceptance from simulated annealing. Let s be the solution obtained at
the end of an iteration and s is the current solution. We assume to accept the solution s with

probability:

39

()1 (s)
e T

(18)
Where T is the temperature and always positive (T>0). The temperature starts from Tstart
and decreases with each iteration according to the formulaT = T *c,where0<c<1is
the cooling rate of the temperature. In our case, we set Tstart €qual to the cost of the initial
solution. The values of ¢ is made depended on the total number of iterations () the
algorithm is to be run:

1

L1
n*7

c=1- (19)

the term % is defined empirically so that the probability of accepting the solution s, when

c(s) > c(s), is almost 0 by the last iteration.

40

7.0 Computational Experiments

In this section, we describe our computational experiments. In section 7.1 we start
with finding of some tuning instances and proceed with the description of parameters tuning.
In section 7.2 we present the results obtained by the algorithm. We compare heuristic
performance to the two-phase exact approach and provide heuristic results for large

instances.

7.1 Tuning instances

The set of tuning instances is represented by instances of medium size. The total
number of installations supply from the base located in Mongstad. So we randomly deleted
some number of installations and created 10 different instances. There are 3 instances with
8 installations, 3 instances with 10 installations, 3 instances with 12 installations and 1
instance with 13 installations. Those instances of the same size have different combinations

of installation. The number of visits in this instances are varies from 27 to 48.

7.1.1 Parameters tuning

In this section we present user defined parameters which are subject to tuning and
results.

All our parameters are subdivided in to three categories: parameters of destroy
operators, parameters of repair operators and those used in acceptance criteria. We first
review parameters of destroy operators. First we have do define which portion of the solution
we have to destroy when making a move. As it was mentioned above, we remove random
number of visits, which is limited by some minimum and maximum values (LV and MV).
So, we have to define these minimum and maximum values experimentally. As regards
destroy operators, only Shaw removal heuristic contains controlled parameters: a and 3.
Since we have already defined which regret heuristics to apply (regret-2, regret-3), there is
no need in parameters tuning for insertion heuristics. As well we do not conduct experiments
with the size of the segment for which weights and probabilities of repair and destroy
operators are updated.

As regards the acceptance criteria we use parameter ¢ defining cooling rate and we
use 4 parameters for weight adjustment of destroy and repair operators: a;, g5, g5 and r see

section 6.2.5

7.1.2 ALNS parameters tuning results
We developed some experimental values for each parameter (see Table 2). Fine-

tuning of parameters is conducted on the second phase by allowing one of parameters to take

41

predefine values, while keeping the rest of parameters fixed. Since we know the number of
values each parameter can take, we can calculate the total number of combinations with
different parameters values. This is done by multiplication of all the numbers of values of
all parameters. In total we have 864 different combinations. We have 10 tuning instances
for parameters tuning experiments. Each instance is supposed to be run 5 times for each
combination of parameters values. In total we have to run the algorithm 4 320 times. For
each combination of parameters values we define the average deviation from the best found
solution for each instance and then the average for all instances (within a combination).Each
instance is run for 2000 iterations that takes in average 7 minutes. The total time taken to
conduct the whole experiment for all instances and parameters setting is 84 hours. The best

setting of parameters is provided in Table 3. The procedure of parameters tuning was

automated.
Parameters Possible values
r 0.2 0.4 0.6
ol 20 25
o2 15 20
o3 10 15
a 025 | 05 | 0.75
B 025 | 05 | 0.25
Visits (%) | 10-15 | 12-17 | 15-20 | 17-20

Table 2 - Experimental value for each parameter

N a B ol o2 o3 r LV MV | Gap(%)
468 0.5 0.5 25 20 10 0.6 17 20 0.02
Table 3 - Best founded parameters setting

The results of all experiments of all parameters settings a provided in Appendix A

7.2 Results
This section provides results of the computational experiments, which were
conducted, with the aim of testing the performance of the heuristic. For this purpose, we

developed a set of test instances.

7.2.1 Testinstances

All the test instances were generated based on the instance provided by the Statoil
ASA, which contains 26 installations (the main instance). All these instances are divided in
to two groups. The first group involves instances of the small and medium size (3 — 13

installations per instance). The second group involves instances with 14-26 installations per

42

instance. All these instances were generated by gradually deleting installations from the
main instance (one by one). In total, we have 10 small and medium size instances and 13
large size instances.

Location of all installations supplied from the supply base located in Mongstad is

provided in the Error! Reference source not found. below.

7.2.2 Inputdata

9
N

@ & @ Sorbovig
Sula
a
8 ke

danger
el
@ Askoy,

Figure 5 Location of offshore installations and Mongstad supply base.

In this section, we describe the input data to the algorithm on the example of the
main instance (instance with 26 installations).

There are three input files used for the input data. The first file contains names of
installations and supply base, open and closing times, demands, visits frequencies, service
times (lay times) and as well coordinates of installations (LatDec and LonDec). In addition
this file contains the values of minimum and maximum installations per voyage, coordinate
of offshore point. There are three possible departures from the supply base within a day.
Example of the input file is provided on the Figure 6.

The second file contains information about the supply vessels fleet. For the list of
supply vessels there is indicated its capacity, speed, fuel cost (NOK/ton), fuel consumption
rates for sailing (ton/h), servicing and waiting at an installation (ton/h), at the supply base

(ton/h). Example of this input file see on the Figure 7.

43

And the last input file contains feasible patterns of departures spread combinations

for each visit frequency. See on the Figure 8.

MinInst 1

MaxInst 7

offshorepoint 60. B4416667 4,574444444

Node oOpen Close Demand Frequency LayTime LatDec LonDec

FMO 0 24 0 0 .00 60. 79446667 5. 06300000
TRO 7 19 10 3 3.0 60. 64000000 3. 72000000
TRE 7 149 10 2 3.0 60. 77000000 3. 50000000
TRC 7 19 10 2 3.0 60. 88000000 3. 60000000
CoI o 24 10 5 4.0 60. 84000000 3. 58000000
CPR 0 24 10 5 4.0 60. 73000000 3. 66000000
500 0 24 10 5 4.0 60. 85000000 3. 62000000
WVE 0 24 10 5 4.0 60. 78000000 3. 44000000
GFA 0 24 10 4 3.5 61.17000000 2.18000000
GFB 7 149 10 4 2.5 61. 20000000 2. 20000000
GFC 0 24 10 4 3.5 61. 20000000 2. 27000000
5TA o 24 10 3 3.5 61. 25000000 1. 85000000
STB 0 24 10 3 3.5 61. 20000000 1. 82000000
5TC 0 24 10 3 3.5 61. 29000000 1. 90000000
DSA 0 24 10 3 3.0 61. 09650000 2.18911000
Figure 6 Input data example for offshore installations

vesse| Capacity Speed FCCosSts FCSailing FCBase FCInstallation wvesselCost
Remstadt 1000 10 0.5 0.1 0.4 1400000
TENSpOT 1000 10 6000 0.5 0.1 0.4 1400000
Farstar 1000 10 6000 0.5 0.1 0.4 1400000
vikingEnergy 1000 10 6000 0.5 0.1 0.4 1400000
EourbonTampen 1000 10 6000 0.5 0.1 0.4 1400000
Far symphony 1000 10 6000 0.5 0.1 0.4 1400000
skandiFlora 1000 10 6000 0.5 0.1 0.4 1400000
HavilaForesight 1000 10 6000 0.5 0.1 0.4 1400000
Dummyvessel 1000 10 6000 0.5 0.1 0.4 1400000
Farseeker 1000 10 6000 0.5 0.1 0.4 1400000
Farsearcher 1000 10 6000 0.5 0.1 0.4 1400000
Figure 7 Input data example for supply vessels.

1:1234560

2:14 15 25 26 36 30

3:125 135 136 145 140 236 246 240 256 250

4: 0134 0135 0145 0235 0236 0245 0246 0346 1245 1246 1346 1356 2356
5:1 2346 134586 13450 12356 12350 12456 12450

6: 123456 234560 134560 124560 123560 123460 123450

Figure 8 Input data example for visit day’s combinations

7.2.3 Comparative analysis and results

In this section we provide the results of the conducted experiments and comments to
them. All the tests were conducted with the use of the computer with following
characteristics: 3.5. GHz Intel core i5 and 8 GB RAM. Mathematical model of the two phase
approach was developed in AMPL (A Mathematical Programming Language) and run using

solver CPLEX 12.6.0.0. Both route generation algorithm (for the two-phase approach) and

44

ALNS metaheuristic algorithm were programmed using C# programming language and .net
4.5 framework.
First we cover experiments for the small and medium size instances. In the Error!

Reference source not found. provided results of the two phase approach and ALNS

Instance Gap (%) CPU (sec) Number of Vessels
Two phase Two phase ALNS Two phase ALNS
method vs method method

ALNS
3-0-9 0 1 1 1 1
4-0-12 0 1 2 1 1
5-0-15 0 1 3 1 1
6-0-19 0 2 8 2 2
7-1-23 0 3 15 2 2
8-1-27 0 8 25 2 2
9-1-32 0 10 27 2 2

10-1-37 0.23 176 76 2 2

11-1-42 0.00 252 117 3 3

12-4-45 0.00 178 58 3 3

13-4-48 0.00 57 63 3 3

Average 0.03 50.44 30.44 1.78 1.78

Table 4 — Comparative analisis between two-phase approach and ALNS heuristic

heuristic.

The first column contains the names of all instances. Each name is compounded of
several numbers. The first number defines the instance size interns of the number of
installations. The second number define the number of installations with time windows, and
the third number defines instance size interns of the total number of visits. The second
column shows the gap in % between two phase method and ALNS heuristics objectives
functions i.e. costs. As we see heuristic is able to provide optimal and near optimal solutions
for small and medium size problems. There is no gap for instances with 3-9 and 11-13
installations, the heuristic manged to find optimal solutions. There is a minor gap for
instance with 10 installations. The gap for this instance can be explained by a very narrow
scope (neighbourhood) of solutions with two vessels. Such instances are so called “heavy
instances”. The schedule for this instance is relatively tight and adding on more installation
into schedule or increasing visit frequency of some existing installation in the schedule may
lead to the fleet size increase. As we see from the results, the instance with 11 installations

(and the rest larger instances) requires 3 vessels. Columns there and four (CPU sec) reflect

45

the running time in seconds of the two-phase approach and ALNS heuristic. Two- phase
approach performs faster (and this is obvious) on small size instances (3-9). Nevertheless,
the situation changes for the medium size instances. As we see, the running time of the
ALNS heuristic for medium size instances (10-13) is shorter compared to two-phase
approach (in average twice). The last two columns provide the number of vessels used in the
schedule provided by the two approaches. The number of vessels is equal for the same
instance size. We may conclude that developed algorithm is able to provide optimal or near
optimal solution for small and medium size instance within just a minute.

Now we discuss results of the experiments for large size instances. Unfortunately
optimal solutions for large instances are unavailable since the problem complexity and as
follows computational time grows exponentially with the problem size. Therefore, for the
instances with 14-26 installations we conduct experiments for different number of iterations.
The aim of such experiment is to define how the number of iterations influences the cost of
the solution. And as well we find out the preferable number of iterations required to obtain
the solution of a relatively good quality within a short time. For this we have to conduct
trade-off analysis between objective values of solutions and running time of the algorithm.

We conducted experiments for 13 instances (14 -26 installations). For each instance
the algorithm was run for different number of iterations, from 100 to 1000 with 100 interval.
As well, we aimed to assess the stability of the results and for this purpose we run the
algorithm 10 times for each instance and number of iterations setup. The results of the
experiments are summarized in the Appendix B. For each instance and for each setup of the
number of iterations we defined the average cost, the average running time (for 10 runs) and
the gap between the average cost and the cost of the best found solution for all setups of the
number of iterations. In the table below (Table 5) we provide the excerpt from the Appendix
B where for each instance showed only the cost of the best found solution, the number of
vessels in the best found solution and the gap from this solution for each setup of the number
of iterations. The table is performed in the form of the heat map. Small gaps are marked
green and the colour gradually changes to bright red as the gap increases. As we see, the
algorithm performs rather efficiently. In most cases (except instances with 17, 18 and 23
installations) the algorithm managed to find solutions which in average deviate from the best
found less than 1%. Results with the gap less than 1% mean that for all 10 runs (for certain
instance and number of iterations) the algorithm managed to find solutions with the same
number of vessels as in the best found solution. A gap of 2.6-2.8 % means that in 1 of 10

runs the algorithm did not manage to drop the number of vessels to the minimum (under

46

minimum we mean the number of vessels in the best found solution) and the number of
vessels is by one vessel more than in the best found schedule. There were no solutions where
the number of vessels is more by 2 than in the best found. Each gap increase by 2.6-2.8 %
means reduction of the number of successful solutions (with minimal number of vessels) by
one. Results with 26% gap mean that out of 10 runs there were not found any solutions with

minimal number of vessels. As we see, the average gap reduces with increase of the number

Iterations| 100 200 300 400 500 600 700 800 900 1000 Optimal number
Instance | Gap (%) | Gap (%) | Gap (%) | Gap (%) | Gap (%) | Gap (%) | Gap (%) | Gap (%) | Gap (%) | Gap (%) | Optimal Costs of vessels
14-4-51 5106776,97 3
15-4-54 5155404,36 3
16-4-58 5218878,34 3
17-5-61 5245374,24 3
18-5-64 5292785,34 3
19-6-66 6723965,22 4
20-6-72 6830353,28 4
21-6-77 6895713,99 4
22-6-81 b), 4,56 2,41 0,48 6954724,85 4
23-7-84 , 8,52 8,52 6,50 6,51 6,50 2,41 2,48 6996699,15 4
24-7-87 8560334,23 5
25-8-88 8581096,14 5
26-8-91 8630445,26 5
Average 6,213276|5,092913|3,926709 2,922644 | 3,388671 | 2,544064 | 2,342772 | 2,627937 | 2,18184 | 2,031012

Table 5 - A heat map of the gap from best-found solution with respect to the instance size and number
of iterations

of iterations and the minimum gap is mostly achieved for 1000 iterations.

Special interest represent results for the instances with 17, 18 and 23 installations.
The worst results are for the instance with 18 installations where the gap varies from 18 to
26 % that means that 7-10 runs out of 10 are unsuccessful. Those schedules where the
algorithm managed to find solutions with minimal number of vessels turned out to be very
tight (see example Figure 9) and very difficult for the algorithm to find. We refer the instances
for which it is quite difficult to find a schedule with minimal number of vessels — «heavy
instances». In most cases, a vessel should start loading/unloading operations just 10-15
minutes after it arrives to the base. The neighbourhood area of solutions with minimal
number of vessels, for such instances, is very small and of course requires additional efforts
for the algorithm to find a good solution. The gap reduction is achieved by increasing the
number of iterations (as we see from the table). For instances with 17 and 23 installations,
the gap reduced almost up to minimal when the number of iterations was set to 1000.
Although for the instance with 18 installations such gap reduction is quite unclear (5%) that
means we deal with a very tight schedule. One more interesting aspect, related to heavy
instances, is that the solution for the next instance following the heavy instance (in terms of
the number of installations) requires one vessel more. This fact further supports ours

47

assumptions concerning so-called “heavy instances”. For heavy instance, increase of the
number of installations at least by one (sometimes by two) or increase of the visit frequency
leads to the increase of the fleet size. This is supported by experiments. For instances with
19 and 24 installation (which follow heavy instances with 18 and installations), the required
fleet size 4 and 5 vessels respectively (that is one vessel more than for the instances with 18

and 23 installations).

NOK 5305405
Monday Tuesday Wednesday Thursday Friday Saturday Sunday ‘
S 1 24 3 40 4 5] 64] FIERE 96 104 117 120 12§ 136 144 157 16(] 168
0-§ 816 16-24 0-8 8-16/16-24 0-§ §-16 1624 0§ 814 1624 0-§ 816 1624 0§ 814 1624 0§ 816 164
— musthMowmwwm\murmw [o | e | Moo [pof e el fec [MO fo \Fm e form] forc]
RemStd [GFA ‘ ‘ IFMO F{\‘BHD§A| ‘son Txm‘ |m'E ‘)CPR| | EMQ‘ k1 |m kT8 ‘ |D§A| |soD H!m. | IFMO F |GFB‘ ke ‘ ‘m‘ |§T
e | T PMo_ i e (e[e < || MO [o ol o] ol el o] Mo | | o [Fffolp e
ke 1 len R S S T I T EPER—|

Flgure 9 Example of tlght schedule

As well we need to assess the running time of the algorithm. For this purpose, we
analyse the larges instance (26 installations) and assess how changes the cost and
computational time with increase of the number of iterations. On the Figure 10 Trade-off
analyse for the instance with 26 installationsFigure 9 we see the results of the experiments
conducted for different number of iterations. The x-axis corresponds to the number of
iterations. The left y-axis correspond to the cost of the solution and the right y-axis
corresponds to the running time of the algorithm. As we see, the highest cost (8837328)
corresponds to the minimal number of iterations (30) and minimal computation time (32
sec). The lowest cost (8656772) is achieved for the maximal number of iterations (1000).
However, such low cost is achieved at the expense of the computational time, which is 1048
sec. Both for minimal and maximal number of iteration the algorithm managed to find
solution with minimal number of vessels. Therefore, selection of the number of iterations
will affect only operational costs (sailing and servicing). We may observe a serious cost
reduction from 30 to 40 iterations (by 129364 NOK). The difference between the cost of the
solutions for 100 and 1000 is 36599. The dependence between the time and cost is linear
and we state that at least 100 iterations (just 130sec) is preferably required to get a relatively
good solution. Therefore, we assume that it is up to a researcher how many iteration to set.
Taking into account the provided above analysis of the large size instances and presence of
so-called “heavy instances”, requires running more iterations to insure sufficient fleet size
reduction (since we do not know in advance which instance is “heavy”). From our point of

view, taking into account quite high speed of the algorithm which is able to run 1000

48

iterations within 1000 sec (17 min), we recommend to run the algorithm for at least 1000

iterations to ensure good quality of a solution in case of heavy instance.

Cost-time
8900000 1200
1048,74
8850000 8837328 o, 100 g
r (1]
x 8800000 -~ . E
= 735,6 £
- 8750000 ' =
|5 542,01 cw &
£ 8700000 8694943 451.9@720,56 9
[867212187 . &
° 8693371 8690048 160 1710 8653054 400 3
" ae0000 8674147878668599 " 8660129 8655750 8656772 C
7156 344,01 -
8600000 (13
39 9 4484753 5076537 ;
8550000 , 81,018 0

30 40 50 60 80 100 200 300 400 500 600 70O 800 900 1000
Number of iterations

e COst Time

Figure 10 Trade-off analyse for the instance with 26 installations

In addition, Shyshou et al. (2012) kindly provided large size test instances (26-31
installations) which were used in their paper. We run ours algorithm for these instances and
compared results. The results are summarized in the table 6. As we see, our algorithm
provided better solutions for theses instance with the average gap 4.07 %. For instances with
27 and 28 installations the ALNS managed to find the solutions with fewer number of vessels
(6 vessels compared to Shyshou et al. (2012) solutions which contain 7 vessels). The gaps
in the objective function for these solutions are 11.38% and 10.07 % respectively. And as
we see ours heuristic performs extremely faster compared to Shyshou et al. (2012). The
average running time for these large instances is 427 seconds, while Shyshou et al. (2012)

heuristic requires in average 13 795 sec, that is in average 32.3 times slower.

Instance Costs Gap (%) CPU (sec) Number of Vessels

LNS by LNSbyvs LNS by LNS by

Shyshou ALNS ALNS Shyshou ALNS Shyshou ALNS
26-94-5 5603570 5553327 0.9 12712 95 6 6
27-98-5 6458500 5723607 11.38 10 403 263 7 6
28-102-5 6553680 5953712 10.07 22 584 1019 7 6
29-108-5 6617220 6605 827 0.17 10 366 408 7 7
30-114-5 6715540 6631356 1.39 12 148 456 7 7
31-115-6 6735720 6626 829 1.62 14 557 307 7 7
Average 6447371 6183524 4.07 13 795 427 6.83 6.5

Table 6-Comparison results of the Shushou LNS heuristic and represented ALNS heuristic for large
Size instances.

49

We may conclude that ours algorithm is able to find solutions of a better quality 30

times faster than that one developed by Shyshou et al. (2012).

50

8.0 Conclusions and further research

In the upstream offshore petroleum logistics, platform supply vessels (PSVs) are the
main cost contributor. PSVs are used to deliver all the necessary material and equipment to
offshore installations. Steady and uninterrupted supply is crucial for oil operators since the
down time of an installation, in case some delay or disrupt, is enormous. The fleet of supply
vessel sis associated with vessels charter and fuel costs. Therefore, there is trade-off between
the service level and the cost of supply. To ensure high service level, sufficient number of
vessels and theirs careful planning is required.

In this thesis, we to try to solve the problem of supply of the oil filed located in the
North Sea and belonging to Statoil ASA, the largest oil operator in Norway. The oil field is
supplied from the onshore supply based located in Mongstad and accounts for 26
installations. In the literature the problem is known as Periodic supply Vessel Planning
Problem (PSVPP). The objective of PSVPP is to construct a weekly vessels schedule so that
vessels charter cost and fuel cost is minimized. The problem is of a tactical level with
planning horizon of one week. The problem involves three combinatorial optimization
problem: packing (fleet size reduction), sequencing (routing) and scheduling (departures of
vessels on voyages). Therefore, problems of large size is impossible to solve optimally
within a reasonable time.

The objective of this thesis is to develop a decision support tool able to provide
solutions of a good quality within a relatively short time. We studied existing literature
dedicated to PSVPP and as well, some heuristic approaches to combinatorial problems. We
selected Large Neighbourhood Heuristic (LNS) as a framework for ours algorithms and
considered several known approaches to enhance its efficiency. As a starting point, we
selected the LNS developed by Shyshou et al. (2012) for the PSVPP. We revised the
heuristic, added several new procedures, improved existing and incorporated simulated
annealing and adaptiveness framework. The resulted algorithm is referred to as Adaptive
Large Neighbourhood Search (ALNS) heuristic.

Since we need to validate the resulted algorithm and check its performance, we
developed two-phase exact approach based on set partitioning formulation of the PSVPP.
The two-phase approach The ALNS was tested by comparing solutions obtained for small
and medium size instances to those obtained by using the two-phase exact approach. The
ALNS proved to be quite efficient both in terms of costs and computational times compared
to exact approach. For most instances the heuristic managed to find optimal or near optimal

solutions within rather short time and thus outperforming the exact approach. Since it is

51

hardly possible to compare Heuristic and exact approach for large size instances, we
compared ours ALNS to the LNS developed by (Shyshou et al. 2012)The results of the
experiments state that ours algorithm is able to find better solutions 30 times faster than the
LNS by Shyshou et al. Furthermore, for several instances ours algorithm manged to find
solution with fewer number of vessels.

As well, we outline several directions for the future research. First, there is need to
improve the efficiency of the heuristic to provide good solution for heavy instances i.e.
instances for which resulted schedules are very tight. As experiment showed, the algorithm
does not always mange to reduce the fleet size to the minimum for some instances (large
size). Especial feature of such instances is that increase of the instance just by one
installation (adding of a new one) or increase of the visit frequency of some existing
inevitably lead to the fleet size increase. The resulting schedule with minimal number of
vessels for such instances is very tight and as follows is very difficult to find. Therefore,
some work should be conducted to improve the algorithm to search for good solution for
such types of instances. (see (Ahuja et al. 2002))

As well, there is a need to incorporate some instrument allowing for generation of a
robust solution to cope with weather uncertainty. Too tight schedules are inapplicable in
practice and therefore some approach is needed to cope with uncertainty (see (Maisiuk and
Gribkovskaia 2014); (Vlachos 2004))

Furthermore, in practice there are often cooperation between supply bases i.e. when
a vessel starts a voyage at one bases and finishes at another. As well, there is a problem of
distribution of installations between bases i.e. from which supply base it more efficient to
serve some installations (especially those equally in between bases). For this reason, the
algorithm should involve the possibility to construct schedules for several bases
simultaneously. The problem then becomes multi base (see (Crevier, Cordeau, and Laporte
2007); (Cordeau, Gendreau, and Laporte 1997))

52

References

Ahuja, Ravindra K, Ozlem Ergun, James B Orlin, and Abraham P Punnen. 2002. "A
survey of very large-scale neighborhood search techniques.” Discrete Applied
Mathematics 123 (1):75-102.

Braysy, Olli, and Michel Gendreau. 2005. "Vehicle routing problem with time windows,
Part I: Route construction and local search algorithms.” Transportation science 39
(1):104-118.

Cordeau, Jean-Frangois, Michel Gendreau, and Gilbert Laporte. 1997. "A tabu search
heuristic for periodic and multi-depot vehicle routing problems.” Networks 30
(2):105-119.

Crevier, Benoit, Jean-Francois Cordeau, and Gilbert Laporte. 2007. "The multi-depot
vehicle routing problem with inter-depot routes.” European Journal of
Operational Research 176 (2):756-773.

Fagerholt, K., and H. Lindstad. 2000. "Optimal policies for maintaining a supply service in
the Norwegian Sea." Omega-International Journal of Management Science 28
(3):269-275. doi: Doi 10.1016/S0305-0483(99)00054-7.

Gribkovskaia, 1., G. Laporte, and A. Shlopak. 2008. "A tabu search heuristic for a routing
problem arising in servicing of offshore oil and gas platforms.” Journal of the
Operational Research Society 59 (11):1449-1459. doi:
10.1057/palgrave.jors.2602469.

Halvorsen-Weare, Elin E, and Kjetil Fagerholt. 2011. "Robust supply vessel planning.” In
Network optimization, 559-573. Springer.

Halvorsen-Weare, Elin E, Kjetil Fagerholt, Lars Magne Nonas, and Bjgrn Egil
Asbjarnslett. 2012. "Optimal fleet composition and periodic routing of offshore
supply vessels." European Journal of Operational Research 223 (2):508-517.

Korsvik, J. E., and K. Fagerholt. 2010. "A tabu search heuristic for ship routing and
scheduling with flexible cargo quantities.” Journal of Heuristics 16 (2):117-137.

Maisiuk, Yauhen, and Irina Gribkovskaia. 2014. "Fleet Sizing for Offshore Supply Vessels
with Stochastic Sailing and Service Times." Procedia Computer Science 31:939-
948.

Norlund, E. K., and I. Gribkovskaia. 2013. "Reducing emissions through speed
optimization in supply vessel operations (vol 23, pg 105, 2013)." Transportation
Research Part D-Transport and Environment 24:135-135. doi:
10.1016/j.trd.2013.09.001.

Pisinger, David, and Stefan Ropke. 2010. "Large neighborhood search.” In Handbook of
metaheuristics, 399-419. Springer.

53

Ropke, S., and D. Pisinger. 2006. "An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows.” Transportation Science 40
(4):455-472. doi: 10.1287/trsc.1050.0135.

Shaw, P. 1998. "Using constraint programming and local search methods to solve vehicle
routing problems." Principles and Practice of Constraint Programming - Cp98
1520:417-431.

Shaw, Paul. 1997. "A new local search algorithm providing high quality solutions to
vehicle routing problems.” APES Group, Dept of Computer Science, University of
Strathclyde, Glasgow, Scotland, UK.

Shyshou, A., I. Gribkovskaia, G. Laporte, and K. Fagerholt. 2012. "A Large
Neighbourhood Search Heuristic for a Periodic Supply Vessel Planning Problem
Arising in Offshore Oil and Gas Operations.” Infor 50 (4):195-204. doi:
10.3138/infor.50.4.195.

Statoil, ASA. 2016. Statoil Annual Report on Form 20-F

Vlachos, DS. 2004. "Optimal ship routing based on wind and wave forecasts.” Applied
Numerical Analysis & Computational Mathematics 1 (2):547-551.

54

Appendix A.

Results obtained by ALNS heuristic for parameters tuning.

Gap a A al g2 g3 r LY MV I N Gap Q2 A gl g2 g3 L LY MV

334 025 025 20 15 10 02 10 15 433 018 05 05 25 15 10 02 10 15
019 025 025 20 15 10 02 12 17 434 801 05 05 25 15 10 02 12 17
333 025 025 20 15 10 02 15 20 435 015 05 05 25 15 10 02 15 20
013 025 025 20 15 10 02 17 20 436 013 05 05 25 15 10 02 17 20
483 025 025 20 15 10 04 10 15 437 498 05 05 25 15 10 04 10 15
642 025 025 20 15 10 04 12 17 438 171 05 05 25 15 10 04 12 17
018 025 025 20 15 10 04 15 20 439 018 05 05 25 15 10 04 15 20
170 025 025 20 15 10 04 17 20 440 967 05 05 25 15 10 04 17 20
177 025 025 20 15 10 06 10 15 441 970 05 05 25 15 10 06 10 15
10 018 025 025 20 15 10 06 12 17 442 806 05 05 25 15 10 06 12 17
11 177 025 025 20 15 10 06 15 20 443 796 05 05 25 15 10 06 15 20
12 169 025 025 20 15 10 06 17 20 444 488 05 05 25 15 10 06 17 20
13 651 025 025 20 15 15 02 10 15 445 144 05 05 25 15 15 02 10 15
14 495 025 025 20 15 15 02 12 17 446 023 05 05 25 15 15 02 12 17
15 797 025 025 20 15 15 02 15 20 447 181 05 05 25 15 15 02 15 20
16 639 025 025 20 15 15 02 17 20 448 486 05 05 25 15 15 02 17 20
17 493 025 025 20 15 15 04 10 15 449 029 05 05 25 15 15 04 10 15
18 498 025 025 20 15 15 04 12 17 450 334 05 05 25 15 15 04 12 17
19 644 025 025 20 15 15 04 15 20 451 032 05 05 25 15 15 04 15 20
20 651 025 025 20 15 15 04 17 20 452 796 05 05 25 15 15 04 17 20
21 015 025 025 20 15 15 06 10 15 453 022 05 05 25 15 15 06 10 15
22 640 025 025 20 15 15 06 12 17 454 974 05 05 25 15 15 06 12 17
23 33 025 025 20 15 15 06 15 20 455 014 05 05 25 15 15 06 15 20
24 649 025 025 20 15 15 06 17 20 456 6.43 05 05 25 15 15 06 17 20
25 809 025 025 20 20 10 02 10 15 457 962 05 05 25 20 10 0.2 10 15
26 111 025 025 20 20 10 02 12 17 458 491 05 05 25 20 10 02 12 17
27 031 025 025 20 20 10 02 15 20 459 489 05 05 25 20 10 0.2 15 20
28 177 025 025 20 20 10 02 17 20 460 019 05 05 25 20 10 02 17 20
29 812 025 025 20 20 10 04 10 15 461 480 05 05 25 20 10 04 10 15
30 1.70 025 025 20 20 10 04 12 17 462 340 05 05 25 20 10 04 12 17
31 641 025 025 20 20 10 04 15 20 463 170 05 05 25 20 10 04 15 20
32 332 025 025 20 20 10 04 17 20 464 649 05 05 25 20 10 04 17 20
33 169 025 025 20 20 10 06 10 15 465 011 05 05 25 20 10 06 10 15
34 803 025 025 20 20 10 06 12 17 466 648 05 05 25 20 10 06 12 17
35 026 025 025 20 20 10 06 15 20 467 022 05 05 25 20 10 06 15 20
36 489 025 025 20 20 10 06 17 20 468 0.02 05 05 25 20 10 06 17 20
37 486 025 025 20 20 15 02 10 15 469 179 05 05 25 20 15 02 10 15
38 969 025 025 20 20 15 02 12 17 470 495 05 05 25 20 15 02 12 17
39 487 025 025 20 20 15 02 15 20 471 643 05 05 25 20 15 02 15 20
40 645 025 025 20 20 15 02 17 20 472 801 05 05 25 20 15 02 17 20
41 646 025 025 20 20 15 04 10 15 473 167 05 05 25 20 15 04 10 15
42 016 025 025 20 20 15 04 12 17 474 335 05 05 25 20 15 04 12 17
43 170 025 025 20 20 15 04 15 20 475 015 05 05 25 20 15 04 15 20
44 174 025 025 20 20 15 04 17 20 476 649 05 05 25 20 15 04 17 20
45 186 025 025 20 20 15 06 10 15 477 331 05 05 25 20 15 06 10 15
46 18 025 025 20 20 15 06 12 17 478 819 05 05 25 20 15 06 12 17
47 166 025 025 20 20 15 06 15 20 479 168 05 05 25 20 15 06 15 20
48 026 025 025 20 20 15 06 17 20 480 178 05 05 25 20 15 06 17 20
49 802 025 025 25 15 10 02 10 15 481 644 05 075 20 15 10 02 10 15
50 957 025 025 25 15 10 02 12 17 482 487 05 075 20 15 10 02 12 17
51 807 025 025 25 15 10 02 15 20 483 178 05 075 20 15 10 0.2 15 20
52 485 025 025 25 15 10 02 17 20 484 009 05 075 20 15 10 02 17 20
53 647 025 025 25 15 10 04 10 15 485 339 05 075 20 15 10 04 10 15
54 174 025 025 25 15 10 04 12 17 486 807 05 075 20 15 10 04 12 17
55 168 025 025 25 15 10 04 15 20 487 641 05 075 20 15 10 04 15 20
56 487 025 025 25 15 10 04 17 20 488 645 05 075 20 15 10 04 17 20
57 33 025 025 25 15 10 06 10 15 489 648 05 075 20 15 10 06 10 15
58 010 025 025 25 15 10 06 12 17 490 167 05 075 20 15 10 06 12 17
59 642 025 025 25 15 10 06 15 20 491 493 05 075 20 15 10 06 15 20
60 639 025 025 25 15 10 06 17 20 492 640 05 075 20 15 10 06 17 20
61 112 025 025 25 15 15 02 10 15 493 112 05 075 20 15 15 02 10 15
62 652 025 025 25 15 15 02 12 17 494 640 05 075 20 15 15 02 12 17
63 333 025 025 25 15 15 02 15 20 495 804 05 075 20 15 15 02 15 20
64 327 025 025 25 15 15 02 17 20 49 802 05 075 20 15 15 02 17 20
65 961 025 025 25 15 15 04 10 15 497 48 05 075 20 15 15 04 10 15
66 649 025 025 25 15 15 04 12 17 498 014 05 075 20 15 15 04 12 17
67 007 025 025 25 15 15 04 15 20 499 489 05 075 20 15 15 04 15 20
68 479 025 025 25 15 15 04 17 20 500 012 05 075 20 15 15 04 17 20
69 012 025 025 25 15 15 06 10 15 501 18 05 075 20 15 15 06 10 15
70 144 025 025 25 15 15 06 12 17 502 023 05 075 20 15 15 06 12 17
71 803 025 025 25 15 15 06 15 20 503 48 05 075 20 15 15 06 15 20
72 011 025 025 25 15 15 06 17 20 504 805 05 075 20 15 15 06 17 20
73 008 025 025 25 20 10 02 10 15 505 021 05 075 20 20 10 02 10 15
74 320 025 025 25 20 10 0.2 12 17 506 650 05 075 20 20 10 02 12 17
75 653 025 025 25 20 10 02 15 20 507 339 05 075 20 20 10 02 15 20
76 330 025 025 25 20 10 02 17 20 508 481 05 075 20 20 10 02 17 20

©©oo~NoO U~ WNREZ

55

N Gap a A al g2 g3 r LY MV I N Gap Q A gl g2 g3 L LY MV
77 341 025 025 25 20 10 04 10 15 509 031 05 075 20 20 10 04 10 15
78 175 025 025 25 20 10 04 12 17 510 010 05 075 20 20 10 04 12 17
79 025 025 025 25 20 10 04 15 20 511 808 05 075 20 20 10 04 15 20
80 486 025 025 25 20 10 04 17 20 512 179 05 075 20 20 10 04 17 20
81 331 025 025 25 20 10 06 10 15 513 649 05 075 20 20 10 06 10 15
82 164 025 025 25 20 10 06 12 17 514 018 05 075 20 20 10 06 12 17
83 803 025 025 25 20 10 06 15 20 515 012 05 075 20 20 10 06 15 20
84 326 025 025 25 20 10 06 17 20 516 335 05 075 20 20 10 06 17 20
85 034 025 025 25 20 15 0.2 10 15 517 648 05 075 20 20 15 02 10 15
86 022 025 025 25 20 15 0.2 12 17 518 173 05 075 20 20 15 02 12 17
87 024 025 025 25 20 15 02 15 20 519 639 05 075 20 20 15 0.2 15 20
88 112 025 025 25 20 15 02 17 20 520 027 05 075 20 20 15 02 17 20
89 812 025 025 25 20 15 04 10 15 521 342 05 075 20 20 15 04 10 15
90 014 025 025 25 20 15 04 12 17 522 180 05 075 20 20 15 04 12 17
91 022 025 025 25 20 15 04 15 20 523 011 05 075 20 20 15 04 15 20
92 648 025 025 25 20 15 04 17 20 524 800 05 075 20 20 15 04 17 20
93 025 025 025 25 20 15 06 10 15 525 159 05 075 20 20 15 06 10 15
94 646 025 025 25 20 15 06 12 17 526 492 05 075 20 20 15 06 12 17
95 019 025 025 25 20 15 06 15 20 527 016 05 075 20 20 15 06 15 20
96 014 025 025 25 20 15 06 17 20 528 646 05 075 20 20 15 06 17 20
97 488 025 05 20 15 10 0.2 10 15 529 643 05 075 25 15 10 02 10 15
98 6.46 025 05 20 15 10 02 12 17 530 018 05 075 25 15 10 0.2 12 17
99 166 025 05 20 15 10 0.2 15 20 531 018 05 075 25 15 10 0.2 15 20
100 638 025 05 20 15 10 0.2 17 20 532 331 05 075 25 15 10 0.2 17 20
101 808 025 05 20 15 10 04 10 15 533 113 05 075 25 15 10 04 10 15
102 332 025 05 20 15 10 04 12 17 53 020 05 075 25 15 10 04 12 17
103 021 025 05 20 15 10 04 15 20 535 162 05 075 25 15 10 04 15 20
104 174 025 05 20 15 10 04 17 20 53 639 05 075 25 15 10 04 17 20
105 113 025 05 20 15 10 06 10 15 537 026 05 075 25 15 10 06 10 15
106 9.72 025 05 20 15 10 06 12 17 538 020 05 075 25 15 10 06 12 17
107 652 025 05 20 15 10 06 15 20 539 325 05 075 25 15 10 06 15 20
108 171 025 05 20 15 10 06 17 20 540 330 05 075 25 15 10 06 17 20
109 011 025 05 20 15 15 02 10 15 541 347 05 075 25 15 15 02 10 15
110 644 025 05 20 15 15 02 12 17 542 019 05 075 25 15 15 0.2 12 17
111 325 025 05 20 15 15 02 15 20 543 334 05 075 25 15 15 02 15 20
112 493 025 05 20 15 15 02 17 20 544 012 05 075 25 15 15 0.2 17 20
113 639 025 05 20 15 15 04 10 15 545 336 05 075 25 15 15 04 10 15
114 492 025 05 20 15 15 04 12 17 546 021 05 075 25 15 15 04 12 17
115 180 025 05 20 15 15 04 15 20 547 021 05 075 25 15 15 04 15 20
116 011 025 05 20 15 15 04 17 20 548 490 05 075 25 15 15 04 17 20
117 803 025 05 20 15 15 06 10 15 549 802 05 075 25 15 15 06 10 15
118 032 025 05 20 15 15 06 12 17 550 641 05 075 25 15 15 06 12 17
119 478 025 05 20 15 15 06 15 20 551 180 05 075 25 15 15 06 15 20
120 018 025 05 20 15 15 06 17 20 552 175 05 075 25 15 15 06 17 20
121 652 025 05 20 20 10 0.2 10 15 553 112 05 075 25 20 10 02 10 15
122 193 025 05 20 20 10 02 12 17 554 964 05 075 25 20 10 0.2 12 17
123 800 025 05 20 20 10 0.2 15 20 555 968 05 075 25 20 10 0.2 15 20
124 017 025 05 20 20 10 02 17 20 556 485 05 075 25 20 10 0.2 17 20
125 177 025 05 20 20 10 04 10 15 557 333 05 075 25 20 10 04 10 15
126 170 025 05 20 20 10 04 12 17 5568 018 05 075 25 20 10 04 12 17
127 170 025 05 20 20 10 04 15 20 559 646 05 075 25 20 10 04 15 20
128 173 025 05 20 20 10 04 17 20 560 961 05 075 25 20 10 04 17 20
129 488 025 05 20 20 10 06 10 15 561 337 05 075 25 20 10 06 10 15
130 488 025 05 20 20 10 06 12 17 562 335 05 075 25 20 10 06 12 17
131 641 025 05 20 20 10 06 15 20 563 008 05 075 25 20 10 06 15 20
132 493 025 05 20 20 10 06 17 20 564 013 05 075 25 20 10 06 17 20
133 957 025 05 20 20 15 02 10 15 565 175 05 075 25 20 15 02 10 15
134 477 025 05 20 20 15 02 12 17 566 476 05 075 25 20 15 0.2 12 17
135 326 025 05 20 20 15 02 15 20 567 020 05 075 25 20 15 0.2 15 20
136 014 025 05 20 20 15 02 17 20 568 019 05 075 25 20 15 0.2 17 20
137 493 025 05 20 20 15 04 10 15 569 331 05 075 25 20 15 04 10 15
138 9.63 025 05 20 20 15 04 12 17 570 335 05 075 25 20 15 04 12 17
139 646 025 05 20 20 15 04 15 20 577 176 05 075 25 20 15 04 15 20
140 646 025 05 20 20 15 04 17 20 572 809 05 075 25 20 15 04 17 20
141 345 025 05 20 20 15 06 10 15 573 648 05 075 25 20 15 06 10 15
142 653 025 05 20 20 15 06 12 17 574 027 05 075 25 20 15 06 12 17
143 168 025 05 20 20 15 06 15 20 575 169 05 075 25 20 15 06 15 20
144 164 025 05 20 20 15 06 17 20 576 329 05 075 25 20 15 06 17 20
145 175 025 05 25 15 10 02 10 15 513 649 05 075 20 20 10 06 10 15
146 802 025 05 25 15 10 02 12 17 577 170 075 025 20 15 10 0.2 10 15
147 022 025 05 25 15 10 02 15 20 578 177 075 025 20 15 10 0.2 12 17
148 173 025 05 25 15 10 0.2 17 20 579 015 075 025 20 15 10 0.2 15 20
149 172 025 05 25 15 10 04 10 15 580 175 075 025 20 15 10 0.2 17 20
150 8.05 025 05 25 15 10 04 12 17 581 961 075 025 20 15 10 04 10 15
151 637 025 05 25 15 10 04 15 20 582 645 075 025 20 15 10 04 12 17
152 011 025 05 25 15 10 04 17 20 583 337 075 025 20 15 10 04 15 20
153 8.02 025 05 25 15 10 06 10 15 584 639 075 025 20 15 10 04 17 20
154 168 025 05 25 15 10 06 12 17 585 813 075 025 20 15 10 06 10 15
155 640 025 05 25 15 10 06 15 20 586 341 075 025 20 15 10 06 12 17
156 647 025 05 25 15 10 06 17 20 587 175 075 025 20 15 10 0.6 15 20
157 012 025 05 25 15 15 0.2 10 15 588 166 075 025 20 15 10 0.6 17 20

56

N Gap a A al g2 g3 r LY MV I N Gap Q A gl g2 g3 L LY MV
158 175 025 05 25 15 15 02 12 17 589 18 075 025 20 15 15 02 10 15
159 113 025 05 25 15 15 02 15 20 500 492 075 025 20 15 15 02 12 17
160 333 025 05 25 15 15 02 17 20 591 647 075 025 20 15 15 02 15 20
161 813 025 05 25 15 15 04 10 15 592 808 075 025 20 15 15 0.2 17 20
162 012 025 05 25 15 15 04 12 17 593 504 075 025 20 15 15 04 10 15
163 178 025 05 25 15 15 04 15 20 594 807 075 025 20 15 15 04 12 17
164 491 025 05 25 15 15 04 17 20 595 011 075 025 20 15 15 04 15 20
165 496 025 05 25 15 15 06 10 15 596 168 075 025 20 15 15 04 17 20
166 6.52 025 05 25 15 15 06 12 17 597 497 075 025 20 15 15 06 10 15
167 174 025 05 25 15 15 06 15 20 598 640 075 025 20 15 15 06 12 17
168 177 025 05 25 15 15 06 17 20 599 644 075 025 20 15 15 06 15 20
169 496 025 05 25 20 10 02 10 15 600 649 075 025 20 15 15 06 17 20
170 493 025 05 25 20 10 02 12 17 601 483 075 025 20 20 10 02 10 15
171 800 025 05 25 20 10 02 15 20 602 641 075 025 20 20 10 0.2 12 17
172 020 025 05 25 20 10 02 17 20 603 008 075 025 20 20 10 0.2 15 20
173 805 025 05 25 20 10 04 10 15 604 010 075 025 20 20 10 0.2 17 20
174 642 025 05 25 20 10 04 12 17 605 806 075 025 20 20 10 04 10 15
175 809 025 05 25 20 10 04 15 20 606 168 075 025 20 20 10 04 12 17
176 171 025 05 25 20 10 04 17 20 607 008 075 025 20 20 10 04 15 20
177 497 025 05 25 20 10 06 10 15 608 179 075 025 20 20 10 04 17 20
178 169 025 05 25 20 10 06 12 17 609 343 075 025 20 20 10 06 10 15
179 020 025 05 25 20 10 06 15 20 610 480 075 025 20 20 10 06 12 17
180 640 025 05 25 20 10 06 17 20 611 169 075 025 20 20 10 06 15 20
181 111 025 05 25 20 15 0.2 10 15 612 643 075 025 20 20 10 06 17 20
182 014 025 05 25 20 15 02 12 17 613 803 075 025 20 20 15 0.2 10 15
183 016 025 05 25 20 15 02 15 20 614 168 075 025 20 20 15 02 12 17
184 324 025 05 25 20 15 02 17 20 615 178 075 025 20 20 15 0.2 15 20
185 331 025 05 25 20 15 04 10 15 616 177 075 025 20 20 15 0.2 17 20
186 316 025 05 25 20 15 04 12 17 617 020 075 025 20 20 15 04 10 15
187 011 025 05 25 20 15 04 15 20 618 019 075 025 20 20 15 04 12 17
188 185 025 05 25 20 15 04 17 20 619 006 075 025 20 20 15 04 15 20
189 169 025 05 25 20 15 06 10 15 620 497 075 025 20 20 15 04 17 20
190 495 025 05 25 20 15 06 12 17 621 799 075 025 20 20 15 06 10 15
191 015 025 05 25 20 15 06 15 20 622 484 075 025 20 20 15 06 12 17
192 960 025 05 25 20 15 06 17 20 623 011 075 025 20 20 15 06 15 20
193 657 025 075 20 15 10 02 10 15 624 641 075 025 20 20 15 06 17 20
194 500 025 075 20 15 10 0.2 12 17 625 165 075 025 25 15 10 02 10 15
195 804 025 075 20 15 10 0.2 15 20 626 332 075 025 25 15 10 0.2 12 17
196 008 025 075 20 15 10 0.2 17 20 627 016 075 025 25 15 10 0.2 15 20
197 490 025 075 20 15 10 04 10 15 628 035 075 025 25 15 10 0.2 17 20
198 019 025 075 20 15 10 04 12 17 629 020 075 025 25 15 10 04 10 15
199 009 025 075 20 15 10 04 15 20 630 015 075 025 25 15 10 04 12 17
200 329 025 075 20 15 10 04 17 20 631 816 075 025 25 15 10 04 15 20
201 326 025 075 20 15 10 0.6 10 15 632 336 075 025 25 15 10 04 17 20
202 181 025 075 20 15 10 0.6 12 17 633 012 075 025 25 15 10 06 10 15
203 646 025 075 20 15 10 0.6 15 20 634 178 075 025 25 15 10 06 12 17
204 802 025 075 20 15 10 0.6 17 20 635 483 075 025 25 15 10 06 15 20
205 166 025 075 20 15 15 0.2 10 15 636 798 075 025 25 15 10 06 17 20
206 648 025 075 20 15 15 0.2 12 17 637 648 075 025 25 15 15 02 10 15
207 172 025 075 20 15 15 02 15 20 638 013 075 025 25 15 15 02 12 17
208 329 025 07 20 15 15 02 17 20 639 171 075 025 25 15 15 02 15 20
209 801 025 075 20 15 15 04 10 15 640 172 075 025 25 15 15 0.2 17 20
210 647 025 075 20 15 15 04 12 17 641 013 075 025 25 15 15 04 10 15
211 178 025 075 20 15 15 04 15 20 642 016 075 025 25 15 15 04 12 17
212 804 025 075 20 15 15 04 17 20 643 008 075 025 25 15 15 04 15 20
213 802 025 075 20 15 15 06 10 15 644 173 075 025 25 15 15 04 17 20
214 024 025 075 20 15 15 06 12 17 645 021 075 025 25 15 15 06 10 15
215 649 025 075 20 15 15 0.6 15 20 646 026 075 025 25 15 15 06 12 17
216 176 025 075 20 15 15 06 17 20 647 012 075 025 25 15 15 06 15 20
217 329 025 075 20 20 10 02 10 15 648 805 075 025 25 15 15 06 17 20
218 642 025 075 20 20 10 0.2 12 17 649 021 075 025 25 20 10 02 10 15
219 331 025 075 20 20 10 0.2 15 20 650 803 075 025 25 20 10 0.2 12 17
220 032 025 075 20 20 10 0.2 17 20 651 969 075 025 25 20 10 0.2 15 20
221 645 025 075 20 20 10 04 10 15 652 482 075 025 25 20 10 0.2 17 20
222 803 025 075 20 20 10 04 12 17 653 483 075 025 25 20 10 04 10 15
223 169 025 075 20 20 10 04 15 20 654 012 075 025 25 20 10 04 12 17
224 800 025 075 20 20 10 04 17 20 655 329 075 025 25 20 10 04 15 20
225 171 025 075 20 20 10 0.6 10 15 656 642 075 025 25 20 10 04 17 20
226 020 025 075 20 20 10 0.6 12 17 657 647 075 025 25 20 10 06 10 15
227 013 025 075 20 20 10 0.6 15 20 658 033 075 025 25 20 10 06 12 17
228 485 025 075 20 20 10 0.6 17 20 659 159 075 025 25 20 10 0.6 15 20
229 800 025 075 20 20 15 0.2 10 15 660 801 075 025 25 20 10 06 17 20
230 334 025 075 20 20 15 0.2 12 17 661 354 075 025 25 20 15 02 10 15
231 649 025 075 20 20 15 0.2 15 20 662 165 075 025 25 20 15 0.2 12 17
232 332 025 075 20 20 15 0.2 17 20 663 795 075 025 25 20 15 0.2 15 20
233 349 025 075 20 20 15 04 10 15 664 018 075 025 25 20 15 0.2 17 20
234 804 025 075 20 20 15 04 12 17 665 652 075 025 25 20 15 04 10 15
235 023 025 075 20 20 15 04 15 20 666 8.09 075 025 25 20 15 04 12 17
236 172 025 075 20 20 15 04 17 20 667 007 075 025 25 20 15 04 15 20
237 182 025 075 20 20 15 0.6 10 15 668 0.09 075 025 25 20 15 04 17 20
238 182 025 075 20 20 15 0.6 12 17 669 180 075 025 25 20 15 0.6 10 15

57

N Gap a A al g2 g3 r LY MV I N Gap Q A gl g2 g3 L LY MV
239 175 025 075 20 20 15 06 15 20 670 009 075 025 25 20 15 06 12 17
240 009 025 075 20 20 15 06 17 20 671 019 075 025 25 20 15 06 15 20
241 337 025 075 25 15 10 02 10 15 672 014 075 025 25 20 15 06 17 20
242 803 025 075 25 15 10 02 12 17 673 167 075 05 20 15 10 02 10 15
243 171 025 075 25 15 10 02 15 20 674 178 075 05 20 15 10 02 12 17
244 017 025 075 25 15 10 0.2 17 20 675 024 075 05 20 15 10 02 15 20
245 185 025 075 25 15 10 04 10 15 676 011 075 05 20 15 10 02 17 20
246 014 025 075 25 15 10 04 12 17 677 646 075 05 20 15 10 04 10 15
247 021 025 075 25 15 10 04 15 20 678 798 075 05 20 15 10 04 12 17
248 664 025 075 25 15 10 04 17 20 679 808 075 05 20 15 10 04 15 20
249 964 025 075 25 15 10 06 10 15 680 0.09 075 05 20 15 10 04 17 20
250 018 025 075 25 15 10 06 12 17 681 645 075 05 20 15 10 0.6 10 15
251 335 025 075 25 15 10 0.6 15 20 682 18 075 05 20 15 10 06 12 17
252 337 025 075 25 15 10 06 17 20 683 171 075 05 20 15 10 06 15 20
253 811 025 075 25 15 15 02 10 15 684 018 075 05 20 15 10 06 17 20
254 021 025 075 25 15 15 02 12 17 685 810 075 05 20 15 15 02 10 15
255 179 025 075 25 15 15 02 15 20 686 178 075 05 20 15 15 02 12 17
256 015 025 075 25 15 15 02 17 20 687 112 075 05 20 15 15 02 15 20
257 013 025 075 25 15 15 04 10 15 688 0.09 075 05 20 15 15 02 17 20
258 336 025 075 25 15 15 04 12 17 689 487 075 05 20 15 15 04 10 15
259 023 025 075 25 15 15 04 15 20 690 173 075 05 20 15 15 04 12 17
260 640 025 075 25 15 15 04 17 20 691 016 075 05 20 15 15 04 15 20
261 488 025 075 25 15 15 06 10 15 692 646 075 05 20 15 15 04 17 20
262 012 025 075 25 15 15 06 12 17 693 182 075 05 20 15 15 06 10 15
263 176 025 075 25 15 15 06 15 20 694 017 075 05 20 15 15 06 12 17
264 484 025 075 25 15 15 06 17 20 695 11.2 075 05 20 15 15 06 15 20
265 177 025 075 25 20 10 0.2 10 15 696 0.07 075 05 20 15 15 06 17 20
266 645 025 075 25 20 10 0.2 12 17 697 647 075 05 20 20 10 02 10 15
267 184 025 075 25 20 10 02 15 20 698 172 075 05 20 20 10 0.2 12 17
268 175 025 075 25 20 10 0.2 17 20 699 321 075 05 20 20 10 02 15 20
269 802 025 075 25 20 10 04 10 15 700 836 075 05 20 20 100 0.2 17 20
270 647 025 075 25 20 10 04 12 17 701 327 075 05 20 20 10 04 10 15
271 484 025 075 25 20 10 04 15 20 702 653 075 05 20 20 10 04 12 17
272 640 025 075 25 20 10 04 17 20 703 025 075 05 20 20 10 04 15 20
273 966 025 075 25 20 10 0.6 10 15 704 014 075 05 20 20 10 04 17 20
274 799 025 075 25 20 10 06 12 17 705 646 075 05 20 20 10 06 10 15
275 485 025 075 25 20 10 0.6 15 20 706 016 075 05 20 20 10 06 12 17
276 484 025 075 25 20 10 06 17 20 707 176 075 05 20 20 10 06 15 20
277 647 025 075 25 20 15 02 10 15 708 174 075 05 20 20 10 06 17 20
278 329 025 075 25 20 15 02 12 17 709 797 075 05 20 20 15 02 10 15
279 019 025 075 25 20 15 02 15 20 710 178 075 05 20 20 15 02 12 17
280 333 025 075 25 20 15 0.2 17 20 711 176 075 05 20 20 15 02 15 20
281 655 025 075 25 20 15 04 10 15 712 167 075 05 20 20 15 0.2 17 20
282 026 025 075 25 20 15 04 12 17 713 022 075 05 20 20 15 04 10 15
283 954 025 075 25 20 15 04 15 20 714 654 075 05 20 20 15 04 12 17
284 491 025 075 25 20 15 04 17 20 715 333 075 05 20 20 15 04 15 20
285 021 025 075 25 20 15 0.6 10 15 716 022 075 05 20 20 15 04 17 20
286 643 025 075 25 20 15 06 12 17 717 176 075 05 20 20 15 0.6 10 15
287 159 025 075 25 20 15 06 15 20 718 492 075 05 20 20 15 06 12 17
288 647 025 075 25 20 15 06 17 20 719 331 075 05 20 20 15 06 15 20
289 806 05 025 20 15 10 0.2 10 15 720 810 075 05 20 20 15 06 17 20
290 493 05 025 20 15 10 0.2 12 17 721 483 075 05 25 15 10 02 10 15
291 173 05 025 20 15 10 02 15 20 722 012 075 05 25 15 10 0.2 12 17
292 800 05 025 20 15 10 0.2 17 20 723 491 075 05 25 15 10 02 15 20
293 500 05 025 20 15 10 04 10 15 724 645 075 05 25 15 10 0.2 17 20
294 018 05 025 20 15 10 04 12 17 725 185 075 05 25 15 10 04 10 15
295 640 05 025 20 15 10 04 15 20 726 185 075 05 25 15 10 04 12 17
296 168 05 025 20 15 10 04 17 20 727 171 075 05 25 15 10 04 15 20
297 018 05 025 20 15 10 0.6 10 15 728 027 075 05 25 15 10 04 17 20
298 632 05 025 20 15 10 06 12 17 729 642 075 05 25 15 10 0.6 10 15
299 643 05 025 20 15 10 0.6 15 20 730 959 075 05 25 15 10 06 12 17
300 029 05 025 20 15 10 06 17 20 731 800 075 05 25 15 10 06 15 20
301 797 05 025 20 15 15 02 10 15 732 330 075 05 25 15 10 06 17 20
302 010 05 025 20 15 15 02 12 17 733 014 075 05 25 15 15 02 10 15
303 488 05 025 20 15 15 02 15 20 734 173 075 05 25 15 15 02 12 17
304 477 05 025 20 15 15 02 17 20 735 176 075 05 25 15 15 02 15 20
3056 334 05 025 20 15 15 04 10 15 736 330 075 05 25 15 15 0.2 17 20
306 495 05 025 20 15 15 04 12 17 737 0.08 075 05 25 15 15 04 10 15
307 005 05 025 20 15 15 04 15 20 738 036 075 05 25 15 15 04 12 17
308 164 05 025 20 15 15 04 17 20 739 331 075 05 25 15 15 04 15 20
309 960 05 025 20 15 15 06 10 15 740 171 075 05 25 15 15 04 17 20
310 800 05 025 20 15 15 06 12 17 741 177 075 05 25 15 15 0.6 10 15
311 187 05 025 20 15 15 06 15 20 742 643 075 05 25 15 15 06 12 17
312 332 05 025 20 15 15 06 17 20 743 642 075 05 25 15 15 06 15 20
313 181 05 025 20 20 10 0.2 10 15 744 324 075 05 25 15 15 06 17 20
314 489 05 025 20 20 10 02 12 17 745 646 075 05 25 20 10 02 10 15
315 655 05 025 20 20 10 0.2 15 20 746 483 075 05 25 20 10 0.2 12 17
316 128 05 025 20 20 10 0.2 17 20 747 333 075 05 25 20 10 02 15 20
317 660 05 025 20 20 10 04 10 15 748 171 075 05 25 20 10 0.2 17 20
318 176 05 025 20 20 10 04 12 17 749 491 075 05 25 20 10 04 10 15
319 022 05 025 20 20 10 04 15 20 750 320 0.75 05 25 20 10 04 12 17

58

N Gap a A al g2 g3 r LY MV I N Gap Q A gl g2 g3 L LY MV
320 010 05 025 20 20 10 04 17 20 751 016 075 05 25 20 10 04 15 20
321 038 05 025 20 20 10 06 10 15 752 172 075 05 25 20 10 04 17 20
322 333 05 025 20 20 10 06 12 17 753 199 075 05 25 20 10 0.6 10 15
323 179 05 025 20 20 10 06 15 20 754 642 075 05 25 20 10 06 12 17
324 019 05 025 20 20 10 06 17 20 755 328 075 05 25 20 10 06 15 20
325 019 05 025 20 20 15 0.2 10 15 756 330 075 05 25 20 10 06 17 20
326 645 05 025 20 20 15 0.2 12 17 757 645 075 05 25 20 15 0.2 10 15
327 48 05 025 20 20 15 0.2 15 20 758 172 075 05 25 20 15 02 12 17
328 176 05 025 20 20 15 0.2 17 20 759 172 075 05 25 20 15 02 15 20
329 488 05 025 20 20 15 04 10 15 760 128 075 05 25 20 15 02 17 20
330 957 05 025 20 20 15 04 12 17 761 339 075 05 25 20 15 04 10 15
331 650 05 025 20 20 15 04 15 20 762 029 075 05 25 20 15 04 12 17
332 019 05 025 20 20 15 04 17 20 763 799 075 05 25 20 15 04 15 20
333 178 05 025 20 20 15 0.6 10 15 764 643 075 05 25 20 15 04 17 20
334 807 05 025 20 20 15 06 12 17 765 9.74 075 05 25 20 15 0.6 10 15
33 965 05 025 20 20 15 06 15 20 766 489 075 05 25 20 15 06 12 17
336 009 05 025 20 20 15 06 17 20 767 174 075 05 25 20 15 06 15 20
337 805 05 025 25 15 10 02 10 15 768 326 075 05 25 20 15 06 17 20
338 173 05 025 25 15 10 02 12 17 769 486 075 075 20 15 10 0.2 10 15
339 646 05 025 25 15 10 02 15 20 770 024 075 075 20 15 10 02 12 17
340 652 05 025 25 15 10 02 17 20 771 176 075 075 20 15 10 0.2 15 20
341 484 05 025 25 15 10 04 10 15 772 48 075 075 20 15 10 0.2 17 20
342 017 05 025 25 15 10 04 12 17 773 128 075 075 20 15 10 04 10 15
343 179 05 025 25 15 10 04 15 20 774 023 075 075 20 15 10 04 12 17
344 166 05 025 25 15 10 04 17 20 775 175 075 075 20 15 10 04 15 20
345 172 05 025 25 15 10 0.6 10 15 776 011 075 075 20 15 10 04 17 20
346 482 05 025 25 15 10 06 12 17 777 173 075 075 20 15 10 06 10 15
347 485 05 025 25 15 10 06 15 20 778 015 075 075 20 15 10 06 12 17
348 796 05 025 25 15 10 06 17 20 779 336 075 075 20 15 10 0.6 15 20
349 171 05 025 25 15 15 02 10 15 780 019 075 075 20 15 10 06 17 20
350 025 05 025 25 15 15 02 12 17 781 024 075 075 20 15 15 02 10 15
31 181 05 025 25 15 15 02 15 20 782 025 075 075 20 15 15 02 12 17
32 331 05 025 25 15 15 02 17 20 783 033 075 075 20 15 15 0.2 15 20
353 345 05 025 25 15 15 04 10 15 784 011 075 075 20 15 15 02 17 20
34 013 05 025 25 15 15 04 12 17 785 809 075 075 20 15 15 04 10 15
3%5 175 05 025 25 15 15 04 15 20 786 797 075 075 20 15 15 04 12 17
36 165 05 025 25 15 15 04 17 20 787 634 075 075 20 15 15 04 15 20
357 008 05 025 25 15 15 06 10 15 788 173 075 075 20 15 15 04 17 20
3%8 798 05 025 25 15 15 06 12 17 789 481 075 075 20 15 15 06 10 15
39 012 05 025 25 15 15 06 15 20 790 800 075 075 20 15 15 06 12 17
360 647 05 025 25 15 15 06 17 20 791 024 075 075 20 15 15 06 15 20
361 012 05 025 25 20 10 0.2 10 15 792 330 075 075 20 15 15 06 17 20
362 182 05 025 25 20 10 0.2 12 17 793 797 075 075 20 20 10 0.2 10 15
363 010 05 025 25 20 10 0.2 15 20 794 020 075 075 20 20 100 0.2 12 17
364 010 05 025 25 20 10 0.2 17 20 795 324 075 075 20 20 10 0.2 15 20
365 333 05 025 25 20 10 04 10 15 796 804 075 075 20 20 10 0.2 17 20
366 795 05 025 25 20 10 04 12 17 797 657 075 075 20 20 10 04 10 15
367 172 05 025 25 20 10 04 15 20 798 018 075 075 20 20 10 04 12 17
368 961 05 025 25 20 10 04 17 20 799 180 075 075 20 20 10 04 15 20
369 324 05 025 25 20 10 06 10 15 800 022 075 075 20 20 10 04 17 20
370 333 05 025 25 20 10 06 12 17 801 811 075 075 20 20 10 06 10 15
371 801 05 025 25 20 10 06 15 20 802 651 075 075 20 20 10 06 12 17
372 814 05 025 25 20 10 06 17 20 803 171 075 075 20 20 10 0.6 15 20
373 349 05 025 25 20 15 02 10 15 804 023 075 075 20 20 10 06 17 20
374 023 05 025 25 20 15 0.2 12 17 805 128 075 075 20 20 15 0.2 10 15
375 026 05 025 25 20 15 02 15 20 806 798 075 075 20 20 15 0.2 12 17
376 343 05 025 25 20 15 0.2 17 20 807 023 075 075 20 20 15 0.2 15 20
377 014 05 025 25 20 15 04 10 15 808 489 075 075 20 20 15 0.2 17 20
378 030 05 025 25 20 15 04 12 17 809 027 075 075 20 20 15 04 10 15
379 176 05 025 25 20 15 04 15 20 810 019 075 075 20 20 15 04 12 17
380 172 05 025 25 20 15 04 17 20 811 639 075 075 20 20 15 04 15 20
381 014 05 025 25 20 15 06 10 15 812 497 075 075 20 20 15 04 17 20
382 656 05 025 25 20 15 06 12 17 813 963 075 075 20 20 15 06 10 15
383 024 05 025 25 20 15 06 15 20 814 638 075 075 20 20 15 06 12 17
384 018 05 025 25 20 15 06 17 20 815 179 075 075 20 20 15 0.6 15 20
385 345 05 0.5 20 15 10 02 10 15 816 173 075 075 20 20 15 06 17 20
386 327 05 0.5 20 15 10 02 12 17 817 178 075 075 25 15 10 02 10 15
387 8.06 05 0.5 20 15 10 02 15 20 818 328 075 075 25 15 10 0.2 12 17
388 0.08 05 0.5 20 15 10 02 17 20 819 165 075 075 25 15 10 0.2 15 20
389 492 05 0.5 20 15 10 04 10 15 820 334 075 075 25 15 10 0.2 17 20
390 493 05 0.5 20 15 10 04 12 17 821 654 075 075 25 15 10 04 10 15
391 018 05 0.5 20 15 10 04 15 20 822 486 075 075 25 15 10 04 12 17
392 185 05 0.5 20 15 10 04 17 20 823 022 075 075 25 15 10 04 15 20
393 024 05 0.5 20 15 10 06 10 15 824 010 075 075 25 15 10 04 17 20
394 168 05 0.5 20 15 10 06 12 17 825 177 075 075 25 15 10 06 10 15
395 013 05 0.5 20 15 10 06 15 20 826 483 075 075 25 15 10 06 12 17
396 167 05 0.5 20 15 10 06 17 20 827 015 075 075 25 15 10 06 15 20
397 183 05 0.5 20 15 15 02 10 15 828 325 075 075 25 15 10 06 17 20
398 178 05 0.5 20 15 15 02 12 17 829 178 075 075 25 15 15 02 10 15
399 022 05 0.5 20 15 15 02 15 20 830 801 075 075 25 15 15 02 12 17
400 797 05 0.5 20 15 15 02 17 20 831 639 075 075 25 15 15 0.2 15 20

59

N Gap a A al g2 g3 r LY MV I N Gap Q A gl g2 g3 z LY MV
401 333 05 0.5 20 15 15 04 10 15 832 174 075 075 25 15 15 0.2 17 20
402 171 05 0.5 20 15 15 04 12 17 833 345 075 075 25 15 15 04 10 15
403 171 05 0.5 20 15 15 04 15 20 834 646 075 075 25 15 15 04 12 17
404 170 05 0.5 20 15 15 04 17 20 83% 009 075 075 25 15 15 04 15 20
405 172 05 0.5 20 15 15 06 10 15 836 336 075 075 25 15 15 04 17 20
406 8.05 05 0.5 20 15 15 06 12 17 837 111 075 075 25 15 15 06 10 15
407 489 05 0.5 20 15 15 06 15 20 838 649 075 075 25 15 15 06 12 17
408 015 05 0.5 20 15 15 06 17 20 839 016 075 075 25 15 15 06 15 20
409 810 05 0.5 20 20 10 02 10 15 840 016 075 075 25 15 15 06 17 20
410 8.02 05 0.5 20 20 10 02 12 17 841 649 075 075 25 20 10 0.2 10 15
411 659 05 0.5 20 20 10 02 15 20 842 179 075 075 25 20 10 0.2 12 17
412 173 05 0.5 20 20 10 02 17 20 843 008 075 075 25 20 10 0.2 15 20
413 651 05 0.5 20 20 10 04 10 15 844 649 075 075 25 20 10 0.2 17 20
414 014 05 0.5 20 20 10 04 12 17 845 024 075 075 25 20 10 04 10 15
415 328 05 0.5 20 20 10 04 15 20 846 641 075 075 25 20 10 04 12 17
416 013 05 0.5 20 20 10 04 17 20 847 794 075 075 25 20 10 04 15 20
417 650 05 0.5 20 20 10 06 10 15 848 165 075 075 25 20 10 04 17 20
418 329 05 0.5 20 20 10 06 12 17 849 006 075 075 25 20 10 06 10 15
419 168 05 0.5 20 20 10 06 15 20 850 802 075 075 25 20 10 06 12 17
420 015 05 0.5 20 20 10 06 17 20 851 648 075 075 25 20 10 06 15 20
421 329 05 0.5 20 20 15 02 10 15 852 183 075 075 25 20 10 06 17 20
422 019 05 0.5 20 20 15 02 12 17 853 811 075 075 25 20 15 0.2 10 15
423 638 05 0.5 20 20 15 02 15 20 854 014 075 075 25 20 15 0.2 12 17
424 327 05 0.5 20 20 15 02 17 20 855 487 075 075 25 20 15 0.2 15 20
425 484 05 0.5 20 20 15 04 10 15 856 022 075 075 25 20 15 0.2 17 20
426 493 05 0.5 20 20 15 04 12 17 857 643 075 075 25 20 15 04 10 15
427 491 05 0.5 20 20 15 04 15 20 858 804 075 075 25 20 15 04 12 17
428 015 05 0.5 20 20 15 04 17 20 859 796 075 075 25 20 15 04 15 20
429 185 05 0.5 20 20 15 06 10 15 860 179 075 075 25 20 15 04 17 20
430 337 05 0.5 20 20 15 06 12 17 861 499 075 075 25 20 15 06 10 15
431 961 05 0.5 20 20 15 06 15 20 862 113 075 075 25 20 15 06 12 17
432 023 05 0.5 20 20 15 06 17 20 863 6.38 075 075 25 20 15 0.6 15 20

Table 7 Experiments results for param tuning ALNS heuristic

60

Appendix B

Experiments resulter for 14-26 instances with different number of iterations.

Iterations 100 200 300

Instances Objective '(I'Slgr;)e ?;;F)J Objective -(rslgt]:; ((’;Z? Objective {S.Q;? ﬁ;}?
14-4-51 | 5120045,70 20,10 0,26 | 5114275,66 48,14 0,15 | 5120888,20 68,49 0,28
15-4-54 | 5183711,90 27,14 0,55 | 5188312,92 52,38 0,64 | 5171981,32 71,42 0,32
16-4-58 | 5808079,19 28,83 11,29 | 5374565,78 62,02 2,98 | 5242023,75 87,49 0,44
17-5-61 | 6390910,44 34,04 21,84 | 6524785,79 67,44 24,39 | 5693463,52 97,61 8,54
18-5-64 | 6706411,05 34,14 26,40 | 6703979,57 69,41 26,36 | 6701520,58 104,11 26,31
19-6-66 | 6758649,82 41,19 0,52 | 6749164,66 88,70 0,37 | 6744809,29 127,41 0,31
20-6-72 | 6856607,12 53,22 0,38 | 6850643,64 95,74 0,30 | 6844471,32 151,03 0,21
21-6-77 | 6933699,66 61,12 0,55 | 6924068,60 127,87 0,41 | 692540546 191,06 0,43
22-6-81 | 7145779,42 72,85 2,75 | 6998202,81 142,89 0,63 | 7272093,82 324,74 4,56
23-7-84 | 8021064,67 69,41 14,64 | 7601507,23 134,77 8,64 | 7592628,92 200,37 8,52
24-7-87 | 8610735,01 75,18 0,59 | 8603847,58 147,45 0,51 | 8593260,29 33511 0,38
25-8-88 | 8616684,28 89,76 0,41 | 8608975,97 19590 0,32 | 8603167,21 269,92 0,26
26-8-91 | 8681364,59 113,45 0,59 | 8674147,44 21560 0,51 | 8672120,89 344,01 0,48
Average 55,42 6,21 111,41 5,09 182,52 3,93

Table 8 Results for 14-26 instances with 100 — 300 iterations

Iterations 400 500 600

Instances Objective -(rs';:;" 223 Objective 1(_5'(;2)6 ?)ZF)) Obijective '(I'Slg(:)e ?)ZF))
14-4-51 | 5111061,19 85,71 0,08 |5111986,05 114,37 0,10 | 510831791 138,86 0,03
15-4-54 | 5173647,48 97,33 0,35 | 517030450 121,42 0,29 | 5165258,30 158,47 0,19
16-4-58 | 5368316,28 116,00 2,86 | 5228608,48 152,56 0,19 | 5226722,86 166,67 0,15
17-5-61 | 5425634,29 125,44 3,44 | 5826886,88 159,85 11,09 | 554287129 176,53 5,67
18-5-64 | 6284991,83 139,60 18,46 | 6561463,30 170,12 23,67 | 6284024,53 217,77 18,44
19-6-66 | 6743266,85 173,51 0,29 | 6746366,06 213,80 0,33 | 6746049,23 262,93 0,33
20-6-72 | 6840364,42 211,97 0,15 | 6841720,04 233,82 0,17 | 6841079,89 308,52 0,16
21-6-77 | 692133150 254,31 0,37 | 6919380,53 319,02 0,34 | 692027552 378,46 0,36
22-6-81 | 7122582,72 266,83 2,41 | 6987914,55 33545 0,48 | 6977291,86 414,08 0,32
23-7-84 | 7592994,62 258,61 8,52 | 7451395,00 312,04 6,50 | 7452245,15 388,72 6,51
24-7-87 | 8589650,41 275,35 0,34 | 8591389,44 346,17 0,36 | 8590316,95 427,31 0,35
25-8-88 | 860443328 375,63 0,27 | 8598830,52 444,88 0,21 | 8599322,49 541,06 0,21
26-8-91 | 8668598,88 451,90 0,44 | 8659159,62 529,56 0,33 | 8660128,94 642,01 0,34
Average 217,86 2,92 265,62 3,39 324,72 2,54

Table 9 Results for 14 — 26 instances with 400 - 600 iterations

61

Iterations 700 800 900
Instances | Objective Time %;S Objective Time ((J;ZF)J Objective Time %2?
14-4-51 | 5110778,66 157,13 0,08 | 5110174,53 174,68 0,07 | 5107761,19 210,08 0,02
15-4-54 | 5166278,29 169,42 0,21 | 5170159,41 197,29 0,29 | 5166012,80 214,98 0,21
16-4-58 | 5224024,51 196,65 0,10 | 5227304,36 234,04 0,16 | 5223226,20 262,86 0,08
17-5-61 | 5278032,73 229,54 0,62 | 5412024,79 26559 3,18 | 5264862,58 290,77 0,37
18-5-64 | 6420629,24 251,80 21,02 | 6697754,55 266,98 26,24 | 6556189,14 387,34 23,57
19-6-66 | 6740552,52 296,47 0,25 | 6745441,16 324,75 0,32 | 6742276,49 377,22 0,27
20-6-72 | 6840895,64 338,43 0,15 | 684050459 39597 0,15 | 6839892,79 426,69 0,14
21-6-77 | 6916667,10 434,65 0,30 | 6916586,31 518,65 0,30 | 6914560,12 583,15 0,27
22-6-81 | 6978388,58 454,28 0,34 | 6978568,37 552,16 0,34 | 6972994,07 578,53 0,26
23-7-84 | 7451225,10 482,23 6,50 | 7165405,24 523,13 2,41 | 717011422 689,71 248
24-7-87 | 8586662,51 468,79 0,31 | 8582785,70 569,79 0,26 | 8580845,18 597,02 0,24
25-8-88 | 8600078,04 594,93 0,22 | 8594321,01 733,81 0,15 | 8597167,67 821,67 0,19
26-8-91 | 8661710,23 73560 0,36 | 8655750,36 838,40 0,29 | 8653054,32 976,77 0,26
Average 369,99 2,34 430,40 2,63 493,60 2,18
Table 10 Results for 14-26 instances with 700 — 900 iterations

Iterations 1000

Instances | Objective Time ?;;F))

14-4-51 | 5107670,54 236,30 0,02

15-4-54 | 5164885,08 250,38 0,18

16-4-58 | 5225937,11 286,61 0,14

17-5-61 | 5406131,95 334,48 3,06

18-5-64 | 6417286,32 361,27 20,95

19-6-66 | 6738833,94 420,36 0,22

20-6-72 | 6837138,95 494,35 0,10

21-6-77 | 6915522,13 622,09 0,29

22-6-81 | 6974638,86 672,21 0,29

23-7-84 | 7025614,49 587,68 0,41

24-7-87 | 8583470,44 693,69 0,27

25-8-88 | 8595034,23 875,18 0,16

26-8-91 | 8656771,75 1048,74 0,31

Average 529,49 2,03

Table 11 Results for 14-26 instances with 1000 iterations

62

