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Abstract 

In the upstream offshore petroleum logistics supply vessels play the most important 

role, being the largest cost contributor. For this reason careful supply vessel planning is of 

vital importance for this industry. In the literature this problem is known as Periodic Supply 

Vessel Planning Problem (PSVPP). The problem involves determination of the fleet 

composition, vessels schedules and voyages. For large size instances optimal solutions are 

unachievable and for this reason we developed meta-heuristic algorithm. For heuristic 

validation we developed a two-phase approach which provides optimal solutions for small 

and medium size instances. Experiments show that developed metaheuristic algorithm 

provides optimal and near optimal solutions within short times. 

Keywords: offshore logistics; periodic routing; adaptive large neighborhood search; 

fleet composition; routing and scheduling; adaptiveness. 
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1.0 Introduction 

Many oil and gas producers operate offshore installations which require regular 

supplies of commodities from land. For this purpose, oil companies hire special supply 

vessels, which deliver cargo to and collect from installations. However, this resource is 

rather costly both in terms of hiring cost and in terms of operating costs (fuel costs). 

Therefore, it is of vital importance to define the fleet required to provide regular supply of 

offshore installations and achieve efficient utilization of all platform supply vessels (PSVs).  

In offshore petroleum logistics, supply vessel planning represents an actual problem. 

The problem considered in this thesis comes from a real-world problem faced by Norwegian 

oil and gas company Statoil ASA. The oil field located in the North Sea and serviced from 

the onshore supply base located in Mongstad, is selected as the one for which delivery 

problem is studied. The planning of deliveries is performed on the tactical level with one 

week planning horizon. Each installation has a requirement for the number of visits during 

the week. A weekly sailing plan is used repetitively over several months and then subject to 

revision. Construction of the sailing plan requires consideration of the following problems: 

allocation of voyages (a voyage represents a certain sequence of platforms served by a 

vessel) to vessels, sequencing of voyages (routing problem) and definition of departure times 

(scheduling problem) for each vessel on its voyages during the week. All these sub-problems 

should be solved so that the total sailing cost and vessels charter cost are minimized.  The 

problem relates to the class of Vehicle Routing Problems and in the context of its practical 

aspects, in the literature, is referred to as Periodic Supply Vessel Planning Problem (PSVPP). 

The term “periodic” means that the problem is solved for a certain planning horizon. Each 

of the above mentioned sub-problems (packing, routing and scheduling) represents NP-hard 

combinatorial problem. Problems of a large size cannot be solved by exact methods within 

a reasonable time. The problem we consider involves planning deliveries for 26 installations 

during one week, where each installation requires from 1 to 5 visits. Therefore, development 

of some efficient heuristic approach is required to obtain a good solution within a reasonable 

time.  

In this master thesis we develop an Adaptive Large Neighbourhood Search Heuristic 

for PSVPP that might be used as a decision support tool by delivery planers at Statoil ASA 

for organizing of an efficient supply of offshore installations. For validation of the heuristic, 

we develop two-phase exact approach providing optimal solutions for small and medium 

size instances within reasonable time.  
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In chapter 2, we provide description of the studied problem, its main characteristics, 

constraints and the objective. In chapter 3 we provide the review of the literature relevant to 

the problem and compare the studied problem to those similar found in the literature. In 

chapter 4 we review solution methods which are used for similar problems and analyse 

methodology which could help to solve our problem. In chapter 5 we state the objective of 

this master thesis which relates to development of the algorithm, its validation and results 

analysis. In chapter 6 we present developed solution approaches with detailed description of 

theirs logic. In chapter 7 we perform fine tuning of the developed heuristic approach, 

described test instances and provide analysis of the conducted experiments. In chapter 8 we 

summarize the work conducted in this thesis and provide some directions for the futures 

research. Finally, list of references and tables with complete results of the experiments 

accomplish the master thesis. 
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2.0 Project description 

Research that we conduct in this thesis is dedicated to real-life problem faced by Statoil 

ASA. Statoil ASA employs more than 22000 employees, and it’s total revenue is more than 

600 billions, being the largest oil and gas operator in Norway. Furthermore, Statoil ASA 

operates in more than 30 countries around the world and is number one in offshore oil and 

gas extraction in terms of technologies, effectiveness and efficiency (Statoil 2016). 

In this master thesis, we study the problem of suppling offshore oil and gas installations, 

encountered by Statoil on the Norwegian continental shelf. We focus our research on a single 

supply base located in Mongstad, from which installations, assigned to this base, receive all 

the necessary materials and equipment. Supply of offshore installations is provided by a 

special fleet of supply vessels. However, hiring cost of a supply vessel is very expensive and 

therefore care should be taken when defining the fleet size. In addition to vessels’ charter 

cost, the cost of supply includes vessels fuel costs. As follows, optimal sequences of visiting 

installations are required to minimize such costs. Furthermore, downtime cost of an offshore 

installation is enormous and should be avoided. Hence, Statoil strives to construct efficient 

schedule for suppling offshore installations with minimal costs, while not allowing for the 

downtime. 

The problem of supplying offshore installation, which we study in this thesis, is known 

as Periodic Supply Vessels Planning Problem (PSVPP). Efficient solution to this problem 

can reduce the logistical costs drastically and in the same time ensure high service level. 

Further, in this section we provide the main elements, characteristics and constraints 

inherent to this problem. In addition, in the end of the section we provide an example of a 

vessels schedule. 

2.1 Periodic Supply Vessel Planning 

The supply vessel planning problem involves identification of the optimal fleet 

composition, necessary to serve a given set of offshore installations from a single onshore 

supply depot, and at the same time development of schedules and routes for vessels, so that 

vessels charter and fuel costs are minimized. In this problem, under routes are understood 

the voyages, starting and ending at the depot, and sailed by a particular vessel during the 

planning horizon. Each voyage, in turn, is defined by a set of installations in a certain 

sequence of visiting them. Each voyage has a specific departure time from the depot. A 

vessel’s schedule is than defined as collection of voyages departing from a supply base at 
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specific times. The objective of PSVPP is to construct a least cost schedule for a fleet of 

supply vessels, for a given planning horizon. 

The studied problem is of a tactical level, where the planning horizon is considered 

to be one week. Such schedule is repeated for several months and revised with the aim of 

adaptation to some changes. Such changes involve changes: in demand of installations, 

incorporation of a new installation into a schedule, changes in the required number of visits 

for some installations during the week, time windows, etc.  

More properly, description of the main problem’s elements and constraints is 

provided as follows.  

2.1.1 Supply Base 

The onshore supply base has opening hours from (8:00–18:30), during which loading 

and unloading operations are performed. In addition, personal availability and limited 

number of berths set a limit on the number of vessels that can be served during a day. The 

turnaround of a vessel on the base i.e. the time required for loading and unloading operations 

is assumed to be 8 hours. There is a specific set of possible departure times for vessels on 

their voyages. The reason for haven this such departure time options is twofold. On the one 

hand adjustment of departure time for a voyage may lead to cost reduction in case of 

installation(s) with time windows on this voyage. The waiting time in this case may be 

reduced and as follows the cost of a voyage. On the other hand such “flexible departures” 

allow to exploit more efficiently work force by avoiding performance of the same operations 

for different vessels in parallel. In our case, the set of possible departure times is 16:00, 

17:00 and 18:30. 

2.1.2 Voyages 

Voyages are defined as a sequence of installations to be visited by a particular vessel. 

Each voyage starts and ends at the depot and has specific departure time The maximum 

voyage duration is set to three days or 72 hours (counting the time for loading/unloading in 

the base), which is explained by maximum lead time requirements. In addition, there is a 

requirement to the minimum and maximum number of installations per voyage, 1 and 7 

respectively. A vessel’s schedule should be constructed so that the voyages it sails are not 

overlapped in time.  

2.1.3 Offshore installations 

Offshore installations play the main role for oil and gas production. Each installation 

has specific visit frequency during the week i.e. the number of visits it should receive from 
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supply base. There are two types of offshore installations. The first type performs drilling 

operations and is characterized by larger and more variable demand, and higher visits 

frequency. The second type is represented by platforms performing oil and gas extraction. 

This type is characterize by relatively stable demand and low visits frequency. The weekly 

demand of a platform is assumed to be evenly distributed between visits. Furthermore, those 

installations having more than one visit per week require even spread of departures to them. 

For example, installations with three visits per week should be assigned to voyages in such 

a way that departure to these installations is performed at least 1 time during 3 days. Such 

requirements are set to each visit frequency. Therefore, it’s not an easy task to assign 

installations with different visit frequencies to voyages while maintaining even spread of 

departures. Commonly in periodic routing problem planners are concerned by even spread 

of visits to customers rather than spread of departures. In PSVPP requirement to even spread 

of departures is explained by the fact that installations know when it is the latest to submit 

demand request before a vessel starts a voyage. Taking is to account that the maximum lead 

time is assumed to be three days, such system proves to be quite convenient. 

Furthermore, all offshore installations are divided in to two categories: with 

possibility for night service and without it (with time window and without it). For 

installations without time window, a vessel may come for service at any time during the day. 

However, for offshore installations, which cannot be serviced at night time (19:00 – 7:00), 

there are several situations are possible. If a vessel arrives to offshore installation after 

closing time (and of course before its opening time), then it must wait till the opening time. 

As well, there may be a situation when a vessel arrives within the time window, but the time 

required to perform service before installation is closed, is not enough. In this case, the vessel 

should wait till the next opening time. 

2.1.4 Supply vessel 

A fleet of supply vessels is performs delivery of equipment and materials to 

installations and collection of used. Each platform supply vessel (PSV) may have its own 

sailing speed and different deck capacity. This means that some PSV are unable to sail some 

voyages. The cost of PSV is composed of two types of costs: vessel weekly charter cost and 

fuel cost. Fuel cost is a variable cost and depends on the vessel’s speed and type of operation 

performed. There are different fuel consumption rates for loading/unloading operations at 

the base, during sailing and during loading/unloading at an installation. 
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2.1.5 Weekly sailing plan 

The weekly sailing plan is composed of weekly sailing plan of all vessels. On the 

example below PSV1, PSV2 and PSV3 (Error! Not a valid bookmark self-reference.). 

Weekly sailing plan of a vessel is defined by a set of voyages, consequently assigned to 

specific departure times and not overlapping in time. Each voyage starts and ends at the 

supply base (FMO). If a vessel, for example, is supposed to start its voyage at 17:00 then, 

taking into account turnaround time, it is assumed start loading operations at 9:00. Therefore, 

it should have come back from previous voyage (if any) before 9:00. From the perspective 

of each PSV collection of voyages of a vessel represents vessel’s route. For example, the 

route for PSV2 involve 3 voyages, starting on Tuesday, Thursday and Saturday.  Each 

voyage in turn represents a consecutive collection of installations, starting from depot. For 

example first voyage of PSV 1 starts at 16:00 on Monday from FMO and visits installations 

TRO, COI, OSE in the given sequence. On the schedule below the service at supply base is 

marked green, sailing times are marked yellow and service it installations mark dark blue. 

There are situations called “end-of-week” effect when a voyage starts at the end of the week 

and finishes on the next week. For example the third voyage of PSV2 starts on Saturday, 

serve installation COI on Sunday, and installations OSE, KVB on Monday. 

 

There is one thing, on which we have to stress our attention. As it was mentioned above, 

the planning horizon for installations is assumed to be one week. Nevertheless, the planning 

horizon for vessels is extended up to two weeks. Such planning is explained by dealing with 

a specific situation that may happen, called “end-of-week” effect. On the Figure 2 is 

described the situation when the last voyage of PSV2 starts on Saturday and ends on 

Monday, while its first voyage starts on Monday. As we see, voyages of the same vessel are 

overlapped in time, which is not allowed. To circumvent such situation vessels PSV2 and 

PSV3 may swap voyages on the second week. The only condition for possibility of swapping 

is that the first voyage of PSV3 should start later than the end of the last voyage of PSV2. 

In this case, PSV2 and PSV3 exchange by voyages on each week. Such approach may be 

PSV 1

PSV2

PSV3

16 24

Monday Tuesday Wendsday Thursday Friday Saturday Sunday

24

8 16 24 32 40 48 56

8 16 24 8 16 248 16 24 8 16 248 16 24 8

160 168

FMO TRO COI OSE

112 120 128 136 144 15264 72 80 88 96 104

8 16

STA STCFMO STB

OSE KVB FMO OSE COIFMO OSE KVB

FMO TRO

FMO

FMO STB STA STC KVBCOI FMO TRO

COI

Figure 1 An example of Weekly sailing plan. 
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viewed as the relaxation of the voyage overlap constraint for each vessel in case of the “end-

of-week” effect, that may lead to the cost and even fleet size reduction.  

 

Figure 2 An example of weekly schedule with coupled vessels 

2.2 Objective 

The objective of the PSVPP is to construct a weekly sailing plan with minimal total 

vessels charter and sailing cost taking into account base capacity constraint, requirements 

for the even spread of departures, visit frequencies, vessels capacities, maximum voyage 

duration and maximum number of installations per voyage, and voyage overlap constraint. 

Taking into account problem dimensions and the size we may conclude that some 

optimization-based design support tool is required which is able to provide the solution of a 

good quality in a short time. The output of this tool should be weekly vessels schedule. 

Below are summarized the main characteristics of the problem:  

 The planning horizon of 7 working days (one week). 

 Set of installations to be served and supply base, and theirs coordinates. 

 Number of visits for each installation per week. 

 Weekly demand for each installation. 

 Average service time of each installation, required for loading/unloading 

operation. 

  Fuel consumption rate of a vessel when sailing, servicing at installation and 

servicing at supply base. 

 Fuel cost per ton. 

 Set of available departure times during a day. 

The objective of the problem is to:  

 Construct weekly delivery schedule for the given set of installations.  

 Find the fleet size and build voyages for each PSV. 

 Find departure time of each voyage. 

PSV 1

PSV2

PSV3

Monday Tuesday Wendsday Thursday Friday

24 8 16 24

Saturday Sunday

8 16 24 8 16 24 8 16 8 16 24

8 16 24 32 40 48 56

8 16 24 8 16 24

112 120 128 136 144 15264 72 80 88 96 104

FMO COI

32 40 48 56

SLOFMO

136

OSESOD SLOSLO

8 16 24 32

8 16 24 160 168

FMO

160 168

136 144 15264 72 80 88 96 104

120 12840 48 56 64 72 80

112 120 128

STB OSECOI

144 152 160 168

STBFMO

FMO STO

STOBID TROTRO OSE FMO

88 96 104 112

FMO COI OSEFMO TRO BID

BID STB STO SLO FMO SODSOD STO STO SLO
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 Minimize total vessel charter and fuel cost. 

Constraints on solution: 

Supply base constraints 

 Maximum number of vessel that can departure during a day. 

 Supply base working hours. 

 A vessel turnaround time. 

Voyage constraints 

 Maximum number of installations on a voyage. 

 Maximum voyage duration. 

Vessel constraints 

 Capacity of a vessel. 

Offshore installations constraints 

 Departures to each installation should be evenly spread during the week. 

 Working hours of each installation during a day. 
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3.0 Literature review 

The literature dedicated to PSVPP is relatively scarce. Bellow we provide some papers 

on the PSVPP topic, which appear in the literature for the last several decades. PSVPP relates 

to vehicle routing problem (VRP) type and namely to periodic VRP, where routes should be 

constructed for a planning horizon. The main different PSVPP from periodic VRP is that 

PSVPP routes (or voyages) last more than one day. The literature on the PSVPP topic is as 

follows.  

Fagerholt and Lindstad (2000) presented a paper dedicated to “Optimal policies for 

maintaining a supply service in the Norwegian Sea”. The authors develop two-phase exact 

method to solve the problem. On the first stage, a feasible set of candidate voyage is 

generated for each vessel. On the second stage, the set generated of voyages is used as an 

input to the integer optimization model. In the literature, the model is known as set partition 

model. However, the authors formulated a simplified version of PSVPP, ignoring constraint 

on the spread of departures. Their approach does not provide vessel schedule and just 

handles the problem of assignment voyages to vessel. 

Gribkovskaia, Laporte, and Shlopak (2008) represented “A tabu search heuristic for a 

routing problem arising in servicing of offshore oil and gas platforms.” The authors study 

pickup and delivery problem encounters upstream offshore supply in the Norwegian Sea. 

The problem is operational planning. A single vessel should provide pickup and deliveries 

of cargo from several offshore installations. The authors develop tabu search for a single 

base. 

Halvorsen-Weare et al. (2012) considered “Optimal fleet composition and periodic 

routing of offshore supply vessels”, where the authors took into consideration the aspects 

omitted by the Fagerholt and Lindstad (2000). In this article, the authors as well use the same 

two-phase exact method to obtain optimal solution accounting spread of departures 

constraints. In addition, authors deal of the weather uncertain that may result in delays of 

vessel on theirs voyages. Authors handle uncertainty by adding a slack in the end of a 

voyage. Developed approach may be applied to medium and large size instances.  

Korsvik and Fagerholt (2010) considered a problem in a shipping trade dealing with 

transportation of bulk products. Shipping companies derive some additional income for 

optional spot contracts.  The authors developed an efficient tabu-search algorithm as a 

decision support tool, ensuring quick decisions for the planners. The output of their tool 

represents a schedule with a minimal fleet of vessels required to perform a certain task.  
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Shyshou et al. (2012) proposed a Large Neighbourhood Search (LNS) heuristic with 

the aim to solve large instances of PSVPP, taking into account all the constraints handled 

Halvorsen-Weare et al. (2012). Heuristics is able to define optimal or near-optimal solutions 

for small-medium size problem and as well is able to construct schedule for large size 

problem within a reasonable time. 

As well, there are several papers dealing with weather uncertainty in PSVPP and as 

well, those taking into account environmental issues. Halvorsen-Weare and Fagerholt (2011) 

developed three-phase approach able to define optimal solution of the problem by 

introducing robust measure to voyages. Norlund and Gribkovskaia (2013) considered the 

problem of minimization of supply vessel emissions by optimizing using the same, 

mentioned above, two-phase approach.  

As we see, there is only one approach to PSVPP that deals with the problem similar to 

ours in terms of the problem type and instance size. Namely the approach by Shyshou et al. 

(2012). This solution approach turned out to be quit efficient for small and medium problem 

sizes, although the running time for large instances is relatively high. As well, there are 

several differences between the problem formulated in our thesis and the problem 

formulated by Shyshou et al. (2012). In Shyshou et al. (2012) vessels departures on voyages 

are single and fix during a day, while in our problem a vessel have a set of departure options 

manually defined by a planner. In addition, planning horizon for vessel in our problem is 

extended to two weeks, with the aim of handling “end-of-week” effect issue. 

As we see the LNS heuristic by Shyshou et al. (2012) was quite successful for the 

PSVPP. Therefore, we may use this heuristic, as a starting point for the development of ours 

own algorithm. In the next section, we consider methodology related to LNS and some 

known approaches for improvement of its efficiency. 
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4.0 Methodology 

In this section we cover solution approaches developed for PSVPP and study some 

methodology that maybe useful for our future metaheuristic. 

Halvorsen-Weare et al. (2012) presented two-phase mathematical modelling based 

approach. On first stage, the authors generate all possible sets of installations satisfied 

minimum and maximum requirements for the voyage size and capacity. These sets are 

generated out of the set 𝐼 of all installations. Then for each set TSP with time windows is 

solved. The output of the algorithm is the set 𝑅 of all candidate voyages a vessel may sail, 

where each voyage represent the optimal permutation for the corresponding set of 

installations. As well, based on the generated voyages binary parameter 𝑎𝑖,𝑟  is created. 𝑎𝑖,𝑟 

is equal 1 if installation 𝑖 is on the voyage 𝑟, 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅. On the second stage the output of 

the voyage generation algorithm is used as the set-covering voyage-based model. The model 

selects a set of voyages out of the whole set 𝑅 of available voyages taking into account 

spread of departures, overlap constraints and based capacity constraint. Each voyage is 

assigned specific departure day. The output of the model is a weekly vessel schedule. 

Advantage of this approach compared to the full enumeration is that mathematical 

model uses only feasible and shortest voyages (provided by the voyage generation 

algorithm) and thus reducing computational time of the second phase. The solution achieved 

on the second stage is optimal.  

Since we agreed above to develop an algorithm using the Large Neighbourhood Search 

methodology, we first consider its main principles.  

LNS heuristic was first presented by Shaw in (Shaw 1997) and (Shaw 1998). Heuristic 

was applied to VRPTW (Vehicle Routing Problem with Time Window) and showed very 

good results. Below we briefly consider the main idea of the LNS. The pseudocode for LNS 

is as follows (Procedure 3.1). 
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The algorithm starts with the generation of a random initial solution, which is supposed 

to be further improved. Then, “destroy” operator removes 𝑞 number of visits (requests) from 

solution 𝑠’. Further, repair operator inserts removed visits (requests) back into solution. If 

the new solution 𝑠’ is the better than the best found solution 𝑠𝑏𝑒𝑠𝑡, then the solution 𝑠’ is set 

as the best 𝑠𝑏𝑒𝑠𝑡. Otherwise, if the solution 𝑠’ is worse than solution 𝑠, then solution 𝑠’ is 

accepted subject to some accepted criteria (user defined), the algorithm proceeds to the next 

iteration and so on until stop-criteria is met. 

As it was mentioned in the previous section, Shyshou et al. (2012) developed Large 

Neighbourhood Search heuristic for PSVPP. The algorithm is run for a given number of 

restarts and iterations. At each restart an initial (feasible) solution is randomly generated. 

Then, for the given number of iterations an attempt is made to improve this initial solution. 

At the beginning of each iteration, we make a move from the current solution (at the first 

iteration the current solution is the initial solution) to one of in its neighbourhood. This is 

done with the use of destroy and repair operators. Destroy operator randomly selects a 

certain number of voyages (user defined) and then in each voyage a random number of visits 

is removed and placed into pool 𝑆 of uninserted visits. After that, repair operator tries to 

insert visits, contained in the pool S, back into the schedule. If the attempt is successful i.e. 

all visits are inserted back and all constraints are satisfied, then the algorithm proceeds to 

the improvement phase. On the improvement phase, the solution obtained after a move is 

tried to be improved by subsequently applying several improvement procedures. The first 

procedure tries to reduce number of voyages in the schedule and thus making the idle time 

of vessels larger. The second procedure tries to reduce total duration of all voyages by 

Procedure 3.1 Basic LNS heuristic  

1: Function LNS (𝑠 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠}, 𝑞 ∈ ℕ) 
2: solution 𝑠𝑏𝑒𝑠𝑡 = 𝑠; 
3: do 
4:  𝑠′ = 𝑠; 
5:  remove 𝑞 request from 𝑠′  
6:  reinsert removed requests into 𝑠′ 

7:  if (𝑓(𝑠′) < 𝑓(𝑠𝑏𝑒𝑠𝑡)) then 

8:   𝑠𝑏𝑒𝑠𝑡 = 𝑠′ ; 
9:  end if 
10:  if 𝑎𝑐𝑐𝑒𝑝𝑡(𝑠′, 𝑠) then 
11:   𝑠 = 𝑠′; 
12:  end if 
13: while stop-criterion met 
14: return 𝑠𝑏𝑒𝑠𝑡 ;  
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relocation visits between them. The relocation of visit from one voyage to another is 

accepted if the net duration of both voyages is reduced by at least one day. The third 

procedure represent a deep greedy algorithm, which tries to relocate visits in the schedule 

while the cost of the schedule reduces. As well, after each of the described above procedures 

an attempt is made to reduce the fleet size by relocation of voyages between vessels 

including those ones, which are not in the schedule. The set of improvement procedures is 

applied in the loop in the predetermined sequence while the cost of the schedule reduces.  

After the improvement phase the algorithm attempts to reduce the fleet size again. If 

the number of vessels in the solution is above the predefined lower bound (the lower bound 

is defined before the initial solution is created) than the algorithm defines the vessel out of 

which it is possible to relocate the largest number of visits to other vessels. Those visits, 

which were not relocated from this vessel, are placed into pool 𝑆 of uninserted visits. If the 

number of voyages turns out to be lesser than the predefined lower bound then the flag 

indicating the state of the schedule in terms of the number of voyages relative the lower 

bound on the number of voyages, is set to “true”. The algorithm proceeds to the next 

iteration. At the beginning of each iteration, after application of destroy operator, the 

algorithm cheeks whether the flag was set to “true” at the previous iteration. If the flag is set 

to “true” then the algorithm creates empty voyages to ensure feasibility of the schedule after 

the repair operator is applied. And the algorithm proceeds to the improvement phase as 

described above. 

The algorithm proved to be quite efficient on small and medium size instances showing 

optimal and near optimal results. As regards larger instances, efficiency of the algorithm is 

not proved due to the absence of the optimal solutions. Solutions for large instances were 

obtained within high computational times. 

 Ropke and Pisinger (2006) presented “An Adaptive Large Neighbourhood Search 

Heuristic for the Pickup and Delivery Problem with Time Windows”. In this article, the 

authors supplemented the LNS by a new approach to search neighbourhood solutions. 

Developed heuristic was called adaptive LNS. This approach implies several destroy and 

repair operators which paschal destroy and then repair the solution that is called “a move”. 

The main idea of “adaptiveness” is to keep track on the performance on destroy and repair 

operators. Since there are several destroy and repair operators and only one of each type 

should be selected at the beginning of an iteration, destroy and repair operators are assigned 

corresponding probabilities according to which they are supposed to be selected are equal 

and updated after certain number of iterations (segment). At each iteration selected destroy 
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and repair operators receive certain rates based on their performance. These weight are 

accumulated within a segment. And in the end of each segment each operator receive the 

total score and probabilities are updated. Those operators, with good performance and, of 

course, with higher score are assigned higher probabilities for the next segment of iterations. 

Thus, the algorithm tries to adapt to better search of neighbourhoods based on the 

performance of destroy and repair operators within last segment of iterations.  

Furthermore, the authors propose an approach to avoid trapping into local minimum. 

To do this, the authors take the idea from simulated annealing. The idea is to accept solution 

s’ with some probability, if it is worse than the solution s with some probability. Probability 

is define by 𝑒−
𝑓(𝑠′)−𝑓(𝑠)

𝑇  , where the temperature 𝑇 >  0 and 0 <  𝑐 <  1 is the cooling rate. 

In each iteration temperature decreases by multiplication by 𝑐 .So the lower the value of 𝑐, 

the higher the cooling rate and probability of acceptance of worse solution reduces faster as 

the algorithm proceeds for one iteration to another. 
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5.0 Research Task 

The primary goal of this thesis is to develop an Adaptive Large Neighbourhoods 

heuristic (ALNS) for the described above PSVPP taking into account all the problem’s 

specific constraints, which is able to solve large size problem instances within a relatively 

short time. Since we need to validate the algorithm and test its efficiency, we need to 

compare it to some exact approach. For this purpose we develop two-phase exact solution 

approach based on the approach by Halvorsen-Weare et al. (2012) and adapted to the 

specifics of our problem (flexible departures and coupled vessels). 
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6.0 Solution approach 

In this section, we provide the description of our modification of two-phase exact 

approach and detailed description of developed ALNS heuristic.  

6.1 Two-phase method 

6.1.1 Voyage generation algorithm 

The main idea of the voyage-generation algorithm is based on dynamic programing 

or the concept of recursive call. The input information involves sets of offshore installations 

and supply vessels, coordinates of offshore installations, vessels capacities and maximum 

voyage duration. The algorithm starts from generation of all sets (combinations) of 

installations. The number of sets is denoted by 𝐾 and set 𝑁(𝑘) represents the collection of 

installations in a set 𝑘, 𝑘 ∈ 1. . 𝐾. The size of the sets is limited by minimum and maximum 

number of installations in a voyage and vessel capacity (Procedure 6.1.1 Line 5). Then, for 

each combination 𝑁(𝑘) the Travel Salesman Problem with Time Window (TSPTW) is 

solved by dynamic programming (Procedure 6.1.2) i.e. for each set 𝑁(𝑘) the shortest 

permutation is defined.  

Procedure 6.1.2 takes one by one all sets of installations from the set 𝑁(𝑘) as an 

input. Each installation in a set 𝑁(𝑘) is removed and sent into recursive procedure. In this 

procedure this installation is added into a voyage which is defined globally in the procedure 

(initially this voyage is empty and contains only the depot). After the installation is added to 

the voyage, duration and sailing of this partial voyage (since it does not contain all 

installation) are calculated. And then, for this partial voyage procedure 6.1.2 is called again 

(recursively). After the partial voyage is sent into recursive procedure, installation is 

removed from this partial voyage and is placed back into set 𝑁(𝑘). For the partial voyage 

which was send into recursive procedure (and which contains this installation) all this steps 

are repeated again starting from line 5.  When at some recursive call into it turns out that all 

installations from the set N(k) present in the voyage then duration of the voyage with this 

sequence is compared to the previously found voyage with the shortest duration. If the 

duration of the voyage with the new sequence is shorter than the previously best found, then 

this voyage is stored and set as the best. So, this recursive procedure dynamically enumerates 
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all possible permutations of installations for each set 𝑁(𝑘) and returns the shortest. The 

output of the algorithm is the set of shortest voyages for each vessel.  

Procedure 6.1.1 Voyage-generation algorithm. Main code  

1:Function VoygeGeneration(Vessels 𝑉, Departure Time 𝑇, Installations 𝐼W) 
2: Array 𝑅 =  ∅: array, which containing all feasible routes; 
3: for each 𝑗 in 𝑉 
4:  for each 𝑡 in 𝑇 
5:   do 
6: Construct unique combination of installations, 

which satisfy constraints for vessel capacity and 
maximum and minimum number of visits during one 
voyage. And it places on set 𝑁(𝑘); 

7:    Solve TSPTW for set 𝑁(𝑘) by Procedure 6.1.2; 
8:    if solution founded 
9:     place solution on set 𝑅; 
10:    end if 
11:   while(!all combination of Installations not created) 
12:  end for 
13: end for 
14:return 𝑅; 

Procedure 6.1.2. Recursive solve TSPTW. 

1: Route: 𝑅(𝑘) = Globally defined  route; 
2: Route 𝐵𝑅(𝑘) = Globally defined best route; 
3: 𝐵𝑐𝑜𝑠𝑡 = Globally define Best cost; 
4: Function SolveTSPTW (PoolOfInstallations 𝑁(𝑘), MaximumDuration 𝑚𝑎𝑥𝐷𝑢𝑟)   
5:  for 𝑖 =  0 to 𝑁(𝑘) 
6:  Installation: 𝐶 =  𝑁(𝑘)𝑖; 
7:  set 𝑅 =  𝑅 ∪ 𝐶; 
8:  set 𝑁(𝑘)  =  𝑁(𝑘)\𝐶; 
9:   𝑐𝑜𝑠𝑡 = Compute sailing cost for route 𝑅; 
10  𝑑𝑢𝑟 = compute route 𝑅 duration; 
11:  if(𝑐𝑜𝑠𝑡 <  𝐵𝑐𝑜𝑠𝑡 and 𝑑𝑢𝑟 < 𝑚𝑎𝑥𝐷𝑢𝑟) 
12:    if(|𝑁|  ==  0) 
13:    𝐵𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡; 
14:    𝐵𝑅 = R; 
15:   end if 
16:    else 
17:    Recursively run SolveTSPTW (𝑁(𝑘), 𝑚𝑎𝑥𝐷𝑢𝑟); 
18:   end If 
19:   end if 
20:  set 𝑅 =  𝑅\𝐶; 
21:  set 𝑁(𝑘) = 𝑁(𝑘) ∪ 𝐶; 
22: end for 
23: End Function; 
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6.1.2 Voyage-based model 

 In this section, we provide mathematical formulation of the PSVPP. We use as the 

input the set of voyages from the voyage generation algorithm, which was described above, 

and their corresponding costs. As well based on the set of generated voyages we define 

binary parameters 𝐸𝑣,𝑟,𝑢,𝑡 and 𝐴𝑣,𝑖,𝑟 which are described below. The notations for the sets, 

parameters and variables are as follows. 

Sets: Notations: 

𝑵 Set of installations 

𝑵𝒇 Set of installations, which require 𝑓 visits during the week, 𝒇 ∈ {𝟐. . 𝟓}, 𝑵𝒇 ⊆

𝑵 . 

𝑽 Set of PSV types 

𝑾 Set of potential departure days, during the week (Working days in Supply 

base) 

𝑻 Set of possible departure times during the week 

𝑻𝒘 Set of possible departure times during the day 𝑤, 𝒘 ∈ 𝑾, 𝑻𝒘 ∈ 𝑻. 

𝑻𝒕 Set which involve possible departure times, after departure time 𝑡, when PSV  

may not have returned to the supply base from voyages, which have started 

in time t, 𝒕 ∈ 𝑻, 𝑻𝒕 ⊂ 𝑻. 

𝑹 Set of all possible voyages 

𝑹𝒗,𝒕 Set of voyages, which may be assigned by a PSV type 𝑣, at departure time 𝑡, 

𝒗 ∈ 𝑽, 𝒕 ∈ 𝑻, 𝑹𝒗,𝒕 ⊆ 𝑹 . 

𝑻𝒅𝒕,𝒇 Set of departure times after 𝑡, which represented time horizon, when PSV 

may not start or oblige to start from supply base, depended from spread of 

departure required for visit frequency 𝑓,𝒕 ∈ 𝑻, 𝒇 ∈ {𝟐. . 𝟓}, 𝑻𝒕,𝒇 ⊂ 𝑻. 

Parameters Notations: 

𝒒𝒗 Available quantity of PSVs of type,  𝒗 ∈ 𝑽. 

𝑪𝒗
𝑻𝑪 Weekly charter cost for PSV of type, 𝑣 𝒗 ∈ 𝑽. 

𝑪𝒗𝒓
𝑺  Precalculated sailing, service and base costs for voyage 𝑟, which associated 

on PSV of type 𝑣,𝒗 ∈ 𝑽, 𝒓 ∈ 𝑹. 

𝑩𝒘 Maximum number of departure from the supply base during the day w, 𝒘 ∈

𝑾 

𝑭𝒊 Required number of visits during the week for installation 𝑖, 𝒊 ∈ 𝑰 . 
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𝑨𝒊,𝒓 Binary parameter equal 1, if and only if installation i have visits by voyage 

r, ∈ 𝑵, 𝒓 ∈ 𝑹 . 

𝑬𝒗,𝒓,𝒖,𝒕 Binary parameter equal 1 if voyage 𝑟, which sailing by  PSV of type 𝑣, start 

in time 𝑢 and will not have returned from voyage to the supply base in 

possible departure time 𝑡, and 0 otherwise, 𝒗 ∈ 𝑽, 𝒓 ∈ 𝑹, 𝒖 ∈ 𝑻, 𝒕 ∈ 𝑻𝒕. 

Variables: Notations: 

𝒙𝒗,𝒓,𝒕 Binary variable equal 1, if and only if PSV type v start voyage r in departure 

time t, and 0 otherwise,  𝒗 ∈ 𝑽, 𝒓 ∈ 𝑹, 𝒕 ∈ 𝑻 . 

𝒚𝒗 Integer variable which represent quantity PSV of types 𝒗, 𝒗 ∈ 𝑽 . 

 

Mathematical model: 
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The objective function (1) expresses minimization of total vessels charter and sailing 

costs. 

Constraints (2) state that each installation receives the required number of visits 

during the week. Inequalities (3) ensure that at each time interval 𝑡, the number of voyages 

sailed by vessels of type 𝑣 is less or equal than the number of PSVs of type 𝑣 used in the 

schedule. If, for example, integer variable 𝑦𝑣 equals to 2 for vessel type 𝑣, then there are two 

vessels of the same type are used in the schedule, which means that these vessels are coupled 

and may sail each other voyages. If for each type 𝑣 of vessels, 𝑦𝑣 is equal to one then there 

are no coupled vessels in the schedule and inequality states that voyages of the same vessel 

are not overlapped in time. Constraints (4) sets the limit on the number departures from 

supply base during the day. Constraints (5) grantee, there is possible only 1 departure to each 

installation, from the supply base during the day. Constraints (6)-(9) grantee, evenly spread 

of departures for installations with visits frequency 𝑓. For example group of constraints (7) 

ensure even spread of departures for installations with visits frequency 3, stating that there 

should be at least 1 departure within 3 days is required for each installation in set 𝑁3. 

Constraints (10) state that number of vessels of type 𝑣 is can not be more maximum available 

number of vessels of type 𝑞𝑣.Finally, constraints (11) and (12) set the integer and binary 

requirements for the 𝑦𝑣 and 𝑥𝑣𝑟𝑡 variables respectively. 

6.2 ALNS heuristic. 

In this section we provide detailed description of the ALNS heuristic. Heuristic is 

developed with the use of C# programming language with Microsoft visual studio 2013. 

Below are provided the pseudo-code of the main algorithm and pseudocodes of the main 

procedures, and theirs descriptions.  

6.2.1 Heuristic overview. 

The algorithm is applied for a given number of iterations which are defined by a user. 

The first phase in the algorithm is generation of initial solution 𝑧0 which is purely randomly. 

Then, this solution is supposed to be improved over the given number of iterations. At the 

beginning of the each iteration for the current solution 𝑧 (at the first iteration 𝑧 =  𝑧0) its 

neighbourhood 𝑁(𝑧) is defended. Under the current solution z is understood the solution 

with which the algorithm is currently working or tries to improve. As well 𝑧∗ is defined as 

the best found solution up to current iteration. Since the aim of the algorithm is to improve 

the current solution, at the beginning of each iteration transition from the solution 𝑧 to 

solution 𝑧’ in neighbourhood 𝑁(𝑧) is performed with the use of destroy and repair operators. 
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Transition to the neighbourhood solution 𝑧’ is called a 𝑚𝑜𝑣𝑒. The move is performed by the 

means of removing of some number of visits with the use of some destroy operator and then 

reinserting these visits back into the schedule with one of the repair operators. The number 

of visits to be removed is defined randomly between minimal and maximum values defined 

by a user (average 15% - 20% of the total number of visits). Selection of destroy and repair 

operators is performed according by assigned to them probabilities, which are initially equal. 

There are three destroy and three repair operators in the algorithm. The destroy operators 

are: worst removal (Ropke and Pisinger 2006), Shaw removal (Ropke and Pisinger 2006) 

and random voyage removal. The repair operators are: deep greed insertion, 2-regret 

insertion and 3-regret insertion (Ropke and Pisinger 2006).As it was mentioned above, each 

destroy and repair operator has its own probability of being selected. The sum of 

probabilities of destroy operators equal to 1.The same  is for the repair operators. These 

probabilities are recalculated after each (user defined) number of iterations based on their 

previous performance. Proper description of the adaptiveness mechanism is provided below. 

For detailed description of the mechanism of adaptiveness see Ropke and Pisinger (2006), 

Pisinger and Ropke (2010). If the move to the neighbourhood solution 𝑧’ is performed 

successfully (Pseudocode 6.2.1 line 12) i.e. all the removed visits are inserted back into the 

schedule, the algorithm proceeds to the improvement phase. At the improvement phase, the 

solution 𝑧’ is tried to be improved by the set of improvement operators: reduce number of 

voyages, reduce number of vessels, swap visits between voyages and relocate visits between 

voyages (Pseudocode 6.2.1 lines 13-20). These procedures are located in certain sequence 

of the algorithm, and applied cyclically while the solution can be improved. The first 

procedure reduce number of voyages aims to decrease number of voyages in the schedule 

by relocating visits from some voyage to other voyages in the schedule. This is done with 

the aim to reduce the sailing cost and the fleet size, since the idle time of some vessels 

reduced (if some voyages were eliminated). The fleet size reduction is provided by the 

procedure reduce number of vessels, which attempts to reassign all voyages from some 

vessel to other vessels. If such vessel is found, and voyages are reassigned, then this vessel 

is marked as unused. Procedure swap visits between voyages analyses all combinations of 

swapping two visits between all voyages. The aim of this procedure is to reduce the cost of 

the schedule, which is, of course, dependent on the duration of the voyages. Therefore, if the 

cost is reduced and as follows, durations of voyages, then vessels’ idle time is increased. 

Moreover, there is a possibility to decrease the fleet size again, which is done by the 

mentioned above procedure reduce number of vessels. And, the last procedure – relocate 
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visits tries to find best relocation of visits between voyages. After this procedure as well 

applied the procedure reduce number of vessels. Detailed pseudocodes of these improvement 

procedures are provided bellow in section 6.2.6. 

After the improvement phase solution 𝑧’ is compared to solution 𝑧 (solution which 

was before the move at the beginning of the current iteration) and 𝑧∗ (the best found solution 

which was found over the all iterations). If 𝑧’ <  𝑧∗ then, we have found the new best 

solution, 𝑧∗ = 𝑧’. And 𝑧 =  𝑧’ i.e. the current solution is made equal to this new solution 𝑧’ 

and is supposed to be improved further on the next iteration. If 𝑧’ >  𝑧∗ and 𝑧’ <  𝑧 then 

𝑧 =  𝑧′ and 𝑧∗ remains the same (since it was not improved). If 𝑧’ >  𝑧∗ and 𝑧’ >  𝑧 then 𝑧’ 

is accepted (𝑧 =  𝑧’) with some probability (acceptance criteria), (see  Pseudocode 6.2.1 line 

25). If 𝑧’ is not accepted then the algorithm proceeds to the next iteration with the solution 

that was at the beginning of the current i.e. current solution 𝑧 remains unchanged. The logic 

of the acceptance criteria is explained further (see Section 6.2.7). If a certain number of 

iterations (𝛿) passed after the last update of weights, than the weights are updated again (see 

Pseudocode 6.2.1 lines 30-31 and section 6.2.5). The algorithm proceeds to the next 

iteration. After the last iteration, the algorithm returns the best found solution. 
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6.2.2 Initial solution 

Here we described the procedure for generate randomly feasible initial solution 

(schedule). The initial solution contains a set of voyages with a certain departure time during 

the week and sailing by the specific vessels. Represented schedule satisfy spread of 

departure constraint and contain required number of visits for each installation. The 

procedure for generation of the feasible initial solution is described below (Procedure 6.2.2). 

 

Procedure 6.2.1 Main ALNS heuristic for PSVPP 

1:𝑧 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (Procedure 6.2.2.);  
2:Initialize the weight 𝜋; 
3:set the temperature 𝑇; 
4:set 𝑧∗  ←  𝑧; 
5:for 𝑖 =  0 to 𝑁  
6: 𝑧′ ← 𝑧; 
7: 𝑞𝑖𝑡𝑒𝑟 ←Select number of visits to be removed; 
8: 𝑂𝑝𝑟𝑟𝑒𝑚 ←Select removal operator; 
9: 𝑧′ ← 𝑂𝑝𝑟𝑟𝑒𝑚(𝑧′, 𝑞𝑖𝑡𝑒𝑟,𝑆) (Procedures in section 6.2.3); 

10: 𝑂𝑝𝑟𝑖𝑛𝑠 ← Select insert operator; 
11: 𝑧′ ← 𝑂𝑝𝑟𝑖𝑛𝑠(𝑧′, 𝑆) (Procedures in section 6.2.4); 
12: if 𝑆 == ∅ and 𝑧′ is feasible then 
13:  do 
14:   Reduce number of routes (Procedure 6.2.6.1); 
15:   Reduce number of vessels (Procedure 6.2.6.2); 
16:   Swap visits between voyages (Procedure 6.2.6.3); 
17:   Reduce number of vessels (Procedure 6.2.6.2); 
18:   Relocate visits between voyages (Procedure 6.2.6.4); 
19:   Reduce number of vessels (Procedure 6.2.6.2); 
20:  while z improves; 
21:  if 𝑐(𝑧′) ≤ 𝑐(𝑧∗) then 
22:   𝑧∗ ← 𝑧′; 
23:   𝑧 ← 𝑧′; 
24:  end if 
25:  if 𝐴𝑐𝑐𝑒𝑝𝑡(𝑧, 𝑧′) then (Described in section 6.2.7) 
26:   𝑧 ← 𝑧′; 
27:  end if 
28: end if 
29: if 𝑖/𝛿 ==  0 then 
30:  Update weights 𝜋 (Described in section 6.2.5); 
31: end If 
32: 𝑇 ← 𝑇 ∗ 𝑐; 
33:Next 𝑖; 
34:return 𝑠∗; 
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Procedure 6.2.2. Construct initial solution for ALNS. 

1: Function ConstructInitialSolution(installations 𝐼, Vessels 𝑉, maximum 
number of departure per day 𝜇𝑑𝑒𝑝,maximum installations per route 𝜇𝑖𝑛𝑠𝑡 ) 
2: Array: R = an array containing  all routes; 
3: do 
4: 𝑅 =  ∅; 
5:  Bool Flag: f = true; 
6: for each 𝑖 ∈ 𝐼 
7:  Randomly generate departure day pattern with respect to visit 
frequency; 
8:  𝑉𝑖𝑠𝐶𝑜𝑚𝑏𝑡,𝑖 = 1 if installation 𝑖 is assigned on departure day 

t,0 otherwise; 
9: end for 
10: for each 𝑡 ∈ 𝑇 
11:  Define number of visits per departure day t: 𝑞 =  ∑ 𝑉𝑖𝑠𝐶𝑜𝑚𝑏𝑡,𝑖𝑖∈𝐼  

12:  if 𝑞 > 𝜇𝑑𝑒𝑝 ∗ 𝜇𝑖𝑛𝑠𝑡 then 
13:   𝑓 = 𝑓𝑎𝑙𝑠𝑒; 
14:  end if 
15:  Define number of voyages per day: 𝜌 =  ⌈𝑞/𝜇𝑖𝑛𝑠𝑡 ⌉ 
16:  Define number of visits per route: 𝜏 = ⌈𝑞/𝜌⌉; 
17:  for k = 0 to 𝜌 
18:   Create empty voyages r;  
19:   Counter: v = 0  
20:   do  
21:    Installation: 𝑖 =  𝐼𝑣; 
22:    if 𝑉𝑖𝑠𝐶𝑜𝑚𝑏𝑡,𝑖 == 1 then 
23:     Assign visit to installation i on route r; 
24:    end if 
25:    set 𝑣 = 𝑣 + 1; 
26:   while 𝑣 <  |𝐼| and |𝑟| <  𝜏; 
27:   Call procedure 6.2.7.1 for route r; 
28:   𝑅 = 𝑅 ∪ 𝑟; 
29:  end for 
30: end for 
31: for each 𝑟 ∈ 𝑅 
32:  Bool flag: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 =  𝑓𝑎𝑙𝑠𝑒; 
33:  for each 𝑣 ∈ 𝑉 
34:   if voyage r is possible to assign on vessel v then 
35:    voyage r is assigned to vessel v; 
36:    𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒; 
37:    exit for; 
38:   end if 
39:  end for 
40:  if 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 ==  𝑓𝑎𝑙𝑠𝑒 then 
41:   𝑓 =  𝑓𝑎𝑙𝑠𝑒; 
42:  end if 
43: end for 
44: while 𝑓 ==  𝑓𝑎𝑙𝑠𝑒 
45: 𝑧0 ← 𝑅; 
46: return 𝑧0; 
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6.2.3 Destroy operators 

This section describes three destroy operators. All three removal operators return the 

solution 𝑧 and pool of uninserted visits 𝑆 as an output. More detailed description of all 

removal operators is provided below. 

6.2.3.1 Shaw removal 

Shaw removal heuristic was first presented by in Shaw (1997),Shaw (1998).The 

main objective of the Shaw removal operator is to remove visits which are similar i.e. close 

in servicing time, location etc. For more detail description, see Ropke and Pisinger (2006). 

This approach provides easier possibility to insert all visits back into the schedule and 

perhaps better neighbor solution. For determining somewhat similar visits we define a 

related measure R(i, j). This measure expresses a relatedness between two visits 𝑖 and 𝑗 and 

is computed by a given formula: 

)13()()(),( , jiji TTdjiR  

 

This formula contains two terms:𝑑𝑖,𝑗 which denotes the travel distance between 

installations visits and 𝑇𝑖 indicates departure time to installation 𝑖. Both terms are weighted 

by the weights 𝛼 and 𝛽. The procedure for removing visits from schedule by shaw removal 

is presented below in Pseudocode 6.2.3.1.  

Pseudocode 6.2.3.1. Shaw Removal.  

1:Function ShawRemoval(solution 𝑧, number of visits 𝑞) 
2:  visit : 𝑣 = a randomly selected visit from 𝑧; 
3:  pool of visits: 𝑆 =  {𝑣}; 

4:  remove visit 𝑣 from the soltution 𝑧; 
5:  while |𝑆| < 𝑞 do 
6:  𝑟 = a randomly selected request from 𝑆; 
7:  Array : 𝑉 = an array containing all visits from 𝑧 not in 𝑆; 
8:  Array : 𝑅 = an array containing rank for each visit in 𝑧; 
9:  Counter: 𝑖 =  0; 
10:  while 𝑖 <  |𝑉| do 

11:   𝑅𝑖 = 𝛼(𝑑𝑉𝑖,𝑟) + 𝛽(𝑇𝑉𝑖
− 𝑇𝑟); 

12:   𝑖 = 𝑖 + 1; 
13:  end while 
14:  sort 𝑅 such that 𝑖 < 𝑗 ⇒ 𝑅𝑖 < 𝑅𝑗; 

15:  Insert in Pool 𝑆 first visit in array 𝑅; 
16: end while 
16:return 𝑧, 𝑆; 
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6.2.3.2 Random Voyage removal 

The random voyage removal operator simply selects 𝑞 random voyages from the 

solution 𝑧, and then place all visits from voyages into pool 𝑆 and remove voyages from the 

solution. Pseudocode of this procedure is shown below (Pseudocode 6.2.3.1). 

6.2.3.3 Worst Removal 

The general idea of the worst removal operator is to remove visits with the maximum 

cost reduction values, i.e. remove visits with high cost. In presented pseudocode 6.2.3.3. for 

each visit one by one cost 𝑐′ (schedule cost without visit) is computed. Visit with lowest cost 

𝑐’ is removed from the solution 𝑧. Algorithm repeats while number of visits in pool 𝑆 less 

than 𝑞.   

Pseudocode 6.2.3.2. Random Voyage removal.  

1:Function VoyageRemoval(solution 𝑧, number of voyages remove 𝑞) 
2:pool of visits: 𝑆 =  ∅; 
3:Counter: 𝑖 =  0; 
4:while 𝑖 <  𝑞 do 
5: 𝑟 = a randomly selected voyage from 𝑧; 
6: Array : 𝑉 = an array containing all visits from 𝑟; 
7: 𝑆 = 𝑆 ∪ 𝑉; 
8: remove r from solution z; 
9: 𝑖 =  𝑖 + 1; 
10:end while 
11:return 𝑧, 𝑆; 

Pseudocode 6.2.3.3. Worst removal.  

1: Function Worst Removal (solution 𝑧, number of visits 𝑞) 
2:  Pool of visits :𝑆 = ∅; 
3:  while |𝑆| <  𝑞 do 
4:   Array : 𝑉 = contains all visits from solution 𝑧; 
5:  Cost:  =  𝑐(𝑧) ; 
6:  𝜗 =  ∅; 
7:  for each 𝑣 ∈ 𝑉  
8:   remove visit 𝑣 from solution z; 
9:   Cost: 𝑐′ = 𝑐(𝑧); 
10:   if 𝑐′ <  𝑐  then 
11:    𝜗 = 𝑣; 
12    𝑐 =  𝑐′; 
13:   end if 
14:   insert visit 𝑣 back into the solution 𝑧; 
15:  end for 
16:  𝑆 = 𝑆 ∪ {𝜗}; 
17:  remove visit 𝜗 from solution 𝑧; 
18:  end while 
19: return 𝑆 , 𝑧; 
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6.2.4 Repair operators 

General idea of repair operators is insertion back into schedule all visits from the 

pool of uninserted visits 𝑆. We provide below descriptions for 2 repair operators with their 

pseudocodes: 𝑑𝑒𝑒𝑝 𝑔𝑟𝑒𝑒𝑑𝑦 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 and k-regret insertion (which represent the class of 

regret operators, depending of the value of the parameter 𝑘).  

6.2.4.1 Deep Greedy insertion 

The deep greedy insertion is a simple construction heuristic. Heuristic contains 

several number of iterations. An Heuristic contains several number of iterations. At each 

iteration algorithm tries to insert each visit from pool S into the schedule and if insertion is 

possible, then procedure computes schedule cost with this insertion. In the end of iteration, 

an algorithm inserts visit into the schedule with the minimal cost increase and removes visit 

from S. Pseudocode of the algorithm is showed below (Procedure 6.2.4.1). 

 

Procedure 6.2.4.1 Deep greedy insertion  

1:Function DeepGreedyInsertion(solution 𝑧, Visits Pool 𝑆) 
2:Best evaluation: 𝜀 =  ∅; 
3:Array : 𝑅 = an array containing all voyages from z; 
3:do 
4: 𝜀 =  ∅; 
5: Counter: 𝑖 =  0; 
6: while 𝑖 <  |𝑆| do 
7:  Counter 𝑗 =  0; 
8:  while 𝑗 <  |𝑅| 
9: Evaluation: 𝑒 ← get evaluation by calling 

procedure 6.2.7.2 for 𝑅𝑗, 𝑆𝑖; 

10:   if 𝑒 ≠ ∅ and 𝑐(𝑒) < 𝑐(𝜀) then  
11:    𝜀 = 𝑒; 
12:   end if 
13:   𝑗 =  𝑗 + 1; 
14:  end while 
15:  𝑖 =  𝑖 + 1; 
16: end while 
17: if 𝜀 ≠ ∅ then 
18:  𝑟 ← target route in evaluation 𝜀; 
19:  𝑣 ← insertion visit in evaluation 𝜀; 
20:  Insert visit 𝑣 in voyage 𝑟; 
21:  Call procedure 6.2.7.1. for route 𝑟;  
22:  Remove visit 𝑣 from pool 𝑆; 
23: end if 
24: while 𝜀 ≠ ∅ and |𝑆| > 0; 
25: return 𝑧, 𝑆; 
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6.2.4.2 Regret-k insertion heuristic 

The regret heuristic represents an evolution of the deep greedy heuristic by making a 

kind of look ahead when selecting a visit for insertion. Let Δfi,k  the change in the objective 

function resulted after the insertion of a visit i into voyage k. We define xik {1,..,n} as a 

variable indicating the route for which insertion of a visit i has the k’th lowest insertion cost 

(variables are sorted in increasing order of the value of the objective function). If k < k’  then 

∆𝑓𝑖,𝑥𝑖𝑘 
≤  ∆𝑓𝑖,𝑥

𝑖𝑘′ 
. So, we can we define   𝑐𝑖

∗ = ∆𝑓𝑖,𝑥𝑖2 
−  ∆𝑓𝑖,𝑥𝑖1

 as the difference between 

the best and the second to the best insertion options for visit i  or in other words we define 

𝑐𝑖
∗ as a regret value. 

During the search for better visit for insertion, the regret heuristic, at each iteration, 

selects the visit so that:  

max
𝑖∈𝐼

𝑐𝑖
∗

       (14) 

In other words, we strive to insert a visit which we would regret if we do not insert it 

now. When inserting a visit i into route k, the visit is inserted into the minimum cost position. 

Perusing this logic the heuristic can be extended by defining a class of regret heuristics. The 

k-regret heuristic aims to insert a visit such that:  

  max
𝑖∈𝐼

{∑ (∆𝑓𝑖,𝑥𝑖𝑗 
−  ∆𝑓𝑖,𝑥𝑖1

𝑘
𝑗=1 )}    (15) 

this means that we take into account insertion options of visit i for the first best k 

insertions. If, applying k-regert, some visits cannot be inserted into n-k+1 number of routes 

then the request with the fewest number of routes for insertion. For this heurist, at least two 

insertions options required to perform the assessment. Formulation (15) represents regret-2 

heuristic, since it consider the two best routes for insertion of a visit. The k-regret heuristic 

considerers for each visit i the best k routes for insertion and selects the one with maximal 

cost difference of insertion into k-1. Pseudocode (6.2.4.2) presents the logic of k-regret 

insertion procedure, adopted for our heuristic.  
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Procedure 6.2.4.2. Regret-k insertion  

1: Function RegretInsertion(solution 𝑧, number of visits 𝑞, regret 𝑘) 
2:  do 
3:  Highest regret value: 𝜎 = 0; 
4:  Best evaluation: 𝜀 = ∅; 
5:  Counter: 𝑖 = 0; 
6:  while 𝑖 <  |𝑆| do 
7:   Counter: 𝑗 =  0; 
8:   Array : 𝐸 = possible evaluation for visit 𝑖; 
9:   Array:  := containing all voyages in solution 𝑧; 
10:   while 𝑗 <  |𝑅| do 
11: evaluation: 𝑒 ←get evaluation by calling 

procedure  6.2.7.2 for 𝑅𝑗, 𝑆𝑖; 

12:    if 𝑒 ≠ ∅  then  
13:     𝐸 = 𝐸 ∪ {𝑒}; 
14:    end if 
15:    𝑗 =  𝑗 + 1; 
16:   end while 
17:   sort 𝐸 such that 𝑎 < 𝑏 ⇒ 𝑓(𝐸𝑎) > 𝑓(𝐸𝑏); 
18:   if |𝐸| ≥ 𝑘 then 
19:    Counter: 𝑗 = 0; 
20:    Accumulated regret value: 𝜃 = 0; 
21:    while 𝑗 < 𝑘 do 

22:     𝜃 = 𝜃 + (𝑐(𝐸𝑗) − 𝑐(𝑧)) ; 

23:     𝑗 = 𝑗 + 1; 
24:    end while 
25:    if (𝜃 > 𝜎) then 
26:     𝜎 =  𝜃; 
27:     𝜀 =  𝐸0; 
28:    end If 
29:   else if |𝐸| > 0 
30:    𝜀 =  𝐸0; 
31:    break while; 
32:   end If 
33:   𝑖 =  𝑖 + 1; 
34:  end while 
35:  if 𝜀 ≠ ∅ then 
36:   𝑟 ← target route in evaluation 𝜀; 
37:   𝑣 ← insertion visit in evaluation 𝜀; 
38:   Insert visit 𝑣 in voyage 𝑟; 
39:   Call procedure 6.2.7.1. for route 𝑟; 
40   Remove visit 𝑣 from pool 𝑆; 
41:  end if 
42:  while 𝜀 ≠ 0; 
43: return 𝑧, 𝑆; 
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6.2.5 Selection of destroy and repair operators. 

In section 6.2.3. we described three destroy operators (Shaw, random voyage and 

worst removal) and  in section 6.2.4. we provide three repair operators (deep greedy,  regret-

2 insertion and regret-3).  In this section, we provide selection mechanism that is used for 

both groups of operators. We remind that selection of destroy and repair operator take place 

at the beginning of each iteration.   

6.2.5.1 Probability recalculation. 

All operators are selected according to probabilities which depends on their 

performance during the run of the algorithm. Probabilities are equal at the first iteration. Let 

K be the set of operators (either destroy or repair),  j  K. Pj  – probability of selection of 

operator j. In order to select an operator we assign a weight to each of the operators wi. The 

probability of selection of an operator j is then calculated according to the following 

formulation (see Ropke and Pisinger (2006)): 

                                                                  𝑝𝑗 =
𝑤𝑗

∑ 𝑤𝑖
𝑘
𝑖=1

                                                                (16) 

N.B! Probabilities are defined separately for destroy and repair operators. 

6.2.5.2 Weights adjustment. 

In the above section we described weights and probability calculation for destroy 

and repair operator. In this section we describe how these weights are adjusted for each 

operator during the algorithm run. The main idea of weight adjustment is to record 

performance of each operator and assign different score depending on the performance 

efficiency. The search is divided into a number of segments. Each segment corresponds 50 

or 100 iterations (user defined). Since the initial probabilities are equal for each operator, 

the score for each operator is set to zero. The score of an operator increases by σ1, σ2, or σ3 

depending on the following conditions: 

Parameter Description 

𝜎1 After applying the last remove-insert operators the algorithm found new 

global best solution. 

𝜎2 After applying the last remove-insert operators the algorithm found new 

solution that has not acceptance before, worse than global best solution, but 

better than current. 
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𝜎3 After applying the last remove-insert operators the algorithm found new 

solution that has not acceptance before, worse than current solution, but 

solution was accepted. 

Table 1 – Types of parameters that increase the score of a heuristic  

At the end of each segment the weight of an operator i is recalculated based on its 

score. Let wij be the weight of operator i and the js segment. The weight is used in formulation 

(17) for probability calculation. When the segment j is over, the weight of operator i within 

the next segment j+1is defined as follows: 

                                                              𝑤𝑖,𝑗+1 = 𝑤𝑖,𝑗(1 − 𝑟) + 𝑟
𝜋𝑖

𝜃𝑖
                                         (17) 

Where πi corresponds to the total score of the an operator i for the last segment j. 𝜃𝑖 

represents the number of times the operator i was used during the last segment. As well, 

there is reaction factor r which defines the degree of reaction of weights adjustment. For 

example if we set r to 0, the scores are not used at all and the algorithm uses those initial 

weights. For more information see (Ropke and Pisinger 2006).  

6.2.6 Improvement operators 

This section describes following set of improvement operators: reduce number of 

voyages, reduce number of vessels, swap visits between voyages and relocate visits between 

voyages. The general idea of represented operators is schedule cost decrease after made 

move to the neighborhood by efficient application improvement procedures.  Swap visits 

and relocate visits are aimed to reduce voyages durations and sailing costs. Reduce number 

of vessels tries to reduce charter cost of the schedule by minimizing fleet size composition. 

While reduce number of voyages simultaneously reduce sailing and charter costs by 

minimizing number of routes. More detail descriptions and pseudocodes for each 

improvement operator are provided below. 
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6.2.6.1 Reduce number of Voyages. 

Procedure 6.2.6.1. tries to reduce number of voyages in the schedule by a relocation 

all visits from each voyage into another voyages. This procedure allows increasing an idle 

time between voyages and decrease total schedule cost.  

6.2.6.2 Reduce number of Vessels 

This procedure tries to reduce fleet size by reassigning each voyage from one vessel 

to other vessels. If it is performed then the total schedule cost are sufficiently reduced. 

Pseudocode of this procedure are provided below. (Procedure 6.2.6.2.) 

Procedure 6.2.6.1. Reduce number of voyages 
1: Function ReduceNuberOfvoyages (solution 𝑧) 
2: Array : 𝐾 = set containing all voyages from the solution;  
3: Index of voyage: 𝜀 = −1; 
4: do 
5: 𝜀 = −1; 
6: Schedule Cost Change: 𝜆 = 0; 
7: Counter 𝑖 = 0; 
8: while 𝑖 < |𝐾| do 
9:  Solution: 𝑧′ = Copy of the solution 𝑧; 
10:  Array: 𝑆 = an array containing all visits from voyage 𝐾𝑖; 
11:  Remove voyage 𝐾𝑖 from the solution 𝑧′;; 
12:  Try insert visits from 𝑆 into solution 𝑧′ (Procedure 6.2.4.1); 
13:  if 𝑆 ==  ∅ and 𝜆 < 𝑐(𝑧) − 𝑐(𝑧′)then 
14:   𝜆 = 𝑐(𝑧) − 𝑐(𝑧′); 
15:   𝜀 = 𝑖; 
16:  end if 
17:  𝑖 =  𝑖 + 1; 
18: end while 
19: if 𝜀 > 0 then 
20:  Array: 𝑆 = an array containing all visits from voyage 𝐾𝜀; 
21:  Remove voyage 𝐾𝜀 from the solution 𝑧; 
22:  Insert visits from 𝑆 into solution 𝑧 (Procedure 6.2.4.1); 
23: end if 
24: while 𝜀 ≥ 0 
25: return z; 
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Procedure 6.2.6.2. Reduce number of vessels 

1: Function ReduceNumberOfVessels(solution 𝑧) 
2: 𝑧′ = copy of the solution 𝑧; 
3: Set: 𝑉 = a set containing all vessels from solution 𝑧′; 
4: 𝜃 =  𝑀; 
5: Counter: 𝑘 =  0; 
6: while 𝑘 < |𝑅| 
7: 𝜇 ← Insert value which is containing overlap in time if all 

voyages from vessels 𝑉𝑖 will be reassigned to another vessels 
in schedule 𝑧′; 

8:  if 𝜇 <  𝜃 then 
9:   𝜗 = 𝑖; 
10:   𝜇 =  𝜃; 
11:  end if 
12:  𝑘 = 𝑘 + 1; 
13: end while 
14: Array 𝑅 = an array containing all voyages from vessel 𝑉𝜗; 
15: Pool of visits 𝑆 =  ∅; 
16: 𝑘 = 0; 
17: while 𝑘 < |𝑅| 
18:  Remove voyage 𝑅𝑘 from vessel 𝑉𝜗; 
19:  Insert voyage 𝑅𝑘 into the vessel 𝑉𝜀; 
20 Move each voyage during a day in vessel 𝑉𝜀 for reducing overlap 

in time; 
21:  Array: 𝑃 an array containing all voyages from vessel 𝑉𝜀; 
22:  Counter m = 0; 
23:  while m < |𝑃| 
24:   if voyage 𝑃𝑚 is overlapped in time then 
25:    Visit: 𝜈 = worst visit in voyage 𝑃𝑚; 
26:    Remove visit 𝜈 from voyage 𝑃𝑚; 
27:    Insert visit 𝜈 in Pool of visits 𝑆; 
28:   else 
29:    𝑚 =  𝑚 +  1; 
30:   end if  
31:  end while 
32:  k = k + 1; 
33: end while; 
34: remove vessel 𝑉𝜗 from the solution 𝑧′; 
35: Call regret-2 insertion for Pool of visits 𝑆 and solution 𝑧’ 

(Procedure 6.2.4.2) 
36: if 𝑆 = ∅ then 
37:  𝑧 =  𝑧’; 
38: end if 
39: return 𝑧 
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6.2.6.3 Swap visits between voyages 

Swap procedure is based on the one presented by Bräysy and Gendreau (2005). The 

main idea of the procedure is in the swap of customers between two any routes. Which 

customers should be selected for swapping is decided either heuristically (randomly) or by 

enumerating all possible combination and the selecting the most cost efficient. Figure 3 

presents the example of swap procedures by (Bräysy and Gendreau 2005) which is executed 

under 6 edges. It consist of two figures, the left one demonstrates two routes before the 

application of the procedure, the right figure shows how routes were modified after “Swap”. 

The edges (𝑖 − 1, 𝑖), (𝑖, 𝑖 + 1), (𝑗 − 1, 𝑗) and (𝑗, 𝑗 + 1) are replaced (𝑖 − 1, 𝑗), (𝑗, 𝑖 + 1), (𝑗 −

1, 𝑖) and (𝑖, 𝑗 + 1), i.e., two visits from different voyages are simultaneously inserted into the 

other voyages. Proposed in this master thesis procedure (Procedure 6.2.6.3) tries to swap 

two visits between voyages while cost decreasing is possible it possible. 

6.2.6.4 Relocate visits between voyages 

This procedure  tries  to reduce cost by insertion each visit from each voyage into 

another voyage. For example, in Figure 4 the right side shows the picture after execution of 

the procedure, the edges (𝑖 − 1, 𝑖), (𝑖, 𝑖 + 1) and (𝑗, 𝑗 + 1) are replaced by (𝑖 − 1, 𝑖 + 1), (𝑗, 𝑖) 

and (𝑖, 𝑗 + 1), i.e., visit 𝑖 from the origin voyage is inserted into the destination voyage. 

Procedure repeats while the total schedule cost decreases. Pseudocode of this porcedure is 

described in Procedure (6.2.6.4). 

Figure 3 “Swap” improvement procedure (Bräysy and Gendreau 2005) 

Figure 4 Relocate insertion procedure (Bräysy and Gendreau 2005) 
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Procedure 6.2.6.3. Swap visits between voyages 

1: Function SwapVisits (𝑧 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛}) 
2:  𝜀 = ∅; 
3:  Array : 𝑅 = an array containing all voyages from z; 
4:  do 
5:  ∆ = 0; 
6:  𝜀 = ∅; 
7:  𝑖 = 0; 
8:  while 𝑖 <  |𝑅| do 
9:   Array : 𝑉 = an array containing all visits from voyage 
𝑅𝑖; 
10:   𝑗 =  0; 
11:   while 𝑗 < |𝑉| do 
12:    𝑘 =  𝑖 + 1; 
13:    while 𝑘 <  |𝑅| do 
14:     𝑙 =  0; 
15:     Array : Υ = all visits from voyage 𝑅𝑘; 
16:     while 𝑙 <  |𝛶| do 
17:      if 𝑉𝑗 ≠ Υ𝑙 then 

18:  evaluation 𝑒 ← get evaluation 
by calling procedure 6.2.7.3 
for 𝑅𝑖, 𝑉𝑗, 𝑅𝑘 , Υ𝑙; 

19:       If 𝑒 ≠ ∅ and 𝑐(𝑧) − 𝑐(𝑒) > ∆ then 
20:        ∆ =  𝑐(𝑧) − 𝑐(𝑒); 
21:        𝜀 = 𝑒; 
22:       end if 
23:      end if 
24:      𝑙 =  𝑙 + 1; 
25:     end while 
26:     𝑘 =  𝑘 +  1; 
27:    end while 
28:    𝑗 = 𝑗 + 1; 
29:   end while 
30:   𝑖 = 𝑖 + 1; 
31:  end while 
32:  if 𝜀 ≠ ∅ then 
33:   𝑟1 ← route 𝑟1 in evaluation 𝜀; 
34:   𝑟2 ← route 𝑟2 in evaluation 𝜀; 
35:   𝑣1 ←visit 𝑣1 from route 𝑟1 in evaluation 𝜀; 
36:   𝑣2 ←visit 𝑣2, from route 𝑟2 in evaluation 𝜀; 
37:   remove visit 𝑣1 from route 𝑟1; 
38   remove visit 𝑣2 from route 𝑟2; 
39:   insert visit 𝑣1 in route 𝑟2; 
40   insert visit 𝑣2 in route 𝑟2; 
41:   Call procedure 6.2.7.1. for route 𝑟1; 
42:   Call procedure 6.2.7.1. for route 𝑟2; 
43:  end if 
44:  while 𝜀 ≠ ∅ 
45: return 𝑧; 
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6.2.7 Route optimization operator and evaluations. 

In this section are detailed described route optimization procedure and “Insert visit 

Evaluation” and “Swap Visits Evaluation”.  

Procedure 6.2.6.4. Relocate visits between voyages 

1: Function RelocateVisits(𝑧 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛}) 
2:  Evaluation: 𝜀 = ∅; 
3:  Array : 𝑅 = an array containing all voyages from z; 
4:  do 
5:  Cost decrease value ∆ = 0; 
6:  𝜀 = ∅; 
7:  Counter: 𝑖 = 0; 
8:  while 𝑖 <  |𝑅| do 
9:   Array: 𝑉 = an array containing all visits from voyage 𝑅𝑖; 
10:   Counter: 𝑗 =  0; 
11:   while 𝑗 < |𝑉| do 
12:    Counter: 𝑘 =  0; 
13:    while 𝑘 <  |𝑅| do 
14:     if 𝑘 ≠ 𝑖 then 
15: Evaluation: 𝑒= Get evaluation for 

insertion visit 𝑉𝑗 from route 𝑅𝑖 into 

route 𝑅𝑘 (Procedure 6.2.7.2.); 
16:      if 𝑒 ≠ ∅ and 𝑐(𝑧) − 𝑐(𝑒) > ∆ then 
17:       ∆ =  𝑐(𝑧) − 𝑐(𝑒); 
18:       𝜀 = 𝑒; 
19:      end if 
20:     end if 
21:     𝑘 =  𝑘 +  1; 
22:    end while 
23:    𝑗 = 𝑗 + 1; 
24:   end while 
25:   𝑖 = 𝑖 + 1; 
26:  end while 
27:  if 𝜀 ≠ ∅ then 
28:   𝑠𝑟 ← source route in evaluation 𝜀; 
29:   𝑡𝑟 ← target route in evaluation 𝜀; 
30:   𝜗 ← visit in evaluation 𝜀 from route 𝑠𝑟; 
31:   remove visit 𝜗 from route 𝑠𝑟; 
32:   insert visit 𝜗 in route 𝑡𝑟; 
33:   Call procedure 6.2.7.1. for route 𝑠𝑟; 
34:   Call procedure 6.2.7.1. for route 𝑡𝑟; 
35:  end if 
36:  while 𝜀 ≠ ∅ 
37: return 𝑧; 
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6.2.7.1 Intra-voyage optimization procedure 

 The general idea of intra-voyage optimization procedure (Procedure 6.2.7.1) is 

determination an optimal sequence of installations in voyage 𝑟 by solving TSPTW. This 

algorithm is frequently called from other procedures. In this regard, we made this procedure 

more simply with the aim to decrease computational time. The algorithm uses first-accept 

strategy while constructs an optimal visits sequence, i.e. procedure places each visit in first 

possible position in sequence if voyage duration is reduced. 

Procedure(6.2.7.1) Intra-voyage optimization. 

1:Function VoyageOptimization(voyage 𝑟) 
2:do 
3: flag: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 =  𝑓𝑎𝑙𝑠𝑒; 
4: 𝑉 ← set of visits in voyage 𝑟; 
5: Counter: 𝑖 =  0; 
6: do 
7:  flag: 𝑠𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 =  𝑓𝑎𝑙𝑠𝑒; 
8:  𝑑 ← voyage duration; 
9:  set 𝑣 =  𝑉𝑖; 
10:  Counter: 𝑗 =  0; 
11:  do 
12:   visit 𝑣 removed from position 𝑖; 
13:   visit 𝑣 is placed on position 𝑗; 
14:    𝑛𝑑 ←  voyage duration; 
15:   if 𝑛𝑑 < 𝑑 then 
16:    𝑠𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒; 
17:    if 𝑗 >  𝑖 then 
18:     𝑖 =  𝑖 –  1; 
19:    end if 
20:   else 
21:    visit 𝑣 removed from position 𝑗; 
22:    visit 𝑣 is placed on position 𝑖; 
23:   end if 
24:    𝑗 =  𝑗 +  1; 
25:  while 𝑗 <  |𝑉| and s𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 == 𝑓𝑎𝑙𝑠𝑒 ; 
26:  if 𝑠𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ==  𝑡𝑟𝑢𝑒 then 
27:   𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒; 
28:  end if 
29:  𝑖 =  𝑖 +  1; 
30: while 𝑖 <  |𝑉|; 
31: while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 == 𝑡𝑟𝑢𝑒; 
32: return r; 
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6.2.7.2 Insert evaluation procedure. 

This procedure (procedure 6.2.7.2.) is called from procedures 6.2.4.1 and 6.2.4.2. 

The aim of this procedure is compute the evaluation of insertion visit 𝜗 into the voyage 𝑡𝑝. 

If it possible under several restrictions (which are described in pseudocode) a procedure 

inserts visit into the voyage, computes schedule cost, and removes visit from the voyage.  In 

the end procedure returns evaluation 𝜀 of insertion, which is empty if insertion is impossible. 

Pseudocode of the procedure is provided below (Procedure 6.2.7.2).  

6.2.7.3 Swap evaluation procedure. 

This procedure (procedure 6.2.7.2.) is called from procedure 6.2.6.3. The aim of this 

procedure is compute the evaluation of insertion visit 𝜗1 into the voyage 𝑟2 and 𝜗2 into the 

voyage 𝑟1. If it possible under several restrictions (which are described in pseudocode) a 

procedure Swaps visits between voyages, computes schedule cost, and returnt visit back into 

Procedure(6.2.7.2) Inert visit evaluation 

1: Function GetInsertEvaluation(solution 𝑧, voyage 𝑡𝜌, visit 𝜗, voyage 𝑠𝜌 
(optionally))  
2: Evaluation: 𝜀 = ∅; 
3: Bool : 𝜔 = 𝑡𝑟𝑢𝑒 if insert visit is possible under vessels capacity 

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
4: Bool : 𝛾 = 𝑡𝑟𝑢𝑒 if insert visit is possible under maximum number of 

visits per voyage constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
5: Bool : 𝜃 = 𝑡𝑟𝑢𝑒 if visit 𝜗 is not already on voyage 𝑡𝜌, 𝑓𝑎𝑙𝑠𝑒 
otherwise; 
6: Bool :𝜆 = 𝑡𝑟𝑢𝑒 if insert visit is possible under spread of departures 

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
7: if 𝜔 == 𝑡𝑟𝑢𝑒 and 𝛾 == 𝑡𝑟𝑢𝑒 and 𝜃 == 𝑡𝑟𝑢𝑒 and 𝜆 == 𝑡𝑟𝑢𝑒 then 
8:  if 𝑠𝜌 ! =  ∅ then 
9:   Remove visit 𝜗 from voyage 𝑠𝜌; 
10:   Call procedure 6.2.7.1. for voyage 𝑠𝜌; 
11:  end if 
12:  Insert visit 𝜗 in voyage 𝑡𝜌; 
13:  Call procedure 6.2.7.1. for voyage 𝑡𝜌; 
14 Bool : 𝜎 = 𝑡𝑟𝑢𝑒 if voyage 𝑡𝜌 is possible under maximum route 

duration constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
15: Bool :𝜇 = 𝑡𝑟𝑢𝑒 if voyage 𝑡𝜌 is not overlapped in schedule during 

the planning horizon, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
16:  if 𝜇 == 𝑡𝑟𝑢𝑒 and 𝜎 == 𝑡𝑟𝑢𝑒 then 
17:   𝜀 ← voyages 𝑡𝜌 and 𝑠𝜌 ,visit 𝜗 , and 𝑐(𝑧); 
18:  end if 
19:  Remove visit 𝜗 from voyage 𝑡𝜌; 
20:  Insert visit 𝜗 in voyage 𝑠𝜌; 
21:  Call procedure 6.2.7.1. for voyage 𝑡𝜌; 
22:  Call procedure 6.2.7.1. for voyage 𝑠𝜌; 
23: end if 
24: return 𝜀; 
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original voyages. In the end procedure returns evaluation 𝜀 of swap visits, which is empty if 

swap is impossible. Pseudocode of the procedure is provided below (Procedure 6.2.7.3). 

6.2.8 Acceptance criteria 

Since we need to diversify the search and strive to avoid local optimum, we need 

some mechanism enabling us to do so. The simplest way is to accept at the end of each 

iteration only those solutions, which are better than the current solution. This (as we 

convinced) leads to trapping into some local optimum neighbourhood. Therefore, we take 

the idea of solution acceptance from simulated annealing. Let s’ be the solution obtained at 

the end of an iteration and s is the current solution. We assume to accept the solution s’ with 

probability: 

Procedure(6.2.7.3) Swap visits evaluation 

1: Function GetSwapEvaluation(solution 𝑧, voyage1 𝑟1, visit1 𝑣1, voyage2 
𝑟2, visit2 𝑣2) 
2: 𝜀 = ∅; 
3: Bool : 𝜔 = 𝑡𝑟𝑢𝑒 if swap visits is possible under vessels capacity 

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
4: Bool : 𝛾 = 𝑡𝑟𝑢𝑒 if swap visits is possible under maximum number of 

visits per voyage constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
5: Bool : 𝜃 = 𝑡𝑟𝑢𝑒 if visit 𝑣1 is not already on voyage 𝑟2 and visit 𝑣2 

is not on voyage 𝑟1, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
6: Bool :𝜆 = 𝑡𝑟𝑢𝑒 if swap visits is possible under spread of departures 

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
7: if 𝜔 == 𝑡𝑟𝑢𝑒 and 𝛾 == 𝑡𝑟𝑢𝑒 and 𝜃 == 𝑡𝑟𝑢𝑒 and 𝜆 == 𝑡𝑟𝑢𝑒 then 
8:  Remove visit 𝑣1 from voyage 𝑟1; 
9:  Remove visit 𝑣2 from voyage 𝑟2; 
10:  Insert visit 𝑣2 in voyage 𝑟1; 
11:  Insert visit 𝑣1 in voyage 𝑟2; 
12:  Call procedure 6.2.7.1. for voyage (𝑟1); 
13:  Call procedure 6.2.7.1. for voyage (𝑟2); 
14: Bool : 𝜎 = 𝑡𝑟𝑢𝑒 if voyages 𝑟1 and 𝑟2 are possible under maximum 

route duration constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
15: Bool :𝜇 = 𝑡𝑟𝑢𝑒 if voyages 𝑟1 and 𝑟2 is not overlapped in 

schedule during the planning horizon, 𝑓𝑎𝑙𝑠𝑒 otherwise; 
16:  if 𝜇 == 𝑡𝑟𝑢𝑒 and 𝜎 == 𝑡𝑟𝑢𝑒 then 
17:   𝜀 ← voyages 𝑟1 and 𝑟2, visit1 𝑣1 and 𝑣2, and 𝑐(𝑧); 
18:  end if 
19:  Remove visit 𝑣2 from voyage 𝑟1; 
20:  Remove visit 𝑣1 from voyage 𝑟2; 
21:  Insert visit 𝑣1 in voyage 𝑟1; 
22:  Insert visit 𝑣2 in voyage 𝑟2; 
23:  Call procedure 6.2.7.1. for voyage (𝑟1); 
24:  Call procedure 6.2.7.1. for voyage (𝑟2); 
25: end if 
26 return 𝜀; 
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𝑒−
𝑓(𝑠′)−𝑓(𝑠)

𝑇                                                                  (18) 

 

Where T is the temperature and always positive (T>0). The temperature starts from Tstart  

and decreases with each iteration according to the formula 𝑇 =  𝑇 ∗ 𝑐, where 0 < c < 1 is 

the cooling rate of the temperature. In our case, we set Tstart equal to the cost of the initial 

solution. The values of c is made depended on the total number of iterations (ƞ) the 

algorithm is to be run: 

                                                               𝑐 =  1 −  
1

ƞ ∗
1
7

                                                         (19) 

the term 
1

7
  is defined empirically so that the probability of accepting the solution s,’ when 

c(s’) > c(s), is almost 0 by the last iteration.  
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7.0 Computational Experiments 

In this section, we describe our computational experiments. In section 7.1 we start 

with finding of some tuning instances and proceed with the description of parameters tuning. 

In section 7.2 we present the results obtained by the algorithm. We compare heuristic 

performance to the two-phase exact approach and provide heuristic results for large 

instances.  

7.1 Tuning instances 

The set of tuning instances is represented by instances of medium size. The total 

number of installations supply from the base located in Mongstad. So we randomly deleted 

some number of installations and created 10 different instances. There are 3 instances with 

8 installations, 3 instances with 10 installations, 3 instances with 12 installations and 1 

instance with 13 installations. Those instances of the same size have different combinations 

of installation. The number of visits in this instances are varies from 27 to 48. 

7.1.1 Parameters tuning 

In this section we present user defined parameters which are subject to tuning and 

results.  

All our parameters are subdivided in to three categories: parameters of destroy 

operators, parameters of repair operators and those used in acceptance criteria. We first 

review parameters of destroy operators. First we have do define which portion of the solution 

we have to destroy when making a move. As it was mentioned above, we remove random 

number of visits, which is limited by some minimum and maximum values (𝐿𝑉 and 𝑀𝑉). 

So, we have to define these minimum and maximum values experimentally. As regards 

destroy operators, only Shaw removal heuristic contains controlled parameters: 𝛼 and 𝛽. 

Since we have already defined which regret heuristics to apply (regret-2, regret-3), there is 

no need in parameters tuning for insertion heuristics. As well we do not conduct experiments 

with the size of the segment for which weights and probabilities of repair and destroy 

operators are updated. 

 As regards the acceptance criteria we use parameter 𝑐 defining cooling rate and we 

use 4 parameters for weight adjustment of destroy and repair operators: 𝜎1, 𝜎2, 𝜎3 and 𝑟 see 

section 6.2.5 

7.1.2 ALNS parameters tuning results 

 We developed some experimental values for each parameter (see Table 2). Fine-

tuning of parameters is conducted on the second phase by allowing one of parameters to take 
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predefine values, while keeping the rest of parameters fixed. Since we know the number of 

values each parameter can take, we can calculate the total number of combinations with 

different parameters values. This is done by multiplication of all the numbers of values of 

all parameters. In total we have 864 different combinations. We have 10 tuning instances 

for parameters tuning experiments. Each instance is supposed to be run 5 times for each 

combination of parameters values. In total we have to run the algorithm 4 320 times. For 

each combination of parameters values we define the average deviation from the best found 

solution for each instance and then the average for all instances (within a combination).Each 

instance is run for 2000 iterations that takes in average 7 minutes. The total time taken to 

conduct the whole experiment for all instances and parameters setting is 84 hours. The best 

setting of parameters is provided in Table 3. The procedure of parameters tuning was 

automated. 

Parameters Possible values 

𝒓 0.2 0.4 0.6  

𝝈𝟏 20 25   

𝝈𝟐 15 20   

𝝈𝟑 10 15   

𝜶 0.25 0.5 0.75  

𝜷 0.25 0.5 0.25  

𝑽𝒊𝒔𝒊𝒕𝒔 (%) 10-15 12-17 15-20 17-20 

Table 2 - Experimental value for each parameter 

 

N 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 𝐿𝑉 𝑀𝑉 Gap(%) 

(%) 468 0.5 0.5 25 20 10 0.6 17 20 0.02 

Table 3 - Best founded parameters setting 

 The results of all experiments of all parameters settings a provided in Appendix A  

7.2 Results 

 This section provides results of the computational experiments, which were 

conducted, with the aim of testing the performance of the heuristic. For this purpose, we 

developed a set of test instances. 

7.2.1 Test instances 

All the test instances were generated based on the instance provided by the Statoil 

ASA, which contains 26 installations (the main instance).  All these instances are divided in 

to two groups. The first group involves instances of the small and medium size (3 – 13 

installations per instance). The second group involves instances with 14-26 installations per 
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instance. All these instances were generated by gradually deleting installations from the 

main instance (one by one). In total, we have 10 small and medium size instances and 13 

large size instances. 

Location of all installations supplied from the supply base located in Mongstad is 

provided in the Error! Reference source not found. below. 

7.2.2 Input data 

 In this section, we describe the input data to the algorithm on the example of the 

main instance (instance with 26 installations).  

There are three input files used for the input data. The first file contains names of 

installations and supply base, open and closing times, demands, visits frequencies, service 

times (lay times) and as well coordinates of installations (LatDec and LonDec). In addition 

this file contains the values of minimum and maximum installations per voyage, coordinate 

of offshore point. There are three possible departures from the supply base within a day. 

Example of the input file is provided on the Figure 6.  

The second file contains information about the supply vessels fleet. For the list of 

supply vessels there is indicated its capacity, speed, fuel cost (NOK/ton), fuel consumption 

rates for sailing (ton/h), servicing and waiting at an installation (ton/h), at the supply base 

(ton/h). Example of this input file see on the Figure 7. 

Figure 5 Location of offshore installations and Mongstad supply base. 
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And the last input file contains feasible patterns of departures spread combinations 

for each visit frequency. See on the Figure 8. 

 

 

Figure 7 Input data example for supply vessels. 

 

 

Figure 8 Input data example for visit day’s combinations. 

 

7.2.3 Comparative analysis and results 

 

In this section we provide the results of the conducted experiments and comments to 

them. All the tests were conducted with the use of the computer with following 

characteristics: 3.5. GHz Intel core i5 and 8 GB RAM.  Mathematical model of the two phase 

approach was developed in AMPL (A Mathematical Programming Language) and run using 

solver CPLEX 12.6.0.0. Both route generation algorithm (for the two-phase approach) and 

Figure 6 Input data example for offshore installations 
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ALNS metaheuristic algorithm were programmed using C# programming language and .net 

4.5 framework.  

First we cover experiments for the small and medium size instances. In the Error! 

Reference source not found. provided results of the two phase approach and ALNS 

heuristic.  

 

The first column contains the names of all instances. Each name is compounded of 

several numbers. The first number defines the instance size interns of the number of 

installations. The second number define the number of installations with time windows, and 

the third number defines instance size interns of the total number of visits. The second 

column shows the gap in % between two phase method and ALNS heuristics objectives 

functions i.e. costs.  As we see heuristic is able to provide optimal and near optimal solutions 

for small and medium size problems. There is no gap for instances with 3-9 and 11-13 

installations, the heuristic manged to find optimal solutions. There is a minor gap for 

instance with 10 installations. The gap for this instance can be explained by a very narrow 

scope (neighbourhood) of solutions with two vessels. Such instances are so called “heavy 

instances”. The schedule for this instance is relatively tight and adding on more installation 

into schedule or increasing visit frequency of some existing installation in the schedule may 

lead to the fleet size increase. As we see from the results, the instance with 11 installations 

(and the rest larger instances) requires 3 vessels. Columns there and four (CPU sec) reflect 

Instance Gap (%) CPU (sec) Number of Vessels 

 Two phase 

method vs 

ALNS 

Two phase 

method 

ALNS Two phase 

method 

ALNS 

3-0-9 0 1 1 1 1 

4-0-12 0 1 2 1 1 

5-0-15 0 1 3 1 1 

6-0-19 0 2 8 2 2 

7-1-23 0 3 15 2 2 

8-1-27 0 8 25 2 2 

9-1-32 0 10 27 2 2 

10-1-37 0.23 176 76 2 2 

11-1-42 0.00 252 117 3 3 

12-4-45 0.00 178 58 3 3 

13-4-48 0.00 57 63 3 3 

Average 0.03 50.44 30.44 1.78 1.78 

Table 4 – Comparative analisis between two-phase approach and ALNS heuristic   
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the running time in seconds of the two-phase approach and ALNS heuristic. Two- phase 

approach performs faster (and this is obvious) on small size instances (3-9). Nevertheless, 

the situation changes for the medium size instances. As we see, the running time of the 

ALNS heuristic for medium size instances (10-13) is shorter compared to two-phase 

approach (in average twice). The last two columns provide the number of vessels used in the 

schedule provided by the two approaches. The number of vessels is equal for the same 

instance size. We may conclude that developed algorithm is able to provide optimal or near 

optimal solution for small and medium size instance within just a minute.   

Now we discuss results of the experiments for large size instances. Unfortunately 

optimal solutions for large instances are unavailable since the problem complexity and as 

follows computational time grows exponentially with the problem size. Therefore, for the 

instances with 14-26 installations we conduct experiments for different number of iterations. 

The aim of such experiment is to define how the number of iterations influences the cost of 

the solution. And as well we find out the preferable number of iterations required to obtain 

the solution of a relatively good quality within a short time. For this we have to conduct 

trade-off analysis between objective values of solutions and running time of the algorithm.  

We conducted experiments for 13 instances (14 -26 installations). For each instance 

the algorithm was run for different number of iterations, from 100 to 1000 with 100 interval. 

As well, we aimed to assess the stability of the results and for this purpose we run the 

algorithm 10 times for each instance and number of iterations setup. The results of the 

experiments are summarized in the Appendix B. For each instance and for each setup of the 

number of iterations we defined the average cost, the average running time (for 10 runs) and 

the gap between the average cost and the cost of the best found solution for all setups of the 

number of iterations. In the table below (Table 5) we provide the excerpt from the Appendix 

B where for each instance showed only the cost of the best found solution, the number of 

vessels in the best found solution and the gap from this solution for each setup of the number 

of iterations. The table is performed in the form of the heat map. Small gaps are marked 

green and the colour gradually changes to bright red as the gap increases. As we see, the 

algorithm performs rather efficiently. In most cases (except instances with 17, 18 and 23 

installations) the algorithm managed to find solutions which in average deviate from the best 

found less than 1%.  Results with the gap less than 1% mean that for all 10 runs (for certain 

instance and number of iterations) the algorithm managed to find solutions with the same 

number of vessels as in the best found solution. A gap of  2.6-2.8 %  means that in 1 of 10 

runs the algorithm did not manage to drop the number of vessels to the minimum (under 
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minimum we mean the number of vessels in the best found solution) and the number of 

vessels is by one vessel more than in the best found schedule. There were no solutions where 

the number of vessels is more by 2 than in the best found. Each gap increase by 2.6-2.8 % 

means reduction of the number of successful solutions (with minimal number of vessels) by 

one.  Results with 26% gap mean that out of 10 runs there were not found any solutions with 

minimal number of vessels. As we see, the average gap reduces with increase of the number 

of iterations and the minimum gap is mostly achieved for 1000 iterations. 

 

 Special interest represent results for the instances with 17, 18 and 23 installations. 

The worst results are for the instance with 18 installations where the gap varies from 18 to 

26 % that means that 7-10 runs out of 10 are unsuccessful. Those schedules where the 

algorithm managed to find solutions with minimal number of vessels turned out to be very 

tight (see example Figure 9) and very difficult for the algorithm to find. We refer the instances 

for which it is quite difficult to find a schedule with minimal number of vessels – «heavy 

instances». In most cases, a vessel should start loading/unloading operations just 10-15 

minutes after it arrives to the base. The neighbourhood area of solutions with minimal 

number of vessels, for such instances, is very small and of course requires additional efforts 

for the algorithm to find a good solution.  The gap reduction is achieved by increasing the 

number of iterations (as we see from the table). For instances with 17 and 23 installations, 

the gap reduced almost up to minimal when the number of iterations was set to 1000. 

Although for the instance with 18 installations such gap reduction is quite unclear (5%) that 

means we deal with a very tight schedule. One more interesting aspect, related to heavy 

instances, is that the solution for the next instance following the heavy instance (in terms of 

the number of installations) requires one vessel more. This fact further supports ours 

Iterations

Instance Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

14-4-51 0,26 0,15 0,28 0,08 0,10 0,03 0,08 0,07 0,02 0,02 5106776,97 3

15-4-54 0,55 0,64 0,32 0,35 0,29 0,19 0,21 0,29 0,21 0,18 5155404,36 3

16-4-58 11,29 2,98 0,44 2,86 0,19 0,15 0,10 0,16 0,08 0,14 5218878,34 3

17-5-61 21,84 24,39 8,54 3,44 11,09 5,67 0,62 3,18 0,37 3,06 5245374,24 3

18-5-64 26,40 26,36 26,31 18,46 23,67 18,44 21,02 26,24 23,57 20,95 5292785,34 3

19-6-66 0,52 0,37 0,31 0,29 0,33 0,33 0,25 0,32 0,27 0,22 6723965,22 4

20-6-72 0,38 0,30 0,21 0,15 0,17 0,16 0,15 0,15 0,14 0,10 6830353,28 4

21-6-77 0,55 0,41 0,43 0,37 0,34 0,36 0,30 0,30 0,27 0,29 6895713,99 4

22-6-81 2,75 0,63 4,56 2,41 0,48 0,32 0,34 0,34 0,26 0,29 6954724,85 4

23-7-84 14,64 8,64 8,52 8,52 6,50 6,51 6,50 2,41 2,48 0,41 6996699,15 4

24-7-87 0,59 0,51 0,38 0,34 0,36 0,35 0,31 0,26 0,24 0,27 8560334,23 5

25-8-88 0,41 0,32 0,26 0,27 0,21 0,21 0,22 0,15 0,19 0,16 8581096,14 5

26-8-91 0,59 0,51 0,48 0,44 0,33 0,34 0,36 0,29 0,26 0,31 8630445,26 5

Average 6,213276 5,092913 3,926709 2,922644 3,388671 2,544064 2,342772 2,627937 2,18184 2,031012

700 800 900 1000

Optimal Costs

Optimal number 

of vessels

100 200 300 400 500 600

Table 5 - A heat map of the gap from best-found solution with respect to the instance size and number 

of iterations 
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assumptions concerning so-called “heavy instances”. For heavy instance, increase of the 

number of installations at least by one (sometimes by two) or increase of the visit frequency 

leads to the increase of the fleet size. This is supported by experiments. For instances with 

19 and 24 installation (which follow heavy instances with 18 and installations), the required 

fleet size 4 and 5 vessels respectively (that is one vessel more than for the instances with 18 

and 23 installations). 

 

Figure 9 Example of tight schedule 

As well we need to assess the running time of the algorithm. For this purpose, we 

analyse the larges instance (26 installations) and assess how changes the cost and 

computational time with increase of the number of iterations. On the Figure 10 Trade-off 

analyse for the instance with 26 installationsFigure 9 we see the results of the experiments 

conducted for different number of iterations. The x-axis corresponds to the number of 

iterations. The left y-axis correspond to the cost of the solution and the right y-axis 

corresponds to the running time of the algorithm. As we see, the highest cost (8837328) 

corresponds to the minimal number of iterations (30) and minimal computation time (32 

sec). The lowest cost (8656772) is achieved for the maximal number of iterations (1000). 

However, such low cost is achieved at the expense of the computational time, which is 1048 

sec. Both for minimal and maximal number of iteration the algorithm managed to find 

solution with minimal number of vessels. Therefore, selection of the number of iterations 

will affect only operational costs (sailing and servicing). We may observe a serious cost 

reduction from 30 to 40 iterations (by 129364 NOK). The difference between the cost of the 

solutions for 100 and 1000 is 36599. The dependence between the time and cost is linear 

and we state that at least 100 iterations (just 130sec) is preferably required to get a relatively 

good solution.  Therefore, we assume that it is up to a researcher how many iteration to set.  

Taking into account the provided above analysis of the large size instances and presence of 

so-called “heavy instances”, requires running more iterations to insure sufficient fleet size 

reduction (since we do not know in advance which instance is “heavy”). From our point of 

view, taking into account quite high speed of the algorithm which is able to run 1000 
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iterations within 1000 sec (17 min), we recommend to run the algorithm for at least 1000 

iterations to ensure good quality of a solution in case of heavy instance.  

In addition, Shyshou et al. (2012) kindly provided large size test instances (26-31 

installations) which were used in their paper. We run ours algorithm for these instances and 

compared results. The results are summarized in the table 6. As we see, our algorithm 

provided better solutions for theses instance with the average gap 4.07 %. For instances with 

27 and 28 installations the ALNS managed to find the solutions with fewer number of vessels 

(6 vessels compared to Shyshou et al. (2012) solutions which contain 7 vessels). The gaps 

in the objective function for these solutions are 11.38% and 10.07 % respectively. And as 

we see ours heuristic performs extremely faster compared to Shyshou et al. (2012). The 

average running time for these large instances is 427 seconds, while Shyshou et al. (2012) 

heuristic requires in average 13 795 sec, that is in average 32.3 times slower.  

Instance Costs Gap (%) CPU (sec) Number of Vessels 

 
LNS by 

Shyshou 
ALNS 

LNS by vs 

ALNS 

LNS by 

Shyshou 
ALNS 

LNS by 

Shyshou 
ALNS 

26-94-5 5 603 570 5 553 327 0.9 12 712 95 6 6 

27-98-5 6 458 500 5 723 607 11.38 10 403 263 7 6 

28-102-5 6 553 680 5 953 712 10.07 22 584 1019 7 6 

29-108-5 6 617 220 6 605 827 0.17 10 366 408 7 7 

30-114-5 6 715 540 6 631 356 1.39 12 148 456 7 7 

31-115-6 6 735 720 6 626 829 1.62 14 557 307 7 7 

Average 6 447 371 6 183 524 4.07 13 795 427 6.83 6.5 

Table 6-Comparison results of the Shushou LNS heuristic and represented ALNS heuristic for large 

size instances. 

Figure 10 Trade-off analyse for the instance with 26 installations 
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We may conclude that ours algorithm is able to find solutions of a better quality 30 

times faster than that one developed by Shyshou et al. (2012).  
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8.0 Conclusions and further research 

In the upstream offshore petroleum logistics, platform supply vessels (PSVs) are the 

main cost contributor. PSVs are used to deliver all the necessary material and equipment to 

offshore installations. Steady and uninterrupted supply is crucial for oil operators since the 

down time of an installation, in case some delay or disrupt, is enormous. The fleet of supply 

vessel sis associated with vessels charter and fuel costs. Therefore, there is trade-off between 

the service level and the cost of supply. To ensure high service level, sufficient number of 

vessels and theirs careful planning is required. 

In this thesis, we to try to solve the problem of supply of the oil filed located in the 

North Sea and belonging to Statoil ASA, the largest oil operator in Norway. The oil field is 

supplied from the onshore supply based located in Mongstad and accounts for 26 

installations. In the literature the problem is known as Periodic supply Vessel Planning 

Problem (PSVPP). The objective of PSVPP is to construct a weekly vessels schedule so that 

vessels charter cost and fuel cost is minimized. The problem is of a tactical level with 

planning horizon of one week. The problem involves three combinatorial optimization 

problem: packing (fleet size reduction), sequencing (routing) and scheduling (departures of 

vessels on voyages). Therefore, problems of large size is impossible to solve optimally 

within a reasonable time.  

The objective of this thesis is to develop a decision support tool able to provide 

solutions of a good quality within a relatively short time. We studied existing literature 

dedicated to PSVPP and as well, some heuristic approaches to combinatorial problems. We 

selected Large Neighbourhood Heuristic (LNS) as a framework for ours algorithms and 

considered several known approaches to enhance its efficiency. As a starting point, we 

selected the LNS developed by Shyshou et al. (2012) for the PSVPP. We revised the 

heuristic, added several new procedures, improved existing and incorporated simulated 

annealing and adaptiveness framework.  The resulted algorithm is referred to as Adaptive 

Large Neighbourhood Search (ALNS) heuristic. 

Since we need to validate the resulted algorithm and check its performance, we 

developed two-phase exact approach based on set partitioning formulation of the PSVPP. 

The two-phase approach The ALNS was tested by comparing solutions obtained for small 

and medium size instances to those obtained by using the two-phase exact approach. The 

ALNS proved to be quite efficient both in terms of costs and computational times compared 

to exact approach. For most instances the heuristic managed to find optimal or near optimal 

solutions within rather short time and thus outperforming the exact approach. Since it is 
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hardly possible to compare Heuristic and exact approach for large size instances, we 

compared ours ALNS to the LNS developed by (Shyshou et al. 2012)The results of the 

experiments state that ours algorithm is able to find better solutions 30 times faster than the 

LNS by Shyshou et al. Furthermore, for several instances ours algorithm manged to find 

solution with fewer number of vessels. 

As well, we outline several directions for the future research. First,  there is need to 

improve the efficiency of the heuristic to provide good solution for heavy instances i.e. 

instances for which resulted schedules are very tight. As experiment showed, the algorithm 

does not always mange to reduce the fleet size to the minimum for some instances (large 

size). Especial feature of such instances is that increase of the instance just by one 

installation (adding of a new one) or increase of the visit frequency of some existing 

inevitably lead to the fleet size increase. The resulting schedule with minimal number of 

vessels for such instances is very tight and as follows is very difficult to find. Therefore, 

some work should be conducted to improve the algorithm to search for good solution for 

such types of instances. (see (Ahuja et al. 2002)) 

As well, there is a need to incorporate some instrument allowing for generation of a 

robust solution to cope with weather uncertainty. Too tight schedules are inapplicable in 

practice and therefore some approach is needed to cope with uncertainty (see (Maisiuk and 

Gribkovskaia 2014);  (Vlachos 2004)) 

Furthermore, in practice there are often cooperation between supply bases i.e. when 

a vessel starts a voyage at one bases and finishes at another. As well, there is a problem of 

distribution of installations between bases i.e. from which supply base it more efficient to 

serve some installations (especially those equally in between bases). For this reason, the 

algorithm should involve the possibility to construct schedules for several bases 

simultaneously. The problem then becomes multi base (see (Crevier, Cordeau, and Laporte 

2007); (Cordeau, Gendreau, and Laporte 1997)) 
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Appendix A. 

Results obtained by ALNS heuristic for parameters tuning. 

N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV 
1 3.34 0.25 0.25 20 15 10 0.2 10 15 433 0.18 0.5 0.5 25 15 10 0.2 10 15 
2 0.19 0.25 0.25 20 15 10 0.2 12 17 434 8.01 0.5 0.5 25 15 10 0.2 12 17 
3 3.33 0.25 0.25 20 15 10 0.2 15 20 435 0.15 0.5 0.5 25 15 10 0.2 15 20 
4 0.13 0.25 0.25 20 15 10 0.2 17 20 436 0.13 0.5 0.5 25 15 10 0.2 17 20 
5 4.83 0.25 0.25 20 15 10 0.4 10 15 437 4.98 0.5 0.5 25 15 10 0.4 10 15 
6 6.42 0.25 0.25 20 15 10 0.4 12 17 438 1.71 0.5 0.5 25 15 10 0.4 12 17 
7 0.18 0.25 0.25 20 15 10 0.4 15 20 439 0.18 0.5 0.5 25 15 10 0.4 15 20 
8 1.70 0.25 0.25 20 15 10 0.4 17 20 440 9.67 0.5 0.5 25 15 10 0.4 17 20 
9 1.77 0.25 0.25 20 15 10 0.6 10 15 441 9.70 0.5 0.5 25 15 10 0.6 10 15 
10 0.18 0.25 0.25 20 15 10 0.6 12 17 442 8.06 0.5 0.5 25 15 10 0.6 12 17 
11 1.77 0.25 0.25 20 15 10 0.6 15 20 443 7.96 0.5 0.5 25 15 10 0.6 15 20 
12 1.69 0.25 0.25 20 15 10 0.6 17 20 444 4.88 0.5 0.5 25 15 10 0.6 17 20 
13 6.51 0.25 0.25 20 15 15 0.2 10 15 445 14.4

9 

0.5 0.5 25 15 15 0.2 10 15 
14 4.95 0.25 0.25 20 15 15 0.2 12 17 446 0.23 0.5 0.5 25 15 15 0.2 12 17 
15 7.97 0.25 0.25 20 15 15 0.2 15 20 447 1.81 0.5 0.5 25 15 15 0.2 15 20 
16 6.39 0.25 0.25 20 15 15 0.2 17 20 448 4.86 0.5 0.5 25 15 15 0.2 17 20 
17 4.93 0.25 0.25 20 15 15 0.4 10 15 449 0.29 0.5 0.5 25 15 15 0.4 10 15 
18 4.98 0.25 0.25 20 15 15 0.4 12 17 450 3.34 0.5 0.5 25 15 15 0.4 12 17 
19 6.44 0.25 0.25 20 15 15 0.4 15 20 451 0.32 0.5 0.5 25 15 15 0.4 15 20 
20 6.51 0.25 0.25 20 15 15 0.4 17 20 452 7.96 0.5 0.5 25 15 15 0.4 17 20 
21 0.15 0.25 0.25 20 15 15 0.6 10 15 453 0.22 0.5 0.5 25 15 15 0.6 10 15 
22 6.40 0.25 0.25 20 15 15 0.6 12 17 454 9.74 0.5 0.5 25 15 15 0.6 12 17 
23 3.36 0.25 0.25 20 15 15 0.6 15 20 455 0.14 0.5 0.5 25 15 15 0.6 15 20 
24 6.49 0.25 0.25 20 15 15 0.6 17 20 456 6.43 0.5 0.5 25 15 15 0.6 17 20 
25 8.09 0.25 0.25 20 20 10 0.2 10 15 457 9.62 0.5 0.5 25 20 10 0.2 10 15 
26 11.1

8 

0.25 0.25 20 20 10 0.2 12 17 458 4.91 0.5 0.5 25 20 10 0.2 12 17 
27 0.31 0.25 0.25 20 20 10 0.2 15 20 459 4.89 0.5 0.5 25 20 10 0.2 15 20 
28 1.77 0.25 0.25 20 20 10 0.2 17 20 460 0.19 0.5 0.5 25 20 10 0.2 17 20 
29 8.12 0.25 0.25 20 20 10 0.4 10 15 461 4.80 0.5 0.5 25 20 10 0.4 10 15 
30 1.70 0.25 0.25 20 20 10 0.4 12 17 462 3.40 0.5 0.5 25 20 10 0.4 12 17 
31 6.41 0.25 0.25 20 20 10 0.4 15 20 463 1.70 0.5 0.5 25 20 10 0.4 15 20 
32 3.32 0.25 0.25 20 20 10 0.4 17 20 464 6.49 0.5 0.5 25 20 10 0.4 17 20 
33 1.69 0.25 0.25 20 20 10 0.6 10 15 465 0.11 0.5 0.5 25 20 10 0.6 10 15 
34 8.03 0.25 0.25 20 20 10 0.6 12 17 466 6.48 0.5 0.5 25 20 10 0.6 12 17 
35 0.26 0.25 0.25 20 20 10 0.6 15 20 467 0.22 0.5 0.5 25 20 10 0.6 15 20 
36 4.89 0.25 0.25 20 20 10 0.6 17 20 468 0.02 0.5 0.5 25 20 10 0.6 17 20 
37 4.86 0.25 0.25 20 20 15 0.2 10 15 469 1.79 0.5 0.5 25 20 15 0.2 10 15 
38 9.69 0.25 0.25 20 20 15 0.2 12 17 470 4.95 0.5 0.5 25 20 15 0.2 12 17 
39 4.87 0.25 0.25 20 20 15 0.2 15 20 471 6.43 0.5 0.5 25 20 15 0.2 15 20 
40 6.45 0.25 0.25 20 20 15 0.2 17 20 472 8.01 0.5 0.5 25 20 15 0.2 17 20 
41 6.46 0.25 0.25 20 20 15 0.4 10 15 473 1.67 0.5 0.5 25 20 15 0.4 10 15 
42 0.16 0.25 0.25 20 20 15 0.4 12 17 474 3.35 0.5 0.5 25 20 15 0.4 12 17 
43 1.70 0.25 0.25 20 20 15 0.4 15 20 475 0.15 0.5 0.5 25 20 15 0.4 15 20 
44 1.74 0.25 0.25 20 20 15 0.4 17 20 476 6.49 0.5 0.5 25 20 15 0.4 17 20 
45 1.86 0.25 0.25 20 20 15 0.6 10 15 477 3.31 0.5 0.5 25 20 15 0.6 10 15 
46 1.85 0.25 0.25 20 20 15 0.6 12 17 478 8.19 0.5 0.5 25 20 15 0.6 12 17 
47 1.66 0.25 0.25 20 20 15 0.6 15 20 479 1.68 0.5 0.5 25 20 15 0.6 15 20 
48 0.26 0.25 0.25 20 20 15 0.6 17 20 480 1.78 0.5 0.5 25 20 15 0.6 17 20 
49 8.02 0.25 0.25 25 15 10 0.2 10 15 481 6.44 0.5 0.75 20 15 10 0.2 10 15 
50 9.57 0.25 0.25 25 15 10 0.2 12 17 482 4.87 0.5 0.75 20 15 10 0.2 12 17 
51 8.07 0.25 0.25 25 15 10 0.2 15 20 483 1.78 0.5 0.75 20 15 10 0.2 15 20 
52 4.85 0.25 0.25 25 15 10 0.2 17 20 484 0.09 0.5 0.75 20 15 10 0.2 17 20 
53 6.47 0.25 0.25 25 15 10 0.4 10 15 485 3.39 0.5 0.75 20 15 10 0.4 10 15 
54 1.74 0.25 0.25 25 15 10 0.4 12 17 486 8.07 0.5 0.75 20 15 10 0.4 12 17 
55 1.68 0.25 0.25 25 15 10 0.4 15 20 487 6.41 0.5 0.75 20 15 10 0.4 15 20 
56 4.87 0.25 0.25 25 15 10 0.4 17 20 488 6.45 0.5 0.75 20 15 10 0.4 17 20 
57 3.35 0.25 0.25 25 15 10 0.6 10 15 489 6.48 0.5 0.75 20 15 10 0.6 10 15 
58 0.10 0.25 0.25 25 15 10 0.6 12 17 490 1.67 0.5 0.75 20 15 10 0.6 12 17 
59 6.42 0.25 0.25 25 15 10 0.6 15 20 491 4.93 0.5 0.75 20 15 10 0.6 15 20 
60 6.39 0.25 0.25 25 15 10 0.6 17 20 492 6.40 0.5 0.75 20 15 10 0.6 17 20 
61 11.2

4 

0.25 0.25 25 15 15 0.2 10 15 493 11.2

8 

0.5 0.75 20 15 15 0.2 10 15 
62 6.52 0.25 0.25 25 15 15 0.2 12 17 494 6.40 0.5 0.75 20 15 15 0.2 12 17 
63 3.33 0.25 0.25 25 15 15 0.2 15 20 495 8.04 0.5 0.75 20 15 15 0.2 15 20 
64 3.27 0.25 0.25 25 15 15 0.2 17 20 496 8.02 0.5 0.75 20 15 15 0.2 17 20 
65 9.61 0.25 0.25 25 15 15 0.4 10 15 497 4.86 0.5 0.75 20 15 15 0.4 10 15 
66 6.49 0.25 0.25 25 15 15 0.4 12 17 498 0.14 0.5 0.75 20 15 15 0.4 12 17 
67 0.07 0.25 0.25 25 15 15 0.4 15 20 499 4.89 0.5 0.75 20 15 15 0.4 15 20 
68 4.79 0.25 0.25 25 15 15 0.4 17 20 500 0.12 0.5 0.75 20 15 15 0.4 17 20 
69 0.12 0.25 0.25 25 15 15 0.6 10 15 501 1.88 0.5 0.75 20 15 15 0.6 10 15 
70 14.4

8 

0.25 0.25 25 15 15 0.6 12 17 502 0.23 0.5 0.75 20 15 15 0.6 12 17 
71 8.03 0.25 0.25 25 15 15 0.6 15 20 503 4.85 0.5 0.75 20 15 15 0.6 15 20 
72 0.11 0.25 0.25 25 15 15 0.6 17 20 504 8.05 0.5 0.75 20 15 15 0.6 17 20 
73 0.08 0.25 0.25 25 20 10 0.2 10 15 505 0.21 0.5 0.75 20 20 10 0.2 10 15 
74 3.20 0.25 0.25 25 20 10 0.2 12 17 506 6.50 0.5 0.75 20 20 10 0.2 12 17 
75 6.53 0.25 0.25 25 20 10 0.2 15 20 507 3.39 0.5 0.75 20 20 10 0.2 15 20 
76 3.30 0.25 0.25 25 20 10 0.2 17 20 508 4.81 0.5 0.75 20 20 10 0.2 17 20 
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77 3.41 0.25 0.25 25 20 10 0.4 10 15 509 0.31 0.5 0.75 20 20 10 0.4 10 15 
78 1.75 0.25 0.25 25 20 10 0.4 12 17 510 0.10 0.5 0.75 20 20 10 0.4 12 17 
79 0.25 0.25 0.25 25 20 10 0.4 15 20 511 8.08 0.5 0.75 20 20 10 0.4 15 20 
80 4.86 0.25 0.25 25 20 10 0.4 17 20 512 1.79 0.5 0.75 20 20 10 0.4 17 20 
81 3.31 0.25 0.25 25 20 10 0.6 10 15 513 6.49 0.5 0.75 20 20 10 0.6 10 15 
82 1.64 0.25 0.25 25 20 10 0.6 12 17 514 0.18 0.5 0.75 20 20 10 0.6 12 17 
83 8.03 0.25 0.25 25 20 10 0.6 15 20 515 0.12 0.5 0.75 20 20 10 0.6 15 20 
84 3.26 0.25 0.25 25 20 10 0.6 17 20 516 3.35 0.5 0.75 20 20 10 0.6 17 20 
85 0.34 0.25 0.25 25 20 15 0.2 10 15 517 6.48 0.5 0.75 20 20 15 0.2 10 15 
86 0.22 0.25 0.25 25 20 15 0.2 12 17 518 1.73 0.5 0.75 20 20 15 0.2 12 17 
87 0.24 0.25 0.25 25 20 15 0.2 15 20 519 6.39 0.5 0.75 20 20 15 0.2 15 20 
88 11.2

8 

0.25 0.25 25 20 15 0.2 17 20 520 0.27 0.5 0.75 20 20 15 0.2 17 20 
89 8.12 0.25 0.25 25 20 15 0.4 10 15 521 3.42 0.5 0.75 20 20 15 0.4 10 15 
90 0.14 0.25 0.25 25 20 15 0.4 12 17 522 1.80 0.5 0.75 20 20 15 0.4 12 17 
91 0.22 0.25 0.25 25 20 15 0.4 15 20 523 0.11 0.5 0.75 20 20 15 0.4 15 20 
92 6.48 0.25 0.25 25 20 15 0.4 17 20 524 8.00 0.5 0.75 20 20 15 0.4 17 20 
93 0.25 0.25 0.25 25 20 15 0.6 10 15 525 15.9

9 

0.5 0.75 20 20 15 0.6 10 15 
94 6.46 0.25 0.25 25 20 15 0.6 12 17 526 4.92 0.5 0.75 20 20 15 0.6 12 17 
95 0.19 0.25 0.25 25 20 15 0.6 15 20 527 0.16 0.5 0.75 20 20 15 0.6 15 20 
96 0.14 0.25 0.25 25 20 15 0.6 17 20 528 6.46 0.5 0.75 20 20 15 0.6 17 20 
97 4.88 0.25 0.5 20 15 10 0.2 10 15 529 6.43 0.5 0.75 25 15 10 0.2 10 15 
98 6.46 0.25 0.5 20 15 10 0.2 12 17 530 0.18 0.5 0.75 25 15 10 0.2 12 17 
99 1.66 0.25 0.5 20 15 10 0.2 15 20 531 0.18 0.5 0.75 25 15 10 0.2 15 20 
100 6.38 0.25 0.5 20 15 10 0.2 17 20 532 3.31 0.5 0.75 25 15 10 0.2 17 20 
101 8.08 0.25 0.5 20 15 10 0.4 10 15 533 11.3

2 

0.5 0.75 25 15 10 0.4 10 15 
102 3.32 0.25 0.5 20 15 10 0.4 12 17 534 0.20 0.5 0.75 25 15 10 0.4 12 17 
103 0.21 0.25 0.5 20 15 10 0.4 15 20 535 1.62 0.5 0.75 25 15 10 0.4 15 20 
104 1.74 0.25 0.5 20 15 10 0.4 17 20 536 6.39 0.5 0.75 25 15 10 0.4 17 20 
105 11.3

3 

0.25 0.5 20 15 10 0.6 10 15 537 0.26 0.5 0.75 25 15 10 0.6 10 15 
106 9.72 0.25 0.5 20 15 10 0.6 12 17 538 0.20 0.5 0.75 25 15 10 0.6 12 17 
107 6.52 0.25 0.5 20 15 10 0.6 15 20 539 3.25 0.5 0.75 25 15 10 0.6 15 20 
108 1.71 0.25 0.5 20 15 10 0.6 17 20 540 3.30 0.5 0.75 25 15 10 0.6 17 20 
109 0.11 0.25 0.5 20 15 15 0.2 10 15 541 3.47 0.5 0.75 25 15 15 0.2 10 15 
110 6.44 0.25 0.5 20 15 15 0.2 12 17 542 0.19 0.5 0.75 25 15 15 0.2 12 17 
111 3.25 0.25 0.5 20 15 15 0.2 15 20 543 3.34 0.5 0.75 25 15 15 0.2 15 20 
112 4.93 0.25 0.5 20 15 15 0.2 17 20 544 0.12 0.5 0.75 25 15 15 0.2 17 20 
113 6.39 0.25 0.5 20 15 15 0.4 10 15 545 3.36 0.5 0.75 25 15 15 0.4 10 15 
114 4.92 0.25 0.5 20 15 15 0.4 12 17 546 0.21 0.5 0.75 25 15 15 0.4 12 17 
115 1.80 0.25 0.5 20 15 15 0.4 15 20 547 0.21 0.5 0.75 25 15 15 0.4 15 20 
116 0.11 0.25 0.5 20 15 15 0.4 17 20 548 4.90 0.5 0.75 25 15 15 0.4 17 20 
117 8.03 0.25 0.5 20 15 15 0.6 10 15 549 8.02 0.5 0.75 25 15 15 0.6 10 15 
118 0.32 0.25 0.5 20 15 15 0.6 12 17 550 6.41 0.5 0.75 25 15 15 0.6 12 17 
119 4.78 0.25 0.5 20 15 15 0.6 15 20 551 1.80 0.5 0.75 25 15 15 0.6 15 20 
120 0.18 0.25 0.5 20 15 15 0.6 17 20 552 1.75 0.5 0.75 25 15 15 0.6 17 20 
121 6.52 0.25 0.5 20 20 10 0.2 10 15 553 11.2

9 

0.5 0.75 25 20 10 0.2 10 15 
122 1.93 0.25 0.5 20 20 10 0.2 12 17 554 9.64 0.5 0.75 25 20 10 0.2 12 17 
123 8.00 0.25 0.5 20 20 10 0.2 15 20 555 9.68 0.5 0.75 25 20 10 0.2 15 20 
124 0.17 0.25 0.5 20 20 10 0.2 17 20 556 4.85 0.5 0.75 25 20 10 0.2 17 20 
125 1.77 0.25 0.5 20 20 10 0.4 10 15 557 3.33 0.5 0.75 25 20 10 0.4 10 15 
126 1.70 0.25 0.5 20 20 10 0.4 12 17 558 0.18 0.5 0.75 25 20 10 0.4 12 17 
127 1.70 0.25 0.5 20 20 10 0.4 15 20 559 6.46 0.5 0.75 25 20 10 0.4 15 20 
128 1.73 0.25 0.5 20 20 10 0.4 17 20 

 

 

 

560 9.61 0.5 0.75 25 20 10 0.4 17 20 
129 4.88 0.25 0.5 20 20 10 0.6 10 15 561 3.37 0.5 0.75 25 20 10 0.6 10 15 
130 4.88 0.25 0.5 20 20 10 0.6 12 17 562 3.35 0.5 0.75 25 20 10 0.6 12 17 
131 6.41 0.25 0.5 20 20 10 0.6 15 20 563 0.08 0.5 0.75 25 20 10 0.6 15 20 
132 4.93 0.25 0.5 20 20 10 0.6 17 20 564 0.13 0.5 0.75 25 20 10 0.6 17 20 
133 9.57 0.25 0.5 20 20 15 0.2 10 15 565 1.75 0.5 0.75 25 20 15 0.2 10 15 
134 4.77 0.25 0.5 20 20 15 0.2 12 17 566 4.76 0.5 0.75 25 20 15 0.2 12 17 
135 3.26 0.25 0.5 20 20 15 0.2 15 20 567 0.20 0.5 0.75 25 20 15 0.2 15 20 
136 0.14 0.25 0.5 20 20 15 0.2 17 20 568 0.19 0.5 0.75 25 20 15 0.2 17 20 
137 4.93 0.25 0.5 20 20 15 0.4 10 15 569 3.31 0.5 0.75 25 20 15 0.4 10 15 
138 9.63 0.25 0.5 20 20 15 0.4 12 17 570 3.35 0.5 0.75 25 20 15 0.4 12 17 
139 6.46 0.25 0.5 20 20 15 0.4 15 20 571 1.76 0.5 0.75 25 20 15 0.4 15 20 
140 6.46 0.25 0.5 20 20 15 0.4 17 20 572 8.09 0.5 0.75 25 20 15 0.4 17 20 
141 3.45 0.25 0.5 20 20 15 0.6 10 15 573 6.48 0.5 0.75 25 20 15 0.6 10 15 
142 6.53 0.25 0.5 20 20 15 0.6 12 17 574 0.27 0.5 0.75 25 20 15 0.6 12 17 
143 1.68 0.25 0.5 20 20 15 0.6 15 20 575 1.69 0.5 0.75 25 20 15 0.6 15 20 
144 1.64 0.25 0.5 20 20 15 0.6 17 20 576 3.29 0.5 0.75 25 20 15 0.6 17 20 
145 1.75 0.25 0.5 25 15 10 0.2 10 15 513 6.49 0.5 0.75 20 20 10 0.6 10 15 
146 8.02 0.25 0.5 25 15 10 0.2 12 17 577 1.70 0.75 0.25 20 15 10 0.2 10 15 
147 0.22 0.25 0.5 25 15 10 0.2 15 20 578 1.77 0.75 0.25 20 15 10 0.2 12 17 
148 1.73 0.25 0.5 25 15 10 0.2 17 20 579 0.15 0.75 0.25 20 15 10 0.2 15 20 
149 1.72 0.25 0.5 25 15 10 0.4 10 15 580 1.75 0.75 0.25 20 15 10 0.2 17 20 
150 8.05 0.25 0.5 25 15 10 0.4 12 17 581 9.61 0.75 0.25 20 15 10 0.4 10 15 
151 6.37 0.25 0.5 25 15 10 0.4 15 20 582 6.45 0.75 0.25 20 15 10 0.4 12 17 
152 0.11 0.25 0.5 25 15 10 0.4 17 20 583 3.37 0.75 0.25 20 15 10 0.4 15 20 
153 8.02 0.25 0.5 25 15 10 0.6 10 15 584 6.39 0.75 0.25 20 15 10 0.4 17 20 
154 1.68 0.25 0.5 25 15 10 0.6 12 17 585 8.13 0.75 0.25 20 15 10 0.6 10 15 
155 6.40 0.25 0.5 25 15 10 0.6 15 20 586 3.41 0.75 0.25 20 15 10 0.6 12 17 
156 6.47 0.25 0.5 25 15 10 0.6 17 20 587 1.75 0.75 0.25 20 15 10 0.6 15 20 
157 0.12 0.25 0.5 25 15 15 0.2 10 15 588 1.66 0.75 0.25 20 15 10 0.6 17 20 
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N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV 
158 1.75 0.25 0.5 25 15 15 0.2 12 17 589 1.86 0.75 0.25 20 15 15 0.2 10 15 
159 11.3

2 

0.25 0.5 25 15 15 0.2 15 20 590 4.92 0.75 0.25 20 15 15 0.2 12 17 
160 3.33 0.25 0.5 25 15 15 0.2 17 20 591 6.47 0.75 0.25 20 15 15 0.2 15 20 
161 8.13 0.25 0.5 25 15 15 0.4 10 15 592 8.08 0.75 0.25 20 15 15 0.2 17 20 
162 0.12 0.25 0.5 25 15 15 0.4 12 17 593 5.04 0.75 0.25 20 15 15 0.4 10 15 
163 1.78 0.25 0.5 25 15 15 0.4 15 20 594 8.07 0.75 0.25 20 15 15 0.4 12 17 
164 4.91 0.25 0.5 25 15 15 0.4 17 20 595 0.11 0.75 0.25 20 15 15 0.4 15 20 
165 4.96 0.25 0.5 25 15 15 0.6 10 15 596 1.68 0.75 0.25 20 15 15 0.4 17 20 
166 6.52 0.25 0.5 25 15 15 0.6 12 17 597 4.97 0.75 0.25 20 15 15 0.6 10 15 
167 1.74 0.25 0.5 25 15 15 0.6 15 20 598 6.40 0.75 0.25 20 15 15 0.6 12 17 
168 1.77 0.25 0.5 25 15 15 0.6 17 20 599 6.44 0.75 0.25 20 15 15 0.6 15 20 
169 4.96 0.25 0.5 25 20 10 0.2 10 15 600 6.49 0.75 0.25 20 15 15 0.6 17 20 
170 4.93 0.25 0.5 25 20 10 0.2 12 17 601 4.88 0.75 0.25 20 20 10 0.2 10 15 
171 8.00 0.25 0.5 25 20 10 0.2 15 20 602 6.41 0.75 0.25 20 20 10 0.2 12 17 
172 0.20 0.25 0.5 25 20 10 0.2 17 20 603 0.08 0.75 0.25 20 20 10 0.2 15 20 
173 8.05 0.25 0.5 25 20 10 0.4 10 15 604 0.10 0.75 0.25 20 20 10 0.2 17 20 
174 6.42 0.25 0.5 25 20 10 0.4 12 17 605 8.06 0.75 0.25 20 20 10 0.4 10 15 
175 8.09 0.25 0.5 25 20 10 0.4 15 20 606 1.68 0.75 0.25 20 20 10 0.4 12 17 
176 1.71 0.25 0.5 25 20 10 0.4 17 20 607 0.08 0.75 0.25 20 20 10 0.4 15 20 
177 4.97 0.25 0.5 25 20 10 0.6 10 15 608 1.79 0.75 0.25 20 20 10 0.4 17 20 
178 1.69 0.25 0.5 25 20 10 0.6 12 17 609 3.43 0.75 0.25 20 20 10 0.6 10 15 
179 0.20 0.25 0.5 25 20 10 0.6 15 20 610 4.80 0.75 0.25 20 20 10 0.6 12 17 
180 6.40 0.25 0.5 25 20 10 0.6 17 20 611 1.69 0.75 0.25 20 20 10 0.6 15 20 
181 11.1

4 

0.25 0.5 25 20 15 0.2 10 15 612 6.43 0.75 0.25 20 20 10 0.6 17 20 
182 0.14 0.25 0.5 25 20 15 0.2 12 17 613 8.03 0.75 0.25 20 20 15 0.2 10 15 
183 0.16 0.25 0.5 25 20 15 0.2 15 20 614 1.68 0.75 0.25 20 20 15 0.2 12 17 
184 3.24 0.25 0.5 25 20 15 0.2 17 20 615 1.78 0.75 0.25 20 20 15 0.2 15 20 
185 3.31 0.25 0.5 25 20 15 0.4 10 15 616 1.77 0.75 0.25 20 20 15 0.2 17 20 
186 3.16 0.25 0.5 25 20 15 0.4 12 17 617 0.20 0.75 0.25 20 20 15 0.4 10 15 
187 0.11 0.25 0.5 25 20 15 0.4 15 20 618 0.19 0.75 0.25 20 20 15 0.4 12 17 
188 1.85 0.25 0.5 25 20 15 0.4 17 20 619 0.06 0.75 0.25 20 20 15 0.4 15 20 
189 1.69 0.25 0.5 25 20 15 0.6 10 15 620 4.97 0.75 0.25 20 20 15 0.4 17 20 
190 4.95 0.25 0.5 25 20 15 0.6 12 17 621 7.99 0.75 0.25 20 20 15 0.6 10 15 
191 0.15 0.25 0.5 25 20 15 0.6 15 20 622 4.84 0.75 0.25 20 20 15 0.6 12 17 
192 9.60 0.25 0.5 25 20 15 0.6 17 20 623 0.11 0.75 0.25 20 20 15 0.6 15 20 
193 6.57 0.25 0.75 20 15 10 0.2 10 15 624 6.41 0.75 0.25 20 20 15 0.6 17 20 
194 5.00 0.25 0.75 20 15 10 0.2 12 17 625 1.65 0.75 0.25 25 15 10 0.2 10 15 
195 8.04 0.25 0.75 20 15 10 0.2 15 20 626 3.32 0.75 0.25 25 15 10 0.2 12 17 
196 0.08 0.25 0.75 20 15 10 0.2 17 20 627 0.16 0.75 0.25 25 15 10 0.2 15 20 
197 4.90 0.25 0.75 20 15 10 0.4 10 15 628 0.35 0.75 0.25 25 15 10 0.2 17 20 
198 0.19 0.25 0.75 20 15 10 0.4 12 17 629 0.20 0.75 0.25 25 15 10 0.4 10 15 
199 0.09 0.25 0.75 20 15 10 0.4 15 20 630 0.15 0.75 0.25 25 15 10 0.4 12 17 
200 3.29 0.25 0.75 20 15 10 0.4 17 20 631 8.16 0.75 0.25 25 15 10 0.4 15 20 
201 3.26 0.25 0.75 20 15 10 0.6 10 15 632 3.36 0.75 0.25 25 15 10 0.4 17 20 
202 1.81 0.25 0.75 20 15 10 0.6 12 17 633 0.12 0.75 0.25 25 15 10 0.6 10 15 
203 6.46 0.25 0.75 20 15 10 0.6 15 20 634 1.78 0.75 0.25 25 15 10 0.6 12 17 
204 8.02 0.25 0.75 20 15 10 0.6 17 20 635 4.88 0.75 0.25 25 15 10 0.6 15 20 
205 1.66 0.25 0.75 20 15 15 0.2 10 15 636 7.98 0.75 0.25 25 15 10 0.6 17 20 
206 6.48 0.25 0.75 20 15 15 0.2 12 17 637 6.48 0.75 0.25 25 15 15 0.2 10 15 
207 1.72 0.25 0.75 20 15 15 0.2 15 20 638 0.13 0.75 0.25 25 15 15 0.2 12 17 
208 3.29 0.25 0.75 20 15 15 0.2 17 20 639 1.71 0.75 0.25 25 15 15 0.2 15 20 
209 8.01 0.25 0.75 20 15 15 0.4 10 15 640 1.72 0.75 0.25 25 15 15 0.2 17 20 
210 6.47 0.25 0.75 20 15 15 0.4 12 17 641 0.13 0.75 0.25 25 15 15 0.4 10 15 
211 1.78 0.25 0.75 20 15 15 0.4 15 20 642 0.16 0.75 0.25 25 15 15 0.4 12 17 
212 8.04 0.25 0.75 20 15 15 0.4 17 20 643 0.08 0.75 0.25 25 15 15 0.4 15 20 
213 8.02 0.25 0.75 20 15 15 0.6 10 15 644 1.73 0.75 0.25 25 15 15 0.4 17 20 
214 0.24 0.25 0.75 20 15 15 0.6 12 17 645 0.21 0.75 0.25 25 15 15 0.6 10 15 
215 6.49 0.25 0.75 20 15 15 0.6 15 20 646 0.26 0.75 0.25 25 15 15 0.6 12 17 
216 1.76 0.25 0.75 20 15 15 0.6 17 20 647 0.12 0.75 0.25 25 15 15 0.6 15 20 
217 3.29 0.25 0.75 20 20 10 0.2 10 15 648 8.05 0.75 0.25 25 15 15 0.6 17 20 
218 6.42 0.25 0.75 20 20 10 0.2 12 17 649 0.21 0.75 0.25 25 20 10 0.2 10 15 
219 3.31 0.25 0.75 20 20 10 0.2 15 20 650 8.03 0.75 0.25 25 20 10 0.2 12 17 
220 0.32 0.25 0.75 20 20 10 0.2 17 20 651 9.69 0.75 0.25 25 20 10 0.2 15 20 
221 6.45 0.25 0.75 20 20 10 0.4 10 15 652 4.82 0.75 0.25 25 20 10 0.2 17 20 
222 8.03 0.25 0.75 20 20 10 0.4 12 17 653 4.88 0.75 0.25 25 20 10 0.4 10 15 
223 1.69 0.25 0.75 20 20 10 0.4 15 20 654 0.12 0.75 0.25 25 20 10 0.4 12 17 
224 8.00 0.25 0.75 20 20 10 0.4 17 20 655 3.29 0.75 0.25 25 20 10 0.4 15 20 
225 1.71 0.25 0.75 20 20 10 0.6 10 15 656 6.42 0.75 0.25 25 20 10 0.4 17 20 
226 0.20 0.25 0.75 20 20 10 0.6 12 17 657 6.47 0.75 0.25 25 20 10 0.6 10 15 
227 0.13 0.25 0.75 20 20 10 0.6 15 20 658 0.33 0.75 0.25 25 20 10 0.6 12 17 
228 4.85 0.25 0.75 20 20 10 0.6 17 20 659 15.9

8 

0.75 0.25 25 20 10 0.6 15 20 
229 8.00 0.25 0.75 20 20 15 0.2 10 15 660 8.01 0.75 0.25 25 20 10 0.6 17 20 
230 3.34 0.25 0.75 20 20 15 0.2 12 17 661 3.54 0.75 0.25 25 20 15 0.2 10 15 
231 6.49 0.25 0.75 20 20 15 0.2 15 20 662 1.65 0.75 0.25 25 20 15 0.2 12 17 
232 3.32 0.25 0.75 20 20 15 0.2 17 20 663 7.95 0.75 0.25 25 20 15 0.2 15 20 
233 3.49 0.25 0.75 20 20 15 0.4 10 15 664 0.18 0.75 0.25 25 20 15 0.2 17 20 
234 8.04 0.25 0.75 20 20 15 0.4 12 17 665 6.52 0.75 0.25 25 20 15 0.4 10 15 
235 0.23 0.25 0.75 20 20 15 0.4 15 20 666 8.09 0.75 0.25 25 20 15 0.4 12 17 
236 1.72 0.25 0.75 20 20 15 0.4 17 20 667 0.07 0.75 0.25 25 20 15 0.4 15 20 
237 1.82 0.25 0.75 20 20 15 0.6 10 15 668 0.09 0.75 0.25 25 20 15 0.4 17 20 
238 1.82 0.25 0.75 20 20 15 0.6 12 17 669 1.80 0.75 0.25 25 20 15 0.6 10 15 
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N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV 
239 1.75 0.25 0.75 20 20 15 0.6 15 20 670 0.09 0.75 0.25 25 20 15 0.6 12 17 
240 0.09 0.25 0.75 20 20 15 0.6 17 20 671 0.19 0.75 0.25 25 20 15 0.6 15 20 
241 3.37 0.25 0.75 25 15 10 0.2 10 15 672 0.14 0.75 0.25 25 20 15 0.6 17 20 
242 8.03 0.25 0.75 25 15 10 0.2 12 17 673 1.67 0.75 0.5 20 15 10 0.2 10 15 
243 1.71 0.25 0.75 25 15 10 0.2 15 20 674 1.78 0.75 0.5 20 15 10 0.2 12 17 
244 0.17 0.25 0.75 25 15 10 0.2 17 20 675 0.24 0.75 0.5 20 15 10 0.2 15 20 
245 1.85 0.25 0.75 25 15 10 0.4 10 15 676 0.11 0.75 0.5 20 15 10 0.2 17 20 
246 0.14 0.25 0.75 25 15 10 0.4 12 17 677 6.46 0.75 0.5 20 15 10 0.4 10 15 
247 0.21 0.25 0.75 25 15 10 0.4 15 20 678 7.98 0.75 0.5 20 15 10 0.4 12 17 
248 6.64 0.25 0.75 25 15 10 0.4 17 20 679 8.08 0.75 0.5 20 15 10 0.4 15 20 
249 9.64 0.25 0.75 25 15 10 0.6 10 15 680 0.09 0.75 0.5 20 15 10 0.4 17 20 
250 0.18 0.25 0.75 25 15 10 0.6 12 17 681 6.45 0.75 0.5 20 15 10 0.6 10 15 
251 3.35 0.25 0.75 25 15 10 0.6 15 20 682 1.86 0.75 0.5 20 15 10 0.6 12 17 
252 3.37 0.25 0.75 25 15 10 0.6 17 20 683 1.71 0.75 0.5 20 15 10 0.6 15 20 
253 8.11 0.25 0.75 25 15 15 0.2 10 15 684 0.18 0.75 0.5 20 15 10 0.6 17 20 
254 0.21 0.25 0.75 25 15 15 0.2 12 17 685 8.10 0.75 0.5 20 15 15 0.2 10 15 
255 1.79 0.25 0.75 25 15 15 0.2 15 20 686 1.78 0.75 0.5 20 15 15 0.2 12 17 
256 0.15 0.25 0.75 25 15 15 0.2 17 20 687 11.2

5 

0.75 0.5 20 15 15 0.2 15 20 
257 0.13 0.25 0.75 25 15 15 0.4 10 15 688 0.09 0.75 0.5 20 15 15 0.2 17 20 
258 3.36 0.25 0.75 25 15 15 0.4 12 17 689 4.87 0.75 0.5 20 15 15 0.4 10 15 
259 0.23 0.25 0.75 25 15 15 0.4 15 20 690 1.73 0.75 0.5 20 15 15 0.4 12 17 
260 6.40 0.25 0.75 25 15 15 0.4 17 20 691 0.16 0.75 0.5 20 15 15 0.4 15 20 
261 4.88 0.25 0.75 25 15 15 0.6 10 15 692 6.46 0.75 0.5 20 15 15 0.4 17 20 
262 0.12 0.25 0.75 25 15 15 0.6 12 17 693 1.82 0.75 0.5 20 15 15 0.6 10 15 
263 1.76 0.25 0.75 25 15 15 0.6 15 20 694 0.17 0.75 0.5 20 15 15 0.6 12 17 
264 4.84 0.25 0.75 25 15 15 0.6 17 20 695 11.2

9 

0.75 0.5 20 15 15 0.6 15 20 
265 1.77 0.25 0.75 25 20 10 0.2 10 15 696 0.07 0.75 0.5 20 15 15 0.6 17 20 
266 6.45 0.25 0.75 25 20 10 0.2 12 17 697 6.47 0.75 0.5 20 20 10 0.2 10 15 
267 1.84 0.25 0.75 25 20 10 0.2 15 20 698 1.72 0.75 0.5 20 20 10 0.2 12 17 
268 1.75 0.25 0.75 25 20 10 0.2 17 20 699 3.21 0.75 0.5 20 20 10 0.2 15 20 
269 8.02 0.25 0.75 25 20 10 0.4 10 15 700 8.36 0.75 0.5 20 20 10 0.2 17 20 
270 6.47 0.25 0.75 25 20 10 0.4 12 17 701 3.27 0.75 0.5 20 20 10 0.4 10 15 
271 4.84 0.25 0.75 25 20 10 0.4 15 20 702 6.53 0.75 0.5 20 20 10 0.4 12 17 
272 6.40 0.25 0.75 25 20 10 0.4 17 20 703 0.25 0.75 0.5 20 20 10 0.4 15 20 
273 9.66 0.25 0.75 25 20 10 0.6 10 15 704 0.14 0.75 0.5 20 20 10 0.4 17 20 
274 7.99 0.25 0.75 25 20 10 0.6 12 17 705 6.46 0.75 0.5 20 20 10 0.6 10 15 
275 4.85 0.25 0.75 25 20 10 0.6 15 20 706 0.16 0.75 0.5 20 20 10 0.6 12 17 
276 4.84 0.25 0.75 25 20 10 0.6 17 20 707 1.76 0.75 0.5 20 20 10 0.6 15 20 
277 6.47 0.25 0.75 25 20 15 0.2 10 15 708 1.74 0.75 0.5 20 20 10 0.6 17 20 
278 3.29 0.25 0.75 25 20 15 0.2 12 17 709 7.97 0.75 0.5 20 20 15 0.2 10 15 
279 0.19 0.25 0.75 25 20 15 0.2 15 20 710 1.78 0.75 0.5 20 20 15 0.2 12 17 
280 3.33 0.25 0.75 25 20 15 0.2 17 20 711 1.76 0.75 0.5 20 20 15 0.2 15 20 
281 6.55 0.25 0.75 25 20 15 0.4 10 15 712 1.67 0.75 0.5 20 20 15 0.2 17 20 
282 0.26 0.25 0.75 25 20 15 0.4 12 17 713 0.22 0.75 0.5 20 20 15 0.4 10 15 
283 9.54 0.25 0.75 25 20 15 0.4 15 20 714 6.54 0.75 0.5 20 20 15 0.4 12 17 
284 4.91 0.25 0.75 25 20 15 0.4 17 20 715 3.33 0.75 0.5 20 20 15 0.4 15 20 
285 0.21 0.25 0.75 25 20 15 0.6 10 15 716 0.22 0.75 0.5 20 20 15 0.4 17 20 
286 6.43 0.25 0.75 25 20 15 0.6 12 17 717 1.76 0.75 0.5 20 20 15 0.6 10 15 
287 15.9

8 

0.25 0.75 25 20 15 0.6 15 20 718 4.92 0.75 0.5 20 20 15 0.6 12 17 
288 6.47 0.25 0.75 25 20 15 0.6 17 20 719 3.31 0.75 0.5 20 20 15 0.6 15 20 
289 8.06 0.5 0.25 20 15 10 0.2 10 15 720 8.10 0.75 0.5 20 20 15 0.6 17 20 
290 4.93 0.5 0.25 20 15 10 0.2 12 17 721 4.88 0.75 0.5 25 15 10 0.2 10 15 
291 1.73 0.5 0.25 20 15 10 0.2 15 20 722 0.12 0.75 0.5 25 15 10 0.2 12 17 
292 8.00 0.5 0.25 20 15 10 0.2 17 20 723 4.91 0.75 0.5 25 15 10 0.2 15 20 
293 5.00 0.5 0.25 20 15 10 0.4 10 15 724 6.45 0.75 0.5 25 15 10 0.2 17 20 
294 0.18 0.5 0.25 20 15 10 0.4 12 17 725 1.85 0.75 0.5 25 15 10 0.4 10 15 
295 6.40 0.5 0.25 20 15 10 0.4 15 20 726 1.85 0.75 0.5 25 15 10 0.4 12 17 
296 1.68 0.5 0.25 20 15 10 0.4 17 20 727 1.71 0.75 0.5 25 15 10 0.4 15 20 
297 0.18 0.5 0.25 20 15 10 0.6 10 15 728 0.27 0.75 0.5 25 15 10 0.4 17 20 
298 6.32 0.5 0.25 20 15 10 0.6 12 17 729 6.42 0.75 0.5 25 15 10 0.6 10 15 
299 6.43 0.5 0.25 20 15 10 0.6 15 20 730 9.59 0.75 0.5 25 15 10 0.6 12 17 
300 0.29 0.5 0.25 20 15 10 0.6 17 20 731 8.00 0.75 0.5 25 15 10 0.6 15 20 
301 7.97 0.5 0.25 20 15 15 0.2 10 15 732 3.30 0.75 0.5 25 15 10 0.6 17 20 
302 0.10 0.5 0.25 20 15 15 0.2 12 17 733 0.14 0.75 0.5 25 15 15 0.2 10 15 
303 4.88 0.5 0.25 20 15 15 0.2 15 20 734 1.73 0.75 0.5 25 15 15 0.2 12 17 
304 4.77 0.5 0.25 20 15 15 0.2 17 20 735 1.76 0.75 0.5 25 15 15 0.2 15 20 
305 3.34 0.5 0.25 20 15 15 0.4 10 15 736 3.30 0.75 0.5 25 15 15 0.2 17 20 
306 4.95 0.5 0.25 20 15 15 0.4 12 17 737 0.08 0.75 0.5 25 15 15 0.4 10 15 
307 0.05 0.5 0.25 20 15 15 0.4 15 20 738 0.36 0.75 0.5 25 15 15 0.4 12 17 
308 1.64 0.5 0.25 20 15 15 0.4 17 20 739 3.31 0.75 0.5 25 15 15 0.4 15 20 
309 9.60 0.5 0.25 20 15 15 0.6 10 15 740 1.71 0.75 0.5 25 15 15 0.4 17 20 
310 8.00 0.5 0.25 20 15 15 0.6 12 17 741 1.77 0.75 0.5 25 15 15 0.6 10 15 
311 1.87 0.5 0.25 20 15 15 0.6 15 20 742 6.43 0.75 0.5 25 15 15 0.6 12 17 
312 3.32 0.5 0.25 20 15 15 0.6 17 20 743 6.42 0.75 0.5 25 15 15 0.6 15 20 
313 1.81 0.5 0.25 20 20 10 0.2 10 15 744 3.24 0.75 0.5 25 15 15 0.6 17 20 
314 4.89 0.5 0.25 20 20 10 0.2 12 17 745 6.46 0.75 0.5 25 20 10 0.2 10 15 
315 6.55 0.5 0.25 20 20 10 0.2 15 20 746 4.88 0.75 0.5 25 20 10 0.2 12 17 
316 12.8

6 

0.5 0.25 20 20 10 0.2 17 20 747 3.33 0.75 0.5 25 20 10 0.2 15 20 
317 6.60 0.5 0.25 20 20 10 0.4 10 15 748 1.71 0.75 0.5 25 20 10 0.2 17 20 
318 1.76 0.5 0.25 20 20 10 0.4 12 17 749 4.91 0.75 0.5 25 20 10 0.4 10 15 
319 0.22 0.5 0.25 20 20 10 0.4 15 20 750 3.20 0.75 0.5 25 20 10 0.4 12 17 
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N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV 
320 0.10 0.5 0.25 20 20 10 0.4 17 20 751 0.16 0.75 0.5 25 20 10 0.4 15 20 
321 0.38 0.5 0.25 20 20 10 0.6 10 15 752 1.72 0.75 0.5 25 20 10 0.4 17 20 
322 3.33 0.5 0.25 20 20 10 0.6 12 17 753 1.99 0.75 0.5 25 20 10 0.6 10 15 
323 1.79 0.5 0.25 20 20 10 0.6 15 20 754 6.42 0.75 0.5 25 20 10 0.6 12 17 
324 0.19 0.5 0.25 20 20 10 0.6 17 20 755 3.28 0.75 0.5 25 20 10 0.6 15 20 
325 0.19 0.5 0.25 20 20 15 0.2 10 15 756 3.30 0.75 0.5 25 20 10 0.6 17 20 
326 6.45 0.5 0.25 20 20 15 0.2 12 17 757 6.45 0.75 0.5 25 20 15 0.2 10 15 
327 4.85 0.5 0.25 20 20 15 0.2 15 20 758 1.72 0.75 0.5 25 20 15 0.2 12 17 
328 1.76 0.5 0.25 20 20 15 0.2 17 20 759 1.72 0.75 0.5 25 20 15 0.2 15 20 
329 4.88 0.5 0.25 20 20 15 0.4 10 15 760 12.8

4 

0.75 0.5 25 20 15 0.2 17 20 
330 9.57 0.5 0.25 20 20 15 0.4 12 17 761 3.39 0.75 0.5 25 20 15 0.4 10 15 
331 6.50 0.5 0.25 20 20 15 0.4 15 20 762 0.29 0.75 0.5 25 20 15 0.4 12 17 
332 0.19 0.5 0.25 20 20 15 0.4 17 20 763 7.99 0.75 0.5 25 20 15 0.4 15 20 
333 1.78 0.5 0.25 20 20 15 0.6 10 15 764 6.43 0.75 0.5 25 20 15 0.4 17 20 
334 8.07 0.5 0.25 20 20 15 0.6 12 17 765 9.74 0.75 0.5 25 20 15 0.6 10 15 
335 9.65 0.5 0.25 20 20 15 0.6 15 20 766 4.89 0.75 0.5 25 20 15 0.6 12 17 
336 0.09 0.5 0.25 20 20 15 0.6 17 20 767 1.74 0.75 0.5 25 20 15 0.6 15 20 
337 8.05 0.5 0.25 25 15 10 0.2 10 15 768 3.26 0.75 0.5 25 20 15 0.6 17 20 
338 1.73 0.5 0.25 25 15 10 0.2 12 17 769 4.86 0.75 0.75 20 15 10 0.2 10 15 
339 6.46 0.5 0.25 25 15 10 0.2 15 20 770 0.24 0.75 0.75 20 15 10 0.2 12 17 
340 6.52 0.5 0.25 25 15 10 0.2 17 20 771 1.76 0.75 0.75 20 15 10 0.2 15 20 
341 4.84 0.5 0.25 25 15 10 0.4 10 15 772 4.86 0.75 0.75 20 15 10 0.2 17 20 
342 0.17 0.5 0.25 25 15 10 0.4 12 17 773 12.8

5 

0.75 0.75 20 15 10 0.4 10 15 
343 1.79 0.5 0.25 25 15 10 0.4 15 20 774 0.23 0.75 0.75 20 15 10 0.4 12 17 
344 1.66 0.5 0.25 25 15 10 0.4 17 20 775 1.75 0.75 0.75 20 15 10 0.4 15 20 
345 1.72 0.5 0.25 25 15 10 0.6 10 15 776 0.11 0.75 0.75 20 15 10 0.4 17 20 
346 4.82 0.5 0.25 25 15 10 0.6 12 17 777 1.73 0.75 0.75 20 15 10 0.6 10 15 
347 4.85 0.5 0.25 25 15 10 0.6 15 20 778 0.15 0.75 0.75 20 15 10 0.6 12 17 
348 7.96 0.5 0.25 25 15 10 0.6 17 20 779 3.36 0.75 0.75 20 15 10 0.6 15 20 
349 1.71 0.5 0.25 25 15 15 0.2 10 15 780 0.19 0.75 0.75 20 15 10 0.6 17 20 
350 0.25 0.5 0.25 25 15 15 0.2 12 17 781 0.24 0.75 0.75 20 15 15 0.2 10 15 
351 1.81 0.5 0.25 25 15 15 0.2 15 20 782 0.25 0.75 0.75 20 15 15 0.2 12 17 
352 3.31 0.5 0.25 25 15 15 0.2 17 20 783 0.33 0.75 0.75 20 15 15 0.2 15 20 
353 3.45 0.5 0.25 25 15 15 0.4 10 15 784 0.11 0.75 0.75 20 15 15 0.2 17 20 
354 0.13 0.5 0.25 25 15 15 0.4 12 17 785 8.09 0.75 0.75 20 15 15 0.4 10 15 
355 1.75 0.5 0.25 25 15 15 0.4 15 20 786 7.97 0.75 0.75 20 15 15 0.4 12 17 
356 1.65 0.5 0.25 25 15 15 0.4 17 20 787 6.34 0.75 0.75 20 15 15 0.4 15 20 
357 0.08 0.5 0.25 25 15 15 0.6 10 15 788 1.73 0.75 0.75 20 15 15 0.4 17 20 
358 7.98 0.5 0.25 25 15 15 0.6 12 17 789 4.81 0.75 0.75 20 15 15 0.6 10 15 
359 0.12 0.5 0.25 25 15 15 0.6 15 20 790 8.00 0.75 0.75 20 15 15 0.6 12 17 
360 6.47 0.5 0.25 25 15 15 0.6 17 20 791 0.14 0.75 0.75 20 15 15 0.6 15 20 
361 0.12 0.5 0.25 25 20 10 0.2 10 15 792 3.30 0.75 0.75 20 15 15 0.6 17 20 
362 1.82 0.5 0.25 25 20 10 0.2 12 17 793 7.97 0.75 0.75 20 20 10 0.2 10 15 
363 0.10 0.5 0.25 25 20 10 0.2 15 20 794 0.20 0.75 0.75 20 20 10 0.2 12 17 
364 0.10 0.5 0.25 25 20 10 0.2 17 20 795 3.24 0.75 0.75 20 20 10 0.2 15 20 
365 3.33 0.5 0.25 25 20 10 0.4 10 15 796 8.04 0.75 0.75 20 20 10 0.2 17 20 
366 7.95 0.5 0.25 25 20 10 0.4 12 17 797 6.57 0.75 0.75 20 20 10 0.4 10 15 
367 1.72 0.5 0.25 25 20 10 0.4 15 20 798 0.18 0.75 0.75 20 20 10 0.4 12 17 
368 9.61 0.5 0.25 25 20 10 0.4 17 20 799 1.80 0.75 0.75 20 20 10 0.4 15 20 
369 3.24 0.5 0.25 25 20 10 0.6 10 15 800 0.22 0.75 0.75 20 20 10 0.4 17 20 
370 3.33 0.5 0.25 25 20 10 0.6 12 17 801 8.11 0.75 0.75 20 20 10 0.6 10 15 
371 8.01 0.5 0.25 25 20 10 0.6 15 20 802 6.51 0.75 0.75 20 20 10 0.6 12 17 
372 8.14 0.5 0.25 25 20 10 0.6 17 20 803 1.71 0.75 0.75 20 20 10 0.6 15 20 
373 3.49 0.5 0.25 25 20 15 0.2 10 15 804 0.23 0.75 0.75 20 20 10 0.6 17 20 
374 0.23 0.5 0.25 25 20 15 0.2 12 17 805 12.8

8 

0.75 0.75 20 20 15 0.2 10 15 
375 0.26 0.5 0.25 25 20 15 0.2 15 20 806 7.98 0.75 0.75 20 20 15 0.2 12 17 
376 3.43 0.5 0.25 25 20 15 0.2 17 20 807 0.23 0.75 0.75 20 20 15 0.2 15 20 
377 0.14 0.5 0.25 25 20 15 0.4 10 15 808 4.89 0.75 0.75 20 20 15 0.2 17 20 
378 0.30 0.5 0.25 25 20 15 0.4 12 17 809 0.27 0.75 0.75 20 20 15 0.4 10 15 
379 1.76 0.5 0.25 25 20 15 0.4 15 20 810 0.19 0.75 0.75 20 20 15 0.4 12 17 
380 1.72 0.5 0.25 25 20 15 0.4 17 20 811 6.39 0.75 0.75 20 20 15 0.4 15 20 
381 0.14 0.5 0.25 25 20 15 0.6 10 15 812 4.97 0.75 0.75 20 20 15 0.4 17 20 
382 6.56 0.5 0.25 25 20 15 0.6 12 17 813 9.63 0.75 0.75 20 20 15 0.6 10 15 
383 0.24 0.5 0.25 25 20 15 0.6 15 20 814 6.38 0.75 0.75 20 20 15 0.6 12 17 
384 0.18 0.5 0.25 25 20 15 0.6 17 20 815 1.79 0.75 0.75 20 20 15 0.6 15 20 
385 3.45 0.5 0.5 20 15 10 0.2 10 15 816 1.73 0.75 0.75 20 20 15 0.6 17 20 
386 3.27 0.5 0.5 20 15 10 0.2 12 17 817 1.78 0.75 0.75 25 15 10 0.2 10 15 
387 8.06 0.5 0.5 20 15 10 0.2 15 20 818 3.28 0.75 0.75 25 15 10 0.2 12 17 
388 0.08 0.5 0.5 20 15 10 0.2 17 20 819 1.65 0.75 0.75 25 15 10 0.2 15 20 
389 4.92 0.5 0.5 20 15 10 0.4 10 15 820 3.34 0.75 0.75 25 15 10 0.2 17 20 
390 4.93 0.5 0.5 20 15 10 0.4 12 17 821 6.54 0.75 0.75 25 15 10 0.4 10 15 
391 0.18 0.5 0.5 20 15 10 0.4 15 20 822 4.86 0.75 0.75 25 15 10 0.4 12 17 
392 1.85 0.5 0.5 20 15 10 0.4 17 20 823 0.22 0.75 0.75 25 15 10 0.4 15 20 
393 0.24 0.5 0.5 20 15 10 0.6 10 15 824 0.10 0.75 0.75 25 15 10 0.4 17 20 
394 1.68 0.5 0.5 20 15 10 0.6 12 17 825 1.77 0.75 0.75 25 15 10 0.6 10 15 
395 0.13 0.5 0.5 20 15 10 0.6 15 20 826 4.83 0.75 0.75 25 15 10 0.6 12 17 
396 1.67 0.5 0.5 20 15 10 0.6 17 20 827 0.15 0.75 0.75 25 15 10 0.6 15 20 
397 1.83 0.5 0.5 20 15 15 0.2 10 15 828 3.25 0.75 0.75 25 15 10 0.6 17 20 
398 1.78 0.5 0.5 20 15 15 0.2 12 17 829 1.78 0.75 0.75 25 15 15 0.2 10 15 
399 0.22 0.5 0.5 20 15 15 0.2 15 20 830 8.01 0.75 0.75 25 15 15 0.2 12 17 
400 7.97 0.5 0.5 20 15 15 0.2 17 20 831 6.39 0.75 0.75 25 15 15 0.2 15 20 
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N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV 
401 3.33 0.5 0.5 20 15 15 0.4 10 15 832 1.74 0.75 0.75 25 15 15 0.2 17 20 
402 1.71 0.5 0.5 20 15 15 0.4 12 17 833 3.45 0.75 0.75 25 15 15 0.4 10 15 
403 1.71 0.5 0.5 20 15 15 0.4 15 20 834 6.46 0.75 0.75 25 15 15 0.4 12 17 
404 1.70 0.5 0.5 20 15 15 0.4 17 20 835 0.09 0.75 0.75 25 15 15 0.4 15 20 
405 1.72 0.5 0.5 20 15 15 0.6 10 15 836 3.36 0.75 0.75 25 15 15 0.4 17 20 
406 8.05 0.5 0.5 20 15 15 0.6 12 17 837 11.1

6 

0.75 0.75 25 15 15 0.6 10 15 
407 4.89 0.5 0.5 20 15 15 0.6 15 20 838 6.49 0.75 0.75 25 15 15 0.6 12 17 
408 0.15 0.5 0.5 20 15 15 0.6 17 20 839 0.16 0.75 0.75 25 15 15 0.6 15 20 
409 8.10 0.5 0.5 20 20 10 0.2 10 15 840 0.16 0.75 0.75 25 15 15 0.6 17 20 
410 8.02 0.5 0.5 20 20 10 0.2 12 17 841 6.49 0.75 0.75 25 20 10 0.2 10 15 
411 6.59 0.5 0.5 20 20 10 0.2 15 20 842 1.79 0.75 0.75 25 20 10 0.2 12 17 
412 1.73 0.5 0.5 20 20 10 0.2 17 20 843 0.08 0.75 0.75 25 20 10 0.2 15 20 
413 6.51 0.5 0.5 20 20 10 0.4 10 15 844 6.49 0.75 0.75 25 20 10 0.2 17 20 
414 0.14 0.5 0.5 20 20 10 0.4 12 17 845 0.24 0.75 0.75 25 20 10 0.4 10 15 
415 3.28 0.5 0.5 20 20 10 0.4 15 20 846 6.41 0.75 0.75 25 20 10 0.4 12 17 
416 0.13 0.5 0.5 20 20 10 0.4 17 20 847 7.94 0.75 0.75 25 20 10 0.4 15 20 
417 6.50 0.5 0.5 20 20 10 0.6 10 15 848 1.65 0.75 0.75 25 20 10 0.4 17 20 
418 3.29 0.5 0.5 20 20 10 0.6 12 17 849 0.06 0.75 0.75 25 20 10 0.6 10 15 
419 1.68 0.5 0.5 20 20 10 0.6 15 20 850 8.02 0.75 0.75 25 20 10 0.6 12 17 
420 0.15 0.5 0.5 20 20 10 0.6 17 20 851 6.48 0.75 0.75 25 20 10 0.6 15 20 
421 3.29 0.5 0.5 20 20 15 0.2 10 15 852 1.83 0.75 0.75 25 20 10 0.6 17 20 
422 0.19 0.5 0.5 20 20 15 0.2 12 17 853 8.11 0.75 0.75 25 20 15 0.2 10 15 
423 6.38 0.5 0.5 20 20 15 0.2 15 20 854 0.14 0.75 0.75 25 20 15 0.2 12 17 
424 3.27 0.5 0.5 20 20 15 0.2 17 20 855 4.87 0.75 0.75 25 20 15 0.2 15 20 
425 4.84 0.5 0.5 20 20 15 0.4 10 15 856 0.22 0.75 0.75 25 20 15 0.2 17 20 
426 4.93 0.5 0.5 20 20 15 0.4 12 17 857 6.43 0.75 0.75 25 20 15 0.4 10 15 
427 4.91 0.5 0.5 20 20 15 0.4 15 20 858 8.04 0.75 0.75 25 20 15 0.4 12 17 
428 0.15 0.5 0.5 20 20 15 0.4 17 20 859 7.96 0.75 0.75 25 20 15 0.4 15 20 
429 1.85 0.5 0.5 20 20 15 0.6 10 15 860 1.79 0.75 0.75 25 20 15 0.4 17 20 
430 3.37 0.5 0.5 20 20 15 0.6 12 17 861 4.99 0.75 0.75 25 20 15 0.6 10 15 
431 9.61 0.5 0.5 20 20 15 0.6 15 20 862 11.3

6 

0.75 0.75 25 20 15 0.6 12 17 
432 0.23 0.5 0.5 20 20 15 0.6 17 20 863 6.38 0.75 0.75 25 20 15 0.6 15 20 

Table 7 Experiments results for param tuning ALNS heuristic 
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Appendix B 

Experiments resultы for 14-26 instances with different number of iterations. 

Iterations 100 200 300 

Instances Objective 
Time 

(sec) 

Gap 

(%) 
Objective 

Time 

(sec) 

Gap 

(%) 
Objective 

Time 

(sec) 

Gap 

(%) 

14-4-51 5120045,70 20,10 0,26 5114275,66 48,14 0,15 5120888,20 68,49 0,28 

15-4-54 5183711,90 27,14 0,55 5188312,92 52,38 0,64 5171981,32 71,42 0,32 

16-4-58 5808079,19 28,83 11,29 5374565,78 62,02 2,98 5242023,75 87,49 0,44 

17-5-61 6390910,44 34,04 21,84 6524785,79 67,44 24,39 5693463,52 97,61 8,54 

18-5-64 6706411,05 34,14 26,40 6703979,57 69,41 26,36 6701520,58 104,11 26,31 

19-6-66 6758649,82 41,19 0,52 6749164,66 88,70 0,37 6744809,29 127,41 0,31 

20-6-72 6856607,12 53,22 0,38 6850643,64 95,74 0,30 6844471,32 151,03 0,21 

21-6-77 6933699,66 61,12 0,55 6924068,60 127,87 0,41 6925405,46 191,06 0,43 

22-6-81 7145779,42 72,85 2,75 6998202,81 142,89 0,63 7272093,82 324,74 4,56 

23-7-84 8021064,67 69,41 14,64 7601507,23 134,77 8,64 7592628,92 200,37 8,52 

24-7-87 8610735,01 75,18 0,59 8603847,58 147,45 0,51 8593260,29 335,11 0,38 

25-8-88 8616684,28 89,76 0,41 8608975,97 195,90 0,32 8603167,21 269,92 0,26 

26-8-91 8681364,59 113,45 0,59 8674147,44 215,60 0,51 8672120,89 344,01 0,48 

Average   55,42 6,21   111,41 5,09   182,52 3,93 

Table 8 Results for 14-26 instances with 100 – 300 iterations 

 

Iterations 400 500 600 

Instances Objective 
Time 

(sec) 

Gap 

(%) 
Objective 

Time 

(sec) 

Gap 

(%) 
Objective 

Time 

(sec) 

Gap 

(%) 

14-4-51 5111061,19 85,71 0,08 5111986,05 114,37 0,10 5108317,91 138,86 0,03 

15-4-54 5173647,48 97,33 0,35 5170304,50 121,42 0,29 5165258,30 158,47 0,19 

16-4-58 5368316,28 116,00 2,86 5228608,48 152,56 0,19 5226722,86 166,67 0,15 

17-5-61 5425634,29 125,44 3,44 5826886,88 159,85 11,09 5542871,29 176,53 5,67 

18-5-64 6284991,83 139,60 18,46 6561463,30 170,12 23,67 6284024,53 217,77 18,44 

19-6-66 6743266,85 173,51 0,29 6746366,06 213,80 0,33 6746049,23 262,93 0,33 

20-6-72 6840364,42 211,97 0,15 6841720,04 233,82 0,17 6841079,89 308,52 0,16 

21-6-77 6921331,50 254,31 0,37 6919380,53 319,02 0,34 6920275,52 378,46 0,36 

22-6-81 7122582,72 266,83 2,41 6987914,55 335,45 0,48 6977291,86 414,08 0,32 

23-7-84 7592994,62 258,61 8,52 7451395,00 312,04 6,50 7452245,15 388,72 6,51 

24-7-87 8589650,41 275,35 0,34 8591389,44 346,17 0,36 8590316,95 427,31 0,35 

25-8-88 8604433,28 375,63 0,27 8598830,52 444,88 0,21 8599322,49 541,06 0,21 

26-8-91 8668598,88 451,90 0,44 8659159,62 529,56 0,33 8660128,94 642,01 0,34 

Average   217,86 2,92   265,62 3,39   324,72 2,54 

Table 9 Results for 14 – 26 instances with 400 - 600 iterations 
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Iterations 700 800 900 

Instances Objective Time 
Gap 

(%) 
Objective Time 

Gap 

(%) 
Objective Time 

Gap 

(%) 

14-4-51 5110778,66 157,13 0,08 5110174,53 174,68 0,07 5107761,19 210,08 0,02 

15-4-54 5166278,29 169,42 0,21 5170159,41 197,29 0,29 5166012,80 214,98 0,21 

16-4-58 5224024,51 196,65 0,10 5227304,36 234,04 0,16 5223226,20 262,86 0,08 

17-5-61 5278032,73 229,54 0,62 5412024,79 265,59 3,18 5264862,58 290,77 0,37 

18-5-64 6420629,24 251,80 21,02 6697754,55 266,98 26,24 6556189,14 387,34 23,57 

19-6-66 6740552,52 296,47 0,25 6745441,16 324,75 0,32 6742276,49 377,22 0,27 

20-6-72 6840895,64 338,43 0,15 6840504,59 395,97 0,15 6839892,79 426,69 0,14 

21-6-77 6916667,10 434,65 0,30 6916586,31 518,65 0,30 6914560,12 583,15 0,27 

22-6-81 6978388,58 454,28 0,34 6978568,37 552,16 0,34 6972994,07 578,53 0,26 

23-7-84 7451225,10 482,23 6,50 7165405,24 523,13 2,41 7170114,22 689,71 2,48 

24-7-87 8586662,51 468,79 0,31 8582785,70 569,79 0,26 8580845,18 597,02 0,24 

25-8-88 8600078,04 594,93 0,22 8594321,01 733,81 0,15 8597167,67 821,67 0,19 

26-8-91 8661710,23 735,60 0,36 8655750,36 838,40 0,29 8653054,32 976,77 0,26 

Average   369,99 2,34   430,40 2,63   493,60 2,18 

Table 10 Results for 14-26 instances with 700 – 900 iterations 

 

Iterations 1000 

Instances Objective Time 
Gap 

(%) 

14-4-51 5107670,54 236,30 0,02 

15-4-54 5164885,08 250,38 0,18 

16-4-58 5225937,11 286,61 0,14 

17-5-61 5406131,95 334,48 3,06 

18-5-64 6417286,32 361,27 20,95 

19-6-66 6738833,94 420,36 0,22 

20-6-72 6837138,95 494,35 0,10 

21-6-77 6915522,13 622,09 0,29 

22-6-81 6974638,86 672,21 0,29 

23-7-84 7025614,49 587,68 0,41 

24-7-87 8583470,44 693,69 0,27 

25-8-88 8595034,23 875,18 0,16 

26-8-91 8656771,75 1048,74 0,31 

Average   529,49 2,03 

Table 11 Results for 14-26 instances with 1000 iterations 


