
 

 

 

 

 

 

 

 

 

Master’s degree thesis 

 

LOG950 Logistics 

 

An econometric study of the Frequency elasticity on 

selected Air transport routes in Norway 

 

Jørgen Bjørke 

 

Number of pages including this page: 103 

 

Molde, 22.05.2017 



Mandatory statement  

Each student is responsible for complying with rules and regulations that relate to 

examinations and to academic work in general. The purpose of the mandatory statement is 

to make students aware of their responsibility and the consequences of cheating. Failure to 

complete the statement does not excuse students from their responsibility.  

 

Please complete the mandatory statement by placing a mark in each box for statements 1-6 

below. 

1. I/we hereby declare that my/our paper/assignment is my/our own 

work, and that I/we have not used other sources or received 

other help than mentioned in the paper/assignment. 

 

 

  

2. I/we hereby declare that this paper 

1. Has not been used in any other exam at another 

department/university/university college 

2. Is not referring to the work of others without 

acknowledgement 

3. Is not referring to my/our previous work without 

acknowledgement 

4. Has acknowledged all sources of literature in the text and in 

the list of references 

5. Is not a copy, duplicate or transcript of other work  

Mark each 

box: 

1.  

 

2.  

 

3.  

 

4.  

 

5.  

 

3. 

I am/we are aware that any breach of the above will be 

considered as cheating, and may result in annulment of the 

examination and exclusion from all universities and university 

colleges in Norway for up to one year, according to the Act 

relating to Norwegian Universities and University Colleges, 

section 4-7 and 4-8 and Examination regulations section 14 and 

15. 

 

 

 

 

 

 

  

4. I am/we are aware that all papers/assignments may be checked 

for plagiarism by a software assisted plagiarism check 

 

  

5. I am/we are aware that Molde University College will handle all 

cases of suspected cheating according to prevailing guidelines. 

 

  

6. I/we are aware of the University College’s rules and regulation 

for using sources 

 

  

http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://kvalitet.himolde.no/KS_UNL115
http://www.himolde.no/index.cfm/pageID/2298
http://www.himolde.no/index.cfm/pageID/2298


Publication agreement 

 

 

ECTS credits: 30 

    

Supervisor: Svein Bråthen    

 

 

 

 

 

Agreement on electronic publication of master thesis 

 

Author(s) have copyright to the thesis, including the exclusive right to publish the document (The 

Copyright Act §2). 

All theses fulfilling the requirements will be registered and published in Brage HiM, with the approval 

of the author(s). 

Theses with a confidentiality agreement will not be published.  

 

 

I/we hereby give Molde University College the right to, free of  

charge, make the thesis available for electronic publication:  yes no 

 

 

Is there an agreement of confidentiality?    yes no 

(A supplementary confidentiality agreement must be filled in) 

- If yes: Can the thesis be online published when the  

period of confidentiality is expired?    yes no 

 

    

Date: 22.05.2017 



Preface 

I wrote this thesis during the months January-May 2017, and I picked the topic because of 

an interest in doing some new research in the field of Air transport. 

 

During my work on the thesis I had many helpful conversations with my supervisor, Svein 

Bråthen and I thus whish to thank him for his help during the process of writing this thesis. 

 

I also wish to thank Falko Muller, because of his helpful insights on econometrics, which 

helped me construct my model. 

 

 



Abstract 

 

This thesis is a econometric analysis of the Frequency elasticity of air transport on three 

routes on the Norwegian air transport market, Bergen-Oslo, Trondheim-Oslo and 

Stavanger-Oslo, with two analyses, one for Bergen-Oslo and one for an aggregate of the 

three routes. Using 2SLS because of a possible endogeneity problem with Frequency, with 

income for airline as an instrument, I found that the Frequency seems to be exogenous in 

the two analyses. By estimating the same model using OLS I found that the Frequency 

elasticity is 0,63 on the Bergen-Oslo route and 0,67 on the aggregate of the three routes. I 

also find a long-term Frequency elasticity for the aggregate of the three routes analysis of 

0,567, which indicates that the Frequency elasticity is lower in the long term. Besides this, 

I find that the aggregate of the three routes is a mature air transport market, with a GDP 

(Income) elasticity of 0,53. The route Bergen-Oslo on the other hand is much less mature, 

with a GDP (Income) elasticity of 0,84.  

 

 

Abbreviations: 

2SLS: Two stage least squares 

OLS: Ordinary least squares 

lf: Load factor 

GDP: Gross domestic product 

Pax= passengers 

Freq= Frequency 

Asiz= Aircraft size 
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1.0 Introduction and research topic 

The demand for air transport has had a rapid growth over the last decades, and this growth 

is expected to increase (Boeing (2016)). This poses the question about which factors that 

drive this demand.  

Studies on the factors that affect the demand for air travel often find that price elasticity is 

an important factor that affect air travel, with most air travel being significantly price 

elastic. There is also a lot of research done on what the price elasticity is for certain routes 

and sectors. (Brons et al. (2002)),    

There are however another set of factors that could interact with the demand for air travel, 

namely service quality factors, with Flight frequency and aircraft size often showing a 

significant effect on demand. In the case of flight frequency, the theory is that an increase 

in it will lead to less delays for the traveler, since the traveler will have a flight which is 

closer in time to the traveler’s preferred departure time, which would increase the utility 

for the traveler and thus increased the traveler’s demand of air transport. In the case of 

aircraft size, the theory is that a larger plane will have more space and be more 

comfortable, which in theory would lead to an increase in demand. (Jorge-Calderón (1997))  

1.1 Reason for choosing topic 

As far as I know there have been done no previous empirical research on the frequency 

elasticity of demand on the air travel market in Norway. Because of this it would be 

interesting from a purely theoretical perspective to do such an empirical analysis. Such an 

analysis would also be interesting from a managerial and policymaker perspective, since 

knowing how demand and frequency interact could help the airlines, airports and 

policymakers in planning the right frequency for the demand they want. Examples of this 

could be airlines that want to maximize its benefits when faced with the tradeoff between 

having an increased revenue because of higher demand after a frequency increase and the 

costs associated with such a frequency increase. Knowing the frequency elasticity could 

also be interesting for policymakers that wish to reduce the demand for air travel to reduce 

the externalities of air travel, such as climate changing emissions, since it could be better 

to tax or regulate frequency rather than having taxes on the fare price of the tickets if the 

demand on the route responds more to a change in frequency than price. Thus, there is 

good reasons to do an econometric analysis of the frequency elasticity of demand for the 

air travel market in Norway. Doing such an analysis of the complete air transport market in 
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Norway would be beneficial, but because of limitations in time, resources and data, I have 

however chosen to focus my thesis on estimating the frequency elasticity of demand on 2-

3 routes in Norway. But since air travel on different routes do share many common 

characteristics, the model developed in my thesis could also probably be applied to analyze 

the frequency elasticity of demand other routes on the air transport market in Norway or 

abroad, although this could possibly require some small adjustments to the model.   

Given the above-mentioned reasons and questions, my research problem and research 

questions can be formulated as:  

 

1.2 Research Questions 

  

Research Problem: “Do changes in the flight frequency impact the demand for air travel on 

Norwegian routes?”  

RQ1:  

Is there a significant flight frequency elasticity of demand on the on the selected 

Norwegian air transport routes?  

RQ2:  

How frequency elastic or inelastic is the demand of air transport on the selected 

Norwegian routes?  

RQ3:  

Are there any other interesting findings after estimating the coefficients of the model used 

to estimate the frequency elasticity of demand on the selected routes of the Norwegian air 

transport market? 

 

 

 

 

 

 



 6 

2.0 Literature review 

2.1 Elasticity 

The most basic definition of an elasticity is the change in variable X / the change in 

variable Y, which can be defined as how much variable X responds to a change in variable 

Y. The elasticity measurement can also be divided into three different types, own 

elasticities which measures the change in variable Y from the change in variable X itself, 

cross elasticities which measures the change in variable Y from another variable that is a 

complementary or substitute good to variable X, and lastly conditional elasticities, which 

is the change in variable Y from a symmetric change in variable X and a substitute or 

complementary good. These are the basic definitions of elasticities, but to measure the 

elasticity in practice three different methods can be used. The most basic one is the point 

elasticity, which measures the elasticity at a certain point on an unknown functional form 

curve. Thus, if elasticities are not constant, this point elasticity will not be accurate for 

other points on the curve. (Fearnley & Bekken (2005)) 

 

Another weakness of the point elasticity is that it measures marginal changes, thus large 

changes in the variables may cause problems. The point elasticity is measured as: 

” 

𝑃𝑜𝑖𝑛𝑡 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =  
𝜕𝑦

𝜕𝑥

𝑥

𝑦
 

“ (Fearnley & Bekken (2005)). 

A better measurement of the elasticity given the unknowable functional form and the 

challenge with large changes in the variables is the Arc elasticity. The Arc elasticity 

measures the average elasticity between two points, and can be measured as. 

” 

𝐴𝑟𝑐 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 = (
ln 𝑦2 − ln 𝑦1

ln 𝑥2 − ln 𝑥1
) 

“ (Fearnley & Bekken (2005)). 

The line elasticity is the third method of estimating the price elasticity, and it measures the 

elasticity as the average elasticity between two periods, same as the arc elasticity, but is 

measured without using the log from of the variables. Because of this its advantage is that 
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it can measure a change from a value of 0, which the Arc elasticity can not do because 

taking the log form of 0, ln(0), will not produce a number. 

“ 

𝐿𝑖𝑛𝑒 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
(𝑦2 − 𝑦1) ∗ (𝑥2 + 𝑥1)

(𝑦2 + 𝑦1) ∗ (𝑥2 − 𝑥1)
 

“ (Fearnley & Bekken (2005)). 

 

Fearnley & Bekken (2005) compares the three measurements and find that they produce 

the same values when then changes in the variables are small. 

There are also some challenges with estimating elasticities with time series. With the 

exception of situations where all of the elasticity effects happens at once or when the data 

is non-stationary and cointegrated a static time series model can not estimate the long-term 

elasticity effects. Thus, the estimates of the elasticity in such a case will be neither long 

term nor short term, and will be biased because of overlooked dynamic effects. A way to 

correct for this, and to estimate the long-term elasticity is to include a lagged exogenous or 

endogenous variable. Both can be used to measure the long-term elasticity, but the lagged 

exogenous variable leads to serial correlation and multicollinearity problems, so the lagged 

endogenous variable is preferable. A model with a lagged endogenous variable, which is 

the lag of the dependent variable, can be states as the following equation adapted from 

((Fearnley & Bekken (2005)) as: 

 

𝑌𝑡 = 𝐵0 + 𝐵1 ∗ 𝐵1𝑋1𝑡 + 𝐵2𝑋2𝑡 + 𝐵3𝑌𝑡−1 + 𝜀𝑡” 

With such a model, given that the variables are in the log form, the short term elasticity 

can be measured as 𝐵1 for variable X1, and the long term elasticity for the same variable 

can be measured as “𝐵1/(1 − 𝐵3)”, since B3 measures the adjustment speed of the 

elasticity, so that if B3 is 0 all of the elasticity effects happens at once, while if it’s 

between 0 and 1, the elasticity effect happen over time until it reaches a stable long term 

level (Fearnley & Bekken (2005)). 

 

2.1.1 Determinants of air travel and price elasticities 

The price elasticity of the demand of air travel depends on the availability and quality of 

the substitutes to air travel. Examples of such substitutes could be air travel to similar 

destinations, travel by another transport mode, or simply not travelling at all if the utility of 
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spending the money on a non-travel good is higher than the utility from travelling. One 

factor that impacts the availability and quality of substitutes to air transport is the 

geography of a route, since if the route crosses areas with difficult terrain, such as 

mountains or seas, the alternative substitutes to air transport such as car or rail would be 

less available or have a lower utility than air transport because the trip by them takes a 

longer time. The distance of the air travel route also reduces the utility of substitute modes 

such as car or rail, since travelling by them can take a long time over such distances, 

thereby increasing the time cost of using such modes compared to air transport. Thus, in 

such a cases the price elasticity will be lower, as the substitutes either have a lower utility 

compared to air transport or sufficient substitutes to air transport are not available. Besides 

geographical factors and distance there are also economic and demographical factors that 

impact the quality and availability of substitutes, such when the characteristics in a city or 

destination determines the willingness of travelers to choose it over another comparable 

destination. (Brons et al (2002)) 

The price elasticity also depends on the type of passengers on the route, as leisure 

passengers and business passengers have different reasons for travelling. Leisure travelers 

travel by air transport for the utility of travelling to their destination itself, and also have 

other non-travel substitute goods to use their budget on. They are thus often price 

sensitive. Business travelers on the other hand travel as part of a business process, and thus 

compares the productivity gained from travelling by air with the productivity of not 

travelling, which means that the cost and profits of travelling by air is compared with other 

profits and costs of other business activities. Business travelers often have a higher value 

of time than leisure travelers, thus the total cost of a business travel is often made up of 

mainly the value of time costs, which means that an increase in ticket prices has less 

impact on the demand of air travel by business travelers than an increase in ticket prices 

has on the demand by leisure travelers. Since the trips of Business travelers are paid for by 

their companies, the business travelers have a higher budget than leisure travelers. 

Business travelers also want to be productive when travelling, and thus opt for tickets that 

are flexible and provide a high degree of service. This means that Business travelers are 

often less price sensitive than leisure traveler. Brons et al (2002)) 

There can also be a difference between long term elasticities and short term elasticities. 

The reason for this is that in the long term the traveler can adapt to changes in the price, 

such as moving business locations and so on. Thus, in the long term, the price elasticity is 

expected to be higher as more adjustments can be made, which should increase the impacts 
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on demand. Brons et al (2002) does however also argue that since it may be hard to move 

business location in addition to the lack of substitutes with the same quality that air 

transport has, such as the speed of air travel, the long-term adjustments to a price change 

may actually be not that much higher than in the short term. They also argue that the 

inverse of a higher long term change might also be the case, such as when the short-term 

response to a price change are chaotic. In such a case the long-term response might be a 

more reasonable response to the price change than the initial chaotic response, in which 

case the long-term price elasticity would be lower than the short-term elasticity. Brons et al 

(2002) thus concludes that the long-term elasticity depends on a number of complex 

factors, so they argue that it is difficult to say whether it should be higher, lower or similar 

in the long term. (Brons et al (2002)) 

2.1.2 Frequency elasticity 

A challenge with estimating the flight frequency elasticity of demand is that the flight 

frequency can be correlated with the demand for air travel, for example by the airline 

scheduling more flights because of an increase in demand, which then may lead to a higher 

demand because of an increase in flight frequency. (Wang et al (2014); Zou & Hansen 

(2014))  

In econometric literature, such a correlation is called endogeneity, and poses some 

challenges when estimating a single function by OLS, since a correlation between the 

dependent and one or more independent variable means that the independent variable or 

variables would be correlated with the error term. This leads to biased estimates when 

using OLS, which means that another method has to be used to produce unbiased 

estimates. (Wooldridge (2015). I will get back to how this can be corrected for in the 

Methodology chapter. 

So, what are some estimates of the flight frequency elasticity in the literature? One paper 

that estimates it is the paper Wang et al (2014), where they use the following Simultaneous 

equation model with two equations, one for Frequency and one Passengers:  

  

“  

lnFRk,t = α0 +α1lnPASSk,t +α2lnASIZk,t +α3lnHHIk,t +α4lnDISk,t +α5lnFUELk,t 

+α6lnINCk,t +α7lnMinOUTPUTk,t +α8lnMaxATASIZk,t +α9lnHUBk,t +α8lnTk,t +𝜀𝑘,𝑡                   

(1.1) “   
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 “  

lnPASSk,t = β0 +β1lnFRk,t +β2lnASIZk,t +β3lnHHIk,t +β4lnCOSTk,t +β5lnDISk,t 

+β6lnPOPk,t +β7lnINCk,t +β8TOURk,t +𝜀𝑘,𝑡                   (1.2) “  

  

Where, FR= Flights per year on a route, PASS= Number of passengers on a route, ASIZ= 

average aircraft size, HHI= HHI index, DIS= distance between airports on a route, FUEL= 

Jet fuel price on average, INC= income in the regions of airports on the route, MinOutput= 

minimum amount of airport passengers on a route, MaxATASIZ= the maximum size for 

an average plane on the route, HUB= dummy for a hub airport on the route, COST= 

operating costs on average for the major Chinese airlines, POP= population at the O-D 

regions of the route, TOUR= tourism dummy.  

As seen most of the variables in the equations in the model includes are in log form. The 

benefit of this is that when the variables is in log form the estimated coefficient will be the 

elasticity of that variable (Wang et al (2014))  

To estimate the endogenous variables in each equation Wang et al (2014) uses 

MinOUTPUT, FUEL, HUB and MaxATASIZ as instruments for the PASS equation, and 

COST, TOUR and POP which are used as instruments for the frequency equation. (Wang 

et al (2014))  

To estimate these two equations, they use the 3SLS (three stage least square method), and 

find that the Frequency has either an elasticity of demand of 0,945 or an elasticity of 

demand of 0,679 if the lagged variable for demand is included. They also find that both the 

estimate with and without a lagged variable is significant. (Wang et al (2014))  

Another paper that looks at service quality elasticities is the paper by Jorge-Calderón 

(1997), which runs a regression using 2SLS using a model that includes different drivers of 

demand, which includes frequency and aircraft size, using a dataset covering the entire 

European route network in 1989. He finds that the frequency elasticity of demand is 

0,9396 assuming aircraft size is endogenous or 0,6506 if aircraft size is assumed to be 

exogenous. The model also has a good fit to the data, with an R^2 of 0,9543 when aircraft 

size is assumed to be endogenous and R^2 of 0,7224 when aircraft size is assumed to be 

exogenous. (Jorge-Calderón (1997)). 

A paper by Tsekeris (2009) is also of interest as it looks at the frequency elasticity of air 

travel demand in a geographically remote market. The geographical remote market the 

paper looks at is air routes that serve the islands of Greece. The paper uses a dataset that 

covers the period 1968-2000 and which includes 18 routes between Athens and 7 of the 
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Greek islands. The model in the paper has passengers as the dependent variable and 

includes the following independent variables in logarithmic form: lagged variable for 

passengers, relative seat capacity, price of air travel relative to the price of sea travel by 

ferry, income measured as GDP, travel time on the route, population, the attractiveness of 

the route for tourism, and relative frequency of air travel compared to sea travel. The 

model is then estimated using System GMM and GMM with orthogonal deviations 

methods. After estimating the model using GMM with orthogonal deviations, Tsekeris 

(2009) finds that the demand for air travel on the geographical remote islands routes is 

inelastic to relative price changes, with the elasticity being -0,069 in February (which 

represent the winter season) and -0,109 in August (which represents the summer season). 

He also finds that the relative frequency elasticity is 0,183 in February and 0,135 in 

August. By using the System GMM method, Tsekeris (2009) finds that the elasticities for 

relative price is -0,102 and -0.135 in February and August respectively, and he also finds 

that the frequency elasticity is 0.119 and 0,070 respectively for February and August. The 

estimates from both methods indicate that the frequency change have a higher impact on 

demand than price in the winter month, but the estimates from the system GMM do also 

show a larger impact from price than frequency in the summer month, although price is 

still inelastic. (Tsekeris (2009)).  

So, what can this tell us about the hypothetical elasticities of frequency on the air travel 

routes in Norway? Since the paper by Tsekeris (2009) shows that the demand of air travel 

to the geographical remote regions is relatively price inelastic when compared to the 

substitute of sea travel and that frequency has a higher effect on demand than price for 

such a market, as seen by the higher coefficient for frequency elasticity than price 

elasticity.  It could be that all geographical remote regions have a price inelastic demand of 

air travel, and that the frequency elasticity has a higher coefficient than price elasticity for 

such a market. Norway being a geographical remote region might thus have price inelastic 

travelers on the air travel market, and the Norwegian air travel markets may be more 

affected by frequency changes than price changes. If this is the case is hard to say ex ante, 

but it could indicate that this might be the case. However, it is important to point out that 

there might be other factors that impact the price elasticity and frequency elasticity for the 

Norwegian and Greek markets respectively, so a generalization may not be possible based 

on the Greek results. Still, it will be interesting to compare the results. 

A paper that looks at the determinants of flight frequency is the paper by Pai (2010), which 

looks at the factors that determine the flight frequency and aircraft size on US airline 
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routes. By doing a regression analysis with flight frequency as the dependent variable and 

vectors of population demographics, time variables, route characteristics, airport 

characteristics, airline operational characteristics and hub characteristics as the 

independent variables, Pai (2010) finds that population and income has a positive effect on 

frequency. Pai (2010) also finds that the percentage of managers in the population has the 

largest effect on frequency out of the population variables, with a percentage increase in 

managers causing 20-24 more monthly flights. Pai (2010) argues that the positive effect of 

income and degree of managers is because the airline are concerned with the schedule 

delay cost to these passenger groups, and that the airlines thus increases the frequency 

because they know that these passenger groups have a high willingness to pay to reduce 

their schedule delay cost. Pai (2010) also finds that having other airports in the vicinity of 

the airports on the route leads to less frequencies on that route, with one extra airport 

within 75miles of an airport leading to 9 less monthly flights from that airport. Having a 

hub on the route is also related to a higher frequency, with one connection destination on 

routes from one of the airports on the route leading to 0,6 more monthly flights, and a 1% 

increase in connecting passengers as the percentage of travelers on a route being connected 

to 16 flights extra per month at the destination airport and 27 extra flights per month at the 

origin airport. Pai (2010) also finds that when the distance increases the number of 

departures per month decreases, with there being 62 fewer flights per month when the 

distance between origin and destination increases by 1000 miles. Other findings by Pai 

(2010) is that a low-cost carrier has higher frequencies, that slot constraints is connected to 

lower frequencies and that a ownership of regional airlines by a major airline leads to 

higher frequencies. (Pai (2010))  

Another paper that looks at the relationship between demand and frequency of air travel is 

the paper by Zou & Hansen (2014). In their paper, Zou and Hansen (2014) reviews the 

theory on the frequency effects on air transport demand and the frequency planning for 

airlines and finds that airlines adapt to increases in passenger demand by either increasing 

capacity through aircraft size increases or frequency increases. Both options have their 

benefits, being economies of scale or a reduction in schedule delay for the passengers 

respectively. But the economies of scale from a lower unit costs from using larger aircraft 

may be offset a bit by larger aircraft requiring higher pilot salaries. Thus, airlines tend to 

employ smaller aircraft on short haul routes with a lot of traffic. Zou and Hansen (2014) 

also finds from industry outlooks and historical data that frequency looks like it will be the 

most used option by airlines to respond to an increase in demand, with only a small change 
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in aircraft size. Zou and Hansen (2014) finds that there are three reasons for why this is the 

case, which are the Morhing effect, competitive pressures and a possibility to charge 

higher fares. Firstly, The Mohring effect is an effect first mentioned in a paper by Mohring 

(1972), which states that an increase in frequency will lead to an increase in demand which 

in turn will lead to an increase in frequency, creating a positive feedback relationship. This 

relationship is thus beneficial for airlines. Secondly, competitive pressures may lead to 

airlines increasing frequencies instead of increasing aircraft size, as frequencies are often 

tied to market shares when frequencies are over a certain threshold, an effect referred to as 

the S-shaped curve in literature. The number of competitors also increases the frequencies 

on routes. Thus, airlines want to increase frequencies to keep or increase their market 

share, forcing the airline to operate smaller aircraft at a higher frequency at such routes. 

Lastly, having more frequencies increases the passenger’s willingness to pay, which 

increases the fares that can be charged by the airline. (Zou and Hansen (2014)) 

 

By running a 2SLS and OLS estimate of a frequency equation, Zou & Hansen (2014) finds 

that the majority of the growth in passengers is facilitated by an increase in frequency, 

since the coefficient for the elasticity of the frequency response to demand is around 0,65 

(0,641 with OLS and 0,651 or 0,654 with the two 2SLS models). Thus, they find that the 

coefficient for the elasticity of the aircraft size response to demand is 0,35. They also find 

that increases in fuel costs leads to a lower frequency, with a 7,5% increase in fuel costs 

leading to a 1% reduction in frequency, and that longer routes tend to have lower 

frequencies, which Zou & Hansen (2014) argues is related to the lower degree of delay 

costs as part of total travel costs on longer routes. They also argue that longer routes have 

less competition from substitutes. Zou & Hansen (2014) also find that an increase in delay 

leads to a higher frequency, which they point out is not intuitive as airlines might want to 

reduce frequency when there are delays to reduce operating costs, but they argue that the 

reason for this response to delays, despite the added costs, is because airlines are willing to 

pay the extra cost to capture the high yield of market segments that are highly sensitive to 

delay costs. Zou & Hansen (2014) also points out, based on interviews with the air travel 

sector, that airlines are unwilling to cut departures, even when there is delay, since doing 

so could lead to a loss of slots, which they are not willing to do since doing so would give 

their competitor an advantage. The share of LCC on the route also affects frequency, with 

a 10% increase in the share of LCC on the route leading to 0,57% fewer flights. The total 

delay elasticity of frequency is found to be a 1,8% increase in flight traffic per 1 min delay 
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for origin airports and a 0,28% increase in flight traffic per 1 min delay at arrival airports. 

(Zou & Hansen (2014)) 

 

The relationship between aircraft size, frequency and demand is also covered in the paper 

by Belobaba (2009). In it Belobaba (2009) also states that the reason why airlines increase 

frequencies is because such increases lead to an reduction in waiting time between flights 

and more departures at the preferred departure times of the passengers, which in turn lead 

to more demand for air travel and higher revenues for the airlines. In addition, he mentions 

that the airline is often being forced to increase frequencies to keep a market share when 

there is competition. Belobaba (2009) also mentions that business travelers are more 

sensitive to increases in frequencies, as they are more negatively affected by schedule 

delay and waiting time. Belobaba (2009) argues that increases in frequency are more 

important for short haul routes, since the waiting time between flights makes up a larger 

proportion of total flight time for short haul routes than for long haul routes. In addition to 

this Belobaba (2009) argues that the choice between increasing aircraft size or frequencies 

are closely related to each other. He uses an example of an airline wanting to transport 400 

passengers, which can either be done by using 1 flight with an airplane with 400 seats or 4 

flights with a plane with 100 seats. If there exists a competitor that operates 4 flights a day 

on the same route, the airline with 1 plane with a size of 400 seats will then only have a 

market share of 20%. Thus Belobaba (2009) argues that it is unlikely that the airline will 

have enough market share to fill its 400 seat plane to a profitable load factor. Thus, the 

airline would have to use a 100 seat size plane with 4 departures to keep its market share. 

Because of this example, Belobaba (2009) argues that airlines on short haul routes are 

forced to increase frequencies and keep aircraft sizes small. (Belobaba (2009)) 

An early paper that looks into the effects of frequency on demand of air transport the paper 

by Ippolito (1981). In it Ippolito (1981) states that while there had been some theoretical 

interest in the effect of the service quality on demand, few papers had investigated this 

relationship empirically. Ippolito (1981) points to De Vany(1975) as a notable exception to 

this, as he included flight frequency as a variable that affected demand in his model, but he 

also points out that this paper had a small sample.  

To run an empirical analysis on the frequency elasticity of demand of air transport, 

Ippolito (1981) chooses to focus on monopoly routes, where at least 80% is non-stop 

traffic to avoid any network effects or oligopoly competition bias in the results. As local 
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routes had a higher fare price at the point of the papers publication, Ippolito (1981) also 

choose to include half local routes and half trunk routes in his sample. 

To estimate the frequency elasticity, Ippolito (1981) first develops a model of the demand 

of air transport. This model includes Income, Population and Fares as independent 

variables. Ippolito (1981) argues that longer flights would be more price elastic than 

shorter flights, and since fares are higher with longer flights then the price elasticity should 

be higher when fares are high. To model this in the model, Ippolito (1981) decides to 

include the fare variable as the square of the natural units of the fare price.  

Ippolito (1981) mentions that two ways that service quality increases lead to an 

improvement in demand is firstly by there being more flights, and secondly by there being 

a lower chance that a certain flight is full. The former happens when the flight frequency 

increases and the latter happens when the load factor increases. The reason why these two 

factors lead to an increase in demand is because having a higher flight frequency means 

that a passenger has less delay costs because the passenger has a flight closer to the 

passengers desired flight time, and having a lower load factor means that the passenger has 

a higher chance of getting a seat on the desired flight of the passenger, which in turn 

reduces the passengers potential waiting time for the next flight if the desired flight is full. 

Ippolito (1981) argues that this reduction in delay cost and waiting time leads to an 

increase in demand. To model this, Ippolito (1981) builds upon Dvany(1975) and assumes 

that plane size is given for certain segments, which means that the only variable that 

reduces delay cost and waiting time is the flight frequency. Ippolito (1981) argues that the 

reason for this is that by having aircraft size constant an increase in flight frequency will 

reduce the load factor. Thus Ippolito (1981) specifies the flight frequency as “Flight 

frequency = ( Flights – load factor / 1 – load factor)”. Ippolito (1981) mentions that if the 

flight frequency is < 1, then there is diminishing returns to increasing the flight frequency. 

Ippolito (1981 then includes the flight frequency and the load factor in the demand model, 

which also includes dummy variables for distance and certain locations, such as California 

and Florida. Ippolito (1981) also specifies a supply equation which includes variables such 

as enplaned passengers, fare, ramp to ramp time, proportion of O&D passengers and 

“through” passengers in addition to dummies for the size of the flight segment and the 

identity and type of the carriers. Ippolito (1981) then estimates the model using 2SLS, 

where flight frequency and load factor are endogenous in the demand equation, and finds a 

flight frequency elasticity of 0,864, which is significant at the 0.01 level. Ippolito (1981) 

also finds a price elasticity of -0,525, but also argues that results show that the price 
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elasticity is close to unity at a distance of 830 miles, since the price elasticity in the model 

was modelled to depend on the distance. 

Another paper that looks at the flight frequency of air travel is a paper by Brueckner & 

Zhang (2001) which uses an economic analysis to look at what the flight frequency of air 

travel is in a hub and spoke network. They find that the Flight frequency is higher in a hub 

and spoke system than a direct flight network, and that while cost per passenger is lower of 

the hub and spoke system the fares are also higher for the non-connecting passengers 

compared to the direct flight network. Brueckner & Zhang (2001) argues that the reason 

for these effects is firstly that the added marginal revenue from connecting passengers 

leads the airline to increase the flight frequency to capture it. This increase in the flight 

frequency then leads to a lowering in the frequency delay for non-connecting passengers, 

causing the airline to be able to charge a higher price per flight since a higher frequency 

means that the market is more differentiated between passengers who value the utility of a 

certain departure times differently. It should however also be noted that Brueckner & 

Zhang (2001) points out that the cost per passenger and fares would be more closely linked 

in a competitive model compared to their model, which could impact their argument about 

higher fares. Brueckner & Zhang (2001) also argue that as long as cost per flight is low 

enough the airline operating in a hub and spoke network will increase flight frequency to 

serve both connecting and non-connecting traffic. However, if the cost per flight increases, 

the airline will increase the fare for connecting passengers, so that they choose not to 

travel, as connecting passengers are more price sensitive since they have a disutility from 

longer travel times. Thus, Brueckner & Zhang (2001) argues that the non-connecting 

passengers will always be fully served. 

 

A paper that looks more directly at the Frequency elasticity of the demand of air travel is 

the paper by Pels & Nijkamp and Rietveld (2001), which looks at how the flight frequency 

of demand, airfares and airport tax interact in a multi airport region. Using a multinomial 

logit model, they derive a symmetric equilibrium analytically and find that assuming the 

load factor is constant there exists an equilibrium between airfare and frequency if the 

frequency elasticity of demand is less than 1. They argue that the reason for why the 

frequency elasticity of demand needs to be lower than 1 is because if the demand 

increases, given constant load factors, an airline will increase its frequency to 

accommodate this demand increase. This demand increase will then, if the frequency 

elasticity is higher than 1, lead to an even higher increase in demand, which in turn needs 
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to be accommodated with a higher increase in frequency, and so on. Thus, they argue there 

that in this situation there is not an equilibrium between air fare and flight frequency. They 

also find that if the frequency elasticity of demand is less than 1 there exists a unique 

airfare-frequency equilibrium, so that given an optimal airfare-frequency equilibrium for 

one airline there exists a response from a competitor airline that is unique. They also find 

that there is also an equilibrium between airfare, frequency and airport taxes if it holds that 

frequency elasticity is < 1, as the model can be used to find the optimal airport tax by 

taking into account the optimal response by the airlines. Pels & Nijkamp and Rietveld 

(2001) finds that the equilibrium holds both for a symmetric analytical solution and a 

asymmetric numerical solution. Pels & Nijkamp and Rietveld (2001) also mentions that 

two earlier papers, Caves et al (1991) and Pels et al (1998) found the frequency elasticity 

of demand to be less than 1, but they also argue that more research is needed to see if the 

frequency elasticity of demand for air travel is actually less than 1 or not. 

Another paper that covers the frequency elasticity in a hub and spoke network is the paper 

by Wei & Hansen (2006). In the paper Wei & Hansen (2006) develops an aggregated 

demand model that looks at the demand impacts of frequency, fare price, distance, aircraft 

size, the demographical data about the areas where the hub and spoke airports are located 

in addition to the demand impacts of the characteristics of the hub and spoke network, 

such as the number of spokes or the number and income of local passengers. In the model 

they divide the frequency elasticity of demand in the hub and spoke network into two 

parts, DFREQ and HFREQ, where DFREQ represents the frequency elasticity on the 

spoke to hub flight, and HFREQ representing the average frequency elasticity on the hub 

and spoke network as a whole. They estimate their model using a dataset covering most of 

the hubs in the US air transport market in the second quarter of 2000 and find that the 

Frequency elasticity of demand on the spoke to hub routes is 1,187, which is higher than 1 

and thus against the argument that the frequency elasticity of demand has to be less than 1 

stated in Pels & Nijkamp and Rietveld (1998). The average frequency elasticity on the 

whole hub and spoke network is however smaller, being only 0,265. Both estimates are 

also significant at the 0.01 significance level. Wei & Hansen (2006) argues the reason why 

the frequency elasticity is smaller for the whole network than for the spoke to hub route is 

that the passengers value the frequency on the first stage route higher than on connecting 

routes. Wei & Hansen (2006) also finds that the aircraft size elasticity of demand is 0.631, 

indicating that demand is more elastic to an increase in frequency than an increase in 
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aircraft size. Besides this Wei & Hansen (2006) finds a price elasticity of -0.899 on the 

spoke to hub route. 

 

Lastly, a paper that looks at how airlines set their Frequency is the paper by 

Richard(2003), which argues that airline adjust their frequency and passengers based on 

their costs, such as operating cost, cost per flight and fuel cost, so that they maximize their 

profits based on marginal cost and marginal revenue. (Richard (2003)) 

 

2.1.3 Income and price elasticity 

Since the estimated model in this thesis will not only estimate the frequency elasticity but 

also the price and income elasticities, it will be good to cover some theory on income and 

price elasticities. 

The ability of a passenger to travel is constrained by two factors, monetary and time 

constraints. The monetary constraints depend on the income and the price of the passenger. 

These two factors do not impact the willingness to travel the same, as the changes in price 

and income affect the decision to travel differently. Income effects which is also called the 

Income elasticity, is the percentage change in travel demand to a percentage change in 

income. The income elasticity depends on whether the passenger views the good in 

question as a normal or luxury good. If the good is a luxury good or service, then demand 

is expected to increase more than proportional to an increase in income, which means it 

has an income elasticity > 1. If, however the good is considered a normal good, then the 

income elasticity will be < 1, meaning that the demand of that good increases less than 

proportionally with an income increase. There is however a limit to the consumption of a 

good or service, and as income reaches a certain point there will be a saturation effect for 

the demand for the luxury good or service, leading to less growth in demand for the luxury 

good or service relative to the growth in income. This saturation effect is however lower 

for services, as higher quality services can be introduced, which sustains the demand and 

postpones the saturation effect. The demand for travel, being a service, could potentially 

experience a fall in income elasticities for travel demand, stopping short of an income 

elasticity of zero, as income grows, although the evidence of such a saturation effect is 

somewhat limited. Price elasticity on the other hand depend on two factors, income and 

substitution effects. The substitution effect depends on the availability and cost of 

substitutes to the good or service, with more substitutes leading to a higher substitute 
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effect. The income effect depends on the degree of consumer’s income that is spent on the 

good in question, and the income elasticity of the consumer for that good or service. 

(Fouquet (2012)) 

To investigate how income and price elasticities evolve over time, Fouquet (2012) looks at 

the historical development in transportation demand in Britain, and finds that passenger 

demand for land transport increased 165 times in the period 1850-2000, or 220 times in the 

last 150 years if air travel was included as well. He points out that if the price and income 

elasticities were -1 and 1 respectively during this period, then demand for transport would 

have increased 144 times, something Fouquet (2012) argues is a sign that demand for 

transport were on average elastic in this period or possibly highly elastic at some points in 

time  

To test the relationship between the demand for travel and income and price elasticities 

Fouquet (2012) uses a vector error correcting model that covers the travel demand in 

Britain over the last 150 years. He finds that income elasticity for travel demand has 

indeed decreased over the period, from as high as 3 around the 1850-1860 to 2,2 in 1890 

and stabilizing at 1,2 in the period 1920-1980, before reaching an income elasticity for 

aggregate travel demand of 1 in 2000. He argues that this is an indication that travel moved 

from being a luxury service to a necessity in everyday life, as travel became a possibility 

for a larger part of the people, and people became depended on transport to commute to 

work because of factors such as urbanization and an increase in suburbanization. He also 

points out that had it not been for air travel having a higher elasticity, which increased the 

average elasticity of travel demand, the elasticity of aggregate travel demand would 

probably have decreased even more, which he shows by finding that the income elasticity 

of land transport reached an elasticity of 1 already in 1940.  

Fouquet (2012) also shows that price elasticities have declined, from -1,5 in 1870s to -0,9 

in 1920s and finally -0,6 in the period 2000-2010. He argues that the reason for this 

decline is a combination of travel making up less of total GDP and personal expenditure 

and because of the increase in substitution options to transportation, such as new forms of 

communication being invented. He argues that reduction in price elasticities in the period 

in question matches the theory, since the theory states that price elasticities will decline 

with a reduction in prices and an increase in income, both of which happened in the period 

in question. (Fouquet (2012)) 

 



 20 

It would however also be good to look at more detailed data about the income elasticities 

of air transport itself. One such study is a meta regressional analysis of the literature on the 

income elasticity of air travel by Gallet and Doucouliagos (2014), which uses a dataset 

containing 40 studies, which includes a total of 405 income elasticity estimates, published 

between 1972-2007. By calculating a simple average from the papers reviewed, they find 

that the income elasticity is 1,517, which they argue indicates that air travel is a luxury 

since an elasticity > 1 indicates the service or good is a luxury and an elasticity < 1 

indicates that the good or service is a normal good. They also state that this indicates that 

air travel is an immature market, as an immature market would view air travel as a luxury, 

while a mature market would view it as a normal good. When they run the meta regression 

analysis they find that income elasticity is 1,186 for domestic air travel and 1,546 for 

international air travel. They did however also find that the income elasticity is reduced to 

0,633 when the price of air transport is included in a dynamic specification of demand. By 

checking for selection bias on the part of the researchers they find it to be not significant, 

and they also find that regional differences do not have a significant impact on income 

elasticity of demand for air travel, although they also find that the income elasticities have 

increased in North America compared to the rest of the world, something they argue may 

have to do with better data or the focus of the studies on the North American market 

compared to the rest of the world. They also find that the type of measurement used to 

measure income, the estimation method of demand, data aggregation, the time horizon or 

the use of instrumental variables has little impact on the estimate of income elasticity. 

((Gallet & Docucouliagos (2014)) 

2.1.4 Limits to growth of air travel 

So why is it important to know the income elasticity for air travel? A paper that covers this 

is the paper by Graham (2000) which states that since there are certain limits to the growth 

of air travel, it would be beneficial to know if a market for air travel has reached that limit 

or if not how close the market is to reach it. Graham (2000) states that the growth of air 

travel can be divided into two segments, new travelers and additional travel by previous 

travelers. As air travel is becoming more and more common, with only about 5% of 

travelers being new travelers in the UK as of 2000, there comes a point where future 

growth must come from previous travelers travelling more. Graham (2000) cites from 

Graham (1995) that the point where no more new travelers is expected is when about 80% 

of the people in a nation already uses air travel, and she also cites James (1993) which puts 
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the same limit to 75%. When such a limit is reached, the limits to growth would be the 

ability and desire of previous travelers to travel more. The ability of a traveler to travel 

more is stated by Graham (2000) to depend on the income of the traveler, and the desire to 

travel depends on the utility to the traveler of an addition flight, which she argues follows 

the law of diminishing returns for tourism related travel by air. Graham (2000) argues that 

together these factors can lead to demand maturity, which is a market with lower growth 

rates or demand saturation, which when a market is full and it stops growing.  

 

So, given this, how can the growth potential or maturity of an air travel market be 

measured?  Graham (2000) states that there are three ways to do this, either looking at the 

growth rates of the air travel market in question over time or by comparing the growth of 

air travel to the growth of GDP, based on the intuition that a lower growth in air travel than 

GDP indicates slowing growth and market maturity. A third way to measure it mentioned 

by Graham (2000) is to compare the growth in GDP with the growth in revenue for the 

airlines, with a higher growth in yield than GDP indicating an immature market with a 

potential for growth and the opposite indicating a mature market with lower growth. Lastly 

Graham (2000) develops a method to measure market maturity, based on his previous 

argument. This method consists of using the income elasticity to measure the maturity of 

the air travel market. She argues that the maturity of a market can be divided into five 

stages, Stage 5 which is a fully saturated market, Stage 4 which is a fully mature market, 

Stage 3 which is a market approaching maturity, Stage 2 which is a not a fully immature 

market and Stage 1 which is a fully immature market. She argues that the stage a market is 

in can be measured by the income elasticity with it being 0 indicates stage 5, 1 or < 1 

indicating Stage 4, > 1 and approaching 1 being stage 2 and 3 and an income elasticity 

which is constant and way higher than 1 being Stage 1. To test this method, she applies it 

to data covering British long holidays for the two periods 1970-1998 and 1984-1998. By 

estimating the income elasticities for both international travel and leisure travel as a whole 

she finds that the income elasticities were 2,23 and 1,89 for international air travel for the 

periods 1970-1998 respectively and 1,30 and 1,28 for Total leisure travels in the same 

periods. She argues that this indicates that both markets are approaching maturity since 

both segments have decreasing income elasticities over time, but she also points out that 

the total leisure travel segment is closer to being fully mature, which is indicated by an 

income elasticity of 1. (Graham (2000)). 
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2.1.5 Summary of elasticities 

Having reviewed the literature on relevant elasticities, I summarized the most important 

estimates in the papers covered above, in additions to other paper I reviewed not 

mentioned in the literature review, into Table 1, Table 2 Table 3 and Table 4 which shows 

a list of the different estimates of the Frequency, Income, Price and Load factor elasticities 

respectively. The first Table 1, shows the estimates for the Frequency elasticity in the 

different papers. I opted not to include the Frequency elasticities from Tsekeris (2009) in 

this Table 1, as they are relative Frequency elasticities, and may thus be hard to compare with 

the estimates in this thesis. 
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Frequency 

elasticity Notes Method Paper 

0,945 Static model 3SLS Wang et al (2014 

0,679 

model with lag of 

demand 3SLS Wang et al (2014 

0,94 

aircraft size assumed 

endogenous 2SLS Jorge-Calderón (1997) 

0,65 

aircraft size assumed 

exogenous 2SLS Jorge-Calderón (1997) 

0,864   2SLS Ippolito (1981)  

1,187 

Spoke-Hub frequency 

elasticity OLS Wei & Hansen (2006)  

0,265 

Whole network 

Frequency Elasticity OLS Wei & Hansen (2006)  

0,79 with hub dummy 2SLS 

Schipper, Rietveld and Nijkamp 

(2002) 

0,77 without hub dummy 2SLS 

Schipper, Rietveld and Nijkamp 

(2002) 

Table 1. Frequency elasticities in reviewed papers 

As seen from the summary of the Frequency elasticities in the papers reviewed, they tend 

to be in the range of 0,65-0.95, with an outlier by Wei & Hansen (2006). It is also 

interesting that most of the papers used 2SLS or 3SLS to estimate the Frequency elasticity, 

and that the only one that used OLS is the paper with the outlier estimates. That the 

Frequency elasticity estimates tend to be less than 1 also fits with the discussion in a few 

of the papers I reviwed on the theory behind the Frequency elasticity, which states that 

intuitively the Frequency elasticity should be less than 1 because of diminishing returns to 

demand by increasing Frequency. It also seems that having a lag of demand in the model 

reduces the Frequency elasticity a bit, as seen by the estimates of Wang et al (2014), and 
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that assuming the aircraft size to be exogenous or endogenous also has the same effect on 

the Frequency elasticity. 

 

 

The next table, Table 2, shows the price elasticity in different papers. 

Price 

elasticity Notes Method Paper 

-0,542 

Economy fare (aircraft size assumed 

endogenous) 2SLS 

Jorge-Calderón 

(1997) 

-0,948 

Economy fare (aircraft size assumed 

exogenous) 2SLS 

Jorge-Calderón 

(1997) 

-0,525   2SLS Ippolito (1981)  

-0,899   OLS 

Wei & Hansen 

(2006)  

-0.8184 Short run 

Praise Winsten 

Regression Kopsch (2012) 

-1.13 Long run 

Praise Winsten 

Regression Kopsch (2012) 

Table 2. Estimates of the Price elasticity in different papers. 

 

As seen from the elasticities in the summary, the price elasticity tends to be around -0,5 to 

-0,9 in the papers reviewed, and one paper Kopsch (2012) calculates the long-term price 

elasticity, and finds it to be -1,13, which is in line with the discussion of long term 

elasticities in Brons et al (2002). It is however important to point out that the papers 

reviewed estimated the Frequency elasticity for the US market, with the exception of 

Kopsch (2012) who estimated it for the Swedish market. The price elasticity values may 

thus not be representative of Norway, since Norway has a geographical situation that leads 

to there being less substitutions to air travel, which might have an impact on the price 

elasticity. Table 3 shows the income elasticity of the papers covered. 
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Income 

elasticity Notes Method Paper 

0,7967 

Model without Frequency 

and Fare OLS Jorge-Calderón (1997) 

2,35   2SLS Ippolito (1981)  

-0,361   OLS Wei & Hansen (2006)  

1.186 Domestic market 

WLS (Meta 

analysis) 

Gallet & Docucouliagos 

(2014 

0.633 

Dynamic equation, 

domestic 

WLS (Meta 

analysis) 

Gallet & Docucouliagos 

(2014 

0,34 with hub dummy 2SLS 

Schipper, Rietveld and 

Nijkamp (2002) 

0,54 without hub dummy 2SLS 

Schipper, Rietveld and 

Nijkamp (2002) 

Table 3. Estimates of the Income elasticity in different papers. 

 

Looking at the Income elasticity estimates in the papers reviewed, it seems that they differ 

quite a bit between the papers, ranging from -0,34 to 1,186, with outliers such as 2,35 and -

0,361. Thus, it is hard to say that there is a common income elasticity in the papers 

reviewed. Given that the income elasticity is used as a measurement of maturity, the wide 

range of the estimates may be down to the different maturities of the markets analyzed, 

that the highest estimate is an old paper and an meta-analysis also seems to support this, as 

an older paper would have a higher elasticity if the theory that air transports markets 

mature over time holds, similarly a meta analysis would have a higher value as the 

estimate is an average between both mature and immature markets, which could inflate the 

value. However, it is hard to say for sure if this truly is the case or not. 

Lastly Table 4 shows the load factor elasticity of one paper 

Load factor elasticity Notes Method Paper 

-0,854   2SLS Ippolito (1981)  

Table 4. Load factor elasticity in the reviewed papers 
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As there was only one paper that estimated the load factor, it is hard to draw any general 

conclusions about it, but the estimate does fit with the theory that a high load factor should 

have a negative effect on demand. 

2.2 Norwegian air transport market 

Air transport is essential in Norway because of its large distances and challenging 

geography. An example of this is that it takes about 4-5 hours to longer to take a train from 

the largest cities in Southern Norway to Oslo than to travel the same distance by air travel. 

Because of this many, both business and leisure travelers prefer to travel by air.  Norway 

also has a well-established air transportation infrastructure that covers most of the country. 

It built its main jet airports in the 50s and the 60s and later established a large number of 

regional airports that takes STOL aircraft. Because of this most areas in Norway have an 

airport within 1 hour travel time, with some coastal areas having a regional airport as close 

as within 30 min travel time. The type of travelers on the different routes differ a bit, with 

Northern Norway having a larger share of leisure travelers than Southern Norway, and 

Western Norway having a larger share of oil related traffic than the rest of the country. The 

number of air trips per year per person also increases the further north you get in Norway, 

something that is natural given the longer travel times and less substitutes to air travel in 

Northern Norway compared to Southern Norway. An example of this is that while it takes 

around 15 hours longer to travel from Bodø to Oslo by train than by air travel. Air travel is 

also essential for many businesses, and the demand for air travel follows the business cycle 

but with a bit more volatility. In the period 1980-200 the growth rate of air travel demand 

was about the double the growth rate of the GDP. (Lian et al (2005)) 

 

Because of the long distances in Norway and the decentralized population densities there is 

not only a demand for point to point services to Oslo from the other cities, like in Sweden 

where there are routes from the rest of the country to Stockholm. In Norway passengers 

would want a point to point route between their city and another city in Norway if they 

could, but such routes requires a sufficient market to be able to operate. As this is not the 

case for many routes, passengers on these routes have to travel on network flights with 2 or 

more flights. In Norway such network flights made up 28% of all domestic flights as of 

2003 for purely domestic network flights or 42% of all non STOL domestic flights if 

network flights where an international flight is one of the stages in the network flight is 

included. Out of the non STOL domestic network flights in Norway, as of 2003 45% of it 
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consists of network flights between the Southern Norway cities besides Oslo and Northern 

Norway, and about 32% consists of network flights between cities in Møre and Trondheim 

and Southern Norway besides Oslo. (Lian et al (2005)) 

 

The STOL routes that serve rural areas are also very dependent on network flights, as such 

routes are often between the rural area and the regional center. Thus, if the people in the 

rural area want to go to another large city in Norway, they are often forced to use network 

travel. Because of this, as of 2003, 65% of the STOL flights are part of a network flight. 

((Lian et al (2005)) 

 

Out of the different regions in Norway, the regions with most network as a percentage of 

total travel from that region travel is Sogn og Fjordane, Northern Norway, and to a lesser 

degree, Møre og Romsdal, Trøndelag, Rogaland and Hordaland. (Lian et al (2005)) 

 

As of 2015 there are is about 15 million passengers annually on the domestic Norwegian 

air market. The two biggest players on the market are SAS and Norwegian, who have a 

market share of 46% and 37% respectively. SAS has had a decreasing market share 

compared to Norwegian the last 12 years, going from a respective market share of 72% 

and 12% for SAS and Norwegian in 2003 to a stabilization around 50-46% to SAS and 35-

37% to Norwegian in 2009-2010. SAS has regained some market share the last years, but 

as of 2015 SAS still serves half a million passengers less compared to the number of 

passengers that flew with SAS in 2003. The increasing market share of SAS in the last 

years means that the market share of Norwegian is the same in 2015 as in 2009, but even 

with the lost market share Norwegian still has the same number of passengers as in 2011. 

(Thune-Larsen & Farstad (2016)) 

 

Of the routes out of Oslo, the most travelled routes are the routes serving Trondheim, 

Bergen and Stavanger, with 1,95 million, 1,81 million and 1,52 million passengers 

respectively as of 2015. The routes have a business travel share of 50%, 51% and 55% 

respectively as of 2015, and had a yearly growth of  3,6% 2,7% and 4,4% respectively in 

the period 2003-2013. On the individual routes the growth differ slightly, with Trondheim 

having continuing growth since 2009 but a stagnation in business travel, Bergen having 

growth in both business and leisure travel, while at the same time only having growth in 

the years 2011 and 2014 in the period after 2009. Lastly, Stavanger enjoyed strong growth 
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until 2014 but then experienced a rapid drop in demand in 2015. Before the drop in the 

years 2013-2015 Stavanger had a growth in business travel and a drop in leisure travel on 

the route. Besides the growth these routes have a lot in common, while also having 

something unique per route. On all three routes SAS has the largest share of business 

travel while Norwegian has the largest share for leisure travel. Out of total travel on the 

route, SAS has a market share of over 50% between Oslo and Trondheim and between 

Oslo and Stavanger, while only 48% on Oslo and Bergen. All routes have about 50-52% 

business travel, but Stavanger has had a growth in business travel to 55% from 2013 to 

2015. The route serving Stavanger also has the most oil related travel, with 1/6 of the 

demand being oil related. The routes serving Stavanger and Trondheim also has the most 

transfer traffic and network travel, mainly because of Trondheim’s role as a hub for traffic 

coming from Northern Norway on its way to Oslo, and Stavanger because of the lack of 

direct flights between Stavanger and other Southern cities in Norway besides Oslo. All 

three routes also had about the same ticket price in the period, but the routes serving 

Trondheim and Stavanger had an increase in business fares in the period 2013-2015 

compared to the route serving Bergen from Oslo. (Thune-Larsen & Farstad (2016)) 

 

3.0 Conceptual model 

The model used to estimate the frequency elasticity of demand for the individual routes 

chosen have to be adapted based on the data availability and the characteristics of the data. 

Still it is good to first construct a conceptual model, which can then be adjusted to the 

individual analysis. As can be seen from my review of the theory of the determinants of 

the demand of air transport, the basic model for air transport demand can be divided into 

three main categories; Demographical factors, Service Quality factors and Geographical 

and airport factors. The demographical factors are variables such as Population size, 

Income of passengers and GDP for the area served by the route or routes in question. The 

service quality factors are variables such as the fare price for the flights on the route or 

routes, the flight frequency, aircraft size and load factor. Finally, the Geographical factors 

and airport factors are variables such as distance between airports on a route, and airport 

factors are factors such as the length of the runway, slots available and so on. To get a 

better overview of the usage of certain variables in the papers I have reviewed, I have 

compiled a list of the most common variables in Table 5 which lists the papers and total 
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number of papers that have used this variable in their model. Table 5 is not a complete list 

of the variables used, and the list of variables used only once does not include the variables 

that are not relevant for a time series route level analysis. Examples of such variables are 

characteristics that do not change over time, such as airport distance or other variables less 

related to route level analysis is left out of the table. Dummy variables are also left out of 

the list. 

 

 

Variables used in demand models Articles 
      

Income / GDP [1] [2] [3] [4] [5] [6] 6 

Population [1] [2] [3] [4] [5] [6] 6 

Frequency [1] [2] [3] [4] [5]   5 

Fare    [2] [3] [4] [5] [6] 5 

Aircraft size / Seat capaciaty [1] [2] [3]  [5]   4 

Tourism  [1] [2] [3]  
 

  3 

Distance [1] [2]  [4] 
 

  3 

HHI [1] 
 

  
 

  1 

Cost [1] 
 

  
 

  1 

Log of linear time trend [1] 
 

  
 

  1 

Lag of demand   
 

[3]  
 

  1 

Travel time   
 

[3]  
 

  1 

Load Factor       [4]     1 

        
  

   

        
[1] Wang et al (2013) 

     
 

 
[2] Jorge-Calderón (1997) 

       
[3] Tsekeris (2009) 

       
[4] Ippolito (1981) 

       
[5] Wei & Hansen (2006) 

       
[6] Kopsch (2012) 

       
Table 5. Usage of variables in the demand models in the papers reviewed 

Based on the variables in the papers I reviewed and my research questions, a basic 

conceptual model of air transport demand on the route level, with the inclusion of service 
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quality variables such as load factor, Frequency can be developed. Because the data on 

route level are time series data, some of the variables, such as distance between airports 

cannot be included as they would be constant over the whole-time period, and it is 

therefore impossible to estimate its effect on the independent variable. Thus, the model, 

which includes the most common variables that impact demand of air transport without 

time constant variables can be stated as: 

𝐷𝑒𝑚𝑎𝑛𝑑 = 𝛽0 + 𝛽1𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽3𝐺𝐷𝑃 + 𝛽4𝐹𝑎𝑟𝑒 + 𝛽5 + 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 +

𝛽6𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑠𝑖𝑧𝑒 + 𝛽6𝑇𝑜𝑢𝑟𝑖𝑠𝑚 + 𝛽7𝐿𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟  

 

4.0 Methodology 

To answer my research question, I have chosen to use econometrics to estimate the 

frequency elasticity of air transport demand, since this is the common way to do this in the 

theory I reviewed. Econometric consists of many methods, but in its most basic form is 

OLS, which consists of fitting an equation with a number of independent variables to the 

plot of the dependent variable so that the sum om squares of the distance between the line 

of the equation and the plots are as low as possible. I will not cover the basic theory on 

econometrics and OLS in more detail see Bjørnland and Thorsrud (2015) and Wooldridge 

(2015) for a more comprehensive discussion of how OLS works. 

 

There are however, some requirements needed for an OLS regression using time series to 

be viable and unbiased, which I will cover here briefly. Woodelridge (2015) mentions that 

there are asymptotic properties of OLS are that Firstly, the variables in the regression need 

to be weakly dependent, stationary and follow a linear model. An example of when a 

variable is nonstationary is if the variable has unit root. If a variable has a unit root, then it 

will be difficult to estimate the OLS model, as it will not be weakly dependent. This can be 

corrected for using differencing, since a process with a unit root will be weakly dependent 

after differencing, also called difference-stationary. I will get back to this later if it is 

needed. Secondly there can be no perfect collinearity between the variables, which is the 

case if one of the variables in the model can be completely explained by a combination of 

two of the other variables. Thirdly, there can be no heteroskedastic and serial correlation. 

Lastly, the residuals need to have an unconditional mean of 0 and each of the repressors 

needs to be uncorrelated with it. (Woodelridge (2015)) 
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However, since the theory I reviewed argues that Frequency is Endogenous with Demand, 

this need to be taken into account when running the regression. I will thus cover the theory 

on endogeneity and how to take it into account for it when running a regression in some 

more detail. 

 

4.1.1 Endogeneity and Instrumental Variables and 2SLS 

An endogenous variable is a variable that is correlated with the error term of regression in 

question. When this is the case, OLS will be biased, and an instrumental variable is needed 

to avoid this bias. An instrumental variable is a variable that is correlated with the both the 

independent variable and the endogenous dependent variable, but which does not have a 

direct effect itself on the independent variable, and which can thus be used to estimate the 

endogenous independent variable. These requirements can be formulated as two rules for 

instrumental variable regressions. (Wooldrige (2015)) 

1: That the Instrument does not suffer from the same problems as the endogenous 

independent variable, which means that the instrument cannot be correlated with the error 

term in the equation. This point is impossible to test, as the error term in a regression with 

an endogenous variable will be biased itself. Thus, whether the instrument is related to the 

error term or not has to be argued through logic and/or economic theory.  

2: The Instrument must be correlated with the endogenous variable. This can be tested by 

seeing if the instrument is significantly different from 0 in the first stage regression of a 

2SLS estimation. (Wooldrige (2015)) 

 

In the case of one endogenous independent variable only one such instrument is needed. 

When such an instrument, which satisfies the two rules, is identified, the model can be 

estimated using two stage least squares regression, shortened to 2SLS. 2SLS is also 

referred to as instrumental variable regression in the case where only one endogenous 

variable and one instrument is used, but 2SLS can also estimate models using more than 

one instrument for a single endogenous variable. Whether one or more instruments are 

used depends on the availability and strength of the instruments, since having more 

instruments I good if the instruments are strong. Estimating a model with 2SLS makes the 

estimates unbiased if the assumed endogenous variable is truly endogenous. If not, the 

estimates from 2SLS are still unbiased but OLS would be unbiased in this case and also 
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more efficient. The reason for this is that while using 2SLS avoids the bias in the case 

where the model includes an endogenous independent variable, it also leads to a larger 

variance of the coefficients. Thus, if the variable is not endogenous, the 2SLS would be a 

method with a larger variance than OLS and thus less efficient. For a more comprehensive 

discussion of this, and 2SLS and instrumental variable regression itself, see Wooldrige 

(2015). (Wooldrige (2015)) 

 

Since the 2SLS makes the estimates unbiased in the case of an endogenous variable, it is 

expected that estimating a model with an endogenous variable with OLS and 2SLS will 

produce different results. To test this a test such as the Wu-Hausman test can be run, which 

tests whether the 2SLS regression is significantly different than the OLS regression. I will 

not go do deep into detail on this, but in short consists of running a regression of the 

reduced from equation of the endogenous variable (called first stage in 2SLS), predicting 

the residuals, and then regressing the residuals as a part of the equation with the 

endogenous variable. The residuals would in this case represent the bias from endogeneity, 

and if they are significantly different than 0 in the last regression, this would be an 

indication of endogeneity, and thus that 2SLS is more efficient. For a more comprehensive 

discussion of this see Wooldrige (2015). Wooldrige (2015) also mentions that based on the 

way the R^2 is calculated for the 2SLS it may be hard to interpret it as I may even be 

negative, I will thus not discuss the R^2 when running 2SLS analyses. 

 

4.1.2 Cointegration 

As mentioned in the literature review in Fearnley & Bekken (2005), a way to estimate the 

long-run elasticity is when the data is non-stationary and cointegrated. So how can this be 

done if the data is non-stationary and cointegrated?  

A way to do this with cointegrated and nonstationary data is to use a ECM and the ADL 

model. Both models rely on the assumption that two variables have a long term 

cointegrated relationship, and that there is an error correcting term in the model that pushes 

both variables towards the long-term equilibrium, increasing the effect of one of the 

variables if it is lower than the equilibrium or increasing it if it is higher. An example of 

how this works used by Bjørnland and Thorsrud (2015) is Consumption and Income, 

which they argue have a long run equilibrium as there are limits to the share of income 

spent on consumption. They argue that in some periods the amount spent on consumption 
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may be larger than this, and at some time it may be lower, but in the long run it should end 

up at the long run equilibrium level. So, when can such a model be applied to measure the 

long-run and the short-run equilibrium? Since both the ECM and the ADL model relies on 

that the two variables are I(1) processes and that they are cointegrated. Whether the 

variable is integrated of I(1) or not can be tested with a ADF test. If it turns out that both 

variables in question follow a I(1) process, a test to check whether they are cointegrated or 

not has to be run. Bjørnland and Thorsrud (2015) mentions that such a test is the Engle-

Granger test. Since two cointegrated I(1) processes should have a stationary error term, the 

Engle-Granger test consists of regressing the independent I(1) variable on the dependent 

I(1) variable, then checking if the residuals are stationary or not, which can be done by 

running a ADF test to check the residuals for a unit root. If the ADF fails to reject the H0 

of a unit root, then the residuals are stationary and the two I(1) variables are cointegrated 

and a ECM or ADL model can be estimated. If not a static model has to be used. 

(Bjørnland and Thorsrud (2015)) 

 

4.2 Choice of Instrumental Variable 

Because of the possible endogeneity of frequency, which I covered earlier in the literature 

review there is also a need to identify one or more instruments to frequency. As covered in 

the literature on instrumental variables covered above, such an instrument needs to a 

variable that affects flight frequency but not demand directly. As mentioned in Ippolito 

(1981) the service quality variables such as aircraft size, frequency, price is the variables 

affecting demand that an airline can change. Thus, any effects on demand from a cost 

change has to come through these variables. Doganis (2010) mentions that while prices are 

often determined by the market, they are also set with costs in mind, and Richard (2003) 

mentions that passengers and frequency are adjusted with costs I mind. Thus, the costs 

such as fuel costs, cost per flight or operating cost should be good instruments for 

Frequency, as they impact demand only through price, aircraft size or Frequency. So, 

based on the discussion about the requirements of instrumental regression, if price, aircraft 

size is also included in the model, then the instrument should not be correlated with the 

error term. 

 

Given that papers such as Belobaba (2009), Zou and Hansen (2014) argue that airlines on 

short haul routes with competition, as is the case in Norway, tend to increase Frequency 
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instead of aircraft size, I assume that changes in cost will be adjusted for by the airlines 

through only prices and frequency on the Norwegian routes, thus aircraft size could 

possibly be excluded from the model.  Still I will test whether aircraft size is significant in 

the model to be sure.  

5.0 Data 

5.1 Selection of routes 

To investigate the frequency elasticity on the Norwegian air market I have chosen to focus 

on three routes. Bergen-Oslo, Trondheim-Oslo and Stavanger-Oslo. The reason for this is 

twofold, Firstly, I wish to investigate the Frequency elasticity on the route level, and the 

three routes are the three largest routes in Norway. Secondly, the reason for why I choose 

to use the data from these three cities to Oslo, and not the other way, is because of the 

network effects and to get estimate the Frequency elasticity of the different regions of 

Norway. The network effects have to do with the fact that travelers in Bergen, Trondheim 

and Stavanger often has to travel to Oslo to transfer to foreign destinations or to other 

Norwegian cities. Since Wei & Hansen (2006) finds that the frequency increase in the first 

stage of a spoke to hub flight was most important for the passengers, I want to investigate 

the change in frequency on the demand for the spoke airports, which in this case are 

Bergen, Stavanger, Trondheim to Oslo. The added benefit is that estimating the frequency 

elasticity on the routes to Oslo and not from Oslo is that the Frequency elasticity can be 

interpreted as the Frequency elasticity of travelers from the region of the non-Oslo airport. 

This enables the estimation of the Frequency elasticity for a larger part of the Norwegian 

air market than just routes out of Oslo, which might only represent the Frequency elasticity 

of people in Oslo. It would be interesting to investigate the Frequency elasticity of 

travelers from Oslo to Bergen, Stavanger and Trondheim, but because of time constraints, 

I focused on only the Bergen, Stavanger and Trondheim to Oslo routes.  

I also wanted to look at routes from Bodø, Tromsø and smaller airports to Oslo, but these 

turned out to be hard to estimate because the difficulty with estimating the frequency 

elasticity from small routes using national aggregates values for many of the repressors. I 

thus choose to only use the data from the three largest routes. The chosen routes can be 

seen in the map in Figure1, where the cities served, the counties where they are located, 

and the routes are plotted, with South-Trøndelag where Trondheim is located being 
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yellow, Hordaland where Bergen is located being Blue, and Rogaland where Stavanger is 

located is Green. Oslo is Orange. The airports are also marked with a red dot. 

 

Figure 1. Map of routes and cities, with the counties where the cites are located colored. 

 

 

5.2 Data collection 

Having chosen the routes to investigate, I collected the data based on the conceptual 

model. The main challenge with this was to find data of sufficient quality and availability. 

For the routes; Bergen-Oslo, Trondheim-Oslo and Stavanger-Oslo the lack of route 

specific data for some variables led me to have to use national aggerate data for these 

variables. Another limitation was that the length of the time series, since the variable with 

the shortest available data time period put a limitation on the time period of the other time 

series. For the routes, the variable with the shortest time series was the number of 
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passengers on the route, as I could only find data that covered the period 2009Q1-2016Q4 

for this variable. Thus, the data covers this time period. The data I found for the routes 

comes from two sources, the first is SSB the Norwegian Statistic bureau, which had data 

on population, income, gdp, index for the fare price, income for airlines and the number of 

passengers travelling on the route. The data from SSB was all quarterly data. The second 

source is Capstat, which has monthly data on the average aircraft size and frequency on the 

routes. Since the time series from Capsat covered monthly periods, I had to aggregated the 

data to quarterly time series myself. Below is a short description of the variables and how 

they are measured. 

 

Demand (pax): 

Measures the number of passengers between the airports per quarter. 

 

Population (pop) : 

Population is measured as the number of people living in the municipality of choice at the 

start of the quarter. To measure the potential market of a route I have chosen to add up the 

population of the municipalities of the Origin airport and the destination airport. I decided 

against finding the catchment area of the airports, as the routes serves so many passengers 

that it is likely that the catchment area would be quite large, and instead only focused on 

the two municipalities served by the origin and destination airports. My assumption is that 

being an important business routes, many business travelers would be located in one of the 

two cities. 

 

Income (inc) : 

Income is measured as the disposable income for households per quarter.  

 

GDP (gdp): 

GDP is measured as the market value of GDP per quarter in 2014 prices. 

 

Fare price (price) : 

The fare price is a national aggregate price index of the price of air travel per quarter, 

which is reported by the airlines to SSB. This price is the price received by the airline for a 

trip without taxes or other fees that the airline collects as part of the ticket price. The index 

thus does not exactly reflect the price received by customers. 
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Income for airlines (incair) : 

Income for airlines is measured as an index measuring the turnover of airlines in Norway. 

As I could not find any aggregate data on the fuel costs or costs of airline in Norway, I was 

forced to use income of airlines as a proxy for its costs. My assumption is that as the 

income of the airline shifts up or down, the airline will respond by changing its price, 

frequency or aircraft size to adapt to and to find a new profit maximizing equilibrium 

between income and costs. Similarly, to the discussion in chapter 4.2 of airline costs, the 

effects of a change in income for the airline is would be felt indirectly by the passengers, 

through changes in prices or the capacity offered. Thus I feel that the income of airlines 

fulfills the requirements of an instrumental variables in the same way was airline costs did, 

and that it thus can be used as an instrument for frequency. 

 

Frequency (freq) : 

Frequency is measured as the number of departures on a route per quarter. The data from 

Capstats was monthly, so I have aggregated the data myself into quarterly data. 

 

Aircraft size (asiz) : 

Aircraft size is measured as the average aircraft size on a route per quarter. The data from 

Capstats was monthly, so I have aggregated the data myself into quarterly data. I also 

identified some errors in the data for the three routes in some months of the two first 

quarters of 2016, as the aircraft size was much lower than the other months. By sorting the 

affected months by aircraft type and airline, I identified that some columns had values 

indicating an aircraft size of around 40 or 50 for a 737-700 or 737-800, I assumed that this 

was a simply mistake of omitting a 1, so that the correct aircraft sizes should have been 

140 or 150. I updated the dataset with this in mind, and calculated the average aircraft size 

per month myself using the corrected columns and the columns without errors for the 

months in question. Doing this, gave me an average aircraft size for the corrected months 

that either were equal to or seemed reasonable given the previous and following months 

without any incorrect values. Based on this I assume that the cleaned dataset could be 

used. 

 

Load factor (lf) : 

I calculated the load factor myself using the equation: Load factor = (pax / freq) / asiz ).  
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6.0 Analysis 1: Bergen-Oslo route 

6.1.1 Descriptive 

Having collected the data for the route Bergen-Oslo. I will first show the descriptive of  the 

different variables over the time period in question, before moving on to the analysis. 

Variable Mean St. dev Change between 2009Q1-2016Q3 

pax 214731 22889 23 % 

freq 1940 163 3 % 

pop 107 4 14 % 

income 290285 34656 48 % 

gdp 763870 32831 5 % 

price 109 11 8 % 

incair 134 33 56 % 

asiz 157 8 6 % 

lf 70 3 12 % 

Table 6. Variables collected for route Bergen-Oslo for the time period 2009Q1-2016Q3 

To get a better view of how the variables change over time, I will plot the route specific 

variables for the route in question, which are pax, freq, load factor and aircraft size. The 

other variables are national aggregate values, and are not route specific. 
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Pax: 

 

Figure 2. Pax on the route Bergen-Oslo plotted over time 

 

As can be seen from the graph, the passengers on the route Bergen-Oslo has increased over 

the time period in question, and that the increase is more of a steady increase over time. 

The demand is also highly cyclical, with the largest peaks being often in the second 

quarter. There is also a slight downturn in the quarters Q1 20010 – Q3 2010.  
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Freq 

 

Figure 3. Freq on the route Bergen-Oslo plotted over time. 

 

The frequency on the route Bergen-Oslo seem to also be highly cyclical, and seem to be 

slightly stationary between 2010Q4 - 2015 Q2, with values in the range between 1600 and 

2100 , with some peaks in the 4 Quarter and 2 Quarter. There is also a slight increase at the 

end of the period and a slight increase in the first quarters until 2010 Q4. 
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Load factor: 

 

Figure 4. Load factor plotted over time on the route Bergen-Oslo 

 

The load factor also seems to be cyclical, but not the same degree as frequency and 

demand. The load factor also starts high, then goes down until it regains some of the height 

in 2010 Q3 and Q2 and Q3 in 2011, before stabilizing around a load factor of 70 in Q3 of 

2012. In the last three quarters, Q1, Q2 and Q3 2016 there is also a steady growth in the 

load factor 
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Aircraft size: 

 

Figure 5. Average aircraft size on the route Bergen-Oslo. 

 

The average aircraft size on the route, measured in available seats on average, is growing 

steady over the timer period, with a slight peak in 2012 Q2 and 2014 Q4. There is also a 

downturn in the last quarter of 2016. I investigate the data in more detail, and find that the 

decreasing average aircraft size on the route during Q3 2016 is due to the usage of a CRJ 

900 and a Fokker 100 by SAS and Norwegian respectively on that route in that quarter, 

which has a seating capacity of 88 and 100 respectively. This pushes down the average 

aircraft size somewhat in that quarter. 

 

6.2 Model 

 

To estimate the elasticities, I will use the basic conceptual model in log form of the 

variables, as this is mentioned in Fearnley & Bekken (2005) as a method to do this. Givent 

he variables I was able to collect data for from the conceptual model, the complete model 

in log form the complete model can be stated as: 

𝑙𝑛𝐷𝑒𝑚𝑎𝑛𝑑 = 𝛽0 + 𝛽1𝑙𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝑙𝑛𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽3𝑙𝑛𝐺𝐷𝑃 + 𝛽4𝑙𝑛𝐹𝑎𝑟𝑒 + 𝛽5

+ 𝑙𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛽6𝑙𝑛𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑠𝑖𝑧𝑒 + 𝛽7𝑙𝑛𝐿𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 + 𝜀𝑡 
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6.2.1 Tests of stationarity 

But before building the model, I will first test the data for stationarity. The reason or this is 

as mentioned in the Methodology, is because of the challenges with estimating a model 

with non-stationary variables. Thus, it is important to test if the variables have to be 

differenced or not to correct for this non-stationary or not.  With the test, I use the option 

trend, for variables that seem to be trending such as ln pax, ln pop, ln inc, ln gdp, ln price, 

ln incair and ln freq.   

 

To do this I will use the Dicky Fuller test, which checks for a H0 of a unit root. For more 

detail on the test see Bjørnland and Thorsrud (2015); Wooldridge (2015) and 

(http://www.stata.com/manuals13/tsdfuller.pdf). The results from the test can be seen in 

Table 6, where I(x) denotes the number of time the data had to be differenced to become 

stationary, with a I(0) being a process without a unit root and a I(1) being a process that 

has a unit root, but which is differenced stationary after taking first differences. 

(Woodelridge (2015) As noted earlier in the conceptual model, the variables are in log 

form, as this helps in finding the elasticity.  

 

ln pax I(0) 

ln pop I(1) 

ln inc I(1) 

ln gdp I(0)  

ln price I(1) 

ln incair I(1) 

ln freq I(0) 

ln lf  I(0) 

ln asiz I(1) 

Table 7. Dicky Fuller test for route Bergen-Oslo 

 

6.2.2 Model building 

As seen by the stationary test, some of the variables in the model has to differenced once 

to make them stationary. I will thus use the log form and as first differences for the 
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variables in the model to correct for this. Doing this also has the added benefit, as stated by 

(Wooldridge (2015) of making the coefficients interpretable as elasticities in addition to 

removing most of the serial correlation. Since the dependent variable follows a I(0) 

process, the cointegration analysis such as a ECM or ADL can also not be run, as such a 

cointegration analysis requires that the dependent variable is I(1), as mentioned in Fearnley 

& Bekken (2005). 

 

Since the OLS estimates will be biased if the frequency is in fact an endogenous variable, I 

will start by building and estimating the model by using 2SLS. The reason I did this is 

because I have some concerns that since OLS will produce biased estimates if the 

endogenous variable is truly endogenous, then deciding what variables to include based on 

OLS might mean that I end up excluding important variables based on their biased test 

scores, which might lead to the wrong variables being omitted or included. 

 

 

 I will thus start to analyze the route using 2SLS, and then estimate the same model with 

OLS. Estimating the same model with OLS and 2SLS also facilitates a comparison of the 

results. 

 

6.2.2.1 Model building for 2SLS 

My main challenge with developing the model for the route was that without the load 

factor, the model did not seem to be good enough to estimate the frequency and to pass the 

diagnostic tests. I did however have some concerns about including the load factor because 

of its possible endogeneity with pax, or a possible linearity between freq, pax and load 

factor. I thus decided to lag the load factor, and use this as a variable in the model. By 

doing this, I assume the variable would become exogenous, while still being able to 

explain historic effects of a high load factor. Including such a variable would also be 

interesting, since it enables the estimation of whether the load factor in the previous 

quarter have an effect on demand in the current quarter.  

 

Thus, I run the complete model, with load factor in time t-1 included and load factor in 

time t excluded. 
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Having run the complete model, I start by excluding the Income from the model. The 

reason for this is that there was collinearity between it and POP. I then run the remaining 

model with dummies for the quarters to see if there is any seasonality effects. I find that 

only the dummy for the second quarter is significant, so I exclude the other quarterly 

dummies. I also found that the POP was not significant, and removing it also gave the 

model a larger F value, so I also excluded the POP variable. I also excluded the aircraft 

size as it was not significant. I also had some concerns that aircraft size was endogenous in 

the model, so this is also a good reason to exclude it. 

 

I choose to keep the Price variable included, even though it was not significant since the 

price elasticity it is of interest and the price variable show the right coefficient. Another 

reason for including the price variable is that it may be correlated with the incair 

instrument. The reason for this is that if the price variable was significant, and it was 

omitted, its variance would end up in the error term, and since I assume the incair 

instrument is correlated with price, this would mean that the incair instrument would be 

correlated with the error term after such as exclusion, thereby breaking the requirements of 

2SLS of no endogeneity of the instrument. For a wider discussion on this see Woodelridge 

(2015). However, since the price variable is not significant, it is unlikely that dropping it 

would make the instrument incair correlated with the error term, but I still choose to keep 

it in out of interest and to be on the safe side.  

 

I also tried to include a (t-1) lag of the pax variable (lnpax1), to see if historical effects 

impacted current demand since lagged dependent variables are stated by (Dynamic Models 

for Dynamic Theories: The Ins and Outs of Lagged Dependent Variables) to be able to 

capture such effects. The lagged dependent variable (lnpax1) turned out be not significant 

for demand, but it was however significant in the first stage regression for the frequency, 

so I kept it in the model. The plot of the demand also showed a downturn in period 5-7, 

which are the Quarter 1 2010 – Quarter 3 2010. To see if this had a significant effect on 

demand I constructed a dummy variable that covered this period, but found it to be not 

significant. I thus choose not to include it.    

 

Lastly, Muller (2015) mentions in his thesis that the maximum variables in a model is 

restricted by the number of observations, as each variable requires a certain number of 

observations. He cites from Helgheim (2002) that a rule of thumb is that the optimal 
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number of observations per variable is 5. He also uses this requirement when he construct 

his model. (Muller (2015)). Since I have 29 observations in my model, I can have 5,8 

variables in my model. The variables I am left with after building my model is 6, and I 

thus feel that all of them can be used given the rule of thumb. 

 

 

Having completed the process of building the model, the final model can be stated as: 

∆𝑙𝑛𝑝𝑎𝑥 = 𝐵0 + 𝐵1 ∆𝑙𝑛𝑓𝑟𝑒𝑞 + 𝐵2 ∆𝑙𝑛𝑔𝑑𝑝 + 𝐵3 ∆𝑙𝑛𝑙𝑓𝑡1 + 𝐵4 ∆𝑙𝑛𝑝𝑟𝑖𝑐𝑒 + 𝐵5 ∆𝑙𝑛𝑝𝑎𝑥1

+ 𝑞2 + 𝜀𝑡 

 

Where lnlf1 and lnpax1 is the lag of the load factor and the lag of the demand respectively. 

 

Since the frequency (lnfreq) has to be estimated using the instrumental variable (lnincair) 

in the first stage of the 2SLS, the reduced from of lnfreq can be stated as: 

∆𝑙𝑛𝑓𝑟𝑒𝑞 = 𝐵0 + 𝐵1 ∆𝑙𝑛𝑔𝑑𝑝 + 𝐵2 ∆𝑙𝑛𝑙𝑓1 + 𝐵3 ∆𝑖𝑛𝑐𝑎𝑖𝑟 + 𝐵4 ∆𝑙𝑛𝑝𝑟𝑖𝑐𝑒+𝐵5 ∆𝑙𝑛𝑝𝑎𝑥1

+ 𝑞2 + 𝜀𝑡 

 



 47 

6.3 Model estimation by 2SLS 

 

Figure 6. Demand model for Bergen-Oslo estimated by 2SLS. 

 

Having estimate the model, it appears that there are four significant variables, the GDP 

(lngdp), Frequency (lnfreq), lag of the load factor (lnlf1) and the quarterly dummy for the 

second quarter (q2). The coefficients of the different variables fit well with the theory I 

reviewed on price elasticity, income elasticity and frequency elasticity, and load factor 

elasticity. I will review each one in turn, starting with my main focus, the Frequency 

elasticity. As can be seen from the results, the frequency elasticity is significant and is 

0.588, or 0.59 rounded up. This shows that the route has a slightly lower frequency 

elasticity than what is previously reported in the literature. Drawing from the discussions 

about maturity from the literature on price elasticities, since I could not find similar 

discussions about this on the frequency elasticity, a lower frequency elasticity can be a 

sign that the route Bergen-Oslo is experiencing some maturity with regards to the 

frequency compared to the other Non-Norwegian routes covered in the literature I 
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reviewed. The literature I reviewed, such as Ippolito (1981) did indicate that a frequency 

elasticity less than 1 meant that there were diminishing returns from increasing frequency, 

and a frequency elasticity of 0,59 compared to a frequency elasticity of 0,65 or 0,96 means 

that the returns diminishes faster given the same growth rate in frequency over time. The 

inclusion of a lagged dependent variable in the model also facilitates the estimation of the 

long-term Frequency elasticity, as mentioned in Fearnley & Bekken (2005), but since the 

lagged dependent variable is not significant, I feel such long-term estimates would be 

unreliable. I have thus chosen not to calculate the long-term Frequency elasticity for this 

route. 

 

The next significant variable is the GDP, which has an elasticity of 0,94. I assume the GDP 

can be interpreted as the Income, as the papers I reviewed often used GDP as the variable 

for the income elasticity. Given the wide range of income elasticity in the papers reviewed 

it is hard to compare the elasticity of 0,94 with the other income elasticities, but it is at 

least in the range of the other estimates. That the GDP elasticity is 0,94 shows that it is 

inelastic and that the market has reached maturity based on the arguments in Graham 

(2000). The next significant variable is the lag of the load factor, which has an elasticity of 

-0,34 that is significant at the 5% significance level. This fits with the theory in that a high 

load factor is expected in the literature to lead to discomfort or the risk of not finding a seat 

as argued in Ippolito (1981) and Calderon (1997). I assume that the reason for why the lag 

of the load factor is significant can be because of lower or higher demand in the current 

quarter because of such negative or positive experiences connected to the load factor by 

passengers from in previous quarter. The best would be to measure this the un-lagged load 

factor, but because of concerns about endogeneity and linear dependence I was forced to 

use the lag of the load factor. So, the coefficient should be interpreted with some care as it 

does not represent the impact of a load factor in the current period, but only the lagged 

response to it.  

 

The last significant variable is the quarterly dummy for the second quarter, which also 

seems to be intuitively correct, as the second quarter is the months April, May and June, 

which are months with public holydays and June is start of the summer vacation for many, 

which are commons reasons for trips to visit friends and family or to go abroad, in which 

case I assume the travelers on the routes often have to fly to Oslo to transfer to an 

international flight, transferring at Oslo may also be needed for trips to friends and family 
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if there is no direct flight between Bergen and the other city in Norway. Thus having a 

higher demand in these months seems reasonable. I also checked the plot of the demand 

over time, and the peaks in demand is often on the second quarter.  

 

Lastly, while it is not significant the price elasticity show the right coefficient and has a 

reasonable value of -0.126. As mentioned in Brons et al (2002), less substitutes to air 

travel and more business travelers and difficult terrain on the route should lead to a lower 

price elasticity. Thus as mentioned in Lian et al (2005) and Thune-Larsen & Farstad 

(2016) that there is around 50% of business traveler on the route, and that it crosses a 

mountain range and that few substitutes of the same quality are available, then this price 

elasticity seems reasonable according to the theory. But it should be pointed out that the 

price elasticity it is not significant, and that the price data is the national aggregate price 

for air travel. Thus, the true price elasticity on the route may differ from this value. 

6.3.1 Model Diagnostics 

After running the 2SLS estimate of the model, there are a few diagnostics tests that need to 

be run to see if the results are unbiased. 

 

Firstly, I will test the strength of the instruments, since a weak instrument leads to 

inconsistent results. A test for whether the instruments are weak or not is to run a F test on 

the first stage of the 2SLS which test whether the instrument has a significant impact on 

the endogenous variable or not. If the F statistics in this test is higher than 10, then as a 

rule of thumb the instruments are considered strong. (Bjørnland & Thorsrud(2015)). 

 

I run this test for the 2SLS estimates of the route Bergen-Oslo and find the F statistic to be 

12,598 which is larger than 10. Thus, the instruments can be considered strong. 

As mentioned above in the methodology, another requirement for an instrument to be used 

is that it is exogenous in the equation. Since I assume that an airline only adjusts its 

frequency and price to an increase in their income on the short term, the instrument incair 

should not be related with the error term in the equation, and thus be exogenous. However, 

the airline could increase its aircraft size in response to an increase in income, which 

would put such a change in the error term if aircraft size was excluded from the equation, 

and thus make the instrument endogenous. To be on the safe side, I estimate the model 

again with the aircraft size, and find it to be not significant at the 5% significance level. 
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The instrument should thus not be correlated with the error term, since aircraft size does 

not have a significant effect on demand. 

 

Thus, the instrument appears to be a strong and exogenous instrument, which satisfies the 

requirements that an instrument is correlated with the endogenous independent variable 

and exogenous in the equation, as mentioned in Wooldridge (2015). 

Having tested the instrumental variable, I will then test whether the model is homogenous, 

lacks serial correlation, has a linear functional form, as these are stated as important 

assumptions for 2SLS to be consistent in Wooldridge (2015). Wooldridge (2015) also 

states that if the requirements hold then 2SLS should be asymptotically normal, thus the 

residuals should be normal. But, to be on the safe side I also test the normality of the 

residuals. 

 

Firstly, I run the Cumby-Huizinga test for serial correlation in the errors, which has as its 

H0 that there is no serial correlation. The Cumby-Huizinga test has as its advantage that it 

can be used when the model includes an IV (Baum & Schaffer (2013)). Based on the test I 

fail to reject the H0, thus it appears that there is no serial correlation in the model. 

 

The next test I run is the Pagan-Hall of heteroskedasticity. The test tests for whether the 

equation being estimated by IV regression has heteroskedasticity or not, against the H0 

that there is no heteroskedasticity in the equation. (Baum & Schaffer and Stillman (2003)). 

Given the test results, I fail to reject the H0, thus the model does not appear to have 

heteroskedasticity. 

 

Another test I will run is the Ramsey RESET test, which test whether there are any 

nonlinearities in the functional form, with a H0 that there are none. This also means that 

under the H0 the model has the correct functional form. (Wooldridge (2015)). Running the 

test I fail to reject the H0, thus the model does appear to have the right functional form.  

 

Next, I predict the residuals, and test them for normality using the Shapiro Wilk test, 

which has as its H0 that variable is normally distributed (Stata (n.d.d.)).  Having run the 

test I fail to reject the H0 of normality at the 5% significance level. Thus the residuals 

appear to be normally distributed.  
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Thus, the model appears to fulfill the conditions 2SLS. But, Kopsch (2012) also mentions 

in his paper that for an unbalanced regression to be well preforming it needs to pass three 

tests. Since the model has a I(0) dependent variable and more than two I(1) independent 

variables, it is a unbalanced regression, and thus need to fulfill these requirements. These 

requirements is firstly the fitted values of the dependent variable needs to be a I(0) process, 

secondly the error term also needs to be a I(0) process, and lastly the variance ratio 

between the fitted and observed values of the dependent variable needs to be not 

significantly different from 1. There also needs to be more than two I(1) repressors, but the 

model already fulfills this, so there is no need to test this further. 

 

Thus I predict the fitted values of ∆𝑙𝑛𝑝𝑎𝑥 and the residuals, and test whether they are a 

I(0) process with the Dicky Fuller test, and then run a variance ratio test between the fitted 

and the observed values of ∆𝑙𝑛𝑝𝑎𝑥. The Dicky fuller test fails to reject the H0 of no unit 

root (Stata (n.d.a.) thus the fitted values of ∆𝑙𝑛𝑝𝑎𝑥 appear to be a I(0) process. The 

variance ratio test also fails to reject the H0 that the ratio is 1. And lastly the Dicky Fuller 

test fails to reject the H0 that the residuals follow a I(0) process. 

 

Thus, the model seems to pass the requirements for an unbalanced regression to be well 

preforming. 

 

Thus, the model estimated by 2SLS seems to be unbiased.  

 

Lastly, it is interesting to see if the frequency was an endogenous variable or not. A test for 

this is the Wu-Hausman test, as discussed earlier in the methodology chapter. Stata reports 

both it and the Durbin-Wu-hausman test, and both test have the H0 that the variable is 

exogenous (Stata (n.d.b.). I run the test and fail to reject the H0 that the variable lnfreq is 

in fact an endogenous variable. It is important to remember what the test does, which is to 

compare the OLS regression with the instrumental regression, and a failure to reject thus 

indicates that any significant difference between the two cannot be identified. This only 

means that the exogeneity of the variable cannot be rejected, not that it is proved that the 

variable is not endogenous. However, if it lnfreq is truly exogenous, then OLS will 

produce a more efficient estimation than 2SLS. Because of this, I will run the OLS 

estimate of the model, and compare it with the 2SLS estimate. If lnfreq is exogenous then 

the estimates should be similar, although the 2SLS will have higher variances because of 
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its estimation method. For a wider discussion of this, see Wooldridge (2015) and the 

methodology chapter above. 

 

A summary of the diagnostic tests with their p values can be seen in Table 7, with the 

exception of the weak instrument test, as it did not report a p-value. 

Diagnostic tests p- value 

Cumby-Huizinga test 0.894 

Pagan-Hall test 0.6602 

Ramsey/Pesaran-Taylor RESET test 0.9549 

Shapiro-Wilk test for residuals 0.20327 

Wu hausman F test 0.74657 

Durbin-Wu-Hausman 0.70111 

  

Dicky-Fuller test: p- value 

Residuals 0,0000 

Fitted 0,0000 

Fitted, trend 0,0000 

  

Variance ratio test: p- value 

ratio != 1 0.9243 

ratio < 1  0.4622 

ratio > 1 0.5378 
Table 8. Summary of diagnostic tests for 2SLS estimate for the route Bergen-Oslo 
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6.4 Model estimation by OLS 

 

Figure 7. OLS estimate of the model for the route Bergen-Oslo. 

 

As seen from the OLS estimate of the model, the same variables are significant as with the 

2SLS estimate, and the coefficients differ only slightly. Since coefficients of the variables 

are so similar to the OLS I will not discuss their fit to the theory in detail, as the 

conclusions would be the same as for the 2SLS estimate. Thus, the coefficients of the OLS 

estimate seem to fit the theory. The model also seems to fit the data well, with a R^2 of 

0,9638. 

 

There are some differences however in the size of the coefficients, which I will cover in 

turn. The first the frequency elasticity, is 0,63, which is slightly larger than the frequency 

elasticity estimated with 2SLS. This Frequency elasticity is closer to the Frequency 

elasticities in the papers I reviewed, but it is still a bit lower than the lowest estimate of 

0,65 in Jorge-Calderón (1997).So, the possibility that Bergen-Oslo is more mature with 
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regards to the Frequency elasticity might still hold, although the difference between the 

estimate for the Bergen-Oslo route and the other papers is lower.  

 

The next variable, GDP has a lower elasticity than under 2SLS, being only 0.836. 

Interpreting the GDP as the income elasticity means that the GDP elasticity indicates that 

the market is inelastic and thus a mature market, since the elasticity is less than unity. The 

route, being one of the largest in Norway, and Norway being a western country means that 

this seems like a reasonable finding.   

 

The lag of the load factor and the quarterly dummy for the second quarter only differ 

slightly from the 2SLS estimate, so the coefficients appear to show the same effects as 

with the 2SLS estimate. 

6.4.1 Model Diagnostics 

Having run the OLS estimate of the model, I will run some diagnostics test on it, before 

comparing the OLS and 2SLS estimates. Based on the asymptotically conditions for 

unbiased OLS given in Wooldridge (2015), the model needs to lack serial correlation, have 

a linear functional form and lack heteroskedasticity. In addition the residuals need to be 

normality distributed. According to Wooldridge (2015), under the asymptotically 

conditions for OLS, the residuals will be asymptotically normal if the other conditions 

hold. I will however also test the normality of the residuals to be on the safe side. Thus 

tests needs to be run to control if these conditions hold or not. 

 

Firstly, the model has to be controlled for serial correlation. A common test for this is the 

Durbin Watson test. This test can however not be used to test my model as it cannot be 

applied to test a model with a lagged dependent variable (Wooldridge (2015)). An 

alternative test that can be used however is Durbin’s alternative test, which has as its H0 

that the model does not have serial correlation. This test also has the added benefit that it 

works even when not all repressors are strictly exogenous. (Wooldridge (2015); Stata 

(n.d.c.)). Having run the Durbin’s alternative test on the model for a small sample size, I 

fail to reject the H0, and the model thus does not seem to have serial correlation. 

 

The lack of serial correlation in the residuals is good since Keele & Kelly (2006) states 

that a model with a lagged dependent variable would be biased when estimated with OLS 
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in the presence of serial correlation in the residuals. They also state that for an OLS 

regression of a model with a lagged dependent variable to be unbiased the dependent 

variable also needs to be stationary, which is also the case for this model. In addition to 

this, they state that a LaGrange Multiplier test should be run after estimating a model with 

a lagged dependent variable, to see if the residuals are white noise, i.e. do not have residual 

serial correlation. (Wooldridge (2015)). I run the Breusch-Godfrey LM test for 

autocorrelation, which has as its H0 that there is not serial correlation in the residuals 

(Stata (n.d.c.)). Doing this I fail to reject the H0, and the model appears to not have any 

serial correlation in the residuals, and a model with a lagged dependent variable is thus not 

biased when estimated with OLS. 

 

I also run two test to see if there is heteroskedasticity, Whites test and the Breusch-Pagan / 

Cook-Weisberg test, which both has at its H0 that the residuals are homogeneous. (UCLA. 

(2017)). With both tests I fail to reject the H0. Thus the model do not appear to have 

heteroskedasticity. 

 

Next, I test the normality of the residuals, I use the Shapiro–Wilk normality test, which has 

as its H0 that the variable has normality. (Stata (n.d.c.)). I predict the residuals from the 

regression and run the Shapiro-Wilk normality test on the predicted residuals, and fail to 

reject the H0. Thus, the model seems to have normal distributed residuals. 

 

Lastly, I fail to reject the H0 of omitted variables with the Ramsey RESET test. It is 

important here to point out that the Ramsey RESET test actually tests whether the model 

has nonlinearities in its functional form against the H0 that I does not. Thus, the RESET 

test that the functional form is correctly specified, not that there are omitted variables, 

since if the omitted variables are linear, then the test will not detect them. (Wooldridge 

(2015)) 

 

Thus, the model satisfies the OLS conditions of no heteroskedasticity, no serial correlation, 

normality in the residuals and a linear functional form. 

 

Since the model is a unbalanced regressions, as mentioned in the 2SLS analysis, there are a 

few more tests that need to be run. These are as cited by Kopsch (2012) from Baffes 

(1997) that a unbalanced model, with at last two I(1) regessors and a I(0) dependent 
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variable, can still perform well if three requirements are satisfied. Firstly, the fitted 

dependent variable needs to also be I(0), the error term needs to also be I(0) process, and 

lastly the variance ratio between the fitted and observed dependent variable needs to be 1. 

Kopsch (2012)) 

 

First I run the Dicky Fuller test on the fitted values of ∆𝑙𝑛𝑝𝑎𝑥 , and I fail to reject the H0 

the fitted values of ∆𝑙𝑛𝑝𝑎𝑥 is a I(0) process. Thus both the fitted and observed values of 

∆𝑙𝑛𝑝𝑎𝑥 seem to follow a I(0) process. 

Next I run the Dicky-Fuller test on the residuals of the regression, and fail to reject the H0 

that it is a I(0) process.  

I fail to reject the H0 that the variance ratio between the fitted and observed values of 

∆𝑙𝑛𝑝𝑎𝑥 is 1.  

Thus the model fulfills the requirements by Kopsch (2012) for the model to be well 

preforming when the regression is unbalanced. 

Thus, the OLS estimate is well performing and unbiased, assuming lnfreq is exogenous.  

 

A summary of the diagnostic test can be found in Table 12: 

Diagnostic tests p- value 

Durbin's alternative test 0.4193 

Breusch-Godfrey LM test 0.35 

Breusch-Pagan / Cook-Weisberg test 0.8562 

White's test  0.3119 

Shapiro-Wilk test for residuals 0.1538 

Ramsey RESET test 0.9079 

  

  

Dicky-Fuller test: p- value 

Residuals 0,0000 

Fitted 0,0000 

Fitted, trend 0,0000 

  

Variance ratio test: p- value 

ratio != 1 0.9432 

ratio < 1  0.4716 

ratio > 1 0.5284 
Table 9. Diagnostic tests for OLS estimate for Bergen-Oslo 
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6.5 Comparison and Findings 

Having estimated the model by both 2SLS and OLS, I will compare the results, discuss 

whether frequency can be assumed to be exogenous, and summarize the findings. 

  

 
Variables 2SLS Sig. OLS Sig. 

Δ lnfreq 0.588 *** 0.633 *** 

Δ lngdp 0.942 ** 0.836 ** 

Δ lnlf1 -0.341 ** -0.308 ** 

Δ lnprice -0.126   -0.122   

Δ lnpax1 -0.111 
 

-0.099 
 

 q2 0.102 *** 0.101 *** 

  F 93,75   98.93   

  R^2 0.9639   0.9643   

      
      

Table 10. Comparison between 2SLS estimates and OLS estimates for the route Bergen-Oslo 

. 

As can be seen from the table, the results from the 2SLS and OLS are similar. The tests for 

endogeneity for the 2SLS estimates failed to reject the exogeneity of lnfreq, and according 

to Wooldridge (2015) the estimates from 2SLS and OLS should be similar if the lnfreq is 

exogenous. That the estimates from 2SLS and OLS do differ slightly can be down to the 

fact that OLS is more efficient if the presumed endogenous variable is in fact exogenous.  

 

Thus, the this seem to support that lnfreq is exogenous. Given this I will base my 

discussion on the OLS results, as if lnfreq is truly exogenous then OLS is more efficient. I 

will however point out that a failure to reject the exogeneity of lnfreq is not a proof that it 

is exogenous. Thus, I recommend further research to determine if the frequency on the 

route can be considered endogenous or not. 

 

So, what can be said about the route Bergen-Oslo. Firstly, the low price elasticity of 0.12 

points to that there are few substitutes to air travel on the route and or many business 

travelers, the inelastic Income (GDP) elasticity of 0.84 indicates that it is a mature air 
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transport market. The negative elasticity of -0.31 for the lag of the load factor and the 

frequency elasticity of 0.63 show however that it is a market that responds positively to a 

reduction in delay costs, both in the same quarter as seen by the frequency elasticity and in 

the previous period as seen by the lag of the load factor. The frequency elasticity of 0,63 

show that the passengers react to an increase in departures, and they can thus be assumed 

to value delay costs, as a decrease in such costs from an increase in departures leads to 

significant increase in demand all else equal. The negative elasticity of -0.31 for the lag of 

load factor also shows that passengers on the route respond negatively to a high load factor 

in the previous quarter, or positively to a lower load factor in the previous period, which I 

assume based on the theory I reviewed, such as Ippolito (1981) to be because of historic 

effects because of delay costs and discomfort because of sold out planes or cramped flights 

respectively in the previous quarter. The significant quarterly dummy shows that demand 

for air travel on the route is expected to be 10,1% higher in the second quarter. There I also 

a significant increase in demand in the second quarter on the route, being 10,1% higher in 

that quarter than the rest of the year. 

 

6.5.1 Limitations 

The main limitation of my analysis of the route Bergen-Oslo is that I did not have route 

specific data for the price variable. Not having such data forced me to use the lag of the 

load factor to get a working model, so it is likely that having the price data for the route 

would make the results better by making the model stronger. So, the results have to be 

interpreted with this in mind. 

 

 

 

7.0 Analysis 2 : Aggregate of the routes: Trondheim-Oslo, 

Bergen-Oslo and Stavanger-Oslo. 

My initial intention with the analysis was to compare the different routes against each 

other, to see if there were any differences in the frequency elasticity between them. I tried 

to estimate the same model as used on the Bergen-Oslo route, with adjustments, using the 

data from the Trondheim-Oslo and Stavanger-Oslo routes, but did not get satisfactory 
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results. There were either non significant variables, variables with the wrong coefficient, 

serial correlation or non-liniarities included in the functional form. My assumption was 

that the reason for this was that the demand on these routes could not be sufficiently 

explained by the national aggregated values I used for GDP, price, incair, and that the 

model thus became too poor to get meaningful results. To counter this, I tried to aggregate 

the pax and freq values for the three routes and to calculate the average aircraft size and 

load factor for the three routes, since I assumed that the aggregated values, covering all 

three largest routes in Norway, would produce a better model when combined with the 

national aggregated values of GDP, price, incair, and that the model thus would perform 

better. This turned out to be the case, so I decided to run the analysis for the aggregate data 

from the routes Trondheim-Oslo, Bergen-Oslo and Stavanger-Oslo. This does not enable 

me to compare Bergen-Oslo directly with the other routes, but should give me an 

opportunity to compare Bergen-Oslo to aggregate of the three routes, and thus an 

opportunity to see if Bergen-Oslo differs from the three routes combined. 

7.1.1 Descriptive 

As with the route Bergen-Oslo I will also plot the route specific variable for the aggregate 

of the routes Trondheim, Stavanger, Bergen to Oslo. These, are the same route specific 

variables as in the case of Bergen-Oslo, which is the passengers (pax) on the route, the 

frequency (freq), the average aircraft size, and the average load factor. The mean, standard. 

Dev and the change in the period can be seen in Table 5. 

Variable Mean St. dev 
Change between 
2009Q1-2016Q3 

pax 621660.871 67575.93162 21 % 

freq 5715.16129 507.4276746 3 % 

pop 106.8483313 4.016487592 12.88 % 

income 290284.7419 34092.21569 5 % 

gdp 763869.6129 32830.69185 5 % 

price 109.2 10.90709249 8 % 

incair 133.5741935 32.79233618 56 % 

asiz 157.3545806 7.740989858 7 % 

lf 69.0005 2.602418608 10 % 
Table 11. Descriptives for the aggregate of the three routes 

 

Having shown the descriptive for the variables, I will plot the routes specific variables, 

Frequency (freq), aircraft size (asiz) and load factor (lf), and comment on them. 
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Pax: 

 

Figure 8. Plot of aggregate pax of the routes Trondheim, Stavanger and Bergen to Oslo. 

  

The pax plotted over time of the aggregate of the three routes follow a very similar curve 

to the one of the Bergen-Oslo route. To investigate this further, I plotted the pax of the 

Bergen-Oslo route, the aggregate pax on the Trondheim and Stavanger to Oslo routes, and 

compared it with the aggregate of all three routes. 
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Figure 9. Plot of pax on Bergen-Oslo and aggregate pax of Trondheim, Stavanger to Oslo and aggregate pax on the 

routes Trondheim, Stavanger and Bergen to Oslo. 

 

The comparison plot shows that there is a common development in the passengers on the 

three routes but the cycles in the aggregates are larger than in the single route Bergen-

Oslo. Thus, my comments on the route Bergen-Oslo also applies to the aggregate of the 

routes Bergen-Oslo, Trondheim-Oslo and Stavanger-Oslo. I will thus not discuss it further, 

and refer the reader to my discussion on this in the descriptive of the Bergen-Oslo route 

analysis.  
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Freq: 

 

Figure 10. Plot of the aggregate freq of the routes Trondheim-Oslo, Bergen-Oslo and Stavanger-Oslo. 

 

The plot of the frequency per quarter over time also show some similarities to the Bergen-

Oslo route, so I choose to plot both in the same graph to compare them. 

 

 

Figure 11. Comparison Plot of the aggregate of the three routes and Bergen-Oslo 

 

The plot shows that similar to the pax plot, the aggregated frequency of the three routes 

follow a similar curve to the one in Bergen-Oslo, although with larger cycles. Because of 

this, I refer the reader to my discussion on the curve in the analysis of Bergen-Oslo for a 

more detailed discussion of the curve.  
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Load factor: 

 

Figure 12. Average load factor of the three routes, Bergen, Stavanger, Trondheim- Oslo. 

 

The average load factor does not follow exactly the same curve as in the case of Bergen-

Oslo, but it is similar, with it being cyclical and slightly stable round 65-70, with some 

peaks in Q2 in 2009 and 2012, and the third quarter in 2010, 2011, 2012 and 2013, and a 

slight increase in the last quarters. There is also a slight decrease in the period 2011 Q3 – 

2015 Q4. 
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Aircraft size: 

 

Figure 13. Average aircraft size on the three routes, Trondheim-Oslo, Stavanger-Oslo and Bergen-Oslo. 

 

The average aircraft size on the three routes is also similar to the average aircraft size on 

the route Bergen-Oslo, with a slight peak in 2012 Q2, a general growth over the period, 

and a decrease in average aircraft size in the 2016 Q3. I investigated the dataset for the 

aircraft size for the routes Trondheim-Oslo and Stavanger-Oslo, and found that in the same 

way as with the route Bergen-Oslo, the usage of CRJ900, Fokker 100 and the 39 seat Dash 

8 in this quarter seem to explain the decrease in the average aircraft size. 

7.2 Model 

 

To estimate the elasticities, I will use the basic conceptual model in log form of the 

variables, as this is mentioned in Fearnley & Bekken (2005) as a method to do this. Given 

the variables I was able to collect data for from the conceptual model, the complete model 

in log form the complete model can be stated as: 

𝑙𝑛𝐷𝑒𝑚𝑎𝑛𝑑 = 𝛽0 + 𝛽1𝑙𝑛𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + 𝛽2𝑙𝑛𝐼𝑛𝑐𝑜𝑚𝑒 + 𝛽3𝑙𝑛𝐺𝐷𝑃 + 𝛽4𝑙𝑛𝐹𝑎𝑟𝑒 + 𝛽5

+ 𝑙𝑛𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛽6𝑙𝑛𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑠𝑖𝑧𝑒 + 𝛽7𝑙𝑛𝐿𝑜𝑎𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 + 𝜀𝑡 
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7.2.1 Tests of stationarity 

Before building the model, I will first test the data for stationarity. The reason or this is as 

mentioned in the Methodology, is because of the challenges with estimating a model with 

non-stationary variables. Thus, it is important to test if the variables have to be differenced 

or not to correct for this non-stationary or not.   

 

To do this I will use the Dikcy Fuller tests, which checks for a H0 of a unit root. For more 

detail on the test see Bjørnland & Thorsrud(2015), Wooldridge (2015) and Stata (n.d.a.). 

With the test, I use the option trend, for variables that seem to be trending such as ln pax, 

ln pop, ln inc, ln gdp, ln price, ln incair and ln freq. 

 

The results from the test can be seen in Table 6, where I(x) denotes the number of time the 

data had to be differenced to become stationary, with a I(0) being a process without a unit 

root and a I(1) being a process that has a unit root, but which is differenced stationary after 

taking first differences. (Wooldridge (2015)) As noted earlier in the conceptual model, the 

variables are in log form, as this helps in finding the elasticity. 

 

ln pax I(0) 

ln pop I(1) 

ln inc I(1) 

ln gdp I(0)  

ln price I(1) 

ln incair I(1) 

ln freq I(0) 

ln lf  I(0) 

ln asiz I(1) 

Table 12. Dicky Fuller test of the variables for the aggregate of the three routes 

 

7.2.2 Model Building 

Since the stationary test shows that the dependent variable follows a I(0) process, the 

cointegration analysis such as a ECM or ADL can also not be run, as such a cointegration 

analysis requires that the dependent variable is I(1), as mentioned in Fearnley & Bekken 
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(2005). Since some of the repressors follow a I(1) process, the model do however need be 

first differenced as mentioned in the methodology. 

Given this, I will build the model for the aggregate of the routes Trondheim-Oslo, 

Stavanger-Oslo, Bergen – Oslo, using the same approach as when I developed the model 

for the Bergen-Oslo route, which is to first develop a model to be estimated by 2SLS and 

then compare the results with the same model estimated by OLS. For a more discussion of 

why I choose to do this, see the analysis of the Bergen-Oslo route. I also use the log form 

and first difference of the variable in the model, as according to Wooldridge (2015) this 

both makes the variables that follow a I(1) process weakly dependent, removes most of the 

serial correlation and enables the interpretation of the variables as elasticities. 

 

7.2.2.1 Model building for 2SLS 

Because of similar challenges with the load factor as with the Bergen-Oslo route, I choose 

to also use the lag of the load factor in the model for the aggregate of the three routes, and 

to exclude the load factor variable itself. Having done this, I start by estimating the 

complete model with quarterly dummies to take seasonality into account. Because of 

collinearity between the Pop and the Inc variable, I start by excluding the Inc variable. Of 

the three quarterly dummies, only the dummy for the second quarter is significant, so I 

exclude the two others. Having done this, I also exclude the pop and aircraft size variable 

they were not significant. This leaves lngdp, lnprice, lag of the load factor (lnlf1), 

frequency (lnfreq) and the dummy for the second quarter in the model. I also test whether 

including the lag of the dependent variable leads to a better model, and find that the lag of 

demand (lnpax1) is both significant and makes the model stronger. Lastly, since there was 

a downturn in the descriptive of the demand on the route in Quarter 1 2010 – Quarter 3 

2010, I include a dummy variable for this period to see if it has a significant effect on 

demand, but found it to be not significant. I thus choose not to include it.    

 

Thus, I include pax1. This process left with me 6 variables in the model, which satisfies 

the requirement of having 5 observations per variable as mentioned in Muller(2015). 

 

Thus, the final model can be specified as: 
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∆𝑙𝑛𝑝𝑎𝑥 = 𝐵0 + 𝐵1 ∆𝑙𝑛𝑓𝑟𝑒𝑞 + 𝐵2 ∆𝑙𝑛𝑔𝑑𝑝 + 𝐵3 ∆𝑙𝑛𝑙𝑓𝑡1 + 𝐵4 ∆𝑙𝑛𝑝𝑟𝑖𝑐𝑒 + 𝐵5 ∆𝑙𝑛𝑝𝑎𝑥1

+ 𝑞2 + 𝜀𝑡 

 

Since the frequency (lnfreq) has to be estimated using the instrumental variable (lnincair) 

in the first stage of the 2SLS, the reduced from of lnfreq can be stated as: 

∆𝑙𝑛𝑓𝑟𝑒𝑞 = 𝐵0 + 𝐵1 ∆𝑙𝑛𝑔𝑑𝑝 + 𝐵2 ∆𝑙𝑛𝑙𝑓1 + 𝐵3 ∆𝑖𝑛𝑐𝑎𝑖𝑟 + 𝐵4 ∆𝑙𝑛𝑝𝑟𝑖𝑐𝑒+𝐵5 ∆𝑙𝑛𝑝𝑎𝑥1

+ 𝑞2 + 𝜀𝑡 

 

 

 

 

 

 

7.3 Model estimation by 2SLS 

Having built the model, I estimate it by 2SLS. 

 

Figure 14. Model estimated by 2SLS for aggregate of routes 
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As can be seen from the estimates, there are 5 significant variables, the Frequency (lnfreq), 

GDP(lngdp), lag of the load factor (lnlf1), the lag of the pax (lnpax1), and the quarterly 

dummy for the second quarter q2. 

lnfreq, which indicates the frequency elasticity has a significant elasticity of 0,62. This 

means that 10% increase in frequency will lead to a 6,2% increase in demand, all else 

equal. Thus, there seems that increased number of departures on the three routes, which 

represent a large part of Norwegian air market, will lead to a reduced delay cost for 

passengers, which in turn will induce demand. However, since the elasticity is inelastic, by 

being less than 1, there will be diminishing returns to an increase in frequency on the 

route. The literature I reviewed on Frequency elasticities also found inelastic frequency 

elasticities, with frequency elasticities often being in the range 0,65-0,95. Pels & Nijkamp 

and Rietveld (2001), also argues that the frequency elasticity should be less than 1. Thus, 

the estimates of the frequency elasticity seem to be similar to what is found and argued in 

the literature. I should however be pointed out that none of the literature reviewed covered 

the Norwegian air market, so it is interesting that the estimates for the selected Norwegian 

routes so closely match the results in the reviewed literature. As I discussed in the analysis 

of the route Bergen-Oslo, it is also interesting that the Frequency elasticity of the aggregate 

of the three routes is close to the lowest estimate in the literature, something that might 

indicate some form of maturity. But, the lag of demand may play a part here, as one of the 

papers that had a similar Frequency elasticity coefficient, the paper Wang et al (2014) 

which had a Frequency elasticity of 0,679, also had a lag of demand in the model. 

According to the theory on price elasticities, Fearnley & Bekken (2005) the inclusion of a 

lag of demand means that the estimated elasticity is a short-term elasticity, thus this might 

explain why the elasticity is low in my results and the paper by Wang et al (2014) when 

compared to the other papers who do not have a lag of the demand, and thus do not 

estimate either the long term or short term elasticity. Having the lag of the demand 

included also enables me to calculate the long-term Frequency elasticity, using the 

equation in Fearnley & Bekken (2005) which is the 

“(𝐶𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦/(1 − 𝐶𝑜𝑒𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑙𝑎𝑔 𝑜𝑓 𝑑𝑒𝑚𝑎𝑛𝑑 )". 

Using this I calculate a long-term Frequency elasticity of 0.52 for the aggregate of the 

three routes. It is interesting that the long Frequency elasticity is lower than the short-term 

elasticity. As there is no discussion on the long-term Frequency elasticity in the literature I 

reviewed, I draw on the discussion of the long-term elasticity in Brons et al (2002), where 
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they argue that a smaller long-term elasticity might be a sign of a chaotic response in the 

short-term and then a more reasonable response in the long-term. Thus, it seems that this 

might be the case for the Frequency elasticity on these three routes. Since the Frequency 

elasticity was lower in the long term, I also find it unlikely that the inclusion of the lag of 

the demand is the reason for the low Frequency elasticity for the three routes, which leaves 

the possible maturity of the Frequency elasticity for these three routes compared to the 

Frequency elasticity in the other papers reviewed. However, it should be pointed out that 

further research is needed, especially on comparable markets to Norway, to say if this is 

the case for sure. 

 

The next significant variable is the lngdp, which measures the GDP elasticity. Since some 

of the papers I revived measured Income elasticity by using the GDP, I will compare the 

estimates of the lngdp with the other income elasticities reviewed. The variable itself show 

that when GDP increased by 10%, demand will increase by 6,3%. This shows that demand 

for air travel follows the business cycle of the GDP to a certain degree, which fits with 

what is findings in Lian et al (2005) since they show that the air travel demand in Norway 

follows the business cycle. The Income elasticities mentioned in the papers reviewed 

previously have a larger range than the frequency elasticities reviewed, and ranges from as 

low as 0,30 to 2,3. However the model estimated is a dynamic model, since it includes the 

lag of the demand, so it would be good to compare to a paper with a similar model. Once 

such paper is the paper Gallet & Docucouliagos (2014), which finds an income elasticity 

of 0,633 for a dynamic model for a domestic market. Thus, the estimates of lngdp seems to 

be quite close to the estimate in this paper. Theory I reviewed on income elasticities, such 

as Graham (2000) also argues that an inelastic income elasticity, which is when the income 

elasticity is less than 1, indicates a mature air market. An income elasticity of 0,633 thus 

appears to show that the routes Bergen-Oslo, Stavanger-Oslo and Trondheim-Oslo is a 

mature market when aggregated. This is not unreasonable considering Norway is a country 

with a large degree of air travel. 

 

Another significant variable is the lag of the load factor, which has an elasticity of -0,39, 

being significant at the 5% significance level. Theory on the load factor I reviewed such as 

Ippolito (1981), as mentioned in the analysis of the route Bergen-Oslo, argues that a 

reduced load factor would lead to a higher chance of getting a seat on a flight, thus 

possibly reducing the waiting time between the desired flight that was full and the next 
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flight, in addition to reducing the discomfort of a cramped plane. Thus, a negative 

coefficient should be expected for the load factor elasticity. That the lag of the load factor 

is significant indicates that there may be some historical effects of bad experiences with a 

high load factor, and historical good experienced with a low load factor in the previous 

quarter that drives up demand. The best would be to also estimate the load factor in the 

current quarter also, but because of endogeneity and linearity constraints mentioned in the 

analysis of the route Bergen-Oslo, this was not possible to include in the model. Because 

of this, and since I could not find any previous papers that used the lag of the load factor in 

the model, I have some concerns with comparing my estimates with estimates of the un-

lagged load factor in the papers I have reviewed. One such paper, by Ippolito (1981) do 

find a load factor elasticity of -0,854. So, there are some support in the literature reviewed 

for the load factor having a negative coefficient, although as discussed above, caution 

should be taken when directly comparing the estimates of the load factor elasticity with the 

estimates of the elasticity of the lag of the load factor. 

The next variable, lnprice which is the price elasticity is not significant, and has a very low 

coefficient of -0,086. Previous papers reviewed have a much higher price elasticity than 

this, but these are either papers that are from the 70-80s, or papers that do not cover the 

Norwegian market. Since the literature reviewed on the price elasticity supports that 

countries with large distances, geographical features such as mountains and a lack of 

substitutes have lower price elasticity, such a low elasticity for the three air routes 

aggregated does not seem unreasonable. Still, since the variable is not significant and 

because of the lack of route specific data on the price, it is hard to say whether it is in fact 

so low or not. 

 

The next variable, the lag of the demand, lnpax1, shows that a reduction of air travel 

demand in the previous quarter of 10% leads to an increase in demand of 1,9% in the 

current quarter. Why this is the case is hard to say without further investigation, but since 

Keele & Kelly (2006) states that a lag of the dependent variable captures historical effects 

on the route, the variable shows that there are some historical effects that impact on the 

current demand. 

 

Lastly, the significant dummy variable for the second quarter q2, of 0,058, shows that air 

travel demand is 5,8% higher in the second quarter than the rest of the year. As discussed 
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in the analysis above, this seems reasonable as the second quarter is a month with many 

vacations and holydays. 

Thus, the model seems to fit the literature reviwed on the demand of air transport and 

frequency and load factor elasticities.  

Having estimated the model by 2SLS and commented on the results, I will run a diagnostic 

test of the model estimated by 2SLS. 

7.3.1 Model diagnostics 

Since I have discussed what the tests do and why they are done above in the previous 

analysis , I will only report the results here. 

 

First I start by testing whether the instrument used for frequency, incair is a strong 

instrument or not. I find that the F statistic of the weak identification test is 14,231, which 

is larger than 10. The instrument can thus be considered strong.  

 

To test whether the instrument, incair, is correlated with the error terms in the equation, I 

run the 2SLS regression again with lnasiz included as an independent variable. Since 

lnasiz is not significant, incair should not be correlated with the error term. Thus, the 

instrument can be considered strong and not endogenous. 

Next I test for serial correlation, by running the Cumby-Huizinga test. I fail to reject the 

H0 of no serial correlation, thus the model does not appear to have serial correlation. 

Next, I test for heteroskedasticity in the model by running the Pagan-Hall test with a H0 of 

the model having homoskedasticity. I fail to reject the H0, thus the model does not appear 

to have heteroskedasticity. 

 

I then run the Ramsey RESET test, to see whether there are nonlinearities in the functional 

form. I fail to reject the H0 of no nonlinearities in the functional form, thus the model 

appears to have the correct functional form.  

 

Lastly, I predict the residuals of the regression, and run the Shapiro-Wilk test of normality 

on them. I fail to reject the H0 of normality, thus the residuals appear to be normal 

distributed. 
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Thus, the model not no appear to have heteroskedasticity, serial correlation, non-normal 

residuals, and it has the right functional form. Thus, the regression should not be unbiased.  

There are however three extra test that need to be run because 𝑙𝑛𝑝𝑎𝑥 is a I(0) process and 

the some of the repressors are I(1) processes, leading to a unbalanced regression as 

mentioned in Kopsch (2012). Kopsch (2012) mentions in his paper, that the requirement of 

a unbalanced regression being well preforming is that the fitted values of   ∆𝑙𝑛𝑝𝑎𝑥 is I(0) 

process, that the error term follows a I(0) process, and that the variance ration between the 

fitted and observed variables of ∆𝑙𝑛𝑝𝑎𝑥 is not significantly different from 1. 

 

To test tthis I start by running the Dicky Fuller on the fitted values of ∆𝑙𝑛𝑝𝑎𝑥, And find 

that I fail to reject the H0 that it follows a I(0) process. 

I then run the Dicky Fuller test on the residuals of the regression, and fail to reject the H0 

that the residuals follow a I(0) process. 

I also run the variance ratio test, and find that the H0 that it is 1 fails to be rejected. Thus 

according to Kopsch (2012), the model should be well preforming, even though the 

regression is unbalanced. Kopsch (2012) also states that more than two repressors need to 

be I(1) processes, which is the case with the model. 

 

Lastly, I test whether the variable lnfreq is endogenous or not. To do this, I run the Durbin-

Hausman and Durbin-Wu-Hausman tests, which has as their H0 that the variable is 

exogenous. I fail to reject the H0 in both tests, and lnfreq thus seems to be exogenous. 

Since the tests indicate that lnfreq is exogenous, the 2SLS should be a less efficient 

regression method than OLS. Because of this, I will also run the OLS regression of the 

model estimated by 2SLS, and then compare the results. According to Wooldridge (2015) 

the results should be similar with both 2SLS and OLS if lnfreq is exogenous, but 2SLS 

will be less efficient because of higher variances. 

 

A summary of the diagnostic test with their p values can be found in Table 13, with the 

exception of the weak instrument test as no p value was reported for it: 
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Diagnostic tests p- value 

Cumby-Huizinga test 0.7381 

Pagan-Hall test 0.5225 

Ramsey/Pesaran-Taylor RESET test 0.4167 

Shapiro-Wilk test for residuals 0.05712 

Wu hausman F test 0.28364 

Durbin-Wu-Hausman 0.38647 

  
Dicky-Fuller test: p- value 

Residuals 0,0000 

Fitted 0,0000 

Fitted, trend 0,0000 

  
Variance ratio test: p- value 

ratio != 1 0.8127 

ratio < 1  0.4063 

ratio > 1 0.5937 

Table 13. Diagnostic tests for the 2SLS estimate for the aggregate of the three routes 
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7.4 Model estimation by OLS 

 

Figure 15. Estimate of the model using OLS for the aggregate of the routes Bergen, Stavanger and Trondheim – Oslo. 

 

 

The coefficients in the model estimated by OLS are very similar to when the model was 

estimated by 2SLS, and the signs are the same. I will thus not discuss whether the 

coefficients fit the theory, as the same comments that applied to the estimate using 2SLS 

also applies to the estimate using OLS. The coefficients thus have reasonable values and 

signs when compared to previous research and theory. The model does however seem to 

have a good fit to the data, with a R^2 of 0,9819. 

 

Given the coefficients the long-term Frequency elasticity can also be calculated based on 

the coefficients of the lnfreq and lnpax1 as discussed in the 2SLS analysis. The long-term 

Frequency elasticity is thus, 0.5667. This is also similar to the long-term Frequency 

elasticity found for the 2SLS analysis, so I refer the reader to that analysis for a discussion 

of this result. 
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As the remaining discussions of the results are very similar as in the 2SLS analysis, I will 

go directly to the diagnostics of the model estimated by OLS, before comparing the 

coefficients from the model estimated by 2SLS and OLS. 

 

7.4.1 Model diagnostics 

As mentioned above in the previous analysis, there are some tests that need to be passed 

for OLS to be considered unbiased, namely that there is no heterogeneity, that there is no 

serial correlation and that the functional form is correctly specified. I will also test whether 

the residuals are normally distiributed. I addition, as mentioned in Kopsch (2012), since 

the regression is unbalanced, there is a need to test whether the fitted values of the 

dependent variable follows a I(0) process, that the residuals of the regression follows a I(0) 

process, and that the variance ratio between the fitted and observed values of the 

dependent variable is not significantly different than 1. 

 

To run these tests, I first start by checking for serial correlation. As mentioned above, since 

the model includes a lagged dependent variable, it is also recommended to run the 

Breusch-Godfrey LM test for serial correlation in addition to durbin’s alternative test. 

I run both tests, which has as their H0 that there is no serial correlation, and fail to reject 

the H0 of no serial correlation with both tests.  

 

Next I run the White's test and the Breusch-Pagan / Cook-Weisberg for heterogeneity, 

which has as their H0 that there is no heterogeneity. I fail to reject the H0 with both tests, 

thus here does not appear to be any heterogeneity in the model. 

 

I then run the Ramsey RESET test, which has as its H0 that there are no nonlinearities in 

the functional form. And I fail to reject the H0. The functional form of the model thus 

appears to be correct. 

 

Next, I predict the residuals and run the Shapiro-Wilk test on them. The test has as its H0 

that the variable is normally distributed, and I fail to reject the H0. Thus the residuals 

appear to be normally distributed. 
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As mentioned above, there are also three tests that need to be run because the regression is 

unbalanced, to see whether the model is well preforming even when the regression is 

unbalanced. First, I test the residuals with Dickey Fuller, and find that it is a I(0) process. I 

then test the fitted values of ∆𝑙𝑛𝑝𝑎𝑥 with the Dickey Fuller test, and find them to be a I(0) 

process. I also run a variance ratio test between the fitted and observed values of ∆𝑙𝑛𝑝𝑎𝑥, 

and I fail to reject the H0 that the variance ratio is 1.  

 

Thus, the model estimated by OLS can be considered unbiased and well preforming. 

 

A summary of the diagnostic test can be found in Table 14. 

Diagnostic tests p- value 

Durbin's alternative test 0.4185 

Breusch-Godfrey LM test 0.3492 

Breusch-Pagan / Cook-Weisberg test 0.9864 

White's test  0.3425 

Shapiro-Wilk test for residuals 0.36335 

Ramsey RESET test 0.3419 

  

  

Dicky-Fuller test: p- value 

Residuals 0,0000 

Fitted 0,0000 

Fitted, trend 0,0000 

  

Variance ratio test: p- value 

ratio != 1 0.8347 

ratio < 1  0.4173 

ratio > 1 0.5827 
Table 14. Diagnostic tests for the OLS estimate for the aggregate of the three routes 
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7.5 Comparison and Findings 

Having estimated the model by both 2SLS and OLS, I will compare the results, discuss 

whether frequency can be assumed to be exogenous, and summarize the findings. 

 

 
Variables 2SLS Sig. OLS Sig. 

Δ lnfreq 0.623 *** 0.669 *** 

Δ lngdp 0.635 ** 0.530 ** 

Δ lnlf1 -0.392 *** -0.347 *** 

Δ lnprice -0.087   -0.083   

Δ lnpax1 -0.196 *** -0.180 *** 

 q2 0.056 *** 0.055 *** 

  F 184,43   198,73   

  R^2 0.9815   0.9819   

Table 15. Comparison between 2SLS and OLS estimates for the aggregate of the routes. 

 2SLS OLS 

Long-term Frequency elasticity 0.521 0.567 
Table 16. Long-Run elasticities for the aggregate of the three routes, from 2SLS and OLS 

 

 

Looking at the results, it seems that the estimates from the 2SLS and the OLS are quite 

similar. Since the theory on instrumental variables, as mentioned in Woodelridge (2015) 

states that if the presumed endogenous variable is in fact exogenous, then the two methods 

will give similar results, although 2SLS will be less efficient, this means that the results 

point to the fact that frequency (lnfreq) is in fact exogenous in the equation. The failure to 

reject the exogeneity of the frequency (lnfreq) in the diagnostics of the regression with 

2SLS also points towards this. I will thus base my discussion of the results on OLS, since 

it appears that frequency is exogenous in the equation, and OLS will be more efficient than 

2SLS when this is the case.  

 

However, given all the literature on the endogeneity of the frequency, I am still cautious 

about rejecting that frequency is endogenous outright, since a failure to reject the 

exogeneity is not a proof of exogeneity. So I recommend future research to investigate the 

question of endogeneity of the Frequency on the three routes in more depth. 
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So, based on the OLS estimates, what are the findings from estimating the model for the 

aggregate of the routes Bergen-Oslo, Trondheim-Oslo and Stavanger-Oslo. Firstly, the 

results show that the short -term frequency elasticity on the routes is 0,67. This means that 

when the operators on one of these routes increases the frequency by 10%, they can expect 

to have an increase in demand by 6,7% on average. The coefficient for the frequency 

elasticity is also the highest of the coefficients in the model, which shows that travelers on 

these routes value an increase in frequency, and by extension a reduced schedule delay, 

most when deciding to travel by air or not. However, since the frequency elasticity is 

inelastic, there are diminishing returns to scale for a frequency increase over time on these 

routes. The estimate of the long-term Frequency elasticity, which is 0.567, also indicates 

that the short term response to a Frequency increase is higher than the long term response 

to such an increase. An explanation for this could be that some people are excited by the 

introduction of a new flight time and thus choose to travel on this departure, but in the long 

term find out that they could do without it and thus go back to travel on their old departure 

time or not travel at all. 

 

The results also show that the demand on the routes is affected by the GDP, with a 10% 

increase in the GDP leading to 5,3% increase in demand. This shows that the demand for 

air travel on these routes is connected with the business cycle in Norway. The coefficients 

for the lag of demand and the lag of the load factor also shows that historical factor have 

an impact on current demand, either because of a possible bad experience with not getting 

tickets on a flight or cramped flights, or other factors that have a historic effect on the 

demand on these routes. That the price elasticity is not significant and has such a low 

coefficient may indicate that the price does not matter to the decision to travel on these 

route on average. However, it is important to point out that the price variable (lnprice) is 

the national index for air fares, and that it thus may not be able to estimate the price 

elasticity on these routes. Because of this, it is hard to say whether the price is not 

significant or if the data is not route specific enough to estimate it correctly. Lastly, the 

significant second quarter dummy q2 shows that the demand for air travel is expected to be 

5,5% higher in the months April, May, June than the rest of the year. 
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7.5.1 Limitations 

 

Same as with the route Bergen-Oslo analysis, the main limitation with my analysis was the 

lack of route specific price data. Not having such data put some doubts to how well the 

results fit the real-life price elasticities, as I assume the price has a significant effect in 

reality. This probably has an effect on the estimated Frequency elasticity, but it is hard to 

say how large this is without doing a new study with accurate price data, so the estimates 

can be compared. 

 

8.0 Comparison of Analysis 1 and 2 

Having estimated the same model for both the route Bergen-Oslo and the aggregate of the 

routes Bergen-Oslo, Trondheim-Oslo and Stavanger-Oslo, it would be good to compare 

the results and to discuss what the results tells about the air transport market that the routes 

cover.  

Since the diagnostics tests for both analyses pointed to Frequency being exogenous, I will 

report the OLS results from both analysis’s, and compare them. 

  Bergen-Oslo  Aggregate  

 Variables OLS Sig. OLS Sig. 

Δ lnfreq 0.633 *** 0.669 *** 

Δ lngdp 0.836 ** 0.53 ** 

Δ lnlf1 -0.308 ** -0.347 *** 

Δ lnprice -0.122   -0.083   

Δ lnpax1 -0.099  -0.18 *** 

 q2 0.101 *** 0.055 *** 

 F 98.93   198,73   

 R^2 0.9643   0.9819   
Table 17. Comparison between the OLS estimate of the model for Bergen-Oslo and the Aggregate of the three routes. 

 

As seen from the table the Bergen-Oslo route is very similar to the aggregate of it and the 

two other routes, Stavanger-Oslo and Trondheim-Oslo. From this the conclusion can be 

drawn that the factors that determine demand on the three routes do not differ too much 

with the exception of the GDP, as if this was the case I would expect the aggregate to 

differ somewhat from the Bergen-Oslo estimate, because if one of the routes differed 

enough it would probably skew the results. Thus, since this is not the case, it seems that 
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the determinants of air travel are somewhat similar for the three routes. This is especially 

the case with the Frequency elasticity and the elasticity of the lag of the load factor, so it 

seems that the service quality factors impact the travelers on the three routes very 

similarly. Besides GDP, which I will comment on after, there are some variables that differ 

a somewhat between the aggregate and the Bergen-Oslo route, which is the impact of the 

second quarter dummy, the lag of the demand and the price variable. This seems to 

indicate that the price elasticity may be more important for the Bergen-Oslo route and that 

the increase of travel in the second quarter is larger for the Bergen-Oslo than the aggregate 

of the three routes. It is however important to remember that the price elasticity is not 

significant in both analyses, so any differences should be interpreted with caution. The lag 

of the demand variable also differs, but interestingly it is also not significant for the 

Bergen-Oslo route and significant for the aggregate of the three routes. This indicates that 

historic factors that impact the demand is more important and has a significant impact on 

the aggregate of the three routes, while having a low non-significant impact on the Bergen-

Oslo route. Lastly, GDP has a much higher impact on air travel demand on the route 

Bergen-Oslo than on the aggregate demand for the three routes, which shows that travel on 

the Bergen-Oslo is more tied to the business cycle than the three routes are aggregated. 

 

So, what findings can be drawn from this. Firstly, it seems that air travel on the three 

largest routes in Norway have a similar Frequency elasticity, and that it is between 0.63-0-

67, or 6,6% on average. This shows that the increase in frequency on these routes have 

large impact on demand, with a 10% increase in frequency leading to a demand increase of 

around 6,6% on average. That the Frequency elasticity is less than 1, also indicates that 

there is diminishing returns to scale of frequency increases on these routes. That the value 

is around 0.6 also shows that the frequency elasticity of the Norwegian routes is close to 

previous studies on Frequency elasticity. 

 

Secondly, the GDP if interpreted as an income elasticity, shows that the three routes are 

mature air markets, since the GDP elasticity is less than 1, however the Bergen-Oslo route 

seems to be less mature since it has a GDP elasticity of 0,84 compared to the GDP 

elasticity on the aggregate of the three routes of 0.53.  

 

The load factor in the previous quarter seems to have similar effects on the Bergen-Oslo 

route than the aggregate of the three routes, although this difference is small. The estimates 
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show that the load factor has an elasticity of -0,3 or -0,34, which shows that an 10% 

increase in load factor the last quarter leads to a 3% decrease in demand. This seems to 

indicate that the travelers on the three routes have a negative response to a high load factor, 

that transfers over to the next quarter, which can be because of discomfort or higher 

chance of fully booked flights according to the papers Ippolito (1981) and Calderon 

(1997). 

 

Lastly, the demand on the Bergen-Oslo route is 10,1% higher during the second quarter 

months than the aggregate of the three routes. Why this is the case is hard to say, but it 

may be that the passengers on the Bergen-Oslo route travel more when on vacation than 

the other routes, or that they simply travel more abroad, thereby possibly needing to travel 

to Oslo to transfer to an international flight. Bergen is also a famous tourist destination, so 

this may also be a reason for this increase in demand, as tourists would possibly have to go 

back to Oslo after having visited Bergen, especially if they themselves come on 

international flights from abroad.  

It is also interesting that the lag of demand is significant for the aggregate of the three 

routes but not for Bergen-Oslo, but it is hard to say why this is the case besides the fact 

that historical factors possibly play a larger part of explaining demand on the aggregate of 

the three routes than explaining demand on the Bergen-Oslo route. 

 

9.0 Conclusions 

By revisiting my research questions, some conclusions about the estimates can be drawn. 

Firstly, the estimates do show that there is a significant Frequency elasticity on the selected 

routes on the Norwegian air transport market, and that this Frequency elasticity is 0.63 or 

0,67 for the Bergen-Oslo route and the aggregate of the three routes respectively. The 

difference in the Frequency elasticity between the three routes also does not seem to be 

big, based on the similar Frequency elasticity in the Bergen-Oslo analysis and the analysis 

of the three aggregate routes. This shows that the Norwegian travelers on these routes 

value a frequency increase because of delay costs connected to missed flights or no flight 

close to their desired flight time. The Frequency elasticity was also lower for the two 

analyses than the papers I reviewed, which might indicate that the Norwegian air transport 
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market has a bit more maturity with regards to Frequency increases compared to the other 

non-Norwegian markets analyzed in the other papers, such as the US.  

 

I also find that the long-term elasticity calculated for the aggregate of the three routes is 

0,567, which indicates that the long-term elasticity is lower than the short-term elasticity 

for the Frequency. This could be because of chaotic responses to a frequency increase in 

the short term. 

 

Secondly, there were some interesting findings besides the Frequency elasticity, namely 

that the lag of the load factor had an impact on demand, with an elasticity of -0,3 or -0,34 

for the route Bergen-Oslo and the aggregate of the three routes respectively. This might 

indicate that delay costs because of a full plane or discomfort carries over to the next 

quarter. 

 

Another interesting finding was that the Norwegian air market on the routes selected 

seemed to be mature, with a GDP(Income) elasticity of 0,84 and 0,53 for the Bergen-Oslo 

route and the Aggregate of the three routes respectively. That Bergen-Oslo is so much 

more tied to the GDP than the aggregate of the three routes is also interesting, given the 

coefficient it may be because Bergen-Oslo is a more immature market than the rest of the 

routes, but it is hard to say if this is the case or if some other factor is affecting the GDP 

elasticity without further studies. 

 

It is also interesting that the price elasticity for both analyses is not significant, and quite 

small. But, as I will get back to in the limitations chapter, this can be because of a lack of 

sufficient data. 

 

Lastly, both the analysis of the route Bergen-Oslo and the aggregate of the three routes 

indicated that the Frequency elasticity was in fact exogenous in the equation. This seemed 

like an interesting finding, as all literature I reviewed pointed to Frequency being 

endogenous. Still, I failure to reject a H0 of exogeneity is not the same as proving it is 

exogenous, so more research would have to be done on this for the Norwegian routes to 

test whether the Frequency is in fact exogenous or not. 
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9.1 Limitations 

However, there are some limitations with these estimates, which is that the data on the 

price elasticities is not route specific enough. Thus, it is hard to say whether the price 

elasticity estimates are sufficiently good enough, and thus whether the price elasticity is 

truly not significant on the routes analyzed. The lack of route specific price data also puts 

the estimation of the other coefficients in the two analyses into doubt. That the Frequency 

elasticity is close to other papers on the Frequency elasticity is a promising sign, but it is 

hard to say for sure if the Frequency elasticity would change if more route specific price 

data were included in the analysis. Another limitation of this thesis is that the analysis only 

covers a few routes on the Norwegian air market, as more routes covered would be better. 

However, because of the lack of route specific data and time constraints, I had to focus the 

thesis on the three routes.  

9.2 Recommendations for Future research 

This bring me to my recommendation for future research, which is to run the same analysis 

I have done here with better route specific price data, if such data is available, for the same 

or more routes on the Norwegian air transport market. Another interesting idea for future 

research would be to run the analysis for routes in a comparable market to Norway, such as 

Sweden, to see if there is any difference in the Frequency elasticity. Lastly, it would also 

be interesting to run a route level analysis of the Frequency elasticity for the PSO network. 
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Appendix1: Diagnostics 2SLS Bergen-Oslo 
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Appendix 2: Diagnostics OLS Bergen-Oslo 
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Appendix3: Diagnostics 2SLS aggregate of the three routes 
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Appendix 4: Diagnostics OLS aggregate of the three routes 
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