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1.0 Introduction 

Maritime transportation is the main method of goods transportation all over the 

world. According to the Review of Maritime Transport (2015), seaborne trade represents 

around 80% of global trade by volume and more than 70% of global trade by value. The 

importance of maritime transportation can be proved easily. On some routes, maritime 

transportation can replace transportation by road and rails from the point of time, cost, 

accessibility, distance, speed, and other constraints. In some places, the sea plays the role 

of a sole link between regions where maritime transportation is very important.  

Michael and Noble (2008) state that economic growth and world trade development 

leads to an increase in the speed of ships. Higher vessel speed was achieved by significant 

technological improvements such as vessel hull design, engine efficiency improvement, 

and others. Both supply chain management and cargo handling systems made a huge 

contribution in increasing the delivery speed (Michael and Noble, 2008).  

Speed is a flexible parameter, which can be used to optimize routes and schedules 

of delivery, decrease inventories in ports, and manage cost, profit, and emissions. 

Transportation process can be improved by applying proper speed management. First, 

cargo transportation by sea is connected with high level of uncertainty, for example, 

sailing times can be affected by weather conditions. In real life, unpredictable delays may 

occur and as a result deviations from the initial plan may be experienced. Such deviations 

can be compensated by higher speed if necessary.  

Secondly, each company requires individual inventory policy. It depends on many 

features, which need to be taken into consideration such as storage capacity of the 

customer, the type of the transported product, whether the customer is ready to wait to get 

the product or not, and several others. In such a case inventory can be considered as a 

buffer when uncertainties appear. More than that, inventories have a strategic meaning, 

because maritime routing deals with long distances and as a result needs long term 

planning. Speed is required to make inventory policy more flexible and acts as 

windbreaker against unpredictable situations.  

Thirdly, high vessel speed brings an increase in fuel consumption and air emission. 

Today, to be economically efficient vessels must be environment-friendly, which means 

less emission. Thus speed brings in new economic and environmental issues. The increase 

of fuel consumption leads to an increase in total cost of cargo deliveries as well as an 
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increase in air emission. As humanity is now concerned about the environment and air 

pollution such problems are now more significant than ever. According to Psaraftis and 

Kontovas (2013), at slower speed vessels emit much less compared to emissions observed 

at high speed, due to the non-linear dependence between fuel consumption and speed. In 

other words, higher vessel speed is not always the best solution when it comes to the 

optimization of delivery costs or amount of emission. Speed flexibility can help to find a 

trade-off between air emission and transportation cost. 

Given all the features of speed in maritime transportation, Maritime Inventory 

Routing Problem (MIRP) with speed optimization is studied in this thesis. Maritime 

Inventory Routing Problem (MIRP) includes coordination between goods delivered to 

customers and the inventories. This research considers the influence of speed on the model 

performance, transportation costs and emission level with respect to inventories, the 

storage capacity of vessels and ports, and vessel speed.  

The main objective of this thesis is to introduce speed as a key variable into the 

existing optimization tool to obtain better results. Speed optimization tool can be applied 

to sea transportation problems to minimize transportation cost and emission amount. 

This research examines speed as a key variable in maritime transportation of goods, 

and consequently, speed optimization. Vessel speed is significant as it regulates 

transportation costs, fuel consumption, and air emission. Inventory is considered in terms 

of routing, thus customer stock level should also be taken into consideration. Each port has 

a finite storage capacity. When the speed of vessels is higher the deliveries can be more 

frequent and inventory level can be decreased. Inventory storage at a customer plays the 

role of a buffer and is a tool to hedge against various uncertainties such as demand, prices 

for fuel and goods, weather conditions.  

This thesis considers three different models. In the first model, speed is fixed and 

given for each vessel. In the second model, fixed routes are introduced along with speed 

optimization. The optimization model chooses the most appropriate speed for each vessel 

which can vary between sailing legs. In the third model routes and the speed are optimized 

at the same time. The goal is to examine how these changes influence total expenses and 

the emissions. One of the main assumptions of this model is the non-linear dependence 

between fuel consumption and speed. According to Gkonis and Psaraftis (2012), fuel 

consumption and speed have non-linear dependence. Further analysis considers how these 

types of changes influence the system performance. 
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This thesis is structured as follows: section 2 is dedicated to literature relevant to 

this research topic and provides methodologies applied for this problem. Section 3 

describes the problem itself and which initial assumptions are included into the model. 

Section 4 includes the description of the mathematical model with relevant definitions. 

Section 5 represents the experiments and computational evaluation of the presented 

models. Conclusions are described in section 6. 
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2.0 Literature review  

The problem considered in this thesis can be described as a maritime inventory 

routing problem with speed optimization. Several research papers related to Maritime 

Inventory Routing Problems (MIRP) and speed optimization from the point of routing and 

emission minimization are relevant for this research.  

Some research papers have been used as a source of primary data obtained from the 

authors. Another research paper served as a source of fuel consumption function for the 

project. Articles, describing modeling approaches and various models for MIRP are also 

relevant for this research.  

2.1 Maritime inventory routing problems 

First studies of IRP were variations of models created for vehicle routing problem 

and heuristics, where inventory costs were taken into consideration (Coelho, Cordeau, and 

Laporte, 2014).  

According to Coelho, Cordeau, and Laporte (2014), the inventory routing problem 

is an integration of inventory management, vehicle routing, and delivery scheduling 

decisions. In a paper of Bell et al. (1983), published more than 30 years ago, the IRP 

appeared as a part of vendor-managed inventory (VMI). VMI is a business practice and its 

objective is cost reduction of logistics and business value addition. This is a situation 

where both vendors and buyers receive some benefits.  

Bertazzi and Speranza (2012) studied the inventory routing problems (IRPs). In this 

research paper, instances, classification of IRP characteristics, different models, and 

customer service policies were presented. This problem involves serving customers from 

suppliers with capacitated vehicles and direct shipping in terms of IRP.  

Agra, Christiansen, and Delgado (2012) examined a fuel oil distribution problem. 

Their research considers company coordinate routing and scheduling of vessels between 

ports in such a way that the demand for oil products is met over the planning horizon. 

Multiple time windows took place and inventories were considered only on the demand 

side. In this study, ships spend significant time in ports. That is why time in ports is 

modeled in detail. A mathematical model designed in this paper incorporated continuous 

and discrete time horizon. Several strategies were considered to improve this model. They 

were extended formulations, tightening bounds, and valid inequalities. The combination of 

these strategies gave an optimal solution in a reasonable timeframe. 
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Agra, Christiansen, and Delgado (2016) designed two alternative mixed integer 

formulations: discrete and continuous time formulations. Various extended formulations 

and inequalities are considered to allow linear gap reduction between two initial models. 

Experimental part compares models in terms of their size, and computational time based 

on real instances. 

Agra et al. (2016a) studied a maritime inventory routing problem (MIRP) with 

single-product, production and consumption rates, which changes over the planning 

horizon. A heterogeneous fleet of vessels, production and consumption ports with given 

storage capacity are included into the problem.  

De et al. (2017) also studied maritime inventory routing problem. The goal is to 

satisfy the demand in the number of ports over the planning horizon. The possibility of 

slow steaming policy integration is considered. The model in the research paper can be 

classified as mixed integer non-linear model including different capacity, 

loading/unloading, scheduling and routing constraints. Non-linearity of the model was 

based on the dependence between fuel consumption and vessel speed. Time windows and 

penalty costs for arrival delay were also included into the model. To solve this problem, 

heuristic commonly known as Particle Swarm Optimization for Composite Particle (PSO-

CP) was applied.  

Agra et al. (2015) discussed stochastic shipping problems. The company, which is 

considered in this paper, is responsible for product deliveries and inventory management. 

Routing and scheduling at sea are connected with unpredictability in weather conditions 

and imprecise waiting time at ports. In this paper, two-stage stochastic programming 

model was applied. The first stage includes routing, loading, and unloading and the second 

stage involves scheduling and inventories. Decomposition approach is used to solve the 

problem. 

Jiang and Grossmann (2015) examined maritime inventory routing problem with a 

single product to study continuous and discrete time models. In this paper two models are 

presented: continuous time model where time slots were increased by changing time 

constraints and discrete time model. A computational study was conducted based on 

randomly generated instances for efficiency comparison.  

2.2 Speed optimization problems 

Panamarenka (2011) studied speed optimization from the point of emission 

minimization for the vessels’ periodic supply planning problem. In this research paper, a 
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large heuristic neighborhood search with speed optimization was presented. The project 

showed that lower speed always means less fuel cost and emission. Total cost reduction 

from speed decrease depends on other types of expenses and from the algorithms and 

initial data. Computational experiments showed efficiency and applicability for larger 

instances.  

Psaraftis and Kontovas (2014) considered issues regarding speed optimization and 

designed optimization models for a set of scenarios in a single ship setting. The work is 

supposed to incorporate those parameters. The paper gives examples to demonstrate the 

optimal solution and the possible trade-offs.  

Psaraftis and Kontovas (2013) examined different speed models with speed as a 

decision variable. The speed is considered from the point of the fuel costs as major 

determinant, which is important in fleet sizing, ship sizing, and inventory costs. 

Andersson, Fagerholt, and Hobbesland (2015) applied special approach for 

planning vessel routes that consist of two parts. First, it is assumed that vessels sail with 

fixed speed and later speed was optimized along the routes. Andersson, Fagerholt, and 

Hobbesland (2015) proposed a new modeling approach for integration of vessel speed 

when planning routes for vessels. Better solutions were achieved when speed optimization 

was incorporated into the routes’ planning. 

Norstad, Fagerholt and Laporte (2011) state that most the models for scheduling 

and routing problems use fixed speed and fixed amount of fuel consumed by each speed. 

Such an approach has nothing in common with real life problems. In such situations, 

vessel speed can vary inside this particular time window. The cubic function of speed can 

be used for fuel consumption approximation. This work presents speed optimization, 

where speed is defined as a decision variable on each arc. To solve this problem a multi-

start local search heuristic is applied.  

Wang and Meng (2012) considered a mixed-integer nonlinear model. In this paper, 

they studied the relationship between bunker consumption and sailing speed of container 

ships. Transshipment and container routing is considered in this work. The result of the 

research is optimal speed for each ship and each route in the network. According to Wang 

and Meng (2012), an efficient method was proposed depending on fuel consumption 

function which has properties such as convexity and non-negativity. The algorithm can be 

applied to real problems of a shipping company which was the object of research. 

Fagerholt et al. (2015) studied the problem of cost minimization along with 

emissions. According to the paper, there are some limits on the maximum amount of 
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sulphur imposed in emission control areas. To satisfy such requirements ship operators 

should switch to another fuel which is more expensive but contains less sulphur. What now 

should be determined is speed and routes. Fagerholt et al. (2015) designed an optimization 

tool to determine routes to travel and optimum speed to minimize expenses. Experimental 

part is also presented for deeper evaluation about how does speed, routes, fuel 

consumption and costs are influencing ECA’s establishment. Environmental impact is also 

studied. Computational results show that ECAs can be avoided by increasing traveling 

distances or ship operators can sail with higher speed outside ECAs and with lower speed 

inside these areas. 

Wena et al. (2017) proposed routing and speed optimization problem, where time, 

expenses and environmental aspect are taken into consideration. To solve this problem a 

branch and price algorithm and a constraint programming model were designed. The Paper 

considers several objective functions which are trip duration, cost, and emissions 

minimization. Experimental part based on different scenarios are presented.  

Aydin, Lee, and Mansouri (2017) consider speed optimization problem where 

stochastic time at ports and time windows are implemented. The purpose is fuel 

consumption minimization by schedule designing. In this paper, dynamic programming 

model is created along with deterministic model which is used to define a lower bound on 

the optimal expenses of the dynamic model. There is one more model which is presented 

in this paper. It is a dynamic programming model for bunkering problem to analyse bunker 

price effect. Speed decisions take unpredictable port times into account that results into 

fuel consumption cost reduction. 

2.3 Methodology 

This part considers existing solution methods for Inventory Routing Problems 

(IRP), Maritime Inventory Routing Problems (MIRP) and Speed Optimization Problems. 

There are exact approaches and heuristics used to solve such problems. 

2.3.1 Approaches for inventory routing problems  

Simple heuristics in early papers on IRP includes assignment heuristic (Dror, Ball, and 

Golden, 1985), interchanging algorithm (Dror and Levy, 1986), trade-offs based on 

approximate routing costs (Burns et al., 1985), and a clustering heuristic (Anily and 

Federgruen, 1990). Current heuristic algorithms can solve difficult optimization problems. 

They are based on the concept of metaheuristics, which apply local search procedures and 
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a strategy to eliminate local optimum (Gendreau and Potvin, 2010) (Coelho, Cordeau, and 

Laporte, 2014). 

According to Coelho, Cordeau and Laporte (2014), recent IRP papers include:  

 iterated local search (Ribeiro and Lourenco, 2003); 

 variable neighborhood search (Zhao, Chen, and Zang, 2008); 

 greedy randomized adaptive search (Campbell and Savelsbergh, 2004); 

 memetic algorithms (Boudia and Prins, 2009);  

 tabu search (Archetti et al., 2012); 

 adaptive large neighborhood search (Coelho, Cordeau, and Laporte, 2012c). 

Several heuristics are presented in the table below.  

 

Heuristics Introduced by 

Clustering heuristics 

 

Anily and Federgruen (1990) and Campbell 

and Savelsbergh (2004) 

Construction and improvement heuristics 

(heterogeneous fleet) 

Chien, Balakrishnan, and Wong (1989) 

Two-phase heuristic based on a linear 

programming model 

Campbell et al. (1998) 

Fast local search algorithm Bertazzi, Paletta, and Speranza (2002) 

Tabu search with the exact solution of 

mixed-integer linear programs (MILPs) 

Archetti et al. (2012) 

Adaptive large neighborhood search 

(ALNS) matheuristic 

Coelho, Cordeau, and Laporte (2012c) 

Table 1 – IRP heuristics 

Source: Coelho, Cordeau and Laporte (2014) 

 

The first branch-and-cut algorithm for a single-vehicle IRP was developed by 

Archetti et al., (2007). This algorithm could solve two versions of IRP regarding different 

inventory policies: maximum level and order-up-to level. Archetti et al. (2007) improved 

the model by deriving some valid inequalities, which provided an opportunity to solve 

problems including up to 50 customers in a three-period horizon, and 30 customers in a 

six-period horizon (Coelho, Cordeau, and Laporte, 2014).  

Solyalı and Süral (2011) used the formulation with shortest-path networks along 

with heuristics to give an initial upper bound to the branch-and-cut algorithm. They 

considered only order-up-to level policy and derived the solution for larger instances in 

comparison with Archetti et al. (2007) (Coelho, Cordeau, and Laporte, 2014).  
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Coelho and Laporte (2013b) and Adulyasak, Cordeau, and Jans (2013) further 

extended the Archetti et al. (2007) formulation considering multiple vehicles, and have 

solved it with the help of a branch-and-cut algorithm. Coelho and Laporte (2013a) 

extended previous models for a multiproduct version of the IRP to be solved (Coelho, 

Cordeau, and Laporte, 2014). 

2.3.2 Approaches for maritime inventory routing problems  

In this part of thesis, solution methods for maritime inventory routing problems are 

presented. Agra et al. (2016a) solved a specific product maritime inventory routing 

problem with a heterogeneous fleet of ships applying a MIP based local search heuristic.  

Agra, Christiansen, and Delgado (2012) studied a short sea fuel oil distribution 

problem applying mixed integer formulations. The approach includes a mathematical 

model of the problem and several strategies to improve the model (tightening bounds, 

extended formulations, and valid inequalities).  

Agra, Christiansen, and Delgado (2016) developed two alternative mixed integer 

formulations: discrete and continuous time formulations for fuel oil distribution problem. 

Extended formulations and inequalities are implemented to allow linear gap reduction 

between two initial models.  

In the paper of Agra et al. (2015) stochastic shipping problem was considered. The 

company, which has been discussed in this paper, was responsible for product deliveries 

and inventory management. The two-stage stochastic programming model was applied in 

this paper. The decomposition approach was used to solve the problem.  

Jiang and Grossmann (2015) examined maritime inventory routing problem with 

another specific product and presented continuous and discrete time model.  

De et al. (2017) studied maritime inventory routing problem to satisfy the demand 

in the number of ports over the planning horizon. To solve this problem a heuristic called 

particle swarm optimization for composite particle (PSO-CP) is implemented.  

2.3.3 Approaches for speed optimization problems 

In this part of the thesis methods suitable for problems regarding speed 

optimization is discussed. According to Panamarenka (2011), a large neighborhood search 

heuristic for a periodic supply vessel planning problem (PSVPP) with speed optimization 

was first examined in a thesis by Alexander Shyshou (2010). Panamarenka (2011) 

discussed emission minimization through speed optimization using the same heuristic to 
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find a solution with the set of voyages for several vessels in her thesis (Panamarenka, 

2011).  

Psaraftis and Kontovas (2014) considered issues regarding speed optimization and 

designed optimization models for a set of scenarios in a single ship setting. The work  

incorporated those parameters and demonstrated the optimal solution and the possible 

trade-offs.  

Psaraftis and Kontovas (2013) examined different speed models, considering speed 

as a decision variable. The speed is considered as fuel cost determinant, which is important 

in fleet sizing, ship sizing, and inventory costs. 

Andersson, Fagerholt, and Hobbesland (2015) used special approach for planning 

the vessels’ routes. This approach included two stages. The first stage was based on the 

fixed speed and on the second stage speed was optimized along the routes. Norstad, 

Fagerholt, and Laporte (2011) applied a multi-start local search heuristic for scheduling 

and routing problem. In this work, speed was defined as a decision variable of each arc.  

Wang and Meng (2012) considered a mixed-integer nonlinear model. An efficient 

method was proposed with respect to characteristics of fuel consumption function. 

Fagerholt et al. (2015) studied the problem of cost and emission minimization. An 

optimization tool to determine routes to travel and speed is designed to minimize expenses. 

Wena et. al. (2017) examined routing and speed optimization problem and solved it by 

applying a branch and price algorithm and a constraint programming model.  

Aydin, Lee, and Mansouri (2017) studied speed optimization problem. Dynamic 

programming model was designed along with deterministic model which was used to 

define a lower bound on the optimal expenses of the dynamic model.  

The MIRP with speed optimization includes several goals to be achieved. The main 

research questions for this master thesis are the savings comparison of all three models and 

determining which one is the most efficient. The third model includes routing variables, 

which were used as input parameters in the second model, speed variables, and speed 

constraints. The optimal solution gives routes and speeds for the existing heterogeneous 

fleet of vessels in terms of minimizing transportation and handling cost, in each port 

during the planning horizon. The solution also shows the amount of product to be loaded 

or unloaded at each port with respect to the inventories. As metaheuristics require an 

advanced level of programming they are not applied in this thesis. Mathematical models 

are made in AMPL language and run in CPLEX. Solution comparison of different models 

is presented in the computational part. 
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3.0 Problem description 

3.1 Problem description 

This research considers a maritime inventory routing problem with speed 

optimization. This thesis considers a geographical region where maritime transportation of 

a single product takes place. Transportation is conducted with a heterogeneous fleet of 

vessels, which are different in size, capacity, and cost. Travelling distances are supposed to 

be included into the problem. There are several ports, where consumption or production 

facilities are placed. There are no ports where production and consumption are conducted 

simultaneously. Production ports have fixed production rate, consumption ports have fixed 

consumption rate. Both production and consumption rates are given. 

There are inventories at production and consumption facilities. Each port has 

storage facilities with fixed lower and upper limits. Production facilities are not allowed to 

exceed their maximum level, consumption facilities are not allowed to have shortages. 

Ports can be visited several times by different vessels during the given planning horizon 

depending on the size of the storage facilities at the port, and the number of products to 

load or unload. Vessels have a given starting location. After the route is finished, vessels 

end up in a node called destination point and it is also given. The cost of reaching this 

point is equal to 0. 

 

 

Figure 1 – Description of maritime inventory routing problem 

Source: made by the author 
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From Figure 1, it is possible to see how two vessels travel their routes. The first 

vessel, which is red, goes to the port 1, where production facilities are located and fills up. 

Then it goes to the port 2, fills up again and sails to the port 5 to deliver. This is the route 

1, which is shown by the thick red line in Figure 1. Another vessel goes first to the port 4, 

fills up; then continues to port 3 for unloading. After that it goes to port 1 to load, then 

sails to port 2 to load again and finishes at Port 5 with unloading. The route of the second 

vessel is represented by purple dashed line in the Figure 1. 

3.2 Problem formulation 

This research paper considers three different models to analyse how the speed 

influences the system performance.  

The first model considers speed to be fixed and given for each vessel. In the second 

model, fixed routes are used along with a set of possible speeds for each vessel. 

Optimization tool can define speed for each vessel for each route from the set of given 

speeds. These decisions are made in terms of cost minimization. The main goal here is to 

examine how these changes influence the travel expenses and amount of the emission.  

The third model considers routes and speed optimization simultaneously. 

Optimization tool is supposed to generate routes and choose the speed for each arc and 

vessel with respect to inventories and capacity of the vessel in terms of cost minimization. 

In this part, mathematical formulations are introduced and considered in the first 

model. Maritime inventory routing problem, which is examined in this master thesis, is 

created in the same way as in Agra et al. (2016a). The same notation as in Agra et al. 

(2016a) is applied in this thesis. Speed optimization is introduced in a similar way as in 

Andersson, Fagerholt, and Hobbesland (2015).   

Ports are supposed to have several nodes at a graph. This means that multiple nodes 

are allowed corresponding to each port. As a result, each port can have several visits 

during the planning horizon. For example, the vessel can start the route somewhere in the 

sea and end route in the port.  
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Figure 2 – Approach for ports: multiple nodes, representing visits to each port 

Source: made by the author 

 

The problem uses V to indicate a set of vessels and N to indicate a set of ports. Each 

vessel Vv  has a starting point, which can be a point at sea. Each port is supposed to 

have several visits according to the time period.  

Nodes in a network are indicated by a pair (i, m), where i is a port and m is the 

number of visits to port i. Arcs of direct vessel movements from node (i, m) to the node (j, 

n) are indicated by (i, m, j, n).  

Figure 2 represents a part of an approach which is applied to ports. Figure 2 shows 

origins and destinations for two vessels. There are four visits for Port 1, two visits for Port 

2 and three visits for Port 3. In the extended version, it looks like there is port 1 - visit 1, 

port 1 - visit 2, port 1 - visit 3, port 1 - visit 4; port 2 - visit 1, port 2 - visit 2; port 3 - visit 

1, port 3 - visit 2, port 3 - visit 3; port 4 - visit 1, port 4 - visit 2, port 4 - visit 3; port 5 - 

visit 1, port 5 - visit 2.  

Vessel 1 starts at the origin designated for vessel 1; goes to port 1 for visit 1; then 

sails to port 2 for visit 1 followed by port 5 for the visit 1 and the route is over. The route is 

shown in Figure 3 by the red line. Vessel 2 starts in its origin, sails to port 4 for the visit 1, 

moves to the port 3 for visit 1, sails to port 1 for visit 2, goes to port 2 for visit 2, moves to 

port 5 for visit 2 and finishes its route there. This route is shown by dashed green line. 

The main objective is total routing cost minimization, which includes transportation 

and operating costs for all the routes conducted by vessels.           
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According to Andersson, Fagerholt and Hobbesland (2015) consumption of bunker 

for the vessel is a non-linear function of speed. This fact is represented in the Figure 3. 

This is the main assumption of the second and third model. Vessels must perform a certain 

speed for safety reasons to achieve minimum cost. Maximum speed can be achieved only 

in perfect weather conditions, which happens rarely. So, the maximum speed used for 

route planning should be somewhat lower. Andersson, Fagerholt, and Hobbesland (2015) 

decided to approximate the non-linearity in bunker consumption by discretizing speed 

alternative to deal with non-linearity computationally. Such an approach, presented by 

Andersson, Fagerholt, and Hobbesland (2015) states that linearization of the fuel 

consumption turns into cost overestimation because of convexity. The approach is 

illustrated in the Figure 3 for three speed options defined by red arrows.  

 

 

Figure 3 – The non-linear function of fuel consumption per time unit as a function of speed 

Source: made by the author based on Andersson, Fagerholt and Hobbesland (2015) and 

Norstad, Fagerholt, and Laporte (2011) 

 

In the second model, predefined routes are used as input parameters. This case also 

includes some other changes, concerning an additional set of speeds and speed variables. 

Input data include several speeds for each vessel. Since data include three different speeds 
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for each vessel, two of them were defined according to the corresponding ranges for 

vessels with general cargo and different capacities (GlobalSecurity.org, 2017). The lowest 

speed for each vessel was calculated according to the slow steaming policy, which was 

discussed in Faber et al. (2012) where speed is supposed to be reduced by 10% from the 

average. 

According to Andersson, Fagerholt, and Hobbesland (2015), the non-linear 

dependence between travel time and speed of the vessel gives additional overestimation. In 

other words, the linearization of the travel time also means that the true costs are 

overestimated. The approach is illustrated in Figure 4. The same speed curve as for the 

Figure 3 was used to buid this graph. Breakpoints in Figure 4 are different from those, 

which were chosen for Figure 3. Other breakpoints were selected for visualization 

purposes. Travel time obtained from the solution is higher than the actual time 

corresponding to a speed chosen from the speed alternatives. Higher speed reduces 

traveling time and vice versa. 

 

 

Figure 4 – The non-linear function of travel time as a function of speed 

Source: made by the author based on Bialystocki and Konovessis (2016) 

 

There are two speed variables, which are introduced into the special case of the 

first model. Same speed variables are also included into the model 3. These variables can 

be equal to one, zero or fractional value. The first one is o

imvsg  that shows in which 
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proportions particular speeds are chosen or not chosen on the route between the origin and 

the port; the second is gimjnvs that shows in which proportions particular speeds are chosen 

or not chosen along the route between ports. The meaning of these variables is presented in 

Figure 5.  

 

 

Figure 5 – The meaning of the speed variables, introduced into the models 2 and 3 

Source: made by the author 

 

Daily sailing cost is considered as the cost of fuel consumed while sailing. The 

amount of fuel consumption were calculated according to the Bialystocki and Konovessis 

(2016), where the function of fuel consumption looks as Fuel Cons = 0.1727×Speed
2
 – 

0.217×Speed. Figure 6 shows non-linear dependence between vessel speed and the amount 

of fuel consumption.  

 

 

Figure 6 – Fuel consumption per time unit as a function of speed 

Source: made by the author based on Bialystocki and Konovessis (2016) 
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The daily sailing cost for each speed and vessel are calculated proportionally, 

according to the given data. Applying the given data, it is possible to state that speed of 

vessels and daily sailing costs have non-linear dependence as shown in Figure 7. The 

graph was created based on one of the instances of the three vessels. 

 

 

Figure 7 – Dependence between the daily sailing cost and speed for different vessels  

Source: made by the author based on Bialystocki and Konovessis (2016) and Agra et al. 

(2016a) 
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4.0 Mathematical model 

Maritime inventory routing problem is modeled in the same way as in Agra et al. 

(2016a) and with the same notation as in Agra et al. (2016a). Model 1 is presented first, 

then model 3 and finally model 2. Model 2 is a special case of model 1, the reason model 3 

being presented before model 2. 

4.1 Model 1 

Notation: 

 

Sets: 

V - set of vessels  

N - set of production and consumption ports  

S
A
 - set of possible nodes (i, m) 

A

vS  - set of nodes that can be visited by vessel v 

X

vS  - set of all movements (i, m, j, n) of vessel v  

 

Variables: 

imjnvx  – 1 if vessel Vv  moves directly between nodes (i, m) and (j, n), 0 otherwise, 

Vv ,  
X

vSnjmi ),,,(  

o

imvx  – 1 if vessel v departs from its initial position to node (i, m), 0; otherwise, Vv , 

A

vSmi ),(  

imvw   – 1 if vessel v visits node (i, m), 0; otherwise, Vv , 
A

vSmi ),(  

imvz  – 1 if vessel v finishes its route at node (i, m), 0; otherwise, Vv , 
A

vSmi ),(  

o

vz  – 1 if origin of vessel v is the same as destination (ship does not make any moves), 

Vv  

imvq   – the amount of product loaded/unloaded from vessel v at node (i, m), Vv , 

A

vSmi ),(  

imjnvf  – the amount of product that vessel v transports from node (i, m) to the node (j, n), 

Vv , 
X

vSnjmi ),,,(  
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o

imvf  – the amount of product that vessel v transports from the origin to the node (i, m), 

Vv , 
A

vSmi ),(  

d

imvf  – the amount of product that vessel v transports from the origin to destination node (i, 

m), Vv , 
A

vSmi ),(  

ims  – stock levels at ports at the start of the visit m, to port i, 
ASmi ),(  

imy  – 1 if there is a visit (i, m) to port i, 0 otherwise, Ni , 
ASmi ),(  

imvb  – 1 if vessel v operates in port (i, m), 0 otherwise, Vv , 
A

vSmi ),(  

imt  – starting time of the m
th

 visit to port i, 
A

vSmi ),(  

 

Parameters: 

T – number of days in the planning horizon 

Hi – minimum number of visits to port Ni  

Mi – maximum number of visits to port Ni  

Di – consumption or demand at port Ni  in period t 

Ji – 1 if production facilities are located in port i, -1 if consumption facilities are located in 

port i, Ni   

Piv – port cost at port Ni  for ship Vv  per time period   

Cv – capacity of ship Vv  

Lv – initial load onboard ship Vv  when leaving port i 

  i – lower bound on the inventory level at port Ni  in time period t 

  i – upper bound on the inventory level at port Ni  in time period t 

o

iS  – the initial stock level in port Ni at the beginning of the planning horizon 

Aim – earliest time for starting visit m to port i, 
A

vSmi ),(  

Bim – latest time for starting visit m to port i, 
A

vSmi ),(  

Ki – time between two consecutive visits to port Ni  

  i – maximum load/unload quantity in port Ni  

  i  – minimum load/unload quantity in port Ni  

Uim – latest time for starting visit m to port i, 
A

vSmi ),(  

T
Q

v – time for unloading/load each unit by ship Vv   

C
PP

ijv – sailing cost from port Ni  to port Nj  with ship Vv   
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C
OP

iv – sailing cost from origin to port Ni  by ship Vv   

T
PP

ijv – time required by ship Vv  to sail from port Ni  to port Nj   

T
OP

iv – time required by ship Vv  to sail from its origin to port Ni   

 

Formulation:

imv

Smi

iv

VvSmi

o

imv

OP

iv

VvSnjmi

imjnv

PP

ijv

Vv

bPxCxС
A
v

A
v

X
v





),(),(),,,(

min                  (1) 

 

subject to 

Vvzx o

v

Snj

o

jnv
A
v




,1
),(

                                                                                  (2)       

A

v

o

imv

Sminj

jnimvimv SmiVvxxw
X
v

 


),(,,0
),,,(

                             (3)       

A

vimv

Snjmi

imjnvimv SmiVvzxw
X
v

 


),(,,0
),,,(

                              (4)       

A

im

Vv

imv Smiyw 


),(,                                                                                   (5)       

ii

A

immi MmHSmiyy  1:),(,0)1(                                    (6)       

 i
A

im HmSmiy ..1:),(,1                                                                     (7)       

A

vvimvimv SmiVvСqb  ),(,,/                                                             (8)       

  A

vimviimv SmiVvwQCq  ),(,,,min v                                           (9)     

A

vimvimvi
SmiVvqwQ  ),(,,                                                               (10)     

A

v

o

imvv

o

imv SmiVvxLf  ),(,,                                                                (11)     

A

v

d

jnv

Sminj

jnimvjnvi

Snjmi

imjnv

o

jnv SnjVvffqJff
X
v

X
v

 


),(,,
),,,(),,,(

        (12)     

A

imjnvivimjnv SnjmiVvxQCf  ),(),,(,,)(                            (13)     

A

vjnvv

d

jnv SnjVvzCf  ),(,,                                                                (14)     

  ,0,max jnimimjnv

Vv

jn

PP

ijvimjn

Vv

imv

Q

vim AUxATUtqTt  

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ASnjmiVv  ),(),,(,                                                                                                 (15)    

1:),(,0)1()1(  



  mSmiyKqTtt A

imivmi

Vv

Q

vmiim         (16)     

A

im

o

imv

Vv

iv SmitxT 


),(,OP
                                                                          (17)    

A

imim SmiAt  ),(,                                                                                            (18)     

A

imim SmiBt  ),(,                                                                                            (19)     

NitDJSs iii

o

ii  ,11                                                                                 (20)    

1:),(),(q )1(

V

1)v-i(m)1(  



  mSmittDJJss A

miimii

v
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V
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v

V

imv  


i
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iimv

v
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v

im JSmiSqDs         (22)    
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V

Q

v

V

imv  


i
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iimv

v
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v

im JSmiSqDs                     (23)    

1:,)(q
V

vi 


iiiMi

v

MiM JNiStTDs
iii

                    (24)   

1:,)(q
V

vi 


iiiMi

v

MiM JNiStTDs
iii

                        (25)   

1:),(,  i

A

iim JSmiSs                                                                        (26)    

1:),(,  i

A
iim JSmiSs                                                                            (27)    

imjnvx    1,0 , Vv , 
X

vSnjmi ),,,(                                                                           (28)     

o

imvx    1,0 , Vv , 
A

vSmi ),(                                                                                    (29)     

wimv    1,0 , Vv , 
A

vSmi ),(                                                                                    (30)     

zimv   1,0 ,  Vv , 
A

vSmi ),(                                                                                    (31)     

o

vz    1,0 ,  Vv                                                                                                         (32)     

yim   1,0 ,  Ni , 
ASmi ),(                                                                                      (33)    

bimv   1,0 ,  Vv , 
A

vSmi ),(                                                                                    (34)     
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qimv    0, Vv , 
A

vSmi ),(                                                                                              (35)     

fimjnv   0, Vv , 
X

vSnjmi ),,,(                                                                                       (36)     

o

imvf    0, Vv , 
A

vSmi ),(                                                                                              (37)     

d

imvf    0, Vv , 
A

vSmi ),(                                                                                              (38)     

sim   0, 
ASmi ),(                                                                                                            (39)     

tim   0, 
ASmi ),(                                                                                                             (40)      

 

The objective function (1) expresses the minimization of the sum of traveling costs 

between ports and operational costs in each port. Constraints (2)−(7) are routing 

constraints. Constraint (2) shows that each ship travels from origin to the port or from 

origin to the destination. Constraint (3) ensures that the node is visited by the ship on the 

route from port to port or on the route from the origin to port or ends its route. Constraint 

(4) shows that if the vessel arrives at the node it also leaves it and finishes the route. 

Constraint (5) defines that the node (i, m) is visited by vessel only if yim is equal to one. 

Constraint (6) shows that there are mandatory visits. Equation (7) guarantees that if a port 

is visited m times, then visit m-1 also took place.  

Constraints (8)−(11) are loading and unloading constraints. Constraints (8)−(9) 

define lower and upper bounds on the loading or unloading quantities at each node. 

Constraint (10) ensures that if there is a visit to the node (i, m) then loaded/unloaded 

amount should be more or equal to the minimum quantity. Constraint (11) guarantees that 

if vessel travels from the initial position then transported amount is equal to the initial load 

of the vessel.  

Constraints (12)−(14) are arc-flow constraints. Constraints (12) show that the sum 

of the incoming flow of product to port and the amount loaded/unloaded should be equal to 

outgoing flow. Constraint (13) defines that if the ship travels between ports then the flow 

from port to port should not exceed the difference between ship capacity and minimum 

loaded/unloaded quantity. Constraint (14) guarantees that if ship travels to the destination 

then the flow to the destination should not exceed ship capacity.  

Constraints (15)−(19) are time constraints. Constraints (15) connect the start time 

at node (i, m) to the start time at node (j, n) when the ship travels between ports. Constraint 

(16) defines the minimum interval between two sequential visits to port. Constraints (17) 

guarantee that if ship travels from the origin then traveling time should not exceed start 
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time of the visit to the port. Constraints (18)−(19) are time windows for the start and end 

of the visits to ports. 

Constraints (20)−(27) are inventory constraints. Equation (20) defines the stock 

level at the start time of the first visit to the particular port. Equation (21) connects the 

stock level of m
th

 visit to the stock level of the previous visit. Constraints (22)−(23) 

guarantee that inventory is within the limits at the end of the visits. Constraints (24)–(25) 

define lower and upper bounds at time T for consumption and production ports. 

Constraints (26)–(27) ensure that inventory is within the limits at the start of each visit to 

the port. 

Constraints (28)–(34) state that variables are binary. Equations (35)–(40) ensure 

that variables are nonnegative.   

4.2 Model 3 

Model 3 is the final model which is supposed to give both optimal routes and 

speeds for each vessel at once. A modelling approach for speed optimization as in the 

research paper of Andersson, Fagerholt and Hobbesland (2015) was used. 

New set of speeds S

vS  is introduced into the model. Each vessel supposed to have 

several options of speed, depending on their capacity. 

The objective function (41) now expresses minimization of the sum of traveling 

costs between ports depending on the chosen speed and operational costs in each port. The 

final model includes routing variables (28)–(34) from the model 1, time variable (40), arc-

flow variables (36)–(38), inventory variable (39), loading and unloading variable (35) from 

the first model and speed variables (46)–(47), which are new.  

The model includes routing constraints (2)–(7), loading and unloading constraints 

(8)–(11), arc-flow constraints (12)–(14), time constraints (16), (18), (19), inventory 

constraints (20)–(27), (28)–(34) non-negative restrictions on the variables from the first 

model, speed constraints (42)–(43) and (46)–(47) restrictions on the variables.  

A new block of constraints was added to the model. Constraints (42)–(43) are 

speed constraints. Constraints (42)–(43) state that speed for an arc from origin to port and 

from port to port exists only if vessel travels along this arc.  

Constraints (44) and (45) have the same meaning as constraints (15) and (17) from 

the model 1, but o

imvx  and ximjnv were replaced by o

imvsg  and gimjnvs. Traveling time from 

origin to port and from port to port now depends on the speed. Constraints (46)–(47) 

ensures that variables are between zero and one. 
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According to the model, the solution gives routes for each vessel with appropriate 

speed to minimize total traveling and operating costs. The model also defines which nodes 

are visited and where each ship ends its route, the amount of product carried by each ship 

along the routes, starting time for each visit to ports and stock level at the start of each visit 

to ports. 

 

Notation: 

 

Sets: 

S

vS  - set of speeds which can be used by vessel v 

 

Variables: 

gimjnvs – the proportion of the speeds s used by vessel v to travel on the route (i, m, j, n), 

Vv ,
X

vSnjmi ),,,( , 
S

vSs  

o

imvsg  – the proportion of the speeds s used by vessel v to travel from origin to node (i, m), 

Vv , 
A

vSmi ),( , 
S

vSs   

 

Parameters: 

Rvs – speed 
S

vSs  of ship Vv  

c
PP

ijvs – sailing cost from port Ni  to port Nj  with ship Vv with speed 
S

vSs  

c
OP

ivs – sailing cost from origin to port Ni  by ship Vv with speed 
S

vSs  

T
PP

ijvs – time required by ship Vv  to sail from port Ni  to port Nj  using speed 

S

vSs  

T
OP

ivs – time required by ship Vv  to sail from its origin to port Ni with the speed 

S

vSs  

 

Formulation: 
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subject to 

(2) – (14), 16, (18) – (40), 
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0   gimjnvs   1, Vv , 
X

vSnjmi ),,,( , 
S
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0  o

imvsg    1, Vv , 
A

vSmi ),( , 
S

vSs                                                                         (47)    

 

4.3 Model 2  

This section examines the second model which is the special variant of the model 

1. The second model has some changes compared to the first one and considered as a 

middle phase between first and final model. The model gives the speed for each vessel 

according to predefined routes. These routes are generated by the model 1. The main goal 

of model 2 is to determine more economic solutions by only speed optimization or route 

generation and speed optimization simultaneously. The modelling approach is applied for 

speed optimization as in Andersson, Fagerholt and Hobbesland (2015). Transportation cost 

is supposed to include the cost of fuel consumption. 

The first model gives routes for vessels, which are used as input parameters for 

model 2. They are the following routing variables that become routing parameters in the 

second model: ximjnv, 
o

imvx , wimv, zimv,
o

vz , yim, bimv. Routing constraints (2)–(7) from the first 

model are eliminated. 

There is also a possibility to fix arc-flow variables (36)–(38) in the second model 

but has not been considered in this thesis. The decision was to fix routing variables and 

optimize speed and quantities transported along the predefined routes. 
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Model 2 includes all sets from model 1 and new set of speeds, which was 

introduced into the model 3. The objective function (41) expresses the minimization of the 

sum of traveling costs between ports depending on the chosen speed and operational costs 

in each port.  

Loading and unloading constraints (8)–(11), arc-flow constraints (12)–(14), time 

constraints (16), (18), (19), inventory constraints (20)–(27), non-negative constraints on 

variables (35)–(40) stays the same as in model 1. Also, this model includes speed 

constraints (42)–(43), restrictions on the variables (46)–(47) and time constraints (44)–(45) 

from the third model. 
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5.0 Computational study 

The experimental part of the thesis was run on a personal computer with a 2.50 

GHz Intel Core i5-6500T CPU processor and 16 GB of RAM under Windows 10. Models 

for speed optimization are coded in AMPL language and run in CPLEX 12.7.0.0. 

5.1 Test instances description 

Computational evaluation of the different instances is presented in this section. The 

models were tested on the artificial data which was obtained from Agra et al. (2016a). All 

data instances are presented in Table 2. Data is structured according to the number of 

vessels in specific instance with the speed ranges applied in each of those instances.  

There are seven main instances, which differ from each other in several parameters. 

The title of each instance begins with the letter A, B, C, D, E, F, and G which corresponds 

to the instances from Agra et al. (2016a). Main instances are different in different ports, 

ships, and length of the planning horizon. That is why the name of instances includes: 

 the number of ports; 

 the number of vessels; 

 the length of the planning horizon; 

 index number.  

 

 

Number of 

instance 

 

Number 

of ports 

 

Number 

of ships 

Planning 

horizon, 

days 

Speed ranges of vessels, knots 

13.5-15.0-19.0 14.4-16.0-20.0 16.2-18.0-21.0 

A-4-1-30-1 4 1 30     

A-4-1-60-1 4 1 60     

A-4-1-60-2 4 1 60     

B-3-2-30-1 3 2 30      

B-3-2-60-1 3 2 60      

B-3-2-60-2 3 2 60      

C-4-2-30-1 4 2 30      

C-4-2-60-1 4 2 60      

C-4-2-60-2 4 2 60      

D-5-2-30-1 5 2 30      

D-5-2-60-1 5 2 60      

D-5-2-60-2 5 2 60      
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E-5-2-30-1 5 2 30      

E-5-2-60-1 5 2 60      

E-5-2-60-2 5 2 60      

F-4-3-30-1 4 3 30       

F-4-3-60-1 4 3 60       

F-4-3-60-2 4 3 60       

G-6-5-30-1 6 5 30       

G-6-5-60-1 6 5 60       

G-6-5-60-2 6 5 60       

Table 2 – Data instances for computational evaluation of the models 

Source: made by the author 

 

Index number shows that instances include internal parameters, which are different 

for different instances. They are demand, initial stock level, upper bound for stock level, 

daily sailing cost, the distance between ports and fleet of vessels. 

Each vessel displays following operational characteristics: 

 the capacity of the vessel (ton); 

 the initial load of the vessel (ton); 

 set of possible speeds (knots/hour); 

 the daily sailing cost for each speed option (unit/day). 

According to the chosen approach, there is a set of speeds with three options for 

each vessel. Two of them were determined according to the corresponding ranges for 

vessels with general cargo and different capacities (GlobalSecurity.org, 2017). The lowest 

speed for each vessel was defined in terms of slow steaming policy, which was presented 

in Faber et al. (2012), where speed is reduced by 10% from the average value. It is 

assumed that each vessel performs in a speed exactly equal to one from the set or speed 

which is between two of previously chosen as a set. Speed ranges of different vessels are 

presented in Table 3. Operating speed of vessels in model 1 is 16.2 knots. 
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Vessels’ capacity, units 

Speed ranges of vessels, knots 

13.5-15.0-19.0 14.4-16.0-20.0 16.2-18.0-21.0 

100     

120     

130     

140     

150     

160     

Table 3 – Speed ranges of different vessels depending on capacity (basic curve) 

Source: made by the author 

 

The main approach while introducing speed into the existing tool for speed 

optimization is linearization for sailing cost calculation. Daily sailing costs are determined 

by using the curve where the amount of fuel consumption depends on the speed of the 

vessel. 

There are two curves which are used to test data instances. The first curve was 

obtained from Bialystocki and Konovessis (2016) where the function of fuel consumption 

in tons per day is presented as Fuel Cons = 0.1727× Speed
2
 – 0.217×Speed. This curve is 

a basic curve for conducting all computational tests. The second curve was taken from 

Norstad, Fagerholt, and Laporte (2011), an expression which shows the amount of fuel 

consumed per travelled nautical mile as following: Fuel Cons = 0.0036×Speed
2
 – 

0.1015×Speed + 0.8848. This expression can be applied for speed range of 14.1–22 knots. 

This curve was modified to achieve the amount of fuel consumed per day. New curve 

looks as Fuel Cons = 0.0864×Speed
3
 – 2.436×Speed

2
 + 21.2352×Speed. The second 

curve is non-basic and is used for error and computational time calculation and presented 

in a separate section. 

This section includes analysis of computational time, the amount of expenses for 

different models and average speed evaluation. Error calculation from linearization and 

actual cost for different curves are also presented in this section.  
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5.2 Assessment of computational results for basic curve   

5.2.1 Computational time 

In this part, comparisons of computational time for all three models are provided. 

Table 4 gives computational time for all the models and instances. The first model always 

shows low computational time when compared to model 3. This happens because of the 

sample size of the problem; the last model has more variables.  

 

Number of 

instance  

Computational time 

model 1, sec 

Computational time 

model 2, sec 

Computational time 

model 3, sec 

A-4-1-30-1 < 1 < 1 < 1 

A-4-1-60-1 1 < 1 2 

A-4-1-60-2 1 < 1 4 

B-3-2-30-1 1 < 1 15 

B-3-2-60-1 5 < 1 20 

B-3-2-60-2 5 < 1 16 

C-4-2-30-1 2 < 1 31 

C-4-2-60-1 11 < 1 50 

C-4-2-60-2 40 < 1 672 

D-5-2-30-1 20 < 1 133 

D-5-2-60-1 274 < 1 1198 

D-5-2-60-2 25 < 1 16 

E-5-2-30-1 65 < 1 95 

E-5-2-60-1 177 < 1 408 

E-5-2-60-2 48 < 1 167 

F-4-3-30-1 61 < 1 494 

F-4-3-60-1 39 < 1 125 

F-4-3-60-2 28 < 1 308 

G-6-5-30-1 104 < 1 976 

G-6-5-60-1 1973 < 1 7898 

G-6-5-60-2 2509 < 1 11849 

Table 4 – Computational time of different models (basic curve) 

Source: made by the author 
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It is worth mentioning that calculation time of the model 2 is less than 1 sec, the 

solution appears almost immediately. It should be noticed that lower level of demand in 

ports and higher planning horizon increases computational time. 

Even though G instance includes 6 ports and 5 ships, computational time is the 

highest. Computational time, for instance, G-6-5-60-2 of model 3 equals to 11849 seconds. 

The most influencing things are big fleet of vessels and the length of the planning horizon. 

The model requires a long time to select the best result among all possible alternatives. 

5.2.2 Sailing cost and savings  

In this part analysis of sailing cost and savings are presented. Table 5 provides the 

amount of savings of model 2 and model 3 in comparison to model 1. At most instances, 

speed optimization gives better results in terms of cost savings, than the approach with 

constant speed and fixed routes. A number of ships in the instance influence the 

complexity of the decision-making process. The more ships are included in the instance, 

the more alternatives are supposed to be examined by the solver to find the optimal 

solution in terms of sailing cost minimization. 

 

Number of 

instances 

Sailing cost of model 

1, units 

Savings of model 2, 

% 

Savings of model 3, 

% 

A-4-1-30-1 130.65 0.0 0.0 

A-4-1-60-1 331.29 0.0 0.0 

A-4-1-60-2 331.29 0.0 0.0 

B-3-2-30-1 364.81 -8.4 -12.8 

B-3-2-60-1 490.98 -7.6 -10.4 

B-3-2-60-2 529.07 -14.8 -14.8 

C-4-2-30-1 391.49 -14.6 -14.6 

C-4-2-60-1 528.78 -7.0 -10.4 

C-4-2-60-2 545.60 -5.4 -5.8 

D-5-2-30-1 347.14 -1.5 -13.0 

D-5-2-60-1 379.37 -4.2 -4.2 

D-5-2-60-2 288.61 -5.6 -5.6 

E-5-2-30-1 347.14 +0.1 -11.1 

E-5-2-60-1 287.17 -4.4 -8.4 



 32 

E-5-2-60-2 274.78 -0.7 -8.2 

F-4-3-30-1 460.89 -10.6 -10.6 

F-4-3-60-1 387.18 -14.2 -14.2 

F-4-3-60-2 419.08 -0.9 -2.7 

G-6-5-30-1 645.81 -3.2 -3.2 

G-6-5-60-1 672.10 -3.9 -9.8 

G-6-5-60-2 648.05 -4.1 -5.9 

Table 5 – Cost savings of models 2 and 3 in comparison with initial model 

Source: made by the author 

 

Figure 8 represents a graphic comparison of sailing costs for different models. The 

analysis shows that first model almost always shows higher total cost in comparison with 

the other models. The graph also indicates that cost of the model with speed optimization 

is the lowest or at least as good as in the model 2.  

 

 

Figure 8 – Cost comparison for different models (basic curve) 

Source: made by the author 

 

5.2.3 Speed and emissions amount  

Table 6 provides a comparison of average speed reduction for different models in 

comparison with the model 1. Average speed is calculated as average of the change in 

speed for each leg. If percentage speed reduction of model 2 and model 3 is compared, 

model 2 in some instances performs better and as a result emission amount is lower. Model 
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2 optimizes speed on the predefined routes, which are the cheapest. Model 2 is not allowed 

to change these routes, only to choose the optimal speed. Model 3 optimizes routes and 

speeds simultaneously and in some legs, perform higher speed to satisfy all the constraints. 

That is why the average speed of model 3 can be higher than the average speed of model 2. 

When it comes to analysis it is easy to conclude that in terms of fuel consumption and 

emission minimization, speed optimization always gives better results. 

 

Number of 

instances 

Average speed of 

model 1, knots 

Speed reduction for 

model 2, % 

Speed reduction for 

model 3, % 

A-4-1-30-1 16.2 0.0 0.0 

A-4-1-60-1 16.2 0.0 0.0 

A-4-1-60-2 16.2 0.0 0.0 

B-3-2-30-1 16.2 -10.4 -10.1 

B-3-2-60-1 16.2 -10.1 -12.2 

B-3-2-60-2 16.2 -16.1 -15.7 

C-4-2-30-1 16.2 -16.1 -15.6 

C-4-2-60-1 16.2 -14.4 -15.3 

C-4-2-60-2 16.2 -7.4 -9.2 

D-5-2-30-1 16.2 -3.4 -0.1 

D-5-2-60-1 16.2 -5.3 -5.3 

D-5-2-60-2 16.2 -6.6 -6.6 

E-5-2-30-1 16.2 -1.8 -0.7 

E-5-2-60-1 16.2 -5.9 -9.1 

E-5-2-60-2 16.2 -3.2 -2.3 

F-4-3-30-1 16.2 -11.1 -11.1 

F-4-3-60-1 16.2 -13.9 -13.9 

F-4-3-60-2 16.2 -3.2 -13.7 

G-6-5-30-1 16.2 -4.8 -4.8 

G-6-5-60-1 16.2 -5.0 -13.0 

G-6-5-60-2 16.2 -6.5 -8.7 

Table 6 – Speed reduction of models 2 and 3 in comparison with initial model 

Source: made by the author 
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Further comparison shows that in most of the instances with speed optimization, 60 

days planning horizon performs higher speed reduction than the same instances with 30 

days planning horizon. When speed optimization is applied, longer planning horizon gives 

an opportunity to reduce fuel consumption along with emission amount. As a result, fuel 

consumption costs are lower with low speed in comparison with fuel consumption for the 

high speed.  

 

5.2.4 Structural analysis of the solutions  

After cost comparison, it is important to evaluate the structure of the solutions for 

models. The most typical instances were chosen for such analysis. Some instances 

performed the same costs, some of them have decreasing costs from model to model, and 

others have same costs for model 1 and model 2 or for model 2 and model 3.  

Structural analysis is presented in Table 7. Model 1 and model 2 always perform 

the same number of visits and the same travelling distance since model 2 includes routes 

from the model 1. Average speed for model 1 is not mentioned in Table 7 because vessels 

travel with the constant speed of 16.2 knots. 

However, sailing costs for the second model in comparison with the initial one are 

lower in most instances. This happens because cost calculation of model 2 is based on the 

curve from Bialystocki and Konovessis (2016) and depends on fuel consumption and 

speed. Application of this curve allows speed and consequently, sailing cost reduction. 

First instance (A-4-1-60-1) was chosen because all three models showed the same 

amount of sailing costs. All three models have the same number of visits, same travelling 

distance, same routes and the same average speed. In the model 3, average speed is 16.2 

knots and it does not change for any of the models. This speed is the lowest in the 

performed set for that ship, which is enough to satisfy demand in each port in time and 

minimize sailing cost.  

Instances B-3-2-30-1 and B-3-2-60-1 perform fewer visits and less traveling 

distance in the model 3. Speed optimization approach gives an opportunity to decrease 

sailing distance and number of visits. As a result, average speed of the ship is lower for 

model 3 in comparison with the model 1. Both instances B-3-2-30-1 and B-3-2-60-1 for 

model 3 perform one leg where speed is more than the average. These legs belong to the 

longest routes. The increase in speed gives an advantage in savings. It allows achieving 

speed reduction in other travelled legs. As a result, average speed and emissions amount 
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are reduced. Examined instances show that speed optimization approach gives the best 

performance.  

 

 

Name of 

instances 

Model 1 / Model 2 Model 3 

Sailing 

distance, 

units 

Number 

of visits 

Average 

speed of 

model 2, 

knots 

Sailing 

distance 

reduction, 

units 

Number 

of visits 

Average 

speed, 

knots 

A-4-1-60-1 11 271 7 16.20 0 7 16.20 

B-3-2-30-1 15 159 6 14.67 -3 109 4 14.72 

B-3-2-60-1 20 212 8 14.71 -2 332 7 14.44 

C-4-2-30-1 12 049 5 13.95 0 5 14.01 

D-5-2-30-1 15 544 6 15.67 -1 554 6 16.18 

E-5-2-30-1 13 601 6 15.91 -1 554 6 16.08 

Table 7 – Structural analysis of the solutions of different models 

Source: made by the author 

 

Instance C-4-2-30-1 shows the same costs, travelling distance and routes for model 

2 and model 3. Approximate average speed is the same in these models. Instance D-5-2-

30-1 shows the same number of visits for all models. Reduction of sailing cost occurred in 

model 3 because of less travelling distance in comparison with previous models. The 

reason is the different routes of model 2 and model 3. Average speed in model 3 is higher 

than in model 2, but travelling distance reduction gives cost savings.   

Instance E-5-2-30-1 gives the same number of visits in all models. The average 

speed of model 2 is lower than in model 1, travelling distance and routes stay the same. 

Model 2 is more expensive than model 1, which is not typical for experimental results. 

Model 1 gives a speed of 16.2 knots in each leg, but model 2 performs in lower speed in 

several legs. There is one leg, which performs in higher speed than average speed of model 

1. The reason for such not typical results is that the speed of model 1 is not one of the 

breakpoints for second vessel in model 2. Operational speed of model 1 is 16.2 knots, 

while speed ranges for second vessel are 13.5-15-19 knots. Speeds chosen by model 2 are 

different from 16.2 knots, because of possible rounding error. Routes generated by model 
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1 are infeasible for model 2 when using the same speed. Model 3 includes different routes 

and higher average speed so speed optimization approach gives cost savings.  

Speed optimization approach allows increasing cost savings in comparison to the 

other models. There are three main alternatives of cost savings. First is distance reduction, 

because of route generation, second is visit reduction and travel distance reduction. The 

third alternative is speed reduction or increase, which goes in pair with traveling distance 

changes. 

 

5.2.5 Computational error 

As it was mentioned earlier the approach applied for speed optimization of vessels 

gives some estimation error in total cost. This approach was implemented according to the 

curve presented in from Bialystocki and Konovessis (2016). The presence of estimation 

error is based on the linearization approach. There are several sets of speeds given, one for 

each vessel. The solution includes one speed for each arc, where this speed is chosen from 

a given set; or it is a ‘middle’ speed decided by the solver. That is the reason behind errors 

in calculation of fuel consumption cost.  

 

Number of 

instance 

Total cost of 

voyage, units 

Actual cost of 

voyage, units 

Cost decline, 

units 

Percentage 

cost decline, % 

B-3-2-30-1 323.41 323.25 0.167 0.052 

B-3-2-60-1 444.57 444.44 0.131 0.029 

C-4-2-60-2 515.63 515.61 0.022 0.004 

D-5-2-30-1 307.23 307.19 0.037 0.012 

E-5-2-30-1 312.50 312.42 0.074 0.024 

E-5-2-60-2 253.98 253.96 0.017 0.007 

F-4-3-60-2 407.94 407.89 0.053 0.013 

G-6-5-30-1 610.29 610.16 0.129 0.021 

G-6-5-60-2 611.67 611.56 0.112 0.018 

Table 8 – Computational error of model 3 as a result of linearization (basic curve) 

Source: made by the author 

 

Table 8 shows all the instances from model 3 where such an error has occurred. 

Calculation error is presented for instances where fractional speed was assigned for 

vessels. Percentage cost decline is very low, between 0.004 and 0.052 %. This happened 
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because solution includes maximum two arcs where fractional speed is chosen and several 

(to be precise three) options of speed for each vessel. Low calculation error proves that 

linearization approach and speed curve give results which are very close to the real optimal 

solution. 

 

5.3 Assessment of computational results for non-basic curve 

Data instances were tested on the basic and non-basic curves. The non-basic curve 

was obtained from Norstad, Fagerholt, and Laporte (2011). The non-basic curve can be 

used within speed ranges of 14.1 and 22 knots. Speed ranges of different vessels are 

presented in Table 9. Operating speed of vessels in model 1 is 16.2 knots. 

This part describes computational time and computational error for all the instances 

with 30 days planning horizon. Table 9 shows speed ranges which were applied for this 

curve for vessels with different capacity.  

 

 

Vessels’ capacity, units 

Speed ranges of vessels, knots 

14.4-16.0-20.0 16.2-18-21 15.0-17.5-22.0 

100     

120     

130     

140     

150     

160     

Table 9 – Speed ranges of different vessels depending on capacity (non-basic curve) 

Source: made by the author 

 

5.3.1 Computational time  

Table 10 provides computational time for instances with 30 days planning horizon, 

where the non-basic curves are the basis of tests. Model 2 still gives the lowest 

computational time, which is less than 1 second. The complexity of the decision-making 

process increases along with the number of ships. The instance with 6 ports and 5 ships in 

model 3 gives the highest computational time, which is approximately 40 minutes. 

 

 



 38 

 

Number of instance 

Computational 

time  

model 1, sec 

Computational 

time  

model 2, sec 

Computational 

time  

model 3, sec 

A-4-1-30-1 <1 <1 <1 

B-3-2-30-1 1 <1 10 

C-4-2-30-1 2 <1 24 

D-5-2-30-1 20 <1 147 

E-5-2-30-1 64 <1 928 

F-4-3-30-1 58 <1 500 

G-6-5-30-1 105 <1 2393 

Table 10 – Computational time of different models (non-basic curve) 

Source: made by the author 

 

5.3.2 Computational error  

Calculation of computational error for the non-basic curves is presented for 

instances from model 3 where fractional speed is chosen. The results are presented in 

Table 11. The curve from Norstad, Fagerholt, and Laporte (2011) also gives estimation 

error from linearization approach which is between 0.03 and 0.06 %. The reason stays the 

same. There are maximum two routes where ‘middle’ speed is chosen and more than two 

speed options. These results can be applied to practical problems because of proximity to 

optimum value. 

 

Number of 

instance 

Total cost of 

voyage, units 

Actual cost of 

voyage, units 

Cost decline, 

units 

Percentage 

cost decline, % 

B-3-2-30-1 323.41 323.22 0.189 0.06 

D-5-2-30-1 331.25 331.17 0.084 0.03 

E-5-2-30-1 335.02 334.84 0.180 0.05 

G-6-5-30-1 629.29 629.05 0.238 0.04 

Table 11 – Computational error of model 3 as a result of linearization (non-basic curve) 

Source: made by the author 

 

The results of computational part show that speed optimization approach is 

applicable for problems of different sizes when cost savings are considered. In terms of 

emission minimization, this approach performs better for instances with long planning 

horizon.  
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The length of planning horizon directly influences the average speed reduction. 

Higher planning horizon reduces average speed of vessels during the voyage. Lower 

sailing speed gives less fuel consumption and sailing cost as a result. Emissions are 

supposed to be less with lower sailing speed.  

The difference between model 2 and model 3 is its applicability which depends on 

the main purpose. Model 3 performs better when minimization of sailing cost was 

considered. As a result, cost savings are significant according to the computational results. 

Emissions amount is also minimized in a long-term perspective. Model 2 can be applied in 

a short-term perspective for emissions minimization. An additional advantage of model 2 

is low computational time. 
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6.0 Conclusion 

Maritime transportation has significant value in the area of goods transportation. 

This type of transportation relates to high level of uncertainties, which should be 

minimized to obtain better results. The problem considered in this thesis, includes finding 

speed and schedules that satisfies demand and requires planning. More than that nowadays 

the society is concerned about emissions from vessels. As a result, this thesis can also be 

considered important not only from the point of optimal cost and speed but also from the 

point of green logistics.  

Different methods were studied and analysed in this thesis to develop a tool for 

speed optimization implemented step by step. Three different models are considered in this 

thesis. The first model is a deterministic model, where speed is a fixed parameter. The 

second model, as a special case of model 1, includes fixed routes and speeds for each ship 

as a set. The third model generates routes and optimal speeds for each vessel at the same 

time along with cost optimization.  

If the speed is considered as a decision variable, several objectives can be achieved 

simultaneously. Firstly, there is a possibility to improve total cost of the voyage by means 

of speed and sailing cost reduction. Secondly, a certain level of inventories can be 

performed at the end of the planning horizon. Finally, lower speed allows reduction of 

emission.  

Considering speed as a variable allows hedging from unpredictable situations such 

as delays, weather conditions, low level of inventory and high level of demand. It should 

be highlighted that models which include speed optimization are much closer to practice in 

comparison with an initial model where speed is fixed. Applied approach gives an 

opportunity to control traveling time, costs, fuel consumption, emissions and speed of the 

vessels.  

Computational experiments conducted on the data, obtained from one of the 

scientific articles, show that speed optimization tool is quite efficient in terms of cost 

savings for different size of problems and emissions reduction for problems of a large size. 

Computational studies also prove that linearization approach for non-linear dependence 

between speed and fuel consumption generate low level of computational error as there are 

several close data points to be considered on the curve. This approach can help to improve 

route planning and speed optimization. This thesis can be applied to the real-life problems 

to achieve these goals in practice. 
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Appendix 

This section includes AMPL code for the model 3. Code is separated into sets, 

parameters, variables, objective function and constraints according to their type for better 

overview of the model’s structure. To run the model files with .dat and .run extensions are 

required. Solution is transferred into the file with .sol extension. 

 

################SETS################ 

set PORTS;         

set SHIPS;        

set SPEEDS1;       

set SPEEDS2;      

set SPEEDS3;       

set SPEEDS4;      

set SPEEDS5;      

 

set SPEEDS:= SPEEDS1 union SPEEDS2 union SPEEDS3 union SPEEDS4 union SPEEDS5;   

set OPTIONS {SHIPS};      

param T>=0;      

param Nmin {i in PORTS} >=0;    

param maxvisits {i in PORTS} >=0;  

 

#################PARAMETERS################  

param DemandRate {i in PORTS} >=0;   

param J {i in PORTS};                 

param ShipCap {v in SHIPS} >=0;   

param InitialLoad {v in SHIPS} >=0;    

param LoadRate {v in SHIPS} >=0;     

param UpperStock {i in PORTS} >=0;  

param LowerStock {i in PORTS} >=0;  

param InitialStock {i in PORTS} >=0;    

param DistOrig {i in PORTS, v in SHIPS} >=0;   

param Distance {i in PORTS, j in PORTS} >=0;  

param Speed {v in SHIPS, s in OPTIONS[v]} >=0;  

param DailySailCost {v in SHIPS, s in OPTIONS[v]} >=0;          

param PortCost {i in PORTS, v in SHIPS} >=0;    

param Qmax {i in PORTS}:=UpperStock[i];        

param Qmin {i in PORTS} >=0;   

param TB {i in PORTS}>=0;   
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param A {i in PORTS, m in 1..maxvisits[i]}:=0; 

param B {i in PORTS, m in 1..maxvisits[i]}:=T;    

param U {i in PORTS, m in 1..maxvisits[i]}:=min(T, T+B[i,m]*Qmax[i]);  

param TL {v in SHIPS}:=1/LoadRate[v];        

 

param TravelCost {i in PORTS, j in PORTS, v in SHIPS, s in 

OPTIONS[v]}:=DailySailCost[v,s]*Distance[i,j]/(24*Speed[v,s]);  

param TravelTime {i in PORTS, j in PORTS, v in SHIPS, s in 

OPTIONS[v]}:=Distance[i,j]/(24*Speed[v,s]);   

param TravelTimeOrig {i in PORTS, v in SHIPS, s in OPTIONS[v]}:=DistOrig[i,v]/(24*Speed[v,s]);    

param TravelCostOrig {i in PORTS, v in SHIPS, s in 

OPTIONS[v]}:=DailySailCost[v,s]*DistOrig[i,v]/(24*Speed[v,s]);  

 

################VARIABLES############### 

###ROUTING VARIABLES 

var X {i in PORTS, m in 1..maxvisits[i], j in PORTS, n in 1..maxvisits[j], v in SHIPS: i<>j} binary;  

var Xo {i in PORTS, m in 1..maxvisits[i], v in SHIPS} binary;  

var Z {i in PORTS, m in 1..maxvisits[i], v in SHIPS} binary;  

var Zo {v in SHIPS} binary;           

var W {i in PORTS, m in 1..maxvisits[i], v in SHIPS} binary;     

var Y {i in PORTS, m in 1..maxvisits[i]} binary;      

var O {i in PORTS, m in 1..maxvisits[i], v in SHIPS} binary;    

 

###SPEED VARIABLES 

var G {i in PORTS, m in 1..maxvisits[i], j in PORTS, n in 1..maxvisits[j], v in SHIPS, s in OPTIONS[v]: 

i<>j} >=0, <=1;  

var Go {i in PORTS, m in 1..maxvisits[i], v in SHIPS, s in OPTIONS[v]} >=0, <=1;  

 

###LOADING/UNLOADING VARIABLES 

var Q {i in PORTS, m in 1..maxvisits[i], v in SHIPS} >=0;   

 

###FLOW VARIABLES 

var F {i in PORTS, m in 1..maxvisits[i], j in PORTS, n in 1..maxvisits[j], v in SHIPS: i<>j} >=0;   

var Fo {i in PORTS, m in 1..maxvisits[i], v in SHIPS} >=0;   

var Fd {i in PORTS, m in 1..maxvisits[i], v in SHIPS} >=0;   

 

###TIME VARIABLES 

var t {i in PORTS, m in 1..maxvisits[i]} >=0, <=T;     
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###STOCK VARIABLES 

var S {i in PORTS, m in 1..maxvisits[i]}>=0;  

 

################OBJECTIVE FUNCTION################ 

minimize Total_Cost: 

sum {i in PORTS, m in 1..maxvisits[i], j in PORTS, n in 1..maxvisits[j], v in SHIPS, s in OPTIONS[v]: 

i<>j} TravelCost[i,j,v,s] * G[i,m,j,n,v,s] + 

sum {v in SHIPS, i in PORTS, m in 1..maxvisits[i], s in OPTIONS[v]} TravelCostOrig[i,v,s] * Go[i,m,v,s] + 

sum {v in SHIPS, i in PORTS, m in 1..maxvisits[i]} PortCost[i,v] * O[i,m,v]; 

 

###SPEED CONSTRAINTS 

subject to SPEED_CHOICE1 {i in PORTS, m in 1..maxvisits[i], j in PORTS, n in 1..maxvisits[j], v in 

SHIPS: i<>j}:  

sum {s in OPTIONS[v]} G[i,m,j,n,v,s] = X[i,m,j,n,v]; 

 

subject to SPEED_CHOICE2 {i in PORTS, m in 1..maxvisits[i], v in SHIPS}:  

sum {s in OPTIONS[v]} Go[i,m,v,s] = Xo[i,m,v]; 

 

###ROUTING CONSTRAINTS 

subject to FLOW1 {v in SHIPS}: 

sum {j in PORTS, n in 1..maxvisits[j]} Xo[j,n,v] + Zo[v]=1; 

    

subject to FLOW2 {v in SHIPS, i in PORTS, m in 1..maxvisits[i]}: 

W[i,m,v] - sum {j in PORTS, n in 1..maxvisits[j]: i<>j} X[j,n,i,m,v] - Xo[i,m,v]=0; 

 

subject to FLOW3 {v in SHIPS, i in PORTS, m in 1..maxvisits[i]}: 

W[i,m,v] - sum {j in PORTS, n in 1..maxvisits[j]: i<>j} X[i,m,j,n,v] - Z[i,m,v]=0; 

   

subject to SHIP_VISIT {i in PORTS, m in 1..maxvisits[i]}:  

sum {v in SHIPS} W[i,m,v] = Y[i,m]; 

 

subject to PORT_VISIT {i in PORTS, m in 2..maxvisits[i]}: 

Y[i,m-1] - Y[i,m] >= 0; 

 

subject to MANDATORY_VISITS {i in PORTS, m in 1..Nmin[i]}: 

Y[i,m] = 1; 
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###LOADING AND UNLOADING CONSTRAINTS 

subject to CONSTRAINT1 {i in PORTS, m in 1..maxvisits[i], v in SHIPS}: 

O[i,m,v] >= Q[i,m,v]/ShipCap[v]; 

 

subject to CONSTRAINT2 {i in PORTS, m in 1..maxvisits[i], v in SHIPS}:  

Q[i,m,v] <= min(ShipCap[v], Qmax[i]) * W[i,m,v]; 

 

subject to CONSTRAINT3 {i in PORTS, m in 1..maxvisits[i], v in SHIPS}:  

Qmin[i] * W[i,m,v] <= Q[i,m,v]; 

    

subject to CONSTRAINT4 {v in SHIPS, i in PORTS, m in 1..maxvisits[i]}:  

Fo[i,m,v] = InitialLoad[v] * Xo[i,m,v]; 

       

###ARC - FLOW MODEL 

subject to CONSTRAINT5 {v in SHIPS, j in PORTS, n in 1..maxvisits[j]}: 

Fo[j,n,v] + sum {i in PORTS, m in 1..maxvisits[i]: i<>j} F[i,m,j,n,v] + J[j] * Q[j,n,v] = 

sum {i in PORTS, m in 1..maxvisits[i]: j<>i} F[j,n,i,m,v] + Fd[j,n,v]; 

 

subject to CONSTRAINT6 {i in PORTS, j in PORTS, m in 1..maxvisits[i], n in 1..maxvisits[j], v in SHIPS: 

i<>j}:  

F[i,m,j,n,v] <= (ShipCap[v] - Qmin[i]) * X[i,m,j,n,v]; 

 

subject to CONSTRAINT7 {j in PORTS, n in 1..maxvisits[j], v in SHIPS}:  

Fd[j,n,v] <= ShipCap[v] * Z[j,n,v];   

  

###TIME CONSTRAINTS 

subject to START_TIME {i in PORTS, j in PORTS, m in 1..maxvisits[i], n in 1..maxvisits[j]: i<>j}:  

t[i,m] + sum {v in SHIPS} TL[v] * Q[i,m,v] - t[j,n] +  

sum {v in SHIPS, s in OPTIONS[v]} max(U[i,m] + TravelTime[i,j,v,s] - A[j,n],0) * G[i,m,j,n,v,s] <= U[i,m] 

- A[j,n]; 

 

subject to MIN_INTERVAL {i in PORTS, m in 1..maxvisits[i]:m>1}:  

t[i,m] - t[i,m-1] - sum {v in SHIPS} TL[v] * Q[i,m-1,v] - TB[i] * Y[i,m] >=0; 

 

subject to CONSTRAINT {i in PORTS, m in 1..maxvisits[i]}:  

sum {v in SHIPS, s in OPTIONS[v]} TravelTimeOrig[i,v,s] * Go[i,m,v,s] <= t[i,m]; 

  

subject to TIME_WINDOW1 {i in PORTS, m in 1..maxvisits[i]}: 

t[i,m] >= A[i,m]; 
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subject to TIME_WINDOW2 {i in PORTS, m in 1..maxvisits[i]}:  

t[i,m] <= B[i,m]; 

 

###INVENTORY CONSTRAINTS 

subject to STOCK_START {i in PORTS}: 

S[i,1] = InitialStock[i] + J[i] * DemandRate[i] * t[i,1]; 

 

subject to RELATE_STOCK {i in PORTS, m in 1..maxvisits[i]:m>1}:  

S[i,m] = S[i,m-1] - J[i] * sum{v in SHIPS} Q[i,m-1,v] + J[i] * DemandRate[i] * (t[i,m] - t[i,m-1]); 

  

subject to STOCK_LIMIT1 {i in PORTS, m in 1..maxvisits[i]:J[i]=-1}:  

S[i,m] + sum{v in SHIPS} Q[i,m,v] - DemandRate[i] * sum{v in SHIPS} TL[v] * Q[i,m,v] <= 

UpperStock[i]; 

  

subject to STOCK_LIMIT2 {i in PORTS, m in 1..maxvisits[i]:J[i]=1}: 

S[i,m] - sum{v in SHIPS} Q[i,m,v] + DemandRate [i] * sum{v in SHIPS} TL[v] * Q[i,m,v] >= 

LowerStock[i]; 

  

subject to LBOUND {i in PORTS:J[i]=-1}: 

S[i, maxvisits[i]] + sum{v in SHIPS} Q[i, maxvisits[i],v] - DemandRate[i] * (T-t[i, maxvisits[i]]) >= 

LowerStock[i];   

  

subject to UBOUND {i in PORTS:J[i]=1}: 

S[i, maxvisits[i]] - sum{v in SHIPS} Q[i, maxvisits[i],v] + DemandRate[i] * (T-t[i, maxvisits[i]]) <= 

UpperStock[i];   

    

subject to LIMIT1 {i in PORTS, m in 1..maxvisits[i]: J[i]=-1}: 

S[i,m] >= LowerStock[i]; 

 

subject to LIMIT2 {i in PORTS, m in 1..maxvisits[i]: J[i]=1}: 

S[i,m] <= UpperStock[i]; 

 

 

 


