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Preface 

The topic of this Master’s thesis is “Introducing profit maximization in inventory routing 

problems”.  

 

The thesis was written according to the requirements for the Master of Science in Logistics 

degree. The thesis was written at Molde University College – Specialized University in 

Logistics. A part of the thesis was written at Federal University of Minas Gerais during a 

three-week stay in Brazil supported by the project UTF-2016-short-term/10123 with the title 

“Coordinated Optimization of Ports and Ships”.         

 

The work was supervised by Professor of Quantitative Logistics of Molde University 

College (Norway) Lars Magnus Hvattum and Professor of Computer Science Department 

of Federal University of Minas Gerais (Brazil) Sebastián Alberto Urrutia.  

 

The development of two models of IRP with profit maximization for two types of market 

(monopoly and perfect competition), the linearization of the models, the experiments on a 

set of randomly generated instances and the analysis of the results have been performed by 

the author.  

 



Summary 

 In this paper inventory routing problem (IRP) is considered. A basic IRP is 

concerned with the distribution of a single type of product from a single facility to a set of 

customers with given demand and inventory capacities over a given planning horizon. The 

problem is to determine for each discrete time period the quantity to deliver to each customer 

and the vehicle routes. The objective of the IRP is minimization of the sum of inventory and 

transportation costs without causing stockouts at any of the customers. However, in a supply 

chain context, where managers try to increase companies’ profitability, the focus of planning 

decisions in such an integrated problem as an IRP should be on profit maximization. Ways 

of profit maximization depend on the type of the market, where a company operates: 

monopoly or perfect competition.  

In this master’s degree thesis profit maximization was introduced in inventory 

routing problems. The literature overview of existing inventory routing problems with profit 

maximization was provided. Two models of IRP with profit maximization for monopoly 

and perfect competition were developed. The model for monopoly allows to set the prices 

finding the optimal trade-off between volume and margin according to the demand function. 

The model for a perfectly competitive market gives the opportunity to determine the 

production quantity to maximize the profit using a cost function.  The models were linearized 

and tested on a set of randomly generated instances. 
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1. Introduction 

Nowadays, companies try to plan their business with the respect to the whole supply 

chain, which includes and integrates business processes from raw materials extraction 

through production stages and transportation activities to the end customers. The main goal 

of a supply chain is to integrate management activities of the supply chain members and 

coordinate products and information flow in order to increase its competitiveness and 

maximize the overall profit. At the present time, competitiveness and profitability of the 

whole supply chain becomes more and more important. Thereby, besides the fact that 

inventory management and routing are crucial parts of management activities of any 

organizational units in itself, their combination can help to make integrated decisions that 

can increase the overall benefit of the whole supply chain. Integration of routing and 

inventory management helps decision makers to determine the right quantity of products 

that has to be delivered at the right time to the right location in order to satisfy customers’ 

needs.  

Furthermore, because of globalization processes, supply chains expand and distances 

between actors increase, therefore, routing becomes more important and inventory becomes 

necessary in order to ensure robustness of a supply chain. Moreover, inventory routing 

problems can take place at different tiers of the supply chain, for instance transportation of 

raw materials between suppliers and plants or transportation of finished products between 

producers and retailers, this fact increases an importance of inventory routing problems even 

more. 

Inventory routing problems are usually considered as cost minimization problems, 

which decrease transportation and inventory holding costs. This approach is more suitable 

for planning distinct processes. However, in a supply chain context, the focus of planning 

integrated processes should be on the profit maximization, since supply chain management 

strives to increase profitability of serving customers according to their needs. Profit equals 

revenue minus costs. Minimization of expenditures does not always lead to maximization of 

profit, for example, usually revenues and costs are related, therefore, minimizing costs may 

also minimize revenues and therefore will not maximize the profit. Vice versa, when profit 

is maximized the costs is not always at its minimum, for example sales that generate higher 

revenue costs more, however, the difference between revenue and costs is maximized. Thus, 

introducing profit maximization in inventory routing problems is interesting and important 

extension of the basic model of the inventory routing problem. 
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Profit maximization includes revenue that depends on prices, which in its turn 

depend on the type of the market. In monopolistic economy the company is a price maker, 

thus, it can modify its prices to maximize profits. On the other hand, in a perfect market, the 

firm is a price taker and cannot influence the price, however, it can choose to increase or 

decrease production and to not cover all demand. There are a few papers, which include 

profit maximization, but do not consider for example market mechanisms controlling the 

prices and demand (Andersson et al. 2010). Therefore, introducing profit maximization as 

an objective function in inventory routing problems taking into account types of markets 

and corresponding ways of profit maximization is an interesting topic for research. 

The rest of this thesis is organized in the following way. Chapter 2 describes 

inventory routing problems and how profit maximization enters the picture for monopoly 

and perfect market situations, respectively. Chapter 3 provides a literature review, which 

maps out what has been done before related to this topic. In Chapter 4 models formulations 

with explanations are provided. Chapter 5 presents computational results and analysis. The 

concluding remarks of the research are provided in Chapter 6. 
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2. Problem description 

A basic inventory routing problem (IRP) is concerned with the distribution of a single 

type of product from a single facility to a set of customers with given demand over a given 

planning horizon. The customers have inventory capacities and have to be served by 

capacitated homogeneous vehicles starting and ending their routes at the facility. The 

objective of the IRP is minimization of the sum of inventory and transportation costs without 

causing stockouts at any of the customers. The problem is to determine for each discrete 

time period the quantity to deliver to each customer and the vehicle routes. The basic model 

of the problem assumes that the demand is deterministic and that there is an unlimited 

amount of the product available at the facility (Archetti et al. 2014, Archetti et al. 2007, 

Campbell and Savelsbergh 2004, Coelho and Laporte 2013). An example of a basic IRP is 

presented in Figure 1. In this example the inventory at the supplier is limited but enough to 

serve all customers. The supplier has to deliver the product to 5 customers. The initial 

inventory, consumption (production) rate and inventory holding costs at customers and at 

the supplier are given.  

 

Figure 1. Example of IRP  

As it was mentioned before, in a supply chain context, where managers try to increase 

companies’ profitability, the focus of planning decisions in such an integrated problem as 

an IRP should be on profit maximization. An example of profit maximization case can be 

distribution of raw materials from a production site to consumption sites of one company or 

related companies, where a product will be assembled.  In order to incorporate profit 

maximization in IRP we can simply assume that, for example, the inventory at the facility is 
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limited and we do not have to satisfy all the demand. In this case, the objective is to maximize 

profit from the limited resources. However, in real life a profit maximization problem is 

more complicated. Ways of profit maximization depend on the type of the market, where a 

company operates.  

In a monopoly, a company can adjust the prices to maximize profit. However, a 

monopolist cannot set an infinitely high price, because demand depends on prices and higher 

prices cause lower demand. Therefore, the profit-maximizing monopolist’s problem is to 

find the optimal trade-off between volume and margin. The monopolist can set prices and 

determine the corresponding demand using the demand function (Figure 2). If we take into 

account a production stage in addition to the inventory and routing decisions, profit equals 

revenue minus inventory, transportation and production costs. Revenue in its turn can be 

found as price multiplied by production quantity. However, in a monopoly, price and 

quantity are decision variables. Therefore, the objective function becomes non-linear. 

 

Figure 2. Demand function 

In a perfectly competitive market, a company is a price-taker and cannot influence 

the price. However, unit costs vary with production volume. Thus, a firm can determine 

production quantity to maximize its profit using a cost function (Figure 3). In a perfect 

market, profit also equals revenue minus inventory, transportation and production costs. 

However, the price is fixed in this case. The production costs is defined as a product of unit 

costs and the production quantity. In a perfect market situation, unit costs and production 

quantity are variables that makes the objective function non-linear as well.  
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Figure 3. Cost function 

 

Non-linear problems are more difficult to solve. Thus, the problem is to incorporate 

and linearize profit maximization in IRP with respect to the type of the decision-maker’s 

market. That can help companies to make better decisions taking into account several 

planning aspects at the same time. 
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3. Literature review 

Operations research literature, which belongs to such academic disciplines as 

economic theory, management science and business administration, will be relevant for this 

research problem. First, it is necessary to look at general inventory routing problems, then, 

focus on IRPs with profit maximization. Finally, production routing problems should be 

considered as we take into account a production stage with respect to an opportunity to adjust 

the production amount.  

3.1. Inventory routing problems 

In the beginning of the literature search, it is useful to look for some existing 

literature reviews related to the research problem. There are several literature surveys of 

inventory routing problems (Andersson et al. 2010, Coelho, Cordeau, and Laporte 2014, 

Moin and Salhi 2007). 

Moin and Salhi (2007) present an overview of Supply Chain Management focusing 

on the inventory routing area. It highlights the helpfulness and restrictions of the models in 

practice. Moin and Salhi (2007) have classified the papers based on the planning horizon 

considered in the models namely single period, multiperiod and infinite horizon models with 

deterministic and stochastic demand patterns. Future research directions are also presented. 

Andersson et al. (2010) provide an overview of combined inventory management 

and routing problems, describes industrial aspects and gives a classification and 

comprehensive literature review of the current state of the research. Based on the status and 

trends within the field, future research is suggested with regard to both further development 

of the research area and industrial needs. 

Coelho, Cordeau, and Laporte (2014) provide a comprehensive review of the 

literature related to inventory routing problems. Coelho, Cordeau, and Laporte (2014) 

categorize inventory routing problems with respect to their structural variants and the 

availability of information on customer demand. The structural variants include such criteria 

as time horizon (finite or infinite), structure (one-to-one, one-to-many or many-to-many), 

routing (direct, multiple or continuous), inventory policy (maximum level or order-up-to-

level), inventory decisions (lost sales, backorders nonnegative), fleet composition 

(homogeneous or heterogeneous), and fleet size (single, multiple or unrestricted). 

The inventory routing problems with cost minimization can be taken as a basis for 

incorporating a profit maximization objective function. Archetti et al. (2007) present a 
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vendor-managed inventory routing problem with different types of replenishment policy. 

The problem is to determine for each time period the quantities of a product to ship to each 

customer with defined maximum inventory levels and the routes of the vehicles with given 

capacities. A branch-and-cut algorithm is implemented to solve the model with a 

minimization objective function. The model is tested on a set of randomly generated 

instances.  

Archetti, Desaulniers, and Speranza (2016) consider a non-linear objective function 

in inventory routing problems with a finite time horizon trying to avoid a drawback of zero 

inventory at customers at the end of the time horizon. The objective function is the 

minimization of the logistic ratio, which is the ratio of the total transportation costs to the 

total delivered quantity. The results are compared to those of a classical IRP. 

Archetti et al. (2014) provide and analyze different mathematical programming 

formulations of a multi-vehicle IRP such as vehicle-indexed formulations and flow 

formulations. The objective function is the minimization of transportation and inventory 

holding costs. The formulations are tested on a set of instances. 

3.2. Inventory routing problems with profit maximization 

The next step is to search the literature that is the closest to the research problem. In 

this case the most relevant topic is inventory routing problems with profit maximization. 

There are several articles related to the presented topic (Andersson, Christiansen, and 

Fagerholt 2010, Chien, Balakrishnan, and Wong 1989, Fodstad et al. 2010, Grønhaug et al. 

2010, Papageorgiou et al. 2014, Bell et al. 1983).  Most of these articles consider inventory 

routing problems in liquefied natural gas (LNG) supply chain (Andersson, Christiansen, and 

Fagerholt 2010, Fodstad et al. 2010, Grønhaug et al. 2010). 

Chien, Balakrishnan, and Wong (1989) provide the problem of distributing a limited 

amount of inventory among customers using a fleet of vehicles to maximize profit. The 

problem consists of a central depot with fixed supply capacities and many customers with 

deterministic demand. The entire demand need not be satisfied but there is a penalty cost 

imposed per unit of unsatisfied demand. The objective is to maximize profit that consists of 

total revenue less the penalty cost and routing costs. They formulate the integrated inventory 

and routing problem as a mixed integer program and develop a Lagrangian-based procedure 

to generate both good upper bounds and heuristic solutions. 

Andersson, Christiansen, and Fagerholt (2010) introduce the LNG supply chain and 

two planning problems related to the transportation planning and inventory management 
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within the chain. One of the planning problems is to sequence and schedule voyages and to 

assign them to ships. The objective function is to minimize the cost of operating the voyages 

and the cost of over- and under-deliveries. The second problem is to design routes and 

schedules including determining sales volumes that maximize the company revenue from 

the sales minus the operational costs. In this model three types of contracts are considered: 

the first one is a fixed contract where the volume cannot be violated, the second one includes 

lower and upper limits for delivery quantities, the third one is a short-term contract which 

should be satisfied only if profitable. Both problems are formulated as mixed integer 

programs, and possible solution methods are briefly discussed.  

Fodstad et al. (2010) present an optimization model that provides decision support 

for the liquefied natural gas supply chain by coordinating vessel routing, inventory 

management (upstream, onboard and downstream), trading and contract obligations. The 

model maximizes profit by utilizing different trading contracts. Contracts can have upper 

and lower quantity limits within any user-defined time window. 

Grønhaug et al. (2010) consider a maritime inventory routing problem in the 

liquefied natural gas (LNG) business, called the LNG inventory routing problem (LNG-

IRP). Here, a producer is responsible for the routing of the fleet of ships, and the inventories 

both at the liquefaction plants and the regasification terminals. Authors describe features of 

the LNG-IRP compared to other maritime inventory routing problems. The problem is 

solved by a branch-and-price method and the column generation approach. The presented 

model maximizes total profit, which consists of sales revenues minus the production and 

transportation costs. The sales and production quantities are bounded by the interval, and 

unit sales revenues and production costs are given. The proposed method is tested on real-

world instances.  

Papageorgiou et al. (2014) present a detailed description of deterministic single 

product maritime inventory routing problems (MIRPs), which are called deep-sea MIRPs 

with inventory tracking at every port. The paper introduces a model for it as a mixed-integer 

linear program. The objective function is to maximize revenue minus travel costs, while 

production/sales quantities are limited within the predefined intervals. Papageorgiou et al. 

(2014) present a library, called MIRPLib, of publicly available test problem instances for 

MIRPs with inventory tracking at every port.  

Bell et al. (1983) consider inventory management of industrial gases at customer 

locations combined with vehicle scheduling and dispatching. The paper introduces the 

mathematical model that maximizes revenue minus transport costs, which includes mileage 
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of route, drivers pay regulations, fuel costs, and vehicle depreciation per mile.  The model 

with profit maximization to produce daily delivery schedules is solved using a sophisticated 

Lagrangian relaxation algorithm.  

To sum up how previous literature has considered profit maximization in inventory 

routing the main characteristics must be defined. All of the articles that have been found on 

this topic provide a mathematical model of an IRP with a maximization objective. All of the 

models are multiperiod, contain fixed lower and upper bounds for the customers’ demand 

with associated unit sales revenue for each period and allow the sales/delivery quantities to 

be decided (Andersson, Christiansen, and Fagerholt 2010, Grønhaug et al. 2010, Chien, 

Balakrishnan, and Wong 1989, Fodstad et al. 2010, Papageorgiou et al. 2014, Bell et al. 

1983). In some articles the lower and upper limits for the inventory level are given 

(Andersson, Christiansen, and Fagerholt 2010, Fodstad et al. 2010, Grønhaug et al. 2010, 

Papageorgiou et al. 2014), Chien, Balakrishnan, and Wong (1989) assume that only the 

supplier has inventory capacities. In the article written by Bell et al. (1983) the model does 

not contain inventory balance constraints, however parameters of maximum and minimum 

amount of a product that can be delivered take into account inventory levels that are 

calculated by demand and inventory calculator outside the model. None of the described 

models contains inventory holding costs in the objective function. Most of the articles 

consider maritime inventory routing problems and assume that the shipper owns both the 

production and consumption sites and inventory holding costs are the same (Andersson, 

Christiansen, and Fagerholt 2010, Fodstad et al. 2010, Grønhaug et al. 2010). 

Most of the articles consider homogeneous fleet of vehicles; however, some of them 

include a heterogeneous fleet (Fodstad et al. 2010, Grønhaug et al. 2010). There are some 

other features. Several articles contain a production stage; the models allow determining the 

production amount within a predefined interval with fixed production unit costs (Grønhaug 

et al. 2010, Papageorgiou et al. 2014). Fodstad et al. (2010) consider time windows and 

different types of contracts with different fixed purchase prices. Some articles take into 

account a decision variable that represents the amount of product purchased from the spot 

market (Fodstad et al. 2010, Grønhaug et al. 2010, Papageorgiou et al. 2014). Chien, 

Balakrishnan, and Wong (1989) introduce penalty for the demand that is not satisfied. 

However, none of the articles consider important aspects of profit maximization such as 

possibility of the prices adjustment and the unit production costs variation with production 

volume. The literuture overview is presented in Table 1. 
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Table 1 -  Literature overview of inventory routing problems with profit 

maximization 

 

Andersson, 

Christiansen, and 

Fagerholt 2010 

Bell et al. 

1983 

Chien, 

Balakrishnan, 

and Wong 1989 

Fodstad 

et al. 

2010 

Grønhaug et 

al. 2010 

Papageorgiou 

et al. 2014 

math model with max profit + + + + + + 

multiperiod + + + + + + 

fixed lower and upper bounds 

for the customers’ demand 
+ + + + + + 

unit sales revenue for each 

period 
+ + + + + + 

allow the sales/delivery 

quantities to be decided 
+ + + + + + 

the given lower and upper limits 

for the inventory level 
+ 

Calculated 

outside the 

model 

Only at the 

supplier  
+ + + 

vehicle fleet 

homogeneous + + +   + 

heterogeneous    + +  

contain a production stage, 

determining the production 

amount within a predefined 

interval  

    

 

+ 

(with fixed 

production 

unit costs) 

+ 

time windows    +   

different types of contracts with 

different fixed purchase prices 
   +   

the spot market    + + + 

penalty for the demand that is 

not satisfied 
  +    

 

3.3. Production routing problems 

It is useful to look for the existing survey of production routing problems to 

understand the main idea and different formulation schemes of the PRP. There is a literature 

review related to this topic (Adulyasak, Cordeau, and Jans 2015). The paper states that the 
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PRP contains both lot-sizing and vehicle routing solutions and helps to jointly optimize 

production, inventory, distribution and routing decisions. Therefore, the PRP can be 

considered as a generalization of the IRP. The article provides a comprehensive review of 

different solution techniques that are used to solve the PRP. According to the article, even 

if production stage takes place, the objective function is cost minimization. The costs in this 

case include the total production, setup, inventory and routing costs.  

During the literature research it was noticed that there are a lot of literature related 

to inventory routing problems, most of the articles include models with cost minimization 

as an objective function and just a few of them consider profit maximization. Even when 

taking into account production decisions in addition to inventory management and routing, 

one still does not consider profit maximization. As it was mentioned before, an inventory 

routing problem with profit maximization is an important problem in itself, in addition, lack 

of the literature about this topic means that this field needs further research and extension of 

existing models by taking into account different planning aspects. 
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4. Models formulation 

In this chapter mathematical models of IRP will be presented. First, IRP with cost 

minimization will be formulated. Second, the model will be modified to the one with profit 

maximization objective function. Next, the models with profit maximization for two types 

of market (monopoly and perfect competition) will be developed and ways of their 

linearization will be provided. Finally, route generation algorithm will be described. 

4.1. Model 1. Inventory routing problems with cost 

minimization 

In this work the notation presented by Archetti et al. (2007) will be used as a basis 

and modified in order to fit the problem. 

Let us consider an inventory routing problem for a logistic network where a single 

type of product is shipped from one supplier 0 to a set of customers N over a time horizon 

T. The supplier uses a maximum level inventory policy where the shipping quantity must be 

not greater than the inventory capacity of customers. The supplier has a maximum inventory 

level Us, inventory holding costs hs, an initial inventory level B0 and a production rate at 

each time period 𝑟𝑡
𝑠. Unit production costs are defined by a unit costs function 𝑓(𝑟𝑡

𝑠).  At 

each time period t ∈ T = {1,…, t} customers consume an amount of product ri where i ∈ N. 

Each customer defines a maximum inventory level Ui and has an initial inventory level 𝐼𝑖
0 

and inventory holding costs hi. An inventory level at the end of time period t at the supplier 

and customers is denoted as variables Bt  and Iit respectively. The product has to be shipped 

by a homogeneous fleet of vehicles of capacity Q. Parameter n defines a number of available 

vehicles, which should perform a delivery using a set of routes K = {1, 2, ..., k} with costs 

ck. A binary parameter aik equals 1 if customer i is served on route k, 0 otherwise. Each 

vehicle can perform no more than one route per day. Denoting by Ykt we introduce a binary 

variable equal to 1 if route k is used at time t and 0 otherwise. Supposing that a variable Xikt 

identifies a quantity of product shipped to customer i at time period t using route k and 

deliveries take place before the consumption we can formulate a mathematical model so that 

transportation and total inventory holding costs are minimized. 
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𝑚𝑖𝑛 ∑ ∑ 𝑐𝑘 𝑌𝑘𝑡

𝑘∈𝐾𝑡∈𝑇

+  ∑ ∑ ℎ𝑖 𝐼𝑖𝑡

𝑡∈𝑇𝑖∈𝑁

+  ∑ ℎ𝑠 𝐵𝑡 𝑟𝑡
𝑠 

𝑡∈𝑇

+ ∑ 𝑓(𝑟𝑡
𝑠)𝑟𝑡

𝑠

𝑡∈𝑇

       (1.1) 

  s.t.     

∑ 𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 

𝑖∈𝑁

                                                                             (1.2) 

𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑎𝑖𝑘𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾                                                                   (1.3) 

∑ 𝑌𝑘𝑡

𝑘∈𝐾

≤ 𝑛            𝑡 ∈ 𝑇                                                                                                  (1.4) 

𝐼𝑖0 = 𝐼𝑖
0       𝑖 ∈ 𝑁                                                                                                              (1.5) 

𝐼𝑖𝑡 =  𝐼𝑖,𝑡−1 + ∑ 𝑋𝑖𝑘𝑡 − 𝑟𝑖         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇

𝑘∈𝐾

                                                             (1.6) 

∑ 𝑋𝑖𝑘𝑡

𝑘∈𝐾

≤ 𝑈𝑖 − 𝐼𝑖,𝑡−1        𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                        (1.7) 

𝐵𝑡 =  𝐵𝑡−1 + 𝑟𝑡
𝑠 − ∑ ∑ 𝑋𝑖,𝑘,𝑡   𝑡 ∈ 𝑇                                                                       (1.8)

𝑘∈𝐾𝑖∈𝑁

 

𝐵𝑡−1 + 𝑟𝑡
𝑠 ≤ 𝑈𝑠          𝑡 ∈ 𝑇                                                                                             (1.9) 

 𝐵0 = 𝐵0                                                                                                                           (1.10) 

𝐼𝑖𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                               (1.11) 

𝐵𝑡 ≥ 0         𝑡 ∈ 𝑇                                                                                                           (1.12) 

𝑋𝑖𝑘𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                               (1.13) 

𝑌𝑘𝑡 ∈ {0,1}         𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                                       (1.14) 

 

The objective function (1.1) expresses a minimization of the total costs, which 

include transportation costs, total inventory holding costs at customers, total inventory 

holding costs at the supplier and total production costs. The total production costs are fixed 

in this case, so it does not influence the objective function. Constraints (1.2) ensure that the 

quantity delivered by a vehicle is not greater than its capacity. Constraints (1.3) guarantee 

that a delivery at each time period takes place only if a customer is visited with a route and 

this route is used at this time period. The constraints (1.4) limit the number of routes per 

time period by the number of available vehicles. An initial inventory level at customers is 

determined by constraints (1.5). Constraints (1.6) define an inventory level at customers at 

each time period. Inventory level at customers at time period t equals the inventory level at 

the previous period plus the quantity of the product delivered at this time period minus 

consumption rate of the customer. Constraints (1.7) ensure that an inventory level at 
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customers will not exceed its maximum level. Constraints (1.8) determine an inventory level 

at the supplier. The inventory level at the supplier at the current period of time equals the 

inventory level at the previous time period plus production quantity at this time period minus 

the total volume delivered to all customers at this time period. Constraint (1.9) limits an 

inventory level at the supplier by its maximum. Constraint (1.10) defines an initial inventory 

level at the supplier. Constraints (1.11) – (1.14) are negativity and integrality constraints.  

  

4.2. Model 2. Inventory routing problems with profit 

maximization 

Let us consider a profit maximization case of the previous problem. In this case the 

product distribution from a production site to consumption sites of one company or different 

related companies will be considered. However, in order to keep conventional terminology 

the terms “supplier” and “customer” will be used.  

In a profit maximization case the supplier can get a sales revenue pi per unit of 

product shipped to customers, which is a unit price. It is not necessary to satisfy all the 

demand of customers, so the demand can be partially lost. However, there is a penalty bi for 

each unit of the unsatisfied demand that helps to take into account customers’ needs. The 

problem is to maximize the overall profit. Since the consumption amount can be less than 

the demand we introduce a variable Cit that identifies the amount of product consumed by 

customer i at period of time t. The mathematical model is presented below. 

max ∑ ∑ ∑ 𝑝𝑖𝑋𝑖𝑘𝑡

𝑡∈𝑇𝑘∈𝐾𝑖∈𝑁

− ∑ ∑ 𝑐𝑘 𝑌𝑘𝑡

𝑘∈𝐾𝑡∈𝑇

− ∑ ∑ ℎ𝑖 𝐼𝑖𝑡

𝑡∈𝑇𝑖∈𝑁

−  ∑ ℎ𝑠 𝐵𝑡

𝑡∈𝑇

− ∑ ∑ 𝑏𝑖(𝑟𝑖 − 𝐶𝑖𝑡)

𝑡∈𝑇𝑖∈𝑁

− ∑ 𝑓(𝑟𝑡
𝑠)𝑟𝑡

𝑠

𝑡∈𝑇

                                                                                                    (2.1) 

  s.t.     

∑ 𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 

𝑖∈𝑁

                                                                             (2.2) 

𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑎𝑖𝑘𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾                                                                    (2.3) 

∑ 𝑌𝑘𝑡

𝑘∈𝐾

≤ 𝑛            𝑡 ∈ 𝑇                                                                                                   (2.4) 

𝐼𝑖0 = 𝐼𝑖
0       𝑖 ∈ 𝑁                                                                                                              (2.5) 

𝐼𝑖𝑡 =  𝐼𝑖,𝑡−1 + ∑ 𝑋𝑖𝑘𝑡 − 𝐶𝑖𝑡         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇

𝑘∈𝐾

                                                           (2.6) 
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𝐶𝑖𝑡 ≤ 𝑟𝑖         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                                 (2.7) 

∑ 𝑋𝑖𝑘𝑡

𝑘∈𝐾

≤ 𝑈𝑖 − 𝐼𝑖,𝑡−1        𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                         (2.8) 

𝐵𝑡 =  𝐵𝑡−1 + 𝑟𝑡
𝑠 − ∑ ∑ 𝑋𝑖,𝑘,𝑡   𝑡 ∈ 𝑇                                                                       (2.9)

𝑘∈𝐾𝑖∈𝑁

 

𝐵𝑡−1 + 𝑟𝑡
𝑠 ≤ 𝑈𝑠          𝑡 ∈ 𝑇                                                                                          (2.10) 

𝐵0 = 𝐵0                                                                                                                            (2.11) 

𝐼𝑖𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                               (2.12) 

𝐵𝑡 ≥ 0         𝑡 ∈ 𝑇                                                                                                           (2.13) 

𝑋𝑖𝑘𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                               (2.14) 

𝑌𝑘𝑡 ∈ {0,1}         𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                                       (2.15) 

𝐶𝑖𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                              (2.16) 

 

The objective function (2.1) maximizes the total profit equal to the total revenue minus 

transportation, total inventory holding costs at customers and at the supplier, penalty for the 

unsatisfied demand and total production costs. Constraints (2.6) are an inventory balance 

constraints. The inventory level is defined as the inventory level at the previous period plus 

shipped amount of product minus consumed amount of product. The consumed amount of 

product must be not greater than the demand of a customer. It is stated by constraints (2.7). 

The rest of the constraints are the same as in model 1. 

 

4.3. Model 3. Inventory routing problems with profit 

maximization for monopoly 

In a monopoly, a company can adjust the prices to maximize profit. However, a 

monopolist cannot set an infinitely high price, because demand depends on prices and higher 

prices cause lower demand. In this case the unit revenue becomes a variable Pi . The 

dependency of the demand on the unit price is described by a function ri = f(Pi). All the 

constraints of the model 2 remain the same except the constraints (3.7), which now have a 

function as a right hand side.  
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max ∑ ∑ ∑ 𝑃𝑖𝑋𝑖𝑘𝑡

𝑡∈𝑇𝑘∈𝐾𝑖∈𝑁

− ∑ ∑ 𝑐𝑘 𝑌𝑘𝑡

𝑘∈𝐾𝑡∈𝑇

−  ∑ ∑ ℎ𝑖 𝐼𝑖𝑡

𝑡∈𝑇𝑖∈𝑁

−  ∑ ℎ𝑠  𝐵𝑡

𝑡∈𝑇

− ∑ ∑ 𝑏𝑖(𝑓(𝑃𝑖) − 𝐶𝑖𝑡)

𝑡∈𝑇𝑖∈𝑁

− ∑ 𝑓(𝑟𝑡
𝑠)𝑟𝑡

𝑠

𝑡∈𝑇

                                                     (3.1) 

 s.t. 

∑ 𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 

𝑖∈𝐽

                                                                             (3.2) 

𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑎𝑖𝑘𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾                                                                    (3.3) 

∑ 𝑌𝑘𝑡

𝑘∈𝐾

≤ 𝑛            𝑡 ∈ 𝑇                                                                                                   (3.4) 

𝐼𝑖0 = 𝐼𝑖
0       𝑖 ∈ 𝑁                                                                                                              (3.5) 

𝐼𝑖𝑡 =  𝐼𝑖,𝑡−1 + ∑ 𝑋𝑖𝑘𝑡 − 𝐶𝑖𝑡         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇

𝑘∈𝐾

                                                           (3.6) 

𝐶𝑖𝑡 ≤ 𝑓(𝑃𝑖)         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                          (3.7) 

∑ 𝑋𝑖𝑘𝑡

𝑘∈𝐾

≤ 𝑈𝑖 − 𝐼𝑖,𝑡−1        𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                         (3.8) 

𝐵𝑡 =  𝐵𝑡−1 + 𝑟𝑡
𝑠 − ∑ ∑ 𝑋𝑖,𝑘,𝑡   𝑡 ∈ 𝑇                                                                       (3.9)

𝑘∈𝐾𝑖∈𝑁

 

𝐵𝑡−1 + 𝑟𝑡
𝑠 ≤ 𝑈𝑠          𝑡 ∈ 𝑇                                                                                          (3.10) 

𝐵0 = 𝐵0                                                                                                                            (3.11) 

𝐼𝑖𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                               (3.12) 

𝐵𝑡 ≥ 0         𝑡 ∈ 𝑇                                                                                                           (3.13) 

𝑋𝑖𝑘𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                               (3.14) 

𝑌𝑘𝑡 ∈ {0,1}         𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                                       (3.15) 

𝐶𝑖𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                              (3.16) 

𝑃𝑖 ≥ 0         𝑖 ∈ 𝑁                                                                                                            (3.17) 

In this model the demand function that has a form 𝑓(𝑃𝑖) = 𝑏𝑃𝑖 + 𝑑 will be 

considered  (Besanko and Braeutigam 2010). The demand function is linear and does not 

create any difficulties in constraints (3.7). However, the objective function (3.1) becomes 

non-linear and non-separable as it is a product of two variables: price and shipped quantity.   

The importance of separable functions is that they can be approximated to by 

piecewise linear functions. Then it is possible to use separable programming.  

It is often possible to transform the model with non-separable functions into one with 

only separable functions. In our case we have to convert the product of two variables into a 
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separable form. However, before the conversion in order to avoid indices for routes and time 

periods we introduce a new variable  𝑍𝑖 = ∑ 𝑋𝑖𝑘𝑡𝑘∈𝐾,𝑡∈𝑇  for each   𝑖 ∈ 𝑁 , which is the sum 

of the shipped amount of product over routes and time periods. Now the term in the objective 

function that we need to convert is ∑ 𝑃𝑖𝑍𝑖𝑖∈𝐽 . In order to convert the product of two variables 

we need to perform the following transformations (Williams 2013). First, we introduce two 

new variables W1i and W2i into the model. Second, we relate the new variables W1i and W2i  

to Pi and Zi  by the following relations: 

 

𝑊1𝑖 =
1

2
(𝑃𝑖 + 𝑍𝑖) 

𝑊2𝑖 =
1

2
(𝑃𝑖 − 𝑍𝑖) 

If 𝑙𝑃 ≤ 𝑃𝑖 ≤ 𝑢𝑝 and 𝑙𝑍 ≤ 𝑍𝑖 ≤ 𝑢𝑖
𝑍, then the bounds on W1i and W2i  are: 

1

2
(𝑙𝑃 + 𝑙𝑍) ≤ 𝑊1𝑖 ≤

1

2
(𝑢𝑃 + 𝑢𝑖

𝑍) 

1

2
(𝑙𝑃 − 𝑢𝑖

𝑍) ≤ 𝑊2𝑖 ≤
1

2
(𝑢𝑃 − 𝑙𝑍) 

Then we replace the term ∑ 𝑃𝑖𝑍𝑖𝑖∈𝑁  in the objective function by ∑ (𝑊1𝑖
2 − 𝑊2𝑖

2
𝑖∈𝑁 ), 

which is a separable function as it contains non-linear functions of a single variable. These 

non-linear terms can be eliminated by piecewise linear approximations.  

This approximation can be performed in several ways. In our model a method known 

as the λ-formulation will be used.  

Let 𝑤1𝑖𝑠  where 𝑖 ∈ 𝑁, 𝑠 ∈ {1, . . , 𝑆𝑊}  denote breakpoints for the function 𝑔(𝑊1𝑖) =

𝑊1𝑖
2   with the number of points equal to 𝑆𝑊 and 𝑤2𝑖𝑠 where 𝑖 ∈ 𝑁, s ∈ {1, . . , 𝑆𝑊} denote 

breakpoints for the function 𝑔(𝑊2𝑖) = 𝑊2𝑖
2  with the number of points equal to  𝑆𝑊. Then, 

let 𝑔(𝑤1𝑖𝑠) and 𝑔(𝑤2𝑖𝑗) denote the corresponding function values. By these breakpoints 

the curves are divided into pieces that are approximated by straight lines. Any point between 

two breakpoints is a weighted sum of these two points. A schematic graphical representation 

of the approximation of the function 𝑔(𝑊1𝑖) = 𝑊1𝑖
2  for 𝑖 ∈ 𝑁 is demonstrated in Figure 3. 
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Figure 3. Piecewise linear approximation 

Let 𝜆𝑖𝑠
𝑤1 where 𝑖 ∈ 𝑁, 𝑠 ∈ {1, . . , 𝑆𝑊} and 𝜆𝑖𝑠

𝑤2 where 𝑖 ∈ N, 𝑠 ∈ {1, . . , 𝑆𝑊} denote 

nonnegative weights for the function 𝑔(𝑊1𝑖) and 𝑔(𝑊2𝑖) correspondingly. Then, the 

piecewise linear approximation can be written as following: 

𝑚𝑎𝑥 ∑ ∑ 𝜆𝑖𝑠
𝑤1

𝑠∈{1,..,𝑆𝑊}

𝑔(𝑤1𝑖𝑠)  

𝑖∈𝑁

− ∑ ∑ 𝜆𝑖𝑠
𝑤2

𝑠∈{1,..,𝑆𝑊}

𝑔(𝑤2𝑖𝑠)

𝑖∈𝑁

   

∑ 𝜆𝑖𝑠
𝑤1

𝑠∈{1,..,𝑆𝑊}

𝑤1𝑖𝑠  = 𝑊1𝑖     𝑖 ∈ 𝑁  

∑ 𝜆𝑖𝑠
𝑤1

𝑠∈{1,..,𝑆𝑊}

= 1                   𝑖 ∈ 𝑁  

∑ 𝜆𝑖𝑠
𝑤2

𝑠∈{1,..,𝑆𝑊}

𝑤2𝑖𝑠  = 𝑊2𝑖     𝑖 ∈ 𝑁  

∑ 𝜆𝑖𝑠
𝑤2

𝑠∈{1,..,𝑆𝑊}

= 1                   𝑖 ∈ 𝑁 

An additional requirement is that at most two adjacent 𝜆𝑖𝑠
𝑤1  can be greater than zero. 

This class of constraint is known as a special ordered set of type 2 (SOS2). The requirement 

guarantees that corresponding values of 𝑊1𝑖 and 𝑔(𝑊1𝑖) always lie on one of the straight 

line segments between breakpoints. This added stipulation can be modeled using additional 

binary variables. However, integer (binary) programming is generally more costly in 

computer time. Therefore, it should be used only if it is necessary. The added adjacency 
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requirements are redundant in case of minimizing convex functions or maximizing the 

negation of a convex function.  

In our case, the term 𝑔(𝑊2𝑖) = ∑ (−𝑊2𝑖
2

𝑖∈𝑁 ) does not need additional constraints, 

because we maximize the negation of a convex function. However, the term  𝑔(𝑊1𝑖) =

∑ 𝑊1𝑖
2

𝑖∈𝑁   produces some difficulties as we maximize a convex function. Thus, we need to 

add binary variables Sis where 𝑖 ∈ N, 𝑠 ∈ {1, . . , 𝑆𝑊 − 1} that represent the intervals between 

two adjacent breakpoints and equal 1 if the interval is chosen and 0 otherwise.  Only one 

interval can be chosen, that is guaranteed by the following constraint: 

∑ 𝑆𝑖𝑠

 𝑠∈{1,..,𝑆𝑊−1}

= 1              𝑖 ∈ 𝑁 

The next constraints connect intervals and corresponding breakpoints. 

𝜆𝑖1
𝑤1 ≤ 𝑆𝑖1                  𝑖 ∈ 𝑁 

𝜆𝑖𝑠
𝑤1 ≤ 𝑆𝑖,𝑠−1 + 𝑆𝑖𝑠                  𝑖 ∈ 𝑁, 𝑠 ∈ {2, . . , 𝑆𝑊 − 1} 

𝜆𝑖𝑆𝑤
𝑤1 ≤ 𝑆𝑖,𝑆𝑤−1                  𝑖 ∈ 𝑁 

Instead of adding binary variables a solver can be provided with the information that 

the set of variables is a special ordered set of type 2. In this case the solver will be set up to 

use SOS2 branching. 

In the way described above the model with the product of two variables in the 

objective function can be linearized. However, the cost of this linearization is an 

approximated value of the objective function. A degree of the approximation depends on the 

number of the breakpoints: the more breakpoints we have the closer approximation we get. 

However, if we increase the number of breakpoints, it will increase the time that is needed 

to solve the model.  

 

4.4. Model 4. Inventory routing problems with profit 

maximization for perfect competition  

In a perfectly competitive market, a company is a price-taker and cannot influence 

the price. However, unit costs vary with production volume and it is described by the 

function 𝑓(𝑅𝑡
𝑠) . We introduce a variable 𝑅𝑡

𝑠, which is production quantity.  
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max ∑ ∑ ∑ 𝑝𝑖𝑋𝑖𝑘𝑡

𝑡∈𝑇𝑘∈𝐾𝑖∈𝑁

− (∑ ∑ 𝑐𝑘 𝑌𝑘𝑡

𝑘∈𝐾𝑡∈𝑇

+  ∑ ∑ ℎ𝑖 𝐼𝑖𝑡

𝑡∈𝑇𝑖∈𝑁

+  ∑ ℎ𝑠 𝐵𝑡

𝑡∈𝑇

)

− ∑ ∑ 𝑏𝑖(𝑟𝑖 − 𝐶𝑖𝑡)

𝑡∈𝑇𝑖∈𝑁

−  ∑ 𝑓(𝑅𝑡
𝑆)𝑅𝑡

𝑆

𝑡∈𝑇

                                                           (4.1) 

  s.t.     

∑ 𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾 

𝑖∈𝑁

                                                                             (4.2) 

𝑋𝑖𝑘𝑡 ≤ 𝑄 𝑎𝑖𝑘𝑌𝑘𝑡          𝑡 ∈ 𝑇, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾                                                                    (4.3) 

∑ 𝑌𝑘𝑡

𝑘∈𝐾

≤ 𝑛            𝑡 ∈ 𝑇                                                                                                   (4.4) 

𝐼𝑖0 = 𝐼𝑖
0       𝑖 ∈ 𝑁                                                                                                              (4.5) 

𝐼𝑖𝑡 =  𝐼𝑖,𝑡−1 + ∑ 𝑋𝑖𝑘𝑡 − 𝐶𝑖𝑡         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇

𝑘∈𝐾

                                                           (4.6) 

𝐶𝑖𝑡 ≤ 𝑟𝑖         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                                 (4.7) 

∑ 𝑋𝑖𝑘𝑡

𝑘∈𝐾

≤ 𝑈𝑖 − 𝐼𝑖,𝑡−1        𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                        (4.8) 

𝐵𝑡 =  𝐵𝑡−1 + 𝑅𝑡
𝑆 − ∑ ∑ 𝑋𝑖,𝑘,𝑡   𝑡 ∈ 𝑇                                                                     (4.9)

𝑘∈𝐾𝑖∈𝑁

 

𝐵𝑡−1 + 𝑅𝑡
𝑆 ≤ 𝑈𝑠          𝑡 ∈ 𝑇                                                                                         (4.10) 

𝐵0 = 𝐵0                                                                                                                            (4.11) 

𝑅𝑡
𝑆 ≥ 0          𝑡 ∈ 𝑇                                                                                                          (4.12) 

𝐼𝑖𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                               (4.13) 

𝐵𝑡 ≥ 0         𝑡 ∈ 𝑇                                                                                                           (4.14) 

𝑋𝑖𝑘𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                               (4.15) 

𝑌𝑘𝑡 ∈ {0,1}         𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇                                                                                       (4.16) 

𝐶𝑖𝑡 ≥ 0         𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇                                                                                              (4.17) 

 

The term ∑ 𝑓(𝑅𝑡
𝑆)𝑅𝑡

𝑠
𝑡∈𝑇   in the objective function is the total production costs, which 

is the total average costs multiplied by the production quantity. A function of the total 

average costs has the form 𝑓(𝑅𝑡
𝑠) = 𝑒𝑅𝑡

𝑠 + 𝑑 +
𝑚

𝑅𝑡
𝑠 (Besanko and Braeutigam 2010). If we 

multiply the function of the total average costs by the production quantity the function of 

the total production costs will have the following form:  

𝑓(𝑅𝑡
𝑆)𝑅𝑡

𝑠 = 𝑒𝑅𝑡
𝑠2

+ 𝑑𝑅𝑡
𝑠 + 𝑚 
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Then, the term in the objective function  ∑ (𝑒𝑅𝑡
𝑠2

+ 𝑑𝑅𝑡
𝑠 + 𝑚)𝑡∈𝑇  is a separable non-

linear function. In order to linearize the model we have to eliminate non-linear function of a 

single variable. It can be done using λ-formulation method of piecewise linear 

approximation that was described above. 

 Let 𝑤𝑡𝑠  where 𝑡 ∈ 𝑇, 𝑠 ∈ {1, . . , 𝑆𝑊}  denote breakpoints for the function 𝑔(𝑅𝑡
𝑠) =

∑ 𝑒𝑅𝑡
𝑠2

𝑡∈T   with the number of points equal to 𝑆𝑊and  𝑔(𝑤𝑡𝑠) denote the corresponding 

function values. Let 𝜆𝑡𝑠 where 𝑡 ∈ 𝑇, 𝑠 ∈ {1, . . , 𝑆𝑊} denote nonnegative weights for the 

function 𝑔(𝑅𝑡
𝑠). As in this case we minimize a convex function, the adjacency requirements 

are redundant. Then, the piecewise linear approximation can be written as following: 

𝑔(𝑅𝑡
𝑠) = ∑ ∑ 𝜆𝑡𝑠

𝑠∈{1,..,𝑆𝑊}

𝑔(𝑤𝑡𝑠)  

𝑡∈𝑇

   

∑ 𝜆𝑡𝑠

𝑠∈{1,..,𝑆𝑊}

𝑤𝑡𝑠  = 𝑅𝑡
𝑠     𝑡 ∈ 𝑇  

∑ 𝜆𝑡𝑠

𝑠∈{1,..,𝑆𝑊}

= 1   𝑡 ∈ 𝑇  

 

4.5. Route generation algorithm  

The two-phase method will be used for solving IRP problems. On the first phase the 

generation of routes will be performed as a sub problem. On the second phase the described 

IRP models will be used as master models.  

In order to generate the set of possible routes for the models a route generation 

algorithm will be used. First, using coordinates as input data we calculate the distances 

between all nodes (including customers and the supplier). Second, we define all possible 

combinations (subsets) of customers up to a certain maximum number of customers per 

route. Then, for each subset of customers we solve a travelling salesman problem (TSP) by 

finding the permutation of customers with the shortest distance of the route. The result of 

the route generation that we can use in the models is a set of shortest routes with the costs 

of the routes and a binary parameter, which equals 1 if route k includes customer i, 0 

otherwise.  
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5. Computational experiments 

In this chapter generation of instances will be described and computational results 

and analysis will be presented.   

All computational tests were run on a personal computer with 2.50 GHz Intel Core 

i5-6500T CPU and 16 GB of RAM under Microsoft Windows 10 Enterprise 64-bit version. 

The models were tested with AMPL/CPLEX 12.7.00.  

5.1. Generation of instances  

In order to test the models, understand the technical and economical behavior of the 

models and the maximum size of the problems that can be solved using the models within 

reasonable time test instances were generated. 

The test instances were generated on the basis of the test instances presented by 

Archetti et al. (2007) which were modified in order to fit the problem.  

The values of parameters were assumed as following. The time horizon T consists of 

3 and 6 time periods. The considered number of customers N is 5, 10 and 15. The product 

quantity ri consumed by customer i at time t is randomly generated as an integer number in 

the interval [10, 100]. The production rate rs is the sum of consumption rates of 

customers (∑ 𝑟𝑖𝑖∈𝐽 ). The maximum inventory level Ui at customers equals rig, where g ∈ 

{2,3} and indicates the number of time periods needed to consume the amount Ui . The 

maximum inventory level Us at the supplier equals the sum of maximum inventory levels at 

customers multiplied by 2 (2 ∑ 𝑈𝑖𝑖∈𝐽 ). The starting inventory level at customers 𝐼𝑖
0 is the 

maximum inventory level at customers minus consumption rate (Ui – ri ). The starting 

inventory level at the supplier B0 is the sum of maximum inventory levels at customers  

(∑ 𝑈𝑖𝑖∈𝐽 ). The inventory holding costs hs at the supplier are 0.3 and the inventory holding 

costs hi  at customers are randomly generated in the interval [0.1, 0.5]. The vehicle capacity 

Q is  
1.5

𝑛
∑ 𝑟𝑖𝑖∈𝐽  where n is a number of available vehicles. The coordinates (Xi,Yi) of 

customers and the supplier are randomly generated in the interval [0,500] and transportation 

costs are calculated as √(𝑋0 −  𝑋𝑖)2 + √(𝑌0 − 𝑌𝑖)2. The maximum number of customers on 

each route is 2 and 3. The number of vehicles is 3. The demand function is 𝑓(𝑃𝑖) = −2.5𝑃𝑖 +

113, where Pi is a unit price. The unit price limit for the monopoly: 41, with the 

corresponding demand 10.5. The penalty for unsatisfied demand is 0.2pi for model 1, 2 and 

4. For a monopoly where the price is variable the value of penalty is assumed equal to the 
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absolute value of penalty in other models. This assumption is made to simplify the model 

and to avoid additional non-linearity in the objective function. The average costs function is 

𝑓(𝑅𝑡
𝑠) = 0.0005𝑅𝑡

𝑠 + 2 +
3

𝑅𝑡
𝑠, where 𝑅𝑡

𝑠 is a production rate. The number of breakpoints for 

piecewise linear approximation is 5, 10 and 15.  

5.2. Computational results 

 In order to test the model a number of experiments were conducted. The 

computational tests can be divided into two groups according to the considered criteria: 

technical and economical.  

5.2.1. Technical tests 

In order to study the models from technical point of view we solve instances for 3 

and 6 periods and 5, 10 and 15 customers with the number of breakpoints (for model 3 and 

4) equal to 5 and maximum 2 customers per route. The computational time of the instances 

is presented in table 2. The AMPL codes for model 3 and 4 are presented in appendix 1 and 

2 respectively.  

Table 2 - Computational time in seconds 

n Model 1  Model 2  Model 3  Model 4  

T3 

5 0.13 0.24 0.39 0.22 

10 0.25 0.55 11.01 0.58 

15 0.41 42.91 158.03 24.64 

T6 

5 0.41 0.23 22.28 0.22 

10 0.44 0.69 446.58 0.67 

15 0.27 31.17 2863.16 (with 10% gap) 47.25 

 

The computational time increases with the increase of the problems size. The 

instances up to 6 periods and 15 customers can be solved within 1 minute using model 1, 2 

and 4.  

The running time of model 3 increases significantly because of the additional integer 

variables. The instance for 6 periods and 10 customers is solved optimally within 8 minutes, 

however, if we increase the number of customers up to 15 it takes about 48 minutes to solve 

the problem with 10% gap.  

The computational time and the outcome of the model are also influenced by the 

number of breakpoints. Let us consider the small instance for 3 periods, 5 customers, and 
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maximum 2 customers per route with 5, 10 and 15 breakpoints (SW) to understand the 

influence of the number of breakpoints on model 3 for a monopoly. The computational 

results are presented in table 3. 

Table 3 - Number of breakpoints 

Instance Criterion  SW=5 SW=10 SW=15 

T3n5 

approximated profit 12476.30 11737.40 11567.30 

real profit 10728.22 11343.04 11342.90 

deviation from real profit  16 % 3 % 2 % 

approximated revenue  17038.50 17073.50 16499.50 

real revenue  15290.40 16679.20 16275.10 

deviation from real revenue  11 % 2 % 1 % 

costs 4562.18 5336.16 4932.20 

transportation costs 2504.49 3423.34 2897.34 

inventory holding costs at 

customers 
206.27 183.88 195.37 

inventory holding costs at the  

supplier 
608.15 506.07 526.86 

penalty 20.40 0.00 89.76 

production costs 1222.87 1222.87 1222.87 

produced amount 579 579 579 

shipped amount of product 473 603 574 

consumed amount of product 421 617 576 

time (seconds) 0.39 0.80 1.58 

 

The increase of the number of breakpoints from 5 to 15 the deviation of approximated 

value of revenue and profit from the real ones reduces from 11% to 1% and from 16% to 

2% correspondingly. We get better approximation, however we can see that the 

computational time increases.  

As it was mentioned before, another way of the piecewise linear approximation 

formulation is to provide the solver with the information that the set of variables is SOS2. 

To compare two alternative formulations of model 3 the instance for 3 and 6 periods, 10 

customers, 5 breakpoints and maximum 2 customers per route will be solved. The results 

are exactly the same. However, the running time with SOS2 formulation increases. The 

computational time is provided in table 4.  
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Table 4 – Running time in seconds of two piecewise linear approximation 

formulations 

Instance  Formulation with additional binary variables SOS2 formulation 

T3n10 11.01 21.95 

T6n10 446.58 904.72 

  

The maximum number of customers on each route also affects the results and the 

running time. The computational results of the instance for 3 periods, 10 customers, 5 

breakpoints (for model 3 and 4) and the maximum number of customers equal to 2 and 3 are 

presented in table 5. 

It can be noticed that when we increase the maximum number of customers per route 

from 2 to 3 the results of the models are improved. In model 1 the costs decrease and in 

models 2, 3 and 4 the profit increases. If we increase the maximum number of customers per 

route the number of possible routes will increase as well, that causes the increase in the 

computational time. We can assume that when the capacity of the vehicle is reached the 

increase of the maximum number of customers per route will not lead to any improvements 

of the results and will only increase the computational time.   

Table 5 - Maximum number of customers per route 

Instance 

Criterion  Model 1  Model 2  Model 3  Model 4  

maximum number 

of customers per 

route 

2 3 2 3 2 3 2 3 

T3n10 

profit 8895.82 8360.44 17371.90 19672.90 30140.60 33666.60 22791.70 24474.20 

revenue  19030.40 17890.40 28250.40 31192.80 40945.20 44431.60 28250.40 31192.80 

costs 10134.59 9530.28 10878.52 11519.86 10804.52 10765.00 5458.68 6718.56 

transportation 

costs 
3432.12 2817.40 4135.40 4763.37 3542.09 3420.96 4135.40 4763.37 

inventory holding 

costs at customers 
288.43 289.24 488.68 613.80 729.89 835.13 488.68 613.80 

inventory holding 

costs at the  

supplier 

1990.20 1999.80 1830.60 1718.85 2108.70 2085.07 705.00 668.25 

penalty 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

production costs 4423.84 4423.84 4423.84 4423.84 4423.84 4423.84 129.60 673.14 

produced amount 1905 1905 1905 1905 1905 1905 58 308 

shipped amount of 

product 
1116 1041 1641 1891 1192 1211.75 1641 1891 

consumed amount 

of product 
1905 1905 1905 1905 1038 886.125 1905 1905 

profit per unit 

shipped 
7.97 8.03 10.59 10.40 25.29 27.78 13.89 12.94 

time (seconds) 0.25 0.80 0.55 5.25 11.01 159.58 0.58 6.28 
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It is possible to calculate such non-linear functions as square of a variable using 

CPLEX solver. In model 4 for a competitive market we solved the non-linear function using 

piecewise linear approximation in order to make the model more general. However, in our 

case the function of the total production costs is a quadratic function of the production rate 

(Rst
2) and we can solve it without using approximation. The computational results of the 

instance for 6 periods and 10 customers with maximum 2 customers per route and 5 

breakpoints for linear approximation are provided in table 6. 

Table 6 - Quadratic function of the production rate 

Instance Criterion  Approximated Rst
2 Rst

2 

T6n10 

profit 45131.30 45134.50 

revenue  60032.00 60032.00 

costs 14900.71 10412.36 

transportation costs 8542.68 8542.68 

inventory holding costs at 

customers 
865.73 865.73 

inventory holding costs at the  

supplier 
1009.73 1003.95 

penalty 0.00 0.00 

production costs 4482.57 4485.10 

produced amount 1961 1961 

shipped amount of product 3544 3544 

consumed amount of product 3810 3810 

profit per unit shipped 12.73 12.74 

time (seconds) 0.70 1.48 

 

There are insignificant differences in the results, however the computational time of 

solving a quadratic function is higher than the time that is needed to solve the piecewise 

linear approximation. 

5.2.2. Economical tests  

To understand the behavior of the models we run problems of 3 different sizes: small 

(3 periods and 5 customers (T3n5)), medium (3 periods and 10 customers (T3n10)) and large 

(6 periods and 10 customers (T6n10)). For all the instances the number of breakpoints (for 

model 3 and 4) is 5 and the maximum number of customers per route is 2. The computational 

results are demonstrated in Table 7 (a, b, c).  
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Table 7.a - Economic criteria (instance T3n5) 

Instance Criterion  Model 1  Model 2  Model 3  Model 4  

T3n5 

profit 3249.70 9989.05 12476.30 11394.30 

revenue  6644.00 14719.20 17038.50 14719.20 

costs 3394.30 4730.15 4562.18 3324.91 

transportation costs 1445.74 2791.26 2504.49 2791.26 

inventory holding costs at 

customers 
85.79 194.32 206.27 187.88 

inventory holding costs at 

the  supplier 
639.90 521.70 608.15 200.25 

penalty 0.00 0.00 20.40 0.00 

production costs 1222.87 1222.87 1222.87 145.521 

produced amount 579 579 579 67 

shipped amount of 

product 
262 577 473 577 

consumed amount of 

product 
579 579 421 579 

profit per unit shipped 12.40 17.31 26.38 19.75 

 

Table 7.b - Economic criteria (instance T3n10) 

Instance Criterion  Model 1  Model 2  Model 3  Model 4  

T3n10 

profit 8895.82 17371.90 30140.60 22791.70 

revenue  19030.40 28250.40 40945.20 28250.40 

costs 10134.59 10878.52 10804.52 5458.68 

transportation costs 3432.12 4135.40 3542.09 4135.40 

inventory holding costs at 

customers 
288.43 488.68 729.89 488.68 

inventory holding costs at 

the  supplier 
1990.20 1830.60 2108.70 705.00 

penalty 0.00 0.00 0.00 0.00 

production costs 4423.84 4423.84 4423.84 129.60 

produced amount 1905 1905 1905 58 

shipped amount of 

product 
1116 1641 1192 1641 

consumed amount of 

product 
1905 1905 1038 1905 

profit per unit shipped 7.97 10.59 25.29 13.89 
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Table 7.c - Economic criteria (instance T6n10) 

Instance Criterion  Model 1  Model 2  Model 3  Model 4  

T6n10 

profit 27022.20 38023.50 52873.50 45131.30 

revenue  48360.80 60032.00 76495.80 60032.00 

costs 21338.57 22008.48 23622.25 14900.71 

transportation costs 7907.39 8542.68 9118.19 8542.68 

inventory holding costs at 

customers 
746.51 865.73 1340.85 865.73 

inventory holding costs at 

the  supplier 
3837.00 3752.40 4313.63 1009.73 

penalty 0.00 0.00 1.91 0.00 

production costs 8847.67 8847.67 8847.67 4482.57 

produced amount 3810 3810 3810 1961 

shipped amount of 

product 
2939 3544 2862 3544 

consumed amount of 

product 
3810 3810 2860 3810 

profit per unit shipped 9.19 10.73 18.47 12.74 

 

If we look at the numerical results of the three instances we can see that the models 

behave in a similar way. In model 1 we try to minimize costs, therefore, the optimal solution 

is to deliver only the amount of product that is needed to satisfy the demand in the considered 

time horizon or the additional amount that does not increase transportation and inventory 

holding costs. As a consequence, the inventory level at customers at the end of the planning 

horizon is minimized and tends to 0. This feature of the model can be considered as a 

drawback because customers will need to be served right after the considered horizon. Thus, 

the transportation costs will be considerably high in the first period of the next planning 

horizon. In opposite, in model 2 customers have a high inventory level at the end of the 

planning horizon, because the model tries to increase the revenue increasing the shipped 

amount of product. It means that we need to deliver less in the next planning horizon. In this 

case the inventory holding costs at customers and transportation costs increase, despite this 

the profit per unit increases as well. It means that the costs increase less than the revenue. 

So, we can say that we distribute the product in a more profitable way.  

In model 3 for a monopoly the distributed and consumed amount of product is less 

than in other models because the model chooses higher unit sales revenue, which causes 

lower demand. Because of the lower consumption rate the inventory holding costs at the 

supplier and customers increase with the given production rate. However, the total profit and 

the profit per unit shipped increase. In this model we got the penalty for unsatisfied demand. 

It can be because the price limit is lower than the optimal one or because the model chooses 
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the optimal combination of the price and corresponding demand even if we cannot 

completely satisfy the demand in some periods.  

In model 4 for a competitive market the shipped amount of product is the same as in 

model 2. So, the inventory level at customers is high at the end of the planning horizon. 

However, the production costs and inventory holding costs at the supplier are much lower 

because in model 4 we can adjust the production rate and produce no more than necessary. 

Thus, the produced amount is lower and the supplier has zero inventory at the end of the 

planning horizon. It means that the supplier has to produce more in the next planning 

horizon. Though, high inventory level at customers gives the opportunity to the supplier to 

produce the product in the beginning of the next planning horizon. Also, it should be noticed 

that with the production rate chosen in model 4 the unit production costs are lower than the 

one in model 2 with the fixed production rate.   

It is necessary to mention another feature of the models. In the first model with cost 

minimization we must satisfy all the demand. Therefore, if the inventory at the supplier or 

the fleet of vehicles is not enough or the capacity of the vehicles is not sufficient to serve all 

customers, the problem will be infeasible. However, models 2, 3 and 4 with profit 

maximization allow us to find the solution how to use limited available resources in a more 

profitable way.  
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6. Concluding remarks 

In this master’s thesis models for inventory routing problems with profit 

maximization as an objective function taking into account types of markets and 

corresponding ways of profit maximization were formulated. The way of linearization were 

found and the models were coded using AMPL. Finally, the generated instances were solved 

using CPLEX solver in order to test the models.  

The solution for IRP with profit maximization provides decisions of the quantity to 

deliver to each customer and the vehicle routes for each discrete time period in order to 

increase the profit. In addition, the model for monopoly provides the possibility to adjust 

prices finding the optimal combination of price and demand and the model for perfectly 

competitive market allows to choose the optimal production rate with the optimal unit 

production costs that increases the profitability.  

 Developed models increase possibilities and can help companies to make better 

decisions taking into account more planning aspects at the same time. However, the topic 

has a potential for further research. The behavior of the models can be studied using long 

run simulation and improvements can be performed. Also, heuristics for larger sizes of 

instances can be developed.  
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Appendix 1. Ampl code for Model 3 Inventory routing 

problems with profit maximization for monopoly 

param T ;   # number of discrete time periods 

param n ;   # set of customers 

param SetSize ;   # set of routes 

param SW ;   # set of points for W1 

param m >= 0 ;   #number of vehicles  

param c {1..SetSize} >= 0 ;  #cost of the routes 

param a {1..n,1..SetSize} binary ;  # 1 if customer is served on route k 

param U {1..n} >= 0 ;    # maximum inventory level at customers  

param h {1..n} >= 0 ;    # inventory holding cost at customers 

param Q >= 0 ;     # vehicle capacity 

param I0 {1..n} >= 0;    # starting inventory level at customers 

param rs >=0 ;     # production rate of the supplier 

param hs >= 0 ;     # inventory holding cost at the supplier 

param Us = 2 * sum {i in 1..n} U[i] ;  # maximum inventory level at the supplier 

param B0 = sum {i in 1..n} U[i] ;   # starting inventory level at the supplier 

param f {i in 1..n} >= 0  ;   # penalty for unsatisfied demand  

param ca;     #coefficient of rs^2 in a total cost function 

param cb;     #coefficient of rs in a total cost function 

param cd;    #constant in a total cost function 

param M ;     # price limit 

param lP {1..n} = 0 ;   # lower bound for P 

param lZ {1..n} = 0 ;   # lower bound for Z 

param uP {1..n} = M ;   # upper bound for P 

param uZ {i in 1..n} = T * U[i] ;  # upper bound for Z 

param lW1 {i in 1..n} = (1/2) * (lP[i] + lZ[i]) ; # lower bound for W1 

param uW1 {i in 1..n} = (1/2) * (uP[i] + uZ[i]) ; # upper bound for W1 

param lW2 {i in 1..n} = (1/2) * (lP[i] - uZ[i]) ;  # lower bound for W2 

param uW2 {i in 1..n} = (1/2) * (uP[i] - lZ[i]) ; # upper bound for W2 

param stepW1 {i in 1..n} = (uW1[i]-lW1[i])/(SW-1) ;  #the interval between breakpoints for W1 

param stepW2 {i in 1..n} = (uW2[i]-lW2[i])/(SW-1) ; #the interval between breakpoints for W2 

param w1 {1..n,1..SW} ;     # points for W1 

param w2 {1..n,1..SW} ;     # points for W2 

param g1 {i in 1..n,j in 1..SW} = w1[i,j]^2 ;  # w1^2 

param g2 {i in 1..n,j in 1..SW} = w2[i,j]^2 ; # w2^2 

param e ;      # coefficient of P in the demand function 

param d ;      # constant in the demand function  

 

var I {1..n,0..T} >= 0 ;   # inventory level at i at time t (after consumption) 

var Ship {1..n,1..SetSize,1..T} >= 0 ; #quantity shipped to i at time t by vehicle v using route k  

var Y {1..SetSize,1..T} binary ;  #1 if route k is used at time t by vehicle v 

var B {t in 0..T}>=0 ;  #inventory level at the supplier at time t 

var C {1..n,1..T} >= 0 ;   #amount of product consumed at customers 

var P {i in 1..n} >= lP[i], <= uP[i] ;   # unit price for each customer  
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var Z {i in 1..n} >= lZ[i], <= uZ[i] ;    # sum of Xikt on k and t 

var W1 {i in 1..n} >= lW1[i], <= uW1[i];  #auxiliary variables 

var W2 {i in 1..n} >= lW2[i], <= uW2[i] ;  #auxiliary variables 

var lambda1 {1..n,1..SW} >= 0 ;    #lambda for W1 

var lambda2 {1..n,1..SW} >= 0 ;    #lambda for W2 

var Sb {1..n,1..SW-1} binary ;  # 1 if the interval between points of W1 is used, 0 otherwise 

 

maximize Total_profit :  

( sum {i in 1..n, j in 1..SW} g1[i,j] * lambda1[i,j] - sum {i in 1..n, j in 1..SW} g2[i,j] * lambda2[i,j] ) - 

(sum {t in 1..T,k in 1..SetSize} c[k] * Y[k,t] + sum {i in 1..n,t in 1..T} h[i] * I[i,t] +  

sum {t in 1..T} hs * B[t]) –  

sum {i in 1..n,t in 1..T} f[i] * (e * P[i] + d - C[i,t]) - T * (ca * rs^2 + cb * rs + cd);       

 

subject to Capacity {t in 1..T,k in 1..SetSize} : sum {i in 1..n} Ship[i,k,t] <= Q * Y[k,t] ;  

#the quantity delivered by vehicle is not greater than its capacity 

subject to Visit {t in 1..T,i in 1..n,k in 1..SetSize} : Ship[i,k,t] <= Q * a[i,k] * Y[k,t] ;  

#delivery takes place only if a customer is visited with a route by the vehicle 

subject to Vehicles {t in 1..T} : sum {k in 1..SetSize} Y[k,t] <= m ;  

# the number of routes per day is limited by number of vehicles 

 

subject to Initial_inv {i in 1..n} : I[i,0] = I0[i] ; # initial inventory at customers 

subject to Inventory {i in 1..n,t in 1..T}: I[i,t] = I[i,t-1] + sum {k in 1..SetSize} Ship[i,k,t] - C[i,t] ; 

#inventory level for each customer  in each time period 

subject to Inv_capacity {i in 1..n,t in 1..T}:  sum {k in 1..SetSize} Ship[i,k,t] <= U[i] - I[i,t-1] ;   

# inventory capacities at customers 

 

subject to Consumption {i in 1..n,t in 1..T}:  C[i,t] <= e * P[i] + d ;  

# consumed amount of product has to be less than or equal to the consumption rate 

 

subject to Initial_inv_supplier: B[0] = B0 ; #initial inventory at the supplier 

subject to Inventory_supplier {t in 1..T} : B[t] = B[t-1] + rs - sum {i in 1..n,k in 1..SetSize} Ship[i,k,t] ;  

#inventory level at the supplier in each time period 

subject to Inv_capacity_supplier {t in 1..T}: B[t] + rs <= Us ;  #inventory capacity at the supplier 

 

subject to Z_variable {i in 1..n} : Z[i] = sum {k in 1..SetSize, t in 1..T} Ship[i,k,t];  

#introducing a new variable Z which is equal to the sum of shipped amount of product over time 

horizon and routes 

subject to equalW1 { i in 1..n} : sum {j in 1..SW} w1 [i,j] * lambda1[i,j] = W1[i] ;  

# the variable W1 is equal to the sum of breakpoints multiplied by lambda 

subject to One1 {i in 1..n} : sum {j in 1..SW} lambda1[i,j] = 1 ;  

#the sum of lambda must be equal to 1 

subject to equalW2 { i in 1..n}: sum {j in 1..SW} w2 [i,j] * lambda2[i,j] = W2[i] ;   

# the variable W2 is equal to the sum of breakpoints multiplied by lambda 

subject to One2 { i in 1..n}: sum {j in 1..SW} lambda2[i,j] = 1 ;  

#the sum of lambda must be equal to 1 

 

subject to W_1 {i in 1..n} : W1[i] = 0.5 * (P[i] + Z[i]) ; #auxiliary variable W1 

subject to W_2 {i in 1..n} : W2[i] = 0.5 * (P[i] - Z[i]) ; #auxiliary variable W2 
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subject to One3 {i in 1..n} : sum {j in 1..SW-1} Sb[i,j] = 1;  #only one interval can be chosen 

subject to Lambda1_1 {i in 1..n}: lambda1[i,1] <= Sb[i,1] ;  

#lambda[i,1] can be more than 0 only if the first interval is chosen 

subject to Lambda1_s {i in 1..n, j in 2..SW-1}: lambda1[i,j] <= Sb[i,j-1] + Sb[i,j] ; 

#lambda[i,j] can be more than 0 only if one of the intervals connected to the breakpoint is chosen 

subject to Lambda1_SW {i in 1..n}: lambda1[i,SW] <= Sb[i,SW-1] ;  

#lambda [i,SW] can be more than 0 only if the last interval is chosen 

 

### Route generator###  

 

minimize TotCost {b in HHH}: sum {(i,j) in LINKS[b]} cost[i,j] * X[i,j, b]; 

 

subj to Tour {b in HHH,  i in COMBS[b]}:  

  sum {(i,j) in LINKS[b]} X[i,j,b] + sum {(j,i) in LINKS[b]} X[j,i, b] = 2; 

subj to SubtourElim {b in HHH, k in MM[b] }: 

   sum { i in SUB_CYCLE[k], j in COMBS[b] diff SUB_CYCLE[k]: (i,j) in LINKS[b]} X[i,j, b] + 

   sum {i in SUB_CYCLE[k], j in COMBS[b] diff SUB_CYCLE[k]: (j,i) in LINKS[b]} X[j,i, b] >= 2; 

#   These constraints say that the number of arcs in the solution that connect a 

#   node in POW[k] to a node *not* in SUB_CYCLE[k] must be at least 2.   
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Appendix 2. Ampl code for Model 4 Inventory routing 

problems with profit maximization for perfect 

competition 

param T ;    # number of discrete time periods 

param n ;   # set of customers 

param SetSize ;   # set of routes 

param SRs ;   # set of points for w 

param m >= 0 ;   #number of vehicles  

param e ;   # coefficient of P in the demand function 

param d ;   # constant in the demand function  

param c {1..SetSize} >= 0 ;  #cost of routes 

param a {1..n,1..SetSize} binary ; # 1 if customer is served on route k 

param rate {1..n} >= 0 ;    # quantity of product consumed by customer per unit of time 

param U {1..n} >= 0 ;   # maximum inventory level at customers  

param h {1..n} >= 0 ;   # inventory holding cost at customers 

param Q = (1.5 * sum {i in 1..n} rate[i] ) / m ;   # vehicle capacity 

param I0 {i in 1..n} = U[i] - rate[i] ;   # starting inventory level at customers 

param hs >= 0 ;      # inventory holding cost at the supplier 

param Us = 2 * sum {i in 1..n} U[i] ;   # maximum inventory level at the supplier 

param B0 = sum {i in 1..n} U[i] ;    # starting inventory level at the supplier 

param p {i in 1..n} = d/(-e) - rate[i] /(-e)  ;  

# sales revenue per unit of product shipped to a customer 

param f {i in 1..n} = 0.2 * p[i] ;  # penalty for unsatisfied demand   

param ca;   #coefficient of Rs^2 in a total cost function 

param cb;    #coefficient of Rs in a total cost function 

param cd;    #constand in a total cost function 

param uRs {1..T} = sum {i in 1..n} rate[i] ;      # upper bound for Rs 

param lRs {1..T} = 0 ;     # lower bound for Rs 

param step {t in 1..T} = (uRs[t]-lRs[t])/(SRs-1) ;   # the interval between breakpoints 

param w {1..T,1..SRs} ;        # points for Rs 

param g {t in 1..T,j in 1..SRs} = ca * w[t,j]^2;   # ca * w^2 

 

var I {1..n,0..T} >= 0 ;   # inventory level at i at time t (after consumption) 

var Ship {1..n,1..SetSize,1..T} >= 0 ; #quantity shipped to i at time t by vehicle v using route k  

var Y {1..SetSize,1..T} binary ;  #1 if route k is used at time t by vehicle v 

var B {t in 0..T}>=0 ;   #inventory level at the supplier at time t 

var C {1..n,1..T} >= 0 ;   #amount of product consumed at customers 

var Rs {t in 1..T} >= lRs[t], <= uRs[t];   #production rate 

var lambda {1..T,1..SRs} >=0 ;      #lambda for Rs 

 

maximize Total_profit :  

sum {i in 1..n,k in 1..SetSize,t in 1..T} p[i] * Ship[i,k,t] - (sum {t in 1..T,k in 1..SetSize} c[k] * Y[k,t] + 

sum {i in 1..n,t in 1..T} h[i] * I[i,t] + sum {t in 1..T} hs * B[t]) -  

sum {i in 1..n,t in 1..T} f[i] * (rate[i] - C[i,t]) -  
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( sum {t in 1..T,j in 1..SRs}  g[t,j] * lambda[t,j] + sum {t in 1..T} (cb * Rs[t] + cd)) ; 

 

subject to Capacity {t in 1..T,k in 1..SetSize} : sum {i in 1..n} Ship[i,k,t] <= Q * Y[k,t] ;  

#the quantity delivered by vehicle is not greater than its capacity 

subject to Visit {t in 1..T,i in 1..n,k in 1..SetSize} : Ship[i,k,t] <= Q * a[i,k] * Y[k,t] ;  

#delivery takes place only if a customer is visited with a route by the vehicle 

subject to Vehicles {t in 1..T} : sum {k in 1..SetSize} Y[k,t] <= m ;  

# the number of routes per day is limited by number of vehicles 

 

subject to Initial_inv {i in 1..n} : I[i,0] = I0[i] ; # initial inventory at customers 

subject to Inventory {i in 1..n,t in 1..T}: I[i,t] = I[i,t-1] + sum {k in 1..SetSize} Ship[i,k,t] - C[i,t] ; 

#inventory level for each customer  in each time period 

subject to Inv_capacity {i in 1..n,t in 1..T}:  sum {k in 1..SetSize} Ship[i,k,t] <= U[i] - I[i,t-1] ;   

# inventory capacities at customers 

 

subject to Consumption {i in 1..n,t in 1..T}:  C[i,t] <= rate[i] ;  

# consumed amount of product has to be less than or equal to the consumption rate 

 

subject to Initial_inv_supplier: B[0] = B0 ; #initial inventory at the supplier 

subject to Inventory_supplier {t in 1..T} : B[t] = B[t-1] + Rs[t] - sum {i in 1..n,k in 1..SetSize} 

Ship[i,k,t] ;  #inventory level at the supplier in each time period 

subject to Inv_capacity_supplier {t in 1..T}: B[t-1] + Rs[t] <= Us ;  #inventory capacity at the 

supplier 

 

subject to equalRs {t in 1..T} : sum {j in 1..SRs} w [t,j] * lambda[t,j] = Rs[t] ;   

#variable Rs is equal to the sum of breakpoints multiplied by lambda 

subject to One {t in 1..T} : sum {j in 1..SRs} lambda[t,j] = 1 ; #the sum of lambda must be equal to 1 

 

### Route generator### 

 

minimize TotCost {b in HHH}: sum {(i,j) in LINKS[b]} cost[i,j] * X[i,j, b]; 

 

subj to Tour {b in HHH,  i in COMBS[b]}:  

  sum {(i,j) in LINKS[b]} X[i,j,b] + sum {(j,i) in LINKS[b]} X[j,i, b] = 2; 

subj to SubtourElim {b in HHH, k in MM[b] }: 

   sum { i in SUB_CYCLE[k], j in COMBS[b] diff SUB_CYCLE[k]: (i,j) in LINKS[b]} X[i,j, b] + 

   sum {i in SUB_CYCLE[k], j in COMBS[b] diff SUB_CYCLE[k]: (j,i) in LINKS[b]} X[j,i, b] >= 2; 

#   These constraints say that the number of arcs in the solution that connect a 

#   node in POW[k] to a node *not* in SUB_CYCLE[k] must be at least 2.   

 

 

 

 

 

 


