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Summary 
 
This thesis focuses on analyzing and applying new techniques for the Satisfiability Data 

Mining Algorithm (Glover 2008), a method for classification of problems with binary 

attributes, and describes possible techniques that can be added to the SAT-DM algorithm to 

improve the results of classification. In particular, this thesis shows how a strategic 

oscillation approach, which was created to solve optimization problems, can be applied to 

the SAT-DM method, and shows how using Pareto layers of solutions can influence the 

accuracy of classification. In addition, this thesis describes how the technique of 

classification with Naïve Bayes classifiers can be used with the SAT-DM algorithm. The 

ideas presented are implemented and validated with real-world data sets. The results of this 

research encourage further research into the SAT-DM algorithm. 
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1. Introduction	
 
1.1 Background	of	the	study	and	research	problem	

Classification is one of the most broadly applied and important techniques for exploring data, with 

a wide array of different applications. The core goal of classification is to determine which set of 

categories/classes a new object belongs to, based on observations whose class is already known. 

Generally, it is the process of predicting the class of given object. The definition of classification 

came from Machine Learning, a field of study where the objective is to develop techniques that 

allow computers to learn from data and make decisions without human assistance. 

The volume of data is practically exploding by the year. Therefore, there is a growing need for 

exploring data. A large proportion of the data is unstructured and classification is a vital concern 

nowadays. Different methods have already been proposed to classify elements. Linear classifiers, 

Naïve Bayes and logistic regression classifiers, tree-based classifiers, neutral networks, support 

vector machines, and many other different classification algorithms have been developed (Wu et 

al. 2008). However, it is difficult or even not possible to say which one is better than any other. 

Methods have different classification accuracy and CPU (process) time requirements. According 

to Dogan and Tanrikulu (2013) it depends on the nature of the available data, the type of problems, 

the implementation techniques, and a wide variety of other factors. 

 

In addition to the existing methods, more sophisticated techniques have to be developed to work 

with classification. As mentioned above, the quality of classification and characteristics of the 

algorithm depend on data types. Dougherty, Kohavi and Sahami (1995) found that a separate 

discretization procedure could improve the performance of classifiers. This led to the idea of 

creating a classification algorithm for binary data according to laws of Boolean algebra. The first 

application of this idea was by Peter L. Hammer in his “logical analysis of data” (LAD) approach 

(Alexe et al. 2007). This approach represents an important body of work in applying logic to data 

mining, and provides a reference for solving classical satisfiability problems in Boolean algebra. 
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Subsequently, Glover (2008) introduced a new heuristic method for binary data called 

“Satisfiability Data Mining” (SAT-DM). Despite its similarity with the LAD approach, it adopts a 

different perspective, includes advanced guidelines, and is very attractive for investigation. 

 

Preliminary work from the simplest implementation of the SAT-DM method showed compelling 

outcomes and motivates pursuing the SAT-DM framework further. (Gardeux, Hvattum and Glover 

2014) 

 

Therefore, the purpose of this study is to implement new features in the existing SAT-DM method, 

which may lead to attaining better results than the original classification algorithm. Specifically, 

this master thesis presents how techniques from solving optimization problems may be applied to 

SAT-DM classification and how it is possible to involve classification guidelines from the widely 

used Naïve Bayes classifier into the SAT-DM classifier. 

 

1.2 Significance	of	the	study	

Classification has a wide range of applications in different spheres, e.g., sentiment analysis, speech 

and handwriting recognition, medical diagnosis, document classification, risk assessment, image 

classification and biometric identification. Classifiers can diagnose patients with a particular 

disease, classify chemical compounds by their expected behaviors, classify drugs by their 

efficiency in treatment of certain conditions, determine membership of biological organisms into 

groups, or classify investments by expected profitability (Schlkopf and Smola 2002). 

Moreover, this field of study could be applied in logistics sphere, e.g., classification of transport 

types, materials in inventory stocks, logistics costs, or types of roads. Retailers, manufacturers, 

and distributors can apply it to managing the huge number of items they must track. The 

classification task is quite ubiquitous and necessary for a lot of industries. 

1.3 Structure	of	the	thesis	

Chapter 2. Background 

Provides insight into the most important terms used and the theoretical backdrop applied 

throughout the thesis.  
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Chapter 3. Research questions  

This chapter provides an overview of the research questions. 

Chapter 4. Experimental setup 

Outlines the procedure for testing the research questions.  

Chapter 5. New method 

Outlines our contribution to this research field, providing pseudo code. 

 

Chapter 6. Computational experiments 

Presents the instances of data, the method of evaluation and the results of validation. 

Chapter 7. Conclusion and future research 

The concluding points of the research are presented. This chapter suggests some of the future work 

that can proceed from this thesis, which could be useful for further research in this field. 
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2. Background	
This section outlines all theoretical knowledge that is necessary for understanding the research 

field. It consists of five subsections.  

 

The first subsection covers the concept of classification in general terms, giving a small example 

of classification, and explaining basic terminology.  

 

The second subsection presents a preprocessing technique for classification that transforms data 

from different types to binary. This technique will be applied to datasets intended for classification. 

 

The third subsection presents which operations can be performed on Boolean transformed data. It 

outlines the basic theory of Boolean algebra and standard notation, which are needed in the next 

subsection. 

 

The fourth subsection discusses the classification algorithm called Satisfiability Data Mining 

(SAT-DM, Glover 2008). This algorithm was the inspiration for this thesis and the new concepts 

developed here. This section also explains the general logic of the classifier that was presented in 

the original source (Glover 2008), as well as a detailed description of all necessary information for 

its implementation. 

 

The fifth subsection presents a widely used and easy to build Naïve Bayes classifier, the principles 

of which will be used in this research.   

 

2.1	Basic	definition	of	a	classification	problem	

Consider the problem of classification in a simple example. Suppose there is a database of clients 

of a travel agency with information on their ages and monthly incomes (Table 1). There are two 

types of travel tours: a more expensive, comfortable tour and a cheaper tour for students.  

The travel agency wants to send advertising to clients based on which tour they can afford. 

Accordingly, two classes of customers are defined: Class 1 and Class 2.  
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Table 1. Travel agency customer data 

Customer Code Age Income Class 

1 18 25 1 

2 22 100 1 

3 30 70 1 

4 23 15 2 

5 20 46 2 

6 21 78 1 

7 42 92 2 

8 32 53 2 

 

For clarity, the database is presented in a two-dimensional graph (axes: age and income), in the 

form of a set of objects belonging to Class 1 (orange) and Class 2 (blue). The classification task is 

to determine which class a new client belongs to, indicated in Figure 1 by a black point. 

 

 
Figure 1. Objects from Table 1 in two dimensions 

 
The collection of records/objects that are given in Table 1 are the training set. Each of these 

records—each separate client—is assigned the given class that characterize it. 

A training set represents a finite set of precedents that are known: the observation and class. The 

training set in this case is shown in Table 1. A validation set is a set of records with new clients 

for which class is to be determined, which in this case is the black point shown in Figure 1. A 
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characteristic or property of a client (such as income or age) is called an attribute. Characteristics 

have types such as binary, categorical, or numerical.  

 

Classification algorithms can be divided into two types: supervised and unsupervised.   

Supervised classification (classification with a teacher) on the basis of a training set is required to 

predict the class of a new record based on the other attributes of this record. In unsupervised 

classification, there is no training data set and the classes of observations (outcomes) are unknown. 

A good example of solving an unsupervised classification problem is a clustering method, where 

classes have to be recognized/created in the process (Guido and Müller 2016). 

 

The problem of this thesis is supervised classification with binary attributes. 

	

2.2	Binarization	procedure	

The SAT-DM classification method examined by this thesis only allows for classifying objects 

with binary attributes, however there is a procedure for extending it with to different data types. 

 

Binarization procedure transforms data from different types to binary. It is a preprocessing 

technique for classification that requires Boolean input data. The procedure is inspired by the 

iterative discriminant elimination (IDEAL) algorithm. It is a heuristic method that was presented 

at a conference by Moreira, Hertz and Mayoraz (1999). The method has significantly lower 

running times with the comparable performance overall. The IDEAL algorithm provides the notion 

discriminant—the divider that splits the whole attribute space into two subspaces, separating 

observations from different classes. The IDEAL algorithm can be divided into three steps. 

 

In the first step, separate discriminants are generated for each dimension. Based to the dataset of 

clients of a travel agency (Table 1), Figure 2 contains all generated discriminants for both 

dimensions: age (x-axis) and income (y-axis). 
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Figure 2. Binarization procedure, step 1 

In general, the approach to creating discriminants differs by data types: 

è Real data: generate a discriminant between each pair of values from different classes. 

è Integer/binary data: generate a discriminant for each value, except all objects with the same 

or greater values of the same class. 

è Categorical data: generate a discriminant for each category except one category (selected 

arbitrarily). 

è Missing data: generally, as above, but one more discriminant added. 

 

In the second step, the set is reduced using the discriminant elimination procedure. Discriminants 

are removed iteratively, as long as a consistency level (minimum number of discriminants, which 

separates any two objects from different classes) is maintained (Figure 3). The observations of 

each class must be in a separate section and not include any records from another section. 

 

0

20

40

60

80

100

120

15 20 25 30 35 40 45



	 8	

 
Figure 3. Binarization procedure: step 2 

 
Finally, in the third step, the input data set is binarized using the obtained solution. At the end of 

the second step, four discriminants are left: red (R), green (G), blue (B) and yellow (Y) lines. 

For each discriminant on the x axis, if a record lies on the right side of the discriminant line, the 

value derived is 1, otherwise it is 0. For a discriminant on the y axis, records above the line are 

derived as 1, otherwise as 0. 

 

The last column of Table 2 contains binarized values for the dataset in Table 1. 

 
Table 2. Binarization procedure: step 3 

Customer Code Age Income RGBY 

1 18 25 0001 

2 22 100 1101 

3 30 70 1101 

4 23 15 1100 

5 20 46 1001 

6 21 78 1101 

7 42 92 1111 

8 32 53 1111 
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IDEAL is a destructive algorithm, which generates discriminants and then removes them in the 

course of execution. It is also possible to assign a weight to each discriminant, which allows one 

to manage which discriminant will be the next candidate (the one with the lowest weight) in the 

elimination process.  

 

2.3	Basic	theory	of	Boolean	algebra			

Using this binarization procedure, all attributes of a dataset can be transformed into binary values. 

This allows for building classification guidelines using laws of Boolean algebra, the branch 

of algebra in which the values of variables are binary. 

 

This section presents further definitions from the basic theory of Boolean algebra that are directly 

used in the SAT-DM algorithm. 

 

A Boolean variable is a variable that can accept a value from the set of Boolean values B = {0,1}. 

The Boolean value 0 can also be denoted by FALSE, and the Boolean value 1 as TRUE. 

 

A literal is a Boolean variable or the negation of such a variable. Negation is a logical complement 

that is interpreted as being 1 when a variable is 0, and 0 when it is 1. The symbol ¬ represents the 

negation operator (Table 3). 

 
Table 3. Truth table of the negation operator 

 

 
 

 

A clause is a disjunction of literals. It is a logical operator, which is interpreted as TRUE if at 

least one of the literals is TRUE, and FALSE otherwise. The symbol � represents the 

disjunction operator (Table 4).  

 

" ¬" 

0 1 

1 0 
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A Boolean expression is an expression that produces a Boolean value. Any Boolean expression can 

be presented in conjunctive normal form (CNF). A Boolean expression is in CNF if it is a 

conjunction of clauses. A conjunction is a logical operator that is interpreted as TRUE only if all 

of its clauses are TRUE, and FALSE otherwise. The symbol � represents the conjunction 

operator (Table 4).  

 
Table 4. Truth table of disjunction and conjunction operators 

" % " ∨ % 				" ∧ % 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 1 1 

 

For example, the following formulas that use the Boolean variables ), *, + and , are in CNF: 

• ) ∨ ¬	* 

• () ∨ 	*) 	∧ (+ ∨ ¬	,) 

• () ∨ ¬	*) 	∧ (+ ∨ 	,	 ∨ ¬*) ∧ * 

 

Having presented the theoretical terms, it is helpful to look at the important problem of Boolean 

algebra, which is at the core of the SAT-DM classifier. 

 

There are a lot of practical situations in which it is necessary to satisfy several potentially 

conflicting constraints. For example, in daily life when some human tries to make a decision 

consistent with different rules, or when a machine needs to confirm that a hardware/software 

system works correctly with its overall behavioral constraints. All such situations have variables 

whose values have to be determined, and constraints that these variables must satisfy (Malik and 

Zhang 2009). This leads to the definition of Boolean Satisfiability Problem (SAT), one of the 

essential problems in computer science, artificial intelligence, bioinformatics, cryptography, etc. 

A wide range of practical applications are using SAT, from checking of pedigree consistency to 

software testing (Marques-Silva 2008). The success of existing SAT solvers motivates the 

development of more sufficient solvers and extend usage in applications. 
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In theoretical terms, a formula/Boolean expression /("0, "2, … "4) that depends on Boolean 

variables is satisfiable if it is possible to find a solution "∗, such that / "∗ = ,+78. SAT checks 

whether the given formula is satisfiable. 

 

Interestingly, all problems can be classified based on time or space complexity. The Boolean 

satisfiability problem is first proven to be a NP-complete problem (Cook 1971). NP-complete 

problems are those with a “Yes”/ “No” answer from the NP class, to which any other task from 

the class can be reduced in polynomial time. A NP class is the set of problems of related resource-

based complexity. 

 

2.4	Satisfiability	data	mining	algorithm	

Having reviewed all theoretical knowledge, it is time to introduce the classification algorithm that 

is the subject of this research. 

 

Satisfiability Data Mining (SAT-DM) is a new method for binary data classification (Glover 

2008). The method is based on generating a group of logical clauses in binary variables for each 

class. A new record with unknown membership is classified according to comparing the proportion 

of the clauses it satisfies for that class to the proportion it satisfies for other classes.  

 

The problem addressed is as follows. Assume :;, <	 ∈ >	is a set of classes, consists of records of 

class <	in binary representation "? = ("0? , "2? …	"4? ),	@	 ∈ :;, A	 ∈ B	(set of binary attributes). The 

mechanism is to build clauses for each class, :;, <	 ∈ >,	and, based on number of satisfied clauses, 

classify the vector.  

 

Suppose that :C	is a set of objects of the same class for which representative inequalities are 

created, and :D	describes all objects of supplementary classes. The purpose of the SAT-DM 

method is to generate clauses that are satisfied by the elements of :C	and at the same time violated 

by elements of :D.  
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2.4.1	Clauses	represented	as	inequalities	

The SAT-DM method (Glover 2008) begins from a compact representation of a clause (Section 

2.4)—an inequality. 

Let B0be a subset of B associated with unnegated variables ("E	= 1) and BF	- subset of B associated 

with negated variables ("E = 1). A clause states: 

 

"EE	∈	GH 	∨ 	 "EE	∈	GI 						(2.1) 

 

As mentioned above, the SAT-DM classification method determines the number of clauses it 

satisfies for a new record. However, it is inconvenient to work with clauses, so Glover suggests 

another representation of them. 

Clause can be written as linear 0-1 inequality, where negated variables "E are seen as (1 − "E).		In 

addition, by means of analogy between the logical operator ∨ and the arithmetic operator +, a 

condition of satisfying the logical clause "0 ∨ ¬"2 can be written as a linear inequality: "0 +

1 − "2 ≥ 1	(Hooker 1992). 

 

In terms of inequalities, the aim of the SAT-DM method is to identify instances (2.2) that are 

satisfied by all (or at least a valuable part) of the elements  "?, @	 ∈ :C. 

 

 ("E: N	 ∈ 	B0) +	 	 (1 − "E): N	 ∈ 	BF ≥ 1					(2.2) 

 

To satisfy an inequality, a record needs to have at least one attribute either from B0 with the 

value of 1 or from BF with the value of 0. 

As noted earlier, the SAT-DM method attempts to find inequalities that are not only satisfied by 

records of :C, but are also violated by records of :D. Accordingly, records of :D	 have to be 

satisfied by:  

 

("E: N	 ∈ 	B0) +	 	 (1 − "E): N	 ∈ 	BF ≤ 0					 (2.3) 

 

Summarized, the SAT-DM algorithm consists of the following steps: 
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1. Generate a set of inequalities for each class :;, <	 ∈ >. The inequalities for :; 

have the form of (2.2 - 2.3) with statement  :C = :;,	 :D = complement of :;. 

2. The set of inequalities for :;	is composed by building solutions for an associated SAT problem. 

Each solution is an inequality that becomes as a separator for records from :; class and other 

classes. Also, each inequality consists of combination of properties of the records in :;.  

3. A new record is classified according to the proportion it satisfies for each class :;, <	 ∈ >. 

2.4.2	Quasi	Covering/Anti-Covering	System	

With the purpose of simultaneously satisfying a large number of inequalities by records from :C 

(2.2) and violating by records from :D (2.3) with using a small number of variables, Glover (2008) 

presents the Quasi Covering/Anti-Covering (QC/AC) system, which is shown below. In that 

system, inequalities are satisfied by elements of :C	(the covering problem) and are violated by the 

elements from :D (the anti-covering problem). Variables %0E, %FE, N	 ∈ B are binary variables, 

related to unnegated and negated attributes (respectively), and determined if an adjoining attribute 

is valuable in inequality. 

 

P@A@Q@R8	 ((%0E + %FE) ∶ N	 ∈ 	B) 

Subject to 

"E
?	%0E: N	TB0 +	 "E

?	%FE: N	TBF ≥ 1, @ ∈ :C	      (2.4) 

"E
?	%0E: N	TB0 +	 "E	

? 	%FE: N	TBF ≤ 0, @ ∈ :D      (2.5) 

 	%0E + %FE ≤ 1, N	 ∈ B         (2.6) 

 %0E, %FE ∈ 0,1 , N	 ∈ B         (2.7) 

 

This model is supposed to find any solution that conforms to these constraints (2.4 - 2.7) as a 

strongly satisfying solution. Within the context of SAT-DM, this system demonstrates that this 

asymmetric form is beneficial in separating :;, <	 ∈ > from other classes.  
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However, the task of finding a group of inequalities that covers all of records of :C and at the same 

time does not cover records of :D (2.4-2.7) is most likely to be unfeasible for real data. This means 

it’s necessary to specify a rule for creating inequalities—a method that allows the finding of 

inequalities in a simplified form that maximizes the coverage of :C and minimizes the coverage 

of :D. 

2.4.3	Surrogate	constraint		

The Quasi Covering/Anti-Covering system raises the question: how to produce inequalities that 

include as many records as possible of :C and exclude as many records as possible of :D. 

Consequently, it can be interpreted as a covering problem.  

 

To deal with covering problems, Glover (1968) proposes the use “surrogate constraint” as a 

heuristic method. In general, a surrogate constraint is an inequality that is designed for taking 

useful information that cannot be taken from parent constraint individually. It is generated by 

summarizing the right- and left-hand side inequalities it consists of. A surrogate constraint yields 

stronger relaxations for its components. This method is useful in a lot of optimization models. 

 

This heuristic method seems very useful for creating inequalities, and is applied in the SAT-DM 

method. For implementation, two surrogate constraints have to be generated (for :C	and	:D) (2.4 

- 2.5). For further explanation, assume that surrogate constraint coefficients are presented in the 

vectors XY, XZ:  

 XY =<[0, [2 …	[4	>, A	 ∈ B       (2.8) 

where [E = 	 ("E
? ∶ @	 ∈ 	:C	)	 , N = 1. . B 

XZ =	<\0, \2 …	\4	>, A	 ∈ B       (2.9) 

where \E = 	 ("E
? ∶ @	 ∈ 	:D	)	 , N = 1. . B 

2.4.4	Greedy	construction	

Having described these general concepts of the SAT-DM method and the surrogate constraint 

approach, it is time to present the process of generating an inequality. 
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An inequality is built with a “constructive heuristic”. In general terms, this is defined as:  

• starting from scratch, values are iteratively assigned to the variables of a mathematical 

formulation of the problem 

• the procedure is repeated until a complete solution is obtained 

 

A “construction algorithm" is formed by “greedy” algorithms, a paradigm in which locally optimal 

choices are made at each stage. In the context of the SAT-DM method, this heuristic method looks 

like this: the specific parameter R stores the amount/proportion of records :C sufficient to cover 

this class, and defines whether the process of building the inequality is complete. At each step, an 

attribute is added to the inequality, which has the best value for an inequality.  

 

The simplest way of selecting the best candidate is to find the maximum difference between 

surrogate constraint coefficients (2.8) for unnegated literals (attributes which are equal to 1) : 

\8X,	][A^@^[,8 = [+_Q[" [E −	\E , N = 1. . B   (2.10) 

The asymmetric way of selecting the best candidate for negated literals (attributes which are equal 

to 0), based on the number of records left uncovered, is: 

\8X,	][A^@^[,8 = [+_Q["( :C` −	[E − :D
` − \E ), N = 1. . B   (2.11), 

 

where :C` −	number of uncovered records from :C by generated inequality,  

 :D
` −	number of uncovered records from :D by generated inequality. 

 

Referring to the example of a classification task in Section 2.1 and its binarization in Table 5, let 

us build a couple of inequalities to see the general idea.  

 
Table 5. Example of training dataset for building inequalities 

Customer Code Binary data Class 

1 0001 1 

2 1101 1 

3 1101 1 

4 1100 2 

5 1001 2 
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6 1101 1 

7 1111 2 

8 1111 2 

 

1. Generate first inequality 

XY =<3, 3, 0, 4>  according to (2.8) 

XZ =<4, 3, 2, 3> according to (2.9) 

          Best candidate from unnegated literals  = argmax(-1,0,-2,1) (from 2.10) 

          Best candidate from negated literals = argmax(1,0,2,-1) (from 2.11) 

It seems that the best option is to add a third negated literal to the inequality (2). It covers all 

records from :C, so the process of generating inequalities can stop. 

 

2. Generate second inequality 

The next candidate is the fourth unnegated literal (1). As in the previous example, it covers all 

records from :C, so the process of generating inequalities can stop. 

 

Having presented these simple examples, a process of generating inequality in general terms can 

be addressed. 

 

To know which attribute is added and which is the next candidate to add, the next sets are defined. 

BF stands for the value of the original B,  :CF, 	:D
F	 denotes the original |:C|, |:D|	[A^		XYF, XZF 

denotes the original form of XY,  XZ.	 The algorithm starts with B` = BF, :C` = :CF, :D
` =

		:D
F	, XY` = XYF, XZ

` = 	 XZ
F.		In each iteration, the best candidate is added to the inequality by removing 

it from the current B and updating :C` , :D` . Subsequently, the current B	includes the indexes of the 

not-selected attributes, and :C` , :D`  includes the numbers of records that are not covered by the 

current generated inequality. The surrogate sum coefficients XY`  and XZ`  store (2.8-2.9) structures 

and can be determined by the number of uncovered vectors for the current iteration. The simplest 

rule for selecting the best candidate that was described in (2.10-2.11), but a more sophisticated 

guideline could be selected. Sets BF and B0	are created to distinguish non-negated or negated 

attributes, which are added to the inequality and are empty in the beginning. The surrogate sum 
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rule uses the index e∗ 	∈ 0,1 	and the index N∗ ∈ B. The construction proceeds until no more 

candidates are left or a sufficient number of records R is covered. fC =<]C0, ]C2 …	]C4	>, A	 ∈

|:C| and fD =<]D0, ]D2 …	]D4	>, A	 ∈ |:D| store the number of records the current generated 

inequality covers. 

 
Figure 4. Generating an inequality 

	

2.4.5	Destruction	

It is possible to use more intelligent guidance to build inequalities. The idea is to try to modify an 

existing solution by making small changes to the solution structure as more high quality 

inequalities could be found. In practice for the SAT-DM method, a destruction phase for building 

inequality processes could be added. It is applied by successively removing selected attributes 

from generated inequalities. 

  

When in construction, the aim is to find the attribute that covers a maximum number of records 

from :C and a minimum number of records from :D; for the destructive phase, it is the opposite. 

The destructive process is performed until the defined threshold is achieved, i.e., the minimum 

amount/proportion of records :C required by the inequality is covered.  
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Additionally, to reduce the number of inequalities or simplify the logic, the inequalities can be 

reduced to a prime implicant. This can be covered by a general inequality, in the sense that the 

generated subset of prime implicants is also satisfied by the same records. 

 

Example: suppose A = (1100) and B = (0101) are the two records and two inequalities were 

generated, such as  ]0 = "0 + "2 ≥ 1	[A^	]2 = 	"0 + "g ≥ 1,	where each of them satisfies both of 

the records. So, ]0 could be reduced to ]0= "2. 

 

2.4.6	Creating	multiple	inequalities	and	summarizing	the	SAT-DM	method	

To avoid creating the same inequality several times and, thereby introducing a combination of 

attributes (literals) not previously checked, the SAT-DM method can be extended by introducing 

a simple memory structure to oversee the process. It general terms, the next inequality is started 

with a combination of two literals that have not been previously combined.  

 

Summary of the steps of the SAT-DM method: 

1. Find the attribute that maximizes the coverage of :C and also minimizes the coverage of :D 

using surrogate constraints rules. 

2. Remove the records satisfied by the generated inequality and repeat the procedure, until no more 

records are left to be covered. 

3. Generate the inequality corresponding to the selected attributes from step 1. 

4. Cut/reduce the inequality to its prime implicant, if possible. 

5. Add the current inequality into the set of inequalities. 

5. Cut the inequality through a destruction phase, if possible, and add the inequality into the set of 

inequalities. 

6. Repeat step 1 by excluding the first inequality (to avoid generating similar inequalities). 

6.  Finish the generation of inequalities when all records have been covered or when the number 

of inequalities reaches some reasonable threshold. 

7. To classify, compare the proportion of satisfied or violated clauses and make a decision about 

the class for each record (Glover 2008). 

The steps involving the destruction or reduction to prime implicants are optional. 
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2.5	Naïve	Bayes	classifier		

The Naïve Bayes classifier an approach to classification. It is simple in implementation and fast in 

computation, which is useful for large data sets. Despite the simplicity, in many cases the classifier 

provides reasonable accuracy and can compete with more sophisticated algorithms.  Therefore, it 

is attractive to investigate this technique and connect it with the SAT-DM method. 

  

Referring back to the classification example dataset in Table 1, which consists of clients of a travel 

agency (Section 2.1), each record contains attributes of a client: income and age. The Naïve Bayes 

classifier can used to classify objects based on such attributes. The classifier is called “naïve” 

because it assumes that the existence of a particular attribute in a given class is unrelated to the 

existence of any other attribute. In addition, all attributes have the same influence on the outcome 

of the classification. For example, income and age values have equal importance and are considered 

as independent. A new client is placed to the class with Maximum Posterior Probability: 

<h = [+_Q[";∈i	j(<|") (2.7), 

where > is the set of classes and " is the object of classification. 

 

To define the Maximum Posterior Probability, the classifier is based on Naïve Bayes theorem of 

probability. The theorem is stated mathematically in the formulas 2.8- 2.9 and allows one to find 

the probability of event c happening, given that event d has occurred. Event d is the hypothesis and 

c is the evidence. 

j ] ^ =
j(^|])×j(])

j(^)
			(2.8) 

        Posterior = m?;nm?oppq∗rs?ps
nt?qn4un

 (2.9) 

• j(]) is the prior probability of ]. It can be directly estimated from the training set, where 

representativeness is the relative frequency of objects belonging to the class c. 

• j ] ^  is the conditional probability of d given c, the posterior probability. 

• j(^|]) is the conditional probability, the likelihood of ] given ^. 

• j ^ 	is the probability of d. 
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The theorem is used for classification in the following way: with the  notation given in Section 

2.3, where < ∈ >,>	is a set of classes, a classified record is in binary representation " =

("0, "2 …	"4),	A	 ∈ B	is a set of binary attributes (define as attributes in Naïve Bayes), the formula 

derived from 2.8 is as follows: 

j < "0"2. . "4 =
j "0"2. . "4 < 	j(<)

j("0"2. . "4)
																				(2.10) 

Classifiers have a goal of defining Maximum Posterior Probability relating to (2.10), 

< = [+_Q[";∈ij < "0"2. . "4 .		As all attributes are independent, it is possible to rewrite the 

numerator of 2.10 in the following way: 

 

j "0"2. . "4 < 	j < 	= 	j "0 < j "2 <"0 . . "4 <"0"2. . "4 	j <

= 	j "0 < j "2 < . . j "4 < j < = j "4 <
?∈0..4

	j < 						(2.11) 

 

The denominator does not change for all entries in the dataset. Therefore, the class of an object is 

determined (Cichosz 2015) by: 

 

< = [+_Q[";∈ij < "0"2. . "4 = 	[+_Q[";∈i j "? <
?∈0..;

	j < 					(2.12) 

 

Interestingly, if one of the probabilities is equal to 0 (2.12), the result will be distorted. The solution 

is to substitute probabilities	j "? < , @ ∈ 1. . < by log-probabilities using logarithmic properties: 

 

< = [+_Q[";∈i j "? < 	j < =
?∈0..;

	[+_Q[";∈i	ln	( j "? < ∗ j < )
?∈0..4

= [+_Q[";∈i ln j "? <
?∈0..4

+ ln j <

= 	[+_Q[";∈i ln	j "? <
?∈0..;

+ ln j < 																													(2.13) 
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3.	Research	method	and	questions	
 

The primary method for this research is empirical validation based on computational experiments. 

The purpose of this research is to find a means of improving the SAT-DM method. 

The following research questions need to be answered: 

1. Is it possible to build inequalities (clauses) in a more sophisticated way? 

The original implementation of the method (Glover 2008) showed that the quality of generated  

inequalities, which are the basis of the classification method, need to be improved. This may be 

done by reducing the similarity of inequalities, increasing the number of generated inequalities, 

and applying some advanced techniques. 

2. Is it effective to select inequalities for use in classification based on a Pareto principle? 

Previously, classification was preformed using all generated inequalities. Classification might also 

be performed using a subset of inequalities, which have been selected based on an additional 

characteristic. The concept of a Pareto layer, which will be explained in a future section, is a good 

alternative for selecting a final set of inequalities. 

 

3. Is it reasonable to combine the SAT-DM method with existing, broadly used classifiers? 

A lot of different classifiers are available these days. After comparing the SAT-DM classification 

method with existing ones, there may be a case for combining approaches, classifying objects not 

just by comparing the proportion of clauses they satisfy/violate for each class, but by involving the 

guidance of a Naïve Bayes classifier. 
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	4.	Experimental	setup	
To validate the performance and reliability of results obtained from a classification model, special 

evaluation methods exist: holdout validation, k-fold cross-validation, leave-one-out cross 

validation, and repeated random sub-sampling validation. Any of these can be used to measure the 

accuracy of the results of classification, but for some data sets one of the evaluation methods will 

be preferable. 

 

Typically, the k-fold validation technique is applied. It is a method of evaluating an analytical 

model and its behavior using independent data. In the model, the available data is divided into k 

parts. Then, the model is trained using k − 1 parts of the data, and the rest of the data is used for 

validation. This procedure is repeated k times, where each time processes a different part. As a 

result, each of the k parts of data is used for validation. Figure 5 presents an example of data 

splitting in 3-fold cross-validation. 

 

 
Figure 5. Data splitting in 3-fold cross validation 

 

In the end, an assessment of the effectiveness of the selected model with the most uniform use of 

available data is generated. A problem with using k-fold validation is that the k repetitions are not 

independent of one another, and data that is used for training is also used for validation, making 

the estimator biased (López, Fernández and Herrera 2014). Performing multiple k-fold cross-

validations may lower this bias and give a statistically better estimate. This could be done by 

mixing up observations in data sets and generating independent data sets. When repeating k-fold 

cross-validation, the average result of all of the k-fold cross-validations is taken. 
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For some datasets, a specific k has to be chosen, necessitates another evaluation method: leave-

one-out cross-validation is a case of k-fold cross-validation in which the number of folds is equal 

to the number of instances in the dataset. If it is a dataset with n observations, then the training set 

contains n-1 observations and the validation set contains just 1 observation. This process is repeated 

n times for each data point. 
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5.	New	method	
This section provides techniques that answer the research questions. The first subsection describes 

the strategic oscillation approach and how it can be used in building inequalities. The second 

subsection presents a way of selecting high quality inequalities of a general set of inequalities. The 

third subsection outlines a method of classification involving the guidance of the Naïve Bayes 

classifier. 

 

5.1	SAT-DM	with	strategic	oscillation	approach		

Strategic oscillation (Glover and Kochenberger 1996) was introduced to extend the SAT-DM 

framework algorithm and is addressed here to answer to the first research question:  Is it possible 

to build clauses in a more sophisticated way? 

 

Originally, the strategic oscillation technique was created to solve optimization problems. This 

technique builds a solution using the oscillation between feasible and infeasible regions (Figure 

6). As demonstrated by Glover and Kochenberger (1996), moving into the infeasible region is a 

good way of investigating the solution space and improving the quality of the solution. In addition, 

it forces the search for a solution into new areas.  

 

This approach consists of two phases. In the first phase, it moves from the feasible to the infeasible 

space by incrementing the depth parameter to the threshold, improving the solution. In the second 

phase, it proceeds backward from the boundary into the feasible space. This could be described as 

the destructive phase.  

 
Figure 6. Strategic oscillation process (Source: Based on Glover and Kochenberger 1996) 
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Recall that in the original SAT-DM method greedy construction is used for building an inequality. 

After the inequality has covered sufficient number of records of :C	(define	by	|), it moves to the 

destruction process (Glover 2008). Afterwards, the generated inequality is saved and the process 

of building a new inequality starts from scratch. For the SAT-DM method, the strategic oscillation 

approach is to continue the search for new solutions (inequalities) after destruction by 

building/continuing construction for the previously destroyed inequality. It allows for the 

generation of more inequalities to explore the solution space. The process proceeds until the 

number of iterations of strategic oscillation reaches a defined threshold. This idea is presented in 

Figure 6, where the c and d parameters define thresholds (amount of covered records of	:C ) for 

construction and destruction steps, respectively. All extremums (Figure 7) can be stored as a 

separate inequality in a set of inequalities. 

 
Figure 7. Strategic oscillation for the SAT-DM method 

 

To avoid creating the same inequality several times and, therefore, introducing a combination of 

attributes (literals) not previously checked, the approach of Tabu Search is used (Glover and 

Laguna 1997). This technique will allow for the production of a different inequality. The word 

“tabu” comes from the Polynesian language Tongan, used by the aborigines of Tonga, to indicate 

things that cannot be touched because they are sacred.  

Tabu Search is a memory-based method where one of the main components is to use adaptive 

memory. This strategy is allowed to perform an extensible search. It has a “tabu criterion” for 
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which the basic job is to not visit the same solution more than once. The memory structures can 

roughly be divided into three groups: short term (the list of solutions recently used), intermediate 

term, and long term (Glover and Løkketangen 2005). 

 

For the SAT-DM algorithm, the approach of Tabu Search allows one to avoid the problem of 

generating the same inequalities several times. When an attribute is chosen to generate an 

inequality, it is given a “tabu tenure”—the number of iterations for which the value of that attribute 

is tabu. 

 

Additionally, separate tabu tenures can be applied for the construction and destruction phases, to 

make oscillation more productive. This allows for the generation different inequalities in both 

phases for each iteration. Tabu tenures are applied to attributes and elements of inequality, and 

consists of a minimum number of strategic oscillations in which a literal is not allowed to be used. 

 

In the implementation of the SAT-DM method in this thesis, tabu tenure for construction phase is 

linearly dependent on a strategic oscillation iteration and a number of attributes, what allows 

avoiding construction the same inequality several times, and therefore explicitly introduce a 

combination of attributes (literals) not previously tested.  

 

For the destruction phase of SAT-DM in this paper, tabu tenure is defined to be quite short—one 

iteration of strategic oscillation—which creates a different destruction effect in each iteration. 

 

The preprocessing step can be performed before building inequalities using a strategic oscillation 

process. This procedure identifies valuable attributes. In particular, if an attribute covered a 

sufficient number of records of :C, it could be placed as a separate inequality with a size equal to 

1. The corresponding attribute, which has been added to the preprocessed inequality, is ineligible 

for subsequent inequalities. However, a strategic oscillation procedure can also find inequalities 

with one attribute (which are received from the preprocessing step). Applying the preprocessing 

step helps to find inequalities with one attribute quickly, putting them into a separate set of 

inequalities and reducing the time of execution.  
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The following is pseudocode describing this strategic oscillation process for SAT-DM: 

 
Figure 8. Pseudocode of the SAT-DM algorithm with a strategic oscillation approach 

 

This method aims to generate inequalities for :C and supplementary group :D. The process of 

generating inequalities proceeds until the threshold, max_number_of_iterations, is achieved in the 

loop (variable outer_iter is an iterator). inequality is a structure that stores selected literals for this 

inequality, as well as the number of records that are covered by the inequality for :C and the 

supplementary group :D, and a total number of records in the :C and	:D groups. Tabu tenures are 

represented by the variables tabu_status_c and tabu_status_d. They store the number of the 

iteration during which it is already permitted to add or remove (respectively) an attribute after 

adding it to inequality. The variables sc_alpha and sc_beta store surrogate constraint coefficients 

for groups with the structure of the original SAT-DM method, updating with each iteration. 

records_left_alpha, records_left_beta control how many records are left uncovered, while 

alpha_covered and beta_covered store the number of inequalities each record is  covered by. 

Each inequality is generated using the strategic oscillation procedure. The stopping point for the 

procedure occurs when the variable iteration_so is greater than the number of iterations for the 
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strategic oscillation approach defined in max_number_of_so, or when construction/destruction is 

unsuccessful. Also, the process of generating inequalities will be finished when the construction 

step cannot add any new attributes for an inequality. 

 

The construction step is described in this pseudocode: 

 
Figure 9. Pseudocode of the construction step 

 

Construction of an inequality proceeds until a satisfying number of records for :C is covered.  

If this is the first iteration of the strategic oscillation procedure, a candidate for establishing an 

inequality must be checked for unavailability according tabu restriction. This implementation  

checks the value of tabu, which consists of the list of attributes which were previously used. The 

parameter max_records_left_construction contains the maximum number of records in G~ that can 
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be left uncovered by generated inequality. The variables eval_best, attribute_best help to 

determine the best candidate for addition to an inequality, and are empty in the beginning. 

The evaluation process of a candidate to add to an inequality is based on 2.10-2.11 (Glover 2008). 

 

After the construction step, the algorithm begins the destruction step (Figure 10). The main idea 

of this step is described in Section 2.5.5. The destruction step executes so long as a sufficient 

number of records for :C are still covered.  

 

This pseudocode describes the destruction step: 

 
Figure 10. Pseudocode of the destruction step 
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The variables sc_alpha_destr, sc_beta_destr contain surrogate constraint coefficients for records 

covered by one inequality. This allows for easy removal of a candidate and updating of the 

inequality. The implementation of all pseudocode provided in this section is presented in  

Appendix 1. The results of the implementation are shown in Section 6.2.  

 

5.2	SAT-DM	with	Pareto	principle	

To generate a final set of inequalities, Glover (2008) suggests storing all resulting inequalities after 

construction and destruction phases and using all of them for classification. One of the research 

tasks (inspired by the second research question) in this master thesis is to select the final set of 

inequalities from all gradually generated inequalities by applying a sophisticated rule, which is 

explained below. 

 

The SAT-DM method could be described as a bi-objective problem: maximizing the coverage of 

a particular class (:C) and minimizing the violation of a supplementary group (:D). In the process 

of building the solution (inequality), this approach is applied. However, some of generated 

inequalities are more optimal than others. In such cases, it is valuable to use the Pareto approach 

to find those optimal inequalities (Bandaru, Amos and Kalyanmoy 2014).  

 

With this approach, the sequence of Pareto optimal solutions (inequalities) is generated. These are 

non-dominated solutions, from which it is possible to make a good decision in the process of 

choosing the end solutions. 

 

Suppose � = {80, 82, … , 8Å} is a set of generated inequalities, É 8 /	ℎ(8) are functions, given the 

amount of :C/:D	records respectively, covered by an inequality 8. 

The set of generated points is represented with the formula (with an example plot shown in Figure 

11): 

É(80 , ℎ(80);	É(82), ℎ(82); …		; 	É(84), ℎ(8Å)}  

 

The Pareto optimal solutions are selected by applying the rule: Q["	É � ,Q@A	ℎ(�). 
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A curve consisting of Pareto optimal solutions is called a “first Pareto layer”. It is a set of 

inequalities are non-dominated solutions by values of É 8  and ℎ 8 	in appropriate max-min 

directions (the red points in Figure 11). 

 

However, it could be useful to include several Pareto layers in situations where the first Pareto 

layer contains very few solutions (inequalities). After including the first one, the second Pareto 

layer of the solutions remaining after having excluded the first Pareto layer (the pink points in 

Figure 11) may be included, continuing to include more layers as needed. The number of Pareto 

layers used influences the number of inequalities in the final set: more layers leads to more 

inequalities. 

 

 
Figure 11. Pareto fronts in terms of inequalities 

 

The implementation of this idea is presented in Figure 12. 

Function Pareto Layer (PL) has a Boolean outcome and received inequalities x and y as parameters. 

The function specifies whether inequality x dominates inequality y, and returns an appropriate 

value in both cases. 



	 32	

 
Figure 12. Function for determining the first Pareto layer points. 

	

In the main method (function SAT, Section 5.1), function PL is applied for all generated 

inequalities to find dominant solutions (inequalities). Also, a set of preprocessed inequalities can 

be taken as a separate layer. The results of implementation are presented in the Section 6.3. 
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5.3	SAT-DM	and	Naïve	Bayes	classifier	

One of the research tasks (inspired by the third research question) in this thesis is to combine the 

Naïve Bayes method with the SAT-DM classifier. Recall that in the origin paper (Glover 2008) a 

new record with unknown membership is classified by comparing the proportion of the inequalities 

it satisfies for that class to the proportion it satisfies for other classes. The task in this research is 

to use the inequalities in a better way when classifying (not comparing the proportion) using the 

Naïve Bayes classifier. 

 

The approach is to extend attributes, specifically to add values of satisfying/non-satisfying (1/0 

respectively), generated inequalities.  

For attributes of a classified record x: = "0, "2 …	"4 ∪ XnH, Xnà, …	, Xnâ		 , A	 ∈ B, B- a number 

of original attributes, {80, 82, … , 8Å} is a set of generated inequalities. 

 Xnä is a binary value indicating the satisfactory/unsatisfactory coverage status of an inequality 8? 

(Figure 13). 

 

 
Figure 13. Defining new attributes in the Naïve Bayes classifier 

 

Thus, the classification is based on the Naïve Bayes classifier and the given attributes that are 

calculated based on the inequalities generated. 

 

In addition, the original attributes could be removed and classification may be done just with 

XnH, Xnà, …	, Xnâ 	attributes for the records. The results of classification with and without the 

original attributes are presented in the next section.  
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6.	Computational	experiments	

6.1	Data	sets	

The data sets are taken from UC Irvine’s open-source Machine Learning Repository, which was 

created to help the machine learning community (Machine learning community 2017). The 

validation process uses data sets of different nature, which allows for analyzing the results of 

classification more objectively.  

1. Wisconsin breast cancer data set 

This data set was produced by Dr. William H Wolberg of the University of Wisconsin–Madison 

Hospitals (Mangasarian and Wolberg 1990), and describes the diagnosis of breast tissues as either 

benign or malignant. 

 

2. Chess (king-rook vs. king-pawn) data set 

This data set was developed by Alen Shapiro and was supplied to Holte by Peter Clark of the 

Turing Institute in Glasgow (Shapiro 1983). It contains endgame results of chess games associated 

with a fixed set of starting positions of the game pieces. 

 

3. Tic-tac-toe data set 

This data set stores possible ending board arrangements for a set of tic-tac-toe games, with the 

player X always playing first, with to one of two possible outcomes: a win for X or a win for O 

(Aha 1991). 

 

4. Molecular biology (splice-junction gene sequences) data set  

This data set presents human splice-junction gene sequences (DNA) according to imperfect 

domain theory. Three possible outcomes exist: EI class (recognize exon/intron boundaries), IE 

class (recognize intron/exon boundaries), and neither (Noordewier, Towell and Shavlik 1991) 

 

5. Lymphography data set 
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This data set was obtained from the University Medical Centre, Institute of Oncology, Ljubljana, 

Yugoslavia (Cestnik, Konenenko and Bratko 1987). Each record represents to one of four possible 

classes: normal result, metastases, malign lymph, or fibrosis.  

 

6. Nursery data set 

This dataset originally was produced to assist with nursery school enrollment. Five different 

outcomes were proposed: not recommended, recommended, very recommended, has priority, and 

has special priority (Olave, Rajkovic and Bohanec 1989). 

 

7. LED display domain data set 

Each record contains values of a light-emitting diode of a 7-segment display, and the classification 

task is to identify which digit is shown on the display. The dataset presents ten different outcomes, 

where each outcome has a 10% percent chance of occurring (Breiman et al. 1984). 

 
Table 6. General description of the data sets 

Nº Name of Data Set Number of 

instances 

Number of 

classes 

Number of 

attributes 

Number of 

binary attributes 

1 Wisconsin breast cancer 699 2 9 34 

2 Chess 3196 2 36 36 

3 Tic-tac-toe 958 2 9 18 

4 Molecular biology (splicing) 3190 3 60 30 

5 Lymphography 148 4 18 23 

6 Nursery 12960 5 8 19 

7 Led-display-domain  3200 10 7 24 

	

6.2	Method	of	evaluation	

For the lymphography and nursery data sets, the results are produced using leave-one-out cross-

validation. For the other five data sets, the 3-fold cross-validation method (as described in Section 

4) with 10 repetitions is applied.  
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6.3	Results	

In the beginning of this subsection, the results for each dataset, shown using bar charts, will be 

provided and analyzed. Each bar represents the results of correct classifications, shown as a 

percentage, of applying each of the following techniques: 

 

• NB origin bar: results of original Naïve Bayes Classifier 

• SAT bar:  the SAT-DM classifier with a strategic oscillation approach with using all 

generated inequalities for classification (Section 5.1) 

• SAT NB bar: presents classification with guideline from the Naïve Bayes Classifier with 

additional attributes (satisfying inequalities, Section 5.2) 

• SAT NB W bar: as previously described, but original attributes are not included 

• SAT PO, SAT PO NB and SAT PO NB W bars: modifying the previous approaches by 

using points (inequalities) of the first Pareto layer for classification (Section 5.3) 

• SAT PO2, SAT PO2 NB and SAT PO2 NB W bars: again modifying the previous 

approaches by using inequalities of two Pareto layers, the second Pareto layer of the 

solutions remaining after having excluded the first Pareto layer (Section 5.3) 

 

Following these results, a general discussion of the research questions is provided. 

 

1. WISCONSIN BREAST CANCER WISCONSIN DATA SET 

A three-fold cross-validation divides this data set into a training set with 466 records and a 

validation set with 233 records. As inequalities are built by training set records, it is valuable to 

know the number of records of each class. For example, for the first repetition (out of ten) the 

training set consists of: 

First experiment: the training set consists of 306 records of the benign class and 160 records of the 

malignant class. 

Second experiment: the training set consists of 296 records of the benign class and 170 records of 

the malignant class. 

Third experiment: the training set consists of 314 records of the benign class and 152 records of 

the malignant class. 
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Figures 14-15. The first experiment for the Wisconsin breast cancer data set 

 
Figures 16-17. The second experiment for the Wisconsin breast cancer data set 

 

The generated inequalities for two experiments by first repetition of a three-fold cross-validation 

are presented in Figures 14-17. Each inequality is a point, and its label is the number of attributes 

the inequality consists of. The y-axis shows the number of records from :C covered by an 

inequality, and the x-axis shows the number of records from :D it covers. The red points represent 

the first Pareto layer. In each experiment two figures are presented as it is two classes in this data 

set (see Appendix 2), and in Figures 14, 16  :C is a set of records of the benign class where in 

Figures 15, 17  :C is a set of records of the malignant class. 

 

Figures 14-17 present inequalities just for one repetition of a three-fold cross-validation. However, 

it is possible to make a conclusion that the number of inequalities in general and in the first Pareto 

layer for this data set is too small. For example, in the first experiment of the first repetition 28 
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inequalities are generated and just 8 of them are selected (Figure 15), or 29 inequalities are 

generated and 2 of them are selected (Figure 16). Adding one more Pareto layer is not enough to 

receive good results. The problem of insufficiently selected inequalities based on a Pareto principle 

for use in classification was solved by treating preprocessed inequalities as a separate layer and 

including them in the final set of inequalities. 

 

 
Figure 18. Results for the Wisconsin breast cancer data set 

 
From Figure 18, the Naive Bayes classifier gives almost the same results as the new SAT-DM 

classifier in any implementation. However, the number of inequalities and the method of 

classification for the SAT-DM classifier are valuable. Selecting one layer of Pareto points 

(inequalities) for classification is able to produce almost the same result when the SAT-DM 

classifier takes all inequalities. Using inequalities in the original Naïve Bayes classifier improves 

the results of the SAT-DM classifier (the SAT NB and SAT PO NB bars) to nearly the same level 

as the original Naïve Bayes classifier. 
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2. CHESS DATA SET  

 

 
Figure 19. Results for the chess data set 

 

The original Naïve Bayes classifier shows much worse results than the new SAT-DM classifier 

(Figure 19). However, the approach of making a classification based on the Naïve Bayes classifier 

using generated inequalities to build new attributes improves the results of the SAT-DM method 

(the SAT NB and SAT PO2 NB bars). This supports the theory that combining classifiers can 

produce a valuable outcome. Taking the first Pareto layer of points for classification was not 

enough, so the results for two Pareto layers is presented. The result shows that using a portion of 

the generated inequalities for classification can be enough to receive the same or even better results 

of classification (the SAT PO 2 bar). 

 

3. TIC-TAC-TOE DATA SET 

A three-fold cross-validation divides the data set into a training set with 639 records and a 

validation set with 319 records. For the first repetition (out of ten) the training set consists of: 

• First experiment: 424 records of “win for X” and 215 records of “win for O” 

• Second experiment: 410 records of “win for X” and 229 records of “win for O” 

• Third experiment: 418 records of “win for X” and 210 records of “win for O” 
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Figure 20-21. The first experiment for the tic-tac-toe data set 

 
These figures show the generated inequalities for one experiment by first repetition of a three-fold 

cross-validation. Thus, it is possible to make a conclusion that the first Pareto layer consists of a 

small number of points (inequalities). Also, the number of attributes in the inequalities is large. 

 

 
Figure 22. Results for the tic-tac-toe data set 

 

As expected, taking two Pareto layers (Figure 22, last three columns) is insufficient for producing 

better results than classification with all inequalities. Also, the original Naive Bayes classifier gives 

poor results in classification. However, the approach of extending attributes for classification 
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(Section 5.3) improves the results of the Naive Bayes classifier at the cost of worsening the results 

of SAT-DM method. 

 

4. SPLICE DATA SET 

 

 
Figure 23. Results for the splice data set 

 

The original Naive Bayes classifier results in a high quality classification compared to the SAT-

DM classifier (Figure 23). This may be due to the increasing the number of classes (in this data set 

it is already three classes). However, involving the NB classifier in the SAT-DM classifier 

increases its performance nearly to the level of the original Naïve Bayes classifier. 

 

The number of all generated inequalities is large as it depends on the number of binary attributes, 

which is valuable for this data set. Thus, using two Pareto layers of inequalities is better than taking 

all inequalities for classification and using a portion of the generated inequalities for classification 

can be enough to receive the same or even better results of classification (SAT PO2). 
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5. LYMPOGRAPHY DATA SET 

 

 
Figure 24. Results for the lymphography data set 

 
The result of the original Naïve Bayes classifier is not satisfactory. This may be due to the 

weakness of the NB assumption that attributes are independent; the attributes (financial standing, 

social and health picture of the family) of this dataset are potentially related. Also, the original NB 

classifier needs more records to understand the probabilistic relationship of each attribute.   

 

Despite the fact that this data set presents four different classes, two of them have a very small 

number of records. For more detailed information on each data set, please see Appendix 2. Thus, 

it is possible to assume that the classification for this dataset is binary (with two classes). This 

leads to the conclusion that the SAT-DM method performs very well for classification with two 

classes. 

 

Compared to the origin NB classifier, the SAT-DM classifier shows better result in classification. 

However, the number of records (Table 6) influence on the number of generated inequalities, 

which is low. Therefore, the two Pareto layers of inequalities consist of few inequalities, which 

are not enough to produce good classification and requires taking all inequalities. 
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6. NURSERY DATA SET 

 

 
Figure 25. Results for the nursery data set 

 

In this data set, the result of the original Naïve Bayes classifier is better than in the SAT-DM  

classifier. Referring to the results of previous data sets, this leads to the conclusion that the number 

of classes for the SAT-DM algorithm is important: better results are achieved with a smaller 

number of classes.   

 

The result of the SAT-DM is not good as a small number of binary attributes for this data set is 

generated and therefore not enough inequalities exists to produce good classification. However, if 

the original Naïve Bayes classifier shows better results than the SAT-DM algorithm, involving NB 

techniques of classification will lead to improvement of the results. 

 

As expected, two Pareto layers do not constitute enough inequalities, which requires taking all 

inequalities for classification.  
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7. LED DISPLAY DOMAIN DATA SET   

 

 
Figure 26. Results for the LED display domain data set 

 

Classification of the LED display domain data set is an example of classification with a valuable 

number of classes (10 classes). As noted earlier, in such a case the SAT-DM classifier generates 

bad results (Figure 26). However, involving the NB classifier improves the performance of the 

method, as the original Naïve Bayes classifier shows better results (the same case with the nursery 

data set).  

 

The first Pareto layer of inequalities is enough for classification if selecting more Pareto layers 

leads to worsening of the result (SAT PO2 column).  

 

Involving the NB classifier technique to the SAT-DM classifier causes the result to improve nearly 

to the level of the original Naïve Bayes classifier, which can solve the problem of bad results for 

this data set. 

 

A lot of inequalities are generated in this data set. This may due to the fact that the records are  

created artificially and each class consists of small number of records. However, tabu tenure, which 

is applied for the construction phase, also influence on this. For this data set, the value of this 

parameter, which is the same defined for all previous data sets, is too small and leads to the fact 
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that a lot of generated inequalities are similar. Increasing the tabu tenure for construction phase 

leads to the improving of the results and quality of generated solutions.  

The results of this idea is presented in Figure 27. 

 

 
 
Figure 27. Results for the LED display domain data set with increased tabu tenure 

 
As expected, classification with different inequalities is better. However, taking all generated 

inequalities for classification is not profitable compare to taking one Pareto layer, as enough 

inequalities are generated in this data set. Also, involving the NB classifier improves the 

performance of the method even with removing original attributes. 

 

 

General conclusion 

 

Having reviewed the results of validation for the data sets, the research questions may be 

answered: 

 

1. Is it possible to build inequalities in a more sophisticated way? 

The origin method of building inequalities in SAT-DM method may be extended by using a 

strategic oscillation approach. This makes it possible to improve the quality and number of 
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generated inequalities, as compared to the original method. However, results of new SAT-DM 

classifier are very sensitive to the parameters that define the strategic oscillation approach. It is 

vital to define the tabu tenures for the construction and destruction steps while taking into account 

the correlation between these parameters, the number of iterations of strategic oscillation, and the 

parameters that define the thresholds of the construction and destruction steps (Figure 7: c and d 

points). 

Therefore, the total number of generated inequalities is dependent on the number of binary 

attributes a data set consists of. The result of the SAT-DM classifier also depends on the number 

of classes for a data set. It performs very well for classification with two classes, while increasing 

the number of classes worsens the results. 

 

2. Is it effective to select inequalities for use in classification based on a Pareto principle? 

From the whole collection of inequalities, it is possible to select the better ones (using separation 

on Pareto layers) and include them in the final set of inequalities for classification. However, 

selecting an insufficient number of inequalities (Pareto layers) may lead to poor results. The 

number of Pareto layers that need to be considered in classification is related to the total number 

of generated inequalities. With a large number of generated inequalities, it is enough to take a 

small number of Pareto layers.  

 

For datasets with many classes, it is better to select fewer Pareto layers, as in general the SAT-DM 

algorithm is not suitable for these data sets, so just taking the best inequalities can provide some 

valuable result. 

 

 

3. Is it reasonable to combine methods with existing, broadly used classifiers? 

This thesis presents a way in which the classification for SAT-DM classifier can be modified. In 

the original method, a new record with unknown membership is classified by comparing the 

proportion of the inequalities it satisfies for that class to the proportion it satisfies for other classes. 

However, when the results of classification is poor, it is possible to involve classification using the 

Naïve Bayes classifier, as it described in this thesis. 
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In cases where the original Naïve Bayes classifier gives better results, it is very useful to apply the 

idea presented in Section 5.3 for improving the results of the SAT-DM classifier, which can solve 

the problem of bad results for data sets with many classes. Removing the original attributes from 

classification in SAT-DM with Naïve Bayes worsens its results, making them similar to the SAT-

DM results.  

 

When the original Naïve Bayes classifier gives worse results than the SAT-DM classifier, the 

approach of involving inequalities as new attributes is valuable in improving the original NB 

method. When that is done, the results become very close to those of the SAT-DM classifier. This 

leads to using the SAT-DM classifier as a preprocessor to generate more attributes to another 

classifier. 

 

 

 

 

 

 

  



	 48	

7. Concluding	remarks	and	further	research	

7.1	Concluding	remarks	

This research aimed to analyze the Satisfiability data mining algorithm (Glover 2008) and identify 

effective strategies for improving it. This study shows a variety of techniques for improving the 

accuracy of classification: strategic oscillation approach, Pareto layers of solutions, and involving 

Naïve Bayes classifiers. The results of the proposed improvements heavily depend on a number of 

factors, including: the number of binary attributes, the nature of the data, and the result of the 

original Naïve Bayes classifier.  

 

Using the strategic oscillation approach is profitable since all goals were achieved (reduced the 

similarity of clauses, increased the number of generated clauses). The technique of using Pareto 

layers (inequalities) is beneficial only if a sufficient total number of inequalities have been 

generated. The combination of classifiers leads to the improvement of the SAT-DM method, when 

the Naïve Bayes classifier generates better results. In conclusion, the techniques for modifying the 

existing SAT-DM algorithm in this paper are viable for improving classification results, as has 

been demonstrated through the application of the real-world data sets in Section 7. 

	

7.2	Further	research	

This research shows the results of using more advanced implementations of the SAT-DM 

classifier, as compare to the original (Glover 2008). However, during the research it was found 

that the tabu statuses for the “strategic oscillation” procedure in implementation may be selected 

in a more sophisticated way.  

 

Another suggestion for further research is to work with tree-based SAT-DM for generating 

decision trees. This framework can be used in a natural way within tree-based analysis approaches, 

giving another way of exploiting the inequalities. Refer to Glover (2006) for a more advanced 

treatment.  
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Appendix	1	
This part includes implementations of the main functions. 

 

The following structures describe an inequality and a record respectively: 
struct SATINEQ { 

  double          eval; 

  int             alpha_covered; 

  int             alpha_total; 

  int             beta_covered; 

  int             beta_total; 

  vector< int >   ineq; 

}; 
 

struct DMBINARYRECORD { 

  int             group; 

  vector< bool >  record; 

  string          name; 

}; 

 

 

1.  The first function (SAT_method_PO) presents the implementation of SAT-DM algorithm with 

a strategic oscillation approach and selection of two Pareto layers from a general set of 

inequalities. 

 
bool SATDM::SAT_method_PO(vector< DMBINARYRECORD* > &G_alpha, vector< DMBINARYRECORD* > 

&G_beta, vector< SATINEQ > &ineqs) 

//---------------------------------------------------------------------------------------

--------------------------- 

{ 

 cout << "CLASSIFICATION" << endl; 

 if (G_alpha.size() == 0) 

 { 

  cout << " Generate inequalities for empty group." << endl; 

  return true; 

 } 

 

 int i(0), j(0); 

 ineqs.clear(); 

 

 vector< SATINEQ > preprocessed_ineqs; 

 vector< SATINEQ > generated_ineqs; 

 vector< SATINEQ > dominate_ineqs; 

 vector< SATINEQ > t_ineqs; 

 vector< SATINEQ > t2_ineqs; 

 

 

 int n = (int)G_alpha[0]->record.size(); 
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 int records_total_alpha = (int)G_alpha.size(); 

 int records_total_beta = (int)G_beta.size(); 

 double r = (double)records_total_beta / records_total_alpha; 

 

 int max_records_left = (int)floor(records_total_alpha*(1 - min_cover_)); 

 

 int max_records_left_destruction = (int)floor(records_total_alpha*(1 - 

min_cover_destruction_)); 

 

 

 

 vector< int > k_alpha, k_alpha_init; 

 vector< int > k_beta, k_beta_init; 

 

 //initialize the number of "true" value for surrogate constraint 

 

 k_alpha_init.assign(n, 0); 

 for (i = 0; i < records_total_alpha; i++) 

 { 

  for (j = 0; j < n; j++) 

  { 

   if (G_alpha[i]->record[j]) 

    k_alpha_init[j]++; 

  } 

 } 

 

 k_beta_init.assign(n, 0); 

 for (i = 0; i < records_total_beta; i++) 

 { 

  for (j = 0; j < n; j++) 

  { 

   if (G_beta[i]->record[j]) 

    k_beta_init[j]++; 

  } 

 } 

 

 // 0,1,...,n-1 indices for unnegated, n,n+1,...,2n-1 indices for negated 

 

 vector< int > tabu_status(2 * n, 0); 

 

 vector< vector< int > > ts_general_attr(2 * n); 

 

 

 // variables are available for consideration 

 vector< bool > available(n, true); 

 

 // the number of times attribute has been used in inequalities 

 vector< int > times_used(2 * n, 0); 

 

 double k_max = -DBL_MAX; 

 int k_max_i(-1); 

 int var(0), k_var(0); 

 int neg; 

 int max_appear = INT_MAX; 

 

 

 // preprocess 
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 int preprocess_max = (max_records_left > max_records_left_destruction ? 

max_records_left : max_records_left_destruction); 

 

 for (i = 0; i < n; i++) 

 { 

  if (records_total_alpha - k_alpha_init[i] <= preprocess_max) 

  { 

   SATINEQ ineq; 

   ineq.ineq.push_back(i + 1); 

   available[i] = false; 

   ineq.alpha_covered = k_alpha_init[i]; 

   ineq.alpha_total = records_total_alpha; 

   ineq.beta_covered = k_beta_init[i]; 

   ineq.beta_total = records_total_beta; 

   preprocessed_ineqs.push_back(ineq); 

  } 

  else if (k_alpha_init[i] <= preprocess_max) 

  { 

   SATINEQ ineq; 

   ineq.ineq.push_back(-i - 1); 

   available[i] = false; 

   ineq.alpha_covered = records_total_alpha - k_alpha_init[i]; 

   ineq.alpha_total = records_total_alpha; 

   ineq.beta_covered = records_total_beta - k_beta_init[i]; 

   ineq.beta_total = records_total_beta; 

   preprocessed_ineqs.push_back(ineq); 

  } 

 } 

 

 

 int outer_iter(0); 

 bool done = false; 

 

 while (!done) 

 { 

 

  SATINEQ ineq; 

  vector< int > tabu_status_so(2 * n, 0); 

  vector< int > tabu_status_destr(2 * n, 0); 

 

  outer_iter++; 

  max_appear = (int)ceil(const_max_appear); 

 

  k_alpha = k_alpha_init; 

  k_beta = k_beta_init; 

 

  int records_left_alpha = records_total_alpha; 

  int records_left_beta = records_total_beta; 

 

  vector< int > alpha_covered(records_total_alpha, 0); 

  vector< int > beta_covered(records_total_beta, 0); 

 

  int amount_so = 0; 

  bool so_done = false; 

  //strategic oscillation 

 

  while (amount_so < 100 && !so_done) 
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  { 

   bool exist_construction = false; 

   amount_so++; 

   cout << amount_so << " strategic oscillation" << endl; 

   //    CONSTRUCTION 

   bool noimproving = false; 

   bool ok = true; 

   bool ok_destr = true; 

   int so_iter = 0; 

   double eval = -DBL_MAX; 

 

   while (records_left_alpha > max_records_left && !noimproving && 

!so_done) 

   { 

    exist_construction = true; 

    int in_iter = 0; 

    k_max = -DBL_MAX; 

    k_max_i = -1; 

 

 

    // find attribute to add 

    neg = n; 

    for (i = 0; i < n; i++) 

    { 

     // non negated 

     ok = true; 

     if (available[i] && k_alpha[i] > 0 && times_used[i] <= 

max_appear) 

     { 

      if ((tabu_status[i] > outer_iter && amount_so == 

1) || (tabu_status_so[i] > amount_so)) 

      { 

       ok = false; 

      } 

      if (ok) 

      { 

       eval = k_alpha[i] - k_beta[i]; 

 

       if (eval > k_max) 

       { 

        k_max = eval; 

        k_max_i = i; 

       } 

      } 

     } 

     // negated 

     ok = true; 

     if (available[i] && (records_left_alpha > k_alpha[i]) 

&& times_used[neg] <= max_appear) 

     { 

      if ((tabu_status[neg] > outer_iter  && amount_so 

== 1) || (tabu_status_so[neg] > amount_so)) 

      { 

 

       ok = false; 

      } 

      if (ok) 

      { 
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       eval = (records_left_alpha - k_alpha[i]) 

- (records_left_beta - k_beta[i]); 

 

       if (eval > k_max) 

       { 

        k_max = eval; 

        k_max_i = neg; 

       } 

      } 

     } 

     neg++; 

    } 

 

    // add attribute, generate constraint 

    if (k_max_i >= 0) 

    { 

 

     tabu_status_so[k_max_i] = (int)(in_iter + amount_so + 

0.5*n); 

 

     k_var = (k_max_i >= n ? k_max_i - n : k_max_i); 

 

     ineq.ineq.push_back((k_max_i == k_var ? k_var + 1 : -

k_var - 1)); 

 

     available[k_var] = false; 

 

     tabu_status_destr[k_max_i] = (int)(amount_so + 1); 

 

 

     if (k_var == k_max_i) { 

      records_left_alpha -= k_alpha[k_var]; 

      records_left_beta -= k_beta[k_var]; 

     } 

     else { 

      records_left_alpha = k_alpha[k_var]; 

      records_left_beta = k_beta[k_var]; 

     } 

 

     if (in_iter == 0) { 

 

      tabu_status[k_max_i] = (int)(t1_tenure_*n + 

outer_iter); 

     } 

 

     for (i = 0; i < records_total_alpha; i++) 

     { 

      if ((k_var == k_max_i && G_alpha[i]-

>record[k_var]) || 

       (k_var != k_max_i && !G_alpha[i]-

>record[k_var])) 

      { 

       if (alpha_covered[i] == 0) 

       { 

        for (j = 0; j < n; j++) 

        { 

         if (G_alpha[i]->record[j]) 
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          k_alpha[j]--; 

        } 

       } 

       alpha_covered[i]++; 

      } 

     } 

 

     for (i = 0; i < records_total_beta; i++) 

     { 

      if ((k_var == k_max_i && G_beta[i]-

>record[k_var]) || (k_var != k_max_i && !G_beta[i]->record[k_var])) 

      { 

 

       if (beta_covered[i] == 0) 

       { 

        for (j = 0; j < n; j++) 

        { 

         if (G_beta[i]->record[j]) 

          k_beta[j]--; 

        } 

       } 

       beta_covered[i]++; 

      } 

     }  

     //updated general tabu status 

     int s = (int)ineq.ineq.size(); 

     int var, tvar = 0; 

     for (i = 0; i < s; i++) 

     { 

      var = (ineq.ineq[i] < 0 ? n - ineq.ineq[i] - 1 : 

ineq.ineq[i] - 1); 

      times_used[var]++; 

     } 

    } 

 

    else { 

     noimproving = true; 

    } 

    if (noimproving && in_iter == 0) 

    { 

     so_done = true; 

    } 

    if (noimproving && amount_so == 1) { 

     done = true; 

    } 

    in_iter++; 

   } 

   if (!done && !so_done && exist_construction) { 

    ineq.alpha_covered = records_total_alpha - records_left_alpha; 

    ineq.alpha_total = records_total_alpha; 

    ineq.beta_covered = records_total_beta - records_left_beta; 

    ineq.beta_total = records_total_beta; 

    t_ineqs.push_back(ineq); 

   } 

 

   //destruction 
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   //initialize sc prime implicant for records covered by 1,  to store 

the number of uncovered records, 

   //if removing the attribute from the inequality 

   int iv = 0; 

   int s = (int)ineq.ineq.size(); 

   vector< int > k_alpha_pi(s, 0); 

   vector< int > k_beta_pi(s, 0); 

 

   for (i = 0; i < records_total_alpha; i++) 

   { 

    if (alpha_covered[i] == 1) 

    { 

     for (j = 0; j < s; j++) 

     { 

      iv = ineq.ineq[j]; 

      if (iv > 0 && G_alpha[i]->record[iv - 1]) 

       k_alpha_pi[j]++; 

      if (iv < 0 && !G_alpha[i]->record[-iv - 1]) 

       k_alpha_pi[j]++; 

     } 

    } 

   } 

 

   for (i = 0; i < records_total_beta; i++) 

   { 

    if (beta_covered[i] == 1) 

    { 

     for (j = 0; j < s; j++) 

     { 

      iv = ineq.ineq[j]; 

      if (iv > 0 && G_beta[i]->record[iv - 1]) 

       k_beta_pi[j]++; 

      if (iv < 0 && !G_beta[i]->record[-iv - 1]) 

       k_beta_pi[j]++; 

     } 

    } 

   } 

 

 

   bool destructiondone = false; 

   bool changemade = false; 

   s = (int)ineq.ineq.size(); 

 

   while (!destructiondone && !so_done) 

   { 

    k_max_i = -1; 

    k_max = -DBL_MAX; 

 

 

 

    for (j = 0; j < s; j++) 

    { 

     if (records_left_alpha + k_alpha_pi[j] <= 

max_records_left_destruction) 

     { 

 

      int attr = ineq.ineq[j]; 
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      int dim_var = (attr < 0 ? n - attr - 1 : attr - 

1); 

 

      if (tabu_status_destr[dim_var] > amount_so  && 

amount_so != 1) 

       a 

      { 

       ok_destr = false; 

      } 

 

      if (ok_destr) { 

 

       eval = k_beta_pi[j] - k_alpha_pi[j]; 

 

       if (eval > k_max) 

       { 

        k_max_i = j; 

        k_max = eval; 

       } 

      } 

     } 

    } 

    if (k_max_i < 0) 

    { 

     destructiondone = true; 

    } 

    else { 

     var = ineq.ineq[k_max_i]; 

 

     if (var > 0) 

      available[var - 1] = true; 

     else 

      available[-1 - var] = true; 

 

     records_left_alpha += k_alpha_pi[k_max_i]; 

     records_left_beta += k_beta_pi[k_max_i]; 

     ineq.ineq.erase(ineq.ineq.begin() + k_max_i); 

     k_alpha_pi.erase(k_alpha_pi.begin() + k_max_i); 

     k_beta_pi.erase(k_beta_pi.begin() + k_max_i); 

 

     s--; 

     changemade = true; 

 

     //update coeffs (for each point, recalc number of times 

it is covered, if reached 1 add to coefficient): 

 

 

     for (i = 0; i < records_total_alpha; i++) 

     { 

      if ((var > 0 && G_alpha[i]->record[var - 1]) || 

       (var < 0 && !G_alpha[i]->record[-var - 

1])) 

      { 

       alpha_covered[i]--; 

       if (alpha_covered[i] == 1) 

       { 

        for (j = 0; j < s; j++) 

        { 
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         int tvar = ineq.ineq[j]; 

         if ((tvar > 0 && 

G_alpha[i]->record[tvar - 1]) || 

          (tvar < 0 && 

!G_alpha[i]->record[-tvar - 1])) 

         { 

          k_alpha_pi[j]++; 

 

         } 

        } 

       } 

       else if (alpha_covered[i] == 0) { 

        for (j = 0; j < s; j++) 

        { 

         int tvar = ineq.ineq[j]; 

         if ((tvar > 0 && 

G_alpha[i]->record[tvar - 1]) || 

          (tvar < 0 && 

!G_alpha[i]->record[-tvar - 1])) 

         { 

          k_alpha_pi[j]--; 

 

         } 

        } 

        for (j = 0; j < n; j++) 

        { 

         if (G_alpha[i]->record[j]) 

          k_alpha[j]++; 

        } 

       } 

      } 

     } 

     for (i = 0; i < records_total_beta; i++) 

     { 

      if ((var > 0 && G_beta[i]->record[var - 1]) || 

       (var < 0 && !G_beta[i]->record[-var - 

1])) 

      { 

       beta_covered[i]--; 

       if (beta_covered[i] == 1) 

       { 

        for (j = 0; j < s; j++) 

        { 

         int tvar = ineq.ineq[j]; 

 

 

         if ((tvar > 0 && G_beta[i]-

>record[tvar - 1]) || 

          (tvar < 0 && 

!G_beta[i]->record[-tvar - 1])) 

         { 

          k_beta_pi[j]++; 

 

         } 

        } 

       } 

       else if (beta_covered[i] == 0) 

       { 
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        for (j = 0; j < n; j++) 

        { 

         if (G_beta[i]->record[j]) 

          k_beta[j]++; 

        } 

 

        for (j = 0; j < s; j++) 

        { 

         int tvar = ineq.ineq[j]; 

         if ((tvar > 0 && G_beta[i]-

>record[tvar - 1]) || 

          (tvar < 0 && 

!G_beta[i]->record[-tvar - 1])) 

         { 

          k_beta_pi[j]--; 

 

         } 

        } 

       } 

      } 

     } 

 

    } 

} 

 

   if (changemade) 

   { 

    s = (int)ineq.ineq.size(); 

 

    ineq.alpha_covered = records_total_alpha - records_left_alpha; 

    ineq.alpha_total = records_total_alpha; 

    ineq.beta_covered = records_total_beta - records_left_beta; 

    ineq.beta_total = records_total_beta; 

    t_ineqs.push_back(ineq); 

 

    for (i = 0; i < s; i++) 

    { 

     int var = (ineq.ineq[i] < 0 ? n - ineq.ineq[i] - 1 : 

ineq.ineq[i] - 1); 

     times_used[var]++; 

 

    } 

   } 

   else so_done = true; 

  } 

 

 

 

  for (i = 0; i < (int)ineq.ineq.size(); i++) 

  { 

   int var = ineq.ineq[i]; 

   if (var > 0) 

    available[var - 1] = true; 

   else 

    available[-1 - var] = true; 

  } 
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  if (outer_iter >= max_iterations_) 

  { 

   done = true; 

  } 

 

  // termination: reached max_number inequalities, no attribute-combination 

not used before, or no attribute improving coverage 

  // generated a sufficient number of inequalities 

 } 

 

 

 //first Pareto layer 

 

 int ts = t_ineqs.size(); 

 

 vector<bool> dominates(ts, true); 

 

 for (i = 0; i < ts; i++) { 

  for (j = 0; j < ts; j++) { 

   if (dominate_SATINEQ(t_ineqs[i], t_ineqs[j])) 

    dominates[j] = false; 

  } 

 } 

 for (int i = 0; i < dominates.size(); i++) { 

 

  if (dominates[i]) { 

   dominate_ineqs.push_back(t_ineqs[i]); 

 

  } 

 } 

 for (int i = 0; i < dominates.size(); i++) { 

 

  if (!dominates[i]) { 

   t2_ineqs.push_back(t_ineqs[i]); 

 

  } 

 } 

 

 //second Pareto layer 

 

 int ts2 = t2_ineqs.size(); 

 vector<bool> dominates2(ts2, true); 

 

 for (i = 0; i < ts2; i++) { 

  for (j = 0; j < ts2; j++) { 

   if (dominate_SATINEQ(t2_ineqs[i], t2_ineqs[j])) 

    dominates2[j] = false; 

  } 

 } 

 

 for (int i = 0; i < dominates2.size(); i++) { 

 

 

  if (dominates2[i]) { 

   dominate_ineqs.push_back(t2_ineqs[i]); 

 

  } 

 } 



	 63	

 
 for (i = 0; i < (int)dominate_ineqs.size(); i++) 
 { 
  ineqs.push_back(dominate_ineqs[i]); 
 } 
 
 ineqs.insert(ineqs.end(), preprocessed_ineqs.begin(), preprocessed_ineqs.end()); 
 
 //evaluation   
 for (int i = 0; i < ineqs.size(); i++) { 
  ineqs[i].eval = (double)ineqs[i].alpha_covered / records_total_alpha 
   - (double)ineqs[i].beta_covered / records_total_beta; 
 } 
 
 sort(ineqs.begin(), ineqs.end(), comp_SATINEQ_greater); 
 
 if (ineqs.size() == 0) 
  cout << "Cannot generate anything"; 
 return true; 
} 

 

 

2. The second function specifies whether inequality a dominates inequality b, and returns an 

appropriate value in both cases. 
 

 

bool dominate_SATINEQ(SATINEQ &a, SATINEQ &b) 
{ 
 if (a.alpha_covered == b.alpha_covered 
  && a.beta_covered == b.beta_covered) return false; 
 if (a.alpha_covered > b.alpha_covered 
  && a.beta_covered < b.beta_covered) return true; 
 if (a.alpha_covered == b.alpha_covered 
  && a.beta_covered < b.beta_covered) return true; 
 if (a.alpha_covered > b.alpha_covered 
  && a.beta_covered == b.beta_covered) return true; 
 return false; 
} 
 

 

 

3. The following function is the implementation of Naïve Bayes Classifier with adding new 

attributes, that are calculated based on the generated inequalities. 
 

bool SATDM::naiveBayesEQ(DMBINARYRECORD * record, DMBinaryData &data, int 
&classification) { 
 int i, j; 
 double best_cover_ratio = -DBL_MAX; 
 classification = -1; 
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 bool q_satisf; 

 double prob_small = 0.000000000001; 

 

 int gen_inq_length = 0; 

 for (int g = 0; g < data.getNoOfGroups(); g++) { 

  gen_inq_length += inequalities_[g].size(); 

 } 

 

 //prior probability contains amount of records for each group 

 vector<int>prior_probability(data.getNoOfGroups(), 0); 

 for (int i = 0; i < data.getRecordSet().size(); i++) { 

  ++prior_probability[data.getRecordSet()[i]->group]; 

 } 

 

 //for each group if record (un)satisfy inequality-> push 1(0) 

 vector<bool>record_sat_inq; 

 for (int g = 0; g < data.getNoOfGroups(); g++) { 

 

  for (i = 0; i < inequalities_[g].size(); i++) { 

 

   q_satisf = false; 

   for (j = 0; j < (int)inequalities_[g][i].ineq.size(); j++) 

   { 

    int var = abs(inequalities_[g][i].ineq[j]) - 1; 

 

    if ((inequalities_[g][i].ineq[j] > 0 && record->record[var]) 

|| (inequalities_[g][i].ineq[j] < 0 && !record->record[var])) 

    { 

     q_satisf = true; 

    } 

   } 

   if (q_satisf) 

    record_sat_inq.push_back(1); 

   else { record_sat_inq.push_back(0); } 

  } 

 } 

 

 //for each training record, (un)satisfy inequality for group it classified -> push 

1(0) 

 vector<vector<bool>>data_sat_inq(data.getRecordSet().size(), vector<bool>(0)); 

 

 for (int r = 0; r < data.getRecordSet().size(); r++) { 

  //int g = data.getRecordSet()[r]->group; 

  vector<bool> dr(data.getRecordSet()[r]->record); 

 

  for (int g = 0; g < data.getNoOfGroups(); g++) { 

   for (i = 0; i < inequalities_[g].size(); i++) 

   { 

    q_satisf = false; 

    for (j = 0; j < (int)inequalities_[g][i].ineq.size(); j++) 

    { 

     int var = abs(inequalities_[g][i].ineq[j]) - 1; 

 

     if ((inequalities_[g][i].ineq[j] > 0 && dr[var]) || 

(inequalities_[g][i].ineq[j] < 0 && !dr[var])) 

     { 

      q_satisf = true; 

      break; 
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     } 

    } 

    if (q_satisf) 

     data_sat_inq[r].push_back(1); 

    else { data_sat_inq[r].push_back(0); } 

   } 

  } 

 } 

 

 //for each group the amount of records of training data satisfied by record value  

 vector <vector<int>>likelihood(data.getNoOfGroups(), vector<int>(record-

>record.size(), 0)); 

 for (int k = 0; k < data.getRecordSet().size(); k++) { 

  for (int j = 0; j < (int)record->record.size(); j++) { 

   if (record->record[j] == data.getRecordSet()[k]->record[j]) 

    ++likelihood[data.getRecordSet()[k]->group][j]; 

  } 

 } 

 

 vector <vector<int>>likelihood_sat_inq(data.getNoOfGroups(), 

vector<int>(gen_inq_length, 0)); 

 

 //the same as likelihood, just for clauses  

 for (int k = 0; k < data.getRecordSet().size(); k++) { 

  int g = data.getRecordSet()[k]->group; 

  for (int j = 0; j < (int)record_sat_inq.size(); j++) { 

   if (record_sat_inq[j] == data_sat_inq[k][j]) 

    ++likelihood_sat_inq[g][j]; 

  } 

 } 

 

 for (i = 0; i < data.getNoOfGroups(); i++) 

 { 

  double ratio; 

  double likelh_pr = 1.0; 

  double likelh_pr_sat_inq = 1.0; 

 

 

 

  for (int j = 0; j < record->record.size(); j++) { 

   if (likelihood[i][j] != 0 && prior_probability[i] != 0) { 

    likelh_pr *= double((double)likelihood[i][j] / 

(double)prior_probability[i]); 

   } 

   else likelh_pr *= prob_small; 

  } 

 

  for (int j = 0; j < record_sat_inq.size(); j++) { 

   if (likelihood_sat_inq[i][j] != 0 && prior_probability[i] != 0) { 

 

    likelh_pr_sat_inq *= double((double)likelihood_sat_inq[i][j] / 

(double)prior_probability[i]); 

   } 

   else likelh_pr_sat_inq *= prob_small; 

  } 

 

  ratio = ((double)prior_probability[i] / (double)data.getRecordSet().size()) 

*(double)likelh_pr * likelh_pr_sat_inq; 
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  if (ratio > best_cover_ratio) 

  { 

   best_cover_ratio = ratio; 

   classification = i; 

  } 

 } 

 

 return (classification >= 0); 

} 
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Appendix 2 
  
This part includes distributions of records for data sets. 
 

1.  Wisconsin breast cancer data set 

 
 

2.  Chess (king-rook vs. king-pawn) data set 

 
 

3. Tic-tac-toe data set 

 
 

4. Molecular biology (splice-junction gene sequences) data set  
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5. Lymphography data set 
 

 
 

6. Nursery data set 
 

 
 
    

7. LED display domain data set 
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