

Master’s degree thesis

LOG950 Logistics

Developing a heuristic algorithm for classification of

problems with binary attributes

Anna Konovalenko

Number of pages including this page: 76

Molde, 24.05.2019

Mandatory statement
Each student is responsible for complying with rules and regulations that relate to

examinations and to academic work in general. The purpose of the mandatory statement is

to make students aware of their responsibility and the consequences of cheating. Failure to

complete the statement does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6

below.

1. I/we hereby declare that my/our paper/assignment is my/our own

work, and that I/we have not used other sources or received

other help than mentioned in the paper/assignment.

2. I/we hereby declare that this paper

1. Has not been used in any other exam at another

department/university/university college

2. Is not referring to the work of others without

acknowledgement

3. Is not referring to my/our previous work without

acknowledgement

4. Has acknowledged all sources of literature in the text and in

the list of references

5. Is not a copy, duplicate or transcript of other work

Mark each

box:

1.

2.

3.

4.

5.

3.

I am/we are aware that any breach of the above will be

considered as cheating, and may result in annulment of the

examination and exclusion from all universities and university

colleges in Norway for up to one year, according to the Act

relating to Norwegian Universities and University Colleges,

section 4-7 and 4-8 and Examination regulations section 14 and

15.

4. I am/we are aware that all papers/assignments may be checked

for plagiarism by a software assisted plagiarism check

5. I am/we are aware that Molde University College will handle all

cases of suspected cheating according to prevailing guidelines.

6. I/we are aware of the University College’s rules and regulation

for using sources

Personal protection

Personal Data Act

Research projects that processes personal data according to Personal Data Act, should be

notified to Data Protection Services (NSD) for consideration.

Have the research project been considered by NSD? yes no

- If yes:

Reference number:

- If no:

I/we hereby declare that the thesis does not contain personal data according to Personal

Data Act.:

Act on Medical and Health Research

If the research project is effected by the regulations decided in Act on Medical and Health

Research (the Health Research Act), it must be approved in advance by the Regional

Committee for Medical and Health Research Ethic (REK) in your region.

Has the research project been considered by REK? yes no

- If yes:

Reference number:

Publication agreement

ECTS credits: 30

Supervisor: Lars Magnus Hvattum

Agreement on electronic publication of master thesis
Author(s) have copyright to the thesis, including the exclusive right to publish the document

(The Copyright Act §2).

All theses fulfilling the requirements will be registered and published in Brage HiM, with the

approval of the author(s).

Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of

charge, make the thesis available for electronic publication: yes no

Is there an agreement of confidentiality? yes no

(A supplementary confidentiality agreement must be filled in)

- If yes:

Can the thesis be online published when the

period of confidentiality is expired? yes no

Date: 24.05.2019

Preface

This thesis is a final work as partial fulfillment for the degree of Master of Science in

Logistics Analytics in Molde University College. The thesis is researched and written from

December 2018 to May 2019. The work on this thesis has been challenging, but, at the

same time, interesting and exciting for me.

 I would like to thank Lars Magnus Hvattum, who supported me at each step of my thesis,

gave a lot of valuable comments and was very patient during whole semester.

At the same time, I would like to thank my parents for their care and belief in me.

Summary

This thesis focuses on analyzing and applying new techniques for the Satisfiability Data

Mining Algorithm (Glover 2008), a method for classification of problems with binary

attributes, and describes possible techniques that can be added to the SAT-DM algorithm to

improve the results of classification. In particular, this thesis shows how a strategic

oscillation approach, which was created to solve optimization problems, can be applied to

the SAT-DM method, and shows how using Pareto layers of solutions can influence the

accuracy of classification. In addition, this thesis describes how the technique of

classification with Naïve Bayes classifiers can be used with the SAT-DM algorithm. The

ideas presented are implemented and validated with real-world data sets. The results of this

research encourage further research into the SAT-DM algorithm.

	Contents	

1. Introduction .. 1

1.1 Background of the study and research problem ..1

1.2 Significance of the study ...2

1.3 Structure of the thesis ..2

2. Background .. 4

2.1 Basic definition of a classification problem ..4

2.2 Binarization procedure ..6

2.3 Basic theory of Boolean algebra ..9

2.4 Satisfiability data mining algorithm ..11

2.4.1 Clauses represented as inequalities ...12

2.4.2 Quasi Covering/Anti-Covering System ..13

2.4.3 Surrogate constraint ..14

2.4.4 Greedy construction ..14

2.4.5 Destruction ..17

2.4.6 Creating multiple inequalities and summarizing the SAT-DM method18

2.5 Naïve Bayes classifier ..19

3. Research method and questions ... 21

4. Experimental setup ... 22

5. New method ... 24

5.1 SAT-DM with strategic oscillation approach ...24

5.2 SAT-DM with Pareto principle ..30

5.3 SAT-DM and Naïve Bayes classifier ...33

6. Computational experiments .. 34

6.1 Data sets ..34

6.2 Method of evaluation ..35

6.3 Results ..36

7. Concluding remarks and further research .. 48

7.1 Concluding remarks ..48

7.2 Further research ..48

Reference list ... 49

Appendix 1 ... 52

Appendix 2 ... 67

	 1	

1. Introduction	

1.1 Background	of	the	study	and	research	problem	

Classification is one of the most broadly applied and important techniques for exploring data, with

a wide array of different applications. The core goal of classification is to determine which set of

categories/classes a new object belongs to, based on observations whose class is already known.

Generally, it is the process of predicting the class of given object. The definition of classification

came from Machine Learning, a field of study where the objective is to develop techniques that

allow computers to learn from data and make decisions without human assistance.

The volume of data is practically exploding by the year. Therefore, there is a growing need for

exploring data. A large proportion of the data is unstructured and classification is a vital concern

nowadays. Different methods have already been proposed to classify elements. Linear classifiers,

Naïve Bayes and logistic regression classifiers, tree-based classifiers, neutral networks, support

vector machines, and many other different classification algorithms have been developed (Wu et

al. 2008). However, it is difficult or even not possible to say which one is better than any other.

Methods have different classification accuracy and CPU (process) time requirements. According

to Dogan and Tanrikulu (2013) it depends on the nature of the available data, the type of problems,

the implementation techniques, and a wide variety of other factors.

In addition to the existing methods, more sophisticated techniques have to be developed to work

with classification. As mentioned above, the quality of classification and characteristics of the

algorithm depend on data types. Dougherty, Kohavi and Sahami (1995) found that a separate

discretization procedure could improve the performance of classifiers. This led to the idea of

creating a classification algorithm for binary data according to laws of Boolean algebra. The first

application of this idea was by Peter L. Hammer in his “logical analysis of data” (LAD) approach

(Alexe et al. 2007). This approach represents an important body of work in applying logic to data

mining, and provides a reference for solving classical satisfiability problems in Boolean algebra.

	 2	

Subsequently, Glover (2008) introduced a new heuristic method for binary data called

“Satisfiability Data Mining” (SAT-DM). Despite its similarity with the LAD approach, it adopts a

different perspective, includes advanced guidelines, and is very attractive for investigation.

Preliminary work from the simplest implementation of the SAT-DM method showed compelling

outcomes and motivates pursuing the SAT-DM framework further. (Gardeux, Hvattum and Glover

2014)

Therefore, the purpose of this study is to implement new features in the existing SAT-DM method,

which may lead to attaining better results than the original classification algorithm. Specifically,

this master thesis presents how techniques from solving optimization problems may be applied to

SAT-DM classification and how it is possible to involve classification guidelines from the widely

used Naïve Bayes classifier into the SAT-DM classifier.

1.2 Significance	of	the	study	

Classification has a wide range of applications in different spheres, e.g., sentiment analysis, speech

and handwriting recognition, medical diagnosis, document classification, risk assessment, image

classification and biometric identification. Classifiers can diagnose patients with a particular

disease, classify chemical compounds by their expected behaviors, classify drugs by their

efficiency in treatment of certain conditions, determine membership of biological organisms into

groups, or classify investments by expected profitability (Schlkopf and Smola 2002).

Moreover, this field of study could be applied in logistics sphere, e.g., classification of transport

types, materials in inventory stocks, logistics costs, or types of roads. Retailers, manufacturers,

and distributors can apply it to managing the huge number of items they must track. The

classification task is quite ubiquitous and necessary for a lot of industries.

1.3 Structure	of	the	thesis	

Chapter 2. Background

Provides insight into the most important terms used and the theoretical backdrop applied

throughout the thesis.

	 3	

Chapter 3. Research questions

This chapter provides an overview of the research questions.

Chapter 4. Experimental setup

Outlines the procedure for testing the research questions.

Chapter 5. New method

Outlines our contribution to this research field, providing pseudo code.

Chapter 6. Computational experiments

Presents the instances of data, the method of evaluation and the results of validation.

Chapter 7. Conclusion and future research

The concluding points of the research are presented. This chapter suggests some of the future work

that can proceed from this thesis, which could be useful for further research in this field.

	 4	

2. Background	
This section outlines all theoretical knowledge that is necessary for understanding the research

field. It consists of five subsections.

The first subsection covers the concept of classification in general terms, giving a small example

of classification, and explaining basic terminology.

The second subsection presents a preprocessing technique for classification that transforms data

from different types to binary. This technique will be applied to datasets intended for classification.

The third subsection presents which operations can be performed on Boolean transformed data. It

outlines the basic theory of Boolean algebra and standard notation, which are needed in the next

subsection.

The fourth subsection discusses the classification algorithm called Satisfiability Data Mining

(SAT-DM, Glover 2008). This algorithm was the inspiration for this thesis and the new concepts

developed here. This section also explains the general logic of the classifier that was presented in

the original source (Glover 2008), as well as a detailed description of all necessary information for

its implementation.

The fifth subsection presents a widely used and easy to build Naïve Bayes classifier, the principles

of which will be used in this research.

2.1	Basic	definition	of	a	classification	problem	

Consider the problem of classification in a simple example. Suppose there is a database of clients

of a travel agency with information on their ages and monthly incomes (Table 1). There are two

types of travel tours: a more expensive, comfortable tour and a cheaper tour for students.

The travel agency wants to send advertising to clients based on which tour they can afford.

Accordingly, two classes of customers are defined: Class 1 and Class 2.

	 5	

Table 1. Travel agency customer data

Customer Code Age Income Class

1 18 25 1

2 22 100 1

3 30 70 1

4 23 15 2

5 20 46 2

6 21 78 1

7 42 92 2

8 32 53 2

For clarity, the database is presented in a two-dimensional graph (axes: age and income), in the

form of a set of objects belonging to Class 1 (orange) and Class 2 (blue). The classification task is

to determine which class a new client belongs to, indicated in Figure 1 by a black point.

Figure 1. Objects from Table 1 in two dimensions

The collection of records/objects that are given in Table 1 are the training set. Each of these

records—each separate client—is assigned the given class that characterize it.

A training set represents a finite set of precedents that are known: the observation and class. The

training set in this case is shown in Table 1. A validation set is a set of records with new clients

for which class is to be determined, which in this case is the black point shown in Figure 1. A

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

In
co
m
e

Age

	 6	

characteristic or property of a client (such as income or age) is called an attribute. Characteristics

have types such as binary, categorical, or numerical.

Classification algorithms can be divided into two types: supervised and unsupervised.

Supervised classification (classification with a teacher) on the basis of a training set is required to

predict the class of a new record based on the other attributes of this record. In unsupervised

classification, there is no training data set and the classes of observations (outcomes) are unknown.

A good example of solving an unsupervised classification problem is a clustering method, where

classes have to be recognized/created in the process (Guido and Müller 2016).

The problem of this thesis is supervised classification with binary attributes.

	

2.2	Binarization	procedure	

The SAT-DM classification method examined by this thesis only allows for classifying objects

with binary attributes, however there is a procedure for extending it with to different data types.

Binarization procedure transforms data from different types to binary. It is a preprocessing

technique for classification that requires Boolean input data. The procedure is inspired by the

iterative discriminant elimination (IDEAL) algorithm. It is a heuristic method that was presented

at a conference by Moreira, Hertz and Mayoraz (1999). The method has significantly lower

running times with the comparable performance overall. The IDEAL algorithm provides the notion

discriminant—the divider that splits the whole attribute space into two subspaces, separating

observations from different classes. The IDEAL algorithm can be divided into three steps.

In the first step, separate discriminants are generated for each dimension. Based to the dataset of

clients of a travel agency (Table 1), Figure 2 contains all generated discriminants for both

dimensions: age (x-axis) and income (y-axis).

	 7	

Figure 2. Binarization procedure, step 1

In general, the approach to creating discriminants differs by data types:

è Real data: generate a discriminant between each pair of values from different classes.

è Integer/binary data: generate a discriminant for each value, except all objects with the same

or greater values of the same class.

è Categorical data: generate a discriminant for each category except one category (selected

arbitrarily).

è Missing data: generally, as above, but one more discriminant added.

In the second step, the set is reduced using the discriminant elimination procedure. Discriminants

are removed iteratively, as long as a consistency level (minimum number of discriminants, which

separates any two objects from different classes) is maintained (Figure 3). The observations of

each class must be in a separate section and not include any records from another section.

0

20

40

60

80

100

120

15 20 25 30 35 40 45

	 8	

Figure 3. Binarization procedure: step 2

Finally, in the third step, the input data set is binarized using the obtained solution. At the end of

the second step, four discriminants are left: red (R), green (G), blue (B) and yellow (Y) lines.

For each discriminant on the x axis, if a record lies on the right side of the discriminant line, the

value derived is 1, otherwise it is 0. For a discriminant on the y axis, records above the line are

derived as 1, otherwise as 0.

The last column of Table 2 contains binarized values for the dataset in Table 1.

Table 2. Binarization procedure: step 3

Customer Code Age Income RGBY

1 18 25 0001

2 22 100 1101

3 30 70 1101

4 23 15 1100

5 20 46 1001

6 21 78 1101

7 42 92 1111

8 32 53 1111

0

20

40

60

80

100

120

15 20 25 30 35 40 45

	 9	

IDEAL is a destructive algorithm, which generates discriminants and then removes them in the

course of execution. It is also possible to assign a weight to each discriminant, which allows one

to manage which discriminant will be the next candidate (the one with the lowest weight) in the

elimination process.

2.3	Basic	theory	of	Boolean	algebra			

Using this binarization procedure, all attributes of a dataset can be transformed into binary values.

This allows for building classification guidelines using laws of Boolean algebra, the branch

of algebra in which the values of variables are binary.

This section presents further definitions from the basic theory of Boolean algebra that are directly

used in the SAT-DM algorithm.

A Boolean variable is a variable that can accept a value from the set of Boolean values B = {0,1}.

The Boolean value 0 can also be denoted by FALSE, and the Boolean value 1 as TRUE.

A literal is a Boolean variable or the negation of such a variable. Negation is a logical complement

that is interpreted as being 1 when a variable is 0, and 0 when it is 1. The symbol ¬ represents the

negation operator (Table 3).

Table 3. Truth table of the negation operator

A clause is a disjunction of literals. It is a logical operator, which is interpreted as TRUE if at

least one of the literals is TRUE, and FALSE otherwise. The symbol � represents the

disjunction operator (Table 4).

" ¬"

0 1

1 0

	 10	

A Boolean expression is an expression that produces a Boolean value. Any Boolean expression can

be presented in conjunctive normal form (CNF). A Boolean expression is in CNF if it is a

conjunction of clauses. A conjunction is a logical operator that is interpreted as TRUE only if all

of its clauses are TRUE, and FALSE otherwise. The symbol � represents the conjunction

operator (Table 4).

Table 4. Truth table of disjunction and conjunction operators

" % " ∨ % 				" ∧ %

0 0 0 0

0 1 1 0

1 0 1 0

1 1 1 1

For example, the following formulas that use the Boolean variables), *, + and , are in CNF:

•) ∨ ¬	*

• () ∨ 	*) 	∧ (+ ∨ ¬	,)

• () ∨ ¬	*) 	∧ (+ ∨ 	,	 ∨ ¬*) ∧ *

Having presented the theoretical terms, it is helpful to look at the important problem of Boolean

algebra, which is at the core of the SAT-DM classifier.

There are a lot of practical situations in which it is necessary to satisfy several potentially

conflicting constraints. For example, in daily life when some human tries to make a decision

consistent with different rules, or when a machine needs to confirm that a hardware/software

system works correctly with its overall behavioral constraints. All such situations have variables

whose values have to be determined, and constraints that these variables must satisfy (Malik and

Zhang 2009). This leads to the definition of Boolean Satisfiability Problem (SAT), one of the

essential problems in computer science, artificial intelligence, bioinformatics, cryptography, etc.

A wide range of practical applications are using SAT, from checking of pedigree consistency to

software testing (Marques-Silva 2008). The success of existing SAT solvers motivates the

development of more sufficient solvers and extend usage in applications.

	 11	

In theoretical terms, a formula/Boolean expression /("0, "2, … "4) that depends on Boolean

variables is satisfiable if it is possible to find a solution "∗, such that / "∗ = ,+78. SAT checks

whether the given formula is satisfiable.

Interestingly, all problems can be classified based on time or space complexity. The Boolean

satisfiability problem is first proven to be a NP-complete problem (Cook 1971). NP-complete

problems are those with a “Yes”/ “No” answer from the NP class, to which any other task from

the class can be reduced in polynomial time. A NP class is the set of problems of related resource-

based complexity.

2.4	Satisfiability	data	mining	algorithm	

Having reviewed all theoretical knowledge, it is time to introduce the classification algorithm that

is the subject of this research.

Satisfiability Data Mining (SAT-DM) is a new method for binary data classification (Glover

2008). The method is based on generating a group of logical clauses in binary variables for each

class. A new record with unknown membership is classified according to comparing the proportion

of the clauses it satisfies for that class to the proportion it satisfies for other classes.

The problem addressed is as follows. Assume :;, <	 ∈ >	is a set of classes, consists of records of

class <	in binary representation "? = ("0? , "2? …	"4?),	@	 ∈ :;, A	 ∈ B	(set of binary attributes). The

mechanism is to build clauses for each class, :;, <	 ∈ >,	and, based on number of satisfied clauses,

classify the vector.

Suppose that :C	is a set of objects of the same class for which representative inequalities are

created, and :D	describes all objects of supplementary classes. The purpose of the SAT-DM

method is to generate clauses that are satisfied by the elements of :C	and at the same time violated

by elements of :D.

	 12	

2.4.1	Clauses	represented	as	inequalities	

The SAT-DM method (Glover 2008) begins from a compact representation of a clause (Section

2.4)—an inequality.

Let B0be a subset of B associated with unnegated variables ("E	= 1) and BF	- subset of B associated

with negated variables ("E = 1). A clause states:

"EE	∈	GH 	∨ 	 "EE	∈	GI 						(2.1)

As mentioned above, the SAT-DM classification method determines the number of clauses it

satisfies for a new record. However, it is inconvenient to work with clauses, so Glover suggests

another representation of them.

Clause can be written as linear 0-1 inequality, where negated variables "E are seen as (1 − "E).		In

addition, by means of analogy between the logical operator ∨ and the arithmetic operator +, a

condition of satisfying the logical clause "0 ∨ ¬"2 can be written as a linear inequality: "0 +

1 − "2 ≥ 1	(Hooker 1992).

In terms of inequalities, the aim of the SAT-DM method is to identify instances (2.2) that are

satisfied by all (or at least a valuable part) of the elements "?, @	 ∈ :C.

 ("E: N	 ∈ 	B0) +	 	 (1 − "E): N	 ∈ 	BF ≥ 1					(2.2)

To satisfy an inequality, a record needs to have at least one attribute either from B0 with the

value of 1 or from BF with the value of 0.

As noted earlier, the SAT-DM method attempts to find inequalities that are not only satisfied by

records of :C, but are also violated by records of :D. Accordingly, records of :D	 have to be

satisfied by:

("E: N	 ∈ 	B0) +	 	 (1 − "E): N	 ∈ 	BF ≤ 0					 (2.3)

Summarized, the SAT-DM algorithm consists of the following steps:

	 13	

1. Generate a set of inequalities for each class :;, <	 ∈ >. The inequalities for :;

have the form of (2.2 - 2.3) with statement :C = :;,	 :D = complement of :;.

2. The set of inequalities for :;	is composed by building solutions for an associated SAT problem.

Each solution is an inequality that becomes as a separator for records from :; class and other

classes. Also, each inequality consists of combination of properties of the records in :;.

3. A new record is classified according to the proportion it satisfies for each class :;, <	 ∈ >.

2.4.2	Quasi	Covering/Anti-Covering	System	

With the purpose of simultaneously satisfying a large number of inequalities by records from :C

(2.2) and violating by records from :D (2.3) with using a small number of variables, Glover (2008)

presents the Quasi Covering/Anti-Covering (QC/AC) system, which is shown below. In that

system, inequalities are satisfied by elements of :C	(the covering problem) and are violated by the

elements from :D (the anti-covering problem). Variables %0E, %FE, N	 ∈ B are binary variables,

related to unnegated and negated attributes (respectively), and determined if an adjoining attribute

is valuable in inequality.

P@A@Q@R8	 ((%0E + %FE) ∶ N	 ∈ 	B)

Subject to

"E
?	%0E: N	TB0 +	 "E

?	%FE: N	TBF ≥ 1, @ ∈ :C	 (2.4)

"E
?	%0E: N	TB0 +	 "E	

? 	%FE: N	TBF ≤ 0, @ ∈ :D (2.5)

 	%0E + %FE ≤ 1, N	 ∈ B (2.6)

 %0E, %FE ∈ 0,1 , N	 ∈ B (2.7)

This model is supposed to find any solution that conforms to these constraints (2.4 - 2.7) as a

strongly satisfying solution. Within the context of SAT-DM, this system demonstrates that this

asymmetric form is beneficial in separating :;, <	 ∈ > from other classes.

	 14	

However, the task of finding a group of inequalities that covers all of records of :C and at the same

time does not cover records of :D (2.4-2.7) is most likely to be unfeasible for real data. This means

it’s necessary to specify a rule for creating inequalities—a method that allows the finding of

inequalities in a simplified form that maximizes the coverage of :C and minimizes the coverage

of :D.

2.4.3	Surrogate	constraint		

The Quasi Covering/Anti-Covering system raises the question: how to produce inequalities that

include as many records as possible of :C and exclude as many records as possible of :D.

Consequently, it can be interpreted as a covering problem.

To deal with covering problems, Glover (1968) proposes the use “surrogate constraint” as a

heuristic method. In general, a surrogate constraint is an inequality that is designed for taking

useful information that cannot be taken from parent constraint individually. It is generated by

summarizing the right- and left-hand side inequalities it consists of. A surrogate constraint yields

stronger relaxations for its components. This method is useful in a lot of optimization models.

This heuristic method seems very useful for creating inequalities, and is applied in the SAT-DM

method. For implementation, two surrogate constraints have to be generated (for :C	and	:D) (2.4

- 2.5). For further explanation, assume that surrogate constraint coefficients are presented in the

vectors XY, XZ:

 XY =<[0, [2 …	[4	>, A	 ∈ B (2.8)

where [E = 	 ("E
? ∶ @	 ∈ 	:C)	 , N = 1. . B

XZ =	<\0, \2 …	\4	>, A	 ∈ B (2.9)

where \E = 	 ("E
? ∶ @	 ∈ 	:D)	 , N = 1. . B

2.4.4	Greedy	construction	

Having described these general concepts of the SAT-DM method and the surrogate constraint

approach, it is time to present the process of generating an inequality.

	 15	

An inequality is built with a “constructive heuristic”. In general terms, this is defined as:

• starting from scratch, values are iteratively assigned to the variables of a mathematical

formulation of the problem

• the procedure is repeated until a complete solution is obtained

A “construction algorithm" is formed by “greedy” algorithms, a paradigm in which locally optimal

choices are made at each stage. In the context of the SAT-DM method, this heuristic method looks

like this: the specific parameter R stores the amount/proportion of records :C sufficient to cover

this class, and defines whether the process of building the inequality is complete. At each step, an

attribute is added to the inequality, which has the best value for an inequality.

The simplest way of selecting the best candidate is to find the maximum difference between

surrogate constraint coefficients (2.8) for unnegated literals (attributes which are equal to 1) :

\8X,][A^@^[,8 = [+_Q[" [E −	\E , N = 1. . B (2.10)

The asymmetric way of selecting the best candidate for negated literals (attributes which are equal

to 0), based on the number of records left uncovered, is:

\8X,][A^@^[,8 = [+_Q["(:C` −	[E − :D
` − \E), N = 1. . B (2.11),

where :C` −	number of uncovered records from :C by generated inequality,

 :D
` −	number of uncovered records from :D by generated inequality.

Referring to the example of a classification task in Section 2.1 and its binarization in Table 5, let

us build a couple of inequalities to see the general idea.

Table 5. Example of training dataset for building inequalities

Customer Code Binary data Class

1 0001 1

2 1101 1

3 1101 1

4 1100 2

5 1001 2

	 16	

6 1101 1

7 1111 2

8 1111 2

1. Generate first inequality

XY =<3, 3, 0, 4> according to (2.8)

XZ =<4, 3, 2, 3> according to (2.9)

 Best candidate from unnegated literals = argmax(-1,0,-2,1) (from 2.10)

 Best candidate from negated literals = argmax(1,0,2,-1) (from 2.11)

It seems that the best option is to add a third negated literal to the inequality (2). It covers all

records from :C, so the process of generating inequalities can stop.

2. Generate second inequality

The next candidate is the fourth unnegated literal (1). As in the previous example, it covers all

records from :C, so the process of generating inequalities can stop.

Having presented these simple examples, a process of generating inequality in general terms can

be addressed.

To know which attribute is added and which is the next candidate to add, the next sets are defined.

BF stands for the value of the original B, :CF, 	:D
F	 denotes the original |:C|, |:D|	[A^		XYF, XZF

denotes the original form of XY, XZ.	 The algorithm starts with B` = BF, :C` = :CF, :D
` =

		:D
F	, XY` = XYF, XZ

` = 	 XZ
F.		In each iteration, the best candidate is added to the inequality by removing

it from the current B and updating :C` , :D` . Subsequently, the current B	includes the indexes of the

not-selected attributes, and :C` , :D` includes the numbers of records that are not covered by the

current generated inequality. The surrogate sum coefficients XY` and XZ` store (2.8-2.9) structures

and can be determined by the number of uncovered vectors for the current iteration. The simplest

rule for selecting the best candidate that was described in (2.10-2.11), but a more sophisticated

guideline could be selected. Sets BF and B0	are created to distinguish non-negated or negated

attributes, which are added to the inequality and are empty in the beginning. The surrogate sum

	 17	

rule uses the index e∗ 	∈ 0,1 	and the index N∗ ∈ B. The construction proceeds until no more

candidates are left or a sufficient number of records R is covered. fC =<]C0,]C2 …]C4	>, A	 ∈

|:C| and fD =<]D0,]D2 …]D4	>, A	 ∈ |:D| store the number of records the current generated

inequality covers.

Figure 4. Generating an inequality

	

2.4.5	Destruction	

It is possible to use more intelligent guidance to build inequalities. The idea is to try to modify an

existing solution by making small changes to the solution structure as more high quality

inequalities could be found. In practice for the SAT-DM method, a destruction phase for building

inequality processes could be added. It is applied by successively removing selected attributes

from generated inequalities.

When in construction, the aim is to find the attribute that covers a maximum number of records

from :C and a minimum number of records from :D; for the destructive phase, it is the opposite.

The destructive process is performed until the defined threshold is achieved, i.e., the minimum

amount/proportion of records :C required by the inequality is covered.

	 18	

Additionally, to reduce the number of inequalities or simplify the logic, the inequalities can be

reduced to a prime implicant. This can be covered by a general inequality, in the sense that the

generated subset of prime implicants is also satisfied by the same records.

Example: suppose A = (1100) and B = (0101) are the two records and two inequalities were

generated, such as]0 = "0 + "2 ≥ 1	[A^]2 = 	"0 + "g ≥ 1,	where each of them satisfies both of

the records. So,]0 could be reduced to]0= "2.

2.4.6	Creating	multiple	inequalities	and	summarizing	the	SAT-DM	method	

To avoid creating the same inequality several times and, thereby introducing a combination of

attributes (literals) not previously checked, the SAT-DM method can be extended by introducing

a simple memory structure to oversee the process. It general terms, the next inequality is started

with a combination of two literals that have not been previously combined.

Summary of the steps of the SAT-DM method:

1. Find the attribute that maximizes the coverage of :C and also minimizes the coverage of :D

using surrogate constraints rules.

2. Remove the records satisfied by the generated inequality and repeat the procedure, until no more

records are left to be covered.

3. Generate the inequality corresponding to the selected attributes from step 1.

4. Cut/reduce the inequality to its prime implicant, if possible.

5. Add the current inequality into the set of inequalities.

5. Cut the inequality through a destruction phase, if possible, and add the inequality into the set of

inequalities.

6. Repeat step 1 by excluding the first inequality (to avoid generating similar inequalities).

6. Finish the generation of inequalities when all records have been covered or when the number

of inequalities reaches some reasonable threshold.

7. To classify, compare the proportion of satisfied or violated clauses and make a decision about

the class for each record (Glover 2008).

The steps involving the destruction or reduction to prime implicants are optional.

	 19	

2.5	Naïve	Bayes	classifier		

The Naïve Bayes classifier an approach to classification. It is simple in implementation and fast in

computation, which is useful for large data sets. Despite the simplicity, in many cases the classifier

provides reasonable accuracy and can compete with more sophisticated algorithms. Therefore, it

is attractive to investigate this technique and connect it with the SAT-DM method.

Referring back to the classification example dataset in Table 1, which consists of clients of a travel

agency (Section 2.1), each record contains attributes of a client: income and age. The Naïve Bayes

classifier can used to classify objects based on such attributes. The classifier is called “naïve”

because it assumes that the existence of a particular attribute in a given class is unrelated to the

existence of any other attribute. In addition, all attributes have the same influence on the outcome

of the classification. For example, income and age values have equal importance and are considered

as independent. A new client is placed to the class with Maximum Posterior Probability:

<h = [+_Q[";∈i	j(<|") (2.7),

where > is the set of classes and " is the object of classification.

To define the Maximum Posterior Probability, the classifier is based on Naïve Bayes theorem of

probability. The theorem is stated mathematically in the formulas 2.8- 2.9 and allows one to find

the probability of event c happening, given that event d has occurred. Event d is the hypothesis and

c is the evidence.

j] ^ =
j(^|])×j(])

j(^)
			(2.8)

 Posterior = m?;nm?oppq∗rs?ps
nt?qn4un

 (2.9)

• j(]) is the prior probability of]. It can be directly estimated from the training set, where

representativeness is the relative frequency of objects belonging to the class c.

• j] ^ is the conditional probability of d given c, the posterior probability.

• j(^|]) is the conditional probability, the likelihood of] given ^.

• j ^ 	is the probability of d.

	 20	

The theorem is used for classification in the following way: with the notation given in Section

2.3, where < ∈ >,>	is a set of classes, a classified record is in binary representation " =

("0, "2 …	"4),	A	 ∈ B	is a set of binary attributes (define as attributes in Naïve Bayes), the formula

derived from 2.8 is as follows:

j < "0"2. . "4 =
j "0"2. . "4 < 	j(<)

j("0"2. . "4)
																				(2.10)

Classifiers have a goal of defining Maximum Posterior Probability relating to (2.10),

< = [+_Q[";∈ij < "0"2. . "4 .		As all attributes are independent, it is possible to rewrite the

numerator of 2.10 in the following way:

j "0"2. . "4 < 	j < 	= 	j "0 < j "2 <"0 . . "4 <"0"2. . "4 	j <

= 	j "0 < j "2 < . . j "4 < j < = j "4 <
?∈0..4

	j < 						(2.11)

The denominator does not change for all entries in the dataset. Therefore, the class of an object is

determined (Cichosz 2015) by:

< = [+_Q[";∈ij < "0"2. . "4 = 	[+_Q[";∈i j "? <
?∈0..;

	j < 					(2.12)

Interestingly, if one of the probabilities is equal to 0 (2.12), the result will be distorted. The solution

is to substitute probabilities	j "? < , @ ∈ 1. . < by log-probabilities using logarithmic properties:

< = [+_Q[";∈i j "? < 	j < =
?∈0..;

	[+_Q[";∈i	ln	(j "? < ∗ j <)
?∈0..4

= [+_Q[";∈i ln j "? <
?∈0..4

+ ln j <

= 	[+_Q[";∈i ln	j "? <
?∈0..;

+ ln j < 																													(2.13)

	 21	

3.	Research	method	and	questions	

The primary method for this research is empirical validation based on computational experiments.

The purpose of this research is to find a means of improving the SAT-DM method.

The following research questions need to be answered:

1. Is it possible to build inequalities (clauses) in a more sophisticated way?

The original implementation of the method (Glover 2008) showed that the quality of generated

inequalities, which are the basis of the classification method, need to be improved. This may be

done by reducing the similarity of inequalities, increasing the number of generated inequalities,

and applying some advanced techniques.

2. Is it effective to select inequalities for use in classification based on a Pareto principle?

Previously, classification was preformed using all generated inequalities. Classification might also

be performed using a subset of inequalities, which have been selected based on an additional

characteristic. The concept of a Pareto layer, which will be explained in a future section, is a good

alternative for selecting a final set of inequalities.

3. Is it reasonable to combine the SAT-DM method with existing, broadly used classifiers?

A lot of different classifiers are available these days. After comparing the SAT-DM classification

method with existing ones, there may be a case for combining approaches, classifying objects not

just by comparing the proportion of clauses they satisfy/violate for each class, but by involving the

guidance of a Naïve Bayes classifier.

	 22	

	4.	Experimental	setup	
To validate the performance and reliability of results obtained from a classification model, special

evaluation methods exist: holdout validation, k-fold cross-validation, leave-one-out cross

validation, and repeated random sub-sampling validation. Any of these can be used to measure the

accuracy of the results of classification, but for some data sets one of the evaluation methods will

be preferable.

Typically, the k-fold validation technique is applied. It is a method of evaluating an analytical

model and its behavior using independent data. In the model, the available data is divided into k

parts. Then, the model is trained using k − 1 parts of the data, and the rest of the data is used for

validation. This procedure is repeated k times, where each time processes a different part. As a

result, each of the k parts of data is used for validation. Figure 5 presents an example of data

splitting in 3-fold cross-validation.

Figure 5. Data splitting in 3-fold cross validation

In the end, an assessment of the effectiveness of the selected model with the most uniform use of

available data is generated. A problem with using k-fold validation is that the k repetitions are not

independent of one another, and data that is used for training is also used for validation, making

the estimator biased (López, Fernández and Herrera 2014). Performing multiple k-fold cross-

validations may lower this bias and give a statistically better estimate. This could be done by

mixing up observations in data sets and generating independent data sets. When repeating k-fold

cross-validation, the average result of all of the k-fold cross-validations is taken.

	 23	

For some datasets, a specific k has to be chosen, necessitates another evaluation method: leave-

one-out cross-validation is a case of k-fold cross-validation in which the number of folds is equal

to the number of instances in the dataset. If it is a dataset with n observations, then the training set

contains n-1 observations and the validation set contains just 1 observation. This process is repeated

n times for each data point.

	

 	

	 24	

5.	New	method	
This section provides techniques that answer the research questions. The first subsection describes

the strategic oscillation approach and how it can be used in building inequalities. The second

subsection presents a way of selecting high quality inequalities of a general set of inequalities. The

third subsection outlines a method of classification involving the guidance of the Naïve Bayes

classifier.

5.1	SAT-DM	with	strategic	oscillation	approach		

Strategic oscillation (Glover and Kochenberger 1996) was introduced to extend the SAT-DM

framework algorithm and is addressed here to answer to the first research question: Is it possible

to build clauses in a more sophisticated way?

Originally, the strategic oscillation technique was created to solve optimization problems. This

technique builds a solution using the oscillation between feasible and infeasible regions (Figure

6). As demonstrated by Glover and Kochenberger (1996), moving into the infeasible region is a

good way of investigating the solution space and improving the quality of the solution. In addition,

it forces the search for a solution into new areas.

This approach consists of two phases. In the first phase, it moves from the feasible to the infeasible

space by incrementing the depth parameter to the threshold, improving the solution. In the second

phase, it proceeds backward from the boundary into the feasible space. This could be described as

the destructive phase.

Figure 6. Strategic oscillation process (Source: Based on Glover and Kochenberger 1996)

	 25	

Recall that in the original SAT-DM method greedy construction is used for building an inequality.

After the inequality has covered sufficient number of records of :C	(define	by	|), it moves to the

destruction process (Glover 2008). Afterwards, the generated inequality is saved and the process

of building a new inequality starts from scratch. For the SAT-DM method, the strategic oscillation

approach is to continue the search for new solutions (inequalities) after destruction by

building/continuing construction for the previously destroyed inequality. It allows for the

generation of more inequalities to explore the solution space. The process proceeds until the

number of iterations of strategic oscillation reaches a defined threshold. This idea is presented in

Figure 6, where the c and d parameters define thresholds (amount of covered records of	:C) for

construction and destruction steps, respectively. All extremums (Figure 7) can be stored as a

separate inequality in a set of inequalities.

Figure 7. Strategic oscillation for the SAT-DM method

To avoid creating the same inequality several times and, therefore, introducing a combination of

attributes (literals) not previously checked, the approach of Tabu Search is used (Glover and

Laguna 1997). This technique will allow for the production of a different inequality. The word

“tabu” comes from the Polynesian language Tongan, used by the aborigines of Tonga, to indicate

things that cannot be touched because they are sacred.

Tabu Search is a memory-based method where one of the main components is to use adaptive

memory. This strategy is allowed to perform an extensible search. It has a “tabu criterion” for

	 26	

which the basic job is to not visit the same solution more than once. The memory structures can

roughly be divided into three groups: short term (the list of solutions recently used), intermediate

term, and long term (Glover and Løkketangen 2005).

For the SAT-DM algorithm, the approach of Tabu Search allows one to avoid the problem of

generating the same inequalities several times. When an attribute is chosen to generate an

inequality, it is given a “tabu tenure”—the number of iterations for which the value of that attribute

is tabu.

Additionally, separate tabu tenures can be applied for the construction and destruction phases, to

make oscillation more productive. This allows for the generation different inequalities in both

phases for each iteration. Tabu tenures are applied to attributes and elements of inequality, and

consists of a minimum number of strategic oscillations in which a literal is not allowed to be used.

In the implementation of the SAT-DM method in this thesis, tabu tenure for construction phase is

linearly dependent on a strategic oscillation iteration and a number of attributes, what allows

avoiding construction the same inequality several times, and therefore explicitly introduce a

combination of attributes (literals) not previously tested.

For the destruction phase of SAT-DM in this paper, tabu tenure is defined to be quite short—one

iteration of strategic oscillation—which creates a different destruction effect in each iteration.

The preprocessing step can be performed before building inequalities using a strategic oscillation

process. This procedure identifies valuable attributes. In particular, if an attribute covered a

sufficient number of records of :C, it could be placed as a separate inequality with a size equal to

1. The corresponding attribute, which has been added to the preprocessed inequality, is ineligible

for subsequent inequalities. However, a strategic oscillation procedure can also find inequalities

with one attribute (which are received from the preprocessing step). Applying the preprocessing

step helps to find inequalities with one attribute quickly, putting them into a separate set of

inequalities and reducing the time of execution.

	 27	

The following is pseudocode describing this strategic oscillation process for SAT-DM:

Figure 8. Pseudocode of the SAT-DM algorithm with a strategic oscillation approach

This method aims to generate inequalities for :C and supplementary group :D. The process of

generating inequalities proceeds until the threshold, max_number_of_iterations, is achieved in the

loop (variable outer_iter is an iterator). inequality is a structure that stores selected literals for this

inequality, as well as the number of records that are covered by the inequality for :C and the

supplementary group :D, and a total number of records in the :C and	:D groups. Tabu tenures are

represented by the variables tabu_status_c and tabu_status_d. They store the number of the

iteration during which it is already permitted to add or remove (respectively) an attribute after

adding it to inequality. The variables sc_alpha and sc_beta store surrogate constraint coefficients

for groups with the structure of the original SAT-DM method, updating with each iteration.

records_left_alpha, records_left_beta control how many records are left uncovered, while

alpha_covered and beta_covered store the number of inequalities each record is covered by.

Each inequality is generated using the strategic oscillation procedure. The stopping point for the

procedure occurs when the variable iteration_so is greater than the number of iterations for the

	 28	

strategic oscillation approach defined in max_number_of_so, or when construction/destruction is

unsuccessful. Also, the process of generating inequalities will be finished when the construction

step cannot add any new attributes for an inequality.

The construction step is described in this pseudocode:

Figure 9. Pseudocode of the construction step

Construction of an inequality proceeds until a satisfying number of records for :C is covered.

If this is the first iteration of the strategic oscillation procedure, a candidate for establishing an

inequality must be checked for unavailability according tabu restriction. This implementation

checks the value of tabu, which consists of the list of attributes which were previously used. The

parameter max_records_left_construction contains the maximum number of records in G~ that can

	 29	

be left uncovered by generated inequality. The variables eval_best, attribute_best help to

determine the best candidate for addition to an inequality, and are empty in the beginning.

The evaluation process of a candidate to add to an inequality is based on 2.10-2.11 (Glover 2008).

After the construction step, the algorithm begins the destruction step (Figure 10). The main idea

of this step is described in Section 2.5.5. The destruction step executes so long as a sufficient

number of records for :C are still covered.

This pseudocode describes the destruction step:

Figure 10. Pseudocode of the destruction step

	 30	

The variables sc_alpha_destr, sc_beta_destr contain surrogate constraint coefficients for records

covered by one inequality. This allows for easy removal of a candidate and updating of the

inequality. The implementation of all pseudocode provided in this section is presented in

Appendix 1. The results of the implementation are shown in Section 6.2.

5.2	SAT-DM	with	Pareto	principle	

To generate a final set of inequalities, Glover (2008) suggests storing all resulting inequalities after

construction and destruction phases and using all of them for classification. One of the research

tasks (inspired by the second research question) in this master thesis is to select the final set of

inequalities from all gradually generated inequalities by applying a sophisticated rule, which is

explained below.

The SAT-DM method could be described as a bi-objective problem: maximizing the coverage of

a particular class (:C) and minimizing the violation of a supplementary group (:D). In the process

of building the solution (inequality), this approach is applied. However, some of generated

inequalities are more optimal than others. In such cases, it is valuable to use the Pareto approach

to find those optimal inequalities (Bandaru, Amos and Kalyanmoy 2014).

With this approach, the sequence of Pareto optimal solutions (inequalities) is generated. These are

non-dominated solutions, from which it is possible to make a good decision in the process of

choosing the end solutions.

Suppose � = {80, 82, … , 8Å} is a set of generated inequalities, É 8 /	ℎ(8) are functions, given the

amount of :C/:D	records respectively, covered by an inequality 8.

The set of generated points is represented with the formula (with an example plot shown in Figure

11):

É(80 , ℎ(80);	É(82), ℎ(82); …		; 	É(84), ℎ(8Å)}

The Pareto optimal solutions are selected by applying the rule: Q["	É � ,Q@A	ℎ(�).

	 31	

A curve consisting of Pareto optimal solutions is called a “first Pareto layer”. It is a set of

inequalities are non-dominated solutions by values of É 8 and ℎ 8 	in appropriate max-min

directions (the red points in Figure 11).

However, it could be useful to include several Pareto layers in situations where the first Pareto

layer contains very few solutions (inequalities). After including the first one, the second Pareto

layer of the solutions remaining after having excluded the first Pareto layer (the pink points in

Figure 11) may be included, continuing to include more layers as needed. The number of Pareto

layers used influences the number of inequalities in the final set: more layers leads to more

inequalities.

Figure 11. Pareto fronts in terms of inequalities

The implementation of this idea is presented in Figure 12.

Function Pareto Layer (PL) has a Boolean outcome and received inequalities x and y as parameters.

The function specifies whether inequality x dominates inequality y, and returns an appropriate

value in both cases.

	 32	

Figure 12. Function for determining the first Pareto layer points.

	

In the main method (function SAT, Section 5.1), function PL is applied for all generated

inequalities to find dominant solutions (inequalities). Also, a set of preprocessed inequalities can

be taken as a separate layer. The results of implementation are presented in the Section 6.3.

	 33	

5.3	SAT-DM	and	Naïve	Bayes	classifier	

One of the research tasks (inspired by the third research question) in this thesis is to combine the

Naïve Bayes method with the SAT-DM classifier. Recall that in the origin paper (Glover 2008) a

new record with unknown membership is classified by comparing the proportion of the inequalities

it satisfies for that class to the proportion it satisfies for other classes. The task in this research is

to use the inequalities in a better way when classifying (not comparing the proportion) using the

Naïve Bayes classifier.

The approach is to extend attributes, specifically to add values of satisfying/non-satisfying (1/0

respectively), generated inequalities.

For attributes of a classified record x: = "0, "2 …	"4 ∪ XnH, Xnà, …	, Xnâ		 , A	 ∈ B, B- a number

of original attributes, {80, 82, … , 8Å} is a set of generated inequalities.

 Xnä is a binary value indicating the satisfactory/unsatisfactory coverage status of an inequality 8?

(Figure 13).

Figure 13. Defining new attributes in the Naïve Bayes classifier

Thus, the classification is based on the Naïve Bayes classifier and the given attributes that are

calculated based on the inequalities generated.

In addition, the original attributes could be removed and classification may be done just with

XnH, Xnà, …	, Xnâ 	attributes for the records. The results of classification with and without the

original attributes are presented in the next section.

	 34	

6.	Computational	experiments	

6.1	Data	sets	

The data sets are taken from UC Irvine’s open-source Machine Learning Repository, which was

created to help the machine learning community (Machine learning community 2017). The

validation process uses data sets of different nature, which allows for analyzing the results of

classification more objectively.

1. Wisconsin breast cancer data set

This data set was produced by Dr. William H Wolberg of the University of Wisconsin–Madison

Hospitals (Mangasarian and Wolberg 1990), and describes the diagnosis of breast tissues as either

benign or malignant.

2. Chess (king-rook vs. king-pawn) data set

This data set was developed by Alen Shapiro and was supplied to Holte by Peter Clark of the

Turing Institute in Glasgow (Shapiro 1983). It contains endgame results of chess games associated

with a fixed set of starting positions of the game pieces.

3. Tic-tac-toe data set

This data set stores possible ending board arrangements for a set of tic-tac-toe games, with the

player X always playing first, with to one of two possible outcomes: a win for X or a win for O

(Aha 1991).

4. Molecular biology (splice-junction gene sequences) data set

This data set presents human splice-junction gene sequences (DNA) according to imperfect

domain theory. Three possible outcomes exist: EI class (recognize exon/intron boundaries), IE

class (recognize intron/exon boundaries), and neither (Noordewier, Towell and Shavlik 1991)

5. Lymphography data set

	 35	

This data set was obtained from the University Medical Centre, Institute of Oncology, Ljubljana,

Yugoslavia (Cestnik, Konenenko and Bratko 1987). Each record represents to one of four possible

classes: normal result, metastases, malign lymph, or fibrosis.

6. Nursery data set

This dataset originally was produced to assist with nursery school enrollment. Five different

outcomes were proposed: not recommended, recommended, very recommended, has priority, and

has special priority (Olave, Rajkovic and Bohanec 1989).

7. LED display domain data set

Each record contains values of a light-emitting diode of a 7-segment display, and the classification

task is to identify which digit is shown on the display. The dataset presents ten different outcomes,

where each outcome has a 10% percent chance of occurring (Breiman et al. 1984).

Table 6. General description of the data sets

Nº Name of Data Set Number of

instances

Number of

classes

Number of

attributes

Number of

binary attributes

1 Wisconsin breast cancer 699 2 9 34

2 Chess 3196 2 36 36

3 Tic-tac-toe 958 2 9 18

4 Molecular biology (splicing) 3190 3 60 30

5 Lymphography 148 4 18 23

6 Nursery 12960 5 8 19

7 Led-display-domain 3200 10 7 24

	

6.2	Method	of	evaluation	

For the lymphography and nursery data sets, the results are produced using leave-one-out cross-

validation. For the other five data sets, the 3-fold cross-validation method (as described in Section

4) with 10 repetitions is applied.

	 36	

6.3	Results	

In the beginning of this subsection, the results for each dataset, shown using bar charts, will be

provided and analyzed. Each bar represents the results of correct classifications, shown as a

percentage, of applying each of the following techniques:

• NB origin bar: results of original Naïve Bayes Classifier

• SAT bar: the SAT-DM classifier with a strategic oscillation approach with using all

generated inequalities for classification (Section 5.1)

• SAT NB bar: presents classification with guideline from the Naïve Bayes Classifier with

additional attributes (satisfying inequalities, Section 5.2)

• SAT NB W bar: as previously described, but original attributes are not included

• SAT PO, SAT PO NB and SAT PO NB W bars: modifying the previous approaches by

using points (inequalities) of the first Pareto layer for classification (Section 5.3)

• SAT PO2, SAT PO2 NB and SAT PO2 NB W bars: again modifying the previous

approaches by using inequalities of two Pareto layers, the second Pareto layer of the

solutions remaining after having excluded the first Pareto layer (Section 5.3)

Following these results, a general discussion of the research questions is provided.

1. WISCONSIN BREAST CANCER WISCONSIN DATA SET

A three-fold cross-validation divides this data set into a training set with 466 records and a

validation set with 233 records. As inequalities are built by training set records, it is valuable to

know the number of records of each class. For example, for the first repetition (out of ten) the

training set consists of:

First experiment: the training set consists of 306 records of the benign class and 160 records of the

malignant class.

Second experiment: the training set consists of 296 records of the benign class and 170 records of

the malignant class.

Third experiment: the training set consists of 314 records of the benign class and 152 records of

the malignant class.

	 37	

Figures 14-15. The first experiment for the Wisconsin breast cancer data set

Figures 16-17. The second experiment for the Wisconsin breast cancer data set

The generated inequalities for two experiments by first repetition of a three-fold cross-validation

are presented in Figures 14-17. Each inequality is a point, and its label is the number of attributes

the inequality consists of. The y-axis shows the number of records from :C covered by an

inequality, and the x-axis shows the number of records from :D it covers. The red points represent

the first Pareto layer. In each experiment two figures are presented as it is two classes in this data

set (see Appendix 2), and in Figures 14, 16 :C is a set of records of the benign class where in

Figures 15, 17 :C is a set of records of the malignant class.

Figures 14-17 present inequalities just for one repetition of a three-fold cross-validation. However,

it is possible to make a conclusion that the number of inequalities in general and in the first Pareto

layer for this data set is too small. For example, in the first experiment of the first repetition 28

	 38	

inequalities are generated and just 8 of them are selected (Figure 15), or 29 inequalities are

generated and 2 of them are selected (Figure 16). Adding one more Pareto layer is not enough to

receive good results. The problem of insufficiently selected inequalities based on a Pareto principle

for use in classification was solved by treating preprocessed inequalities as a separate layer and

including them in the final set of inequalities.

Figure 18. Results for the Wisconsin breast cancer data set

From Figure 18, the Naive Bayes classifier gives almost the same results as the new SAT-DM

classifier in any implementation. However, the number of inequalities and the method of

classification for the SAT-DM classifier are valuable. Selecting one layer of Pareto points

(inequalities) for classification is able to produce almost the same result when the SAT-DM

classifier takes all inequalities. Using inequalities in the original Naïve Bayes classifier improves

the results of the SAT-DM classifier (the SAT NB and SAT PO NB bars) to nearly the same level

as the original Naïve Bayes classifier.

97
96.6 96.7 96.5 96.2

96.8 96.5

90

91

92

93

94

95

96

97

98

99

100

Wisconsin	breast	cancer

NB	origin SAT	 SAT	NB SAT	NB	W SAT	PO SAT	PO	NB SAT	PO	NB	W

	 39	

2. CHESS DATA SET

Figure 19. Results for the chess data set

The original Naïve Bayes classifier shows much worse results than the new SAT-DM classifier

(Figure 19). However, the approach of making a classification based on the Naïve Bayes classifier

using generated inequalities to build new attributes improves the results of the SAT-DM method

(the SAT NB and SAT PO2 NB bars). This supports the theory that combining classifiers can

produce a valuable outcome. Taking the first Pareto layer of points for classification was not

enough, so the results for two Pareto layers is presented. The result shows that using a portion of

the generated inequalities for classification can be enough to receive the same or even better results

of classification (the SAT PO 2 bar).

3. TIC-TAC-TOE DATA SET

A three-fold cross-validation divides the data set into a training set with 639 records and a

validation set with 319 records. For the first repetition (out of ten) the training set consists of:

• First experiment: 424 records of “win for X” and 215 records of “win for O”

• Second experiment: 410 records of “win for X” and 229 records of “win for O”

• Third experiment: 418 records of “win for X” and 210 records of “win for O”

87.3

92.3

95 94.7

93
94.1

93.1

85

87

89

91

93

95

97

99

Chess

NB	origin SAT	 SAT	NB SAT	NB	W SAT	PO2 SAT	PO2	NB SAT	PO2	NB	W

	 40	

Figure 20-21. The first experiment for the tic-tac-toe data set

These figures show the generated inequalities for one experiment by first repetition of a three-fold

cross-validation. Thus, it is possible to make a conclusion that the first Pareto layer consists of a

small number of points (inequalities). Also, the number of attributes in the inequalities is large.

Figure 22. Results for the tic-tac-toe data set

As expected, taking two Pareto layers (Figure 22, last three columns) is insufficient for producing

better results than classification with all inequalities. Also, the original Naive Bayes classifier gives

poor results in classification. However, the approach of extending attributes for classification

67.3

79.1
75.3 75.7 76

68.3
70.9

50

55

60

65

70

75

80

85

90

Tic-tac-toe

NB	origin SAT	 SAT	NB SAT	NB	W SAT	PO2 SAT	PO2	NB SAT	PO2	NB	W

	 41	

(Section 5.3) improves the results of the Naive Bayes classifier at the cost of worsening the results

of SAT-DM method.

4. SPLICE DATA SET

Figure 23. Results for the splice data set

The original Naive Bayes classifier results in a high quality classification compared to the SAT-

DM classifier (Figure 23). This may be due to the increasing the number of classes (in this data set

it is already three classes). However, involving the NB classifier in the SAT-DM classifier

increases its performance nearly to the level of the original Naïve Bayes classifier.

The number of all generated inequalities is large as it depends on the number of binary attributes,

which is valuable for this data set. Thus, using two Pareto layers of inequalities is better than taking

all inequalities for classification and using a portion of the generated inequalities for classification

can be enough to receive the same or even better results of classification (SAT PO2).

92.8

86.5

90.9 90.3

86.8

91.2
89.9

80

82

84

86

88

90

92

94

Splice

NB	origin SAT	 SAT	NB SAT	NB	W SAT	PO2 SAT	PO2	NB SAT	PO2	NB	W

	 42	

5. LYMPOGRAPHY DATA SET

Figure 24. Results for the lymphography data set

The result of the original Naïve Bayes classifier is not satisfactory. This may be due to the

weakness of the NB assumption that attributes are independent; the attributes (financial standing,

social and health picture of the family) of this dataset are potentially related. Also, the original NB

classifier needs more records to understand the probabilistic relationship of each attribute.

Despite the fact that this data set presents four different classes, two of them have a very small

number of records. For more detailed information on each data set, please see Appendix 2. Thus,

it is possible to assume that the classification for this dataset is binary (with two classes). This

leads to the conclusion that the SAT-DM method performs very well for classification with two

classes.

Compared to the origin NB classifier, the SAT-DM classifier shows better result in classification.

However, the number of records (Table 6) influence on the number of generated inequalities,

which is low. Therefore, the two Pareto layers of inequalities consist of few inequalities, which

are not enough to produce good classification and requires taking all inequalities.

78.6

87.2

83.8 83.2

77.7
80.4 80.4

65

70

75

80

85

90

Lymphography

NB	origin SAT	 SAT	NB SAT	NB	W SAT	PO2 SAT	PO2	NB SAT	PO2	NB	W

	 43	

6. NURSERY DATA SET

Figure 25. Results for the nursery data set

In this data set, the result of the original Naïve Bayes classifier is better than in the SAT-DM

classifier. Referring to the results of previous data sets, this leads to the conclusion that the number

of classes for the SAT-DM algorithm is important: better results are achieved with a smaller

number of classes.

The result of the SAT-DM is not good as a small number of binary attributes for this data set is

generated and therefore not enough inequalities exists to produce good classification. However, if

the original Naïve Bayes classifier shows better results than the SAT-DM algorithm, involving NB

techniques of classification will lead to improvement of the results.

As expected, two Pareto layers do not constitute enough inequalities, which requires taking all

inequalities for classification.

83.9

71.7

82.6

75.7

66.3

80 78.8

50

55

60

65

70

75

80

85

Nursery

NB	origin SAT	 SAT	NB SAT	NB	W SAT	PO2 SAT	PO2	NB SAT	PO2	NB	W

	 44	

7. LED DISPLAY DOMAIN DATA SET

Figure 26. Results for the LED display domain data set

Classification of the LED display domain data set is an example of classification with a valuable

number of classes (10 classes). As noted earlier, in such a case the SAT-DM classifier generates

bad results (Figure 26). However, involving the NB classifier improves the performance of the

method, as the original Naïve Bayes classifier shows better results (the same case with the nursery

data set).

The first Pareto layer of inequalities is enough for classification if selecting more Pareto layers

leads to worsening of the result (SAT PO2 column).

Involving the NB classifier technique to the SAT-DM classifier causes the result to improve nearly

to the level of the original Naïve Bayes classifier, which can solve the problem of bad results for

this data set.

A lot of inequalities are generated in this data set. This may due to the fact that the records are

created artificially and each class consists of small number of records. However, tabu tenure, which

is applied for the construction phase, also influence on this. For this data set, the value of this

parameter, which is the same defined for all previous data sets, is too small and leads to the fact

74.8

49.9

62 61.4

56.9

71.8 71.4

54.5

71.2 70.8

40

45

50

55

60

65

70

75

LED	display	domain

NB	origin SAT	 SAT	NB SAT	NB	W SAT	PO

SAT	PO	NB SAT	PO	NB	W SAT	PO2 SAT	PO2	NB SAT	PO2	NB	W

	 45	

that a lot of generated inequalities are similar. Increasing the tabu tenure for construction phase

leads to the improving of the results and quality of generated solutions.

The results of this idea is presented in Figure 27.

Figure 27. Results for the LED display domain data set with increased tabu tenure

As expected, classification with different inequalities is better. However, taking all generated

inequalities for classification is not profitable compare to taking one Pareto layer, as enough

inequalities are generated in this data set. Also, involving the NB classifier improves the

performance of the method even with removing original attributes.

General conclusion

Having reviewed the results of validation for the data sets, the research questions may be

answered:

1. Is it possible to build inequalities in a more sophisticated way?

The origin method of building inequalities in SAT-DM method may be extended by using a

strategic oscillation approach. This makes it possible to improve the quality and number of

74.8

54.9

64

74.1 74

40

45

50

55

60

65

70

75

LED	display	domain

NB	origin SAT	 SAT	PO SAT	PO	NB SAT	PO	NB	W

	 46	

generated inequalities, as compared to the original method. However, results of new SAT-DM

classifier are very sensitive to the parameters that define the strategic oscillation approach. It is

vital to define the tabu tenures for the construction and destruction steps while taking into account

the correlation between these parameters, the number of iterations of strategic oscillation, and the

parameters that define the thresholds of the construction and destruction steps (Figure 7: c and d

points).

Therefore, the total number of generated inequalities is dependent on the number of binary

attributes a data set consists of. The result of the SAT-DM classifier also depends on the number

of classes for a data set. It performs very well for classification with two classes, while increasing

the number of classes worsens the results.

2. Is it effective to select inequalities for use in classification based on a Pareto principle?

From the whole collection of inequalities, it is possible to select the better ones (using separation

on Pareto layers) and include them in the final set of inequalities for classification. However,

selecting an insufficient number of inequalities (Pareto layers) may lead to poor results. The

number of Pareto layers that need to be considered in classification is related to the total number

of generated inequalities. With a large number of generated inequalities, it is enough to take a

small number of Pareto layers.

For datasets with many classes, it is better to select fewer Pareto layers, as in general the SAT-DM

algorithm is not suitable for these data sets, so just taking the best inequalities can provide some

valuable result.

3. Is it reasonable to combine methods with existing, broadly used classifiers?

This thesis presents a way in which the classification for SAT-DM classifier can be modified. In

the original method, a new record with unknown membership is classified by comparing the

proportion of the inequalities it satisfies for that class to the proportion it satisfies for other classes.

However, when the results of classification is poor, it is possible to involve classification using the

Naïve Bayes classifier, as it described in this thesis.

	 47	

In cases where the original Naïve Bayes classifier gives better results, it is very useful to apply the

idea presented in Section 5.3 for improving the results of the SAT-DM classifier, which can solve

the problem of bad results for data sets with many classes. Removing the original attributes from

classification in SAT-DM with Naïve Bayes worsens its results, making them similar to the SAT-

DM results.

When the original Naïve Bayes classifier gives worse results than the SAT-DM classifier, the

approach of involving inequalities as new attributes is valuable in improving the original NB

method. When that is done, the results become very close to those of the SAT-DM classifier. This

leads to using the SAT-DM classifier as a preprocessor to generate more attributes to another

classifier.

	 48	

7. Concluding	remarks	and	further	research	

7.1	Concluding	remarks	

This research aimed to analyze the Satisfiability data mining algorithm (Glover 2008) and identify

effective strategies for improving it. This study shows a variety of techniques for improving the

accuracy of classification: strategic oscillation approach, Pareto layers of solutions, and involving

Naïve Bayes classifiers. The results of the proposed improvements heavily depend on a number of

factors, including: the number of binary attributes, the nature of the data, and the result of the

original Naïve Bayes classifier.

Using the strategic oscillation approach is profitable since all goals were achieved (reduced the

similarity of clauses, increased the number of generated clauses). The technique of using Pareto

layers (inequalities) is beneficial only if a sufficient total number of inequalities have been

generated. The combination of classifiers leads to the improvement of the SAT-DM method, when

the Naïve Bayes classifier generates better results. In conclusion, the techniques for modifying the

existing SAT-DM algorithm in this paper are viable for improving classification results, as has

been demonstrated through the application of the real-world data sets in Section 7.

	

7.2	Further	research	

This research shows the results of using more advanced implementations of the SAT-DM

classifier, as compare to the original (Glover 2008). However, during the research it was found

that the tabu statuses for the “strategic oscillation” procedure in implementation may be selected

in a more sophisticated way.

Another suggestion for further research is to work with tree-based SAT-DM for generating

decision trees. This framework can be used in a natural way within tree-based analysis approaches,

giving another way of exploiting the inequalities. Refer to Glover (2006) for a more advanced

treatment.

	 49	

Reference	list	
 Aha, David. 1991. "Incremental constructive induction: An instance-based approach." Edited by

Morgan Kaufmann. In Proceedings of the Eighth International Workshop on Machine

Learning. Evanston, ILL. 117-121.

Alexe, Gabriela, Sorin Alexe, Tiberius O. Bonates and Alexander Kogan. 2007. "Logical analysis

of data – the vision of Peter L. Hammer." Annals of Mathematics and Artificial Intelligence,

April: 265-312.

Bandaru, Sunith, Ng Amos and Deb Kalyanmoy. 2014. "On the Performance of Classification

Algorithms for Learning Pareto-Dominance Relations." IEEE Congress on Evolutionary

Computation (CEC). Beijing, China.

Breiman, Leo, Jerome Friedman, Charles J. Stone and R.A. Olshen. 1984. "Classification and

Regression Trees." In Wadsworth International Group, 43-49. Belmont.

Cestnik, Bojan, Igor Konenenko and Ivan Bratko, I. 1987. "Assistant-86: A Knowledge-Elicitation

Tool for Sophisticated Users." In EWSL, 31-45. Sigma Press.

Cichosz, Paweł. 2015. "Naïve Bayes classifier." In Data Mining Algorithms, Part II:

Classification, 118-133.

Cook, Stephan. 1971. "The complexity of theorem-proving procedures." STOC '71 Proceedings

of the third annual ACM symposium on Theory of computing. New York. 151-158.

Dogan, Neshihan and Zuhan Tanrikulu. 2013. "A comparative analysis of classification algorithms

in data mining for accuracy, speed and robustness." Information Technology and

Management, June: 105–124.

Dougherty, James, Ron Kohavi, and Mehran Sahami. 1995. "Supervised and Unsupervised

Discretization of Continuous Features." International Conference on Machine Learning.

Elsevier. 194–202.

	 50	

Gardeux, Vincent, Lars Magnus Hvattum and Fred Glover. 2014. "SAT-DM: Satisfiability Data

Mining for Classification Problems." 20th Conference of the International Federation of

Operational Research Societies. Barcelona: IFORS.

Glover, Fred. 2006. Improved Classification and Discrimination by Successive Hyperplane and

Multi-Hyperplane Separation. University of Colorado, Boulder.

Glover, Fred. 2008. Satisfiability Data Mining for Binary Data Classification Problems.

University of Colorado, Boulder.

Glover, Fred. 1968. "Surrogate Constraints." Operations Research 16 (4):741-749.

Glover, Fred and Arne Løkketangen. 2005. "Adaptive Memory Search Guidance for Satisfiability

Problems." In Metaheuristic Optimization via Memory and Evolution, 213-227.

Glover, Fred and Manuel Laguna. 1997. "Tabu Search Principles." In Tabu Search, 125-151.

Springer, Boston, MA.

Glover, Fred and Gary Kochenberger. 1996. "Critical Event Tabu Search for Multidimensional

Knapsack Problems." In Meta-Heuristics, 407-427. Springer, Boston, MA.

Guido, Sarah and Anders C. Müller. 2016. Introduction to Machine Learning with Python. Edited

by Dawn Schanafelt. Sebastopol: O'Reilly Media.

Hooker, John. 1992. "Generalized resolution for 0–1 linear inequalities." Annals of Mathematics

and Artificial Intelligence, March: 271–286.

Machine learning community. 2017. UC Irvine Machine Learning Repository. University of

California, School of Information and Computer Science. http://archive.ics.uci.edu/ml.

Malik, Sharad and Lintao Zhang. 2009. "Boolean Satisfiability: From Theoretical Hardness to

Practical Success." Communications of the ACM, August: 76-82.

Mangasarian, Olwi and William Wolberg. 1990. "Cancer diagnosis via linear programming."

SIAM News, September: 1-18.

	 51	

Marques-Silva, Joao. 2008. "Practical applications of Boolean Satisfiability." 2008 9th

International Workshop on Discrete Event Systems. Goteborg, Sweden: IEEE. 74-80.

Moreira, Miguel, Alain Hertz and Eddy Mayoraz. 1999. "Data Binarization By Discriminant

Elimination." Proceedings of the ICML99 Workshop: From Machine Learning to

Knowledge Discovery in Databases 51-60.

Noordewier, Mochiel, Geoffrey Towell and Jude W. Shavlik. 1991. "Training Knowledge-Based

Neural Networks to Recognize Genes in DNA Sequences." Advances in Neural

Information Processing Systems (Morgan Kaufmann) 3.

Olave, Manuel, Vladislav Rajkovic and Marko Bohanec. 1989. "An application for admission in

public school systems." In Expert Systems in Public Administration, 145-160.

Schlkopf, Bernhard and Alexander Smola. 2002. Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine

Learning), Cambridge, MA:MIT Press.

Shapiro, Alen. 1987. "Structured Induction in Expert Systems." Addison Wesley Longman

Publishing Co., Inc. Boston, MA, USA.

López, Victoria, Alberto Fernández and Francisco Herrera. 2014. "On the importance of the

validation technique for classification with imbalanced datasets: Addressing covariate shift

when data is skewed." Information Sciences 257: 1-13.

Wu, Xindong, Vipin Kumar, Ross Quinlan and Joydeep Ghosh. 2008. "Top 10 algorithms in data

mining." Knowledge and Information Systems (Springer-Verlag) 14 (1): 1-37.

	 	

	 52	

Appendix	1	
This part includes implementations of the main functions.

The following structures describe an inequality and a record respectively:
struct SATINEQ {

 double eval;

 int alpha_covered;

 int alpha_total;

 int beta_covered;

 int beta_total;

 vector< int > ineq;

};

struct DMBINARYRECORD {

 int group;

 vector< bool > record;

 string name;

};

1. The first function (SAT_method_PO) presents the implementation of SAT-DM algorithm with

a strategic oscillation approach and selection of two Pareto layers from a general set of

inequalities.

bool SATDM::SAT_method_PO(vector< DMBINARYRECORD* > &G_alpha, vector< DMBINARYRECORD* >

&G_beta, vector< SATINEQ > &ineqs)

//---

{

 cout << "CLASSIFICATION" << endl;

 if (G_alpha.size() == 0)

 {

 cout << " Generate inequalities for empty group." << endl;

 return true;

 }

 int i(0), j(0);

 ineqs.clear();

 vector< SATINEQ > preprocessed_ineqs;

 vector< SATINEQ > generated_ineqs;

 vector< SATINEQ > dominate_ineqs;

 vector< SATINEQ > t_ineqs;

 vector< SATINEQ > t2_ineqs;

 int n = (int)G_alpha[0]->record.size();

	 53	

 int records_total_alpha = (int)G_alpha.size();

 int records_total_beta = (int)G_beta.size();

 double r = (double)records_total_beta / records_total_alpha;

 int max_records_left = (int)floor(records_total_alpha*(1 - min_cover_));

 int max_records_left_destruction = (int)floor(records_total_alpha*(1 -

min_cover_destruction_));

 vector< int > k_alpha, k_alpha_init;

 vector< int > k_beta, k_beta_init;

 //initialize the number of "true" value for surrogate constraint

 k_alpha_init.assign(n, 0);

 for (i = 0; i < records_total_alpha; i++)

 {

 for (j = 0; j < n; j++)

 {

 if (G_alpha[i]->record[j])

 k_alpha_init[j]++;

 }

 }

 k_beta_init.assign(n, 0);

 for (i = 0; i < records_total_beta; i++)

 {

 for (j = 0; j < n; j++)

 {

 if (G_beta[i]->record[j])

 k_beta_init[j]++;

 }

 }

 // 0,1,...,n-1 indices for unnegated, n,n+1,...,2n-1 indices for negated

 vector< int > tabu_status(2 * n, 0);

 vector< vector< int > > ts_general_attr(2 * n);

 // variables are available for consideration

 vector< bool > available(n, true);

 // the number of times attribute has been used in inequalities

 vector< int > times_used(2 * n, 0);

 double k_max = -DBL_MAX;

 int k_max_i(-1);

 int var(0), k_var(0);

 int neg;

 int max_appear = INT_MAX;

 // preprocess

	 54	

 int preprocess_max = (max_records_left > max_records_left_destruction ?

max_records_left : max_records_left_destruction);

 for (i = 0; i < n; i++)

 {

 if (records_total_alpha - k_alpha_init[i] <= preprocess_max)

 {

 SATINEQ ineq;

 ineq.ineq.push_back(i + 1);

 available[i] = false;

 ineq.alpha_covered = k_alpha_init[i];

 ineq.alpha_total = records_total_alpha;

 ineq.beta_covered = k_beta_init[i];

 ineq.beta_total = records_total_beta;

 preprocessed_ineqs.push_back(ineq);

 }

 else if (k_alpha_init[i] <= preprocess_max)

 {

 SATINEQ ineq;

 ineq.ineq.push_back(-i - 1);

 available[i] = false;

 ineq.alpha_covered = records_total_alpha - k_alpha_init[i];

 ineq.alpha_total = records_total_alpha;

 ineq.beta_covered = records_total_beta - k_beta_init[i];

 ineq.beta_total = records_total_beta;

 preprocessed_ineqs.push_back(ineq);

 }

 }

 int outer_iter(0);

 bool done = false;

 while (!done)

 {

 SATINEQ ineq;

 vector< int > tabu_status_so(2 * n, 0);

 vector< int > tabu_status_destr(2 * n, 0);

 outer_iter++;

 max_appear = (int)ceil(const_max_appear);

 k_alpha = k_alpha_init;

 k_beta = k_beta_init;

 int records_left_alpha = records_total_alpha;

 int records_left_beta = records_total_beta;

 vector< int > alpha_covered(records_total_alpha, 0);

 vector< int > beta_covered(records_total_beta, 0);

 int amount_so = 0;

 bool so_done = false;

 //strategic oscillation

 while (amount_so < 100 && !so_done)

	 55	

 {

 bool exist_construction = false;

 amount_so++;

 cout << amount_so << " strategic oscillation" << endl;

 // CONSTRUCTION

 bool noimproving = false;

 bool ok = true;

 bool ok_destr = true;

 int so_iter = 0;

 double eval = -DBL_MAX;

 while (records_left_alpha > max_records_left && !noimproving &&

!so_done)

 {

 exist_construction = true;

 int in_iter = 0;

 k_max = -DBL_MAX;

 k_max_i = -1;

 // find attribute to add

 neg = n;

 for (i = 0; i < n; i++)

 {

 // non negated

 ok = true;

 if (available[i] && k_alpha[i] > 0 && times_used[i] <=

max_appear)

 {

 if ((tabu_status[i] > outer_iter && amount_so ==

1) || (tabu_status_so[i] > amount_so))

 {

 ok = false;

 }

 if (ok)

 {

 eval = k_alpha[i] - k_beta[i];

 if (eval > k_max)

 {

 k_max = eval;

 k_max_i = i;

 }

 }

 }

 // negated

 ok = true;

 if (available[i] && (records_left_alpha > k_alpha[i])

&& times_used[neg] <= max_appear)

 {

 if ((tabu_status[neg] > outer_iter && amount_so

== 1) || (tabu_status_so[neg] > amount_so))

 {

 ok = false;

 }

 if (ok)

 {

	 56	

 eval = (records_left_alpha - k_alpha[i])

- (records_left_beta - k_beta[i]);

 if (eval > k_max)

 {

 k_max = eval;

 k_max_i = neg;

 }

 }

 }

 neg++;

 }

 // add attribute, generate constraint

 if (k_max_i >= 0)

 {

 tabu_status_so[k_max_i] = (int)(in_iter + amount_so +

0.5*n);

 k_var = (k_max_i >= n ? k_max_i - n : k_max_i);

 ineq.ineq.push_back((k_max_i == k_var ? k_var + 1 : -

k_var - 1));

 available[k_var] = false;

 tabu_status_destr[k_max_i] = (int)(amount_so + 1);

 if (k_var == k_max_i) {

 records_left_alpha -= k_alpha[k_var];

 records_left_beta -= k_beta[k_var];

 }

 else {

 records_left_alpha = k_alpha[k_var];

 records_left_beta = k_beta[k_var];

 }

 if (in_iter == 0) {

 tabu_status[k_max_i] = (int)(t1_tenure_*n +

outer_iter);

 }

 for (i = 0; i < records_total_alpha; i++)

 {

 if ((k_var == k_max_i && G_alpha[i]-

>record[k_var]) ||

 (k_var != k_max_i && !G_alpha[i]-

>record[k_var]))

 {

 if (alpha_covered[i] == 0)

 {

 for (j = 0; j < n; j++)

 {

 if (G_alpha[i]->record[j])

	 57	

 k_alpha[j]--;

 }

 }

 alpha_covered[i]++;

 }

 }

 for (i = 0; i < records_total_beta; i++)

 {

 if ((k_var == k_max_i && G_beta[i]-

>record[k_var]) || (k_var != k_max_i && !G_beta[i]->record[k_var]))

 {

 if (beta_covered[i] == 0)

 {

 for (j = 0; j < n; j++)

 {

 if (G_beta[i]->record[j])

 k_beta[j]--;

 }

 }

 beta_covered[i]++;

 }

 }

 //updated general tabu status

 int s = (int)ineq.ineq.size();

 int var, tvar = 0;

 for (i = 0; i < s; i++)

 {

 var = (ineq.ineq[i] < 0 ? n - ineq.ineq[i] - 1 :

ineq.ineq[i] - 1);

 times_used[var]++;

 }

 }

 else {

 noimproving = true;

 }

 if (noimproving && in_iter == 0)

 {

 so_done = true;

 }

 if (noimproving && amount_so == 1) {

 done = true;

 }

 in_iter++;

 }

 if (!done && !so_done && exist_construction) {

 ineq.alpha_covered = records_total_alpha - records_left_alpha;

 ineq.alpha_total = records_total_alpha;

 ineq.beta_covered = records_total_beta - records_left_beta;

 ineq.beta_total = records_total_beta;

 t_ineqs.push_back(ineq);

 }

 //destruction

	 58	

 //initialize sc prime implicant for records covered by 1, to store

the number of uncovered records,

 //if removing the attribute from the inequality

 int iv = 0;

 int s = (int)ineq.ineq.size();

 vector< int > k_alpha_pi(s, 0);

 vector< int > k_beta_pi(s, 0);

 for (i = 0; i < records_total_alpha; i++)

 {

 if (alpha_covered[i] == 1)

 {

 for (j = 0; j < s; j++)

 {

 iv = ineq.ineq[j];

 if (iv > 0 && G_alpha[i]->record[iv - 1])

 k_alpha_pi[j]++;

 if (iv < 0 && !G_alpha[i]->record[-iv - 1])

 k_alpha_pi[j]++;

 }

 }

 }

 for (i = 0; i < records_total_beta; i++)

 {

 if (beta_covered[i] == 1)

 {

 for (j = 0; j < s; j++)

 {

 iv = ineq.ineq[j];

 if (iv > 0 && G_beta[i]->record[iv - 1])

 k_beta_pi[j]++;

 if (iv < 0 && !G_beta[i]->record[-iv - 1])

 k_beta_pi[j]++;

 }

 }

 }

 bool destructiondone = false;

 bool changemade = false;

 s = (int)ineq.ineq.size();

 while (!destructiondone && !so_done)

 {

 k_max_i = -1;

 k_max = -DBL_MAX;

 for (j = 0; j < s; j++)

 {

 if (records_left_alpha + k_alpha_pi[j] <=

max_records_left_destruction)

 {

 int attr = ineq.ineq[j];

	 59	

 int dim_var = (attr < 0 ? n - attr - 1 : attr -

1);

 if (tabu_status_destr[dim_var] > amount_so &&

amount_so != 1)

 a

 {

 ok_destr = false;

 }

 if (ok_destr) {

 eval = k_beta_pi[j] - k_alpha_pi[j];

 if (eval > k_max)

 {

 k_max_i = j;

 k_max = eval;

 }

 }

 }

 }

 if (k_max_i < 0)

 {

 destructiondone = true;

 }

 else {

 var = ineq.ineq[k_max_i];

 if (var > 0)

 available[var - 1] = true;

 else

 available[-1 - var] = true;

 records_left_alpha += k_alpha_pi[k_max_i];

 records_left_beta += k_beta_pi[k_max_i];

 ineq.ineq.erase(ineq.ineq.begin() + k_max_i);

 k_alpha_pi.erase(k_alpha_pi.begin() + k_max_i);

 k_beta_pi.erase(k_beta_pi.begin() + k_max_i);

 s--;

 changemade = true;

 //update coeffs (for each point, recalc number of times

it is covered, if reached 1 add to coefficient):

 for (i = 0; i < records_total_alpha; i++)

 {

 if ((var > 0 && G_alpha[i]->record[var - 1]) ||

 (var < 0 && !G_alpha[i]->record[-var -

1]))

 {

 alpha_covered[i]--;

 if (alpha_covered[i] == 1)

 {

 for (j = 0; j < s; j++)

 {

	 60	

 int tvar = ineq.ineq[j];

 if ((tvar > 0 &&

G_alpha[i]->record[tvar - 1]) ||

 (tvar < 0 &&

!G_alpha[i]->record[-tvar - 1]))

 {

 k_alpha_pi[j]++;

 }

 }

 }

 else if (alpha_covered[i] == 0) {

 for (j = 0; j < s; j++)

 {

 int tvar = ineq.ineq[j];

 if ((tvar > 0 &&

G_alpha[i]->record[tvar - 1]) ||

 (tvar < 0 &&

!G_alpha[i]->record[-tvar - 1]))

 {

 k_alpha_pi[j]--;

 }

 }

 for (j = 0; j < n; j++)

 {

 if (G_alpha[i]->record[j])

 k_alpha[j]++;

 }

 }

 }

 }

 for (i = 0; i < records_total_beta; i++)

 {

 if ((var > 0 && G_beta[i]->record[var - 1]) ||

 (var < 0 && !G_beta[i]->record[-var -

1]))

 {

 beta_covered[i]--;

 if (beta_covered[i] == 1)

 {

 for (j = 0; j < s; j++)

 {

 int tvar = ineq.ineq[j];

 if ((tvar > 0 && G_beta[i]-

>record[tvar - 1]) ||

 (tvar < 0 &&

!G_beta[i]->record[-tvar - 1]))

 {

 k_beta_pi[j]++;

 }

 }

 }

 else if (beta_covered[i] == 0)

 {

	 61	

 for (j = 0; j < n; j++)

 {

 if (G_beta[i]->record[j])

 k_beta[j]++;

 }

 for (j = 0; j < s; j++)

 {

 int tvar = ineq.ineq[j];

 if ((tvar > 0 && G_beta[i]-

>record[tvar - 1]) ||

 (tvar < 0 &&

!G_beta[i]->record[-tvar - 1]))

 {

 k_beta_pi[j]--;

 }

 }

 }

 }

 }

 }

}

 if (changemade)

 {

 s = (int)ineq.ineq.size();

 ineq.alpha_covered = records_total_alpha - records_left_alpha;

 ineq.alpha_total = records_total_alpha;

 ineq.beta_covered = records_total_beta - records_left_beta;

 ineq.beta_total = records_total_beta;

 t_ineqs.push_back(ineq);

 for (i = 0; i < s; i++)

 {

 int var = (ineq.ineq[i] < 0 ? n - ineq.ineq[i] - 1 :

ineq.ineq[i] - 1);

 times_used[var]++;

 }

 }

 else so_done = true;

 }

 for (i = 0; i < (int)ineq.ineq.size(); i++)

 {

 int var = ineq.ineq[i];

 if (var > 0)

 available[var - 1] = true;

 else

 available[-1 - var] = true;

 }

	 62	

 if (outer_iter >= max_iterations_)

 {

 done = true;

 }

 // termination: reached max_number inequalities, no attribute-combination

not used before, or no attribute improving coverage

 // generated a sufficient number of inequalities

 }

 //first Pareto layer

 int ts = t_ineqs.size();

 vector<bool> dominates(ts, true);

 for (i = 0; i < ts; i++) {

 for (j = 0; j < ts; j++) {

 if (dominate_SATINEQ(t_ineqs[i], t_ineqs[j]))

 dominates[j] = false;

 }

 }

 for (int i = 0; i < dominates.size(); i++) {

 if (dominates[i]) {

 dominate_ineqs.push_back(t_ineqs[i]);

 }

 }

 for (int i = 0; i < dominates.size(); i++) {

 if (!dominates[i]) {

 t2_ineqs.push_back(t_ineqs[i]);

 }

 }

 //second Pareto layer

 int ts2 = t2_ineqs.size();

 vector<bool> dominates2(ts2, true);

 for (i = 0; i < ts2; i++) {

 for (j = 0; j < ts2; j++) {

 if (dominate_SATINEQ(t2_ineqs[i], t2_ineqs[j]))

 dominates2[j] = false;

 }

 }

 for (int i = 0; i < dominates2.size(); i++) {

 if (dominates2[i]) {

 dominate_ineqs.push_back(t2_ineqs[i]);

 }

 }

	 63	

 for (i = 0; i < (int)dominate_ineqs.size(); i++)
 {
 ineqs.push_back(dominate_ineqs[i]);
 }

 ineqs.insert(ineqs.end(), preprocessed_ineqs.begin(), preprocessed_ineqs.end());

 //evaluation
 for (int i = 0; i < ineqs.size(); i++) {
 ineqs[i].eval = (double)ineqs[i].alpha_covered / records_total_alpha
 - (double)ineqs[i].beta_covered / records_total_beta;
 }

 sort(ineqs.begin(), ineqs.end(), comp_SATINEQ_greater);

 if (ineqs.size() == 0)
 cout << "Cannot generate anything";
 return true;
}

2. The second function specifies whether inequality a dominates inequality b, and returns an

appropriate value in both cases.

bool dominate_SATINEQ(SATINEQ &a, SATINEQ &b)
{
 if (a.alpha_covered == b.alpha_covered
 && a.beta_covered == b.beta_covered) return false;
 if (a.alpha_covered > b.alpha_covered
 && a.beta_covered < b.beta_covered) return true;
 if (a.alpha_covered == b.alpha_covered
 && a.beta_covered < b.beta_covered) return true;
 if (a.alpha_covered > b.alpha_covered
 && a.beta_covered == b.beta_covered) return true;
 return false;
}

3. The following function is the implementation of Naïve Bayes Classifier with adding new

attributes, that are calculated based on the generated inequalities.

bool SATDM::naiveBayesEQ(DMBINARYRECORD * record, DMBinaryData &data, int
&classification) {
 int i, j;
 double best_cover_ratio = -DBL_MAX;
 classification = -1;

	 64	

 bool q_satisf;

 double prob_small = 0.000000000001;

 int gen_inq_length = 0;

 for (int g = 0; g < data.getNoOfGroups(); g++) {

 gen_inq_length += inequalities_[g].size();

 }

 //prior probability contains amount of records for each group

 vector<int>prior_probability(data.getNoOfGroups(), 0);

 for (int i = 0; i < data.getRecordSet().size(); i++) {

 ++prior_probability[data.getRecordSet()[i]->group];

 }

 //for each group if record (un)satisfy inequality-> push 1(0)

 vector<bool>record_sat_inq;

 for (int g = 0; g < data.getNoOfGroups(); g++) {

 for (i = 0; i < inequalities_[g].size(); i++) {

 q_satisf = false;

 for (j = 0; j < (int)inequalities_[g][i].ineq.size(); j++)

 {

 int var = abs(inequalities_[g][i].ineq[j]) - 1;

 if ((inequalities_[g][i].ineq[j] > 0 && record->record[var])

|| (inequalities_[g][i].ineq[j] < 0 && !record->record[var]))

 {

 q_satisf = true;

 }

 }

 if (q_satisf)

 record_sat_inq.push_back(1);

 else { record_sat_inq.push_back(0); }

 }

 }

 //for each training record, (un)satisfy inequality for group it classified -> push

1(0)

 vector<vector<bool>>data_sat_inq(data.getRecordSet().size(), vector<bool>(0));

 for (int r = 0; r < data.getRecordSet().size(); r++) {

 //int g = data.getRecordSet()[r]->group;

 vector<bool> dr(data.getRecordSet()[r]->record);

 for (int g = 0; g < data.getNoOfGroups(); g++) {

 for (i = 0; i < inequalities_[g].size(); i++)

 {

 q_satisf = false;

 for (j = 0; j < (int)inequalities_[g][i].ineq.size(); j++)

 {

 int var = abs(inequalities_[g][i].ineq[j]) - 1;

 if ((inequalities_[g][i].ineq[j] > 0 && dr[var]) ||

(inequalities_[g][i].ineq[j] < 0 && !dr[var]))

 {

 q_satisf = true;

 break;

	 65	

 }

 }

 if (q_satisf)

 data_sat_inq[r].push_back(1);

 else { data_sat_inq[r].push_back(0); }

 }

 }

 }

 //for each group the amount of records of training data satisfied by record value

 vector <vector<int>>likelihood(data.getNoOfGroups(), vector<int>(record-

>record.size(), 0));

 for (int k = 0; k < data.getRecordSet().size(); k++) {

 for (int j = 0; j < (int)record->record.size(); j++) {

 if (record->record[j] == data.getRecordSet()[k]->record[j])

 ++likelihood[data.getRecordSet()[k]->group][j];

 }

 }

 vector <vector<int>>likelihood_sat_inq(data.getNoOfGroups(),

vector<int>(gen_inq_length, 0));

 //the same as likelihood, just for clauses

 for (int k = 0; k < data.getRecordSet().size(); k++) {

 int g = data.getRecordSet()[k]->group;

 for (int j = 0; j < (int)record_sat_inq.size(); j++) {

 if (record_sat_inq[j] == data_sat_inq[k][j])

 ++likelihood_sat_inq[g][j];

 }

 }

 for (i = 0; i < data.getNoOfGroups(); i++)

 {

 double ratio;

 double likelh_pr = 1.0;

 double likelh_pr_sat_inq = 1.0;

 for (int j = 0; j < record->record.size(); j++) {

 if (likelihood[i][j] != 0 && prior_probability[i] != 0) {

 likelh_pr *= double((double)likelihood[i][j] /

(double)prior_probability[i]);

 }

 else likelh_pr *= prob_small;

 }

 for (int j = 0; j < record_sat_inq.size(); j++) {

 if (likelihood_sat_inq[i][j] != 0 && prior_probability[i] != 0) {

 likelh_pr_sat_inq *= double((double)likelihood_sat_inq[i][j] /

(double)prior_probability[i]);

 }

 else likelh_pr_sat_inq *= prob_small;

 }

 ratio = ((double)prior_probability[i] / (double)data.getRecordSet().size())

*(double)likelh_pr * likelh_pr_sat_inq;

	 66	

 if (ratio > best_cover_ratio)

 {

 best_cover_ratio = ratio;

 classification = i;

 }

 }

 return (classification >= 0);

}

	 67	

Appendix 2

This part includes distributions of records for data sets.

1. Wisconsin breast cancer data set

2. Chess (king-rook vs. king-pawn) data set

3. Tic-tac-toe data set

4. Molecular biology (splice-junction gene sequences) data set

65.5%
34.5%

benign malignant

48% 52%

win loss

65%
35%

win	for	X win	for	O

	 68	

5. Lymphography data set

6. Nursery data set

7. LED display domain data set

25%

25%

50%

EI IE Neither

1%

55%
41%

3%
normal	result metastases malign	lymph fibrosis

33%

1%
2% 33%

31%

not	recom. recommend very	recom. priority spec.	prior.

10%
10%

10%

10%
10% 10%

10%

10%

10%
10%

1 2 3 4 5 6 7 8 9 10

