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Summary 

In this work two models and a matheuristic method are developed for routing problems in 

smart waste management. The solution methods are analyzed with regards to their quality 

and time use. A simulation is done with one of the models to evaluate its usefulness in 

long-term real cases. 
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1.0 Introduction 

It is estimated that by 2050, two thirds of the global population will live in urban areas 

(Marques et al. 2018). Cities growing larger gives an increased stress on their 

infrastructure. One approach to deal with this, is to make the infrastructure more efficient 

by introducing Internet of Things (IoT) devices into the infrastructure. An IoT device is an 

electronic device, usually equipped with a sensor, that is connected to other devices via the 

internet. When IoT is used in the context of a city, the term Smart city is often used. 

 

A vital part of any city’s infrastructure is the collection and disposal of waste. If waste isn't 

collected as it's produced, it will accumulate, increasing the chance for the spread of 

disease and harm to the environment. In addition to this, and efficient collection of waste 

allows for more materials to be recycled, reducing the amount of raw materials needed to 

be extracted from the earth. Because of this, waste collection in urban areas has gained 

attention from researchers and practitioners in the last decade (Xue et al., 2019). 

 

Typically, the local municipality is responsible for the collection, but it can also be 

performed be private companies. Regardless of who is performing the collection, it is their 

interest to minimize the travel distance of garbage trucks to reduce costs, both monetary 

and environmental. 

 

The rest of this thesis is structured in the following way: Section 2 gives a verbal 

description of the problem studied in this work. Relevant background literature is covered 

in section 3. In section 4, the mathematical models for the problem are developed, while 

the matheuristic method is described in section 5. Section 6 describes how the test data is 

generated and how the testing is performed. The results from the tests are presented in 

section 7, and section 8 concludes.  
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2.0 Problem Description 

This section states the objective of this work and a verbal description of the problem 

setting. Considerations regarding cost elements of the problem are also discussed. 

2.1 Smart Waste Management 

The objective of this thesis is to develop decision-making tools for the Smart Waste 

Collection Problem. The problem concerns the collection of waste from bins that are 

equipped with sensors to measure their fill level. This information is made available to the 

decision-maker, to utilize in the planning of the emptying schedule and routing of the 

garbage trucks. 

 

Traditionally, waste is collected at fixed intervals, say weekly or bi-weekly. If the 

accumulation of waste in the bins is deterministic, i.e. waste accumulates at a known, 

constant rate, this method can be adequate. One only needs to make sure that each bin is 

emptied at least every 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/𝑑𝑎𝑖𝑙𝑦 𝑓𝑖𝑙𝑙𝑟𝑎𝑡𝑒 days. The real world is not that simple, 

and in most cases we are dealing with stochastic processes.  

 

By equipping the bins with sensors, the decision-maker knows whether each bin must be 

emptied on that day or if it can be emptied sometime in the future. We don't have perfect 

information about how waste will accumulate in the bins, but we can track their levels, and 

make inferences about the current and future fill-rate. One strategy could be to only empty 

bins as they approach their maximum capacity, in an attempt to reduce the number of 

times they are emptied. This approach could be too naive, as it will in many cases lead to 

having to make an additional trip for only a few number of bins. A better approach could 

be to, even though these bins are only partially filled, empty them with trucks that are 

already in their close proximity. 

 

2.2 Cost Elements 

There are several cost elements that need to be considered when modelling waste 

management. Some cost elements are shared by many VRP variants, such as total distance 

and duration of routes. In some cases it is not enough to consider only the total distance 

travelled, because the cost may not be proportional to the distance. The duration of routes 
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needs to be considered in cases where drivers are paid at a higher wage when they exceed 

a certain number of hours worked in a single day. There could also be constraints on the 

duration of routes stemming from regulation, be it government regulation, union rules, or 

self-imposed rules 

Other cost elements are more specific to the problem of waste management. If a full bin 

isn’t emptied, people might start leaving their waste next to it. This is of course not 

desirable, but it may be permissible. There needs to be a cost associated with the bins 

overflowing. In an attempt to avoid any overflowing, this cost could be set very high, or it 

could be set at a level that incorporates the marginal costs of the lower service level.   
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3.0 Literature 

The problem studied in this thesis incorporates elements from the Vehicle Routing 

Problem. The Vehicle Routing Problem (VRP) was first formulated by Dantzig and 

Ramser in a paper called 'The Truck Dispatching Problem', as the problem of optimizing 

the routing of a fleet of gasoline delivery trucks between a bulk terminal and a large 

number of gas stations (Dantzig & Ramser 1959). It is a generalization of the Travelling 

Salesman Problem (TSP), where the objective is to find the shortest path for a salesman 

travelling between cities, ending up in the city of origin. The origins of the Travelling 

Salesman Problem aren't fully known, but Dantzig, Fulkerson and Johnson (1954) were 

among the first to formalize and offer a solution to the problem. TSP and VRP are 

combinatorial optimization problems that are known to be NP-hard (Archettia et al. 2009). 

As a consequence, applications to real-world problems are often impossible to solve to 

optimality within a reasonable time frame. The VRP has been extensively studies over the 

years, and several heuristics and meta-heuristics have been developed.  

 

3.1 Logistics Concepts 

This section covers two fundamental areas of logistics, the vehicle routing problem and 

inventory routing. 

 

3.1.1 The Vehicle Routing Problem 

Laporte et al. (2000) gives an overview of classical heuristics and TABU Search based 

meta-heuristics for the VRP. The two main techniques used in classical heuristics are to 

merge existing routes using a savings criterion, or to use an insertion cost to gradually 

assign vertices to vehicle routes. The different categories of classical heuristics presented 

are Savings algorithms, sequential improvement methods, the sweep algorithm, petal 

algorithms, cluster first - route second algorithms, and improvement heuristics. 

 

The Clarke & Wright savings algorithm (Clarke & Wright 1964) is a well-known heuristic 

for VRPs where the number of vehicles is a decision variable. The first step of the 

algorithms is to compute the savings (reduced distance) of including node i and j in the 
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same route. Savings are computed as 𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗– 𝑐𝑖𝑗 ∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 ≠ 𝑗. The next step 

is to merge routes together. This can be done in a parallel or sequential order. 

 

Mole and Jameson (1976) and Christofides (1979) have proposed the two most well-

known insertion methods for the VRP, but neither of them are as efficient as alternative 

methods. 

 

The sweep method is easy to understand from its name. One imagines a line originating in 

the depot, and rotates it. Nodes are added to the routes as they are passed by the line, as 

long as there is available capacity in the vehicle. Some implementations also include a 

post-optimization phase after this initial clustering, where nodes are exchanged between 

the clusters and the cluster-routes are reoptimized (Laporte et al. 2000). Petal algorithms 

are an extension of the sweep algorithm, where several routes are generated and then 

selected by solving a set partitioning problem (Laporte et al. 2000). 

 

3.1.2 The Inventory Routing Problem 

The Inventory Routing Problem (IRP) merges the VRP with the Inventory Management 

Problem. The objective of the IRP is to simultaneously optimize the scheduling of 

deliveries, the routing of vehicles making said deliveries, and the inventory policies. IRPs 

can be classified by looking at the seven main attributes time horizon, structure, routing, 

inventory policy, inventory decisions, fleet composition, and fleet size. The time horizon 

can be either finite or infinite. The structure describes the number of suppliers and 

customers, and is typically one-to-one, one-to-many or many-to-one. When there is one 

customer per route, the routing is described as direct, and when there are more than one it 

is called multiple. A problem has continuous routing if there isn't a central depot. 

Inventory policies are the decision rules for how customer inventories should be 

replenished. How inventory management is modeled is described by the inventory 

decisions, and deals with issues such as negative inventory, back-orders, stock-outs and 

lost sales. Fleet composition and size describe the vehicles available. A fleet can be 

comprised of a single vehicle, multiple homogenous or heterogenous vehicles, or 

unconstrained (Coelho, Cordeau & Laporte 2013). 
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When looking at approaches to solving industrial cases of the IRP, Andersson et al. (2010) 

note that there are two broad classes of methodologies, heuristics and metaheuristics on 

one side, and exact methods that are terminated before optimality is proven. This is due to 

the fact that the complexity of the problem and the size of real-world instances requires an 

unreasonable long time to solve and verify. 

 

3.2 Metaheuristics 

The heuristics mentioned above have been classical heuristics of either the construction or 

improvement category. By using improvement heuristics, we can find better solutions than 

by using construction heuristics on their own. However, for certain problems this is not 

adequate. Improvement heuristics stop when they reach local optima, and, depending on 

the problem topology, this can be quite far from the global optimum. Metaheuristics are 

methods designed to search for a good solution beyond a local optimum (Hvattum 2017). 

 

The term metaheuristic was coined by Glover (1986), and since then many definitions 

have been proposed. Metaheuristics has been defined both as a framework and as the 

implementation of the framework. Sorensen and Glover include both these perspectives in 

their definition: 

 

“A metaheuristic is a high-level problem-independent algorithmic  

framework that provides a set of guidelines or strategies to develop heuristic 

optimization algorithms. The term is also used to refer to a problem-specific 

implementation of a 

heuristic optimization algorithm according to the guidelines expressed in such a 

framework.” (Sörensen & Glover, 2013) 

 

Other definitions focus solely on the implementation of the framework: 

 

“A metaheuristic is an iterative master process that guides and modifies  

the operations of subordinate heuristics to efficiently produce high-quality  

solutions. It may manipulate a complete (or incomplete) single solution or a  

collection of solutions at each iteration. The subordinate heuristics may be high (or  
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low) level procedures, or a simple local search, or just a construction method.” 

(Voß et al, 1999) 

 

There are several ways to classify metaheuristics, such as nature-inspired vs non-nature 

inspired, population-based vs single-point search, one vs various neighborhood structures, 

and memory usage vs memory-less methods (Blum & Roli 2003). Some of the most well-

known metaheuristics are Simulated Annealing, TABU Search, GRASP and Genetic 

Algorithms. 

 

3.2.1 Genetic Algorithms 

Genetic Algorithms (GA), also called Evolutionary Search or Evolutionary Computation 

algorithms, are, as the name suggests, metaheuristics inspired by the theory of evolution. 

The idea is to mimic the evolutionary process found in biological systems and apply it to 

optimization problems. The first evolution-based metaheuristics were developed in the 

1960s and 1970s (Blum & Roli 2003) by Fogel (1962), Rechenberg (1973), and Holland 

(1975) who developed the Genetic Algorithm. Using the scheme of Blum & Roli (2003), 

we can classify genetic algorithms as nature-inspired, population-based, one neighborhood 

structure and memoryless methods. 

 

The population in a genetic algorithm is a set of chromosomes. Each chromosome is a 

representation of a solution. Each chromosome can be divided into several genes that 

represent different elements of the solution. The position of the gene within the 

chromosome is called the locus, and the different states of each gene are called alleles. For 

binary problems the chromosome is usually a bit-string (Mitchell 1998). In the bit-string 

101010, each of the bits is a gene, with the alleles 0 and 1, and represents each decision 

variable in the optimization problem. For a VRP the chromosome can be a list of the nodes 

in the order they are visited, e.g. [A, B, C] represents a route where the vehicle drives from 

the depot to node A, from node A to node B, and from node B to Node C, before it returns 

to the depot. An alternative decoding of [A, B, C], in the presence of limitations on vehicle 

capacity or route length, could be that the vehicle drives from the depot to node A and then 

back to the depot again, before it drives to nodes B and C. 
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Chromosomes are evaluated by a fitness function. The fitness-function can simply be the 

cost function, or it can have additional elements included, to measure how good this 

chromosome is.  

 

The basic version of a genetic algorithm consists of three operators: selection, crossover 

and mutation. The selection-operator chooses two “parent” chromosomes from the 

population, usually with a bias for better solutions. Genes from these parent chromosomes 

are then combines, according to the crossover-operator, to create offspring, i.e. new 

chromosomes (Mitchell, 1998). Using a single point (middle) crossover-operator. The two 

parent chromosomes 000000 and 111111 can create the two offspring 000111 and 111000. 

Finally, the mutation-operator is applied to increase the diversity of the population. 

Common mutations are to flip one bit, or to swap the alleles of two genes. Applying the 

flip operator on the first locus of the chromosome 000111 gives the chromosome 100111, 

while applying the swap operator on the 3rd and 4th loci gives the chromosome 001011. For 

VRPs, the typical chromosome is a sequence of nodes in the order they are visited in the 

solution. The crossover then needs to be modified, to only have one occurrence of each 

node in the chromosome. With the parent chromosomes [1, 2, 3, 4, 5, 6] and [6, 5, 4, 3, 2, 

1], and a crossover point in the middle, we start by copying the genes preceding the 

crossover point from one parent, e.g. [1, 2, 3] from parent one, and then continue copying 

the genes from the other parent. Because all the nodes from the second half ([3, 2, 1]) 

already are in the offspring chromosome, we skip them and start copying from the 

beginning of the parent chromosome until the crossover point ([6, 5, 4]), giving the 

offspring [1, 2, 3, 6, 5, 4]. The other offspring will then be [6, 5, 4, 1, 2, 3]. To decode the 

chromosome, we need to insert the depot in the beginning and in the end. If we are dealing 

with more than one route, we also need divide the sequence into separate routes and insert 

the depot at the beginning and end of each of them. One way to separate the routes is to 

split sequence before the cumulative load breaches the vehicle capacity. When choosing 

the mutation operator for a genetic algorithm for the VRP, the most obvious choice is to 

swap two nodes, as it is not possible to flip a non-binary value. 
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Figure 1: Genetic algorithm scheme, from Hvattum (2017) 

 

The diagram above illustrates the general framework of genetic algorithms. Parent 

chromosomes are selected from the population and used in the reproduction of children, 

i.e. offspring chromosomes. These children are then modified or mutated in some way, 

before they are evaluated and introduced into the general population. To avoid “over 

population”, parts of the population are discarded. In general, one wants to discard 

chromosomes with the worst evaluation, but some might be kept in order to maintain a 

certain level of diversity in the population. 

 

The pseudo code for a genetic algorithm by Reeves (2010) is given below: 

 

1: Choose an initial population of chromosomes 

2:  while stopping criterion not met do 

3:  while sufficient offspring has not been created do 

4:    if recombination condition satisfied then 

5:     Select parent chromosomes 

6:     Choose recombination parameters 

7:     Perform recombination 

8:    end if 

9:   if mutation condition satisfied then 

10:     Choose mutation points 

11:     Perform mutation 
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12:    end if 

13:    Evaluate fitness of offspring 

14:  end while 

15:  Select new population 

16: end while 

 

This is a very general description of a genetic algorithm, that leaves out the decisions that 

need to be made for each step when it is implemented. 

 

3.2.2 Matheuristics 

Matheuristics are heuristic algorithms that are made by combining metaheuristics and 

mathematical programming. (Boschetti et al. 2009). Recently, Matheuristics have been 

applied to routing problems in a variety of ways. This development is due to advances both 

in hardware and in the solvers used for mixed integer linear models (Archetti & Speranza 

2014). 

 

3.3 Waste Management 

The field of waste management is concerns questions relating to the collection, disposal 

and recycling of waste. Here we are specifically addressing the issue of collecting solid 

waste, in an urban area. Urban areas have a high population density, and therefore also a 

high production of waste that needs to be removed from that area. Several methods for 

waste management have been studies, and more recently, as technology has progressed, 

smart management has gained interest from both practitioners and academics. 

 

3.3.1 Classical Waste Management 

Buhrkal, Larsen & Ropke (2012) study the waste collection vehicle routing problem with 

time windows (WCVRPTW). The element of time windows is introduced because of 

limitations on the customer side, and labor laws regarding rest time for the drivers. The 

WCVRPTW they study is different from the tradition VRPTW because the vehicles have 

to drive to disposal sites to empty their load before they start another route or return to the 

depot. They propose an adaptive large neighborhood search (ALNS) metaheuristic to solve 
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the problem. They use a greedy heuristic to generate the initial solution. The ALNS uses 

several destroy and repair methods to improve the solution. The test their method on 

instances from Kim et al. (2006) and their own instances from the Copenhagen area in 

Denmark. 

 

Karadimas, Papatzelou & Loumos (2007) performed a case study on a small area in 

Greece. Their objective is to minimize the time, and not the total distance, which is usually 

the case. They first cluster bins in a way that makes sure each cluster is below the vehicle 

capacity. This lets them reduce the problem to a asymmetric TSP. Their genetic algorithm 

finds routes that have low durations, but they stress that it should be tested on bigger 

instances. 

 

3.3.2 Smart Waste Management 

In a paper on the smart waste collection routing problem, the authors tackle the problem 

with three different approaches, dubbed “limited”, “smart” and “smarter” (Ramos, de 

Morais and Barbosa-Póvoa 2018). In the limited approach, they make receive daily 

readings of the bins’ fill-evels, and then make routing decisions for that day. First, they 

employ a heuristic to decide which bins to empty. The heuristic is simply to empty all bins 

that are filled over a certain level. After removing all bins below this level from the 

problem, it is modelled as a capacitated vehicle routing problem, using the two-commodity 

network flow formulation of Baldacci, Hadjiconstantinou, and Mingozzi (2004) to 

minimize the transportation cost. In the smart approach, they simultaneously choose which 

bins to empty and the routing of the vehicles. This approach allows that a certain 

percentage of bins may overflow. The number of vehicles used is decided by the model, 

and there is piecewise penalty for using vehicles. They solve the problem as a mixed 

integer linear programming, by adapting the formulation used in the limited approach. The 

objective function of the model is the profit, calculated as revenues from selling garbage 

collected from the bins, less the penalty for using vehicles and a variable cost that is a 

linear function of the distance travelled. In the smarter approach, they use a heuristic to 

determine when the model from the smart approach should be run to maximize profit. 

They perform a case study for a company with a homogenous vehicle fleet collecting 

waste in Portugal 
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Mes, Schutten & Rivera (2014) model the smart waste management problem as an IRP, 

and develop a heuristic method to solve it. The heuristic divides the bins into three groups, 

based on whether they need to be emptied on that day, may be emptied on that day, or 

should not be emptied on that day. The heuristic makes short-term plans, but also 

considers the long-term performance. They test their heuristic on a real-world instance 

from a Dutch waste collection company, and show that costs can be reduced by 40%. 

 

Sharifyadzi and Flygansvær (2015) studied the effect of availability of fill-rate data from 

sensors installed in waste containers in the Oslo municipality. Using simulation 

techniques, they evaluated two systems for waste collection. The base case, where no 

sensor data was available and routes and schedules were fixed, and the case where 

containers had sensors. The data for the study consisted of 1003 containers, of 5 different 

sizes, in 851 locations and 2 trucks. In the base case a static route is made by using the 

nearest neighbor algorithm. This is the same method as the operating company was using. 

For the case with sensors, they use a modified version of the Clarke & Wright savings 

algorithm. The two systems are evaluated on the metrics total haulage distance, service 

level, and capacity utilization. The dynamic system with sensors outperformed the base 

case on all three metrics, with a reduction in haulage distance of 8.2%. The authors 

conclude that there are both environmental and financial benefits to be gained from the use 

of the sensors, stating that "it is likely that investment on the sensors pay off" (Sharifyazdi 

& Flygansvær, 2015). However, they do not look at set up and maintenance costs of the 

sensors. They also don't investigate if there are any opportunities to further optimize the 

routing without using sensors, e.g. by using different routing algorithms. 
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4.0 Mathematical Models 

In this section two mixed integer programming models are developed. Both models are 3-

index vehicle flow models. The second model represents the real-world situation more 

accurately, but as it is more complex it has computationally harder to solve. The models 

are meant to be solved at the beginning of each workday. They will give the routes for the 

current day, and a plan for the ones to come. On the next day, the model is solved again 

using updated data from the sensors, and the schedule and routes are updated. 

4.1 Basic Model 

The basic model is a three-index vehicle flow model for smart waste management. The 

current bin levels should be combined with the growth rate to feed the model a schedule 

for which days each bin can be emptied. 

4.1.1 Notation 

4.1.1.1 Sets 

𝑉 the set of all nodes, where the depot is located at node 0. 

𝐷 the set of all days included in the planning horizon. 

 

4.1.1.2 Variables 

𝑥𝑖𝑗𝑑 a binary variable taking the value 1 if the edge between vertex i and j is 

included in a route on day d. 

𝑢𝑖𝑑 a continuous variable representing the vehicle's load when departing from 

node i. 

 

4.1.1.3 Parameters 

𝑄 the vehicle capacity. 

𝑐𝑖𝑗 the cost (distance) of traversing the edge between nodes i and j. 

𝑎𝑖𝑑 a parameter set to 1 if node i is allowed to be serviced on day d, 0 

otherwise. 

𝑏  the capacity for the number of routes per day. 
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𝑞𝑖𝑑 the fill level of the bin located in node i on day d. For d = 0 this level is 

the actual level measured by the sensor, while for d > 0 it is the expected 

level, calculated as 𝑞𝑖𝑑 = 𝑞𝑖0 + 𝑔𝑖 ∗ 𝑑, where 𝑔𝑖 is the expected daily 

production of waste. 

 

4.1.2 Formulation 

 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑑

𝑑∈𝐷𝑗∈𝑉𝑖∈𝑉

 (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ 𝑥0𝑗𝑑

𝑗∈𝑉

≤ 𝑏 ∀𝑑 ∈ 𝐷 (2) 

∑ ∑ xijd  = 1

d∈Dj∈V

 ∀i ∈ V\{0} (3) 

∑ 𝑥𝑖𝑗𝑑

𝑗∈𝑉

= ∑ 𝑥𝑗𝑖𝑑

𝑗∈𝑉

 

 

∀𝑗 ∈ 𝑉, 𝑑 ∈ 𝐷 (4) 

∑ 𝑥𝑖𝑗𝑑

𝑖∈𝑉

≤ 𝑎𝑗𝑑 ∀𝑗 ∈ 𝑉\{0}, d ∈ 𝐷 (5) 

𝑢𝑖𝑑 − 𝑢𝑗𝑑 ≥ 𝑞𝑗𝑑 − 𝑄(1 − 𝑥𝑖𝑗𝑑) 
∀𝑖 ∈ 𝑉{0}, 𝑗 ∈ 𝑉{0}, 

𝑑 ∈ 𝐷 
(6) 

0 ≤ 𝑢𝑖 ≤ 𝑄 ∀𝑖 ∈ 𝑉\{0} (7) 

𝑥𝑖𝑗𝑑 ∈ 0,1 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑑 ∈ 𝐷 (8) 

 

4.1.3 Model Description 

The objective function (1) is the total distance travelled. The first constraint (2) limits the 

number of routes for each day. The limit on the number of trips was chosen over a 

duration constraint, because in most real-world applications, most of the driving time is 

between the landfill and zone where the bins are located. Constraints (3) and (4) ensure 

that each node is visited once during the planning horizon, and that the balance of flow is 

maintained at each node. Constraint (5) is used to limit the days when a node can be 
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visited. It can be used to exclude non-working days, but the primary purpose is to enforce 

that the bins are emptied before they overflow. Constraint (6) eliminates sub-cycles and, 

together with (7), ensures that the load stays within the vehicle capacity. (8) is the binary-

constraint for the x-variable.  
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4.2 Extended Model 

This model is an extension of the basic model, with more flexibility. It incorporates 

elements such as overflow, additional routes and multiple visits of the nodes in the 

planning horizon. Because of this it is more complex and computationally more 

demanding to solve. The model has also been included in Hrabec et al. (2019). 

4.2.1 Notation 

4.2.1.1 Sets 

𝑉 the set of all nodes where bins are located. 

𝑉0 the set off all nodes, including the depot located in node 0. 

𝐷 the set of all days in the planning horizon. 

𝐷0 a subset of D, where day 0 has been excluded. 

 

4.2.1.2 Variables 

𝑥𝑖𝑗𝑑 a binary variable taking the value 1 if the edge between vertex i and j is 

included in a route on day d. 

𝑦𝑖𝑑 a binary variable taking the value 1 if the bin located in node i is serviced 

on day d. 

𝑢𝑖𝑑 a continuous variable representing the vehicle's load when departing from 

node i. 

𝑞𝑖𝑑 a continuous variable representing the expected fill level at node i on day d. 

𝑤𝑖𝑑 a continuous variable representing the level of overflow at node i on day d.  

𝑣𝑖𝑑 a continuous variable used in the calculation of bin levels. 

𝑡𝑑 an integer variable representing additional vehicles used. 

 

4.2.1.3 Parameters 

𝑐𝑖𝑗 the cost (distance) of traversing the edge between nodes i and j. 

𝑎𝑑 a parameter set to 1 if node i is allowed to be serviced on day d, 0 

otherwise. 

𝑄 the vehicle capacity. 
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𝑞𝑖
𝑠𝑒𝑛𝑠𝑜𝑟  the fill level (utilization) of the bin located in node i on day 0, obtained 

from the sensors. 

𝑞𝑖
𝑚𝑎𝑥 the capacity of the bin located at node i. 

𝑏  the capacity for the number of routes per day. 

𝑓 the minimum number of times the bins should be emptied during the 

planning horizon. 

𝑑  the penalty of an overflowing bin, per unit per day. 

𝑒 the cost of one addition route, representing overtime or outsourcing from 

another company. 

𝑀 big M. 

𝑔𝑖 the expected daily production rate at each node. 

 

4.2.2 Formulation 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑑

𝑑∈𝐷

+ ∑ ∑ 𝑑𝑤𝑖𝑑

𝑑∈𝐷0

+ ∑ 𝑒𝑡𝑑

𝑑∈𝐷0𝑖∈𝑉𝑗∈𝑉0

𝑖≠𝑗
𝑖∈𝑉0

 
(9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   

∑ 𝑥0𝑗𝑑 ≤ 𝑏𝑎𝑑 + 𝑡𝑑 

𝑗∈𝑉

 ∀ 𝑑 ∈ 𝐷 (10) 

∑ ∑  xijd ≥ 𝑓  

d∈ D𝑖∈𝑉
𝑖≠𝑗

    
∀𝑗 ∈ 𝑉 (11) 

∑ 𝑥𝑖𝑗𝑑

𝑗∈V0

𝑖≠𝑗

= ∑ 𝑥𝑗𝑖𝑑

𝑗∈V0

𝑖≠𝑗

    
∀𝑖 ∈ 𝑉0 , 𝑑 ∈ 𝐷 (12) 

𝑢𝑖𝑑 − 𝑢𝑗𝑑 ≥ 𝑞𝑗𝑑 − 𝑄(1 − 𝑥𝑖𝑗𝑑)    ∀𝑖, 𝑗 ∈ 𝑉 𝑖 ≠ 𝑗, 𝑑 ∈ 𝐷 (13) 

𝑞𝑖0 = 𝑞𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 ∀𝑖 ∈ 𝑉 (14) 

𝑦𝑗𝑑 = ∑ 𝑥𝑖𝑗𝑑

𝑗∈𝑉
𝑖≠𝑗

 
∀𝑗 ∈ 𝑉, 𝑑 ∈ 𝐷 (15) 

𝑣𝑖𝑑 ≤ 𝑀(1 − 𝑦𝑖𝑑−1) ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (16) 

𝑣𝑖𝑑 ≤ 𝑞𝑖𝑑−1 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (17) 

𝑣𝑖𝑑 ≥ 𝑞𝑖𝑑−1 − 𝑀𝑦𝑖𝑑−1 ∀𝑖 ∈ 𝑉, d ∈ 𝐷0 (18) 
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𝑞𝑖𝑑 = 𝑣𝑖𝑑 + 𝑔𝑖 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (19) 

𝑤𝑖𝑑 ≥ 𝑞𝑖𝑑 − 𝑞𝑖
𝑚𝑎𝑥 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (20) 

0 ≤ 𝑢𝑖𝑑 ≤ 𝑄 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷 (21) 

0 ≤ 𝑞𝑖𝑑 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷 (22) 

𝑥𝑖𝑗𝑑 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝑉0, 𝑖 ≠ 𝑗, 𝑑 ∈ 𝐷 (23) 

𝑎𝑖𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷 (24) 

0 ≤ 𝑤𝑖𝑑 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (25) 

0 ≤ 𝑣𝑖𝑑  ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (26) 

𝑦𝑖𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (27) 

𝑡𝑑 ∈ ℕ0 ∀ 𝑑 ∈ 𝐷0 (28) 

 

4.2.3 Model Description 

The objective function (9) consists of three parts: the first one is the total distance 

travelled, while the second and third are penalty costs. The first penalty is related to the 

overflow of bins, and is the product of the penalty coefficient and the unit-days of 

overflow. The second penalty is the number of routes above the allowed number of daily 

routes. The number of additional routes is multiplied with the cost of having the crew work 

overtime or the cost of outsourcing the job. If these aren’t viable options, the cost can be 

set to a sufficiently big number, to avoid additional routes. Note however that this may 

lead to infeasibility of the model.  

 

Constraint (10) is similar to constraint (2) from the basic model, in that it limits the number 

of routes for each day. By introducing the variable 𝑡𝑑 we also allow for additional routes to 

be created, at an extra cost. Constraint (11) is the same as constraint (3) from the basic 

model, but the instead of stating that each bin must be emptied at least once during the 

planning horizon, it allows us to require a different number. Depending on the type of 

waste and the length of the planning horizon, it might be reasonable to change this number. 

For example, organic waste might need to be emptied more frequently than paper and 

cardboard, due odor from the decomposing material. If it is suitable, the model can easily 

be changed to have the f-parameter set individually for each bin. The balance constraint 

(12) is the same as (4) in the basic model. The load constraint (13) is also similar to that of 

the basic model, but in this model 𝑞𝑖𝑑 is a variable for the bin levels. This is done to allow 
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for multiple visits through the horizon. Constraint (14) initializes the day zero bin level 

variables to the values collected from the sensors.  Constraint (15) is just used to increase 

the readability of the model, as it sets the variable  𝑦𝑗𝑑 to 1 if bin j is emptied on day d. 

Constraints (16) through (19) are used to reset the bin level if the bin is emptied the 

previous day. This is necessary to have solutions with multiple visits in the solution space. 

Constraint (20) accounts for the overflow, so that it can be included in the objective 

function. The constraints (21) through (28) set the domains for the decision variables. 
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5.0 Matheuristic Implementation  

The problem of waste management can be split into two main sub-problems. Decisions 

about Scheduling – at what point in time the bins should be emptied, and routing – in 

which order the garbage truck should empty the bins. The matheuristic method developed 

uses a genetic algorithm to solve the scheduling, and then the routing is solved exactly 

using mixed integer linear programming. Because the schedule is solved first, the 

complexity of the routing problem is greatly reduced, and exact methods are more feasible. 

5.1 A Genetic Algorithm for the Scheduling Sub-Problem 

5.1.1 Chromosome Representation 

The table below represents the scheduling for a waste management problem with 10 nodes 

and a 5-day planning horizon. 

Node\day 0 1 2 3 4 

1 1 0 1 0 1 

2 1 0 0 1 0 

3 0 1 1 0 0 

4 0 1 0 0 0 

5 0 0 1 0 0 

 

Each row represents the 5-day emptying schedule for the given bin. A value of 1 means the 

bin is scheduled to be emptied, and 0 means it is not. Bin 1, for example, is scheduled to be 

emptied today (day 0), in two days, and again in 4 days. 

To represent the schedule in a way that is better suited for genetic algorithms, we can 

flatten it. To flatten it simply means we change the representation from 2-dimensional to 1-

dimensional. This is done by moving each row to the right of the one that’s originally 

above it, giving the following 1-dimensional array: 

 

 

Figure 2: Chromosome representation 
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This representation of the solution is suitable as a chromosome in the genetic algorithm 

framework.  

 

5.1.2 Population Initialization 

The population is initialized with a total of 4𝑛 chromosomes. The population is divided 

into evenly sized groups. All chromosomes in a group have the same number of 1-values, 

but they are shuffled around. The first group has n 1-values, and the next group has an 

increasing amount. The idea behind this is that in a feasible solution, each bin must be 

emptied at least once. An alternative approach is to initialize the population with random 

solutions. 

 

5.1.3 Genetic Operators 

In the reproduction phase, two parent-chromosomes are selected at random from the 

population. The crossover-operator is then applied on these two parents, spawning two 

child-chromosomes. The crossover-operator chooses a random crossover-point. One child 

inherits the genetic information before the crossover point from one parent and the 

information after it from the other parent. The other child does the same, but with the 

parents swapped. This process is illustrated below: 

 

Figure 3: Crossover 

After the crossover, there is a 50% chance of a gene to be mutated. The mutation is done 

by taking a gene and changing it from 1 to 0 or from 1 to 0. In the illustration below, the 

fifth gene is mutated: 
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Figure 4: Mutation 

 

The reproduction phase continues until the population is doubled in size, and then the 

solutions are evaluated by the evaluation function. 

 

5.2 An Exact Method for the Routing Sub-Problem 

Each chromosome from the genetic algorithm represents a schedule of which bins are 

emptied on which days. This schedule is passed to the model from chapter 4.2. With the 

schedule being fixed, the complexity of the model is greatly reduced, and it can much easier 

be solved exactly. The model is solved in AMPL, using the CPLEX solver. After solving 

the model, the objective function value is returned to the genetic algorithm, as the fitness of 

the chromosome. 

 

5.3 Inefficiencies of the Implementation 

The matheuristic is implemented in the Python programming language, which is 

drastically slower than compiled languages such as C and C++. Python was chosen for its 

readability and because it allows for a short way between idea and prototype. There are 

libraries available to increase the speed of python code, but this implementation is done 

using the standard library. The interaction with the CPLEX solver is done using the AMPL 

API.  

 

Apart from the choice of language, an obvious optimization is parallelization. Because the 

evaluation of a chromosome is independent of other chromosomes, the evaluation function 

could be parallelized.  
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6.0 Data and Testing 

This section describes how the test instances are generated, and how the methods are 

tested. 

 

6.1 Test Instances 

The computational experiments are conducted on synthetic data. We generate coordinates 

for the nodes by sampling n+1 pseudo random numbers for both axes. The first pair of 

coordinates are those of the depot. The fill-levels at the nodes are generated in a similar 

fashion.  

 

An example of the data for a test instance is shown in the table: 

Node 0 1 2 3 4 5 6 7 8 9 10 

X 58 19 97 92 47 66 21 22 29 69 21 

Y 97 7 19 9 77 37 47 33 64 40 21 

Utilization 0 55 59 38 27 14 83 79 87 42 85 

 

And a graphical representation of the instance is given below. The green hexagon is the 

depot, and the other ten markers are the locations of the bins. The size of the inner, blue 

circle illustrates the fill-level relative to the size of the bin capacity, shown in pink. 
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Figure 5: Instance map 

The test instances are named according to the number of bins and the number of allowed 

daily routes. The instance 8-1, for example, has 8 bins and we allow 1 route each day. 

 

6.2 Distances 

We use the Euclidean distances between nodes, i.e. 𝑐𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2, giving 

the following symmetrical distance matrix for the example test instance: 

 

  0 1 2 3 4 5 6 7 8 9 10 

0 0 98 86.7 94.7 23.1 61 62 73.8 44.4 57.8 84.7 

1 98 0 78 72.9 75.1 55.4 40.2 25.7 57.5 59.9 13.9 

2 86.7 78 0 11.2 76.2 34.8 80.1 75.5 80.9 34.5 75.3 

3 94.7 72.9 11.2 0 82 38.1 80.6 74.1 83.9 39.1 72.2 

4 23.1 75.1 76.2 82 0 44.9 39.1 50.7 22.2 43 61.7 

5 61 55.4 34.8 38.1 44.9 0 46.1 44.4 46.3 4.7 47.8 

6 62 40.2 80.1 80.6 39.1 46.1 0 14.6 18.2 48.3 26.3 
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7 73.8 25.7 75.5 74.1 50.7 44.4 14.6 0 31.8 47.7 11.8 

8 44.4 57.5 80.9 83.9 22.2 46.3 18.2 31.8 0 46.7 43.6 

9 57.8 59.9 34.5 39.1 43 4.7 48.3 47.7 46.7 0 51.8 

10 84.7 13.9 75.3 72.2 61.7 47.8 26.3 11.8 43.6 51.8 0 

 

6.3 Testing 

The models are run on the test instances, to see how they compare to each other with 

regards to the time it takes to solve them and the quality of the solutions. When the optimal 

solution isn’t verified within the time limit, the gap to the lower bound is analyzed. 

 

6.4 Simulation 

To find out how the whether the solution methods are suitable for real world application, 

they must be tested over time. To do this, the process is simulated. The model is solved, 

and the bins chosen to be emptied on the first day have their levels reset. Then the bin-

levels are updated with sampled growth numbers, and the model is solved again. This is 

done using a program written in the Python programming language. The simulation is 

done using the extended model, and an instance with 5 nodes. 
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7.0 Results 

In this section the results from the tests are presented. Results the quality and runtime of 

the models is presented, and then the matheuristic and simulation results. 

 

7.1 Solution Methods 

7.1.1 Exact Methods 

This section present findings obtained when using the two models to solve test instances. 

CPLEX version 12.9.0.0 is used as the solver for all instances. The solver is given a time 

limit of 10 minutes, but other than that all settings are at the default values. The models are 

solved with a horizon of five days. 

7.1.1.1 Solution Quality 

 

Figure 6: Solution Quality 
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Both models were used to solve 11 different test instances. The instances range in size 

from 5 to 15 bins. For the instances with 5 to 10 bins we allow for one route each day. To 

ensure feasibility, the instances with more than 10 bins were solved with up to two daily 

routes. For most of the instances the two models find the same optimal solution. For 

instance 8-1, a slightly better solution is found using the extended model. Because the 

solution space for the basic model is a subspace of that of the extended model, the 

extended model’s optimum is always the same as or better than the basic model’s 

optimum. For instances 14-2 and 15-2 we get better solutions using the basic model 

because the allotted 10-minute runtime isn’t enough for the extended model to find the 

optimum. The reason why the extended model so rarely fins a better solution than the basic 

model is likely because of the short planning horizon. The bins have an expected daily 

growth rate of 10 units, and a capacity of 100 units, meaning there is in average 10 days 

from the time a bin is emptied until it has to be emptied again. 

7.1.1.2 Solution Time 

 

Figure 7: Solution Time 
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The figure above shows how the time to find the solution. The dotted line shows the ten-

minute time limit we set. In general, we can see that it takes less time to solve the basic 

model than the extended model. When going from 10 to 11 bins, both modes are solved in 

less time. This might have something to do with the fact that we allowed for one more 

route per day. There seems to be a point around n=14 where the models can’t be solved 

within the time limit. 

 

The figure below shows the relative MIP gap of the solutions for instances with 10 to 15 

bins. There is quite a bit of variation from instance to instance, but again we see that the 

basic model is doing better than the extended model. The biggest relative MIP gap is just 

over 40%., meaning the best bound is within 40% of the solution obtained. 

 

Figure 8: Relative MIP Gap 

It is clear that the models aren’t given enough time to verify the optimality of the solutions 

of larger instances, but that doesn’t necessarily mean that the solutions are bad. Take the 

12-2 instance: both models find the same solution, but the extended model has a relative 

MIP gap of about 10%, while the basic model’s solution is verified as optimal. In addition, 

there isn’t any clear indication that the models always perform worse for larger instances. 
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For example, the instance 15-2 has a lower relative MIP gap than 14-2. We can’t make any 

conclusions about this, since we only have a single observation for each instance size. 

7.1.2 Matheuristic 

The matheuristic comprised of the genetic algorithm and the extended model was used to 

solve all the test instances. The genetic algorithm went through 20 iterations (generations). 

To evaluate each solution, the chromosome was sent to AMPL, and the y-variable was 

fixed to the values of the genes. The time limit for CPLEX was set to 10 seconds, which in 

most cases was sufficient to find the optimal solution, given the tightening done by fixing 

all y-variables. The parameter deciding how many times in the planning horizon a bin has 

to be emptied was set to 0. This was done because it shouldn’t be necessary to empty the 

bins that often, when they on average take 10 days to fill up. The bins should rather be 

empty to avoid the penalty associated with overflow. Because of a technical issue with the 

population initialization, a random population of size 20 was used. The mutation chance 

was set to 0.9.  In the figure below, the best solution from each generation is plotted.  

 

Figure 9: Matheuristic Quality 

 



 30 

All instances start with a very high total cost. In most cases a slight improvement is made 

over the first generations, but they al stagnate before the ninth generation. The total cost is 

comprised mostly of penalties, and not the actual distance travelled. The total runtime of 

the metaheuristic is plotted below. There is a slight bit of variation, but it is linearly 

corelated with the number of bins. 

 

Figure 10: Matheuristic Runtime 

 

The smallest instance (n=5) takes just over 10 minutes, and the largest (n=15) takes just 

under an hour. Considering that the models found fairly good solution in 10 minutes for all 

instances, the matheuristic isn’t very useful for this problem. 

 

7.2 Simulation 

The simulation was done using the extended model, and an instance with 5 nodes. 7 days 

were used both as the planning horizon in the model and as the number of days simulated. 

The simulation was done with 10 and 20 as the expected daily production of waste, with 

standard deviations of 5 and 2.5, respectively.  
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Figure 11: Static approach for the low growth case 

 

In the static approach, the model is only solved one time, and the waste collection plan is 

executed regardless of how the bin levels deviate from what’s expected. In the figure 

above we see the bin levels for the five bins over the 7-day period. Bins 2, 3 and 4 are 

emptied on the first day (day 0), while the other bins aren’t emptied in the 7-day period. 

The total distance for the solution is 190.2 and there aren’t any overflows. 
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Figure 12: Dynamic approach for the low growth case 

 

In the dynamic approach we solve the model every day, using the updated bin levels. Bins 

2, 3 and 4 are emptied on the first day. On day 4 bins 1, 2 and 3 are emptied. Bin 5 isn’t 

emptied, but most likely would be if we simulated one more day. The total distance is 

492.8 and there no bins overflow. 

 

With a growth of 10 and only seven day, not all bins need to be emptied, and therefore the 

method isn’t properly tested. Because of this, the expected growth was increased to 20, and 

the simulation was run again. 
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Figure 13: Static approach for the high growth case 

 

With a static approach for the higher growth scenario, there is a lot more activity. All bins 

are emptied during the 7-day period, and on the last day bins 1 and 3 are overflowing. Bin 

4 is also close to overflowing, and most likely will be over its capacity on the next day. 

The total distance with the static approach is 367.6. 

 

With the dynamic approach, which is plotted below, only one bin overflows during the 

simulation. The total distance is 678.2. 
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Figure 14: Dynamic approach for the high growth case 

 

For both the high growth and the low growth cases, the static method provides the shortest 

total distance. When using the static method, there is a buildup towards the end of the 

simulations, and it might be worth investigating what will happen over a longer horizon. 

 

8.0 Final Remarks 

Two models have been developed. One basic, that’s quite manageable for linear solvers, 

and one with more features that is more demanding. The second model was incorporated 

with a genetic algorithm in a matheuristic. The models outperform the matheuristic, both 

with regards to the time it takes to find a solution and the quality of the solution. The 

second model was used in a simulation to analyze how it performs over time. To further 

develop solution methods for the smart waste management problem, it could be interesting 

to implement another kind of metaheuristic or to develop a classical heuristic tailored for 

the problem. 
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10.0 Appendix 

10.1  Basic Model AMPL 

#Sets 

 

set V; 

set D; 

 

 

#Parameters 

 

param c {i in V, j in V: i<>j} >= 0; 

param Q >= 0; 

param q {V diff {0}, D} >= 0; 

param a{V diff {0}, D}; 

param b; 

 

 

#Variables 

 

var x {i in V, j in V, D: i<>j} binary; 

var u {V diff {0}, D} >= 0; 

 

 

#Objective function 

 

minimize Total_Distance: sum {i in V, j in V, d in D:i<>j} c[i,j] * x[i,j,d]; 

 

 

#Constraints 

 

subject to maxRoutes {d in D}: sum {j in V:j<>0} x[0,j,d] <= b; 
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subject to outDegree {i in V diff {0}}: sum {j in V, d in D:i<>j} x[i,j,d] = 1; 

 

subject to xContinuity {i in V, d in D}: 

 sum {j in V:i<>j} x[i,j,d] = sum {j in V:i<>j} x[j,i,d]; 

  

subject to uContinuity {d in D, i in V diff {0}, j in V diff {0}: i<>j}: 

 u[i,d] - u[j,d] >= q[j,d] - Q * (1 - x[i,j,d]); 

  

subject to uUpper {i in V diff {0}, d in D}: u[i,d] <= Q; 

 

subject to serviceDays {j in V diff {0}, d in D}: sum {i in V:i<>j} x[i,j,d] <= a[j,d]; 
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10.2  Extended Model 

# extended model 

 

### 

 

#Sets 

 

set V; 

set D; 

 

 

#Parameters 

 

param c {i in V, j in V: i<>j} >= 0; 

param Q >= 0; 

param q_sensor {V diff {0}} >= 0; 

param q_max {V diff {0}} >= 0; 

param g {V diff {0}} >= 0; 

param M; 

param a {D} >= 0; 

param b >= 0; 

param f >= 0; 

param binover >= 0; 

param e >= 0; 

 

#Variables 

 

var x {i in V, j in V, D: i<>j} binary; 

var u {V diff {0}, D} >= 0; 

var q {V diff {0}, D} >= 0; 

#var a {V diff {0}, D} binary; 

var y {V diff {0}, D} >= 0; 

var w {V diff {0}, D diff {0}} >= 0; 
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var v {V diff {0}, D diff {0}} >= 0; 

var t {D} integer >= 0; 

 

#Objective function 

 

minimize Total_Distance:  

 sum {i in V, j in V, d in D:i<>j} c[i,j] * x[i,j,d] 

 + sum {i in V diff {0}, d in D diff {0}} w[i,d] * binover 

 + sum {d in D} t[d] * e; 

 

 

#Constraints 

 

subject to maxRoutes {d in D}:  

 sum {j in V:j<>0} x[0,j,d] <= b * a[d] + t[d]; 

 

subject to outdegree {i in V diff {0}}: 

 sum {j in V, d in D:i<>j} x[i,j,d] >= f; 

 

subject to xContinuity {i in V, d in D}: 

 sum {j in V:i<>j} x[i,j,d] = sum {j in V:i<>j} x[j,i,d]; 

 

 

subject to uContinuity {d in D, i in V diff {0}, j in V diff {0}: i<>j}: 

 u[i,d] - u[j,d] >= q[j,d] - Q * (1 - x[i,j,d]); 

  

subject to uUpper {i in V diff {0}, d in D}:  

 u[i,d] <= Q; 

  

 

 

s.t. initial_q {i in V diff {0}}: 

 q[i,0] = q_sensor[i]; 
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s.t. linerarized_prod1 {i in V diff {0}, d in D diff {0}}: 

 v[i,d] <= M * (1 - y[i,d-1]); 

 

s.t. linerarized_prod2 {i in V diff {0}, d in D diff {0}}: 

 v[i,d] <= q[i,d-1]; 

 

s.t. linerarized_prod3 {i in V diff {0}, d in D diff {0}}: 

 v[i,d] >= q[i,d-1] - (1-(1 - y[i,d-1])) * M; 

 

s.t. update_q {i in V diff {0}, d in D diff {0}}: 

 q[i,d] = v[i,d] + g[i]; 

 

s.t. update_y {j in V diff {0}, d in D}: 

 sum {i in V: i<>j} x[i,j,d] = y[j,d]; 

  

s.t. over_flow {i in V diff {0}, d in D diff {0}}: 

 w[i,d] >= q[i,d] - q_max[i]; 
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10.3  Matheuristic Script 

import amplpy 

import numpy as np 

import pandas as pd 

import time 

import matplotlib.pyplot as plt 

import random 

import io 

 

starttime = time.time() 

#Functions: 

 

def generatePopulation(nDays, nNodes, populationSize): 

 population = [] 

 solsize = nDays * nNodes 

 groupsize = populationSize // nDays #størrelsen avhenger av om det gruppene går  

opp i  populationSize 

 for i in range(1, nDays+1): 

  sol = [1] * i * nNodes + [0]*(solsize - (i * nNodes)) 

  for i in range(groupsize): 

   random.shuffle(sol) 

   population.append(sol) 

 return population 

 

 

def reproduction(population, mutationChance): 

 offspring = [] 

 while len(offspring) < populationSize: 

  #choose parents 

  parent1 = random.choice(population) 

  parent2 = random.choice(population) 

  #do crossover to generate offspring 

  crossover = random.randint(0, len(parent1)-1) 
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  child1 = parent1[:crossover] + parent2[crossover:] 

  child2 = parent2[:crossover] + parent1[crossover:] 

  #by some chance mutate offspring 

  if random.random() <= mutationChance: 

   gene = random.randint(0, len(child1)-1) 

   if child1[gene] == 0: 

    child1[gene] = 1 

   else: 

    child1[gene] = 0 

  if random.random() <= mutationChance: 

   gene = random.randint(0, len(child2)-1) 

   if child2[gene] == 0: 

    child2[gene] = 1 

   else: 

    child2[gene] = 0 

 

  offspring.append(child1) 

  offspring.append(child2) 

 return offspring 

 

 

def evalFitness(chromosome): 

 ampl.eval('unfix y;') 

 index = 0 

 for i in range(1,nNodes+1): 

  for d in range(nDays): 

   varValue = chromosome[index] 

   amplcommand = "let y[{},{}] := {};".format(i, d, varValue) 

   ampl.eval(amplcommand) 

   index += 1 

 

 ampl.eval('fix y;') 

 ampl.solve() 

 dist = ampl.getObjective('Total_Distance') 
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 dist = dist.value() 

 return dist 

  

def sumones(solution): 

 return sum(solution) 

 

def popFitness(population): 

 popfitness = [] 

 for solution in population: 

  #popfitness.append(sumones(solution)) 

  popfitness.append(evalFitness(solution)) 

 return popfitness 

 

  

writefiles = ['5.txt','6.txt','7.txt','8.txt','9.txt','10.txt','11.txt','12.txt','13.txt','14.txt','15.txt'] 

nodelist = [5, 6, 7, 8, 9, 10, 11, 12 ,13, 14, 15] 

 

#AMPL Setup 

ampl = amplpy.AMPL() 

modfile = r'M:\ampl\Bergen\extended.mod' 

datfile = r'M:\ampl\Bergen\extended_10_5_1.dat' 

ampl.read(modfile) 

ampl.readData(datfile) 

ampl.setOption('solver', 'cplex') 

ampl.setOption('cplex_options', 'time=10') 

 

#Setup 

random.seed(101) 

nDays = 5 

nNodes = 5 

populationSize = 20 #4 * nNodes 

mutationChance = 0.9 

bestsols = [] 

bestfits = [] 
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#Initiate Population 

#population = generatePopulation(nDays, nNodes, populationSize) 

 

for n in range(len(writefiles)): 

 chromlen = nDays * nodelist[n] 

 population = [] 

 for i in range(populationSize): 

  ones = random.randint(0, chromlen) 

  zeros = chromlen - ones 

  chrom = [1 for i in range(ones)] + [0 for i in range(zeros)] 

  random.shuffle(chrom) 

  population.append(chrom) 

 

 outfile = writefiles[n] 

 f = open(outfile, 'a') 

 

 for i in range(20): 

  #Reproduction 

  children = reproduction(population, mutationChance) 

  population = population + children 

  #Calculate fitness 

  popfitness = popFitness(population) 

  #sort by fitness 

  popfitness, population = (list(t) for t in zip(*sorted(zip(popfitness, 

population)))) 

  #wipe out worst (for now at least) 

  population = population[:populationSize] 

  #record best solution 

  bestsols.append(population[0]) 

  bestfits.append(popfitness[0]) 

  print("End of iteration: ", i) 

  for z in popfitness[:5]: 

   f.write(' ') 
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   f.write(str(z)) 

   f.write(', ') 

  f.write('\n') 

 print('best of each generation: ',bestfits) 

 print('best solution: ', bestsols[bestfits.index(min(bestfits))]) 

 print('top five from each generation:') 

 

 runtime  = time.time() - starttime 

 

 f.write('Runtime: ') 

 f.write(str(runtime)) 

 

 f.close() 
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10.4  Simulation Script 

#Import libraries 

import amplpy 

import numpy as np 

import pandas as pd 

import time 

import matplotlib.pyplot as plt 

 

 

 

#Create the ampl object 

ampl = amplpy.AMPL() 

 

#Read model and data for files (Maybe change it to define data in py) 

modfile = r'M:\ampl\Bergen\extended.mod' 

datfile = r'M:\ampl\Bergen\extended_5_7_1.dat' 

ampl.read(modfile) 

ampl.readData(datfile) 

 

#Set solver and time limit 

ampl.setOption('solver', 'cplex') 

ampl.setOption('cplex_options', 'mipgap=0.05') 

#ampl.setOption('cplex_options', 'time=40') 

###The model can now be solved using the 'ampl.solve()' command### 

 

 

np.random.seed(101) 

simulationDays = 7 #How many times the model is solved 

clients = 5 

customernodes = [i for i in range(1,clients +1)] #not sure where to put this 

exprod = [20 for i in range(clients)] 

proddev = [5 for i in range(clients)] 

outfile = open(r'M:\ampl\Bergen\simulationoutput.txt', 'a+') 
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real_bin_levels = [[] for i in range(clients)] 

 

for simulation in range(simulationDays): 

 

 #Solve the model 

 ampl.solve() 

 

 ampl.display('_solve_elapsed_time >> skrivq.txt') 

 ampl.display('Total_Distance >> skrivq.txt') 

 ampl.display('{i in V, j in V:i<>j} x[i,j,0]*c[i,j] >> skrivq.txt') 

 ampl.display('q >> skrivq.txt') 

 ampl.display('w >> skrivq.txt') 

 ampl.display('t >> skrivq.txt') 

 ampl.display('y >> skrivq.txt') 

  

 

 #Read which nodes are served on the first day 0 of this solution (should read more 

data, but this is it for now) 

 served = ampl.getVariable('y') 

 df = served.getValues() 

 dflist = df.toList() 

 served_yesterday = [] 

 for var in dflist: 

  if var[1] == 0 and var[2] == 1: 

   served_yesterday.append(int(var[0])) 

    

 

 #write to file, just to see. 

 outfile.write('\nNodes served on day ' + str(simulation) + ': ') 

 for node in served_yesterday: 

  outfile.write(str(node)) 
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 #Read bin-levels that were used to solve the model 

 levelyesterday = ampl.getParameter('q_sensor') 

 levelyesterday_df = levelyesterday.getValues() 

 levels_yesterday = levelyesterday_df.toList() 

  

 #Store bin levels from day 0. (These are actual levels, not projected ones) 

 for i in range(clients): 

  real_bin_levels[i].append(levels_yesterday[i][1]) 

 print(real_bin_levels) 

 

 #Simulate production of waste. All bins have save growth, maybe change this 

somehow. 

 real_production = [np.random.normal(exprod[i], proddev[i]) for i in range(clients)] 

  

 #Update bin levels: 

 levels_today = [] 

 for dunk in levels_yesterday: 

  if dunk[0] in served_yesterday: 

   bin_level = real_production[int(dunk[0]-1)] 

   levels_today.append(bin_level) 

  else: 

   bin_level = real_production[int(dunk[0]-1)] + dunk[1] 

   levels_today.append(bin_level) 

  

 

 #Change data using a Pandas DataFrame 

 df = pd.DataFrame( 

  {'q_sensor': levels_today}, 

  index=customernodes 

  ) 

 ampl.setData(amplpy.DataFrame.fromPandas(df)) 

  

outfile.close() 
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#Save realized bin levels to file 

 

import csv 

 

with open('binlevels.csv', 'w+', newline='') as csvfile: 

    writer = csv.writer(csvfile, delimiter= ' ', quotechar='|', 

quoting=csv.QUOTE_MINIMAL) 

    for i in range(len(real_bin_levels)): 

        writer.writerow(real_bin_levels[i]) 

 


