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Summary 

This study examines the possibilities of integration of three airline planning problems: fleet 

assignment, aircraft routing, and crew pairing while satisfying aircraft maintenance 

requirements and several crew working rules. Besides, the following robustness techniques 

are embedded in the model: avoidance of short aircraft connections and stimulation of crews 

to follow the aircraft on any connection. In this thesis we present the integrated robust 

mathematical model of those problems, apply the reformulation-linearization technique to 

obtain a linear equivalent model, perform a programming implementation using AMPL 

modeling language and show the results of testing the model using a commercial solver on 

several data instances provided by United Airlines Company. 
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1. Introduction 

1.1 Background of the industry and research problem  

Aviation is one of the biggest global industries and contributors to world business in terms 

of financial turnover. Since the first commercial flight was launched at the beginning of the 

twentieth century, the aviation sphere of the industry was evolving at a fast pace. In 2019, 

approximately 4.5 billion passengers were transported by air vehicles. Presently, around 

65.5 million people are globally occupied in the airline industry and related spheres. Among 

those people, 10.2 million have direct jobs in aviation which mean full-time positions 

created by the airline industry itself (Air Transport Action Group 2018a). 

Following the foundation of the airline companies, their management is focused on the 

optimization of processes in order to increase the revenue and decrease the losses. As the 

main source of profit for airline companies is a provision of transportation services to people, 

it is crucial to develop an optimal flying schedule that satisfies the market demand. 

Airline operations contain many problems and tasks to be solved. Development of optimal 

flight schedule requires finding a solution for several sub-problems: schedule design, fleet 

assignment, aircraft routing, crew pairing, and crew rostering.  

 

Figure 1 - Airline planning problems 

As the integration of all problems’ models is too complex to be solved with already existing 

computational means, most often those problems are solved sequentially (Figure 1), when 

in the model of one problem the optimal solution result from the prior problem is used. This 

leads to suboptimal solutions of the subsequent problems or even infeasibility of the final 

generated schedule while the full problem itself is feasible (Papadakos 2007). If the 

problems are not too voluminous, it could be possible to integrate the models of some of 

them in one, and thus to avoid suboptimal solutions.  

Another aspect that influences on the airline company’s profitability is losses. According to 

Ball et al. (2010) in 2007 air transportation delays in the United States caused 31.2 billion 

dollars of financial losses, including direct costs to airlines and passengers as well as the 

impact on the country’s GDP. More precise information can be observed in Table 1. 
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Table 1: Direct cost of US air transportation delay in 2007(Ball et al. 2010) 

Cost Component 
Cost 

($ billions) 

Costs to Airlines 8.3 

Costs to Passengers 16.7 

Costs from Lost Demand 2.2 

Total Direct Cost 27.2 

Impact on GDP 4.0 

Total Cost 31.2 

 

Hence, it is crucial for airline companies to avoid the situation of delayed and canceled 

flights. To reduce the probability of delay and cancellation to occur, it is necessary to 

introduce several preventive measurements during the stage of flight schedule creation.  

Those measurements are called robustness criteria and they help to build a well-balanced 

fleet and crew pairing schedules, resistant to flight delays and cancellations. 

Thus, this study is aimed to develop an integrated model of several airline planning problems 

as well as adding robustness criteria to increase the model’s disruption resistance. 

Hereinafter, the literature overview of the already existing studies in this sphere of research 

is presented to examine the history of the research problem and to highlight the 

distinguishing features of our work as well as its newness and relevance. 

1.2 Significance of the study  

The goal of our study is to create a compact robust integrated model of fleet assignment, 

aircraft routing, and crew pairing problems, which can produce a fleet and crew pairing 

schedules avoiding suboptimal decisions and increasing disruption resistance. This helps to 

prevent delays and cancellations of flights and their propagation through the flight network. 

As a result, airline companies can gain satisfaction and loyalty of their passengers thanks to 

the improvement of the provided services and evade situations of financial losses and 

unreasonable operational costs.  
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Another issue that is influenced by the optimization of airline operations is carbon dioxide 

emissions. By optimizing flight routes it is possible to reduce the environmental impact.  

Optimization of the airline planning process also reduces the probability of a situation called 

deadheading, when a company should transport staff as regular passengers for them to start 

the next duty at the necessary base, which can lead to reputation impairment of the company, 

as it happened with United Airlines on the 9th of April, 2017 (Victor and Stevens 2017). 

The models and ideas utilized in this work could be used not only in the airline industry but 

also in other spheres of logistics and supply chain management, such as for vehicle routing 

problems applied to land and air cargo transportation as well as delivery of goods.  

1.3 Structure of thesis  

Chapter 2. Problem description 

Overview of main problems in airline planning and techniques that aimed to reduce the 

propagation of delays and cancellations within the flight network.  

Chapter 3. Research questions & methodology 

This chapter introduces the research questions and used methods. 

Chapter 4. Literature review 

In this chapter, the overview of previously made research is presented. 

Chapter 5. Mathematical formulation 

Presents the mathematical notation, nonlinear mixed-integer programming model, and its 

linearization. 

Chapter 6. Computational study 

This chapter provides the data description and the results of computational experiments.  

Chapter 7. Conclusion and future work 

Concludes the results of the work and suggests future enhancements.  
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2. Problem description 

One of the main issues that airline companies face is the creation of optimal operational 

schedules. This includes finding a solution for the next problems: schedule design, fleet 

assignment, aircraft routing, crew pairing, and crew rostering. As it was mentioned before, 

solving those problems separately and using the output of one problem as an input for 

another leads to the suboptimal or infeasible solutions. Thus, in this study fleet assignment, 

aircraft routing, and crew pairing problems are integrated into one model to archive the 

optimal solution using disposable computational means. Below, the detailed description of 

each of the main airline planning problems is presented. 

2.1 Main problems in airline planning 

The first problem to be solved during the airline planning stage is schedule design. It 

implicates the determination of destinations of flying routes, time to perform the flight, and 

frequency of flights. The goal of schedule design is to produce a timetable that maximizes 

the potential revenue according to the customer’s demand forecast. Usually, based on the 

generated schedule all the other airline operations are built. Generally, the timetable for 

flights is cyclic and repeats itself every day for domestic flights, and every week for 

international flights (Bazargan 2010). In our case, the data provided by United Airlines 

Company contains information about the origins and destinations of flights as well as the 

departure and arrival time. For simplicity, only the domestic flights that repeat themselves 

every day are used in this study, and the stage of schedule design is not considered further. 

The subsequent problem to be solved after schedule design is fleet assignment. The goal of 

the fleet assignment is to match an aircraft type from the possessed fleet with a flight in the 

schedule (Bazargan 2010). According to Ben Ahmed, Zeghal Mansour, and Haouari (2018), 

the aircraft type as a specific model of aircraft. Aircraft that belong to one type share the 

same cockpit configuration and the number of seats. On the other hand, aircraft family 

embraces several types of aircraft that have the same cockpit configuration and cockpit 

rating. For example, aircraft types Airbus A318, A319, A320, and A321 pertain to the 

Airbus A320 family. This should be taken into account while assigning the cockpit crews to 

the aircraft as each cockpit crew is eligible to work with a particular aircraft family. 

Moreover, some aircraft are not capable of performing specific flights where, for the 

instance, the number of passengers of particular fare exceeds the number of available seats. 
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It is noteworthy that the problem of fleet assignment concerns only the type of aircraft, but 

not the particular aircraft (Bazargan 2010). It was proved, that the complexity of the fleet 

assignment problem for three aircraft is NP-hard (Gu et al. 1994). 

The next task is to assign an individual aircraft to each flight. This stage is called aircraft 

rotation or aircraft routing. If in the case of fleet assignment only particular types of aircraft 

were matched with flight legs, aircraft routing implies the assignment of an individual 

vehicle (Bazargan 2010). In other words, for each particular aircraft, it is necessary to 

determine the sequence of flight legs to be covered such that each leg is flown by exactly 

one aircraft. During this step, several requirements should be taken into account. One of 

them is the feasibility subject to obligatory maintenance check. According to Ben Ahmed, 

Zeghal Mansour, and Haouari (2018), an obligatory preventive maintenance check is 

performed periodically for all the aircraft before accumulating a defined quantity of flying 

hours since the last maintenance check. A feasible aircraft route in relation to maintenance 

check contains consistent flight legs. Each flight leg should be covered by one aircraft, and 

one aircraft cannot perform several flights at the same time. All the routes should satisfy the 

next conditions:  

 The departure station of the first leg and the arrival station of the last leg must be the 

same maintenance station;  

 The time passed between the arrival time of the last leg and the departure time of the 

first leg must be greater than the required maintenance check time;  

 The total flying time should not exceed a specified time limit when the maintenance 

check must be done. 

To undergo the maintenance check, aircraft must be landed for a certain amount of time at 

one of its maintenance bases, which is usually situated at the airline hubs (Bazargan 2010). 

The problem of aircraft routing is an NP-complete problem in general cases and has a 

polynomial size in the case of fixed fleet size (Parmentier 2013). 

After the aforementioned steps, it is necessary to find the solution for the crew pairing 

problem. This stage implies the assignment of crews to each flight leg while fulfilling several 

complex work rules and minimizing the crew cost (Ben Ahmed, Zeghal Mansour, and 

Haouari 2018). As pilots are eligible to control an aircraft with a particular cockpit 

configuration, or in other words, they are qualified to steer only one aircraft family, the crew 
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pairing problem is separately for each aircraft family (Shao, Sherali, and Haouari 2015). 

This task should also take into account matching the schedule of other aircraft crew 

members.  

According to Ben Ahmed, Zeghal Mansour, and Haouari (2018), a duty period is a single 

workday of a crew that includes a sequence of flight legs with short rest periods, or sits, 

separating them. A pairing is a sequence of duty periods with overnight rests between 

consecutive periods. Each pairing begins and ends at the same station (the crew base). There 

are restrictions that the following concepts for the aircraft crew should be in the determined 

legal range: 

 Layover duration between two consistent duties; 

 Sit-time between consecutive flights. 

Nevertheless, if two consecutive flight legs are performed by one aircraft, the sit-time 

between them can be reduced and be less than allowed minimum. In this case, it is equal to 

the aircraft turnaround time. There are also constraints regarding the following requirements:  

 Maximum flying hours between two consecutive rests; 

 Time in pairing away from the base; 

 Duty duration; 

 Maximum number of landings in one duty; 

 Maximum number of duties in one pairing. 

Moreover, after finishing a pairing, a crew should be provided with the rest time that is equal 

or exceeded the required minimum rest time.  

To assign an aircraft and a crew to each flight, it is necessary to follow several requirements 

regarding aircraft maintenance and crew working rules: 

 Each flight is covered by exactly one aircraft route and exactly one crew pairing; 

 Each aircraft route and each crew pairing should be periodic and thereby repeats 

itself every day; 

 Each aircraft route is maintenance feasible; 

 The total number of required aircraft of each type should not exceed the available 

size of the corresponding sub fleet; 
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 Each pairing along with the corresponding duties should satisfy all those mentioned 

above constraints; 

 The total number of required crews should not exceed the available number of crews. 

The phase of crew pairing does not require the assignment of the individual crew members 

to crew pairings. However, this happens during the stage of crew rostering. It is noteworthy 

that the procedure of assigning the cockpit-crew and cabin-crew is not the same as the 

cockpit-crew is usually eligible to control the specific aircraft while cabin-crew can serve 

different fleet types (Bazargan 2010). Sometimes the problems of crew pairing and crew 

rostering are combined into crew scheduling problem. Nevertheless, we do not consider the 

problem of crew rostering in our study and for the sake of simplicity keep only crew pairing 

problem.  

2.2 Delays 

Following the information presented in Chapter 1.1, delays cause airline companies huge 

annual losses. Optimization in operation management influences the amount of delayed and 

canceled flights. Thus, according to the Bureau of Transportation Statistics (2019), all the 

situations of delayed flights in the US can be distinguished into five groups: Air Carrier 

Delay, National Aviation System Delay, Extreme Weather, Aircraft Arriving Late, and 

Security Delay. Definition of the groups: 

- Air Carrier Delay: Circumstances within the control of the airline (e.g., maintenance 

or crew problems, aircraft cleaning, baggage loading, fueling, etc.) 

- National Aviation System Delay: Issues attributable to the national aviation system 

that refers to a wide range of conditions, such as non-extreme weather conditions, 

airport operations, heavy traffic volume, and air traffic control.  

- Extreme Weather: Weather conditions that are preventing airline operations from 

working in a regular way. 

- Late-Arriving Aircraft: Delay of current departure caused by the later arrival of the 

previous flight, operated by the same aircraft. 

- Security Delay: Delays or cancellations caused by evacuation, re-boarding of aircraft 

caused by security violation, broken screening equipment, or queues more than 29 

minutes at security control areas. 
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Figure 2 (Bureau of Transportation Statistics, 2019) 

The most critical delay categories are Aircraft Arriving Late, Air Carrier Delay, and National 

Aviation System Delay (Figure 1). Some of the delays categorized as Aircraft Arriving Late 

or Air Carrier Delay can be avoided by optimization of airline planning processes. For 

example, by optimizing the schedules of crews and the assignment of aircraft, it is possible 

to prevent the downstream propagation of delays in the network of flights in the case of 

occurred disruption.  

2.3 Robustness criteria 

To avoid delays and cancellations, it is necessary to produce well-balanced schedules. This 

can be done by applying special techniques called robustness criteria that aim to increase the 

resistance of schedule to disruptions. Robustness criteria can be distinguished into two 

groups: flexible or stable. Flexibility means the fast capability to recover from an 

unpredictable delay while stability helps to avoid the situation of a delayed flight.  Stable 

approaches require inserting or adjusting buffer times of flight legs (Ben Ahmed, Zeghal 

Mansour, and Haouari 2018). They are computed according to prior knowledge of delays’, 

and inserted by slightly retiming flight legs. For this study, data about delays is not provided 

and therefore stable criteria cannot be applied. Besides, a stable approach makes the problem 

more complex since it is necessary to add decisions about retiming.  Furthermore, retiming 

may not be efficient when schedules are tight, hence adjusting a flight departure time would 

make the aircraft connection infeasible.  
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In this study, the following flexible robustness criteria are taken: if the critical connection 

(when the connection time is larger than the legal minimum sit-time but less than the 

specified threshold value) is covered exclusively by an aircraft route or a crew pairing, the 

penalty is introduced. By doing this, additional idle time is promoted to absorb unpredictable 

disruptions, and the propagation of delays into downstream flights is mitigated. Another 

robust criterion is to force the crew to stay at the same aircraft to perform the next scheduled 

flight, assigned to this aircraft. In so doing, crews are less likely to be delayed because of 

short connection time. Robustness is promoted in our model by embedding the penalty terms 

into the objective function. These metrics penalize situations where the robustness criteria 

are not satisfied. 

It is noteworthy, that the robustness criterion that prevents critical aircraft connections 

implicitly forces another criterion to take place. This criterion promotes a swap of aircraft 

within one route, which produces a more stable schedule (Burke et al. 2010), (Ionescu and 

Kliewer 2011). In this case, when one aircraft has a short connection time and another has a 

longer connection time and it overlaps the short one, the optimality can be reached by 

forwarding the second aircraft to the first route and the first aircraft to the second route 

(Figure 3). 

 

Figure 3 - Swap of flight legs 
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2.4 Conclusion 

To solve the robust integrated fleet assignment, aircraft routing, and crew pairing problem, 

it is necessary to find a feasible set of fleet assignments, aircraft routes, and crew pairings 

that satisfies all the constraints and requirements regarding each of the problems and 

maximizes the profit while minimizing the chance of delay to occur. Profitability is 

represented by the objective function, which is the sum of the profit including a reward 

minus the sum of expenses including penalties from violated robust criteria, where: 

 The profit consists of the estimated revenue from accommodated passengers while 

the reward is granted to each connection (whether it is critical or not) that is both 

covered by a crew pairing and an aircraft route. Hence, solutions, where the crew is 

following the aircraft, are promoted. 

 Expenses are made up of fleet assignment cost while the penalty is imposed for each 

critical connection included in aircraft routes as well as critical connection covered 

by crew pairing without being covered by any aircraft route. In so doing, we avoid 

both aircraft and pairing connections that have a short buffer time.  
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3. Research questions & methodology 

In this study, the following research questions are answered and the proposed methodology 

is aimed to help to create and to solve the mathematical model for the considered problems. 

3.1 Research questions 

1. In which sequence the model should be solved? 

Historically, the problems of airline planning operations are solved in the next sequence: 

firstly fleet assignment, then aircraft routing, and afterward crew pairing. To avoid 

suboptimal solutions, those problems should be integrated into one model. However, it is 

possible to solve only relatively small instances using such a complex integrated model. To 

simplify the model, several mathematical techniques could be used, such as linearization, 

relaxation, and decomposition.  

2. Which behavior the model is experience? 

There are several ways to investigate the behavior of the model: 

 Analyze the computational time needed to solve the model to optimality;  

 Analyze the time of finding a feasible solution;  

 See how large the optimality gap is after a fixed amount of running time;  

 Examine whether it is reasonable to use the quickly-founded feasible solution or to 

spend more time on finding the optimal solution. 

3. How costly are robustness measurements? 

To introduce the robustness measurements in the model it is necessary to determine their 

influence on the objective function. Thus, we suggest using a quadratic penalty for the 

connections that are classified as short connections. To facilitate crews to follow an aircraft 

a reward is utilized. This reward is an independent parameter whose value is set empirically.  

3.2 Methodology 

In this study, there are four main leverages used to reach the desired results: 

1) Mathematical modeling 

The creation of the mathematical model was inspired by early published papers in this 

domain of study, while several of the implemented concepts are novel.  
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2) Linearization of model 

To solve the created mathematical model it is necessary to use a commercial solver. As a 

non-linear model requires much more time to be solved, to speed up the process the model 

should be linearized. This goal can be reached using the reformulation-linearization 

technique (Sherali and Adams 1990, 1994) which implies variable substitution and 

transformation. 

3) Programming implementation  

To implement the model, an algebraic modeling language AMPL was used. This language 

is aimed to describe and solve large-scale optimization problems (Fourer, Gay, and 

Kernighan 2003).  

4) Computational experiments 

Computational experiments were carried out using a software package CPLEX, which is a 

mathematical solver aimed to solve linear, quadratic, and mixed-integer programming 

problems (IBM, n.d.). 

5) Evaluation of results 

To analyze the results it is necessary to evaluate the cost value of robustness measurements 

and behavior of the model. 
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4. Literature review 

This chapter outlines the relevant airline planning research conducted in the past. They are 

distinguished into two sections: non-robust integrated models and robust integrated models. 

4.1 Non-robust integrated models 

In the literature review, due to the utility for the research, we focus on the integration of 

three operational stages: fleet assignment, aircraft routing, and crew pairing. Previously, 

because of the computational complexity, in most of the works, the integration of only two 

problems was considered. However, there are few, which propose and describe approaches 

to the integration of fleet assignment, aircraft routing, and crew pairing problems.  

Eltoukhy, Chan, and Chung (2017) presented a survey with an overview of papers where the 

main airline problems are examined. The authors classified research into five different 

groups according to the covered problem: flight scheduling papers, fleet assignment papers, 

aircraft maintenance routing papers, crew scheduling papers (including crew rostering), and 

papers with the integrated models. For each group, the authors distinguished several 

subgroups according to the used solution methods as well as objective function and data. In 

conclusion, the advantages and the drawbacks of different solution approaches were 

discussed and the authors suggested which enhancement could be applied. 

Sandhu and Klabjan (2007) are known to be the authors of the first published paper that 

investigates the idea of three-problem integration. To simplify the process of integration 

they disregarded maintenance requirement constraints. The authors proposed two separate 

methodologies to solve the integrated model. The first methodology is based on the 

Lagrangian relaxation and delayed column generation, while the second one utilizes Benders 

decomposition. It is worthy to note that Benders decomposition method is widely used in 

solving integrated models for airline planning as it is functioning well with mixed-integer 

programming problems. For example, it was used in research made by Papadakos (2009) 

and Shao, Sherali, and Haouari (2015), where fleet assignment, aircraft routing, and crew 

pairing problems integration was examined. Sandhu and Klabjan (2007) reached 3% of the 

average cost savings using the integrated approach in comparison with the sequential. 

Lagrangian relaxation seemed to be more efficient for the majority of instances. Besides, it 

should be noted that the authors performed the integration of fleet assignment and crew 

pairing using the enforced assignment of a pairing to the specific aircraft family.  
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Furthermore, Papadakos (2009) described another way of integrating the three 

aforementioned problems in one model and the computational experiments. Unlike Sandhu 

and Klabjan (2007), Papadakos (2009) considered maintenance requirements. In addition to 

his main integrational model, he proposed several alternative formulations. To reduce the 

number of constraints in the main model, the author uses Benders decomposition, where the 

crew pairing problem with short connections is decomposed into a column generation master 

problem and a subproblem. To accelerate the column generation, two heuristic methods are 

applied. The model is based on a crew-connection network and aircraft-connection network, 

where it is necessary to solve the shortest-path problem. For accelerating Benders 

decomposition, Papadakos (2009) used the improved version of Magnanti–Wong method 

which helps to compute a Pareto-optimal cut based on the Benders subproblem. The model 

was tested on seven sets of instances and solved to near-optimality. 

Salazar-González (2014) proposed a heuristic approach to solve the integrated fleet 

assignment, aircraft routing, and crew pairing model based on an integer programming 

problem. He also separately drew attention to the crew rostering problem and its solution 

methods. The advantage of heuristic methods is the possibility to find a feasible solution to 

all the integrated problems while solving them sequentially can lead not only to a suboptimal 

solution but also to an infeasible one. In his work, Salazar-González (2014) used a similar 

representation of two directed graphs as in our research, where the first graph considers the 

aircraft routing problem and the second graph considers crew pairing problem. The 

mathematical formulation was tuned to meet the specific constraints of a regional carrier 

required for the whole problem. The heuristic method implies generating good crew 

solutions and then solving a mixed-integer linear programming problem.  

Another relevant work was done by Shao, Sherali, and Haouari (2015). They presented an 

integrated model of fleet assignment, aircraft routing, and crew pairing problems, which also 

incorporates maintenance constraints, itinerary-based demands, and crew work 

requirements. Benders decomposition technique is used in this research along with the 

generation of Pareto-optimal cuts to speed-up the decomposition algorithm’s convergence. 

The mathematical formulation of the problem in our work has similar representation as the 

model in the paper from Shao, Sherali, and Haouari (2015), as they used polynomially-sized 

node-arc flow network to describe the fleet assignment and aircraft routing problems, 

however, they did not utilize the resembling representation for crew pairing. Such an 
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integrated approach brought for the authors an improvement in profit of an average of 8.4% 

as opposed to the sequential one. 

4.2 Robust integrated models 

To increase the resistance of airline planning models to delays and interruptions, the 

researchers started to implement the different robustness criteria to balance the produced 

schedules. To make a full overview of existing robust approaches, Agbokou (2004) 

presented a survey on the relevant optimization solutions. According to the survey, to deal 

with uncertainty, which occurs due to disruptions, two approaches are commonly used: the 

post-factum schedule re-optimization after a disruption occurs and the introduction of 

robustness during the planning. In the case of disruption, airlines are acting in a way to 

minimize the consequences by applying aircraft recovery, crew recovery, and passenger 

recovery models to reroute the resources. However, most of the research considers only 

aircraft recovery, as it is a more valuable resource from the company’s point of view. A 

better decision could be to introduce uncertainty or incorporate the robustness during the 

planning stage.  

Cordeau et al. (2001) did one of the first studies where a robustness criterion was 

implemented. Their criterion implied the crew to follow the aircraft if the connection time 

is too short, while the solution approach considered using Benders decomposition and 

column generation algorithms. This paper initiated other scientists who investigate airline 

planning to start using constraints, which help to build more delay-resistant schedules.  

Four years later, Mercier, Cordeau, and Soumis (2005) presented a paper with enhanced 

flight connection restrictions. They introduced the possibility of limiting the number of short 

connections as well as forbidden the crew to change the aircraft during a short connection. 

The authors used the concept of restricted connection (a connection that is longer than the 

minimum short time but shorter than a certain threshold and this connection occurs between 

two flight legs that are not flown by the same aircraft) and imposed a penalty in the cases 

when such connections take place. 

To produce a robust flight schedule several flexible approaches were historically utilized. 

Rosenberger, Johnson, and Nemhauser (2004) proposed an idea that flight schedules with 

short cycles (flight sequence with the same starting and ending airport) are less vulnerable 

to propagated flight cancellations. The authors also suggested to reduce hub connectivity 
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(number of flight legs that are in a route that begins in one hub and ends in another hub with 

intermediate stops) as a disruption at one hub affects processes at another hub.  

Another flexible robust technique was suggested by Smith and Johnson (2006) and concerns 

station purity. Station purity constrains the number of fleet types or crew compatible families 

that are used by the company at each airport to create more opportunities to swap aircraft of 

crews in the case of disruptions. However, this approach has a negative impact on 

computational efficiency and thus requires to apply more sophisticated solution methods.  

Burke et al. (2010) presented a flexible criterion based on aircraft swap opportunities. A 

swap was determined as a reasonably long overlap between the ground times within two 

flight routes that allow a feasible ex-change of their aircraft. Swap opportunities are 

frequently used on the operation day to decrease the disruption influence by redistributing 

slack time between the aircraft rotations. Ionescu and Kliewer (2011) formulated crew 

pairing problem based on the set-partitioning and they shared a similar approach as Burke 

et al. (2010) in their research, but instead of swapping aircraft, Ionescu and Kliewer (2011) 

proposed swap opportunities within crew pairings while crew rostering remains feasible.  

Tekiner, Birbil, and Bülbül (2009) defined crew pairing problem as a set-partitioning 

problem and examined one source of disruptions linked to additional flights that are inserted 

during operation (e.g. charter flights), that creates uncertainty during the schedule planning. 

The authors proposed some recovery operations using a robustness budget to avoid the 

delays or cancellations of settled flights while managing the additional flights.    

Another study was done by Ben Ahmed, Zeghal Mansour, and Haouari (2018). To solve the 

problem of maintenance aircraft routing and crew pairing the authors suggested a robust 

approach based on aircraft routing and crew pairing graphs. The robustness criteria that were 

used promote the flight connections that are simultaneously covered by the aircraft and crew 

pairing, while the connections with too short buffer time are avoided. The model produced 

cost-efficient solutions with improved performance and reduced delay time.  

Another type of robustness criteria, that is called stable criteria, are used to help to form the 

flight schedule before a delay occurs. Dück et al. (2012) distinguished delays into two 

groups: primary, that are cannot be controlled by airline operations management, and 

reactionary, that happen due to management instructions, such as waiting for the passengers 

from the late preliminary flight leg. The authors formulated an integrated stochastic model 
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for crew scheduling and fleet assignment as a set-partitioning problem with reactionary 

delay propagation, caused by crews changing aircraft. To obtain a robust schedule, 

researchers used an indicator of stability based on the stochastic model. 

Dunbar, Froyland, and Wu (2012) studied in their work the dependencies between aircraft 

routing and crew pairing. They investigated the influence of late-arriving aircraft or crew on 

the succeeding flights. The authors mentioned the importance of making the crew and 

aircraft routing decisions together for minimizing the cost-propagated delay. In later work, 

Dunbar, Froyland, and Wu (2014) enhanced their solution methodology using the 

information about the stochastic propagated delay. 

Ben Ahmed et al. (2017) published a study considering aircraft routing and retiming using  

hybrid optimization-simulation methods. The goal of this work was to increase aircraft 

performance while decreasing the total delay as well as the number of delayed passengers. 

To this end, the authors presented a nonlinear mixed-integer programming model and 

suggested a Monte Carlo-based approach to regulate the departure times of aircraft. The 

researchers gained the improvement of the performance by 9.8–16.0%, while the cumulative 

delay was reduced by 25.4–33.1%, and the number of delayed passengers was reduced by 

8.2–51.6% as opposed to the original airline solutions. 

Cacchiani and Salazar-González (2017) presented two mixed-integer linear programming 

models that integrate three aforementioned airline planning problems: fleet assignment, 

aircraft routing, and crew pairing. They focused on minimizing a weighted sum of the 

number of aircraft routes, the number of crew pairings, and the waiting times of crews 

between consecutive flights with respect to the maintenance requirements. Cacchiani and 

Salazar-González (2017) have also applied robustness by reducing the necessity of crews to 

change the aircraft. The first model was called the “path-path” model as it introduces the 

crew pairings and the aircraft using path-based variables. In the second model, “arc-path”, 

the aircraft routes are indicated using arc-based variables and the crew pairings using path-

based variables. For each of the presented models, the authors suggested separate exact 

algorithms with the corresponding names of “path-path” and “arc-path” methods. Both of 

them include three stages. Firstly, a lower bound is computed by the linear programming 

relaxation being solved to optimality using column generation on the path-based variables. 

Secondly, a heuristic solution (upper bound) is calculated using the variables generated in 

the first phase. In the third stage, the lower and upper bounds are used to compute an optimal 
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solution. The “arc-path” method showed a better result and optimally solved all the instances 

that contained up to 172 flights of the regional carrier in the Canary Islands. Even if this 

research used exact methods to solve the integrated problem, the model was tuned to meet 

the requirements of a small regional carrier: perform maintenance at a single depot, flights 

are scheduled between 7 AM and 11 PM, eleven airports that are involved including four 

bases. Thus, the proposed solution cannot be used for a bigger airline company. 

The recent work by Cacchiani and Salazar-González (2020) is focused on flight retiming 

along with the fleet assignment, aircraft routing, and crew pairing problem integration. The 

flight departure time is adjusted by choosing a better option from a set of discrete departure 

times. The authors reckon for maintenance requirements and crew working constraints. They 

also used robust criteria by penalizing too short and too long connection time, crew members 

changing aircraft within one connection, and a small penalty for the use of each aircraft. The 

authors suggested four two-phase heuristic algorithms based on a mixed-integer linear 

programming model using a similar approach from their earlier work in 2017, where path 

variables represented the crew pairings and arc variables represented the aircraft routes 

together with column-generation method applied to path variables. All four algorithms were 

tested on the instances of the regional air carrier and revealed their advantages and 

drawbacks, although one algorithm showed a better quality-complexity trade-off.  

4.3 Conclusion 

In this chapter, we presented an overview of published research focused on the integrated 

airline planning models and robust approaches. There are only a few papers where the fleet 

assignment, aircraft routing, and crew pairing problems are integrated, and no papers where 

robustness criteria are added to the integration of those problems. Thus, our study stands out 

from the previously made work. Some of the concepts used in this research, such as graph 

representation and robustness criteria, were inspired by the work of Ben Ahmed, Zeghal 

Mansour, and Haouari (2018). However, they integrated the models of only two problems. 

In this work, a compact model is developed containing a polynomial number of constraints. 

This number depends on the number of flights and aircraft that create a polynomial function. 

Thus, we do not use heuristic and exact algorithms as, for example, set-partitioning where 

the exponential number of constraints used due to the generation of new variables.  
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5. Mathematical Formulation 

5.1 Introduction 

To fulfill the objective of the study – creation of a model that helps to derive a profitable 

flight schedule which is resistant to the propagation of delays and flight cancellations, it is 

crucial to implement using mathematical formulation an integration of three chosen airline 

problems and apply robustness criteria.  To accomplish this, hereinafter we define 

terminology, notation, variables, and formulations needed to create a nonlinear mixed-

integer programming model that is later transformed into a linear model. A similar 

mathematical formulation was used in the work made by Ben Ahmed, Zeghal Mansour, and 

Haouari (2018). 

5.2 Problem notation 

In this study, we refer to a set 𝐿, 𝑗 ∈ 𝐿 as a set of daily flights to be executed by a group of 

aircraft families 𝑓 ∈ 𝐹 that includes a set of aircraft types 𝑘 ∈ 𝐾𝑓. The number of aircraft of 

type 𝑘 is denoted by 𝑁𝑘 . For each flight 𝑗 the corresponding flying time is defined by 𝑡𝑗, the 

respective departure and arrival times are fixed and denoted as parameters 𝑇𝑗
𝐷 and 𝑇𝑗

𝐴, 

departure stations and arrival stations are 𝑆𝑗
𝐷 and 𝑆𝑗

𝐴, while 𝑆𝑘 – a set of maintenance 

stations, 𝑘 ∈ 𝐾𝑓 , 𝑓 ∈ 𝐹. In the following mathematical formulation, all the time parameters 

are expressed in minutes and therefore they are in the interval [0,1440).  

Aircraft routing graphs    

For mathematical formulation, we associate the flight schedule with a digraph 𝐺 = (𝑉, 𝐴) 

where each node 𝑗 ∈ 𝑉 represents a flight leg and each arc (𝑖, 𝑗) ∈ 𝐴, 𝐴 ≡∪ 𝐴𝑘 , 𝑓 ∈ 𝐹, 𝑘 ∈

𝐾𝑓 represents a feasible connection. An arc(𝑖, 𝑗) ∈ 𝐴𝑘 if and only if an aircraft of type 𝑘 can 

consecutively serve the flights pertaining to the to-node and the from-node of this arc. In 

addition, we denote respectively the set of arcs that are incident to, and outgoing from, node 

𝑗 ∈ 𝑉 by 𝛿𝑗
−and 𝛿𝑗

+ (Figure 4).  
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Figure 4 

It is also necessary to define four arc subsets 𝐴1
𝑘, 𝐴2

𝑘 , 𝐴3
𝑘, and 𝐴4

𝑘, that are included in the set 

of arcs 𝐴𝑘, for each 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓. They are described as follows: 

 An arc (𝑖, 𝑗) ∈ 𝐴1
𝑘 if and only if a maintenance check can be done between the arrival 

of the flight 𝑖 and the departure of flight 𝑗, and both flights are performed 

consecutively on the same day. Thus, (𝑖, 𝑗) ∈ 𝐴1
𝑘 ↔  

{

𝑆𝑖
𝐴 ≡ 𝑆𝑗

𝐷

𝑆𝑖
𝐴 ∈ 𝑆𝑘

𝑇𝑖
𝐴 + 𝑇𝑀 ≤ 𝑇𝑗

𝐷

 

where 𝑇𝑀 is the time needed to perform the maintenance check. 

  An arc (𝑖, 𝑗) ∈ 𝐴2
𝑘 if and only if a maintenance check can be done between the arrival 

of the flight 𝑖 and the departure of flight 𝑗, and the same aircraft is covering flight 

leg 𝑗 the day after serving flight leg 𝑖. Thus, (𝑖, 𝑗) ∈ 𝐴2
𝑘 ↔  

{

𝑆𝑖
𝐴 ≡ 𝑆𝑗

𝐷

𝑆𝑖
𝐴 ∈ 𝑆𝑘

𝑇𝑗
𝐷 < 𝑇𝑖

𝐴 + 𝑇𝑀 ≤ 𝑇𝑗
𝐷 + 1440

 

 An arc (𝑖, 𝑗) ∈ 𝐴3
𝑘 if and only if a maintenance check cannot be done between the 

arrival of the flight 𝑖 and the departure of flight 𝑗, and both flights are performed 

consecutively on the same day. Thus, (𝑖, 𝑗) ∈ 𝐴3
𝑘 ↔  

{

𝑆𝑖
𝐴 ≡ 𝑆𝑗

𝐷

𝑆𝑖
𝐴 ∉ 𝑆𝑘𝑜𝑟 𝑇𝑗

𝐷 < 𝑇𝑖
𝐴 + 𝑇𝑀

𝑇𝑖
𝐴 + 𝑇𝑇 ≤ 𝑇𝑗

𝐷

 

where 𝑇𝑇 is a turnaround time, or the time needed for the aircraft to be ready to 

perform the next flight. 

 An arc (𝑖, 𝑗) ∈ 𝐴4
𝑘 if and only if a maintenance check cannot be done between the 

arrival of the flight 𝑖 and the departure of flight 𝑗, and the same aircraft is required to 

serve flight leg 𝑗 the day after serving flight leg 𝑖. Thus, (𝑖, 𝑗) ∈ 𝐴4
𝑘 ↔  
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{

𝑆𝑖
𝐴 ≡ 𝑆𝑗

𝐷

𝑆𝑖
𝐴 ∉ 𝑆𝑘 𝑜𝑟 𝑇𝑗

𝐷 + 1440 < 𝑇𝑖
𝐴 + 𝑇𝑀

𝑇𝑗
𝐷 < 𝑇𝑖

𝐴 + 𝑇𝑇 ≤ 𝑇𝑗
𝐷 + 1440

 

The set of maintenance arcs is denoted by 𝐴𝑀
𝑘 ≡ 𝐴1

𝑘 ∪ 𝐴2
𝑘 for each type of aircraft 𝑓 ∈ 𝐹, 𝑘 ∈

𝐾𝑓, and 𝐴𝑁𝑀
𝑘 ≡ 𝐴𝑘 \𝐴𝑀

𝑘  is the set of non-maintenance arcs. It is noteworthy, that the arcs 

that belong to 𝐴1
𝑘 ∪ 𝐴3

𝑘 represent the connections between a pair of consecutive flights that 

depart on the same day, while the connections from the union 𝐴2
𝑘 ∪ 𝐴4

𝑘 represent a 

wraparound ground connection between a pair of flights flown on two consecutive days. If 

the day of the departure of a flight does not correspond to the day of the arrival of the same 

flight, this flight is considered as a wraparound flight and persists to the subset 𝐿𝑊𝐴𝐹 ⊂ 𝐿.  

Furthermore, to introduce itinerary-based flight demands, where an itinerary is a planned 

route for a passenger, the defined below notation is used: 

 П – set of itineraries, where П𝑗 ⊂ П – the subset of itineraries that include flight 𝑗, 𝑗 ∈

𝐿. 

 𝐻 – set of all fare classes. 

 𝐶ℎ𝑘 – passenger seat capacity for fare class ℎ ∈ 𝐻 on aircraft of type 𝑘 ∈ 𝐾. 

 �̅�𝑝ℎ- mean demand for fare class ℎ ∈ 𝐻 on flight  𝑗 ∈ 𝐿 within itinerary 𝑝 ∈ П𝑗. 

 𝑟𝑝ℎ- estimated revenue from one ticket for fare class ℎ ∈ 𝐻 on flight  𝑗 ∈ 𝐿 within 

itinerary 𝑝 ∈ П𝑗. 

Besides, in the objective function, we use the same fleet assignment cost representation, that 

was suggested by Zeghal Mansour et al. (2011): 

𝑐𝑗𝑘 = 𝑐�̅�𝑘 + ∑ 𝑜𝑗ℎ ( ∑ �̅�𝑝ℎ − 𝐶ℎ𝑘

𝑝∈П𝑗

)

+

ℎ∈𝐻

 (1) 

where 𝑐�̅�𝑘 – the fixed cost of assigning an aircraft of fleet type 𝑘 to flight leg 𝑗, 𝑜𝑗ℎ– the 

opportunity cost per spilled passenger on flight leg 𝑗, and (. )+ ≡ max{0, . }. The concept of 

spilled passengers occurs when the expected demand for fare class ℎ exceeds the capacity 

of the assigned aircraft. Hence, such representation of cost includes fixed operating charges 
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and the opportunity cost of spilled passengers. Opportunity cost per spilled passenger is 

calculated in the following way: 

𝑜𝑗ℎ =  0.2 ∑ 𝑟𝑝ℎ�̅�𝑝ℎ𝑝∈П𝑗
∑ �̅�𝑝ℎ𝑝∈П𝑗

⁄ ,    ∀𝑗 ∈ 𝐿, ℎ ∈ 𝐻  

Airline companies usually estimate the number of spilled passengers to be around 20%. The 

remaining surplus passengers are either rebooked or upgraded to a higher fare, so no losses 

are incurred (Shao, Sherali, and Haouari 2015). The value of spilled passengers is 

represented as a contribution of each itinerary to flight 𝑗 ∈ 𝐿. 

Crew pairing graph 

Let 𝐿𝐷 ⊂ 𝐿 denote the set of flights that depart from the base station, and 𝐿𝐴 ⊂ 𝐿 the set of 

flights that arrive at the base station. The sit-time between consecutive flights 𝑖 and 𝑗 that 

are included in the same duty period is denoted as 𝑇𝑖𝑗
𝑆𝑇, and 𝑇𝑖𝑗

𝐿𝑂 is the layover time between 

two consecutive flights 𝑖 and 𝑗 that belong to two consecutive duty periods within the same 

pairing. Hereinafter, we use the following notation: 

 𝑇𝑚𝑖𝑛
𝑆𝑇 /𝑇𝑚𝑎𝑥

𝑆𝑇  – minimum/maximum crew sit-time between two consecutive flights 

within the same duty; 

 𝑇𝑚𝑎𝑥
𝐷𝐹  – maximum duty flight duration; 

  𝑇𝑚𝑎𝑥
𝐷𝐷  – maximum duty duration, assuming that the longest flight duration is shorter 

than the maximum duty duration; 

 𝑇𝑚𝑖𝑛
𝐿𝑂 /𝑇𝑚𝑎𝑥

𝐿𝑂  – minimum/maximum layover duration between two consecutive duties 

within the same pairing. It is noteworthy, that 𝑇𝑚𝑖𝑛
𝐿𝑂  is also the minimum rest time 

after completing a pairing; 

 𝑇𝑚𝑖𝑛
𝐷𝑃 /𝑇𝑚𝑎𝑥

𝐷𝑃  – minimum/maximum pairing duration; 

 𝑁𝑚𝑎𝑥
𝐿  – maximum number of landings within a duty; 

 𝑁𝑚𝑎𝑥
𝐷  – maximum number of duties within a pairing. 

We define a crew pairing graph as 𝐺𝐶𝑃 = (�̅�, 𝐵) where to obtain a set of nodes �̅� a dummy 

start node is added to 𝑉, �̅� ≡ 𝑉 ∪ {0}, so node 0 represents both the start and the end of a 

pairing and each node 𝑗 ∈ 𝑉 represents a flight leg.  Each arc (𝑖, 𝑗) ∈ 𝐵, 𝐵 ≡∪ 𝐵𝑓 , 𝑓 ∈ 𝐹 

represents a feasible connection. An arc (𝑖, 𝑗) ∈ 𝐵𝑓 if and only if a crew that is eligible to 

an aircraft of family 𝑓 can consecutively serve the flights pertaining to the to-node and the 
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from-node of this arc. In addition, we denote respectively the set of arcs that are incident to, 

and outgoing from, node 𝑗 ∈ �̅� by 𝛿�̅�
−and 𝛿�̅�

+ (Figure 5). 

 

Figure 5 

An arc (𝑖, 𝑗) ∈ 𝐵𝑓 if and only if the next conditions are true: 

 the arrival station 𝑆𝑖
𝐴 of flight 𝑖 coincides with the departure station 𝑆𝑗

𝐷 of flight 𝑗; 

 the total connection time is greater than or equal to the minimum sit-time and smaller 

than the maximum layover duration; 

 the same crew that consecutively serves flights 𝑖 and 𝑗 is eligible to aircraft family 

𝑓 ∈ 𝐹. 

Moreover, for each aircraft family 𝑓 ∈ 𝐹, for each flight node 𝑗 ∈ 𝐿𝐷 that departs from the 

crew base corresponds an arc (0, 𝑗) ∈ 𝐵𝐷
𝑓
, where 𝐵𝐷

𝑓
 is a subset of departing arcs, and for 

each flight node 𝑗 ∈ 𝐿𝐴 that arrives at the crew base corresponds an arc (𝑗, 0) ∈ 𝐵𝐴
𝑓
, where 

𝐵𝐴
𝑓
 is a subset of arrival arcs.  

It is also necessary to define two arc subsets 𝐵1
𝑓

 and 𝐵2
𝑓
, that are included in the set of arcs 

𝐵𝑓, for each  𝑓 ∈ 𝐹. They are described as follows: 

1. An arc (𝑖, 𝑗) ∈ 𝐵1
𝑓
 if and only if legs 𝑖 and 𝑗 can be consecutively served by the same 

crew during the same duty period. That is, each arc (𝑖, 𝑗) ∈ 𝐵1
𝑓
 corresponds to a short 

rest period within a duty. Therefore, (𝑖, 𝑗) ∈ 𝐵1
𝑓

↔   

i. The sit-time 𝑇𝑖𝑗,𝑓
𝑆𝑇  is bounded by aircraft turnaround time and the maximum 

allowed sit-time, i.e. 𝑇𝑖𝑗,𝑓
𝑆𝑇 ∈ [𝑇𝑇,𝑓 , 𝑇𝑚𝑎𝑥

𝑆𝑇 ]; 

ii. The maximum flying time with a duty is satisfied, i.e. 𝑡𝑖 + 𝑡𝑗 ≤ 𝑇𝑚𝑎𝑥
𝐷𝐹 ; 

iii. The maximum duty duration is satisfied, i.e. 𝑡𝑖 + 𝑡𝑗 + 𝑇𝑖𝑗,𝑓
𝑆𝑇 ≤  𝑇𝑚𝑎𝑥

𝐷𝐷 , where the 

sit-time is defined as follows: 
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 𝑇𝑖𝑗,𝑓
𝑆𝑇 = 𝑇𝑗

𝐷 − 𝑇𝑖
𝐴, if 𝑇𝑗

𝐷 > 𝑇𝑖
𝐴, and means that the arrival of flight 𝑖 and 

the departure of flight 𝑗 occur on the same day; 

 𝑇𝑖𝑗,𝑓
𝑆𝑇 = 𝑇𝑗

𝐷 + 1440 − 𝑇𝑖
𝐴, if 𝑇𝑗

𝐷 < 𝑇𝑖
𝐴, and means that the departure of 

flight 𝑗 occurs on the next day than the arrival of flight 𝑖. 

2. An arc (𝑖, 𝑗) ∈ 𝐵2
𝑓
 if and only if legs 𝑖 and 𝑗 can be consecutively served by the same 

crew in two consecutive duty periods within the same pairing. Hence, each arc 

(𝑖, 𝑗) ∈ 𝐵2
𝑓
 corresponds to a layover within a multi-day pairing, where the layover 

time 𝑇𝑖𝑗,𝑓
𝐿𝑂  is computed as follows: 

i. The layover duration is bounded by the minimum and the maximum 

layover time 𝑇𝑖𝑗,𝑓
𝐿𝑂 ∈ [𝑇𝑚𝑖𝑛

𝐿𝑂 , 𝑇𝑚𝑎𝑥
𝐿𝑂 ]; 

ii. The maximum duration of the pairing is satisfied, i.e. 𝑇𝑚𝑖𝑛
𝐷𝑃 ≤ 𝑡𝑖 + 𝑡𝑗 +

𝑇𝑖𝑗,𝑓
𝐿𝑂 ≤  𝑇𝑚𝑎𝑥

𝐷𝑃  , where the layover time is defined as follows: 

 𝑇𝑖𝑗,𝑓
𝐿𝑂 = 𝑇𝑗

𝐷 − 𝑇𝑖
𝐴, if 𝑇𝑖

𝐴 + 𝑇𝑚𝑖𝑛
𝐿𝑂 ≤ 𝑇𝑗

𝐷 ≤ 𝑇𝑖
𝐴 + 𝑇𝑚𝑎𝑥

𝐿𝑂 , and means that 

arrival of flight 𝑖 and the departure of flight 𝑗 occur on the same day; 

 𝑇𝑖𝑗,𝑓
𝐿𝑂 = 𝑇𝑗

𝐷 + 1440 − 𝑇𝑖
𝐴, if 𝑇𝑖

𝐴 + 𝑇𝑚𝑖𝑛
𝐿𝑂 ≤ 𝑇𝑗

𝐷 + 1440 ≤ 𝑇𝑖
𝐴 +

𝑇𝑚𝑎𝑥
𝐿𝑂 , and means that the departure of flight 𝑗 occurs on the next day 

after the arrival of flight 𝑖; 

 𝑇𝑖𝑗,𝑓
𝐿𝑂 = 𝑇𝑗

𝐷 + 2880 − 𝑇𝑖
𝐴, if 𝑇𝑖

𝐴 + 𝑇𝑚𝑖𝑛
𝐿𝑂 ≤ 𝑇𝑗

𝐷 + 2880 ≤ 𝑇𝑖
𝐴 +

𝑇𝑚𝑎𝑥
𝐿𝑂 , and means that the departure of flight 𝑗 occurs two days after 

the arrival of flight 𝑖; 

Therefore, for a connection to be pertained to 𝐵2
𝑓
 arc it is necessary for layover and pairing 

duration to be within the legal range. 

To be able to track the connections that violate robustness criteria we introduce a set of 

short connections 𝐵𝑆 ⊂ 𝐵1 that include the connections with sit-time shorter than the 

default minimum sit-time for the aircraft 𝑇𝑚𝑖𝑛
𝐴𝑆𝑇, but longer than the legal minimum sit-time 

for crew. 

Decision variables 

𝑥𝑖𝑗 – binary variable that takes 1 if arc (𝑖, 𝑗) ∈ 𝐴 is selected, and 0 otherwise. 

𝑢𝑗𝑘– total accumulated flying hours for aircraft of type 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 since its last 

maintenance check after serving flight leg 𝑗 ∈ 𝐿. 
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𝑤𝑗𝑘  – binary variable that equals 1 if flight leg 𝑗 ∈ 𝐿 is assigned to an aircraft of type 𝑓 ∈

𝐹, 𝑘 ∈ 𝐾𝑓, and 0 otherwise. 

𝑁𝑝ℎ
𝑃𝐴𝑆 – number of passengers flying within fare class ℎ ∈ 𝐻 and itinerary 𝑝 ∈ П. 

𝑦𝑖𝑗– binary variable that takes 1 if arc (𝑖, 𝑗) ∈ 𝐵 is selected, and 0 otherwise. 

𝑧𝑖𝑗 – binary variable that takes 1 if a crew follows an aircraft on a connection (𝑖, 𝑗) ∈ 𝐴 ∩ 𝐵. 

𝑁𝑗𝑓
𝐿  – total number of landing for a crew that is eligible to an aircraft family 𝑓 ∈ 𝐹 after 

serving flight leg 𝑗 ∈ 𝐿. 

𝑇𝑗𝑓
𝐷𝐹 – total accumulated duty flight duration for a crew that is eligible for an aircraft family 

𝑓 ∈ 𝐹 after serving flight leg 𝑗 ∈ 𝐿. 

𝑇𝑗𝑓
𝐷𝐷 – total accumulated duty duration for a crew that is eligible to an aircraft family 𝑓 ∈ 𝐹 

after serving flight leg 𝑗 ∈ 𝐿. 

𝑁𝑗𝑓
𝐷  – total accumulated number of duties for a crew that is eligible for an aircraft family 

𝑓 ∈ 𝐹 after serving flight leg 𝑗 ∈ 𝐿. 

𝑇𝑗𝑓
𝐷𝑃 – total accumulated duration of pairing for a crew that is eligible to an aircraft family 

𝑓 ∈ 𝐹 after serving flight leg 𝑗 ∈ 𝐿. 

𝑑𝑗𝑓 – integer variable that corresponds to the duration (in days) of the crew pairing that is 

eligible to an aircraft family 𝑓 ∈ 𝐹, that ends with flight 𝑗 (if any), 𝑗 ∈ 𝐿. 

5.3 A compact nonlinear mixed-integer programming model 

Critical connections 

For each arc (𝑖, 𝑗) ∈ 𝐴𝑘 , where 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓, the aircraft planned idle time 𝐼𝑖𝑗
𝑎  is defined 

as the difference between the (𝑖, 𝑗)-connection time and aircraft turnaround time. Thus, 

𝐼𝑖𝑗
𝑎 = {

𝑇𝑗
𝐷 − 𝑇𝑖

𝐴 − 𝑇𝑇 ,

𝑇𝑗
𝐷 + 1440 − 𝑇𝑖

𝐴 − 𝑇𝑇 ,
 

if 𝑇𝑗
𝐷 ≥ 𝑇𝑖

𝐴 + 𝑇𝑇 ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑘  (2) 

otherwise 

To avoid critical connections that more likely lead to delays and hence stimulate robust 

schedules to be generated, the quadratic penalty 𝑞𝑖𝑗
𝑎  for the aircraft connections (𝑖, 𝑗) with 

short buffer time is introduced. This penalty is used for each aircraft connection with idle 

time shorter than a preset aircraft connection cushion time 𝐼𝑎. The penalty is computed as 

follows: 
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𝑞𝑖𝑗
𝑎 = {(𝐼𝑎 − 𝐼𝑖𝑗

𝑎 )
2

,

0,
 

if 𝐼𝑖𝑗
𝑎 < 𝐼𝑎 

∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑘  (3) 

otherwise 

 

To apply the same principle to the crew connection (𝑖, 𝑗) ∈ 𝐵1, when a connection is 

considered as short and the sit-time is within the legal range, the planned crew idle time is 

defined as follows: 

𝐼𝑖𝑗
𝑐 = {

𝑇𝑗
𝐷 − 𝑇𝑖

𝐴 − 𝑇𝑚𝑖𝑛
𝑆𝑇  ,

𝑇𝑗
𝐷 + 1440 − 𝑇𝑖

𝐴 − 𝑇𝑚𝑖𝑛
𝑆𝑇 ,

 
if 𝑇𝑗

𝐷 ≥ 𝑇𝑖
𝐴 + 𝑇𝑚𝑖𝑛

𝑆𝑇  ∀(𝑖, 𝑗) ∈ 𝐵1 (4) 

otherwise 

Thus, using a preset crew connection cushion time 𝐼𝑐, the set of critical connections is 

defined as follows: 

𝐵𝐶 =  {(𝑖, 𝑗) ∈ 𝐵1\𝐵𝑆: 𝐼𝑖𝑗
𝑐 < 𝐼𝑐} 

If a crew does not follow the aircraft during a critical connection, i.e. a critical connection is 

covered by a crew pairing but not an aircraft route, then a penalty 𝑞𝑖𝑗
𝑐  is applying. The penalty 

is computed as follows: 

                 𝑞𝑖𝑗
𝑐 = (𝐼𝑐 − 𝐼𝑖𝑗

𝑐 )
2
, ∀(𝑖, 𝑗) ∈ 𝐵𝐶 (5) 

For a better understanding of crew connections classification, refer to Figure 6. 

 

Figure 6 - Crew connections classification 

Objective function 

 The objective function (6) is aimed to maximize the sum which consists of the profit that is 

represented by the demand multiplied by the estimated revenue and the reward 𝑅 of the 

robust connection when the connection is covered both by crew pairing and aircraft. The 
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reward 𝑅 is a parameter and its value is set empirically. It is noteworthy, that on the short 

connection a crew follows an aircraft by default which is implied by constraints (39).  The 

objective function also includes losses due to fleet assignment costs and penalties for critical 

connection in aircraft route as well as for critical connection covered by the crew without 

being included in any aircraft route.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑟𝑝ℎ𝑁𝑝ℎ
𝑃𝐴𝑆

ℎ∈𝐻𝑝∈П

− ∑ ∑ ∑ 𝑐𝑗𝑘𝑤𝑗𝑘

𝑘∈𝐾𝑓𝑓∈𝐹𝑗∈𝐿

+ ∑ 𝑅𝑧𝑖𝑗

(𝑖,𝑗)∈𝐵\𝐵𝑆

 

− ∑ 𝑞𝑖𝑗
𝑎 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

− ∑ 𝑞𝑖𝑗
𝑐 (𝑦𝑖𝑗 − 𝑧𝑖𝑗)

(𝑖,𝑗)∈𝐵𝐶

 

(6) 

Aircraft route feasibility 

∑ 𝑤𝑗𝑘 = 1, ∀𝑗 ∈ 𝐿

𝑓∈𝐹,𝑘∈𝐾𝑓

 
(7) 

∑ 𝑥𝑖𝑗 = 𝑤𝑗𝑘

(𝑖,𝑗)∈𝛿𝑗
−∩𝐴𝑘

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 
(8) 

∑ 𝑥𝑗𝑖 = 𝑤𝑗𝑘

(𝑗,𝑖)∈𝛿𝑗
+∩𝐴𝑘

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 
(9) 

Constraints (7) ensure that each flight leg is covered by exactly one aircraft. Constraints (8) 

and (9) require each flight to possess exactly one predecessor and one successor and that 

both of them are assigned to the same aircraft type. Thus, as both 𝑤 and 𝑥 are binary, those 

constraints ensure that the solution consists of cycles or cyclic rotations covered and each 

rotation covers a set of flights using a particular type of aircraft. 

𝑢𝑗
𝑘𝑥𝑖𝑗 = 𝑡𝑗𝑥𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝛿𝑗

− ∩ 𝐴𝑀
𝑘  (10) 

𝑢𝑗
𝑘𝑥𝑖𝑗 = (𝑢𝑖

𝑘 + 𝑡𝑗)𝑥𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝛿𝑗
− ∩ 𝐴𝑁𝑀

𝑘  (11) 

𝑡𝑗 ≤ 𝑢𝑗
𝑘 ≤ 𝑇𝑚𝑎𝑥

𝑀 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 (12) 

For each type of aircraft, constraints (10) represent that the accumulated time since the last 

maintenance check is equal to the duration of the previous flight in the case if the 

maintenance check was performed right before this flight. In other cases, to update the 

accumulated time since the last maintenance check it is necessary to add the duration of the 

previous flight to the last recorded value as it is shown in constraints (11). Constraints (12) 
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prevent the situation of exceeding defined quantity of flying hours since the last maintenance 

check and parameter 𝑇𝑚𝑎𝑥
𝑀  indicates the maximum number of flying hours that aircraft can 

perform without the maintenance check. 

∑ 𝑥𝑖𝑗 ≤

(𝑖,𝑗)∈𝐴𝑀
2 ∪𝐴𝑀

4

𝑁𝑘 − ∑ 𝑤𝑗𝑘

𝑗∈𝐿𝑊𝐴𝐹

,   ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 
(13) 

As the nature of rotations is cyclic and at the beginning of each day the number of available 

aircraft should exclude wraparound flight aircraft from the previous day, constraints (13) 

ensure that the total number of aircraft in service does not exceed the fleet size. 

Itinerary feasibility  

∑ ∑ 𝑁𝑝ℎ
𝑃𝐴𝑆

𝑝∈П𝑗ℎ∈𝐻

≤ ∑ ∑ ∑ 𝐶ℎ𝑘

𝑘∈𝐾𝑓

𝑤𝑗𝑘

𝑓∈𝐹 ℎ∈𝐻

, ∀𝑗 ∈ 𝐿 
(14) 

0 ≤ 𝑁𝑝ℎ
𝑃𝐴𝑆 ≤ �̅�𝑝ℎ, ∀𝑝 ∈ П, ℎ ∈ 𝐻 (15) 

Constraints (14) guarantee that the total number of passengers traveling on the flight does 

not exceed the available seat capacity of the assigned aircraft. At the same time, to avoid the 

situation of overbooking, constraints (15) make sure that the total number of passengers 

traveling on any particular itinerary for each fare class is not more than the total expected 

demand.  

Duty feasibility 

∑ 𝑦𝑖𝑗 = ∑ 𝑤𝑗𝑘

𝑘∈𝐾𝑓(𝑖,𝑗)∈�̅�𝑗
−∩𝐵𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(16) 

∑ 𝑦𝑗𝑖 = ∑ 𝑤𝑗𝑘

𝑘∈𝐾𝑓(𝑗,𝑖)∈�̅�𝑗
+∩𝐵𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(17) 

Constraints (16) and (17) force crews to be assigned to the flights covered by aircraft that 

crews are eligible to be assigned to. 
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∑ 𝑦𝑗𝑖

(𝑗,𝑖)∈𝐵𝐷
𝑓

= ∑ 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵𝐴
𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(18) 

Constraints (18) require the number of start arcs to be equal to the number of end arcs. 

These constraints help to create the cyclic crew pairings. 

𝑁𝑗𝑓
𝐿 𝑦𝑖𝑗 = 𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ (𝐵2
𝑓

∪ 𝐵𝐷
𝑓

) (19) 

𝑁𝑗𝑓
𝐿 𝑦𝑖𝑗 = (𝑁𝑖𝑓

𝐿 + 1)𝑦𝑖𝑗, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�
− ∩ 𝐵1

𝑓
 (20) 

1 ≤ 𝑁𝑗𝑓
𝐿 ≤ 𝑁𝑚𝑎𝑥,𝑓

𝐿 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 (21) 

Constraints (19) and (20) help to count the number of landings, as well as constraints (21) 

that verify that the maximum amount of landings within one duty is not exceeded.  

𝑇𝑗𝑓
𝐷𝐹𝑦𝑖𝑗 = 𝑡𝑗𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ (𝐵2
𝑓

∪ 𝐵𝐷
𝑓

) (22) 

𝑇𝑗𝑓
𝐷𝐹𝑦𝑖𝑗 = (𝑇𝑖𝑓

𝐷𝐹 + 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�
− ∩ 𝐵1

𝑓
 (23) 

𝑡𝑗 ≤ 𝑇𝑗𝑓
𝐷𝐹 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝐷𝐹 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 (24) 

Constraints (22) and (23) track the total flying time and constraints (24) put the restriction 

on the total duration of flights within a duty.  

𝑇𝑗𝑓
𝐷𝐷𝑦𝑖𝑗 = 𝑡𝑗𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ (𝐵2
𝑓

∪ 𝐵𝐷
𝑓

) (25) 

𝑇𝑗𝑓
𝐷𝐷𝑦𝑖𝑗 = (𝑇𝑖𝑓

𝐷𝐷 + 𝑇𝑖𝑗𝑓
𝑆𝑇 + 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ 𝐵1
𝑓
 (26) 

𝑡𝑗 ≤ 𝑇𝑗𝑓
𝐷𝐷 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝐷𝐷 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 (27) 
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Constraints (25) and (26) compute the duty duration time while constraints (27) help to 

avoid the exceeding of maximum duty duration time. 

Pairing feasibility 

𝑁𝑗𝑓
𝐷𝑦𝑖𝑗 = 𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿𝐷 , 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ 𝐵𝐷
𝑓
 (28) 

𝑁𝑗𝑓
𝐷𝑦𝑖𝑗 = 𝑁𝑖𝑓

𝐷 𝑦𝑖𝑗, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�
− ∩ 𝐵1

𝑓
 (29) 

𝑁𝑗𝑓
𝐷𝑦𝑖𝑗 = (𝑁𝑖𝑓

𝐷+1)𝑦𝑖𝑗, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�
− ∩ 𝐵2

𝑓
 (30) 

1 ≤ 𝑁𝑗𝑓
𝐷 ≤ 𝑁𝑚𝑎𝑥,𝑓

𝐷 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 (31) 

Constraints (28)-(30) count the number of duties within each pairing while constraints (31) 

ensure that the restrictions for the maximum number of duties within one pairing are 

satisfied. 

𝑇𝑗𝑓
𝐷𝑃𝑦𝑖𝑗 = 𝑡𝑗𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿𝐷 , 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ 𝐵𝐷
𝑓
 (32) 

𝑇𝑗𝑓
𝐷𝑃𝑦𝑖𝑗 = (𝑇𝑖𝑓

𝐷𝑃 + 𝑇𝑖𝑗𝑓
𝑆𝑇 + 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ 𝐵1
𝑓
 (33) 

𝑇𝑗𝑓
𝐷𝑃𝑦𝑖𝑗 = (𝑇𝑖𝑓

𝐷𝑃 + 𝑇𝑖𝑗𝑓
𝐿𝑂 + 𝑡𝑗)𝑦𝑖𝑗, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝛿�̅�

− ∩ 𝐵2
𝑓
 (34) 

𝑇𝑚𝑖𝑛
𝐷𝑃 𝑦𝑗0 ≤ 𝑇𝑗𝑓

𝐷𝑃, ∀𝑗 ∈ 𝐿𝐴, 𝑓 ∈ 𝐹, (𝑗, 0) ∈ 𝛿�̅�
+ ∩ 𝐵𝐴

𝑓
 (35) 

𝑡𝑗 ≤  𝑇𝑗𝑓
𝐷𝑃 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝐷𝑃 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 (36) 

Constraints (32)-(34) help to track a pairing duration time, or, in other words, time away 

from the base. Constraints (35) set the restrictions on the minimum duration of pairing while 

constraints (36) limit the maximum duration of pairing. 
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Number of available crews 

 Constraints (37), (38), and (43) ensure that the total number of crews in service does not 

exceed the number of available crews qualified for the required aircraft families. If a pairing 

ends with flight 𝑗 and therefore the duration of pairing is 𝑇𝑗
𝐷𝑃𝑦𝑗0, then after adding a 

compulsory post-pairing rest time the total duration of pairing is (𝑇𝑗
𝐷𝑃𝑦𝑗0 + 𝑇𝑚𝑖𝑛

𝐿𝑂 ) minutes. 

Thus, the total duration of pairing in days is 𝑑𝑗 = ⌈
𝑇𝑗

𝐷𝑃𝑦𝑗0+𝑇𝑚𝑖𝑛
𝐿𝑂

1440
⌉ days. Since all flights repeat 

themselves every day, then one pairing requires 𝑑𝑗 crews.  

𝑇𝑗,𝑓
𝐷𝑃𝑦𝑗0 + 𝑇𝑚𝑖𝑛

𝐿𝑂 ≤ 1440 𝑑𝑗𝑓 , ∀𝑗 ∈ 𝐿𝐴, 𝑓 ∈ 𝐹, (𝑗, 0) ∈ 𝛿�̅�
+ ∩ 𝐵𝐴

𝑓
 (37) 

∑ 𝑑𝑗𝑓 ≤ 𝑁𝑓
𝑐𝑟𝑒𝑤, ∀𝑓 ∈ 𝐹

(𝑗,0)∈𝐵𝐴
𝑓

 
(38) 

where 𝑁𝑓
𝑐𝑟𝑒𝑤 is the number of available crews qualified for the required aircraft families.  

Short and critical connections  

𝑦𝑖𝑗 ≤ 𝑥𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐵𝑆 ∩ 𝐴 (39) 

0 ≤ 𝑧𝑖𝑗 ≤ 𝑥𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐵 ∩ 𝐴 (40) 

0 ≤ 𝑧𝑖𝑗 ≤ 𝑦𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐵 ∩ 𝐴 (41) 

Constraints (39) promote crew to follow aircraft on the short connection while constraints 

(40) and (41) in the case if 𝑧𝑖𝑗 = 1 enforce crew to follow aircraft on the other connections 

(𝑖, 𝑗) ∈ 𝐵. 

Integrity and non-negativity constraints 

(𝑥, 𝑦, 𝑧, 𝑤) binary ≥ 0 (42) 
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(𝑢, 𝑑, 𝑁𝑃𝐴𝑆, 𝑁𝐿 , 𝑇𝐷𝐹, 𝑇𝐷𝐷 , 𝑁𝐷 , 𝑇𝐷𝑃) integer ≥ 0 (43) 

Remark 1. According to Sherali, Bae, and Haouari (2010), it is possible to replace 

constraints (14) with the following inequality: 

∑ ∑ 𝑁𝑝ℎ
𝑃𝐴𝑆

𝑝∈П𝑗ℎ∈𝐻

≤ ∑ ∑ ∑ �̃�𝑗𝑘ℎ

ℎ∈𝐻𝑘∈𝐾𝑓

𝑤𝑗𝑘

𝑓∈𝐹

, ∀𝑗 ∈ 𝐿 
(44) 

where �̃�𝑗𝑘ℎ ≡ min {𝐶ℎ𝑘 , ∑ �̅�𝑝ℎ𝑝∈П𝑗
} ,   ∀𝑗 ∈ 𝐿, ℎ ∈ 𝐻, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 

It is possible to replace constraints (15) with: 

0 ≤ 𝑁𝑝ℎ
𝑃𝐴𝑆 ≤ �̃� ≡ min {�̅�𝑝ℎ, max

𝑘∈𝐾𝑓,𝑓∈𝐹
𝐶ℎ𝑘} , ∀𝑝 ∈ П, ℎ ∈ 𝐻 

(45) 

Remark 2.  

It is possible to eliminate variable 𝑤 from the formulation using the constraints (8) and (9). 

In the constraints (7) by replacing 𝑤 with the left-hand side of either (8) or (9) we obtain: 

∑ 𝑥𝑖𝑗 = 1

(𝑖,𝑗)∈𝛿𝑗
−∩𝐴𝑘

, ∀𝑗 ∈ 𝐿 
(46) 

∑ 𝑥𝑗𝑖 = 1

(𝑗,𝑖)∈𝛿𝑗
+∩𝐴𝑘

, ∀𝑗 ∈ 𝐿 
(47) 

Moreover, constraints (8) and (9) can be replaced with: 

∑ 𝑥𝑖𝑗 = ∑ 𝑥𝑗𝑖

(𝑗,𝑖)∈𝛿𝑗
+∩𝐴𝑘(𝑖,𝑗)∈𝛿𝑗

−∩𝐴𝑘

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 
(48) 
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Following the same logic, we can eliminate 𝑤-variable from constraints (16) and (17). The 

left-hand side of those constraints can be used as well for replacing 𝑤 in constraints (7). 

Thus, we obtain: 

∑ 𝑦𝑖𝑗 = 1

(𝑖,𝑗)∈�̅�𝑗
−∩𝐵𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(49) 

∑ 𝑦𝑗𝑖 = 1

(𝑗,𝑖)∈�̅�𝑗
+∩𝐵𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(50) 

∑ 𝑦𝑖𝑗 = ∑ 𝑦𝑗𝑖

(𝑗,𝑖)∈�̅�𝑗
+∩𝐵𝑓(𝑖,𝑗)∈�̅�𝑗

−∩𝐵𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(51) 

However, as 𝑤-variable is used in the linearization process, we decide to keep in the 

mathematical formulation. 

Remark 3.  

Usually, airline companies do not calculate pairing costs as a monetary value, since crew 

members have a fixed monthly payment that does not depend on the assignments to flights. 

Instead, it is relevant to evaluate the cost of overnight stays of crews in locations different 

than a crew base. This principle is widely used by European airlines (Haouari et al, 2019). 

Therefore, companies can use a metric called “flight-time credit” (FTC), which is a 

difference between the duration of pairing and the pairing flying time (Ben Ahmed, Zeghal 

Mansour, and Haouari 2018). Thus, FTC is equal to the sum of sit-times and layovers. In 

this study, pairing costs are ignored in the objective function because these costs are 

negligible when compared to the assignment cost. However, FTC is tracked as a separate 

value in order to compare the quality of crew assignments. 

Remark 4.  

To examine the influence of robustness techniques on the model, it is necessary to present a 

non-robust integrated model. The non-robust objective function is the following: 
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑟𝑝ℎ𝑁𝑝ℎ
𝑃𝐴𝑆

ℎ∈𝐻𝑝∈П

− ∑ ∑ ∑ 𝑐𝑗𝑘𝑤𝑗𝑘

𝑘∈𝐾𝑓𝑓∈𝐹𝑗∈𝐿

 
(52) 

The rest of the constraints (7)-(39) remain the same except for the removal of the constraints 

(40) and (41) that enforce crew to follow aircraft on the non-short connections. 

In Chapter 6 the results of running the non-robust integrated model are compared to the 

results from the robust one. 

5.4 Model Linearization  

By paying attention to the constraints (10), (11), (19), (20), (25), (26), (28)-(30), (32)-(34), 

(37) we can see that they are non-linear due to multiplication between integer and binary 

variables which yields the non-linearity of the whole model.  This increases the complexity 

of solving the problem.  

Thus, to improve the solvability of the model we apply the reformulation-linearization 

technique presented by Sherali and Adams (1990, 1994) in order to obtain a linear 

representation of our model. Linearization is performed by defining new nonnegative 

artificial variables for each existing cross-product term and redefining the constraints where 

substituted variables are used. The full linear equivalent model with the notation can be 

found in Appendix A. 

Aircraft routing linearization 

Using the following transformation from Shao, Sherali, and Haouari (2015) and the similar 

linearization process as in Ben Ahmed, Zeghal Mansour, and Haouari (2018), we substitute 

constraints (10) and (11) with a new artificial variables 𝛼 and �̅�: 

𝛼𝑖𝑗
𝑘 = 𝑢𝑖

𝑘𝑥𝑖𝑗 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑘 (A.1) 

�̅�𝑖𝑗
𝑘 = 𝑢𝑗

𝑘𝑥𝑖𝑗 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑘 (A.2) 

Thus, linearized constraints (10) and (11) become:  
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�̅�𝑖𝑗
𝑘 = 𝑡𝑗𝑥𝑖𝑗 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘, (𝑖, 𝑗) ∈ 𝐴𝑀

𝑘  (A.3) 

�̅�𝑖𝑗
𝑘 = 𝛼𝑖𝑗

𝑘 + 𝑡𝑗𝑥𝑖𝑗 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘, (𝑖, 𝑗) ∈ 𝐴𝑁𝑀
𝑘  (A.4) 

Next step is to multiply constraints (12) by 𝑥𝑖𝑗 and 𝑥𝑗𝑖 , ∀(𝑖, 𝑗) ∈ 𝐴, ∀(𝑗, 𝑖) ∈ 𝐴. Using the 

substitution from constraints (A.1) and (A.2), we obtain: 

𝑡𝑗𝑥𝑖𝑗 ≤ �̅�𝑖𝑗
𝑘 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝑀 𝑥𝑖𝑗, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑘 (A.5) 

𝑡𝑖𝑥𝑖𝑗 ≤ 𝑎𝑖𝑗
𝑘 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝑀 𝑥𝑖𝑗, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑘 (A.6) 

In addition, we multiply constraints (46) and (47) by 𝑢𝑗
𝑘. After rearranging indices, we 

obtain: 

∑ �̅�𝑖𝑗
𝑘 = 𝑢𝑗

𝑘, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 ,

(𝑖,𝑗)∈𝐴𝑘

𝑗 ∈ 𝐿𝑘 
(A.7) 

∑ 𝛼𝑗𝑖
𝑘 = 𝑢𝑗

𝑘, ∀

(𝑗,𝑖)∈𝐴𝑘

𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(A.8) 

Hence, modifying constraints (A.5) using (A.7), obtain: 

𝑡𝑗 ∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴𝑘

≤ 𝑢𝑗
𝑘 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝑀 ∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(A.9) 

Proposition 1. Constraints (A.3)-(A.9) can be substituted with the equivalent constraints 

(A.10)-(A.12): 
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∑ 𝛼𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴𝑘

= 𝑡𝑗 + ∑ 𝛼𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑁𝑀
𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(A.10) 

𝑡𝑗𝑥𝑗𝑖 ≤ 𝛼𝑗𝑖
𝑘 ≤ (𝑇𝑚𝑎𝑥,𝑓

𝑀 − 𝑡𝑖)𝑥𝑗𝑖 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑗, 𝑖) ∈ 𝐴𝑁𝑀
𝑘  (A.11) 

𝑡𝑗𝑥𝑗𝑖 ≤ 𝛼𝑗𝑖
𝑘 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝑀 𝑥𝑗𝑖, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑗, 𝑖) ∈ 𝐴𝑀
𝑘  (A.12) 

Proof. From the equalities (A.7) and (A.8) obtain: 

∑ �̅�𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘

= ∑ 𝛼𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
 

Which is equivalent to: 

∑ �̅�𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑀
𝑘

+ ∑ �̅�𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑁𝑀
𝑘

= ∑ 𝑎𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
 

Using the substitution from constraints (A.3) and (A.4), equality transforms into the 

following form along with the elimination of �̅�-variables:  

∑ 𝑎𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴𝑘

= 𝑡𝑗 + ∑ 𝑎𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑁𝑀
𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
 

In addition, by substituting constraints (A.4) into (A.5) for ∀(𝑖, 𝑗) ∈ 𝐴𝑁𝑀
𝑘 , 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓, we 

get constraints (A.11) and by keeping (A.6) for ∀(𝑖, 𝑗) ∈ 𝐴𝑀
𝑘 , 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 we obtain 

(A.12). ■ 

For convenience, we introduce a new parameter: 

𝑏𝑗
𝑡 = {

𝑇𝑚𝑎𝑥,𝑓
𝑀 − 𝑡𝑗 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑁𝑀

𝑘

𝑇𝑚𝑎𝑥,𝑓
𝑀 ,    ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑀

𝑘 } 



 39 

Thus, using the new parameter and after reorganizing indices, constraints (A.11) and (A.12) 

can be transformed into the following form: 

𝑡𝑖𝑥𝑖𝑗 ≤ 𝑎𝑖𝑗
𝑘 ≤ 𝑏𝑖𝑗

𝑡 𝑥𝑖𝑗 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑖, 𝑗) ∈ 𝐴𝑘  (A.13) 

Crew pairing linearization 

Now, using a similar process and following Ben Ahmed, Zeghal Mansour, and Haouari 

(2018) we linearize constraints (19) and (20) utilizing artificial variables 𝛽 and �̅� within the 

next substitution: 

𝛽𝑖𝑗
𝑓

= 𝑁𝑖,𝑓
𝐿 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.1) 

�̅�𝑖𝑗
𝑓

= 𝑁𝑗,𝑓
𝐿 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.2) 

Hence, equalities (19) and (20) become: 

�̅�𝑖𝑗
𝑓

= 𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2
𝑓

∪ 𝐵𝐷
𝑓
 (B.3) 

�̅�𝑖𝑗
𝑓

= 𝛽𝑖𝑗
𝑓

+ 𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1
𝑓
 (B.4) 

Next, multiplying constraints (21) with 𝑦𝑗𝑖 , ∀𝑓 ∈ 𝐹, (𝑗, 𝑖) ∈ 𝐵𝑓\𝐵𝐷
𝑓
, we get: 

𝑦𝑗𝑖 ≤ 𝑁𝑗,𝑓
𝐿 𝑦𝑗𝑖 ≤ 𝑁𝑚𝑎𝑥,𝑓

𝐿 𝑦𝑗𝑖, ∀𝑓 ∈ 𝐹, (𝑗, 𝑖) ∈ 𝐵𝑓\𝐵𝐷
𝑓
  

Using the equality (B.2), after reorganizing indices the inequality becomes: 

𝑦𝑖𝑗 ≤ 𝛽𝑖𝑗
𝑓

≤ 𝑁𝑚𝑎𝑥,𝑓
𝐿 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑗, 𝑖) ∈ 𝐵𝑓\𝐵𝐷

𝑓
 (B.5) 

Similarly, multiplying constraints (21) with 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓\𝐵𝐴
𝑓
, we get: 
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𝑦𝑖𝑗 ≤ �̅�𝑖𝑗
𝑓

≤ 𝑁𝑚𝑎𝑥,𝑓
𝐿 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓\𝐵𝐴

𝑓
 (B.6) 

In addition, we multiply constraints (49) and (50) by the respective 𝑁𝑗,𝑓
𝐿  and linearizing, 

obtain: 

∑ �̅�𝑖𝑗
𝑓

=

(𝑖,𝑗)∈𝐵𝑓

𝑁𝑗,𝑓
𝐿 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 

(B.7) 

∑ 𝛽𝑗𝑖
𝑓

=

(𝑗,𝑖)∈𝐵𝑓

𝑁𝑗,𝑓
𝐿 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 

(B.8) 

Proposition 2. Constraints (B.3)-(B.8) can be substituted with the equivalent constraints 

that together with constraints (49) and (50) are still valid in continuous relaxation sense: 

∑ 𝛽𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

= 1 + ∑ 𝛽𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(B.9) 

𝑦𝑖𝑗 ≤ 𝛽𝑖𝑗
𝑓

≤ (𝑁𝑚𝑎𝑥,𝑓
𝐿 − 1)𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1

𝑓
 (B.10) 

𝑦𝑖𝑗 ≤ 𝛽𝑖𝑗
𝑓

≤ 𝑁𝑚𝑎𝑥,𝑓
𝐿 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
∪ 𝐵𝐴

𝑓
 (B.11) 

Proof. From the equalities (B.7) and (B.8) obtain: 

∑ �̅�𝑖𝑗
𝑓

=

(𝑖,𝑗)∈𝐵𝑓

∑ 𝛽𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
 

Which is equivalent to: 
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∑ �̅�𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

+ ∑ �̅�𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵2
𝑓

+ ∑ �̅�𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵𝐷
𝑓

= ∑ 𝛽𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
 

Using the substitution from constraints (B.3) and (B.4), equality transforms into the 

following form along with the elimination of �̅�-variables:  

∑ (𝛽𝑖𝑗
𝑓

+ 𝑦𝑖𝑗)

(𝑖,𝑗)∈𝐵1
𝑓

+ ∑ 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵2
𝑓

+ ∑ 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵𝐷
𝑓

= ∑ 𝛽𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 

Thus, together with constraints (49) and (50), it is equivalent to: 

1 + ∑ 𝛽𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

= ∑ 𝛽𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
 

■ 

Using the same substitution principle, it is possible to linearize constraints (22), (23), (25), 

(26), (28)-(30), (32)-(34), (37). The substitution should be defined in the following way: 

𝛾𝑖𝑗
𝑓

= 𝑇𝑖
𝐷𝐹𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.12) 

�̅�𝑖𝑗
𝑓

= 𝑇𝑗
𝐷𝐹𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.13) 

𝜇𝑖𝑗
𝑓

= 𝑇𝑖
𝐷𝐷𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.14) 

�̅�𝑖𝑗
𝑓

= 𝑇𝑗
𝐷𝐷𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.15) 

𝜑𝑖𝑗
𝑓

= 𝑁𝑖
𝐷𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.16) 
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�̅�𝑖𝑗
𝑓

= 𝑁𝑗
𝐷𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.17) 

𝜔𝑖𝑗
𝑓

= 𝑇𝑖
𝐷𝑃𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.18) 

�̅�𝑖𝑗
𝑓

= 𝑇𝑗
𝐷𝑃𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵𝑓 (B.19) 

Hence, the aforementioned constraints are rewritten as follows: 

∑ 𝛾𝑗𝑖
𝑓

= 𝑡𝑗 + ∑ 𝛾𝑖𝑗

(𝑖,𝑗)∈𝐵1
𝑓(𝑗,𝑖)∈𝐵𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(B.20) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝛾𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝐹 − 𝑡𝑗)𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1

𝑓
 (B.21) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝛾𝑖𝑗
𝑓

≤ 𝑇𝑚𝑎𝑥,𝑓
𝐷𝐹 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
∪ 𝐵𝐴

𝑓
 (B.22) 

∑ 𝜇𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

= ∑ 𝑇𝑖𝑗,𝑓
𝑆𝑇

(𝑖,𝑗)∈𝐵1
𝑓

𝑦𝑖𝑗 + 𝑡𝑗 + ∑ 𝜇𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(B.23) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜇𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝐷 − 𝑇𝑖𝑗,𝑓

𝑆𝑇 − 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1
𝑓
 (B.24) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜇𝑖𝑗
𝑓

≤ 𝑇𝑚𝑎𝑥,𝑓
𝐷𝐷 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
∪ 𝐵𝐴

𝑓
 (B.25) 

∑ 𝜑𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

= ∑ 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵𝐷
𝑓

∪𝐵2
𝑓

+ ∑ 𝜑𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

∪𝐵2
𝑓

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(B.26) 

𝑦𝑖𝑗 ≤ 𝜑𝑖𝑗
𝑓

≤ (𝑁𝑚𝑎𝑥,𝑓
𝐷 − 1)𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
 (B.27) 
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𝑦𝑖𝑗 ≤ 𝜑𝑖𝑗
𝑓

≤ 𝑁𝑚𝑎𝑥,𝑓
𝐷 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1

𝑓
∪ 𝐵𝐴

𝑓
 (B.28) 

∑ 𝜔𝑗𝑖
𝑓

= ∑ 𝑇𝑖𝑗,𝑓
𝑆𝑇

(𝑖,𝑗)∈𝐵1
𝑓

𝑦𝑖𝑗

(𝑗,𝑖)∈𝐵𝑓

+ ∑ 𝑇𝑖𝑗,𝑓
𝐿𝑂 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵2

+ 𝑡𝑗 + ∑ 𝜔𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

∪𝐵2
𝑓

, 

∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 

(B.29) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜔𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝑃 − 𝑇𝑖𝑗,𝑓

𝑆𝑇 − 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1
𝑓
 (B.30) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜔𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝑃 − 𝑇𝑖𝑗,𝑓

𝐿𝑂 − 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2
𝑓
 (B.31) 

𝜔𝑗0
𝑓

+ 𝑇𝑚𝑖𝑛,𝑓
𝐿𝑂 ≤ 1440𝑑𝑗,𝑓 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 (B.32) 
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6. Computational study 

In this chapter, the description of test instances provided by United Airlines Company and 

based on the historical data is presented as well as computational experiments and their 

results. Similar data instances were used earlier in the research made by Shao, Sherali, and 

Haouari (2015). All tests were performed on an Intel Core i7-8700 CPU, 3.2GHz processor 

computer with 16GB of RAM, and the model was implemented using AMPL modeling 

language and CPLEX 12.8 solver with default settings. AMPL code for the robust integrated 

model can be found in Appendix B. 

6.1 Data description 

Data used for running the mathematical model were provided by United Airlines Company. 

They are 4 instances: HS1, HS2, HS3, HS4, where each of them includes several text files 

that contain information about the aircraft families, fleet content, flights, and itineraries. In 

order to transform the company data into a readable form for the commercial solver, the 

python programming language was used to generate the data files. Python code for the data 

conversion can be found in Appendix C. 

Each instance contains three fare classes: Business, Economy Plus, and Economy. 

Company’s fleet comprises three aircraft families and five aircraft types:  

 Airbus 320 

- Airbus 319 

- Airbus 320 

 Boeing 757 

- Boeing 752 

- Boeing 763 

 Boeing 777 

- Boeing 772 

In Table 2 the number of flights defined for each data instance is shown. 
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Table 2 

Instance Number of flights 

HS1 128 

HS2 154 

HS3 246 

HS4 354 

Data files with the information about aircraft families comprise the following data: minimum 

sit-time for aircraft 𝑇𝑚𝑖𝑛
𝐴𝐶𝑆𝑇 = 45 minutes, minimum sit-time for crew eligible for this aircraft 

𝑇𝑚𝑖𝑛
𝑆𝑇 = 30 minutes, maximum sit-time for crew 𝑇𝑚𝑎𝑥

𝑆𝑇 = 240 minutes (4 hours), minimum 

layover time 𝑇𝑚𝑖𝑛
𝐿𝑂 = 480 minutes (8 hours). The values of the number of landings 𝑁𝑚𝑎𝑥

𝐿 , 

duration of pairing 𝑇𝑚𝑎𝑥
𝐷𝑃 , and the number of duties within one pairing 𝑁𝑚𝑎𝑥

𝐷  that vary 

depending on the aircraft family are shown in Table 3. 

Table 3 

Instance Aircraft 𝑁𝑚𝑎𝑥
𝐿  𝑇𝑚𝑎𝑥

𝐷𝑃  𝑁𝑚𝑎𝑥
𝐷  

HS1 

B757 6 3240 3 

B777 4 4320 3 

A320 6 3240 3 

HS2 

B757 4 2880 3 

B777 4 4320 3 

A320 4 2880 3 

HS3 

B757 4 2880 3 

B777 4 4320 3 

A320 4 2880 3 

HS4 

B757 4 2880 3 

B777 4 4320 3 

A320 4 2880 3 

Maintenance stations for each aircraft family are presented below: 

 B757: BOS, DEN, IAD, JFK, LAS, LAX, LGA, MCO, ORD, PDX, SAN, SEA, 

SFO; 

 B777: DEN, EZE, GIG, GRU, IAD, LAX, LHR, ORD, SEA, SFO, TPE; 

 A320: BOS, DCA, DEN, IAD, LAS, LAX, LGA, MCO, MEX, MSP, ORD, PDX, 

SAN, SEA, SFO, SNA; 

Data files with the information about fleet include the next information from Table 4, Table 

5, and Table 6:  
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Table 4 

Family Type 𝑇𝑚𝑎𝑥
𝑀  𝑇𝑀 𝑇𝑇 Hourly cost 

A320 
A319 2700 420 38 5800 

A320 2700 420 40 5900 

B757 
B752 3300 390 45 6400 

B763 3300 390 45 6400 

B777 B772 3900 360 70 9800 

Table 4 contains the information about aircraft family, aircraft type, maximum flying time 

before the maintenance, time needed to perform the maintenance, turnaround time, and 

hourly cost of aircraft utilization. 

Table 5 

  Business Economy Plus Economy 

A320 
A319 8 40 72 

A320 12 36 90 

B757 
B752 16 45 108 

B763 25 60 110 

B777 B772 36 89 223 

The number of seats disposed of each fare class for each aircraft type is shown in Table 5. 

Table 6 – Number of aircraft 

 A320 B757 B777  

 A319 A320 B752 B763 B772 Total 

HS1 10 7 14 3 1 35 

HS2 12 20 16 3 2 53 

HS3 18 31 26 5 2 82 

HS4 26 45 37 7 3 118 

Table 6 comprises the number of available aircraft of each type for each data instance. 

Data files with the information about the schedule of daily flights include the following 

information: flight ID, departure station, departure time, arrival station, arrival time, and the 

duration of the flight. 

Each line in data files with the information about itineraries includes itinerary ID, fare class, 

price of fare class, mean demand, and flight IDs covered by this itinerary.  

Crew pairing restrictions that are not included in the provided data files: maximum duty 

flight duration Tmax
DF = 480 minutes (8 hours), maximum duty duration Tmax

DD = 720 minutes 
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(12 hours), minimum duration of pairing Tmin
DP = 300 minutes (5 hours), and maximum 

layover duration Tmax
LO = 1980 minutes (33 hours). Besides, aircraft cushion time and crew 

cushion time are set to be 𝐼𝑎 = 60 minutes and 𝐼𝑐 = 60 minutes respectively, and reward 

for crew following the aircraft is 𝑅 = 10000. Additionally, as the number of crews that the 

airline company possesses is not provided, the used estimated number is 1.5 times more than 

the number of flights. The crew bases are chosen to be located at the following airports: 

ORD, IAH, LAX, EWR, SFO, IAD, DEN, and CLE. 

6.2 Computational experiments 

6.2.1 Computational experiments on United Airlines data 

After running the model using the data provided by United Airlines Company it was 

discovered that the complexity of the model and the structure of data instances does not 

allow to obtain feasible solutions. Two families of the constraints that were influencing the 

model the most are the constraints regarding the number of duties within one pairing and the 

constraints regarding the total flight duration within one duty. As the maximum flight 

duration within one duty was selected to be not more than 480 minutes (8 hours), it was 

necessary to modify the long-haul flights to match these constraints. As the removal of those 

flights and their outbound would influence the flight-network structure, it was decided to 

reduce the flying time of flights that exceed 400 minutes. Thus, the modifications were 

applied to 4 flights in the data instance HS1 and 21 flights in the data instance HS4, while 

no flights were modified in the instances HS2 and HS3. The maximum duration of the flight 

in the instance HS1 was 470 min, while in HS4 it was 517 min. 

Another obstacle that arises is the fact that after performing 3 duties (which is the maximum 

number of duties within one pairing) a crew is more likely to finish not at the base station, 

which triggers the infeasibility as each crew is required to finish their pairing at the base 

station.  This happens because the developed model is more suitable for the point-to-point 

network structure, while United Airlines Company uses the hub-and-spoke route system. In 

the pure point-to-point system passengers do not need to have a transfer in the intermediate 

airport as they travel directly to their destinations. In hub-and-spoke structure passengers 

need to have a transfer at the hub to reach their destination, except the situation when the 

hub is the origin or the destination itself (Cook and Goodwin 2008). Thus, due to the data 

instances structure, it was decided to relax these constraints.  
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Table 7 - Robust model 

 
Duality 

gap 
Best 

bound 
Objective 
function 

# of 
short 
crew 
conn. 

# of 
crit. 
crew 
conn. 

# of 
crit. 

aircraft 
conn. 

# of conn. 
where crew 
follows the 

aircraft 

FTC 
Passengers 

revenue 

Cost of 
aircraft 

assignment 

Reward from 
crew following 

the aircraft 

Penalty for 
crit. aircraft 

conn. 

Penalty for crit. 
conn. w/o crew 

following aircraft 

Total solve  
system 

time 

Total solve 
user time 

HS1 Opt -192023 -192023 0 1 47 3 57481 1452270 1618720 30000 53524 2048 4433 167706 

HS2 2.29% 1097178 1072580 0 0 9 5 71093 2898260 1874130 50000 1555 0 9334 360791 

 

Table 8 - Non-robust model 

 
Duality 

gap 
Best 

bound 
Objective 
function 

# of 
short 
crew 
conn. 

# of 
crit. 
crew 
conn. 

# of 
crit. 

aircraft 
conn. 

# of conn. 
where crew 
follows the 

aircraft 

FTC 
Passengers 

revenue 

Cost of 
aircraft 

assignment 

Reward from 
crew following 

the aircraft 

Penalty for 
crit. aircraft 

conn. 

Penalty for crit. 
conn. w/o crew 

following aircraft 

Total solve  
system 

time 

Total solve 
user time 

HS1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

HS2 Opt 1069220 1069220 0 3 91 Missing 67960 2898260 1829040 NA NA NA 1976 46499 
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Table 7 shows the results obtained after running the model on the provided data instances. 

The running time was selected to be within 18000 minutes (5 hours). As the number of 

flights in the instances HS3 and HS4 is very big, it was impossible to obtain a feasible 

solution for them. Thus, only the results for the instances HS1 and HS2 are shown. To 

evaluate the contribution of robustness the results for the non-robust model are shown as 

well in Table 8. Due to the structure of the model, it is impossible to track the number of 

connections where a crew follows an aircraft for the non-robust model. 

For the instance HS1, it was possible to find a robust solution with 1 critical crew connection 

and 47 critical aircraft connections, while having 3 connections where crew follows the 

aircraft. The results for this instance comprise quite a high penalty for critical aircraft 

connections (53524). For this instance, the cost of aircraft assignment exceeds the passenger 

revenue. However, it takes twice less time to find the solution for the data instance HS1 than 

for the instance HS2 while the number of flights in HS1 is 128 and 154 in HS2. It is 

noteworthy that the objective function is a relative value which is influenced by the 

robustness reward and penalties. It is used as a leverage to enforce robustness to be applied 

to the model and thus cannot display the real profitability. Therefore, we cannot compare 

the value of the objective functions of robust and non-robust models. Besides, it appeared 

that finding the feasible solution for the instance HS1 using the non-robust model requires 

more time than the selected time limit.  

Comparing the results for the instance HS2 we can see, that the difference in the aircraft 

assignment cost of the robust and non-robust model is 45,090 which is a relatively small 

number, while the number of critical crew connections for the robust model is reduced by 

100% in comparison with non-robust one (3 critical crew connections for non-robust and 0 

critical crew connections for robust), and the number of critical aircraft connections is 

reduced by 90% (91 against 9), which is also a good indicator. However, the solution of the 

robust model takes much more CPU time than the solution of a non-robust one (9,334 system 

CPU seconds for robust model against 1,976 system CPU seconds for non-robust, and 

360,791 user CPU seconds for robust model against 46,499 user CPU seconds for non-

robust). We can also outline, that the flight-time credit (FTC) increased for 4.6% for the 

robust solution (67,960 for non-robust model against 71,093 for robust one). 
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6.2.2 Computational experiments on artificial data 

To examine the model more thoroughly, it was decided to create several artificial data 

instances based on the obtained data from United Airlines, but with a smaller number of 

flights. Thus, three instances A1, A2, and A3 were created based on the real instances HS1, 

HS2, and HS3 respectively. New artificial instances contain the following number of flights 

(Table 9), while the other parameters correspond to the parameters of the original instances 

HS1, HS2, and HS3: 

Table 9 

Instance Number of flights 

A1 90 

A2 68 

A3 94 

The results of running the robust integrated model on the artificial instances are shown in 

Table 10. The running time was kept to be within 18000 minutes (5 hours). For evaluation 

of the influence of the robustness techniques, the results for the non-robust model are 

presented in Table 11. 

Comparing the results from Table 10 and Table 11, we can see the significant decrease in 

the number of critical connections both for crews and aircraft in the case of robust planning 

(from 67% up to 100% decrease). Information about the percentage change in costs of a 

robust solution in comparison with the non-robust one is shown in Table 12. We can see, 

that the cost of aircraft assignment increased by 0.1% - 4.5%, while the difference between 

the FTC value of the non-robust model and the robust model varies from -11% to 13%.  

Thus, the results show the efficiency of the robust techniques due to the decreased number 

of critical connections with non-significant aircraft assignment cost increase. The results 

also demonstrate the absence of a tendency regarding the increase or decrease of FTC cost 

while using the robust model. This means that the crew pairing cost can both increase and 

decrease while applying robustness techniques. Besides, the relatively small value of FTC 

in comparison with aircraft assignment cost (up to 3.9% of aircraft assignment cost) 

indicates its negligibility. 



 51 

Table 10 - Robust model 

 
Duality 

gap 
Best 

bound 
Objective 
function 

# of 
short 
crew 
conn. 

# of 
crit. 
crew 
conn. 

# of 
crit. 

aircraft 
conn. 

# of conn. 
where crew 
follows the 

aircraft 

FTC 
Passengers 

revenue 

Cost of 
aircraft 

assignment 

Reward from 
crew following 

the aircraft 

Penalty for 
crit. aircraft 

conn. 

Penalty for crit. 
conn. w/o crew 

following aircraft 

Total solve  
system 

time 

Total solve 
user time 

A1 Opt -93824.8 -93824.8 0 0 8 1 36131 1146480 1248410 10000 1894 0 18 1218 

A2 Opt 514336 514336 0 0 1 5 31825 1321020 856580 50000 100 0 22 1659 

A3 Opt 3936820 3936820 0 0 1 2 47949 5582020 1664980 20000 225 0 21 2372 

 

Table 11 - Non-robust model 

 
Duality 

gap 
Best 

bound 
Objective 
function 

# of 
short 
crew 
conn. 

# of 
crit. 
crew 
conn. 

# of 
crit. 

aircraft 
conn. 

# of conn. 
where crew 
follows the 

aircraft 

FTC 
Passengers 

revenue 

Cost of 
aircraft 

assignment 

Reward from 
crew following 

the aircraft 

Penalty for 
crit. aircraft 

conn. 

Penalty for crit. 
conn. w/o crew 

following aircraft 

Total solve  
system 

time 

Total solve 
user time 

A1 Opt -95558.3 -95558.3 0 6 24 NA 40636 1146480 1242040 NA NA NA 27 1254 

A2 Opt 501358 501358 0 1 13 NA 32164 1321020 819658 NA NA NA 15 245 

A3 Opt 3918470 3918470 0 5 11 NA 42386 5582020 1663550 NA NA NA 23 2382 
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Table 12 – Cost changes of the robust solution in comparison with the non-robust one 

Instance 
Aircraft assignment 

cost change, % 
FTC change, % 

A1 +0.5% -11% 

A2 +4.5% -1% 

A3 +0.1% +13% 

In Table 13 time parameters are presented and include the time needed to find a feasible 

solution, the optimal solution, and total calculation time for both robust and non-robust 

models which are run on each artificial data instance. The following notation is used: 

 O – the time needed to solve the model to optimality (in seconds); 

 F – the time of finding a feasible solution (in seconds). 

Table 13 

 
 

Robust model Non-robust model 

F O 
Total 

(root+branch&cut) 
F O 

Total 
(root+branch&cut) 

A1 76 149 164 sec 66 219 220 sec 

A2 93 309 309 sec 50 50 50 sec 

A3 174 333 336 sec 126 302 303 sec 

Table 14 

A1 

Robust model Non-robust model 

Time Duality gap Best bound Time Duality gap Best bound 

76 sec 7.54% -92495.8 66 sec 4.17% -94549.6 

84 sec 2.79% -92556.9 119 sec 3.91% -94790.5 

99 sec  0.86% -93103.5 209 sec 0.33% -95469.5 

A2 

Robust model Non-robust model 

Time Duality gap Best bound Time Duality gap Best bound 

93 sec 6.76% 522383.1 50 sec 0.00% 501358 

131 sec 3.48% 522297.3    

308 sec 0.74% 518143.3    

A3 

Robust model Non-robust model 

Time Duality gap Best bound Time Duality gap Best bound 

174 sec 1.01% 3947216.4 126 sec 0.54% 3920962.6 

291 sec 0.54% 3945620.1 188 sec 0.09% 3920763.1 

300 sec 0.02% 3937780.1 295 sec 0.02% 3919281.5 



 53 

In Table 14 the information about the duality gap and the best bound at different moments 

of the model run is provided. For the data instance A1 a feasible solution with a big duality 

gap was found relatively fast for both robust and non-robust models. In the case of the robust 

model, the solution was quickly improved to have a duality gap of 0.86%, but afterwards, it 

took a lot of time to reach the optimality. For the non-robust model, it took a greater amount 

of time to reach a small duality gap and finally the optimal solution. The same performance 

experienced the robust model tested on the instance A2, where a feasible solution with a big 

duality gap was found quickly but took a lot of time to reduce the gap. However, the non-

robust model was solved fast and directly to optimality. In the case of A3, it took time to 

reach a feasible solution, but once it was reached, the duality gap appeared to be very small 

and thus it would be more reasonable to stop the model at this moment than to wait 

approximately twice more time to find the optimal solution. All artificial data instances were 

solved within a smaller computational time in comparison with the original instances which 

indicates proportionality of computational time and problem size. 

6.3 Analysis of the results 

The computational results show the possibility of using the model where three airline 

problems are integrated into one with applied robustness techniques. We can notice, that 

with the increase in the number of flights the processor execution time increases as well. For 

the artificial instances, the computational time needed to find the optimal solution with the 

non-robust model proportionally depends on the number of flights, in contrast with the 

robust model. Therefore, in the case of the robust model, the computational times depends 

not only on the problem size but also on the applied robustness techniques.  The time of 

finding the first feasible solution and the rate of duality gap decrease is varying from instance 

to instance, and no dependencies connected to model size are found. However, the time 

needed to find the first feasible and the optimal solution is bigger for the robust model, than 

for the non-robust.  

After testing the model on real and artificial data with the different number of flights, we 

can state that due to the complexity of the model it is preferable to use it for regional carriers 

whose number of daily flights relatively small and whose network structure is the point-to-

point structure. 



 54 

It was also discovered, that to enforce the crew to follow the aircraft on the connections, the 

reward should be selected enough big to be able to influence the objective function. It is 

shown as well, that the choice of the quadratic penalty for critical aircraft and crew 

connections meets the expectations and helps to reduce the number of critical connections. 

However, the application of the robustness increases the computational time and the aircraft 

assignment cost, but not significantly. Thus, it proves the relevance of including the 

robustness features within the model. To examine how the robust model carries into effect 

the cost savings when disruptions occur in the network system and how it affects the fleet 

assignment cost, it is reasonable to use a simulation tool in the further research. 
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7. Conclusion and future work 

7.1 Conclusion 

The goal of this study was to create the model which integrates three airline planning 

problems: fleet assignment, aircraft routing, and crew pairing, and which increases the 

disruption resistance of operational schedule due to the robustness techniques. After that, 

the developed model was tested on the data instances provided by United Airlines Company. 

Computational results show the influence of the problem size and network structure on the 

efficiency of the model.  

Using the robustness techniques reduces the number of critical connections and forces crew 

to follow the aircraft on the connections, but it increases the aircraft assignment cost. 

Running the model on the hub-and-spoke network structure affects the model efficiency as 

it is more suitable for the point-to-point system. With increasing problem size, the 

computational time is increasing as well. 

7.2 Future work  

In future work, to simplify and accelerate the solution process, relaxation and decomposition 

methods could be applied to the model. Relaxation of the linear programming problem is a 

model obtained by omitting integer and binary constraints on variables of the initial problem. 

Hereupon, all the variables become continuous except the one which remains integer and 

which indicates if a flight leg is assigned to an aircraft of a specific type or not. As a result, 

we obtain a mix-integer programming problem with only one integer variable. 

The next step is solving the mix-integer programming problem using a commercial solver. 

By doing this, the solution for the fleet assignment problem is obtained as well as a lower 

bound which is the value of the objective function of the relaxed problem. Subsequently, the 

value of lower bound will be used for the comparison with the value of the objective function 

of final results. Thereby, the problem is hence decomposed into several subproblems of 

aircraft routing and crew pairing, where the number of subproblems is depending on the 

number of aircraft families. Therefore, it is required to solve the resulting problem for each 

aircraft family. 
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In this study, the developed robust integrated model was tested on the data instances with 

the hub-and-spoke network structure. To examine the behavior of the model more precisely, 

we suggest to test it on the data instances with the point-to-point network structure. 

Besides, it is also possible to examine the robustness contribution to the airline planning 

process with disruptions using a simulation tool. 
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Appendix A: Linear model 

Sets, parameters and decision variables 

Sets: 

𝐿 set of daily flights 

𝐹 set of aircraft families 

𝐾𝑓 set of aircraft types from family 𝑓 

𝑆𝑘 set of maintenance stations for aircraft of type 𝑘 

𝐴 set of arcs for aircraft routing graph 

𝑉 set of nodes 

𝛿𝑗
− set of arcs incident to node 𝑗 ∈ 𝑉 in aircraft routing graph 

𝛿𝑗
+ set of arcs outgoing from node 𝑗 ∈ 𝑉 in aircraft routing graph 

П set of itineraries 

𝐴𝑀 set of maintenance arcs 

𝐴𝑁𝑀 set of non-maintenance arcs 

𝐿𝑊𝐴𝐹 set of wraparound flights 

𝐻 set of fare classes 

𝐿𝐷 set of flights that depart from the base station 

𝐿𝐴 set of flights that arrive to the base station 

{0} dummy node that represents both the start and the end of a pairing 

𝛿�̅�
− set of arcs incident to node 𝑗 ∈ 𝑉 in crew pairing graph 

𝛿�̅�
+ set of arcs outgoing from node 𝑗 ∈ 𝑉 in crew pairing graph 

𝐵𝑆 set of short crew connections 

𝐵𝐶 set of critical crew connections 

Parameters: 

𝑁𝑘 number of aircraft of type 𝑘  

𝑡𝑗 flying time of flight 𝑗 

𝑇𝑗
𝐷 departure time of flight 𝑗 

𝑇𝑗
𝐴 arrival time of flight 𝑗 

𝑆𝑗
𝐷 departure station of flight 𝑗 

𝑆𝑗
𝐴 arrival station of flight 𝑗 

𝑇𝑇  turnaround time 
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𝑇𝑀 time needed to perform the maintenance check 

𝐶ℎ𝑘 passenger seat capacity for fare class ℎ ∈ 𝐻 on aircraft of type 𝑘 ∈ 𝐾 

𝑟𝑝ℎ 
estimated revenue from one ticket for fare class ℎ ∈ 𝐻 on flight  𝑗 ∈ 𝐿 

within itinerary 𝑝 ∈ П𝑗 

�̅�𝑝ℎ mean demand for fare class ℎ ∈ 𝐻 on flight  𝑗 ∈ 𝐿 within itinerary 𝑝 ∈ П𝑗 

𝑐�̅�𝑘 fixed cost of assigning an aircraft of fleet type 𝑘 to flight leg 𝑗 

𝑜𝑗ℎ opportunity cost per spilled passenger on flight leg 𝑗 

𝑇𝑚𝑎𝑥
𝐷𝐹  maximum duty flight duration 

𝑇𝑚𝑖𝑛
𝑆𝑇 /𝑇𝑚𝑎𝑥

𝑆𝑇  
minimum/maximum crew sit-time between two consecutive flights within the 

same duty 

𝑇𝑚𝑎𝑥
𝐷𝐷  

maximum duty duration, assuming that the longest flight duration is shorter 

than the maximum duty duration 

𝑇𝑚𝑖𝑛
𝐿𝑂 /𝑇𝑚𝑎𝑥

𝐿𝑂  
minimum/maximum layover duration between two consecutive duties within 

the same pairing 

𝑇𝑚𝑖𝑛
𝐷𝑃 /𝑇𝑚𝑎𝑥

𝐷𝑃  minimum/maximum pairing duration 

𝑁𝑚𝑎𝑥
𝐿  maximum number of landings within a duty 

𝑁𝑚𝑎𝑥
𝐷  maximum number of duties within a pairing 

𝑇𝑚𝑖𝑛
𝐴𝑆𝑇 default minimum sit-time for the aircraft   

𝐼𝑎 aircraft connection cushion time 

𝐼𝑐 crew connection cushion time 

𝑞𝑖𝑗
𝑎  quadratic penalty for the aircraft connections (𝑖, 𝑗) with short buffer time 

𝑞𝑖𝑗
𝑐  quadratic penalty for the crew connections (𝑖, 𝑗) with short buffer time 

𝑅 reward for robust connection both covered by crew pairing and aircraft 

𝑇𝑚𝑎𝑥
𝑀  

maximum number of flying hours that aircraft can perform without  

maintenance check 

Decision variables: 

𝑦𝑖𝑗 binary variable that takes 1 if arc (𝑖, 𝑗) ∈ 𝐵 is selected, and 0 otherwise 

𝑥𝑖𝑗 binary variable that takes 1 if arc (𝑖, 𝑗) ∈ 𝐴 is selected, and 0 otherwise 

𝑢𝑗𝑘 
total accumulated flying hours for aircraft of type 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 since its 

last maintenance check after serving flight leg 𝑗 ∈ 𝐿 

𝑤𝑗𝑘  
binary variable that equals 1 if flight leg 𝑗 ∈ 𝐿 is assigned to an aircraft of 

type 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓, and 0 otherwise 

𝑁𝑝ℎ
𝑃𝐴𝑆 number of passengers flying within fare class ℎ ∈ 𝐻 and itinerary 𝑝 ∈ П 
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𝑧𝑖𝑗 
binary variable that takes 1 if a crew follows an aircraft on a connection 

(𝑖, 𝑗) ∈ 𝐴 ∩ 𝐵 

𝑁𝑗𝑓
𝐿  

total number of landing for a crew that is eligible to an aircraft family 𝑓 ∈ 𝐹 

after serving flight leg 𝑗 ∈ 𝐿 

𝑇𝑗𝑓
𝐷𝐹 

total accumulated duty flight duration for a crew that is eligible for an aircraft 

family 𝑓 ∈ 𝐹 after serving flight leg 𝑗 ∈ 𝐿 

𝑇𝑗𝑓
𝐷𝐷 

total accumulated duty duration for a crew that is eligible to an aircraft 

family 𝑓 ∈ 𝐹 after serving flight leg 𝑗 ∈ 𝐿 

𝑁𝑗𝑓
𝐷  

total accumulated number of duties for a crew that is eligible for an aircraft 

family 𝑓 ∈ 𝐹 after serving flight leg 𝑗 ∈ 𝐿 

𝑇𝑗𝑓
𝐷𝑃 

total accumulated duration of pairing for a crew that is eligible to an 

aircraft family 𝑓 ∈ 𝐹 after serving flight leg 𝑗 ∈ 𝐿 

𝑑𝑗𝑓 

integer variable that corresponds to the duration (in days) of the crew 

pairing that is eligible to an aircraft family 𝑓 ∈ 𝐹, that ends with flight 𝑗, 

𝑗 ∈ 𝐿 

𝛼𝑖𝑗 artificial variable for aircraft routing (𝑖, 𝑗) ∈ 𝐴 

𝛽𝑖𝑗 artificial variable for number of landings within a duty (𝑖, 𝑗) ∈ 𝐵 

𝛾𝑖𝑗 artificial variable for flying time within a duty (𝑖, 𝑗) ∈ 𝐵 

𝜇𝑖𝑗 artificial variable for duty duration (𝑖, 𝑗) ∈ 𝐵 

𝜑𝑖𝑗 artificial variable for number of duties within a pairing (𝑖, 𝑗) ∈ 𝐵 

𝜔𝑖𝑗 artificial variable for pairing duration (𝑖, 𝑗) ∈ 𝐵 

Linear model: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑟𝑝ℎ𝑁𝑝ℎ
𝑃𝐴𝑆

ℎ∈𝐻𝑝∈П𝑗𝑗∈𝐿

− ∑ ∑ ∑ 𝑐𝑗𝑘𝑤𝑗𝑘

𝑘∈𝐾𝑓𝑓∈𝐹𝑗∈𝐿

+ ∑ 𝑅𝑧𝑖𝑗

(𝑖,𝑗)∈𝐵\𝐵𝑆

 

− ∑ 𝑞𝑖𝑗
𝑎 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

− ∑ 𝑞𝑖𝑗
𝑐 (𝑦𝑖𝑗 − 𝑧𝑖𝑗)

(𝑖,𝑗)∈𝐵𝐶

 

(L.1) 

∑ ∑ 𝑤𝑗𝑘

𝑘∈𝐾𝑓𝑓∈𝐹

= 1, ∀𝑗 ∈ 𝐿  (L.2) 

∑ 𝑥𝑖𝑗 = 𝑤𝑗𝑘

(𝑖,𝑗)∈𝛿𝑗
−∩𝐴𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(L.3) 
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∑ 𝑥𝑗𝑖 = 𝑤𝑗𝑘

(𝑗,𝑖)∈𝛿𝑗
+∩𝐴𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(L.4) 

∑ 𝛼𝑗𝑖
𝑘

(𝑗,𝑖)∈𝐴𝑘

= 𝑡𝑗 ∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴𝑘

+ ∑ 𝛼𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑁𝑀
𝑘

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , 𝑗 ∈ 𝐿𝑘 
(L.5) 

𝑡𝑗𝑥𝑗𝑖 ≤ 𝛼𝑗𝑖
𝑘 ≤ (𝑇𝑚𝑎𝑥,𝑓

𝑀 − 𝑡𝑖)𝑥𝑗𝑖 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓(𝑗, 𝑖) ∈ 𝐴𝑁𝑀
𝑘  (L.6) 

𝑡𝑗𝑥𝑗𝑖 ≤ 𝛼𝑗𝑖
𝑘 ≤ 𝑇𝑚𝑎𝑥,𝑓

𝑀 𝑥𝑗𝑖 , ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 , (𝑗, 𝑖) ∈ 𝐴𝑀
𝑘  (L.7) 

∑ 𝑥𝑖𝑗 ≤

(𝑖,𝑗)∈𝐴𝑀
2 ∪𝐴𝑀

4

𝑁𝑘 − ∑ 𝑤𝑗𝑘

𝑗∈𝐿𝑊𝐴𝐹

, ∀𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 
(L.8) 

∑ ∑ 𝑁𝑝ℎ
𝑃𝐴𝑆

𝑝∈П𝑗ℎ∈𝐻

≤ ∑ ∑ ∑ �̃�𝑗𝑘ℎ𝑤𝑗𝑘

ℎ∈𝐻𝑘∈𝐾𝑓𝑓∈𝐹

, ∀𝑗 ∈ 𝐿 

�̃�𝑗𝑘ℎ ≡ min {𝐶ℎ𝑘, ∑ �̅�𝑝ℎ

𝑝∈П𝑗

} ,  ∀𝑗 ∈ 𝐿, ℎ ∈ 𝐻, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾𝑓 

 

 

 

 

(L.9) 

0 ≤ 𝑁𝑝ℎ
𝑃𝐴𝑆 ≤ �̃� ≡ min {�̅�𝑝ℎ, max

𝑘∈𝐾𝑓,𝑓∈𝐹
𝐶ℎ𝑘} , ∀𝑗 ∈ 𝐿, 𝑝 ∈ П𝑗 , ℎ ∈ 𝐻 

(L.10) 

∑ 𝑦𝑖𝑗 =

(𝑖,𝑗)∈�̅�𝑗
−∩𝐵𝑓

∑ ∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝛿𝑗
−∩𝐴𝑘𝑘∈𝐾𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(L.11) 

∑ 𝑦𝑗𝑖 =

(𝑗,𝑖)∈�̅�𝑗
+∩𝐵𝑓

∑ ∑ 𝑥𝑗𝑖

(𝑗,𝑖)∈𝛿𝑗
+∩𝐴𝑘𝑘∈𝐾𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(L.12) 

∑ 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵𝐷
𝑓

− ∑ 𝑦𝑗𝑖

(𝑗,𝑖)∈𝐵𝐴
𝑓

= 0, ∀𝑓 ∈ 𝐹 
(L.13) 

∑ 𝛽𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓

= 1 + ∑ 𝛽𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

, ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹 
(L.14) 
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𝑦𝑖𝑗 ≤ 𝛽𝑖𝑗
𝑓

≤ (𝑁𝑚𝑎𝑥,𝑓
𝐿 − 1)𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1

𝑓
 (L.15) 

𝑦𝑖𝑗 ≤ 𝛽𝑖𝑗
𝑓

≤ 𝑁𝑚𝑎𝑥,𝑓
𝐿 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
∪ 𝐵𝐴

𝑓
 (L.16) 

∑ ∑ 𝛾𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓𝑓∈𝐹

= 𝑡𝑗 + ∑ ∑ 𝛾𝑖𝑗

(𝑖,𝑗)∈𝐵1
𝑓𝑓∈𝐹

, ∀𝑗 ∈ 𝐿 
(L.17) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝛾𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝐹 − 𝑡𝑗)𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1

𝑓
 (L.18) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝛾𝑖𝑗
𝑓

≤ 𝑇𝑚𝑎𝑥
𝐷𝐹 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
∪ 𝐵𝐴

𝑓
 (L.19) 

∑ ∑ 𝜇𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓𝑓∈𝐹

= ∑ ∑ 𝑇𝑖𝑗𝑓
𝑆𝑇

(𝑖,𝑗)∈𝐵1
𝑓

𝑦𝑖𝑗

𝑓∈𝐹

+ 𝑡𝑗 + ∑ ∑ 𝜇𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓𝑓∈𝐹

, ∀𝑗 ∈ 𝐿 
(L.20) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜇𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝐷 − 𝑇𝑖𝑗𝑓

𝑆𝑇 − 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1
𝑓
 (L.21) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜇𝑖𝑗
𝑓

≤ 𝑇𝑚𝑎𝑥,𝑓
𝐷𝐷 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
∪ 𝐵𝐴

𝑓
 (L.22) 

∑ ∑ 𝜑𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓 𝑓∈𝐹

= ∑ ∑ 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵𝐷
𝑓

∪𝐵2
𝑓 𝑓∈𝐹

+ ∑ ∑ 𝜑𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

∪𝐵2
𝑓 𝑓∈𝐹

, ∀𝑗 ∈ 𝐿 
(L.23) 

𝑦𝑖𝑗 ≤ 𝜑𝑖𝑗
𝑓

≤ (𝑁𝑚𝑎𝑥,𝑓
𝐷 − 1)𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2

𝑓
 (L.24) 

𝑦𝑖𝑗 ≤ 𝜑𝑖𝑗
𝑓

≤ 𝑁𝑚𝑎𝑥,𝑓
𝐷 𝑦𝑖𝑗, ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1

𝑓
∪ 𝐵𝐴

𝑓
 (L.25) 
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∑ ∑ 𝜔𝑗𝑖
𝑓

(𝑗,𝑖)∈𝐵𝑓 𝑓∈𝐹

= ∑ ∑ 𝑇𝑖𝑗,𝑓
𝑆𝑇

(𝑖,𝑗)∈𝐵1
𝑓

𝑦𝑖𝑗

 𝑓∈𝐹

+ ∑ ∑ 𝑇𝑖𝑗,𝑓
𝐿𝑂 𝑦𝑖𝑗

(𝑖,𝑗)∈𝐵2 𝑓∈𝐹

+ 𝑡𝑗

+ ∑ ∑ 𝜔𝑖𝑗
𝑓

(𝑖,𝑗)∈𝐵1
𝑓

∪𝐵2
𝑓 𝑓∈𝐹

, ∀𝑗 ∈ 𝐿 

(L.26) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜔𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝑃 − 𝑇𝑖𝑗𝑓

𝑆𝑇 − 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵1
𝑓

  (L.27) 

𝑡𝑖𝑦𝑖𝑗 ≤ 𝜔𝑖𝑗
𝑓

≤ (𝑇𝑚𝑎𝑥,𝑓
𝐷𝑃 − 𝑇𝑖𝑗,𝑓

𝐿𝑂 − 𝑡𝑗)𝑦𝑖𝑗 , ∀𝑓 ∈ 𝐹, (𝑖, 𝑗) ∈ 𝐵2
𝑓
 (L.28) 

𝜔𝑗0
𝑓

+ 𝑇𝑚𝑖𝑛,𝑓
𝐿𝑂 𝑦𝑖𝑗 ≤ 1440𝑑𝑗,𝑓 , ∀𝑗 ∈ 𝐿, 𝑓 ∈ 𝐹, (𝑗, 0) ∈ 𝐵𝐴

𝑓
 (L.29) 

∑ 𝑑𝑗𝑓 ≤ 𝑁𝑓
𝑐𝑟𝑒𝑤, ∀𝑓 ∈ 𝐹

(𝑗,0)∈𝐵𝐴
𝑓

 
(L.30) 

𝑇𝑚𝑖𝑛
𝐷𝑃 𝑦𝑗0 ≤ 𝜔𝑗0

𝑓
≤ 𝑇𝑚𝑎𝑥,𝑓

𝐷𝑃 𝑦𝑗0, ∀𝑓 ∈ 𝐹, (𝑗, 0) ∈ 𝛿�̅�
+ ∩ 𝐵𝐴

𝑓
 (L.31) 

𝑦𝑖𝑗 ≤ 𝑥𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐵𝑆 ∩ 𝐴 (L.32) 

0 ≤ 𝑧𝑖𝑗 ≤ 𝑥𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐵 ∩ 𝐴 (L.33) 

0 ≤ 𝑧𝑖𝑗 ≤ 𝑦𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐵 ∩ 𝐴 (L.34) 

(𝑥, 𝑦, 𝑧, 𝑤) binary ≥ 0 (L.35) 

(𝛼, 𝛽, 𝛾, 𝜇, 𝜑, 𝜔, 𝑢, 𝑑, 𝑁𝑃𝐴𝑆, 𝑁𝐿 , 𝑇𝐷𝐹, 𝑇𝐷𝐷 , 𝑁𝐷 , 𝑇𝐷𝑃) integer ≥ 0 (L.36) 
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Appendix B: AMPL model 

File .mod: 

/* ###########              Sets                  ############# */ 

 

set L;    #set of daily flights 

set F;    #set of aircraft families 

set K {F};   #set of aircraft types  

set S {f in F};   #set of maintenance stations 

set PI {L};   #set of itineraries, with subsets that 

include flight L 

set H;     #set of all fair classes 

set origin = {0};  #dummy node 0 

set Base_st; 

 

/* ###########    Parameters                  ############ */ 

 

param S_D {j in L} symbolic ;   #departure station of 

flight j 

param S_A {j in L} symbolic ;   #arrival station of 

flight j 

set L_D =setof {j in L:S_D[j] in Base_st}(j) ;  #the set of 

flights that depart from the base station 

set L_A =setof {j in L: S_A[j] in Base_st}(j) ;  #the set of 

flights that arrive to the base station 

param N {f in F, k in K[f]} >= 0;  #number of aircraft of type k  

param t {j in L} >= 0, < 1440;   #flying time of each flight j 

param T_D {j in L} >= 0, <= 1440;  #departure time of each flight 

param T_A {j in L} >= 0, <= 1440;  #arrival time of each flight 

param T_M {f in F, k in K[f]} >= 0;  #time needed to 

perform the maintenance check 

param T_M_max {f in F} >= 0;   #maximum number of 

flying hours without the maintenance check 

param T_T {f in F, k in K[f]} >= 0;  #turnaround time 

param T_ST_min {f in F} >= 0;   #minimum sit-time  

param T_ST_max {f in F} >= 0;   #maximum sit-time 

param T_ST {f in F} >= 0;  #default sit-time  

param T_DF_max >= 0;   #maximum duty flight duration 

param T_DD_max >= 0;   #maximum duty duration 

param T_LO_min {f in F} >= 0; #minimum layover duration 

param T_LO_max >= 0;   #max layover duration 

param T_DP_min >= 0;   #min duration of pairing 

param T_DP_max {f in F} >= 0; #max duration of pairing 

param N_L_max {f in F} >= 0;#max number of landings within a duty 

param N_D_max {f in F} >= 0;#max number of duties within a pairing 

param tau default 1.2;   # fraction of duty duration 

param I_a_cush >= 0;   #aircraft connection cushion time  

param I_c_cush >= 0;   #crew connection cushion time 

param R >= 0;  #reward if crew follows aircraft on connection 

param minutes := 1440; 

param factor_crew default 1.5; 
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set L_WAF =setof{j in L: T_D[j]>T_A[j]}(j);  #set of 

wraparound flights 

 

/*  ################### Aircraft graph   ######################*/ 

  

set A1 = setof {i in L, j in L, f in F, k in K[f]:   

 S_A[i] == S_D[j] &&  

 S_A[i] in S[f] && 

 T_A[i] + T_M[f,k] <= T_D[j]} (i,j,k); 

  

set A31 = setof {i in L, j in L, f in F, k in K[f]:   

 (S_A[i] == S_D[j]) &&  

  (S_A[i] not in S[f])&&  

 (T_A[i] + T_T[f,k] <= T_D[j])} (i,j,k);  

  

set A32 = setof {i in L, j in L, f in F, k in K[f]:   

 (S_A[i] == S_D[j]) &&  

  (T_D[j] < T_A[i] + T_M[f,k])  && 

 (T_A[i] + T_T[f,k] <= T_D[j])} (i,j,k); 

  

set A3= A31 union A32; 

set A41 = setof {i in L, j in L, f in F, k in K[f]:   

 S_A[i] == S_D[j] && 

  (T_D[j] + 1440 < T_A[i] + T_M[f,k])  && 

 T_D[j] < T_A[i] + T_T[f,k] <= T_D[j] + 1440} (i,j,k); 

  

set A42=setof {i in L, j in L, f in F, k in K[f]:   

 S_A[i] == S_D[j] && 

 (S_A[i] not in S[f])   && 

 T_D[j] < T_A[i] + T_T[f,k] <= T_D[j] + 1440} (i,j,k); 

   

set A4= A41 union A42; 

set A2 = setof {i in L, j in L, f in F, k in K[f]:   

 (S_A[i] == S_D[j]) &&  

 (S_A[i] in S[f]) && 

 (T_D[j] < T_A[i] + T_M[f,k] <= T_D[j] + 1440)&& (i,j,k) not 

in A3} (i,j,k); 

    

set A = A1 union A2 union A3 union A4; #set of arcs  A1 union A2 

union 

set A_M = A1 union A2; 

set A_NM = A3 union A4; 

 

/* ####################  Crew graph ######################*/ 

set B_1prime = setof { i in L, j in L, f in F:  

 S_A[i] == S_D[j] && (t[i] + t[j] <= T_DF_max) } (i,j,f);  

## initial definition of sit crew arcs, before refining 

 

set B_2prime = setof { i in L, j in L, f in F:  

 S_A[i] == S_D[j] && (S_A[i] not in Base_st)} (i,j,f);  

## initial defintion of crew layover arcs 

 

param sit_time {(i,j,f) in B_1prime} :=  

 if (T_A[i] - T_ST_min[f] <= T_D[j])  

 then (T_D[j] - T_A[i]) 

 else (T_D[j] - T_A[i] + 1440); ## actual sit time 
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param layover_time {(i,j,f) in B_2prime} :=  

 if (T_A[i] + T_LO_min[f] <= T_D[j] <= T_A[i] + T_LO_max)  

 then (T_D[j] - T_A[i]) 

 else if  (T_A[i] + T_LO_min[f] <= T_D[j] + 1440 <= T_A[i] + 

T_LO_max)  

 then (T_D[j] - T_A[i] + 1440); ## actual layover time 

 

set B1 = setof {(i,j,f) in B_1prime:  

 (t[i] + t[j] + sit_time[i,j,f] <= T_DD_max) &&  

 (T_ST_min[f] <= sit_time[i,j,f] <= T_ST_max[f])} (i,j,f); 

## set of sit in arcs 

 

set B2 = setof {(i,j,f) in B_2prime:  

  (T_LO_min[f] <= layover_time[i,j,f] <= T_LO_max) && 

  (t[i] + t[j] + layover_time[i,j,f] <= T_DP_max[f]) &&  

  (i,j,f) not in B1} (i,j,f); 

## set of layover arcs 

  

set BD = setof {i in origin, j in L_D, f in F} (i,j,f); 

set BA = setof {i in L_A, j in origin, f in F} (i,j,f); 

set BS  = setof {(i,j,f) in B1: 

 T_ST_min[f] <= sit_time[i,j,f] < T_ST[f]} (i,j,f); 

 

set B = B1 union B2 union BD union BA; #set of crew pairing arcs 

set BC within B1 =   #set of critical connections within B1 

&& not within BS  

 setof {(i,j,f) in B1:  

 T_ST[f] <= sit_time[i,j,f] < I_c_cush && 

 (i,j,f) not in BS} (i,j,f);  

 

/* ###############   Cost definition  ################# */ 

 

param C {h in H, f in F, k in K[f]} >= 0; #seat capacity of 

aircraft of type k  

param pi_mean {j in L, p in PI[j], h in H} default 0 >= 0; #mean 

demand for fare class h within itinerary p 

param r {j in L, p in PI[j], h in H} default 0 >= 0; 

 #estimated revenu for one ticket for fare class h within 

itinerary p  

param c_mean {j in L, f in F, k in K[f]} >= 0;  #fixed cost of 

assigning an aircraft k to flight j 

 

param o {j in L, h in H} =    #opportunity cost per 

spilled passenger on flight leg j  

 if (sum {p in PI[j]} pi_mean[j,p,h] = 0) 

 then (0) 

 else (0.2 * (sum {p in PI[j]} (r[j,p,h] * pi_mean[j,p,h]))  

 / sum {p in PI[j]} (pi_mean[j,p,h])); 

 

param c {j in L, f in F, k in K[f]} :=  #fleet assignment cost 

 c_mean[j,f,k] +  

 sum {h in H} (o[j,h] *  

 max(0,(sum {p in PI[j]} pi_mean[j,p,h] - C[h,f,k])));    

  

param C_wave {j in L, f in F, k in K[f], h in H} :=  
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 min(C[h,f,k], (sum{p in PI[j]} pi_mean[j,p,h])); 

  

/*  ########## Penalties & rewards definitions ########### */ 

  

param I_a {f in F, k in K[f], (i,j,k) in A} := #aircraft planned 

idle time  

 if (T_D[j] >= T_A[i] + T_T[f,k]) 

 then (T_D[j] - T_A[i] - T_T[f,k]) 

 else (T_D[i] + 1440 - T_A[i] - T_T[f,k]);  

  

param q_a {f in F, k in K[f], (i,j,k) in A} := #aircraft quadratic 

penalty 

 if (I_a[f,k,i,j] < I_a_cush) 

 then ((I_a_cush - I_a[f,k,i,j])^2) 

 else 0; 

  

param I_c {f in F, (i,j,f) in B1} := #crew planned idle time  

 if (T_D[j] >= T_A[i] + T_ST_min[f]) 

 then (T_D[j] - T_A[i] - T_ST_min[f]) 

 else (T_D[j] + 1440 - T_A[i] - T_ST_min[f]); 

  

 

param q_c {f in F, (i,j,f) in BC} := #crew quadratic penalty 

 (I_c_cush - I_c[f,i,j])^2; 

   

/* #############    Variables  ###############*/    

  

var x {(i,j,k) in A} binary;   #1 if arc a is 

selected 

var y {(i,j,f) in B} binary;   #1 if arc b is 

selected 

var z {(i,j,f) in B} binary;  #1 if crew follows aircraft 

on connection c  

var w {j in L, f in F, k in K[f]} binary;  #1 if flight leg 

j assigned to aircraft type k 

var u {j in L, f in F, k in K[f]} integer >= 0;  #acccum 

flying hours since last mntnce check 

var N_PAS {j in L, p in PI[j], h in H} integer >=0; #number of 

passengers flying within fare class h and itinerary p 

 

var alpha {A}  integer>= 0; #artificial variable 

var beta {B} integer>= 0; #artificial variable 

var gamma {B} integer >= 0; #artificial variable 

var mu {B}  integer>= 0; #artificial variable 

var phi {B} integer >= 0; #artificial variable 

var omega {B}  integer>= 0; #artificial variable 

var d {i in L_A, f in F, (i,j,f) in BA} >= 0;  #duration 

(in days) of the crew pairing 

 

/* ############ Model starts here ################## */ 

  

maximize Total_Profit:  

 sum {j in L, p in PI[j], h in H} (r[j,p,h] * N_PAS[j,p,h]) - 

 sum {j in L, f in F, k in K[f]} (c[j,f,k] * w[j,f,k]) + 

 sum {f in F, k in K[f], (i,j,f) in B diff BS: (i,j,k) in A} 

(R * z[i,j,f]) -      
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 sum {f in F, k in K[f], (i,j,k) in A} (q_a[f,k,i,j] * 

x[i,j,k]) - 

 sum {f in F, k in K[f], (i,j,f) in BC: (i,j,k) in A} 

(q_c[f,i,j] * (y[i,j,f] - z[i,j,f]));  

 

subject to L2 {j in L}: #only one aircraft used for each flight 

 sum{f in F, k in K[f]}  w[j,f,k] = 1; 

 

subject to L3 {j in L, f in F, k in K[f]}: 

 sum{(i,j,k) in A} x[i,j,k] = w[j,f,k]; 

  

subject to L4 {j in L, f in F, k in K[f]}: 

 sum{(j,i,k) in A} x[j,i,k] = w[j,f,k]; 

  

subject to L5 {j in L, f in F, k in K[f]}: 

 sum{(j,i,k) in A} alpha[j,i,k] = t[j] * sum{(i,j,k) in A} 

x[i,j,k] + sum{(i,j,k) in A_NM} alpha[i,j,k]; 

   

subject to L6_1 {f in F, k in K[f], (j,i,k) in A}: 

 t[j] * x[j,i,k] <= alpha[j,i,k]; 

  

subject to L6_2 {f in F, k in K[f], (j,i,k) in A_NM}: 

 alpha[j,i,k] <= (T_M_max[f] - t[i]) * x[j,i,k];  

  

subject to L6_3 {f in F, k in K[f], (j,i,k) in A_M}: 

 alpha[j,i,k] <= T_M_max[f] * x[j,i,k];  

   

subject to L7_1 {j in L, f in F, k in K[f], (j,i,k) in A_M}: 

 t[j] * x[j,i,k] <= alpha[j,i,k]; 

  

subject to L7_2 {j in L, f in F, k in K[f], (j,i,k) in A_M}: 

 alpha[j,i,k] <= T_M_max[f] * x[j,i,k]; 

   

subject to L8 {f in F, k in K[f]}: 

 sum{(i,j,k) in A2 union A4} x[i,j,k] <= N[f,k] - sum{j in 

L_WAF} w[j,f,k]; 

  

subject to L9 {j in L}: 

 sum{h in H, p in PI[j]} N_PAS[j,p,h] <=  

 sum{f in F, k in K[f], h in H} (C_wave [j,f,k,h] * 

w[j,f,k]); 

 

subject to L10 {j in L, p in PI[j], h in H}: 

 0 <= N_PAS[j,p,h] <= min(pi_mean[j,p,h], (max{f in F, k in 

K[f]} C[h,f,k])); 

 

/*######### Crew pairing starts here  ##################*/ 

  

subject to L11 {f in F,j in L}: 

 sum{ (i,j,f) in B } y[i,j,f] = sum{(i,j,k) in A: k in K[f]} 

x[i,j,k]; 

 

subject to L12 {f in F,j in L }: 

 sum{(j,i,f) in B } y[j,i,f] = sum{(j,i,k) in A: k in K[f]} 

x[j,i,k];  
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subject to L13 {f in F}: 

 sum{(i,j,f) in BD} y[i,j,f] - sum{(i,j,f) in BA} y[i,j,f] = 

0; 

   

/* Maximum number of landings within a duty*/   

 

subject to L14 {j in L}:  

 sum{f in F,(j,i,f) in B} beta[j,i,f] =   

 1 + sum{f in F,(i,j,f) in B1} beta[i,j,f]; 

  

subject to L15_1 {f in F, (i,j,f) in B1 }: 

 y[i,j,f] <= beta[i,j,f]; 

  

subject to L15_2 {f in F, (i,j,f) in B1  }: 

 beta[i,j,f] <= (N_L_max[f] - 1) * y[i,j,f];  

  

subject to L16_1 {f in F, (i,j,f) in B2 union BA}: 

 y[i,j,f] <= beta[i,j,f]; 

  

subject to L16_2 {f in F, (i,j,f) in B2 union BA}: 

 beta[i,j,f] <= (N_L_max[f]) * y[i,j,f];  

  

/* Maximum flying time within a duty*/  

  

subject to L17 {j in L}: 

 sum{f in F,(j,i,f) in B} gamma[j,i,f] = 

 t[j] + sum{f in F,(i,j,f) in B1} gamma[i,j,f]; 

  

subject to L18_1 {f in F, (i,j,f) in B1}: 

 t[i] * y[i,j,f] <= gamma[i,j,f]; 

  

subject to L18_2 {f in F, (i,j,f) in B1}: 

 gamma[i,j,f] <= (T_DF_max - t[j]) * y[i,j,f]; 

  

subject to L19_1 {f in F, (i,j,f) in B2 union BA}: 

 t[i] * y[i,j,f] <= gamma[i,j,f]; 

  

subject to L19_2 {f in F, (i,j,f) in B2 union BA}: 

 gamma[i,j,f] <= T_DF_max * y[i,j,f]; 

  

/* Maximum duty duration */  

  

subject to L20 {j in L}: 

 sum{f in F,(j,i,f) in B} mu[j,i,f] = 

 sum {f in F,(i,j,f) in B1} (sit_time[i,j,f] * y[i,j,f]) + 

 t[j] + sum{f in F,(i,j,f) in B1} mu[i,j,f]; 

  

subject to L21_1 {f in F, (i,j,f) in B1}: 

 t[i] * y[i,j,f] <= mu[i,j,f]; 

  

subject to L21_2 {f in F, (i,j,f) in B1}: 

 mu[i,j,f] <= (T_DD_max - sit_time[i,j,f] - t[j]) * y[i,j,f]; 

  

subject to L22_1 {f in F, (i,j,f) in B2 union BA}: 

 t[i] * y[i,j,f] <= mu[i,j,f]; 

  



 72 

subject to L22_2 {f in F, (i,j,f) in B2 union BA}: 

 mu[i,j,f] <= T_DD_max * y[i,j,f]; 

  

/* Maximum number of duties within a pairing*/  

  

subject to L23 {j in L}: 

 sum{f in F,(j,i,f) in B} phi[j,i,f] = 

 sum{f in F,(i,j,f) in BD union B2} y[i,j,f] +  

 sum{f in F,(i,j,f) in B1 union B2} phi[i,j,f]; 

  

subject to L24_1 {f in F, (i,j,f) in B2}: 

 y[i,j,f] <= phi[i,j,f]; 

   

subject to L24_2 {f in F, (i,j,f) in B2}: 

 phi[i,j,f] <= (N_D_max[f] - 1) * y[i,j,f]; 

  

subject to L25_1 {f in F, (i,j,f) in B1 union BA}: 

 y[i,j,f] <= phi[i,j,f]; 

  

subject to L25_2 {f in F, (i,j,f) in B1 union BA}: 

 phi[i,j,f] <= N_D_max[f] * y[i,j,f];  

  

/* Maximum pairing duration */ 

  

subject to L26 {j in L}: 

 sum{f in F,(j,i,f) in B} omega[j,i,f] = 

 sum{f in F,(i,j,f) in B1 } (sit_time[i,j,f] * y[i,j,f]) + 

 sum{f in F,(i,j,f) in B2} (layover_time[i,j,f] * y[i,j,f]) + 

 t[j] + sum{f in F,(i,j,f) in B1 union B2} omega[i,j,f]; 

  

subject to L27_1 {f in F, (i,j,f) in B1}: 

 t[i] * y[i,j,f] <= omega[i,j,f]; 

  

subject to L27_2 {f in F, (i,j,f) in B1}: 

 omega[i,j,f] <= (T_DP_max[f] - sit_time[i,j,f] - t[j]) * 

y[i,j,f]; 

  

subject to L28_1 {f in F, (i,j,f) in B2}: 

 t[i] * y[i,j,f] <= omega[i,j,f]; 

  

subject to L28_2 {f in F, (i,j,f) in B2}: 

 omega[i,j,f] <= (T_DP_max[f] - layover_time[i,j,f] - t[j]) * 

y[i,j,f]; 

  

subject to L29 { f in F, (i,j,f) in BA}: 

 omega[i,j,f] + T_LO_min[f] <= 1440 * d[i,f,j]; 

  

subject to L31_1 {(i,j,f) in BA}: 

 T_DP_min * y[i,j,f] <= omega[i,j,f]; 

  

subject to L31_2 { (i,j,f) in BA}: 

  omega[i,j,f]<=T_DP_max[f] * y[i,j,f]; 

  

  

/* Number of available crew*/  
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subject to L30 : 

 sum{(i,j,f) in BA} d[i,f,j] <= factor_crew * sum{j in L, f 

in F,k in K[f]} w[j,f,k];#number of crews eligible for aircraft f  

   

/* Crew to follow aircraft*/ 

  

subject to L32 {j in L, f in F, k in K[f], (i,j,f) in BS: (i,j,k) 

in A}: 

 y[i,j,f] <= x[i,j,k]; 

  

subject to L33_1 {j in L, f in F, k in K[f], (i,j,f) in B: (i,j,k) 

in A}: 

 0 <= z[i,j,f]; 

  

subject to L33_2 {j in L, f in F, k in K[f], (i,j,f) in B: (i,j,k) 

in A}: 

 z[i,j,f] <= x[i,j,k]; 

  

subject to L34_1 {j in L, f in F, k in K[f], (i,j,f) in B: (i,j,k) 

in A}: 

 0 <= z[i,j,f]; 

  

subject to L34_2 {j in L, f in F, k in K[f], (i,j,f) in B: (i,j,k) 

in A}: 

 z[i,j,f] <= y[i,j,f]; 

File .run: 

option solver cplex; 

model thesis.mod; 

data flights.dat; 

data itinerary_generated.dat; 

data thesis.dat; 

data assign_aircr_cost.dat; 

data demand.dat; 

data fare.dat; 

 

#option cplex_options "writeprob= thesis.lp"; 

option cplex_options 'timelimit=18000'; 

option cplex_options 'mipdisplay=2'; 

solve; 

 

display Total_Profit > thesis.sol; 

 

printf "number of short connections:\n" > thesis.sol; 

display sum{i in L, j in L, f in F: (i,j,f) in BS} y[i,j,f]  > 

thesis.sol; 

 

printf "number of critical connections:\n" > thesis.sol; 

display sum{(i,j,f) in BC} y[i,j,f]  > thesis.sol; 

 

printf "number of aircraft critical connections:\n" > thesis.sol; 

display sum{f in F, k in  K[f], (i,j,k) in A: q_a[f,k,i,j] > 0} 

x[i,j,k] > thesis.sol; 
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printf "number of crews following the aircraft:\n" > thesis.sol; 

display sum{f in F, k in  K[f], (i,j,f) in B: (i,j,k) in A} 

z[i,j,f]  > thesis.sol; 

 

printf "FTC(sittime + layover time):\n" > thesis.sol; 

display sum{(i,j,f) in B1} sit_time[i,j,f]*y[i,j,f] + sum{(i,j,f) 

in B2}  layover_time[i,j,f]*y[i,j,f]  > thesis.sol; 

 

printf "revenue:\n" > thesis.sol; 

display sum {j in L, p in PI[j], h in H} (r[j,p,h] * 

N_PAS[j,p,h]) > thesis.sol; 

 

printf "cost of aircraft assignment:\n" > thesis.sol; 

display sum {j in L, f in F, k in K[f]} (c[j,f,k] * w[j,f,k]) > 

thesis.sol; 

 

printf "reward from crew following the aircraft:\n" > thesis.sol; 

display sum {f in F, k in K[f], (i,j,f) in B diff BS: (i,j,k) 

in A} (R * z[i,j,f]) > thesis.sol;  

 

printf "penalty for short connection:\n" > thesis.sol; 

display sum {f in F, k in K[f], (i,j,k) in A} (q_a[f,k,i,j] * 

x[i,j,k]) > thesis.sol; 

 

printf "penalty for critical connection without crew following 

aircraft:\n" > thesis.sol; 

display sum {f in F, k in K[f], (i,j,f) in BC: (i,j,k) in A} 

(q_c[f,i,j] * (y[i,j,f]-z[i,j,f])) > thesis.sol; 

 

display _total_solve_system_time > thesis.sol; 

display _total_solve_user_time > thesis.sol; 

 

display _solve_system_time > thesis.sol; 

display _solve_user_time > thesis.sol; 

 

display w > thesis.sol; 

display x > thesis.sol; 

display y > thesis.sol; 

display z > thesis.sol; 

  



 75 

Appendix C: Python code  

File data_generator.py: 

file_name = "thesis.dat" 

file = open(file_name, "w") 

data_file_name = "fleet.txt" #heading should be deleted 

my_dict = {} 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        my_dict.setdefault(words[0], []).append(words[1]) 

text_file.close() 

file.write("set F :=") 

for k in my_dict: 

    file.write(" " + k) 

file.write(";") 

for k, v in my_dict.items(): 

    file.write("\nset K["+k+"]:= ") 

    for item in v: 

        file.write(item) 

        file.write(" ") 

    file.write(";") 

file.write("\n\nset Base_st := ORD IAH LAX EWR SFO IAD DEN CLE;\n") 

data_file_name = "family.txt" 

my_dict2 = {} 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        for x in range(11,len(words)): 

            my_dict2.setdefault(words[0], []).append(words[x]) 

text_file.close() 

for k, v in my_dict2.items(): 

    file.write("\nset S["+k+"]:= ") 

    for item in v: 

        file.write(item) 

        file.write(" ") 

    file.write(";") 

file.write("\n\nparam N:=  ") 

data_file_name = "fleet.txt" 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        file.write(words[0] + " " + words[1] + " " + words[8] + "\n") 

file.write(";") 

text_file.close() 

file.write("\n\nparam T_T:=    ") 

data_file_name = "fleet.txt" 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        file.write(words[0] + " " + words[1] + " " + words[6] + "\n") 

file.write(";\n\n") 

text_file.close() 

file.write("set H := Y W C;\n\n") 
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file.write("param C := \n") 

data_file_name = "fleet.txt" 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        file.write("[*, "+words[0]+", "+words[1]+"] C " + words[10] + " W 

" + words[11] + " Y " + words[12] + "\n") 

file.write(";\n\n") 

text_file.close() 

file.write("param T_DF_max := 480;       #maximum duty flight duration\n" 

           "param T_DD_max := 720;       #maximum duty duration\n" 

           "param T_DP_min := 300;       #min duration of pairing\n" 

           "param T_LO_max := 1980;          #max layover duration\n\n" 

           "param: T_ST_min T_ST T_ST_max T_LO_min N_L_max T_DP_max 

N_D_max := ") 

data_file_name = "family.txt" 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        file.write("\n" + words[0] + " " + words[2] + " " + words[1] +  

   " " + words[3] + " " + words[4] + " " + 

                     words[7] + " " + words[8] + " " + words[9]) 

file.write(";\n\nparam: T_M_max := ") 

text_file.close() 

dict = {} 

data_file_name = "fleet.txt" 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        dict[words[0]] = words[2] 

for k in dict: 

    file.write("\n" + k + " " + dict[k]) 

file.write(";\n\n") 

text_file.close() 

file.write("param T_M := \n") 

data_file_name = "fleet.txt" 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        file.write(words[0] + " " + words[1] + " " + words[5] + "\n") 

file.write(";\n\n") 

text_file.close() 

file.write("param I_a_cush := 60;        #aircraft connection cushion 

time\n" 

            "param I_c_cush := 60;       #crew connection cushion time\n" 

            "param R:= 15000;\n") 

file.close() 

 

File assign_aircr_cost.py: 

#headingss from the data file should be removed 

data_file_name = "flight.txt" 

data_file_name2 = "fleet.txt" 

data_file_name3 = "assign_aircr_cost.dat" 

dict = {} 
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text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        dict[words[0]] = words[5] 

text_file.close() 

text_file2 = open(data_file_name2, "r") 

text_file3 = open(data_file_name3, "w") 

text_file3.write("#fixed cost of assigning an aircraft k to flight j \n 

param c_mean:=     ") 

for line in text_file2: 

    if line != "\n": 

        words = line.split() 

        text_file3.write("\n[*, "+words[0]+", "+words[1]+"] ") 

        for k in dict: 

            cost = float(dict[k])*float(words[7])/60 

            text_file3.write(k+" "+str(cost)+" ") 

text_file3.write(";") 

text_file2.close() 

text_file3.close() 

File flights.py: 

#headings from the data file should be removed 

data_file_name = "flight.txt" 

list_dep = [] 

list_arr = [] 

bases = ['ORD', 'IAH', 'LAX', 'EWR', 'SFO', 'IAD', 'DEN', 'CLE'] 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        if words[1] in bases: 

            list_dep.append(words[0]) 

        if words[3] in bases: 

            list_arr.append(words[0]) 

text_file.close() 

data_file_name = "flights.dat" 

text_file = open(data_file_name, "w") 

file_name = "flight.txt" 

file = open(file_name, "r") 

text_file.write("param: L: S_D    T_D    S_A    T_A    t:=\n") 

for line in file: 

    if line != "\n": 

        words = line.split() 

        for x in range(0,6): 

            text_file.write(words[x] + " ") 

        text_file.write("\n") 

text_file.write(";") 

file.close() 

text_file.close() 

File itineraries_for_flights.py: 
data_file_name = "itinerary.txt" #heading should be deleted 

my_dict = {} 

text_file = open(data_file_name, "r") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        for x in range(5, len(words)): 

            my_dict.setdefault(words[x], []).append(words[0]) 
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text_file.close() 

for k, v in my_dict.items(): 

    new_list = [] 

    for item in v: 

        if item not in new_list: 

            new_list.append(item) 

    my_dict[k] = new_list 

data_file_name = "itinerary_generated.dat" 

text_file = open(data_file_name, "w") 

for k, v in my_dict.items(): 

    text_file.write("\nset PI["+k+"]:= ") 

    for item in v: 

        text_file.write(item) 

        text_file.write(" ") 

    text_file.write(";") 

text_file.close() 

data_file_name = "itinerary.txt" 

write_file = "demand.dat" 

text_file = open(data_file_name, "r") 

file = open(write_file, "w") 

file.write("#mean demand for fare class h within itinerary p\n") 

file.write("param pi_mean := ") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        for x in range(5, len(words)): 

            file.write(words[x]+" "+words[0]+" "+words[1]+" 

"+words[3]+"\n") 

file.write(";") 

text_file.close() 

file.close() 

data_file_name = "itinerary.txt" 

write_file = "fare.dat" 

file = open(write_file, "w") 

text_file = open(data_file_name, "r") 

file.write("#fare of class \nparam r := ") 

for line in text_file: 

    if line != "\n": 

        words = line.split() 

        for x in range(5, len(words)): 

            file.write(words[x]+" "+words[0]+" "+words[1]+" 

"+words[2]+"\n") 

file.write(";") 

file.close() 

text_file.close() 

 


