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Preface to the second edition

As mentioned in the original preface, this book was written as teaching ma-
terial for a course in Event Logistics. It turned out to be used as such over
a 5-year period from 2011 to 2015. The course was a part of a master pro-
gram in Event Management at Molde University College. Unfortunately, this
program was stopped in 2015, and commercial demand for the book conse-
quently also stopped. This lead to a transfer of copyright from the original
publisher to me personally. As a consequence, I made the book available
for free download at various platforms (Academia and Researchgate). Down-
loads and reads indicates that the book still is used, maybe even at other
institutions as a text book, and it seems reasonable to make a slightly revised
version available.

This second edition adds something the original book lacked – exercises.
In the 5 year period the course was given, three exams were conducted.
These exam exercises with solutions are added in a set of new appendixes. I
sincerely feel this version may provide better pedagogical opportunities both
for students and teachers in their use of the book.

Kjetil K. Haugen

Molde, Norway
August 2021





Preface

This book is written to be used as teaching material for a course in Event
Logistics. The course is planned to be given at Molde University College -
Specialized University in Logistics, the first time in fall 2010. This course is
a part of the Event Management programme launched in Molde, fall 2010.

To be able to understand this book, a basic knowledge in Logistics is
necessary. Some of the material is probably too advanced for readers with
only a basic knowledge of Logistics/Operations Management, and several
appendixes that signal this type of difficulty are used. So, readers with only a
minor level of knowledge in logistics should probably avoid these appendixes.

In order to meet these constraints, the planned course will be accompanied
by another (standard) text book in logistics at an intermediate level - for
instance “Production and Operations Analysis”, by S. Nahmias [21]. The
basic idea in teaching the course, is to capture essential Logistics modelling
through selected topics in (e.g.) [21] and then continue and finish up with
the contents of this book.

The structure of the book is consciously kept at a minimal academic level
- in the sense that literature references are kept at a minimum. The reason
for such a choice is of course partly laziness, but also the wish to produce
something that is more easily accessible than normal research literature.

Kjetil K. Haugen

Molde, Norway - Brno, Czech R. - Vienna, Austria - Budapest, Hungary
June - December 2010, January 2011
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Chapter 1

Introduction

1.1 What is Logistics?

1.1.1 Looking for a definition

The term Logistics is old and was originally used in military operations. The
massive need for planning related to large transportation of soldiers, supplies
and technology in war time situations made military logistics important.
Today, this seems obvious from the failure of Napoleon (and Hitler). Still,
apart from military operations, logistics as a term is relatively new as a
scientific subject. For instance, Molde University College was among the first
institutions in Norway - in the mid eighties - to launch academic programmes
in logistics.

Logistics as an academic subject may largely be divided into two fairly
different sub categories.

• Quantitative Logistics

• Qualitative Logistics

Quantitative Logistics, as the term indicates, focuses on mathematical
modelling as the primal toolbox for handling logistics planning problems.
Outside of Scandinavia, the term Operations Management may be a fairly
good synonym for Quantitative Logistics and many scholars would bring
the term even further and define both Operations Management as well as
Quantitative Logistics as sub disciplines of Operations Research (OR). Op-
erations Research may be defined as a sub discipline of Mathematical Mod-
elling in general. Operations Research emphasizes discrete optimization, but
embraces other mathematical modelling disciplines such as Queuing Theory,
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Discrete Event Simulation and Forecasting. All techniques are very relevant
for logistics planning in general.

The above (perhaps) somewhat blurred discussion, brings us to a possible
definition of Quantitative Logistics:

Quantitative Logistics or Operations Management may be defined
as the application of OR techniques limited to the following areas:

• Forecasting

• Production Planning

• Inventory Management

• Transport Planning

The above definition might be viewed as very traditional and conserva-
tive by many logistics researchers as of today. Many would claim that the
above definition narrows down logistics (as well as Quantitative Logistics)
way too much. Some would say that far more of a company’s logistics prob-
lem is contained in the logistics concept than the above four topics - typical
examples may be pricing policies, technology choice, information strategies,
human resource management, contractual theory, supply chain management
and so on. Still, this text will (mostly) stick to the relatively narrow (but
precise) definition outlined above.

The topics listed above; forecasting, production planning, inventory man-
agement and transport planning) indicate that logistics and quantitative lo-
gistics is related to planning for certain parts of a company’s activities. One
way of looking at this could be the following:

All companies make decisions affecting their demand. Certain decisions
made “early” such as product design choices and technology choices define
physical aspects of products1, while more direct market related decisions such
as pricing, marketing decisions as well as decisions related to the company’s
competitive situation typically are made somewhat later in the life-cycle of
a product. Given that all possible decisions in these two groups are made,
what remains is to produce (possible store) and transport the given prod-
uct to the market. This process contains the traditional logistics definition.
Consequently, logistics is a lot about streamlining this process of produce -
store - transport. So, concepts such as “the right amount at the right time
to the right place” hence makes sense.

1At this point we implicitly assume a focus on manufacturing as opposed to service
production. We will return to these important concepts later on.
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Given the above definition, many “ordinary people” (whoever they might
be) would perhaps argue that the real “sexy” company decisions are not lo-
gistics decisions. Defining the physical aspects of the product by creative
design and/or marketing strategies and complex pricing strategies are far
more challenging than the somewhat boring logistics decisions. To a certain
extent, the author may agree and if we take a slight look at the market evalua-
tion, we will probably find support for such a hypothesis - product designers
and marketing people normally make more money than those occupied in
the storage rooms. Still, a more modern view of logistics may change this
traditional thinking.

Before moving into the next subsection, here a few a few words on Qual-
itative Logistics. Qualitative Logistics approaches logistics problems from a
more philosophical perspective. The main difference compared to the quanti-
tative branch is perhaps related to the use of mathematical tools. Qualitative
Logistics research uses, as the name indicates, far less formal mathematical
tools, and degenerates to a more verbal “social science”-like angle of attack.
To some extent a few central topics, which may be found in this category, is
discussed in Chapter 8, still with a focus on events and with a quantitative
touch.

1.1.2 The importance of logistics, now and in the fu-
ture

Most people who deal with logistics - either practically or more theoretically
- would of course like to be an integral part of “sexy” company decision
making. It may be that certain aspects of modern reality may lend a helping
hand to frustrated “logisticians”. One phenomenon of the world that has
been quite obvious in recent years is by many authors termed globalization.
(For those seriously interested in the subject, the following literature pointers
may be relevant [9], [18], [16], [25].)

Now, many scholars and practitioners argue that in a globalized world
(a world with relatively small physical transportation costs and negligible
informational transaction costs), competition will increase. This seems like a
reasonable hypothesis, increased globalization leads to increased competition
in product (and service production) markets. After all, barriers that prevent
competition are all sorts of transaction costs. At the same time, certain
political processes, for instance, the development of EU has also had, and
probably will have, significant impact on reduction of barriers preventing
competition. As such, a hypothesis stating increased future competition
seems reasonable. Given such an assumption, it likewise seems reasonable to
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assume less possibilities for maintaining technological and or design advances
over significant time periods. A recent example, may be found in the Ipad,
which has become an enormous success perhaps due to a combination of
design and technology choices.

Still, in a globalized and competitive world, one would expect clones
and/or direct copies popping up very fast after such a success. Examples of
such has popped up, for instance, the Samsung Galaxy Tab, as one of several
responses to the Ipad.

As such, competition makes technological and/or design advantages far
more fragile. This argument has lead modern logisticians to argue that in
the future, competitive advantages in technology (or markets) will vanish due
to increased competition. Then, the only remaining dimension for creating
differences between companies is logistics. As such, one could say that in a
perfectly globalized and competitive world, the only possible way of creating
a difference is by choosing a different logistics system. Hence, it will not be
so much about choosing the right product as how to manufacture it.

Moving into events, things change somewhat2. A central concept in most
events, whether they are from sports or other cultural scenes, is branding.
Branding may be defined (simply) as the non (or very hard) copyable part
of a product or service3. Simply put, it is principally impossible to copy
Manchester United FC. One could of course try to copy the player qualities
one by one, the organization, manager skills, training skills, even localization,
but the final product will still not be MUFC. Copying the music of Beatles
or Rolling Stones is actually relatively easy to do, but the market potential
of such a strategy is still far from that of the real product.

Hence, we may conclude, and this is to a certain extent more relevant for
event production than other types of production, that potentially increased
globalization and increased global competitive environments do not necessar-
ily float as freely into event production as into traditional manufacturing or
service production4. Actually, it seems reasonable to assume that for events,
the possibility of maintaining such brand advantages may be possible in spite
of a future “perfectly competitive world”.

2Obviously, the Event concept has not been properly discussed or defined at this stage.
We will, however, return to a more thorough discussion in the next section, but for the
moment it will prove sufficient to think of an event as a gathering of people with a certain
objective, which could be entertainment (sports, music, theatre etc.) or knowledge (con-
ferences) and with some sort of organization - the event producer - supplying the event
content.

3In terms of economic theory we could perhaps see it as parts of a product which has
the potential of a viable monopolistic advantage.

4The terms manufacturing and service production will be discussed in detail in Sec-
tion 1.2
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Even if the above arguments indicate that logistics as such may be viewed
as less important in a future competitive setting, it does of course not indicate
that logistics problems are irrelevant in event production. On the contrary,
organizing big “one-shot” events such as Olympic games possess huge and
very challenging logistics problems related to classical logistics topics such
as inventory management, production planning, transportation and infras-
tructural planning. Even relatively small (and size-wise insignificant) events
such as a small music festival in a small country like Norway holds numerous
logistic challenges.

1.1.3 Logistics theory, practice and research

An alternative view on Logistics

From an academic point of view, logistics theory may seem unclear and hard
to define. The fact that most textbooks in the topic presents their own
definition of logistics emphasizes such difficulties. However, logistics as a
topic is still very much oriented towards how to perform certain parts of
company tasks efficiently.

Personally, I prefer to view logistics as an integral and extended part of
microeconomic theory. A classic part of microeconomics deals with produc-
tion theory and the development of supply curves. The simple version of this
story typically starts with the concept of a production function; say:

f(N) = X (1.1)

In equation (1.1), N denotes (a single) input (we can think of it as labour)
while X denotes a single output - produced amount of one product. This
equation defines what is referred to as production technology and a certain
cost of acquiring the input is of course also present. To make it as easy as
possible say;

C(N) = CF + w ·N (1.2)

C(N) is hence the cost of hiring the labour N and it is assumed linear
with a fixed part CF and a proportional part where w is naturally interpreted
as the wage. Now, the “microeconomic story” continues, by an assumption
of profit-maximising behaviour by the firm and existence of a given market
price p, as follows: (Π() is company profits)

Π(X,N) = p ·X − (CF + w ·N) (1.3)
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Then, by applying equation (1.1), (1.3) can be expressed (as a single
valued function in N):

Π(N) = p · f(N)− (CF + w ·N) (1.4)

First order conditions for maximization of Π(),Π′(N) = 0 then gives:

f ′(N) =
w

p
(1.5)

Then, a supply curve can be derived through the following argument:
Inverting equation (1.5) (Solving it with respect to N);

N = g(
w

p
) and utilising equation (1.1) once more X = h(

w

p
) (1.6)

The point here is of course not the beautiful argument leading to supply
curves - a necessary building block in general equilibrium theory - but the
basic assumption of equation (1.1) or as shown in figure 1.1

Figure 1.1: The simplified production function of microeconomics

The point here is the extreme simplicity of the mechanism defined through
figure 1.1. In a microeconomic context, it is surely easy to extend to both
multiple inputs as well as outputs, but the more fine tuned (and in certain
instances) important company decisions such as number of set-ups, inventory
volumes, safety stock and so on will clearly not fit easily into the above theory.
As such, logistics may be viewed as a more fine tuned way of modelling
production functions. That is, the simple functional relationship defined
by figure 1.1 is simply too simplified to spawn essential decisions for most
real-world companies.
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Logistics research

The above logistics “defintion” makes understanding (quantitative) research
in the field comprehensible. If logistics is viewed as a simple extension of mi-
croeconomic production theory with the aim of a more fine-grained modelling
of production functions, it should not come as a surprise that optimization is
a key research concept. The fact that many obvious logistics problems (and
models) naturally contain integer variables (set-up and ordering for instance)
and uncertainty related to vital model input, leads to a need for optimiza-
tion techniques model as well as solution-wise. As modelling typically is
not viewed (by most researchers) as very difficult, it is again fairly obvious
to expect that Logistics research should emphasize solution techniques for
Logistics-oriented optimization problems. Indeed, this seems to be the situa-
tion. Many classical Logistics models such as LSP (Lot-Size Problem), CLSP
(Capacitated Lot-Size Problem), VRP (Vehicle routing Problem) and many
many others, have been extensively studied in research literature. The main
focus of these studies have, as indicated above, been on solution techniques.
As discrete optimization problems typically need computers to achieve so-
lutions in reasonable time, much of the focus has been on algorithmic tech-
niques.

In this text, such algorithmic techniques will play a minor role. On the
contrary, we focus on modelling issues. This seems natural for the intention
of the book, but also as Event Logistics raises some different and relevant
questions related to how classical Logistics models can and should be “trans-
lated” into the Event-setting. This does not indicate that solution related
research is less relevant within this topic, more an observed need to look
into the basic modelling first. The fact that most students may disagree on
the above mentioned easiness of mathematical modelling is of course also a
relevant textbook argument.

1.2 Services, Manufacturing and Events

At this point, it seems necessary to investigate the “Event”- concept some-
what closer. However, before we address this concept, it may be fruitful to
look into more classical logistics, and discuss the concepts of Manufacturing
and Services.

The Business Dictionary [2] defines these two terms as:
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Manufacturing:

Includes all steps necessary to convert raw materials, components,
or parts into finished goods that meet a customer’s expectations or
specifications. Manufacturing commonly employs a man-machine
set-up with division of labour in a large scale production.

and

Services:

Intangible products that are not goods (tangible products), such
as accounting, banking, cleaning, consultancy, education, insur-
ance, know how, medical treatment, transportation. Sometimes
services are difficult to identify because they are closely associ-
ated with a good; such as the combination of a diagnosis with the
administration of a medicine. No transfer of possession or own-
ership takes place when services are sold, and they (1) cannot be
stored or transported, (2) are instantly perishable, and (3) come
into existence at the time they are bought and consumed.

The above definitions tell us that most human economic activity that is
not defined as Manufacturing may be labelled Services. Obviously, manufac-
turing is related to physical goods and the ownership transferability as well
as storage possibilities. Typically, most services do not have such properties,
but very often parts of services; the report of a lawyer, the prescription or
an X-ray photo of the physician or the DVD of a concert are clearly man-
ufactured goods. Still, the main product without this added manufacturing
possess the main characteristics of a service.

Our main interest here is of course the “Event” concept. It seems fair
to categorize most events within the services category. After all, our com-
mon understanding of the concept implies individuals selling certain services
to spectators like music, sports or theatre. Still, it cannot be taken that
all events naturally fall within the services category. Think, for instance,
of a painting sales exhibition. The paintings are sold (hopefully), implying
ownership transferability. Furthermore, the paintings are physical objects in-
volving storage possibilities. Still, many painting exhibitions might easily fall
into our meaning of events. Consequently, the events concept may perhaps
not fall easily into the service category as a sub-group.

The Business Dictionary [2] also defines Events:
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Events:

Occurrence happening at a determinable time and place, with or
without the participation of human agents. It may be a part of a
chain of occurrences as an effect of a preceding occurrence and as
the cause of a succeeding occurrence.

This definition, still not very clear, adds an important point; time and
place. An event takes place in time and place not necessarily tomorrow or
next week, but at a predefined location at a specific point in time (or a set
of specific points in time). So, this sheds light on our art sales exhibition.
An art dealer shop is (typically) not an event as it is available all the time,
while our sales exhibition takes place only a limited time period and may as
such be categorized within the event category.

So, what else? Well, we may talk about “one-shot” events or repeated
(regular) events. The Molde International Jazz Festival will typically qualify
as a repeated event; it takes place more than once, but it is perhaps not
an ordinary service, as it is not present all the time. Olympic games or the
upcoming5 cross-country skiing world championship in Oslo are typical “one-
shot” events. Not necessarily meaning that they will not take place again.
After all, this skiing WC is the third one in Oslo since 19666. The point is
simply that the market does not know if and when such an event will return.

This sub-categorization is important from a Logistics planning point of
view. It should be relatively obvious that “one-shot” events are significantly
more challenging than regular events when it comes to all phases of logistics
planning and operation.

Another sub-categorization that might be relevant for Event Logistics is
that of entertainment versus professional events. Clearly, when we think
about events, our first thought is perhaps related to the entertainment in-
dustry. However, many events such as research conferences or seminars have
all characteristics of events and may (and should) clearly be defined as such.
The main difference between the two is perhaps on the demand side, which
may behave significantly different. Still, this difference may not lead to too
much differences from an analytic (logistic) point of view.

Let me try to sum things up a bit. Clearly, most events are named events
because they are not available all the time. Certain events are predictable
in time and place. We know, for instance, that Molde football club will play
15 home matches in the Tippeligaen next season, but definitely not at the

5At the time of writing.
6Cross country World Championships were arranged in Oslo in 1966, 1982 as well as

now in 2010.
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location or choice of the market. Others are not very predictable in space;
think about the recent WC football at Russia and Qatar. As such, the fact
that an event is not necessarily present at any point in time may perhaps be
the most striking feature of the concept. The actual content of the event or
to what degree it can be placed within the service category is, as I see it, not
the main point. Consequently, the time and place dimension will be leading
our further analysis of Events and Logistics.

1.3 Event Logistics

Given the previous discussion, it seems straightforward to accept that Event
logistics should handle logistics planning and the special challenges that the
event-setting brings.

The simple fact that events takes place at (possibly unpredictable) points
in space and time obviously imposes special problems in relation to classical
logistics modelling.

For instance, the obvious lack of data related to historic demand should
force alternative forecasting methods. The fact that most events products are
difficult (if not impossibly) hard to store should change the inventory focus
on production planning models. The uncertainty related to demand forecasts
together with limited event horizons should make significant changes to the
focus of inventory management modelling. (The News-boy focus seems to
be an interesting candidate.) The fact that in most events, consumers are
brought to the product as opposed to the traditional manufacturing situa-
tion should indicate different transportation challenges, which also must be
reflected in the transportation modelling choices. The fact that many events
are effective monopolies must be reflected in a sensible handling of the sub-
ject. It opens up some interesting possibilities but at the same time creates
some additional problems.

So, this book will discuss, present and in some instances provide solutions
to classical logistics problems, tuned to fit the event-setting.

1.4 Events and Uncertainty

It should not be very hard to realize that the above discussion indicates
that uncertainty most certainly will play a significantly more important role
in event logistics planning than in traditional logistics planning. Arranging
Olympic Games is, as briefly discussed above, probably not carried out at the
given spot in the actual country for many years - if ever. As a consequence,
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the ability to predict both customer demand as well as supply parameters
(costs for instance) forms critical and very challenging problems. This lack
of certainty both in demand as well as in supply makes the concept of un-
certainty far more relevant in events than traditional logistics planning.

The added fact that many of the actual events may take place in a rel-
atively distant future does of course only strengthen the above argument.
After all, the football world cup in Qatar in 2022 is defined and placed in
2010, 12 years ahead of the actual event. The simple fact that many of the
events that need planning (especially mega-events perhaps) lie in a distant
future makes planning not only possible, but also harder. Both future costs
as well as workforce availability may be very hard to predict many years in
advance

The fact that the above situation defines a long time period between the
knowledge of getting the event and the event time also opens up some added
possibilities, pre-sales for instance. This is something which is typical for
most events, and should in principle make certain parts of logistics planning
easier. On the other hand, it opens up for other (and potentially) more
complex opportunities; dynamic pricing for instance. The ability to pre-sell
tickets to an event surely also opens up the possibility of changing the price
virtually very close to the event. (This is often referred to as Dynamic Pric-
ing, Demand Based Management or Revenue Management. A topic which
will be closely examined in Chapter 7.)





Chapter 2

Event Forecasting

2.1 Introduction

All logistics planning needs demand forecast data. Even the most extreme
JIT-production environment, with a maximal flexible production system and
virtually no set-up times or costs, must at some level predict future demand.
This is kind of obvious for events, as most resources needed to produce the
event normally is proportional to the size of the audience. Typical examples
are food, drinks, housing, seating, transportation and so on.

2.2 The fallacy of traditional time-series-

based forecasting

Most logistics textbooks (see e.g. Nahmias [21]) recommend time-series based
forecasting methods. The reason for such a recommendation is quite obvious.
In a modern manufacturing setting, a huge number of products leads to
demand for fast, efficient and reasonably good forecasts. The huge product
count as well as the need for fast and efficient forecast updates makes (simple)
time-series methods appropriate. Even if such methods (perhaps) does not
produce forecasts with the highest accuracy nor provide any explanatory
power, the simplicity and speed of production makes these methods natural
candidates for modern corporate logistics modelling. The fact that historic
demand data are readily available (at almost zero cost) is surely also a good
argument for this choice.

However, moving into the event-situation, obvious differences exist.
Firstly, the number of products is limited. Additionally, the need for speedy
forecast updates is obviously not there, at least not to the extent of a running
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business selling products in their market continuously. (There is normally
some real time between events even in the regular or repeated case.) The
fact (discussed above) that events takes place relatively seldom should also
indicate a certain lack of sufficient demand data. A typical yearly festival
(existing for 20 years) will at best have 20 observations of total demand,
which from a time-series modelling point of view might be sparse.

But maybe more important, time-series modelling does not (at all) ac-
count for a lot of information we normally have related to events. If we plan
an event say (some kind of music festival), we would at certain points in time
have registered pre-sales (normally a very good indicator for total sales), in
addition, we have means of affecting demand through advertising as well as
pricing, which definitely should be taken into account when demand fore-
casting is aimed at.

Such arguments should then lead to different model choices in events
as opposed to traditional logistics forecasting for manufacturing situations.
Causal (regression) type models seems very much more appropriate as they
open up for explanatory information.

2.2.1 A simple example

Let us look at a simple example.
Table 2.1 holds total (yearly) audience for the local theatre -“Teatret

V̊art” [5] in the time period 2000 – 2009.

YEAR AUDIENCE YEAR AUDIENCE
2000 28897 2005 31436
2001 38092 2006 37923
2002 39306 2007 39451
2003 34184 2008 31861
2004 50951 2009 29398

Table 2.1: Yearly ticket sales at Teatret V̊art - Molde; 2000 – 2009

In figure 2.1, the data in table 2.1 is plotted. Examining the figure, we
observe some (expected) variations between years, but a peculiar bump in
2004. Actually, the number of sold tickets in 2004 was close to 30% larger
than the second largest year (2007), and more than 40% larger than the
period average.

Examining figure 2.1 further, it is fairly obvious that any seasonal varia-
tions are hard to justify. After all, why should some kind of cyclical pattern
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Figure 2.1: Plot of yearly ticket sales at Teatret V̊art - Molde; 2000 – 2009

be available over years7.

The point here is simple. If no trend or seasonality is present when time-
series models are applied, unforeseen bumps are hard to account for. To
visualize this, some simple moving average forecasting models are incorpo-
rated and shown in figure 2.28.

As can be seen from figure 2.2, the bump in 2004 is missed by all moving
average models, and the effect is being recreated in subsequent years, leading
to a very bad forecast fit. This is of course not very surprising knowing the
mechanism behind such simple time-series models, still, it points out the
typical problems involved in applying time-series modelling in event demand
forecasting.

7Some kind of cyclical patterns over years may of course be present, for instance,
related to leadership changes. Changing top management will in this business very often
be triggered by low demand rates and top management changes may be observed as
relatively long term cycles. However, predicting such management changes in the future
(and the effect of them) may be more or less impossible.

8Refer to Appendix A for the actual moving average calculations
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Figure 2.2: Moving average (orders 2, 3 and 4) forecasting on the Teatret
V̊art data.

2.2.2 Utilizing explanatory information - the reason
behind the 2004 bump

As indicated above, in certain event situations, the explanatory simplicity is
so obvious (perhaps typically as opposed to traditional manufacturing situ-
ations) that such information both could and should be incorporated in the
forecast modelling. Applying some local knowledge 9, it turns out that a very
special event took place in Molde in 2004. Then, a special play was staged -
“90-metersbakken” written by the local (and later very famous author, mu-
sician and former MFK player) Jo Nesbø10, and even if one did not manage
to predict the success upfront, at least such information can and should be
applied in retrospect.

The point is of course that this type of play still have and did have a
very special (and positive) demand effect. But, and this is the point here,
unless the theatre plans to do something similar in the future, such an event

9The brother of local Associate Professor Oskar Solenes is an actor, and did perform
in a certain play at Teatret V̊art in Molde in 2004 - thanks to Oskar for this great piece
of information.

10He is actually visible on the front page of this book in the top left corner with a guitar.
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should, from a predictive point of view, perhaps be considered an outlier and
in some sense removed from the data.

A very simplistic strategy could be to remove the demand in 2004 and
replace it by the average demand (in red)11 as indicated by table 2.2. Now,
we apply additional information of explanatory character, which of course
is a sensible thing to do if the aim is to build a forecast model that should
provide forecasts with reasonable quality

YEAR AUDIENCE YEAR AUDIENCE
2000 28897 2005 31436
2001 38092 2006 37923
2002 39306 2007 39451
2003 34184 2008 31861
2004 34505 2009 29398

Table 2.2: Yearly ticket sales at Teatret V̊art - Molde; 2000 – 2009

As can be observed from figure 2.3, things look a little bit better in the
sense that the simple time-series based forecasts hit better. However, this
approach to event forecasting is still not good. The main reason is obvious.
We do have much and very relevant information, which we, in many instances,
control ourselves, that are not (and should be) included in the analysis. In
this case, we choose which actors to employ, which plays to stage, which
days to play, how many shows, the prices and marketing and so on. All this
information is simply not used at all by using a time series approach. And,
as this type of information is typically available (more or less) at different
time-spots before the actual event takes place, the possibility of using it
(efficiently) is interesting.

The answer to this demand would be avoiding time-series based models
and instead focus more on causal models (regression models). Such an ap-
proach seems far more appropriate for event forecasting. In order to demon-
strate this approach, a case from the local football club - MFK will be pre-
sented in the next section.

11This number is calculated as 28897+38092+39306+34184+31436+37923+39451+31861+29398
9 =

34505.333 ≈ 34505
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Figure 2.3: Moving average (orders 2, 3 and 4) forecasting on the adjusted
Teatret V̊art data.

2.3 The case of football demand forecasting

2.3.1 An old MFK case

Background

The local football team, Molde fotball klubb (MFK), has a glorious history
in Norwegian football. The team from the tiny city Molde (around 25000
inhabitants), holds the sixth place on the Norwegian marathon table (All
time premier division table) [7] only beaten by large city teams such as
VIF (Oslo) , RBK (Trondheim), Brann (Bergen) Viking (Stavanger) and
Lillestrøm (Oslo area).

MFK played in the Champions League (CL) in the 1999 season, meeting
Olympiakos (Greece), Porto (Portugal) and Real Madrid (Spain). The point
score for MFK returned only 3 points, (a home win against Olympiakos),
but it is still the only Norwegian team besides Rosenborg BK who has ever
participated in this tournament.

As such, this club is interesting to investigate by itself, in many ways being
a paradox through it’s continuous success over many years while located in a
very small city. It is probably safe to say that MFK comes from the smallest
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city ever to host a football team in CL.

Here, however, we will examine a case of demand forecasting through
formal regression modelling to demonstrate how it can be done. The case is
not recent, but stems from a presentation that the author gave at a football
seminar in Norway (NFF’s toppfotballseminar - Gardermoen) back in 2002.
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Figure 2.4: MFK - Home match attendance, 1995 – 2001

Figure 2.4 holds home match attendance for MFK during the period
between 1995 and 2001. As can be readily observed from the figure, apart
from the relatively large variation between matches, something seemed to
happen around observation 40 (39 to be exact). This final observation is
perhaps easier to observe if average attendance before and after this time is
calculated and plotted alongside the original observations. This is done in
figure 2.5.

As figure 2.5 indicates, something must have happened around observa-
tion 39 or April 1998, which is the corresponding date. Actually, the exact
difference in the two averages amounts to 7274−4397 = 2877 or a percentual
(average) increase of around 65%. Obviously, something did happen. The
happening was a new stadium - today named “Aker Stadion”, nominated for
FIABCIs Prix d’Excellence in 1999 and winner of the Norwegian City prize
the same year.
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Figure 2.5: MFK - Home match attendance, 1995 – 2001 with average values
before and after observation 39

A regression model

A linear multiple regression model postulates a causal type of relationship
between an output variable (Yi) and a set of N input variables Xi1 . . . , XiN .
On mathematical form: (it may prove handy also to define the number of
observations say M , hence i ∈ 1, . . . ,M)

Yi = β0 +
N∑
j=1

βjXij + ϵi (2.1)

The point here is not to dig deep into regression theory, but to look at it
as a case. As such, additional information related the theory may be found
in most logistics type of books (in a simple form) [21] or more advanced
specialized texts like e.g. [15].

Roughly, the application of regression modelling in forecasting can be
described through a 3 step process:

1) Establish your model (define Y and X1, . . . , XN).

2) Estimate regression parameters β0, . . . , βN .
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3) Use the finished model (after completing stages 1) and 2)) to find fore-
casts for a suitable future time period.

Perhaps the most challenging stage is the first one. Ideally, one would like
(from a scientific point of view) to have some underlying theory defining the
Y and the X’s. A classical example from physics may be helpful. Applying
Newton’s second law of mechanics, the following equation can be used to find
the distance s needed in vacuum for some object falling s length units:

s =
1

2
gt2 (2.2)

Now, an experiment can be staged, where various values of s can be
defined, 1 m, 2 m and so on. And the time spent in falls t1, t2 etc. can
be measured. Consequently, a set of s’s and t’s are the outcome of the
experiment. All the t’s can be squared and we can define Yi = si and Xi = t2i .
Then, the following version of (2.1) can be formulated:

Yi = β0 + β1Xi + ϵi (2.3)

possibly with the added constraint β0 = 0. Then, after staging the regres-
sion process, the interesting unknown g (standard gravity) can be calculated
by the estimated regression parameter β̂1 through ĝ = 2 · β̂1.

This way of doing regression analysis is per se “theoretically correct”.
However, most practical situations involves neither the ability to control
the output variable (e.g. MFK cannot (or will not) define the attendance
at a match) nor do we have a unified theory defining what variables (and
what relationships between them) explaining MFK attendance demand. Still,
various theories may provide sensible variables to be included in a model. As
such, most regression cases within economic or logistics theory may prove
fairly inadequate from a stringent theoretical point of view.

A regression model for MFK attendance

For the case at hand, it seems fair to divide the possible factors influencing
MFK attendance demand into (at least) three different groups:

1) Sports factors

2) Economical factors

3) External factors
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The sports factors are related to the quality of the team and it’s oppo-
nents. The basic hypothesis is related to two different mechanisms, absolute
and relative quality. We would expect that the better the team is (abso-
lutely) the more people would like to watch it, but in addition, some kind of
sports oriented mechanism related to what is commonly defined as “uncer-
tainty of outcome” should perhaps also play some part. That is, if the team
is relatively too good compared to a given opponent one would expect that
public interest for the match might decrease.

The economic factors should largely be related to price and income.
Higher product prices ought to bring demand down while increased public
income should have an opposite effect. All kinds of marketing and sponsoring
choices by the club might of course also have effects.

Surely, there is a “field” of club decisions in between these two groups
such as coaching and player choices (made by the club) that in many cases
also may influence spectator interest12.

The final category contains all other possible factors not naturally be-
longing to the two other groups such as weather, TV-match or not, match
day, a new stadium and so on. Back in 2002, I proposed the following list:

• Changed infrastructure (a new stadium for instance)

• Calendar effects (16th of May for instance)

• Derby effects (matches against special teams RBK for instance)

• Home and away teams form (performance in relatively recent matches)

• Home and away teams status (performance in previous seasons)

• Quality relative to each other (table position)

• Week-day and match-time (Sunday vs. Saturday for instance)

• Weather

• TV-match

• Importance of the given match (possibly late seasonal importance) for
good or bad tabular position

12The recent coach change for Ole G. S. seems for instance to have had a significant
positive effect on demand in MFK at least.
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The first thing to observe from the list above is the absolute absence of
economic variables. No prices, seasonal tickets, marketing, and so on. The
reason is simple: lack of this information or, perhaps more correct, a high
acquiring cost. Finding historic ticket prices turned out to be a difficult
task for the given period. At the same time, MFK has not had a very
“active” price policy in the years we discuss here, so it was expected that
these information bits should play a minor part in explaining attendance
demand anyway.

Furthermore, the list contains blue and red elements. The blue elements
were included while the red ones were not. The main reason for not including
the red elements was more out of convenience, I had relatively short time to
prepare the analysis and chose to do things relatively simple.

The actual model in mathematical form looks as:

atti = β0 + β1 ·mfk posi + β2 ·mot posi + β3 ·mot 3sii + (2.4)

β4 ·mfk formi + β5 ·mot formi + β6 · rbki +
β7 ·mai 16i + β8 · stadioni + β9 · branni + β10 · jazzi + ϵi

and with the explanation of the actual variables in (2.5) shown in ta-
ble 2.3. The first part of the table contains continuous variables, while the
final part contains binary variables (e.g. variables only taking values of 1 or
0).

Variable Explanation

atti Attendance in match i (i runs from the first match 1995 up to last in 2001)
mfk posi MFK’s position on the league table before match i
mot posi Opponents’ position on the league table before match i
mot 3si Opponent i’s average table position the three last years
mfk form MFK’s average points scored in the last 3 matches
mot form The opponent’s average points scored in the last 3 matches
rbk A binary variable; 1 if RBK is the opponent, 0 otherwise
mai 16 A binary variable; 1 if the match is played on May 16th., 0 otherwise
stadion A binary variable 0 up until data point 39, 1 otherwise
brann A binary variable; 1 if BRANN is the opponent, 0 elsewhere
jazz A binary variable; 1 if match is played during the jazz festival, 0 elsewhere

Table 2.3: Explaining the variables of equation (2.5)

To give the reader a more direct feeling for the model and its data, the
first 20 data points are shown in Appendix B. Now, the normal procedure is
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to apply some kind of statistical tool (Excel or as in this case SPSS are typical
candidates) to estimate (find values for) the unknown regression parameters
β̂0, . . . β̂10

13.

The results (parts of the output from SPSS14) are shown in figure 2.6:

SPSS: Linear Regression

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

Model B Std. Error Beta
1 (Constant) 4107,276 955,029 4,301 ,000

MFK_POS -46,677 72,333 -,045 -,645 ,521
MOT_POS -67,416 53,200 -,114 -1,267 ,209

MOT_3SI -20,251 45,626 -,035 -,444 ,658
MFK_FORM 408,916 209,162 ,137 1,955 ,054
MOT_FORM -99,246 214,428 -,037 -,463 ,645

RBK 4718,759 697,742 ,493 6,763 ,000
MAI_16 2036,426 632,063 ,198 3,222 ,002

STADION 2800,343 315,814 ,543 8,867 ,000
BRANN 607,613 607,339 ,063 1,000 ,320

JAZZ 1309,096 584,917 ,137 2,238 ,028

a  Dependent Variable: ATT, R2=0.720

Figure 2.6: SPSS output from the model

We shall limit our interest in figure 2.6 to the third column: Unstan-
dardized Coefficients and the last one named Sig. The third one contains
the values of the parameters β̂0, . . . β̂10 while the last column contains sig-
nificance probabilities. These significance probabilities tells us (popularly
described) whether it is probable that the actual estimates really are differ-
ent from zero. So a very small value indicates that the parameter itself with
relatively large probability may in fact be zero. As a consequence, those pa-
rameter estimates with (say values larger than 0.1 (90% significance level))
should be removed from the model. In figure 2.6, all these are marked in
grey.

The typical next step would then be to take out the insignificant variables
and rerun the regression model; now as:

13The use of the notation β̂j is due to the fact that the numerical (estimated) values
principally are different from the model values in equation (2.5)

14All necessary data for this analysis have been found on the RSSSF-website [7]
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atti = β4 ·mfk formi + β6 · rbki +
β7 ·mai 16i + β8 · stadioni + β10 · jazzi + ϵi

The results of this operation are shown in figure 2.7.

SPSS: Linear Regression

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

Model B Std. Error Beta
1 (Constant) 2978,880 378,094 7,879 ,000

MFK_FORM 476,102 183,154 ,160 2,599 ,011
RBK 5156,216 579,584 ,539 8,896 ,000

MAI_16 1860,794 623,045 ,181 2,987 ,004
STADION 2815,065 309,117 ,546 9,107 ,000

JAZZ 1265,718 572,701 ,132 2,210 ,030

a  Dependent Variable: ATT, R2=0.700

Figure 2.7: SPSS output from the reduced model

Let us take a slight look at the information on the bottom of figures 2.6
and 2.7. The R2 is an interesting statistic to judge. Roughly, it tells us how
much of the variation is explained through our model. Comparison of the two
figures, shows a very minor decrease in R2 indicating that the model (2.5) is
a better choice than the big original model. The fact that R2 is more or less
unchanged after the removal of a set of insignificant variables is normally
taken as a “proof” of reasonable modelling. The final model’s R2 of 0.7
means that 70% of the total variation is explained by the model. Comparing
such a figure to most real world regression models indicates a surprisingly
good fit, especially as many obvious relevant variables are excluded initially.

If we sum up the results so far, it seems as if MFK audience only cares
about the home team’s form, the opponent’s form is irrelevant. The same
holds for the status of the opponent (mot 3si), which also is insignificant
apart from the very significant opponent RBK. So, the only “sporting” or
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event oriented variable that is included is the home team’s form. So, one
could say that MFK audience care more about special events (16th of may
and the jazz festival) and less about the game itself. The fact that table
position before the match both for MFK and the opponent plays no signif-
icant role is perhaps somewhat surprising, but does to some sense confirm
the fact that MFK audience is less interested in football than showing up at
the “right” matches.

The basic results of the model could perhaps be summed up as follows:

If MFK want to maximise its attendance, they should play all
matches at home on the 16th of May, the jazz festival should be
relocated from July to the May-week including the 16th of May,
MFK must have won the 3 previous games, and all games should
be played against RBK.

Forecasting the model

Now, let us move to the main point: applying the model to produce fore-
casts. Let us assume that we do not know the attendance values beginning
with the first MFK home game in 200215. Then, the question to study in
this paragraph is that of finding forecasts for “future” home matches in 2002.
The typical problem with applying regression models in forecasting is that
they normally lead to a situation where certain (or in fact all) of the ex-
planatory variables also need to be forecasted. Then, if many explanatory
variables are in the model, and many of them must be forecasted (to pro-
duce the sought forecast), the aggregated uncertainty of forecasting several
variables (as opposed to one) might simply lead to bad forecasts. This is the
classical argument for using time-series models, where the need for forecast-
ing explanatory variables is simply not present. Still, previous arguments
related to the “nature of events” indicates that time-series approaches might
be unsatisfactory, and causal methods might simply be the only relevant
alternative.

Moving into the case at hand, we observe immediately that the explana-
tory variables must be forecasted, but luckily, most of them are relatively
easy to predict with almost 100% precision. Table 2.4 below sums up the
situation.

The first variable,mfk form is (given knowledge of the upcoming seasons
match schedule) hardest to predict. Surely, this forecast depends heavily on
what team we look at, and MFK might be one of the harder teams to forecast

15Obviously we do know these values of today, but this thought experiment should still
be relevant.
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Variable Forecast accuracy

mfk form Poor forecast accuracy
rbk 100% prediction accuracy (when the match schedule is given)
mai 16 100% prediction accuracy (when the match schedule is given)
stadion 100% prediction accuracy (without new stadium plans)
jazz 100% prediction accuracy (when the match schedule is given)

Table 2.4: Forecast accuracy of explanatory variables

this variable for in Norway. Note also, that the difficulty of using these types
of models for forecasting purposes depends a great deal on what variables we
turn up including in the model. Roughly in this case, only one variable seems
hard to predict. But remember that the original formulation also includes
other teams form-variables – a much harder forecasting problem.

Anyway, let us return to the present case. The table below (2.5) sums up
MFK’s form for the “observed” seasons:

Season (t) 95 96 97 98 99 00 01
Nt 26 26 26 26 26 26 26
Pt 47 33 45 54 50 40 44
Pt

Nt
1.8 1.3 1.7 2.1 1.9 1.5 1.7

Table 2.5: MFK (point) performance

The first row in table 2.5 contains the observed seasons. The second row
contains number of matches (Nt) in each of the observed seasons. The third
row contains number of points (Pt) obtained in each season, while the final
row contains computed average point score per season ( Pt

Nt
). Now, our task

is to find an estimate (in principle dynamic) on the 3 last games average
for the next (upcoming) season. It seems very difficult (though perhaps not
impossible knowing the schedule) to produce individual match forecasts. So,
top make things simple we settle for a static (constant) value for our proposed
forecast for mfk form. Various options exists ranging from a total period
average up to using only the previous season. In this case, either of these
estimates turns out to be the same as can be seen from the simple average
calculation below:

1

7

2001∑
t=1995

Pt

Nt

=
1.8 + 1.3 + 1.7 + 2.1 + 1.9 + 1.5 + 1.7

7
≈ 1.7 (2.5)
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Now, we can build our forecasts for the upcoming season. We assume that
we need to forecast all home matches and that next seasons match schedule
is available. This schedule is normally available well ahead of beginning of
the season, typically before Christmas. Table 2.6 shows this information (the
sequence of home matches for MFK) for the 2002 season:

Match Schedule Variables
1. BRANN -
2. VIKING -
3. LSK -
4. MOSS mai 16 = 1
5. VIF -
6. STABÆK -
7. ODD jazz = 1
8. LYN -
9. RBK rbk = 1
10. BRYNE -
11. START -
12. B/G -
13. SOGNDAL -

Table 2.6: Home match schedule - 2002 season

Now, the necessary information to build the forecast for all home games
in the upcoming season is available. Moving back to figure 2.7 we observe
that the constant has a value of 2978.85. This means that no matter what
(model-wise), at least this number will show up. The same holds for the
stadium variable which adds 2815.065 to the attendance forecast. Conse-
quently, under a reasonable assumption of no significant changes in the sta-
dium infrastructure, 2978.85+2815.06 = 5793.91 will show up independently
of any other variables. Now, the effect of the performance quality of MFK
can be added if we accept the argument above on an average point score
forecast of 1.7. We get:

BaseForecast = 5793.91 + 1.7 · 476.102 = 6601.5834 ≈ 6602 (2.6)

Now, apart from the match against RBK (adding 6156.218) to the value
of equation 2.6, the match at the 16th of May (adding 1860.794) and the
match under the jazz festival (adding 1265.718) the value from 2.6 defines
our forecast. Summing up, our forecast for the upcoming season is shown in
table 2.7 alongside the observed attendance figures.
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Match Schedule Forecast Attendance
1. BRANN 6602 6204
2. VIKING 6602 5236
3. LSK 6602 5055
4. MOSS 8462 4817
5. VIF 6602 6868
6. STABÆK 6602 7810
7. ODD 7868 8137
8. LYN 6602 4902
9. RBK 11758 11167
10. BRYNE 6602 4303
11. START 6602 5057
12. B/G 6602 6105
13. SOGNDAL 6602 4850

Table 2.7: Forecasted and observed attendance - 2002 seasons

It is perhaps easier to analyse the quality of our forecast model by plotting
the forecasts and the observed attendances in the same figure, as shown in
figure 2.8:

Examining figure 2.8, we observe reasonably good fit apart from a singular
observation, the home match at the 16th. of May. This match (against MOSS
FK) produced a surprisingly low attendance. This could of course be due to
weather or maybe even an unattractive opponent, but still, apart from this
point, the model performs surprisingly well as I see it. Remember that all
information used to construct these forecasts are historic info and a relatively
naive (simple) way of forecasting the mfkform variable.

Short term forecasting

In this section (to demonstrate the technique), we will investigate short-term
forecasting on these type of models. In previous paragraphs, we constructed
forecasts for the whole upcoming season made at a single point in time. An
alternative forecasting technique (here named short term forecasting) could
be constructed by computing forecasts from match to match. Normally, such
an approach opens up for producing better forecasts, but we are of course
not guaranteed such an outcome in a given case. Still, the technique itself is
relevant and will be demonstrated shortly.

First, however, a few words on applicability of these two different ap-
proaches. A short term forecast is interesting to apply if the planning or
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Figure 2.8: Forecasts vs. observed attendance for the 2002 season

decision we need the forecast for, can be executed before the next home
game. In a logistics setting, such decisions will typically relate to lead times.
Suppose we need to order soda for the next home match, and this soda can
be ordered now and be delivered within a time period sufficiently short (the
lead time) to reach the next home match. Obviously, we will not need fore-
casts for the rest of the upcoming home matches for the decision. However,
other decisions, stadium capacity, for instance, or other decisions of more
long term character (TV rights, sponsor money etc.) might need forecasts
for longer periods of time.

In this case, the only difference in the methods relates to the values used
for the mfk form variable. Given a situation, where we produce forecasts
from match to match, the forecast for the next match then leads to a different
information availability compared to the situation above. (Recall that we
used a very simple average over seasons for our value of 1.7 for this variable.)

Now, standing immediately before a match, we know the point score
obtained by the home team in the 3 previous matches. Consequently, we
can use this information and avoid using the forecasted constant 1.7-value,
and can instead compute “correct” values for this variable. Surely, we need
more information, but this is readily available at [7]. Table 2.8 holds the
necessary information. (In addition, we need the three last home matches of
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the previous season, which turn out to produce mfk form = 1.3316.)

Match H/A P mfk form Match H/A P mfk form
1 H 3 1.33 14 A 0 -
2 A 1 - 15 H 1 1.00
3 H 3 1.67 16 A 1 -
4 A 0 - 17 H 3 0.67
5 H 1 1.33 18 A 3 -
6 A 0 - 19 H 0 2.33
7 A 3 - 20 H 3 2.00
8 H 3 1.33 21 A 3 -
9 A 3 - 22 H 3 2.00
10 H 3 3.00 23 A 3 -
11 A 3 - 24 H 3 3.00
12 H 3 3.00 25 A 0 -
13 A 0 - 26 H 1 2.00

Table 2.8: MFK - complete performance statistics for the 2002 season

As can be observed from table 2.8, MFK had a very decent season in
2002, gaining a total of 50 points ending up being second. What is inter-
esting from our point of view, is the ability to produce dynamical forecasts
for the mfk form-variable. The calculations are straightforward. Recall the
definition - the average points scored in the 3 previous games. As a conse-
quence, the first home game (match 1 in the table) is calculated on previous
season data (see above.) The second home match (match 3 in the table),
is then computed by the two first games of the 2002 season (1+3=4 points)
and adding the draw (1 point) from the previous season, giving the value of
1+3+1

3
≈ 1.67. The rest of the numbers are calculated similarly.

Now, the short term forecasts (STFt) can easily be computed by the
following formula: (t runs over all home matches in table 2.8.)

STFt =


5793.91 + 476.102 ·mfk formt ∀t\{8, 15, 19}
5793.91 + 476.102 ·mfk formt + 1860.794 t ∈ {8}
5793.91 + 476.102 ·mfk formt + 1265, 718 t ∈ {15}
5793.91 + 476.102 ·mfk formt + 5156.216 t ∈ {19}

(2.7)

16MFK gathered 4 points in matches 24 (3), 25 (0) and 26 (1) in the 2001 season. As a
consequence, the mfk form variable is computed as 4

3 ≈ 1.33
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Applying equation (2.7) with the data from table 2.8, results are obtained
as shown in table 2.9:

Match Schedule STF Attendance
1. BRANN 6427 6204
2. VIKING 6589 5236
3. LSK 6427 5055
4. MOSS 8288 4817
5. VIF 7222 6868
6. STABÆK 7222 7810
7. ODD 7536 8137
8. LYN 6113 4902
9. RBK 12059 11167
10. BRYNE 6746 4303
11. START 6746 5057
12. B/G 7222 6105
13. SOGNDAL 6746 4850

Table 2.9: Short term forecasts and observed attendance - 2002 seasons

Comparing these short term forecasts with the original ones as well as the
historical attendance data is easily done through a figure, as in figure 2.9.

It is easily observed from figure 2.9 that the short term forecasts are
initially better. The green curve is closer to the red curve (though not very
much). In the mid parts we observe some variations, but from around home
match 5 up to 7, the new short term forecasts perform better. However,
by the end of the season, we see the opposite situation, where the original
forecasts perform better than the short term ones. So, it is not obvious which
of these two forecast methods that will turn out to be the best one. In order
to compare with more exactness, some kind of error measures needs to be
calculated. In logistics, MAD17 (Mean Absolute deviation) is normally used,
and in order to shed some more light on this comparison, MAD for the two
models are computed in table 2.10.

As table 2.10 indicates, both methods perform relatively equally, but the
short term (presumably best) forecasts perform worst. So our initial hypoth-
esis of utilizing more and better data leading to general forecast improvement
in the one-step (short term) final method did not work out. In fact this is
a good example, because it shows that there are no guarantees when fore-

17MAD = 1
N

∑N
t=1 |Ft −Dt| with Dt being actual demand, N number of observations

and Ft forecasted demand.
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Figure 2.9: Short and long term forecasts compared to actual attendance -
2002

Match Schedule MAD LTF MAD STF
1. BRANN 398 233
2. VIKING 1366 1353
3. LSK 1547 1372
4. MOSS 3645 3471
5. VIF 266 354
6. STABÆK 1208 588
7. ODD 269 601
8. LYN 1700 1211
9. RBK 591 892
10. BRYNE 2299 2443
11. START 1545 1689
12. B/G 497 1117
13. SOGNDAL 1752 1896

MAD 1314 1324

Table 2.10: Short term forecasts and observed attendance - 2002 seasons
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casting is the business. However, the reason for these somewhat unexpected
results is actually very easy to find (in retrospect). This season, the 2002
season was a season where the big favourite (RBK) started out very poorly
and the dark horse LYN lead the league most of the season. MFK, however,
started out reasonably and stayed second most of the season. It might be that
this season, turned on fans expectations for a league win (the first one ever),
and the form variable turns out to improve the forecasts in the early parts
of the season. However, during the season, LYN deteriorated (slowly), while
the big favourite RBK started to improve. It might well be that the MFK
audience lost their hopes (especially I believe) after the home loss against
RBK in home match 9. As such, one might have expected an overestimation
of attendance figures by the end of the season - especially by the short term
model. The facts are that MFK actually played very well by the end of the
season. But it might very well be that the audience had kind of lost hope
for the first ever victory. This can kind of be observed from table 2.9 for
matches, 10, 11, 12 and 13 where the short term forecasts systematically
overestimates attendance compared to the long term forecasts.

This (retrospective) hypothesis can of course be relatively easily tested
by restricting the MAD calculations up to and including home match 9, the
match against RBK. Doing so, we find a MAD of 1221 in the long term case,
and 1118 in the short term case, a MAD (significant) decrease around 10%,
which of course corresponds better with our initial hypothesis.

2.3.2 The effect of Pre-sales

Pre-ordering or pre-sales may be defined as deciding to buy or buy a product
before it is available for sale. As events tend to take place at discrete time
spaces with “some air in between”, pre-sales is possible and interesting for
event producers. Actually, this is more of a norm than an exception in this
area. In traditional manufacturing, this is perhaps more of an exception, but
we observe certain products utilizing these mechanism nowadays. Typically,
it may be hyped products such as announced computer games, or certain new
technology like IPADs or hyped cell phones. But, we also see this occurring in
more traditional markets; cars, for instance, may be pre-ordered these days.
From a logistic and forecast point of view, this is obviously a benefit. If you
pre sell seats for a concert, then you know (with certainty) that at least this
number will turn up or at least you know with certainty that the given ticket
money will be certain. This is a typical situation in football matches where
seasonal tickets guarantee the income, but may not guarantee that persons
show up.

Pre-sales products may take different forms. They may be restricted to a
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single event or more than one event. Seasonal tickets pre-sells a whole home
season of matches, and certain special combined tickets (day-passes) are sold
in festivals covering up more than one event. This latter products are often
referred to as bundles (bundling) in economic theory.

Some (relatively limited) research has been done mainly on time-series
modelling - see for instance [10] and [17]. We will not pursue this models
further, but limit our discussion to causal (regression-type) models. We
choose to do this, not only due to the complexity of the time-series cases,
but also due to the “event-arguments” presented previously.

Obviously, we see different types of pre-sale situations, not only various
bundling options as discussed above, but also different choices when it comes
to numbers and time periods. Certain event-producers may choose to limit
the possible number of pre-sold tickets to less than ticket capacity others may
not. Certain event producers may choose to define a pre-sales period ending
in reasonable time before the normal sales takes place. A football club such
as MFK is a good example of both of these types of situations.

MFK’s home ground - Aker Stadion - has a capacity of 11167[1] today.
Still, the stadium record is 1330818 from a game against RBK (who else)
back in 1998 [1].

MFK chose (before this season) to limit the number of seasonal tickets to
less than the capacity. Surely, this is a kind of luxury problem (e.g. having
the option of selling out capacity on pre-sales), but certain football clubs
have this option (typically the biggest and most popular, like MUFC and
Barcelona. But due to some special circumstances this season, (hiring a
new coach named Ole G. Solskjær) this option seemed to pop up for MFK.
Anyway, they chose to limit the number of pre-sold tickets. Such a strategy,
given that demand is bigger than supply, will of course also lead to the second
type of situation; that is, pre-sales ends before regular sales starts.

So, as of today, (December 2010), MFK has sold out their defined avail-
able seasonal tickets and as a consequence, they know (with certainty) that
the total demand for all next year’s matches will be larger than or equal to
this number. What they do not know with certainty is how many of these
seasonal ticket customers will show up on the stadium in each of the matches.
From a logistical point of view, these numbers are perhaps just as interesting
as the financial consequences of having certain income. After all, most lo-
gistics problems is about handling actual demand at the event when it takes
place. However, to keep complexity at a reasonable level, we assume that all
seasonal ticket customers show up at the stadium in our simplified treatment

18The reason for this difference is due to varying FIFA/UEFA regulations on the number
of seats.
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of the situation.
Let us investigate the situation from a mathematical point of view. Using

the notation from above, total demand for a certain match t, attt, can be
expressed as:

attt = attSTt + attNT
t (2.8)

where attSTt and sttNT
t hold customers buying seasonal and normal tickets

respectively. Alternatively and slightly more complex, a new decomposition
could be added;

attSTt = attSTsu
t + attSTnsu

t (2.9)

where attSTsu
t holds seasonal ticket customers showing up at match t,

while attSTnsu
t are not showing up. Now, suppose MFK (or any general event

producer) are able to perform the decomposition (2.8) on historical data.
The meaning of this statement is simply that they have registered not only
the total demand, but one of the other components of equation (2.8) as well
- typically this would be attSTt . Then, the following strategy for adjusting a
regression model to adopt pre-sales situations is feasible:

1) Compute attNT
t by 2.8

2) Establish a regression model with attNT
t as the dependent (Yi) variable

3) Predict attNT
t by the model from 2) and add the known (or forecasted)

attSTt to produce a final forecast for attt.

A similar procedure can of course be defined if information of the decom-
position (2.9) is available.

There are, however, certain methodological problems related to the above
outlined procedure. Firstly, information may be lacking and there may be
certain differences between various situations. For instance, seasonal tickets
may show very different price profiles over time. MFK is a very good example
on this. As such, the informational content about the share of seasonal tickets
between seasons may be highly questionable. Secondly, and probably more
important, there is an obvious possibility of dependence (correlation) between
seasonal and non-seasonal tickets. Suppose MFK have chosen a relatively
low price strategy for seasonal tickets in a given season. Then (clearly)
one would expect less non-seasonal tickets sold in most matches as opposed
to the opposite situation. Such logic will typically produce methodological
problems in applying simple regression analysis. Without going into details,
the answer is then to do things differently, and model a system of equations
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instead of a single equation. Such an approach is (surely) feasible, but far
ahead into relatively advanced econometric theory, clearly outside the scope
of this text.

Consequently, a different approach may be more suitable. Suppose (just
as an example) that MFK this season has sold 7000 seasonal tickets. Also
suppose that a regression model has produced the forecasts of table 2.7. Even
though the numbers of table 2.7 are invalid for the upcoming season, they
prove a relevant point.

Given the initial assumption of 7000 sold seasonal tickets, a forecast of
6602 is of course silly. If we know that at least 7000 tickets are sold for
all matches, surely we should adjust our forecast to take this information
into consideration. A very naive way of adopting this might be simply to
adjust all forecasts below 7000 up to 7000, but this is neither correct nor
sensible. Remember the basic point in regression, minimizing the squared
errors. A strategy of simply adjusting some forecasts will most probably not
correspond with a model that minimizes the sum of the squared errors.

Hence, we need to adopt a strategy which is bit more logical and slightly
more complex. The general multiple linear regression model is defined in
equation (2.1). Solving with respect to the error terms ϵi yields:

ϵi = Yi −

{
β0 +

N∑
j=1

βjXij

}
(2.10)

Squaring the error terms yields:

ϵ2i =

[
Yi −

{
β0 +

N∑
j=1

βjXij

}]2

(2.11)

and defining;

S2(β0, . . . , βN) =
M∑
i=1

ϵ2i (2.12)

The classical regression problem can then be formulated as

min
β0...,βN

S2(β0, . . . , βN) (2.13)

The meaning of equation (2.13) is straightforward. We want to find values
for unknowns β0, . . . , βN which provide the minimal value for the function
S2().

The situation we have formulated above is, however, somewhat different.
We know that the forecasted value of our model should at least be larger
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than a certain value (7000 in the example). Hence, this information should
be added to equation (2.13) as a constraint. In general terms, say that the
amount of seasonal cards already sold is named Y. Then, the minimization
problem of equation (2.13) can be reformulated to:19

minβ0...,βN
S2(β0, . . . , βN) (2.14)

s.t β0 +
∑N

j=1 βjXij ≥ Y

The seemingly slight difference between equations (2.13) and (2.14) has
significant consequences for solution strategies. The optimization problem
of equation (2.13) is unconstrained on a “well behaved” function with a
well known analytical solution. However, the problem of equation (2.14)
is constrained (a quadratic objective with a linear constraint) and is hence
normally classified as a quadratic programming problem (QP). A QP is
in general relatively easy to solve (normally marginally harder than an LP).
However, neat analytical solutions do in general not exist, and in most cases
we need to apply specialized software, for instance, LINGO, CPLEX or the
Excel solver.

Let me try to sum up a little bit. The fact that events in most situa-
tions (naturally) open up the option of pre-sales, should and will in most
cases lead to better (more accurate) forecasts. However, to achieve these
improved forecasts, the methodology may change and may lead to increased
methodological complexity.

2.3.3 Capacity constraints

Capacity constraints on product demand is another concept typical for
events. As briefly discussed above, (see Subsection 2.3.2), most events will
have certain constraints on maximal attendance. This may be due to physical
constraints, size of the concert hall or stadium or related to various security
means. Even though most manufacturing markets will have upper bounds
on some kind of maximal demand (it may, for instance, be very unlikely to
sell an Ipad to each world citizen), in practice such upper bounds for man-
ufacturers are almost never relevant, interesting or binding as we say in OR
terms20. As a consequence, this is a typical topic for events. Obviously, it is

19Recall from regression analysis that the error terms are assumed No(0, σ2
ϵ ); hence

when predicting through a regression equation, the expected value of the error terms are
always zero.

20Actual competitive markets will almost always disqualify a given producer from cap-
turing the whole market
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a “luxury problem”. If an event producer is in a market situation where cus-
tomers routinely buy the whole capacity, he should be very happy. Still, in a
forecasting perspective, this information must be considered if high quality
forecasts are to be produced.

As with the lower bound in the previous section, an upper bound must be
added to the basic forecasting model. This will work almost exactly like the
pre-sales case in the previous subsection - the only difference is the choice of
inequality sign in the constraint. Now, our forecast should be forced to be
under the capacity limit. Hence, in the MFK case, a upper bound of 11167
must be added to the simple regression model.

It may be interesting to look back on our previous unconstrained fore-
casting examples. If we examine tables 2.7 and 2.9, we observe two forecasts
actually violating the capacity constraint. Our model produced a long term
forecast of 11758 for the RBK-match in the 2002 season. Clearly, the ca-
pacity constraint of 11167 is violated. The same is observed in the case of
the short term forecast (table 2.9 where the forecast for the same match was
calculated to 12059 - an even greater violation. As this upper limit of 11167
was defined before the 2000 season, surely this information was available and
should be incorporated in the forecasting model.

Again, it may be tempting just to scale down these two forecasts to the
capacity upper bound, but the argument on minimizing sum of squares still
should hold. Hence, an adjusted regression version would look like (Ȳ is the
upper capacity limit)

minβ0...,βN
S2(β0, . . . , βN) (2.15)

s.t β0 +
∑N

j=1 βjXij ≤ Ȳ

Surely, in most situations, both pre-sales and capacity constraints may
be present, and a constrained regression model such as

minβ0...,βN
S2(β0, . . . , βN) (2.16)

s.t β0 +
∑N

j=1 βjXij ≤ Ȳ

β0 +
∑N

j=1 βjXij ≥ Y

should be used. Both models (2.15) and (2.16) areQP’s (like the model of
equation (2.14)) and must be solved by mathematical programming software
as opposed to standard regression analysis tools like SPSS, which was applied
to produce the forecasts in tables 2.7 and 2.9.
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2.4 Aggregated versus disaggregated fore-

casts

The title aggregated versus disaggregated forecasts relates to different lev-
els of forecasts. In events (as argued previously), the normal situation is a
one-time situation or a situation with a lot of time in between events. As a
consequence, the main problem for a given event demand forecast is perhaps
more the ability to break down an aggregated forecast into a set of disaggre-
gated forecasts. Think about Olympic Games. Surely, it is hard enough to
forecast total demand (number of visitors coming to see the games), but it
is perhaps even harder and also more relevant from a logistics point of view,
to be able to break down the total demand into single event demands. Given
a reasonable forecast for total demand, say FTOT , how does this decompose
into various events as indicated by equation 2.17?

FTOT = F100 meters running + FHandball + . . .+ F50 M back swimming
(2.17)

In equation (2.17) an underlying assumption of parallel events is (of
course) inherent.

In general, it is harder to forecast at an disaggregated level than an ag-
gregate level. Think about a car producer. It may be fairly easy to get a
reasonable forecast on the total number of cars sold next year. However,
the various brands, engine sizes, extra equipped and coloured cars may be
much harder to guess. The same applies in disaggregated event forecasting.
Even if you are able to foresee the total number of tickets sold at the Molde
International Jazz Festival, the disaggregated level, that is, who will attend
the Charlie Parker, Dizzie Gillespie, Dexter Gordon21 etc. concerts might be
way tougher.

In a logistics setting, it is these disaggregated forecasts which are the
most relevant. The reason should be obvious. Resource consumption by
event audiences are of course mostly related to singular events; proportional
to audience numbers, and hence in a logistics setting, we are normally more
interested in disaggregated than aggregated forecasts.

A typical (practical) approach could be to use some kind of formal method
to arrive at a forecast for total demand F̂TOT and then either formal or
less formal try to decompose the total demand into singular event forecasts.
Producing some shares, say αi, as the share of total demand for singular event
i could be a reasonable approach. Then, given the existence of a forecast-

21RIP.
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share α̂i, one could produce the wanted disaggregated forecast for singular
event i by:

F̂i = α̂i · F̂TOT (2.18)

There is, however, some obvious practical problems involved in arriving at
reasonable α̂i’s. At least, we can differentiate between two types of events. 1)
Certain events will have the same content in each event from one arrangement
to another. Sports events will typically be like this. The 100 meters run is
(more or less) the same from one Olympics to another. 2) Other events, like
musical festivals will, however, have different artists on the opening and final
days from one year to another. As a consequence, one must be careful by
copying consumer preferences in between events.

Another problem, typically arriving in sports mega events, is related to
difference in location. Almost always, sports mega events, (Olympic games,
football World Championships etc.) are relocated form one instance to the
other. And very often very far. For football WC’s for instance, it is Europe
one year, Latin America 4 years later, and then perhaps Africa or Asia after
4 new years. Consequently, possible α̂i’s fitting good one year might fit very
bad 4 years after, as the average spectator may change substantially moving
from one continent to another. In such a situation, a combination of infor-
mation related to the actual mega-sports event but paired with attendance
(spectator) behaviour related to localization should perhaps be a guidance
for establishing “good” α̂i’s.

In addition to the above mentioned problems, time keeps moving fast.
Typically, at least a year (musical festivals) and up to 2 or 4 years (sports
mega events) passes between events, and consumer behaviour observed in
one event might change simply due to time.

As a consequence, arriving at good forecasts for arrangements within
events may be hard. Still, the need is obvious to be able to perform logistics
planning.





Chapter 3

Events and Inventory
Management

3.1 Inventory Management - Introduction

3.1.1 The EOQ model

Inventory management deals, in its simplest form, with balancing the trade
off between inventory and order costs. The basic modelling hence assumes
two cost elements; a binary order cost occurring when each order is placed,
and an inventory cost, proportional to inventory levels, (actual or average).

The basic classic model, found by minimizing total (average) inventory
and order costs, often referred to as Wilson’s formula, the square root formula
or the EOQ formula, then states that the optimal order quantity Q∗(using
the notation of Nahmias [21]) can be found by:

Q∗ =

√
2Kλ

h
(3.1)

where K is the cost placing an order, h is the cost per unit stored (on
average) and λ is demand for the actual planning time period.

The modelling leading to the EOQ formula (3.1) makes some serious
assumptions. Among these, the two most relevant are:

1) Constant demand over time

2) Deterministic (perfectly predictable) demand

Both these assumptions are of course highly unrealistic in most practical
situations. Typically, we will not know demand with certainty, and the time
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profile of the demand forecasts will not be constant. Our example from
Chapter 2 shows this very clear. Our forecasts did not hit perfectly, and
demand throughout the 2002 season did not turn out to be constant.

Still, the simple EOQ formula has proven itself to be practically valuable
due to its simplicity and as a tool for finding approximate solutions.

3.1.2 Applying the EOQ approximately

Let us return to our long term forecast from table 2.7, as shown in table 3.1

Home game 1 2 3 4 5 6 7
Forecast 6602 6602 6602 8462 6602 6602 7865
Home game 8 9 10 11 12 13 -
Forecast 6602 11758 66022 6602 6602 6602 -

Table 3.1: Forecasted attendance demand for MFK home games - 2002 season

Let us further assume that MFK’s experience is that (on average) 1% of
their spectators buys a bottle of coke during a match, and MFK needs to
determine how much coke to buy and when. The assumption of 1% coke
buyers leads to a simple calculation of future coke demand based on atten-
dance demand by simply dividing all forecasts in table 3.1 by 100 leading to
(rounding the numbers) the coke demand forecasts as shown in table 3.2

Home game 1 2 3 4 5 6 7
Forecast 66 66 66 85 66 66 79
Home game 8 9 10 11 12 13 -
Forecast 66 118 66 66 66 66 -

Table 3.2: Forecasted coke demand for MFK home games - 2002 season

By further assuming that the inventory costs (h) between home games
are $0.2 and order costs (K) each time coke is ordered, amounts to $100,
the EOQ formula can be applied as an approximate solver for finding the
optimal purchase strategy.

In the formula, the only missing information is λ, average periodic de-
mand, which is easily found by adding all numbers in table 3.2 and dividing
by 13 to obtain the average. We find:

10 · 66 + 85 + 79 + 118

13
≈ 72.5 (3.2)
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And the EOQ formula (3.1) then becomes:

Q∗ =

√
2 · 100 · 72.5

0.2
≈ 269 (3.3)

As a consequence, each time we order, we should order 269 bottles of coke.
In practice, when approximating through the use of this formula, we need to
make some adjustments if actual forecasts are not constant. Table 3.3 below
illustrates this here.

Home game 1 2 3 4 5 6 7
Forecast 66 66 66 85 66 66 79
Ordered 269 - - 269 - - -
Inventory 203 137 71 255 189 123 46
Home game 8 9 10 11 12 13 -
Forecast 66 118 66 66 66 66 -
Ordered 269 - - 269 - - -
Inventory 247 129 63 266 200 184 -

Table 3.3: Purchase plan for coca cola; MFK home games - 2002 season

Note that we have chosen to buy 269 also before home game 11. As our
planning horizon, stops at home game 13, we will end up with “too much”
inventory in the final period. Obviously, we could have adjusted to end up
with a smaller amount of rest inventory after the last home game, but as this
is coke, we might perhaps just as well keep some for the next season.

The total costs of this purchase plan are easy to calculate. We simply
add all inventory numbers together, multiply by the inventory cost of 0.2 and
add 4 times the order cost of 100. This gives a total cost for the approximate
plan of 2113 · 0.1 + 4 · 100 = 611.3

3.1.3 The Lot-sizing approach

Classical Lot-sizing relates to production planning, not Inventory Manage-
ment. Let us, however, examine the classical production lot-size model in a
Mathematical Programming setting. As discussed in the course previously, a
mixed integer linear programming formulation of the simple lot-size problem
is shown below in equations (3.4) – (3.8).

Min Z =
T∑
t=1

Ktδt + htIt + ctxt (3.4)
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s.t.

xt + It−1 − It = dt ∀t (3.5)

0 ≤ xt ≤ Mtδt ∀t (3.6)

It ≥ 0, ∀t (3.7)

δt ∈ {0, 1} ∀t (3.8)

In the production planning setting, xt is produced amount, It is stored
amount, δt is a binary variable defining if production takes place in time
period t. These variables define the decision variables in the optimization
model. The parameters Kt, ht, ct, T and Mt holds per period Set-up costs,
inventory costs, production costs, number of time periods and “Big M’s”
respectively.

The simple point is that the inventory management or purchasing situa-
tion exactly resembles the situation described by the above model with some
simple reinterpretation of variables and parameters. If set-up costs Kt are
substituted with ordering costs, we achieve the required purchasing logic.
That is, if an order is placed, (and only then) a order cost of Kt occurs.
Furthermore, if production amounts are substituted by ordered amounts and
production costs ct are interpreted as purchase costs, the model above works
perfectly in the inventory management setting.

In order to derive an exact solution, the problem with ht = 0.2∀t, Kt =
100∀t, ct = 0∀t, T = 13 and dt picked from table 3.2 must be fed into
some kind of solver software. Here, LINGO is used, and the actual LINGO-
formulation as well as the solution file is presented in appendices C and D.

As can be observed (Appendix D), the optimal solution costs 607. A
relatively modest change from the EOQ-approximate solution of 611.3 (see
above). The major structural change between the two solutions is that the
optimal solution involves three purchase points (before home matches 1,5
and 9) as opposed to the 4 of the approximation (before home matches 1, 4,
8 and 11). Still, the EOQ approximation turned out quite nice here, as the
objective improvement was only around 7%.

Also note that by utilizing a similar reinterpretation as above, an addi-
tional intermediate approximative solution could be obtained by the Silver-
Meal heuristic - see Nahmias [21].
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3.2 Event Inventory Management - “News-

boy” setting

3.2.1 “News-boy” basics

The above examples, will not be very representative for what we previously
have labelled “one-shot”-events. Both model types above assume the pos-
sibility of storing the actual resource in between events. This assumption
might work good for running event producers such as a football team or a
jazz-club, but not in the case of festivals. Most festivals happen once a year,
and the possibility of storing resources between events may be unavailable,
either due to durability issues or simply due to festival uniqueness. A typical
example on the latter type could be some kind of gadget sold as a proof of
entering the given event. The Molde International Jazz Festival (MIJF) sells,
for instance, t-shirts.

Another argument (also discussed previously) against the above modelling
types, is uncertainty. When the focus is on festivals or mega-sport events with
long time periods between event arranging, one should expect forecasting to
become significantly harder. Then, it might seem far more sensible to try to
take such uncertainty into account - model-wise.

The “News-boy” model seems to be a very adequate candidate for cov-
ering such types of situations. In a classical “News-boy” model, a certain
demand (assumed, uncertain and described by a probabilistic mechanism)
for some product is present. The product is bought at a certain price, and
then sold typically at a higher price in the normal demand period. Fur-
thermore, after the normal (in-event) demand period, the product can still
be sold, but for a less favourable price (typically assumed smaller than the
buying price). Hence, this situation resembles our inherent “one-shot” event
definition. During the event, a certain monopolistic situation occurs, creat-
ing an in-event demand. This demand changes after the event, typically in a
negative direction. The decision to make in the model is the ordering quan-
tity (Q∗). That is, how much to buy of a given resource before the event.
Even though we have used the gadget as a symbol of this type of demand, it
should be fairly easy to see that this situation actually fits most resource pur-
chases for an event, at least those resources which maybe sold in an in-event
market. Food and drinks will of course also have similar characteristics. The
beer is typically more expensive within premises of the event than outside.
As a consequence, this modelling concept ought to be very interesting for
event inventory planning. To some extent, the term inventory management
may be somewhat misleading here - as the model is a single period model,
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but the purchasing dimension is present. Hence, even if normal inventory
decisions (how much to store between each model period) is not within the
basic “News-boy” modelling concept, this family of models still tend to be
placed within the inventory management category (see e.g. Nahmias [21]).

Let us examine the results of the basic “News-boy” model. (We skip the
mathematical derivation, and simply refer to Nahmias [21] or Ravindran et.
al. [24] for complete background information.)

Input for the model is given by: (Parameters α and β are given lower and
upper bounds for demand outcome respectively.)

f(Q) : Probability density for demand Q ∈ [α, β]

co : overage cost, cost per unit of positive remaining inventory

cu : underage cost, cost per unit of unsatisfied demand

The optimal order quantity Q∗ is then (in the continuous case) found by
solving;

F (Q∗) =
cu

cu + co
(3.9)

where F (Q∗) =
∫ Q∗

a
f(Q)dQ. If we choose a discrete probabilistic formu-

lation (e.g. change from the continuous f(Q) to a discrete Px(Q) = P (x ≤
Q)), the solution changes slightly to:

Px(Q
∗) ≥ cu

cu + co
(3.10)

3.2.2 A simple T-shirt example

Now, let us illustrate an application of the “News-boy” model from Subsec-
tion 3.2.1 through a simple event-oriented example. MIJF sells t-shirts, one
or several special made for each festival.

One key question for the festival (apart from the pricing policies for the
t-shirts, briefly discussed in Section 3.3) is the amount to order or buy. If
MIJF orders too few, they lose potential sales profits, but if they order too
many, they will have to sell the remaining t-shirts at a lower price. Let us
first assume that the sales of these t-shirts are proportional to attendance
numbers. That is, the more tickets to concerts sold, the more t-shirts are
sold. This seems to be a reasonable assumption, but it may well be that it
is too simplified. Furthermore, let us assume the sales of a single t-shirt to
simplify even more. Let us continue by examining some available statistics.
Table 3.4 contains total ticket sales from 2005 up to 2009 [26].
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Year 2005 2006 2007 2008 2009
#Tickets 28074 27081 29889 30173 34704
#T-shirts 9358 9027 9963 10058 11568

Table 3.4: Tickets (and t-shirts) sold at MIJF: 2005 – 2009

Now, in this example, we are not interested in the number of tickets
sold, but the number of t-shirts sold. And our simplifying assumption of a
proportionality between tickets and t-shirts comes handy to construct t-shirt
demand (the final row in table 3.4). Obviously, to arrive at this row, we must
specify this proportionality, and based on some loose information from the
MIJF management, we choose the following: for each third ticket sold, one
t-shirt is sold. As a consequence, the final row is found simply by dividing
the second row by 3.

Looking at table 3.4, we observe a positive trend, but not a clear pattern.
Hence, some uncertainty regarding the possible ticket sales for the upcoming
2010 festival22 seems reasonable.

In order to complete the example, finding the number of t-shirts (Q∗) that
MIJF should order before the (no gone) 50 years anniversary 2010 festival,
we need two bits of additional information:

1) f(Q)

2) cu and co

The only available information for addressing the content of the proba-
bility density function f(Q) is the content of table 3.4. How to do this is
clearly not obvious. Nahmias [21] provides an example where a histogram
is constructed and then a discrete probability density. This might be ac-
ceptable in a situation where you have a reasonable amount of observations.
Unfortunately, our data sources for the ticket sales (and hence also the t-shirt
demand) is far from adequate. We are stuck with only 5 observations, far to
restricted for such an approach. So, what could we do? One approach could
simply be to try to use some continuous density functions roughly spanning
the observed area. Figure 3.1 indicates a possible approach.

If we take a closer look at figure 3.1, we observe that two different den-
sities have been suggested. To the left, a somewhat pessimistic approach -
a uniform distribution meaning that anything in between 9000 and 1300 t-
shirts could be sold with equal probability. To the right, a far more optimistic

22At the time of writing, the 2010 festival is long gone, and it is possible to obtain the
ticket sales for this year. However, we assume lack of knowledge of this number here.
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Q

f(Q)

Q

f(Q)

9000 13000 9000 13000
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f(Q
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+b
Q

Figure 3.1: An optimistic and a pessimistic density for t-shirt demand.

(triangular) version is suggested where more probability mass is located to
the right (more sales). In retrospect, perhaps the left uniform alternative
would have been the best, recalling the extremely bad weather during the
first part of the festival. However, thinking as if we are standing before the
festival, a more optimistic approach may have seen to be better - after all,
a 50 years anniversary should indicate some special event with really great
artists and much audience.

The numbers 9000 and 13000 are of course important. They are chosen
on the basis of the minimal and maximal historic observations from table 3.4
roughly by simply rounding down 9358 to 9000 and rounding up 11568 to
13000. The reason for rounding up more on the positive (right) side is again
due to the previous argument on a big anniversary festival. Recall, that the
approach of defining f(Q) on a closed interval [α, β] effectively means that
the probability of selling t-shirt amounts below α and above β is zero.

Now, to be able to apply equation (3.9), the distribution functions FU(Q)
and FT (Q)23 must be found. The first step in a two stage procedure involves
finding mathematical expressions for the densities - fU(Q) and fT (Q). The
structure of the two density functions may be outlined directly as:

fU(Q) =

{
h if Q ∈ [9000, 13000]
0 elsewhere

(3.11)

fT (Q) =

{
a+ b ·Q if Q ∈ [9000, 13000]
0 elsewhere

(3.12)

23The subscripts U and T refers to the Uniform and Triangular alternatives respectively.
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Then, our task is to identify the three unknown constants h, a and b in
equations (3.11) and (3.12).

h is easy to find, as total probability mass (the area of the rectangle of
to the left in figure 3.1) must equal 1. We find:

h(13000− 9000) = 1 ⇒ h = 0.00025 (3.13)

To establish a and b, we must utilize the same (argument as above), as
well as the fact that fT (Q = 9000) = 0. We get:

(13000− 9000) · (a+ b · 13000)
2

= 1

a+ b · 9000 = 0

or slightly rewritten as

a+ b · 13000 = 0.0005 (3.14)

a+ b · 9000 = 0 (3.15)

The above linear system of equations with two unknowns are easily solved
by subtracting 3.15 from 3.14 giving:

(13000− 9000) · b = 0.0005 ⇒ b =
0.0005

4000
⇒ b = 0.000000125 (3.16)

and

a+ 0.000000125 · 9000 = 0 ⇒ a = −0.001125 (3.17)

The second step would then involve transforming the density functions
fU(Q), fT (Q) into distribution functions FU(Q), FT (Q) by: (it is easier done
by keeping the original letters (h, a, b) than substituting in numbers)

FU(Q) =

∫ Q

α

hdQ (3.18)

and

FT (Q) =

∫ Q

α

(a+ b ·Q)dQ (3.19)

giving;
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FU(Q) =

∫ Q

α

hdQ = [hQ]Qα = h(Q− α) (3.20)

and

FT (Q) =

∫ Q

α

(a+b·Q)dQ =

[
aQ+

b

2
Q2

]Q
α

= a(Q−α)+
b

2

(
Q2 − α2

)
(3.21)

Now, the left part of equation (3.9) is taken care of through the two alter-
native expressions for F (Q) in equations (3.20) and (3.21). The remaining
necessary information is then related to obtaining values for cu and co. Luck-
ily24, this information (at least partially) is available. It turns out that the
t-shirt’s ordinary (in festival) price last year (2010) WAS 180 NOK, while
the post festival price is 30 NOK (see [4]). Unfortunately, we also need in-
formation on the buying price (or production cost) for the t-shirts. This
information is typically harder to obtain. After all, if the festival buys cheap
t-shirts from China and sell them expensively, market knowledge about it
may affect demand negatively. Hence, most event producers in this situation
will be reluctant in providing this information publicly. As a consequence,
we are left by guessing, and a reasonable guess could be 50 NOK as the
total buying/producing costs for each shirt. Now, cu and co can be easily
calculated. cu is calculated as the profit loss of ordering under the actual
demand. If too little is available, a potential profit of 180− 50 is lost; hence,
cu = 130. co is the profit loss occurring if one orders too much. In that case
the t-shirts are bought at 50 and sold at 30 leading to aco = 50 − 30 = 20.
Now, the often referred to critical ratio (right hand side of equation (3.9))
can be computed as:

critical ratio =
cu

cu + co
=

130

130 + 20
≈ 0.867 (3.22)

Hence, our two different proposed models for demand uncertainty lead to
the following equations to be solved for Q∗

U and Q∗
T :

h (Q∗
U − α) = 0.867 (3.23)

and

a (Q∗
T − α) +

b

2

(
Q∗2

T − α2
)
= 0.867 (3.24)

24Thanks to Assistant Professor Olav Hauge for this information
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Equation (3.23) is easy to solve. We find:

Q∗
U =

0.867

h
+ α = 3466.67 + 9000 ≈ 12467 (3.25)

Equation (3.24) is quadratic in the variable and will hence involve slightly
more complex algebraic manipulation. The solution is left for the reader as
an exercise.

The main point to observe her is how “close” the solution (12467) is to the
upper demand limit of 13000. The reason is obvious, as we loose a lot (130)
on under-ordering, but very little on the opposite (20), it is a good strategy
to order many. Actually, the managing director of the jazz festival (Jan Ole
Otnes) stated in various TV interviews before the festival that they would
order 10000 t-shirts and expecting to get rid of all. Our analysis indicates
a slightly different strategy, but again, we lack a lot of information here as
opposed to being insiders.

3.3 Extensions of the “News-boy” concept

In previous sections, a simple “News-boy” type event-oriented example was
presented. Even though some readers might find this presentation complex
enough, it is important to stress that our modelling in most instances are
ridiculously simplified. Think about the t-shirt example. We assume only
one t-shirt for sale. Reality is different, at the 2010 festival, 2 different t-
shirts (different motives, but the same basic shirt) was sold. This seemingly
simple change may actually have major consequences for our model concept.
It seems fairly obvious, in such a situation, to assume that one t-shirt might
be more popular than the other, and a certain demand correlation mecha-
nism must be added to the model - not a straightforward model change to
implement.

Furthermore, choice of production process (buying finished shorts or split-
ting the production process in parts to utilize postponement) is something to
consider and which surely makes the analysis even far more involved. By pre-
processing t-shirts and trying to postpone finalizing them, one can utilize the
possibility of observing demand during the festival and hence try to increase
finalizing the popular t-shirts as opposed to the less (observed) popular.

The two simple extensions above introduce both multi-period as well as
multi-product “News-boy” problems. Luckily, researchers have spent much
time and effort on introducing different extensions to this problem, so from
an operative point of view, it may be a lot of help to get from research
literature. A nice survey by Khouja [19] distinguishes 11 different extension
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categories, involving both multi- period and product situations, as well as
many other.

In addition to the above mentioned possible extensions, another brand
of modern research literature is interesting to consider. Recall from our
example, that the parameters cu and co were assumed parameters, that is,
given exogenous to the model. In reality, certain parts of these parameters
are under control of the decision maker. For instance, the two prices 180
(in-event selling price) and 30 (after-event selling price) can and must be
determined by MIJF. Choosing different values for these will surely change
the problem. Presumably, by increasing 130, less t-shirts at higher prices
are sold during the festival while doing the opposite, more t-shirts are sold
at lower prices. Obviously, the pricing policy must affect total expected
profits. However, to analyse these types of problems within the framework
of “News-boy” models, some demand relations (of stochastic nature) must
be added to the model. Simply spoken. We need to know how (uncertain)
demand changes when prices are changed. This adds even more complexity
to the problem, but has gained some research interest the latter years. The
excellent review by Petruzzi and Dada [23] sums up most existing research
in this area up to date.

3.4 Final comments

The special nature of events indicates that a single period stochastic inven-
tory management model concept (“News-Boy” or Newsvendor) seems as a
good starting point. Still, reality demands (perhaps) far more advanced ap-
proaches than the simple original “News-Boy” model. Doing this is surely
challenging. However, this topic is very much at the research frontier, and
one should expect further enhancements and improvements possibly fitting
events and service production even better. As such, for those interested in
doing research in the field, this “niche” might be an interesting option.

Inventory management in the traditional sense focus a lot on inventory
decision in a periodic setting. This problem area is perhaps less relevant for
events, still, purchasing in general is very relevant for most event producers,
so using the term purchase management is perhaps better from a scientific
point of view. In this text, we have still chosen to use the vocabulary of
traditional logistics.



Chapter 4

Event Production

4.1 Introduction

Classical production planning of the lot-sizing type is not very relevant in
event logistics. The reason ought to be obvious. Deciding how much to
produce of each product, and when to change from one product to another,
is surely not the most relevant event logistics decisions. Artist booking or
artist sequencing may certainly be relevant, but we will treat this subject
separately in Chapter 10.

Aggregate planning or workforce planning modelling may, however, be
relevant in the event situation as well. The ability to plan correct usage of
either an existing workforce, using hired labour or volunteers, may definitely
be a problem that most event producers are facing. Especially, the choice of
volunteers is very relevant for small and medium sized event producers.

Let us start by reinvestigating the classical aggregate production planning
model as outlined by Nahmias [21]:

4.2 The classical aggregate production plan-

ning model

Min Z =
T∑
t=1

[cHHt + cFFt + cIIt + cRPt + cOOt + cUUt + cSSt] (4.1)
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s.t.

Wt = Wt−1 +Ht − Ft ∀t (4.2)

Pt = KntWt +Ot − Ut ∀t (4.3)

It = It−1 + Pt + St − dt ∀t (4.4)

Ht, Ft, It, Ot, Ut, St,Wt, Pt ≥ 0 ∀t (4.5)

The variables and parameters of the model can be described as follows:
Variables:

Z = Objective function value - total cost

Wt = Number of employees (workforce) in time period t

Pt = Amount produced (units) in time period t

Ot = Number of units produced through the use of overtime in time period t

Ut = Number of units produced through the use of undertime in time period t

It = Amount in inventory by the end of time period t

Ht = Number of people hired in time period t

Ft = Number of people fired in time period t

St = Number of units subcontracted in time period t

Parameters:

dt = Demand forecast for time period t

cH = Cost related to hiring a worker

cF = Cost related to firing a worker

cI = Inventory cost per unit per time period of storage

cR = Production cost per unit within regular time

cO = Extra cost per unit related to the usage of overtime

cU = Per unit undertime cost

cS = Per unit subcontracting cost

nt = Number of production days in time period t

K = Number of units produced by a single worker in one day (workforce productivity)

I0 = Initial inventory volume

W0 = Initial workforce volume - number of employees before the planning horizon

T = Planning horizon
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4.3 Developing an event model alternative

The above model is meant for a traditional manufacturing situation where
manufacturing takes place all the time. In an event setting, surely our plan-
ning horizon is limited, but it surely also spans some time. For the MIJF
(and similar events mega-sports events may last from 5 days up to 3 weeks)
the obvious planning horizon is 6 days. But even for one-day events, we can
organize our work-force planning in several time periods, for instance, by
splitting a day in to several time periods of one or several hours.

Now, this model’s25 basic trade-off is between using inventory to keep a
stable work force (if hiring and firing costs are high compared to inventory
costs) or hiring and firing very dynamically in the opposite (cost) situation.
It ought to be fairly obvious that inventory has no place in the event setting.
Remember that this is finished goods inventory, and we cannot choose to
produce today and sell tomorrow (at least unless we open up for TV and
taping). In any case, the basic event situation must be consumed at the
production time, so we need to remodel the inventory parts. This is in
fact very simple, as we simply can remove it. However, doing this means
(principally) to introduce infinite inventory costs in the model above. If we
do so, the solution to that model is obvious. In that case, we will hire and fire
dynamically to meet demand as we move along. As a consequence, keeping
the above model concept unchanged and simply removing inventory variables
makes sense, but produce an obvious model solution.

So, we need to make some relevant changes to the above model to make
it suit the event situation better. We have already discussed that in events,
different groups of workers contribute to a single final product. The interest-
ing practical situation emerges as the cost structures of these groups vary a
lot. Typically, we have professionals (earning a salary) and we have various
groups of volunteers with low salaries - some even costless. In addition (to
make things reasonable), it seems sensible to assume that hiring and firing
costs as well as productivity also may differ between different types of work-
ers. For instance, I would believe that hiring volunteers might be a much
tougher job (at least for a new event) than hiring through payment and the
labour market. The practical meaning of this statement is of course that
hiring costs for volunteers might be higher than for professionals. Another
feature may be on the firing side. If one recruits a set of volunteers (say for
MIJF), then it might be infeasible (high costs) to fire them before the end of
the planning horizon.

In addition to the above arguments, there are issues related to facts such

25Equations (4.1) – (4.5)
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as this; all worker groups can not perform all tasks involved in the production
process. Such issues may be taken care of model-wise, but will introduce a
kind of multi-product setting as we have to define different tasks within a
single or multi-product setting. So for the time being, we try to keep things
simple and overlook such complicating matters.

Following up the above arguments, we define groups of workers. Let us use
the subscript j for groups, j ∈ {1, . . . , J}. Given this assumption, we need
to redefine some cost elements. Suppose we make the following transition:

New Parameters:

cR → cRj : Production cost (salary) per unit in workgroup j

cH → cHj : Hiring cost per worker in workgroup j

cF → cFj : Firing cost per worker in workgroup j

K → Kj : Productivity of worker in workgroup j

Furthermore, we have to redefine some of the variables and get rid of
some of the others. It seems reasonable to take out IT , Ot, Ut as well as St.
The use of over/undertime could be kept, but only for certain professional
groups. However, to keep things simple, we take out the above mentioned
variables. The new set of variables then becomes:

New Variables:

Ht → Hjt : Number of people hired in workgroup j and time period t

Ft → Fjt : Number of people fired in workgroup j and time period t

Wt → Wjt : Number of employees (workforce) in time period t in workgroup j

Pt → PjT : Amount produced in time period t by worker from workgroup j

Given the above redefinitions, the revised model is easily set up as:

Min Z =
J∑

j=1

T∑
t=1

[
cHJ Hjt + cFj Fjt + cRj Pjt

]
(4.6)

s.t.

Wjt = Wj,t−1 +Hjt − Fjt ∀jt (4.7)

Pjt = KjntWjt ∀jt (4.8)
J∑

j=1

Pjt = dt ∀t (4.9)

Hjt, Fjt,Wjt, Pjt ≥ 0 ∀jt (4.10)
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The model above (equations (4.6) – (4.10)) is easily explained. The ob-
jective (4.6) adds up all costs through workgroups j and time periods t.
Each work group j in time period t contains workers based on the number of
workers in the previous period, Wj,t−1, plus the hired amount minus the fired
amount - equation (4.7). The production amount generated by workgroup j
is computed by multiplying the productivity (Kj) for the group by possible
working days (or hours or whatever might be suitable) and by the number
of workers in the group - equation (4.8). Finally in equation (4.9), the com-
mon produced amount (for the single product) is computed by adding up all
production contribution over all groups to meet demand.

4.4 A simple example

In order to investigate the model a little bit further, we define a very simple
example. Let us assume two workgroups, a professional (expensive) group
named P and a cheap (volunteer) group named V . Table 4.1 defines various
parameters

CR
j CH

j CF
j K

P 10 100 50 2
V 1 500 300 1

Table 4.1: Data for the event aggregated production planning example

We observe from the example of table 4.1 that the P group costs more
salary-wise CR

P = 10 as opposed to CR
V = 1. On the other hand, both hiring

and firing is significantly more expensive for the V -group. The P -group is
also assumed twice as productive as the V -group.

Furthermore, to keep things simple, we look at a 2-period model where
we assume (perhaps reasonably) that demand increases from the first to the
second period. (Most events tends to put the most significant artists at the
end.) We use d1 = 20 and d2 = 50 to simulate this. Finally, we assume
the organization has 5 professional employees before the event, and zero
volunteers, that is, WP0 = 5,WV 0 = 0. The linear programming model is
implemented in LINGO, and model formulation and solution is presented in
Appendix E.

Looking at the solution in Appendix E, we observe that in spite of the
cheapness of the volunteers, the optimal solution involves only the usage of
professionals. To test whether the model seems reasonable, we could try
to increase the cost of professionals to see if we get a change in workforce
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assignment. We change CR
P from 10 to 1000 to be on the safe side. This

change produces the following solution;

Variable Value Reduced Cost

HP1 0.000000 101.0000

HP2 0.000000 150.0000

FP1 5.000000 0.000000

FP2 0.000000 0.000000

PP1 0.000000 0.000000

PP2 0.000000 0.000000

HV1 20.00000 0.000000

HV2 30.00000 0.000000

FV1 0.000000 300.0000

FV2 0.000000 1300.000

PV1 20.00000 0.000000

PV2 50.00000 0.000000

WP1 0.000000 2047.000

WP2 0.000000 948.0000

WV1 20.00000 0.000000

WV2 50.00000 0.000000

where we observe that the early (now very expensive) professionals are
fired in the first period and the now (relatively) very cheap volunteers are
hired up at the necessary level in both periods 1 and 2. As a consequence,
the basic logic of our model seems to work.

An interesting question to raise is whether this model only produces either
or solutions related to usage of different workforce groups. A proof is left for
the reader as an exercise.

4.5 Final comments

The very simplified model presented in previous sections must be judged
as a starting point for this type of analysis. It seems obvious that more
complex product formulations should be introduced to make such models
closer to realism. The reason why certain event producers mix different work
groups is of course also related to the fact that there are certain competence
demands on certain operations. Sound engineers can and should not be
picked at random for instance. As such, our one task type of model is highly
unrealistic.



Chapter 5

Event Supply Chains

Lately, Supply Chain Management has grown to be a “hot topic” in tradi-
tional logistics. Wikipedia [6] quotes Harlan [11] and defines the term as:

Supply chain management (SCM) is the management of a net-
work of interconnected businesses involved in the ultimate provi-
sion of product and service packages required by end customers.
Supply chain management spans all movement and storage of
raw materials, work-in-process inventory, and finished goods from
point of origin to point of consumption.

As globalization and increased global competition has evolved, special-
ized agents had emerged on the scene, forcing a producer to relate to a vast
number of agents on the supply side. The growth of suppliers and the compe-
tition between them is good for production efficiency, but creates some “new
problems” on the logistics side. The choice of suppliers and the management
of supply chains are suddenly important company logistics decisions. As a
consequence, the need for supply chain management has emerged.

In events, similar structures have evolved. Think about a modern interna-
tional football team. In the old days, players, managers and club staff were
recruited among locals. Today, the picture has changed dramatically, and
even small Norwegian football clubs have their own scouts travelling around
the world looking for international players. A modern football club’s ability
to handle it’s contact net of scouts, agents and clubs far away, might very
well be the factor that defines success or failure.

The same pattern is evident in other events. A modern international
music festival will have to use international performers. These performers
are travelling the world all the time, set out by their managers and book-
ing agencies. The ability to recruit such artists for a given event producer
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leads to a necessity for having vast and efficient information and networking
structures available.

Within this framework, competition and cooperation becomes relevant
subjects to handle. If the MIJF wants artist A, who is also wanted by
a competing festival in Norway (for instance the Kongsberg International
Jazz Festival), the ability to handle such competitive/cooperative situations
becomes evident. As a consequence, more elaborate tools than ordinary
optimization, is needed. Game theory is such a tool that deals with strategic
interaction between agents.

Applying game theory as a tool for better understanding and handling
the challenges related to competition and collaboration seems to be growing
in modern supply chain management analysis. Certain relevant textbooks
are arriving like, for instance [8], as well as relevant research material. Some
relatively new (personal) research, illustrating how simple game theory may
be applied in a kind of event supply chain management setting might even
be relevant to investigate - [27], [14].

We will not pursue these topics in more detail here as the lack of relevant
event oriented research material is so obvious. Still, it seems fairly easy to
predict that future will hold a lot of interesting research material covering
event supply management.



Chapter 6

Event Transportation

Transportation is a classical problem area within manufacturing. If you
produce cars in Japan, and want to sell them in Europe, you can not expect
your customers to travel down to Japan, and organize transportation of their
new vehicle back home. As a consequence, most manufacturers will have to
organize their own transportation scheme. Such organizing involves many
important decisions, such as choice of volume (how many items and what type
of items to transport at each shipment), mode (which type of transportation,
car, boat, plane etc.), frequency (how often), use of professional transporters
and so on. As a consequence, a lot of effort has been put into formulating and
solving various transportation problems such as the classical transportation
problem, transshipment problems, vehicle routing problems etc. Many of
such problems pose great challenges in solution. Especially, various versions
of the vehicle routing (how to find cost efficient routes given a set of customers
to visit) problem are hard to solve efficiently. As a consequence, a vast
literature in logistics transportation research exists.

In the event setting, things are to some extent turned around. As most
event producers are located somewhere, and their product is immaterial, it
can not be transported to the customers, at least not in the original form.
(Broadcast versions can of course be fed to the customers, but this line
of production falls into traditional manufacturing, and will hence not be
further discussed here.) As a consequence, most small and middle sized event
producers face the opposite situation. Instead of transporting their product
to the customers. They face the problem of transporting their customers to
the product.

This may of course propose similar challenges as for the manufacturer.
However, in most situations, event producers rely on existing public or pri-
vate transportation means to fulfil such transportation demand. Obviously,
certain situations, special locations, or very large (mega) events may lead
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to transportation problems that need to be solved, still such problems are
mostly solved by agents other than the event producer. An example may
clarify. Before the 1994 Lillehammer Olympics, analysis of road quality and
forecast demand pointed out a need for better quality and capacity of roads
between Oslo and Lillehammer. As a consequence, a part of the contract
between IOC and the organizers resulted in a major upgrade of this road -
finished immediately before the games. But, and this is the point here. This
road upgrade was made by those who do it all the time, “Vegevesenet” not
a part of the event production team.

The above argument points out that for small and medium sized events,
transportation problems - in the normal sense - do perhaps not classify as
necessary problems to care about for event producers. Surely, if the event is
big, or the location is vast or far away from everything, some resources must
normally be spent on attacking transportation needs, but still in most case,
more by convincing politicians to make the “right” decisions than actually
solving the transportation problem.



Chapter 7

Events and Dynamic Pricing

7.1 Dynamic Pricing - Introduction

In many event markets, black market activity is present. Black market ac-
tivity can be defined as a situation where a certain good which is sold can be
sold again relatively fast to a higher (or lower) price than the buying price.
Black market activity is normally regulated by law to be illegal.

The first situation (selling to a higher price) is the most common one in
event markets. Most of us have been offered tickets to events (immediately)
before the event at prices significantly higher than the price tag on the ticket.

How can this occur? As we have discussed earlier, the option of pre-
selling tickets is good for the event producers because it makes certain logistic
decisions easier. On the other hand, pre-selling tickets opens up a problem for
the event producer, namely that of controlling, understanding and forecasting
future demand. If an event producer guesses wrong on the dynamic demand
situation after pre-selling a ticket, it may well be that demand increases and
opens up for possible profits for a ticket owner. Additionally, certain event
producers are not allowed (or choose not) to change the price of tickets over
time. If this is the situation and a ticket owner observes increased demand,
the option of reselling the ticket may become tempting.

What has this to do with logistics? The question is obviously relevant,
as we already have claimed that pricing decisions typically are not defined
into the logistics toolbox. So, let us imagine another example. Think about
a grocery store, selling food. If we follow the daily demand patters of most
grocery stores, we observe that demand has two peaks. One in the morning,
and one (typically very big) in the afternoon. So, the customers tend to
use our store in a certain predictive but time-varying pattern. Our costs
are (surly) dependent on the number of customers we serve. So, if we could
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choose we would probably prefer a constant daily demand pattern (shifts,
and overtime would be minimized then). Now suppose furthermore, that we
are monopolists. If that is the case, we can assume the existence of dynamic
demand curves defining the relation between the price and the quantity for
our customers. Suppose we name such demand curves ft(pt). That is, if we
choose the price pt in time t, we receive the sales quantity (demand) ft(pt).
Normal goods would lead to a situation where a high price will return less
sales and vice versa. Then, given these assumptions, it is easy to realize that
a constant demand pattern ought to be obtainable for the grocery store by
simply increasing prices somewhat in the morning, somewhat more in the
evening and perhaps increasing them somewhat in between. The point is
simple. If we can control the price (and quantity; as monopolists we can) we
can exercise this control to affect our demand. And as demand affect logistics
costs, we must coordinate such decisions if, for instance profit maximization
is our objective.

Why do we need an assumption of monopoly? Let us again rethink our
grocery store example. If we exercise our price changing strategy, prices on
our products will be higher in the morning and quite high in the afternoon.
If the price on milk is 100 NOK per litre around 4 o’clock in the afternoon,
surely our customers will go to the next store if it exists (a non-monopolistic
situation). So, the consequence will (in a competitive situation) not be a
stable demand pattern after all.

In the event case, monopoly is more of the standard than the exception.
As such, these ideas should fit events far better than most manufacturing or
service situations. That is of course also the reason why black markets emerge
far more often in event settings than in normal manufacturing situations.

So far, we have argued as if all dynamic pricing situations involve an
increasing demand as time goes by. This is of course not necessarily the
case. Personally, I have experienced (on several occasions) the possibility
(and even the reality) of buying tickets for football games, just before the
game starts, at lower prices than the official ticket price. Surely, if demand
may increase over time, it may also decrease.

Let us try to sum up: given that the event producer has a profit-
maximizing objective, and is able to predict demand curves in a set of future
periods, and is (at least approximately) a monopolist, and if his future period
demand varies, then he should consider dynamic prices on his product. If
he chooses not to, black market activity is a certain consequence, and profit
that could have entered the pockets of the event producer is instead entering
other’s (black market seller’s) pockets.

Surely, most of these assumptions may not fit reality perfectly. For in-
stance, whether event producers are profit maximizers could be strongly ques-
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tioned. Would IOC naturally be considered profit maximizers, What about
MUFC or MIJF? The ability to forecast future period demand as demand
curves may of course be hard in practice, to judge a monopoly assumption
the same.

Finally, a few words on dynamic pricing in reality. Right before Christ-
mas, Norwegian retailer Elkjøp got heavy media on their Christmas pricing
policy. (See for instance [3].)

The prices (on various electronic equipment) turned out to differ (in one
direction) immediately before and after the initiation of Christmas shopping.
Normally, it is almost impossible to identify a conscious dynamic pricing
policy. However, in this case a secret note revealing the strategy was found.

Most of us know and accept that airline tickets are dynamically priced.
This seeming paradox is interesting if one would try a dynamic pricing pol-
icy in practice. It seems as if customers accept dynamic pricing in certain
markets, not in others. The reason might be habit or the fact that airline
tickets are also dynamically low priced. Anyway, modern technology (mainly
accessible and cheap Internet) opens up the possibility of using dynamic pric-
ing. If prices are to change rapidly over time, it is of course necessary to be
able to communicate such prices to the consumers. (This is not necessarily
related to the fact that a conscious underlying dynamic pricing strategy, but
that the prices must be communicated to be able to get trade.) Personally,
I would not be surprised if more service, manufacturing and especially event
producers start applying dynamic pricing in the near future.

7.2 Dynamic Pricing in Manufacturing

Let us start by looking at a classic manufacturing situation and look back on
the simple lot-size problem we formulated in Section 3.1.3 in equations (3.4)
– (3.8). Now, we adopt the assumptions above, and reformulate the prob-
lem to take pricing into account. Recall that demand is no longer given as
parameters, but endogenously taken care of in the model through a new set
of decision variables - pt price on the product in time period t. In order to
move forward, we must specify the structure of the demand functions. Let
us make it as easy as possible and assume linear demand functions. That is;

dt = αt − βt · pt (7.1)

where dt is the calculated demand if price pt is chosen in time period t
and αt and βt define the time varying linear demand curves.

Now, to make things reasonable, we need to change the objective to in-
clude revenue. When we allow ourselves to change prices (include prices as
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decision variables), it dos not make sense to minimize costs as the original
lot-size model did. Hence, we need to move to profit maximization and as
profits are calculated by subtracting costs from revenue we need to calculate
the per period revenues of this problem. This is straightforward: (quantity
times price)

Rt = (αt − βt · pt)pt (7.2)

Now, the pricing version of the lot-size problem of equations (3.4) – (3.8)
can be formulated as:

Max Z =
T∑
t=1

Rt −Ktδt − htIt − ctxt (7.3)

s.t.

xt + It−1 − It = dt ∀t (7.4)

0 ≤ xt ≤ Mtδt ∀t (7.5)

It ≥ 0, ∀t (7.6)

δt ∈ {0, 1} ∀t (7.7)
αt

βt

≥ pt ≥ 0 ∀t (7.8)

with dt and Rt defined in equations (7.1) and (7.2).
The above problem (equations (7.3) – (7.8)) was originally formulated

and solved by J. Thomas in 1970 [28]. Thomas proposed a Dynamic
Programming-based algorithm (inspired by Wagner and Whitin’s famous pa-
per [29]) which solves large problem instances very fast.

If we study this problem closer, we observe that the objective is non-
linear; quadratic to be specific, and it contains binary variables. In general,
this means that standard (MI)LP-solvers such as LINGO and CPLEX not
necessarily are able to handle it. Later relevant work includes this author
among others in multi-product and capacitated extensions [12], [13]. Inter-
estingly enough, such extended problems turn out be easier to solve than
their cost minimizing (CLSP) counterparts.

7.3 Dynamic Pricing in services - Revenue

Management

In the previous section - Section 7.2 - we discussed briefly how dynamic
pricing might be adapted to a manufacturing situation including storage
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possibility and set-up. If we move our vision to services, which by the way
resembles events much more, we observe (naturally) that set-up as well as
storage are of less importance. This is of course in accordance with previous
discussion on the topic (see Chapter 4). Hence, a strategy in to adopt this
situation to services or events for that matter could simply be to remove
storage possibilities (take out the It variables) as well as set-up (remove
the δt variables). This is of course possible, and if this is done, we are left
with a problem (basically) only containing the objective. This problem is
simply a multi-period (decoupled) classical monopoly, and the solution is
straightforward: (MR = MC)

p∗t =
αt − ct
2βt

(7.9)

This is of course a very simple solution, and given that reality fits, it could
definitely be applied. However, as usual, reality may not fit. For instance,
in both service and event production, certain dependencies may exist. If one
applies a dynamic pricing strategy say for pre-sales of tickets to a concert
known to the audience, the cheap tickets (if unlimited) will sell fast and
hence affect future demand after this point in time. Furthermore, the ability
to actually predict independent demand curves over time might be difficult
and in some sense fairly infeasible. Given these two arguments, it is perhaps
obvious to think about uncertainty of demand and the concept of Revenue
Management is focusing on this as well as the above modelling features. The
point is basically very simple. If one really wants to apply dynamic pricing
in events, reality may be too complex to just use the simple approach of
equation (7.9). We will not pursue these topics further here, just point at
some survey literature that may be both relevant and helpful in investigating
further options in event dynamic pricing and/or revenue management. The
paper by McGill and Van Ryzin [20] may be a good starting point





Chapter 8

Events and “hype logistics”

8.1 Introduction

Logistics is a somewhat immature discipline and (perhaps especially) the less
quantitative agents on the research and application side tends from time to
time to spend a lot of time on buzz-words. Logistics vocabulary is full of
such buzz-words, as JIT (Just in time), Modularization and Postponement
to name the most important ones. Let me try to be slightly clearer: the inten-
tion here is NOT to say that these words and their meaning is unimportant,
neither for manufacturing, service nor event production agents. Still, one
might get the feeling from time to time that these words introduce ground
breaking news. The main point of this short chapter is to explain the most
relevant concepts and outline their importance for event logistics.

8.2 Just In Time - JIT

Let us start by looking at the model underlying the simple EOQ model and
formulate total costs:

TC(Q) = K
λ

Q
+ h

Q

2
(8.1)

Now let us do exactly the opposite of what we did in Subsection 3.1.3 of
Chapter 3, interpreting K as a set-up cost instead of the normal (Inventory
management) order cost, and hence λ

Q
as number of set-up’s. In addition, we

need to assume that production runs infinitely fast, but these assumptions
play little or no role in the argument.

Now, the standard argument goes as follows. We minimize total costs by
solving TC ′(Q) = 0, which produces the EOQ formula (3.1).
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Now, this argument is based on several assumptions, one of them (not
very often discussed by the way) is that K is given and unchangeable. This
K, the set-up cost in our production, is a technology parameter underlying
our technology choices, so in principle we can change it. Normally, changing
it significantly costs a fair sum of money. But still, the option is there. Let
us assume we choose to change it from K to zero. What effect does it have
on our argument? In that case, the total cost function simplifies to:

TC(Q) = h
Q

2
(8.2)

and we minimize it by minimizing Q. Minimizing Q (it can of course
not be zero) means a very small Q and negligible average inventory. This is
the basic point in JIT. Keep almost no inventory and produce small series
or demand as it emerges, and this is important. Either, you will have to
invest large sums of money in both technology and the right manpower to be
able to force both set-up costs and times to zero. (Whether this turns out
to profitable is of course another story.) Alternatively, you could be lucky,
living in a part of the world where labour is cheap and flexible, yielding
similar consequences.

Looking at event production, inventory is not a topic for the finished
goods. As such, the main point in JIT of minimizing inventory is simply
not relevant; however, this is important. The above argument also has con-
sequences related to uncertainty in demand. If demand is highly uncertain,
the value of a flexible production system is higher than in the deterministic
case. So, by increasing organizational flexibility the producer also manages to
handle uncertainty much smoother. The necessity of forecasting is of course
(in principle) far less if the producer can meet any kind of demand at any
point in time with the given technology and manpower. An event producer
will in many cases face considerable demand uncertainty. As such, a JIT-type
of production system is good. The reason for choosing volunteers is of course
a part of this, as a volunteer plays the role of a cheap and willing worker,
able to show up at any point in time and do whatever is needed. Hence, JIT
is nothing new in event production, actually it is the oldest concept of all in
the event setting.

8.3 Postponement

Postponement means, as the word indicates, to postpone or delay the produc-
tion process. In a situation with demand uncertainty, it may be a good idea
to try to postpone major parts of production as late as possible or at least
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as late as necessary until uncertainty is revealed. Think about our example
of selling t-shirts at MIJF from Chapter 3, Subsection 3.2.2. If MIJF are
very much uncertain on t-shirt buyers taste, they could postpone the whole
t-shirt colouring and printing process until they observe what the festival
customers prefer. Or even better, they could stage a poll before the festival,
letting potential t-shirt buyers vote on their preferred t-shirts, letting them
buy it before the festival. This would be considered extreme postponement.
We see a lot of postponement in modern manufactured products. Modern
cell phones have a lot of visual tuning possibilities for backgrounds, menus,
transparency, animation and so on. Why? This is again postponement. In-
stead of guessing how customers would like their cell phones, let them decide
themselves.

So, if postponement is “manna from heaven” why not always do it. The
reason might be lack of uncertainty or costs. Postponing will typically involve
increased costs. T-shirts finished with print will normally be cheaper and
perhaps of better quality than those “home-made” at the festival. Finally,
postponement may not be possible. Think about postponement in a concert
setting. The idea is simple, if you do not know what the audience wants, let
them choose. So in a concert setting, if some of the audience wants Frank
Zappa and others the Beatles at the same time, it becomes kind of complex
to fix. Especially as both Zappa and the Beatles no longer are here. Letting
the home audience in a football match decide that now is the time for a home
goal is a pleasing idea, but still obviously infeasible.

To sum up, in situations with high demand uncertainty, postponement
may be good, but not at all cost. In the event setting, it may be high demand
uncertainty, but pre-sales soften the effect.

8.4 Modularization

Modularization means being able to produce a maximal number of finished
products with a minimal number of components (modules). Apart from the
fact that being able to modularize a production process may be cost efficient
(cheaper than the alternative), it is a strategy to achieve postponement.
If you are able to produce everything based on a small number of basic
components, you can postpone until customer preferences are revealed. The
classical example is a car engine, with which minimal tuning can change
from 100 HP until 350 HP. The single module engine can hence spawn a lot
of different products meeting customer preferences fast.

In events, we actually see modularization resemblance. Again, the local
jazz festival is a brilliant example. In latter years, the festival has chosen
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something referred to as artist in residence. This single artist will have
several concerts of different types (a multitude of products) from a single
module. Presumably, the main point of doing this is cost efficiency rather
than postponement, but the postponement strategy is definitely there. A
good advice for the festival could be to postpone the programme for the
artist in residence shows, letting customer demand decide. So, if Nils P.
Molvær stays until Saturday in the jazz week and the audience at that day
would prefer country music, let him perform it (given that he is able to).

Again, this kind of strategy is harder to foresee in sports events. But in
principle, keeping a minimal number in a football squad with flexible players,
that is, having 15 players, who could play well in all pitch positions could be
a possible modularization strategy in football.



Chapter 9

Event Facility Location

Facility location in classical logistics is related to the problem of choosing
(and designing) locations for production. If we again consider MIJF (or
any other festival for that matter), they have the choice of picking among
a set of possible predefined production locations. In Molde, these locations
may be Teatret V̊art, Alexandria Hotel, Bjørnsonhuset, Idrettens Hus, Molde
Cinema, The new “Teater and Jazz” house”, Aker Stadium and so on.

So, let us assume the existence of a set of locations Li, i ∈ 1, . . . , I. Let
us furthermore assume that each of these locations has some set of associ-
ated attributes. Such attributes could be costs, capacity, quality, transport
distance etc. Suppose in the absolute simplest possible situation, we con-
sider only cost attributes and define Ci as the cost attribute of location i.
Suppose furthermore that a given event should be assigned to one (and only
one) location at a minimal cost. In a mathematical programming setting,
this task can easily be formulated by introducing a set of binary variables:
say δi defined as:

δi =

{
1 if location i is picked
0 elsewhere

(9.1)
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and formulating the following MILP (PIP26)

Min Z =
I∑

i=1

δiCi (9.2)

s.t.

I∑
i=1

δi = 1 (9.3)

δi ∈ {0, 1}∀i (9.4)

The above problem (equations (9.2) – (9.3)) is of course ridiculously sim-
ple in a Mathematical Programming context. It merely picks out the smallest
of a set of given costs. Hence, it is no point feeding it into LINGO or CPLEX.
Still, as a building block for more advanced situations it may be handy.

Now, let us furthermore assume that it is not only costs but also the
quality of the location that are interesting to judge. Let us assume that
each location has a certain quality attribute, say Qi, where a high value on
Q means better quality and that a given lower bound of quality Q is given
(either by law or by our own choice.). The above problem can then easily be
extended to handle the new situation simply by adding

I∑
i=1

δiQi ≥ Q (9.5)

to the problem defined by equations (9.2) – (9.3).
Again, it is easy to derive at a specialized algorithm. Pick the smallest

Ci where (9.4) is satisfied.
A far more challenging situation (solution-wise) emerges if we change

our focus slightly. Let us now assume that we have booked a set of artists
Ai and that a set of possible locations Li are picked. Obviously, the set
of possible locations must be larger than the set of artists if we consider a
parallel set of events, which we indeed intend to do. However, to simplify, let
us furthermore assume that the number of booked artists equals the number
of possible locations I. In order to progress, we also need to make a slight
change in the cost structure. It seems reasonable to assume that artist costs
may be dependent on location. If a certain artist is booked at a low-quality
location, he or she may accept smaller fees. If this is the case, Cij must exist.
That is the cost of assigning artist i to location j27. In order to formulate

26Pure Integer Program
27It is perhaps easier to see this structure if we look at revenues instead of costs, but

the main logic is unchanged from a model point of view.
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a model for this situation, we need a slightly more complex binary variable.
We define:

δij =

{
1 if artist i is located at location j
0 elsewhere

(9.6)

Then, a minimal total cost artist-location-assignment can be found by
solving the following problem:

Min Z =
I∑

i=1

I∑
j=1

δijCij (9.7)

s.t.

I∑
i=1

δij = 1∀j (9.8)

I∑
j=1

δij = 1∀i (9.9)

δij ∈ {0, 1}∀i, j (9.10)

Above, (9.8) picks one (and only one) artist to each location j, while (9.9)
secures that each artist i gets a location.

The problem defined by equations 9.7 – 9.10 is commonly referred to as
an Assignment Problem in logistics or OR research literature. This problem,
as most name-tagged mathematical programming problems in logistics, has
undergone a vast research effort related to extensions and specialized algo-
rithmic development. Because of space concerns, the chapter concludes here
and the interested reader is directed to the excellent review by Pentico [22].





Chapter 10

Event Sequencing

Event Sequencing may be defined as how to sequence (or schedule) sub events
within a bigger event optimally.

Sequencing in classical manufacturing logistics is related to relatively
short-time or operational decisions and is normally defined in a machine
setting. How should jobs be fed into a single or a set of machines (serial,
parallel or networking structure) to achieve certain targets. In most cases,
such targets are related to efficiency in the form of various measures of speed
or capacity utilization. So a classical machine scheduling problem focuses on
job sequence decisions (sorting jobs) to achieve certain efficiency goals.

In events, typically neither speed, nor capacity utilization is a big issue.
On the other hand, demand is a big issue, and if demand may be affected
by certain event sequencing decisions, then event sequencing might be both
commercially important and challenging.

Identifying sequence demand links on the event scene is straightforward.
Think about a football league, the sequence of games may obviously affect
demand both positively and negatively. A simple example may clarify: sup-
pose the local team should meet the main opponent RBK. If this match (say
a match in Molde) takes place at a point in time (late in the season) where
much of table placement uncertainty is revealed, local attendance demand
may be low. On the other hand, if the table placement (and season timing)
is such that this given match is very important for final placement, demand
might be very high. Strictly speaking, this problem is not solved by the
event producer, but by the league owner or the regulator. It is of course still
relevant, but perhaps of less importance for most event producers.

The same situation is also present for festivals. Normally, demand (in
general) is higher towards the end of the festival28. Then the question of how

28Most festivals start before a week-end and ends during a week-end. The same type of
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to sequence the artists may be relevant. For instance, a certain very high
quality artist may draw audience more or less independent of the timing of
his performance, while other artists may need some “calendar help”.

Another point, is the booking situation. Most artists have schedules
already, and the possibility of fitting certain artists into certain specific time-
slots may affect not only local demand, but also costs related to hiring the
artists.

So, we can conclude that event scheduling is relevant. Various mathe-
matical models can now of course be discussed and adapted to the situations
described above. This is an important point, and in order to actually do
this, some critical input information is needed, namely the “demand link”.
In order to have any hope of solving such problems formally, information
on how the schedule (or sequence) affects demand must be quantitatively
present. Such information is hard to establish and in most cases simply un-
available. Obviously, scheduling decisions must be made, and they are made
all the time by all event producers; still a formal analysis of such problems
may demand data that is not present, and (perhaps) very costly obtained29.

Due to the above arguments, we refrain from more formal modelling ap-
proaches in this chapter. Still, it seems fairly obvious to this author that
most event producers could get far better products if some more systematic
approaches are applied in their event scheduling.

pattern may also be present, even at one-day events, where attendance demand may grow
through the event independently of artist scheduling.

29If the cost of obtaining necessary input information is very high, the question of
performing formal analysis becomes a trade-off, which does not necessarily point at doing
the analysis as the optimal solution.



Appendices





Appendix A

Calculations in figures 2.2
and 2.3

The actual moving average calculations underlying figures 2.2 and 2.3 are
given in tables A.1 and A.2:

YEAR DEMAND F̂ 2
t F̂ 3

t F̂ 4
t

2000 28897
2001 38092
2002 39306 33494,5
2003 34184 38699 35431,67
2004 50951 36745 37194 35119,75
2005 31436 42567,5 41480,33 40633,25
2006 37923 41193,5 38857 38969,25
2007 39451 34679,5 40103,33 38623,5
2008 31861 38687 36270 39940,25
2009 29398 35656 36411,67 35167,75

Table A.1: Moving average calculations underlying figure 2.2

In the above tables, the forecasts F̂ j
t are computed by the standard for-

mula:

F̂ j
t =

1

j

j∑
i=1

Dt−i (A.1)

where F̂ j
t denotes forecasted demand for time period t given moving av-

erage of order j and Dt is observed historic (actual) demand data.
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YEAR DEMAND F̂ 2
t F̂ 3

t F̂ 4
t

2000 28897
2001 38092
2002 39306 33494,5
2003 34184 38699 35431,67
2004 50951 36745 37194 35119,75
2005 31436 34344,5 35998,33 36521,75
2006 37923 32970,5 33375 34857,75
2007 39451 34679,5 34621,33 34512
2008 31861 38687 36270 35828,75
2009 29398 35656 36411,67 35167,75

Table A.2: Moving average calculations underlying figure 2.3



Appendix B

Data for the case in
Subsection 2.3.1

att mfk pos mot pos mot 3si mfk form mot form rbk mai 16 stadion brann jazz

4430,00 1,00 3,00 5,30 3,00 3,00 0,00 0,00 0,00 0,00 0,00

5434,00 1,00 11,00 15,00 3,00 1,00 0,00 0,00 0,00 0,00 0,00

7300,00 1,00 3,00 15,00 3,00 4,30 0,00 1,00 0,00 0,00 0,00

5830,00 2,00 8,00 13,00 2,30 2,00 0,00 0,00 0,00 0,00 0,00

5046,00 2,00 10,00 9,00 1,30 1,30 0,00 0,00 0,00 0,00 0,00

12990,00 2,00 1,00 1,00 2,00 2,30 1,00 0,00 0,00 0,00 0,00

4857,00 2,00 5,00 5,00 1,30 2,00 0,00 0,00 0,00 0,00 1,00

2966,00 2,00 14,00 15,00 1,30 0,00 0,00 0,00 0,00 0,00 0,00

4379,00 2,00 5,00 5,30 2,00 2,00 0,00 0,00 0,00 0,00 0,00

3606,00 2,00 7,00 7,00 1,30 1,30 0,00 0,00 0,00 0,00 0,00

2228,00 2,00 13,00 7,70 0,70 1,00 0,00 0,00 0,00 0,00 0,00

2335,00 2,00 4,00 3,00 1,30 1,00 0,00 0,00 0,00 0,00 0,00

3435,00 2,00 9,00 6,70 0,30 0,70 0,00 0,00 0,00 1,00 0,00

4918,00 13,00 12,00 15,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

5051,00 9,00 10,00 15,00 1,00 1,00 0,00 0,00 0,00 0,00 0,00

3083,00 7,00 12,00 8,00 1,00 1,30 0,00 0,00 0,00 0,00 0,00

8365,00 4,00 1,00 3,00 3,00 2,00 0,00 1,00 0,00 0,00 0,00

4486,00 4,00 6,00 6,30 2,30 1,30 0,00 0,00 0,00 0,00 0,00

3500,00 3,00 12,00 10,30 1,70 1,30 0,00 0,00 0,00 0,00 0,00

3592,00 5,00 6,00 4,00 1,30 1,00 0,00 0,00 0,00 0,00 0,00

Table B.1: The first twenty data points for the regression analysis





Appendix C

LINGO model in
Subsection 3.1.3

The LINGO version of the MIP-problem of equations (3.4) – (3.8) is presented
below:

Min = 100*d1 + 100*d2 + 100*d3 + 100*d4 + 100*d5 + 100*d6

+ 100*d7 + 100*d8 + 100*d9 +100*d10 + 100*d11 + 100*d12 + 100*d13

+ 0.2*I1 + 0.2*I2 + 0.2*I3 + 0.2*I4 + 0.2*I5 + 0.2*I6 +0.2*I7

+ 0.2*I8 + 0.2*I9 +0.2*I10 +0.2*I11+ 0.2*I12 + 0.2*I13;

X1-I1 = 66;

X2 +I1 - I2 = 66;

X3 +I2 - I3 = 66;

X4 +I3 - I4 = 85;

X5 +I4 - I5 = 66;

X6 +I5 - I6 = 66;

X7 +I6 - I7 = 79;

X8 +I7 - I8 = 66;

X9 +I8 - I9 = 118;

X10 +I9 - I10 = 66;

X11 +I10 - I11 = 66;

X12 +I11 - I12 = 66;

X13 +I12 - I13 = 66;

X1 <= 942*d1;

X2 <= 942*d2;

X3 <= 942*d3;

X4 <= 942*d4;
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X5 <= 942*d5;

X6 <= 942*d6;

X7 <= 942*d7;

X8 <= 942*d8;

X9 <= 942*d9;

X10 <= 942*d10;

X11 <= 942*d11;

X12 <= 942*d12;

X13 <= 942*d13;

@BIN(d1);

@BIN(d2);

@BIN(d3);

@BIN(d4);

@BIN(d5);

@BIN(d6);

@BIN(d7);

@BIN(d8);

@BIN(d9);

@BIN(d10);

@BIN(d11);

@BIN(d12);

@BIN(d13);



Appendix D

Case solution in
Subsection 3.1.3

The LINGO solution for the MIP problem of equations (3.4) – (3.8) with
data for the MFK 2002 season is presented below:

Global optimal solution found.

Objective value: 607.0000

Objective bound: 607.0000

Infeasibilities: 0.000000

Extended solver steps: 23

Total solver iterations: 765

Model Class: MILP

Total variables: 39

Nonlinear variables: 0

Integer variables: 13

Total constraints: 27

Nonlinear constraints: 0

Total nonzeros: 90

Nonlinear nonzeros: 0

Variable Value Reduced Cost

D1 1.000000 100.0000

D2 0.000000 -88.40000

D3 0.000000 -276.8000
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D4 0.000000 -465.2000

D5 1.000000 100.0000

D6 0.000000 -88.40000

D7 0.000000 -276.8000

D8 0.000000 -465.2000

D9 1.000000 100.0000

D10 0.000000 -88.40000

D11 0.000000 -276.8000

D12 0.000000 -465.2000

D13 0.000000 -653.6000

I1 217.0000 0.000000

I2 151.0000 0.000000

I3 85.00000 0.000000

I4 0.000000 0.8000000

I5 211.0000 0.000000

I6 145.0000 0.000000

I7 66.00000 0.000000

I8 0.000000 0.8000000

I9 264.0000 0.000000

I10 198.0000 0.000000

I11 132.0000 0.000000

I12 66.00000 0.000000

I13 0.000000 1.000000

X1 283.0000 0.000000

X2 0.000000 0.000000

X3 0.000000 0.000000

X4 0.000000 0.000000

X5 277.0000 0.000000

X6 0.000000 0.000000

X7 0.000000 0.000000

X8 0.000000 0.000000

X9 382.0000 0.000000

X10 0.000000 0.000000

X11 0.000000 0.000000

X12 0.000000 0.000000

X13 0.000000 0.000000



Appendix E

LINGO - the problem in
Section 4.4

Formulation:

min = 100*HP1 + 100*HP2 + 1*FP1 + 50*FP2 + 10*PP1 + 10*PP2 +

500*HV1 + 500*HV2 + 300*FV1 + 300*FV2 + 1*PV1 + 1*PV2;

WP1 = 5 + HP1 - FP1;

WP2 = WP1 + HP2 - FP2;

WV1 = 0 + HV1 - FV2;

Wv2 = WV1 + HV2 - FV2;

PP1 = 2*WP1;

PV1 = 1*WV1;

PP2 = 2*WP2;

PV2 = 1*WV2;

PV1 + PP1 = 20;

PV2 + PP2 = 50;
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Main parts of solution:

Global optimal solution found.

Objective value: 2700.000

Variable Value Reduced Cost

HP1 5.000000 0.000000

HP2 15.00000 0.000000

FP1 0.000000 101.0000

FP2 0.000000 150.0000

PP1 20.00000 0.000000

PP2 50.00000 0.000000

HV1 0.000000 0.000000

HV2 0.000000 9.000000

FV1 0.000000 300.0000

FV2 0.000000 1291.000

PV1 0.000000 0.000000

PV2 0.000000 0.000000

WP1 10.00000 0.000000

WP2 25.00000 0.000000

WV1 0.000000 0.000000

WV2 0.000000 432.0000
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Exam exercises – 2011

MOLDE UNIVERSITY COLLEGE Page 1 of 4
SPECIALIZED UNIVERSITY IN LOGISTICS
FACULTY OF ECONOMICS, SOCIAL SCIENCE
AND INFORMATICS

Contact during exam:
Name: Kjetil K. Haugen
Phone: (cel.): 99456006
Phone: (office): 71214255

EXAM IN
EVM710 – EVENT LOGISTICS

Monday 23. of May 2011
Tid: kl. 09.00 - 13.00

All written aids + (K)
The exam contains 4 pages including the front page

Exercise 1 (50%) An event producer stages an outdoor event (for instance
one of the outdoor concerts at “Romsdalsmuseet” during the jazz-festival).

a) Name a set of (dependent) variables you believe may influence atten-
dance numbers (number of spectators) for this concert.
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MOLDE UNIVERSITY COLLEGE Page 2 of 4
SPECIALIZED UNIVERSITY IN LOGISTICS
FACULTY OF ECONOMICS, SOCIAL SCIENCE
AND INFORMATICS

b) Given your choice of variables in a), make a list of prioritization when
it comes to attendance number importance. Discuss and state reasons
for your answer(s).

Variable names Estimated parameters Variable ranges (possible values)
Weather 100 ∈ {1, 2 . . . 5}
Ticket price -2 ∈ {100, 200 . . . 500}
Week day 3 ∈ {1, 2 . . . 7}
Artist quality 500 ∈ {1, 2 . . . 5}

The table above contains results of a (multiple linear) regression model
based on historical data done by the event producer for the given concert.
The weather variable measures weather quality with value 5 as the best
possible weather. The ticket price is limited to choices ranging from 100
up to 500 NOK per ticket. The week day 1 is Monday, while 7 is Sunday.
Finally, artist quality is measured like the weather, with the value 5 as the
highest possible artist quality.

c) Look at the estimated parameters (in the table on page 1), and examine
the signs of the estimates. Do you find them sensible? what about the
values? (discuss and state reasons for your answers.)

d) Predict (forecast) attendance for a Rolling Stones concert (artist quality
= 5, ticket price = 500) on a Saturday with the worst possible weather
conditions.

e) What is the maximal possible attendance given this model? Find also
average (or expected) attendance given equally probable weather con-
ditions for the given concert.

f) In the course text-book (”Event Logistics”), the terms short term ver-
sus long term forecasting is defined. Explain the difference between
these terms and discuss whether applying short term versus long term
forecasting may imply differences when forecasting is performed by the
model in the table on page 1.

g) Make necessary assumptions and discuss what artist costs this event
producer can handle.
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Exercise 2 (20%)

Q∗ =

√
2Kλ

h
(F.1)

Min Z =
T∑
t=1

Ktδt + htIt + ctxt (F.2)

s.t.

xt + It−1 − It = dt ∀t (F.3)

0 ≤ xt ≤ Mtδt ∀t (F.4)

It ≥ 0, ∀t (F.5)

δt ∈ {0, 1} ∀t (F.6)

F (Q∗) =
cu

cu + co
(F.7)

The mathematical expressions above express solutions (F.1), (F.7) and a
mathematical programming formulation (F.2) – (F.6) for inventory manage-
ment problems we have discussed in this course.

a) Highlight the main differences in underlying assumptions between these
3 different mathematical models.

b) Give 3 examples of real world event situations that you feel might fit
each of these 3 mathematical models.
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Li 1 2 3 4 5 6 7 8
Ci 10 15 14 20 8 9 16 10
Qi 5 6 5 7 3 5 6 6

Table F.1: Location data

Exercise 3 (30%) Table F.1 contains location data for an event arranger
wanting to pick a single location for an event. The arranger can pick one of
8 possible locations each with a cost Ci and a quality attribute Qi (high Qi’s
are preferred by the event arranger.).

a) A friend of the event arranger states that the data table is unnecessary
complicated, and that location 1 just as well may be removed. What
do you feel about this suggestion?

b) Formulate an explicit mathematical programming model (objective
function and constraints) in a format that the LINGO-system may
take, given a certain law stating that the location quality of the planned
event at least must be higher than 6.

c) Suppose now, that the event arranger opens up for more than a single
event (and location) (say n events, where n is some given integer), and
that the law regulating location quality is changed to average qual-
ity standards. Formulate a new mathematical program covering this
situation.

d) Suppose n = 4 and find one feasible solution for this problem if the
average quality at least must be 6. Determine if the feasible solution
you have found is the optimal solution.
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Exam exercises – 2013

MOLDE UNIVERSITY COLLEGE Page 1 of 4
SPECIALIZED UNIVERSITY IN LOGISTICS
FACULTY OF ECONOMICS, SOCIAL SCIENCE
AND INFORMATICS

Contact during exam:
Name: Kjetil K. Haugen
Phone: (cel.): 99456006
Phone: (office): 71214255

EXAM IN
EVM710 – EVENT LOGISTICS
Tuesday 29. of October 2013

Time: kl. 09.00 - 13.00

All written aids + (K)
The exam contains 3 pages including the front page

Q∗ =

√
2Kλ

h
(G.1)
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Exercise 1 (50%)

a) Equation (G.1) contains the so called EOQ formula. Explain the mean-
ing of K,λ and h in the formula, and show how it can be derived by
minimizing total costs.

An event producer hosting a 12-day event plans to sell pancakes to his
audience. Forecasts for Pancake-demand is shown in table G.1 for all 12
event days.

Day 1 2 3 4 5 6 7 8 9 10 11 12
Demand forecast 50 50 50 50 60 60 60 60 70 70 70 70

Table G.1: Pancake demand forecasts

b) Assume that K = 100 and h = 0.18, and establish a (pancake) pur-
chasing plan for the event producer based on the EOQ approximation.

c) Calculate the cost of this plan.

d) Does the EOQ approximation secure an optimal solution? If not – why
not?

e) Formulate a model in LINGO that will secure an optimal solution to
this problem.
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Suppose an alternative set of demand forecasts, as shown in table G.2,
had been used:

Day 1 2 3 4 5 6 7 8 9 10 11 12
Demand forecast 59 59 59 59 60 60 60 60 61 61 61 61

Table G.2: Alternative pancake demand forecasts

f) Which of these two demand forecasts would you expect to be the better
approximation? (State reasons for your answer.)

g) Would the new demand forecasts in table G.2 affect the solution from
b)?

Assume finally that the event producer has experienced a proportionality
between order costs and order quantity. That is K = K(Q) = α · Q where
α > 0.

h) Analyse the purchasing problem under these circumstances.

Exercise 2 (30%)

F (Q∗) =
cu

cu + co
(G.2)

Equation (G.2) contains the solution to a so called Newsboy problem.

a) Why are Newsboy models considered important in Event Logistics?

b) Suppose you consider an event Newsboy situation. How would you
apply equation (G.2), and what information is needed?

Suppose now, that you consider a newsboy situation characterized as
follows: cu = co and f(Q) is symmetric. Furthermore, the expected demand
is given as 50.

c) What is the optimal order quantity given these assumptions?
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Suppose alternatively that cu is very very big compared to co (cu → ∞
while co is finite.)

d) What impact would this information have on solving the Newsboy
model? (State reasons for your answer.)

e) Find optimal order quantities in any Newsboy model when

1) cu → ∞ while co is finite

2) co → ∞ while cu is finite

Exercise 3 (20%)

a) Explain (shortly) the following concepts:

– JIT

– Postponement

– Modularization

b) Discuss shortly why and how these concepts may be important in prac-
tical event planning..
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Exam exercises – 2015

MOLDE UNIVERSITY COLLEGE Page 1 of 3
SPECIALIZED UNIVERSITY IN LOGISTICS
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Contact during exam:
Name: Kjetil K. Haugen
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EXAM IN
EVM710 – EVENT LOGISTICS
Tuesday 3. of November 2015

Time: kl. 09.00 - 13.00

No written aids + (KT) + English dictionary
The exam contains 3 pages including the front page

Exercise 1 (55%) In this course, we have discussed various forecasting
methods, for instance the moving average method and the linear regression
method. The moving average method is an example of a time series method,
while linear regression is an example of a causal method.
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a) Explain (briefly) the main differences between time series and causal
methods.

b) If you were to forecast some demand for an event producer, which class
of the above mentioned methods would you choose, and why?

t (time periods) 1 2 3 4 5 6 7 8 9
d (observed demand) 0 10 20 10 0 10 20 10 0

Table H.1: Historic demand observations

F 2
t =

dt−1 + dt−2

2
, F 3

t =
dt−1 + dt−2 + dt−3

3
(H.1)

Table H.1 above contains observed demand for some event. Equa-
tions (H.1) contain formulas for forecasts (F 2

t , F
3
t ) by the moving average

method with orders 2 and 3.

c) Find forecasts, using the moving average method, for both orders, (or-
der = 2 and order = 3), for the next upcoming time period (t = 10).

d) Which of the two forecasts would you choose if you only were interested
in this single forecast for t = 10? (State reasons for your answer.)

e) Suppose alternatively that you are interested in choosing more perma-
nently among orders 2 and 3. Make a short discussion on how you
would solve this problem?

f) How would a linear regression model with time (t) as the X-variable
and demand (d) as the Y -variable perform in this situation? (Hint :
You are not meant to perform lengthy calculations here.)

g) An external forecasting expert suggests to drop the classical methods
in this case, and defines the following forecast model:

Ft =

{
10 if t = {4, 8, 12 . . .}
10(t− Ct) for all other t′’s

(H.2)
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and Ct = 1 if t ≤ 3, Ct = 5 if 5 ≤ t ≤ 7, Ct = 9 if 9 ≤ t ≤ 11 and so
on. How would you judge the expert’s suggestion?

h) Could there be reasons why the expert’s suggestion is a bad choice of
forecast model? (State reasons for your answer.)

i) Could you think of any practical events that could produce such a
demand pattern as the one in table H.1? (Use your creativity!)

Exercise 2 (25%)

a) Why is uncertainty considered more important in Event Logistics than
in traditional Logistics?

b) The News-Boy model handles uncertainty and the solution involves
solving the following equation:

F (Q∗) =
cu

cu + co
. (H.3)

Explain all symbols in the model and give a brief explanation on how
it can be used.

c) Suppose F (Q) = αQ + β, that is a linear function. How much should
be ordered optimally? What probability density function would such
an assumption imply?

Exercise 3 (20%) Assume you have finished your master in Event Man-
agement and face an interview situation where a potential employer asks you
on the contents of Event Logistics and why such competence may be valid
to his/hers organization. Formulate an answer to this question. (Not longer
than 2 pages.)
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Solution to exam exercises –
2011

EXERCISE 1

a) One easy starting point is obviously to start by examining the table in
sub-question b) which surely contains variables that seems reasonable
to use in order to (partially) explain attendance demand. Weather,
ticket price, week day as well as artist quality should definitely in-
fluence the number of spectators on such an outdoor event. The main
question to investigate here should hence be related to alternative vari-
ables. Substitution seems relevant. After all, if other competing
events take place at or around the same timing either locally or glob-
ally, it may very well lead to decrease/increase in attendance numbers.
Venue quality (e.g. what investments are made into nice infrastruc-
ture) seats, shelter for rain, sound equipment, etc. may also (at least
to some extent) influence concert attractiveness. Furthermore, choices
related to marketing of the event may be important. Surely, the sin-
gle ticket price is not the only pricing factor affecting attendance. The
choice of pricing mechanism; pre-sales, price bundling etc. may also
be influential.

b) This question does (of course) not have a single correct answer. Here. I
am looking for some discussion on the different chosen variables. In my
opinion, the choice of artist seems to be the most significant. However,
a price too high may still lead to few spectators. Weather and week-day
seems less important, given the “right” artist choice, but could play an
important role if the artist is less famous. Substitution, venue quality
or pricing mechanism seems perhaps even less important than other
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variables, at least if we fix our case to the Molde festival. Some empir-
ical evidence indicate that the right artist choice may dominate almost
all other variables, still, times are changing, and audience preferences
may change as well.

c) The Estimated parameters in the table are all positive except the price
parameter which is negative. This seems reasonable as an increased
price (given all other variable values kept constant) should lead to less
audience. (It seems unreasonable to assume ‘ snob” effects related to
this kind of event.) The values of the estimated parameters indicate
that artist quality as well as price influence attendance most. A one-
step increase in artist quality leads to 500 more spectators. Increasing
the price from one level to another leads to a decrease in attendance of
200, while a positive weather change leads to 100 more in the audience.
The week day plays a less important role only contributing with 3 extra
through a one day change. The fact that Sunday is “better” than both
Friday and Saturday could perhaps be commented on. This is clearly
not sensible in the case at hand. To conclude, the discussion in sub
question b) seems reasonably covered by the given estimated parameter
values.

d) Given the textual information in the exercise, this should be straight-
forward:

Attendance = 100 · 1− 2 · 500 + 3 · 6 + 500 · 5 = 1618 (I.1)

e) Answering the first part should be straightforward. As all variables ex-
cept price has positive signs we would maximise contribution my max-
imising variable values (Weather= 5, week day= 7, Artist quality= 5).
The price variable however, contributes negatively and should be min-
imized (Ticket price= 100). Hence, the maximal possible attendance
given this model is:

Max attendance = 100 · 5− 2 · 100 + 3 · 7 + 500 · 5 = 2821 (I.2)

The given concert (The Rolling Stones concert) has defined Artist qual-
ity, Ticket price as well as Week day. This contribution ,which by the
way is:

Attendance without weather = −2 · 500 + 3 · 6 + 500 · 5 = 1518 (I.3)
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is given. The only uncertain factor is hence weather, and given an
equal probability of each weather instance, the expected (or average)
weather contribution is:

Expected weather att. =
1

5
(100 + 200 + 300 + 400 + 500) = 300

(I.4)

Consequently, the total expected attendance number given this situa-
tion is 1518 + 300 = 1818.

f) The concept of long versus short term forecasting is related to a sit-
uation where one forecasts series of events. If one must (for practical
reasons) forecast the whole event series before all events start, we talk
about long term. On the other hand, given a situation where certain
decision for instance related purchasing can be done after some of the
events has taken place, one could wait and update various information
in order to try to improve short term forecasts. In this situation, it is
clearly a singular event, and as such, the difference on long vs. short
term becomes dubious. And, as the only relevant variable to forecast
is weather (all other variables are in fact user decision variables), it
would boil down to possible quality differences between long and short
term weather forecasts. Personally, I really do not see much quality
difference on weather forecasts either long or short, they all seem just
as bad. So, for the case at hand, this effect would probably be minor.
(Surely, students arguing good for the opposite is very much allowed
to do so.)

g) This question is perhaps a little bit trickier (at least that was the inten-
tion). Firstly, let us make a starting assumption on the event producer
here. Let us assume that he/she is greedy. Without such an assump-
tion, it is hard to make anything out of this exercise. Given greed,
the producer would like to maximise profit. In order to find possible
profits, revenues must be calculated. So let us start by doing so. Fur-
thermore, we need to look at our model (silly as it is, it is the only
description we have) and it seems obvious that this model must govern
the solution of the exercise. Again , given greed by the producer, he
should obviously choose to stage his event on a Sunday. In practice,
this day may simply not be available, but according to the information
we have, the producer may choose this variable freely. As Sunday pro-
duces more attendance regardless of price, quality choices, it must be
economically sensible to choose Sunday. What about weather? This is
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a variable outside of the producers choice, so to make things easy, let
us assume average weather; that is a variable value of 3 and hence an
attendance contribution of 300. Given the choice of day and weather,
the attendance contribution amounts to 3 · 100 + 3 · 7 = 321, which i
attendance amount the producer will get independent of other decision
variable choices. Now, various revenue numbers can (easily) be calcu-
lated. Let us look at an example. It seems evident (doesn’t it) that
when it comes to artist costs we can bear, we must open up for the
possibility of artist costs dependent of artist quality. What we however
avoid (in order to simplify) is artist costs dependent of our price choice.
(In practice this could actually be a case, and would make the follow-
ing analysis significantly harder.) Anyway, we are free to make the
assumptions we like here, and do so. So, back to the example. Suppose
the producer choose Artist quality = 1 and Ticket price = 100. Then,
our model produces attendance = −200 + 500 + 321 = 621. The rev-
enue consequence is of course the price of each ticket multiplied by the
number of tickets sold (attendance). Hence, revenue in this situation
amounts to 621 · 100 = 62100. This kind of exercise could (obviously)
be performed for all possible combinations of Artist quality and ticket
prices producing the table below:

100 200 300 400 500

1 62100 84200 66300 8400 -89500

2 112100 184200 216300 208400 160500

3 162100 284200 366300 408400 410500

4 212100 384200 516300 608400 660500

5 262100 484200 666300 808400 910500

The squares in the table denotes the maximal revenue in each line
(for each choice of artist quality). Given our assumptions, this kind of
analysis provides sensible decision support for the event producer as he
for any artist quality choice can see immediately what revenues he has
to cover possible artist costs. Simultaneously, optimal pricing is also a
consequence.
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EXERCISE 2

a) The main difference is related to assumptions on future demand be-
haviour. The first 2 models, (EOQ and lot-sizing) assume deterministic
(perfectly predictable) demand, while the last one (News-boy) assumes
uncertain or stochastic demand. Additionally, the first two models
open of for multiple periods, EOQ infinitely many future periods and
constant demand, lot-sizing a given time horizon but variable demand.
The News-boy model assumes a single time period.

b) The key point in finding practical (sensible) examples for the 2 first
models is to look for event situations with nearly perfect predictable
constant and variable demand. A (close) to constant predictable de-
mand situation could arise through pre-sold tickets, but in practice we
would not be able to guarantee people showing up. A better example
might be a tournament with a given number of participants (predefined
programme) where all participants stay in the tournament. given such
a situation, food needs (say breakfasts) would often be predetermined
and hence a predictable constant demand is the result. Similarly, a
tournament with participants leaving opens up for a predictable but
varying demand (typically decreasing in such a situation). The News-
boy-situation is perhaps easier to define; a single event with uncertainty
in demand would suffice. Surely, a lot of other possible examples exist
here - left for student creativity.

EXERCISE 3

a) Table information suggests that the friend has a point. Location 1 costs
10, the same as location 8, but location 8 has better quality (6 > 5).
Given a reasonable greed-assumption, the friend’s advice should be
followed.

b) The model which seems natural to pick in this situation is the model
in the text-book (9.2) – (9.5), shown below: (I.5) – (I.8).

Min Z =
I∑

i=1

δiCi (I.5)
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s.t.

I∑
i=1

δi = 1 (I.6)

I∑
i=1

δiQi ≥ Q (I.7)

δi ∈ {0, 1}∀i (I.8)

It is possible to use LINGO in a modelling language framework, but
we have not learned this. So, the type of answer I would expect would
be the model written out in full as (applying the advice from question
a) and keeping the original i-definition):

Min Z = 15δ2 + 14δ3 + 20δ4 + 8δ5 ++9δ6 + 16δ7 + 10δ8 (I.9)

s.t.

δ2 + δ3 + δ4 + δ5 + δ6 + δ7 + δ8 = 1 (I.10)

6δ2 + 5δ3 + 7δ4 + 3δ5 + 5δ6 + 6δ7 + 6δ8 ≥ 6 (I.11)

δi ∈ {0, 1}∀i ∈ {2, . . . , 8} (I.12)

Obviously, to actually enter the model into LINGO, 15δ2 must for in-
stance be written like 15*d2 etc., and (I.12) like @BIN(d2);

c) A model for this situation could be:

Min Z =
I∑

i=1

δiCi (I.13)

s.t.

I∑
i=1

δi = n (I.14)

I∑
i=1

δiQi ≥ n ·Q (I.15)

δi ∈ {0, 1}∀i (I.16)

d) When n = 4 it means that we should pick 4 locations with an aver-
age quality of at least 6. A feasible solution could be picking locations
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2, 4, 6, 8 with an average quality of 1
4
(6 + 7 + 5 + 6) = 6 satisfying the

(average) quality constraint. The question of optimality is easy to han-
dle. It ought to be obvious that location 5 (Q5 = 3) can not yield
feasibility. Any combination including a quality of 3 will not reach an
average of 6. Then, what remains to check is whether any other 5’s
or 6’s could be interchanged with the existing ones yielding less costs.
Looking at the table, we observe that locations 3 and 7 are more expen-
sive than existing counterparts. Hence, the given solution is optimal.
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Solution to exam exercises –
2013

EXERCISE 1

a) in equation (J.1), K is the order cost (or alternatively set-up cost given
EOQ in production), λ is demand and h is per unit inventory cost.

EOQ is derived by forming the total cost function:

TC(Q) = K
λ

Q
+ h

Q

2
(J.1)

and minimizing by equating first order derivative to zero:

TC ′(Q) = −K
λ

Q2
+

h

2
= 0 ⇒ Q2 =

2Kλ

h
⇒ Q∗ =

√
2Kλ

h
(J.2)

b) First, we apply the EOQ-formula. K and h is given, but λ must be
established. In such a situation, we approximate by average demand.
Based on the information in table 1, the average demand is:

λ =
4 · 50 + 4 · 60 + 4 · 70

3 · 4
=

200 + 240 + 280

12
=

720

12
= 60 (J.3)

Then, utilizing equation (J.2) we find:

Q∗ =

√
2 · 100 · 60

0.18
=

√
66666

2

3
≈ 258 (J.4)
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Then, we can establish the purchase plan, as shown in table J.1: (an
implicit assumption of no ingoing inventory is needed). Additionally,
we adjust Q∗ to 204 in period 10 to finish up with zero inventory in
period 12, hence actually minimizing total costs. The plan is shown in
table J.1.

Day 1 2 3 4 5 6 7 8 9 10 11 12
Demand forecast 50 50 50 50 60 60 60 60 70 70 70 70
Q∗ (adjusted) 258 - - - 258 - - - - 204 - -
Inventory 208 158 108 58 256 196 136 76 6 140 70 0

Table J.1: Purchase plan for pancakes

c) The cost of the plan is calculated by the cost of 3 purchases (in period
1,5 and 10) and total inventory costs:

= 3·100+0.18(208+158+108+58+256+196+136+76+6+140+70) = 554.16
(J.5)

d) As the EOQ-approximation assumes constant demand, and this exam-
ple contains varying demand (from 50 gradually up to 70), we can not
expect the approximation to produce the optimal solution to the cost
minimization problem.

e) In order to arrive at a guaranteed optimal solution we have to formulate
a mathematical programming model for instance in the spirit of the
model in the text-book on pages 57-58. A LINGO version for such a
model may for instance look like the LINGO screen-dump in figure J.1

f) As the latter demand forecasts have a much smaller variability [59, 61]
compared to the original forecasts [50, 70] we should expect that the
EOQ-approximation would work better in the latter case. Here, all
demand forecasts are ”closer” to being constant than in the first case.

g) That depends on what we mean by the solution in b). The optimal
purchase quantity Q∗ does not change, as the average demand is un-
changed - 60. However, the actual plan will change as demand forecasts
are different. However, the changes will not be major. We do not com-
pute these changes here, as it is not asked for it.
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Figure J.1: The LINGO model from Exercise 1 sub-question e)
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h) If the order cost is not longer a constant (K(Q) = αQ), but depends
on the order quantity Q, the total cost function must be redesigned as
follows:

TC(Q) = K(Q)
λ

Q
+ h

Q

2
= αQ

λ

Q
+ h

Q

2
= αλ+ h

Q

2
(J.6)

αλ is a constant and the optimization problem degenerates to:

min TC(Q) = h
Q

2
(J.7)

The optimal solution to this problem is (clearly) Q∗ = 0 theoretically,
but in practice buying as little as possible without building inventory
and we end up with the ”Just-in-time” solution.

EXERCISE 2

a) Newsboy models are considered important in event Logistics because
events are characterized by significant demand uncertainty as well as
a limited event period where the need to formally model in-between
storage possibilities are less important.

b) The information which we need is an expression for f(Q), or F (Q)
given directly. In addition, we need values to compute cu and co. Typ-
ically we have information on the buying and selling price of the given
resource but we also the need the so-called salvage value or the price
after our event. These three pieces of information is used to compute
cu and co. Given this information, equation (2) needs to be solved - an
integral equation. Given a ”distributional” shape with analytic inte-
gration possibilities the next step is the to solve an (often non-linear)
equation in a single variable Q∗. Distributions lacking analytic solution
to the transformation f(Q) → F (Q) need numerical methods.

c) In a symmetric distribution, the mean equals the median. If, in ad-
dition, cu = co, the fraction on the right hand side of (2) becomes 1

2
.

Then, a Newsboy problem may be solved (simply) by ordering expected
demand. That is, in this case: Q∗ = 50.

d) A very high cu compared to co would (in the limit) lead to a right hand
side value in (2) of 1. No matter the shape of the distribution, the
solution is then evident, as ordering the maximal amount or the upper
limit of the distribution.
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e) Case 1) is discussed above. Case 2) leads to a right hand side value of
0. Hence:

1) Q∗ = β

2) Q∗ = α

given f(Q) ∼ [α, β].

EXERCISE 3 All answers to this exercise are directly available in the
text-book.
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Solution to exam exercises –
2015

EXERCISE 1

a) In a regression model, the variable of interest (Y ) is explained through
other variables (Xi). That is Y t = f(X t

1, X
t
2, . . .). In a time series

model, the variable of interest (Yt) is explained through previous in-
stances of itself. That is Yt = f(Yt−1, Yt−2, . . .).

b) In general, this question could of course not be answered. However, the
text book argues that Logistics of manufacturing often needs many
forecasts (many products) as well as speedy forecasts (short time
between forecast periods). In events, the need for many and speed is not
so obvious. In addition, as the example on football forecasting in the
text-book indicates, the inherent need for forecasting the Xi variables
which normally is troublesome related forecast quality, not necessarily
is such a big problem in the event setting. In short. events are often
planned long time before the event, which opens up for spending a
little more time on forecasting. Hence, more complex models like for
instance regression models may be more useful in this setting.

Normally, making a plot of the data may be helpful when certain forecast
computations are demanded. Hence, we start by making a plot of the given
demand data.

As figure K.1 indicates, the given demand data shows a “wonderfully”
regular pattern.

c) As both formulas for the needed computations are given, they should
be easily computed by:



138 APPENDIX K. SOLUTION TO EXAM EXERCISES – 2015

Figure K.1: A plot of the given historic demand data

F 2
10 =

10 + 0

2
= 5 and F 3

10 =
20 + 10 + 0

3
= 10 (K.1)

d) We have no more information than the historic demand pattern (see
figure K.1), which shows remarkably structured behaviour. As a conse-
quence, the moving average of order 3 which produces a forecast of 3 fits
perfect to a simple reproduction of historic demand. Hence, F 3

10 = 10
seems an appropriate choice of forecast.

e) Observe here that actual computations are not demanded. Hence,
something like: In order to pick among two forecast models, given
(only) historic data, we calculate forecasts which can be compared over
all possible historic data points. Then, forecast errors can be calculated
and either by MAD or MSE (or both) a final single number (represent-
ing total forecast error) could be compared to choose among the two
models.

For completeness I have also done the calculations. Figure K.2 sums
up:

Figure K.2: Excel calculations for the two models
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As can be observed from figure K.2, the order-3 model fits best histor-
ically, with a MAD of ≈ 6.7, while the order 2 model produced a MAD
of 10. Still, as figure K.3 indicates, none of the fit very well.

Figure K.3: Plot of forecast errors for the two models.

f) Here, one is explicitly not asked to perform regression calculations.
Hence what is asked for is an ability to make an argument on how a
regression line would be in this situation. Take a look at figure K.4:

Figure K.4: Location of the regression line.

The black line (with arrows) in figure K.4 is placed randomly together
with the demand data graph. It ought to be obvious that a rotation
downward reduces errors or “makes a better fit”. A similar argument
could be used if the line pointed in other directions. Hence we should
end up with a regression horizontal regression line as shown in red in
figure K.4.
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Of course, this one does not fit very good either. It hits in half of the
situations, but misses by 10 in the other half of the situations, which
should indicate a MAD around 5, only slightly better than the moving
average model of order 3.

g) Here, some mathematical construct is presented and the question then
is if the students are able to understand what it means. It should not
be that hard. for t = 4, 8, 12, . . . the value is 10. If we look back on
the demand data, this hits perfectly. For all other t’s a straight line
10(t − Ci) is the answer. Let us look at t = 1, 2, 3. t = 1 produces
10(1−1) = 0, t = 2 gives 10(2−1) = 10 and t = 3 gives 10(3−1) = 20.
This fits perfectly. The same holds for all other values of t. In addition,
the saw-pattern of demand is also replicated into the future. Hence, this
model produces a MAD of zero historically, and simply reproduces the
same pattern into all future. Given a “pattern-recognition” and future
“pattern interpolation” objective this seems like a perfect model.

h) Yes there could. Remember that ’patter recognition” not necessarily
is the same as forecasting. If future duplicates the past, this is a good
model. However, if future does not duplicate the past (as it normally
dos not), it may be a very bad model.

i) The given pattern [0, 10, 20, 10] is of course a very simple example of a
seasonal pattern. So, any events, say of winterly character (as we are in
Norway) could resemble this type of pattern. a summer season roughly
a quarter of the year (0-demand), 2 low seasons early and late winter
(10, 10 demand) and a top season (mid winter, demand = 20) could
fit nicely. A practical case; Aurora Borealis tourism may for instance
seem like a good candidate

EXERCISE 2

b) This question is discussed a lot in the text book. The main points
are related to the fact that many events have a long planning horizon
often at locations where they have not been arranged before, all making
demand more uncertain.

b) Q∗ is the optimal ordering quantity in a News-Boy model. F () is the
distribution function, and expresses the probability that some event is
below or equal to its input. cu is the cost of under-ordering, while co is
the cost of over-ordering.
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Usage means solving a certain equation with respect to Q∗ to find
the actual order quantity that minimizes expected costs. For given
values of cu, co and a specified F (), such a solution can be found; either
analytically or numerically.

c) A given liner distribution function means the the optimal order quantity
is found by solving the equation:

αQ∗ + β =
cu

cu + co
⇒ αQ∗ =

cu
cu + co

− β ⇒ Q∗ =
1

α

(
cu

cu + co
− β

)
(K.2)

As f(Q) = F ′(Q) = α, the density function must be a constant or a
uniform density.

EXERCISE 3 This is left to student creativity:)
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