

Master’s degree thesis

LOG950 Logistics

Heuristics for Binary Integer Programming Problems

Alexandr Reznik

Number of pages including this page: 62

Molde, 28.05.2021

Mandatory statement

Each student is responsible for complying with rules and regulations that relate to

examinations and to academic work in general. The purpose of the mandatory statement is

to make students aware of their responsibility and the consequences of cheating. Failure to

complete the statement does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6

below.

1. I/we hereby declare that my/our paper/assignment is my/our own

work, and that I/we have not used other sources or received

other help than mentioned in the paper/assignment.

2. I/we hereby declare that this paper

1. Has not been used in any other exam at another

department/university/university college

2. Is not referring to the work of others without

acknowledgement

3. Is not referring to my/our previous work without

acknowledgement

4. Has acknowledged all sources of literature in the text and in

the list of references

5. Is not a copy, duplicate or transcript of other work

Mark each

box:

1.

2.

3.

4.

5.

3.

I am/we are aware that any breach of the above will be

considered as cheating, and may result in annulment of the

examination and exclusion from all universities and university

colleges in Norway for up to one year, according to the Act

relating to Norwegian Universities and University Colleges,

section 4-7 and 4-8 and Examination regulations section 14 and

15.

4. I am/we are aware that all papers/assignments may be checked

for plagiarism by a software assisted plagiarism check

5. I am/we are aware that Molde University College will handle all

cases of suspected cheating according to prevailing guidelines.

6. I/we are aware of the University College’s rules and regulation

for using sources

http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://kvalitet.himolde.no/KS_UNL115
http://www.himolde.no/english/biblioteket/Sider/References,-sources-and-citations.aspx
http://www.himolde.no/english/biblioteket/Sider/References,-sources-and-citations.aspx

Personal protection

Personal Data Act

Research projects that processes personal data according to Personal Data Act, should be

notified to Data Protection Services (NSD) for consideration.

Have the research project been considered by NSD? yes no

- If yes:

Reference number:

- If no:

I/we hereby declare that the thesis does not contain personal data according to Personal

Data Act.:

Act on Medical and Health Research

If the research project is effected by the regulations decided in Act on Medical and Health

Research (the Health Research Act), it must be approved in advance by the Regional

Committee for Medical and Health Research Ethic (REK) in your region.

Has the research project been considered by REK? yes no

- If yes:

Reference number:

Publication agreement

ECTS credits: 30

Supervisor: Lars Magnus Hvattum

Agreement on electronic publication of master thesis

Author(s) have copyright to the thesis, including the exclusive right to publish the document

(The Copyright Act §2).

All theses fulfilling the requirements will be registered and published in Brage HiM, with the

approval of the author(s).

Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of

charge, make the thesis available for electronic publication: yes no

Is there an agreement of confidentiality? yes no

(A supplementary confidentiality agreement must be filled in)

- If yes:

Can the thesis be online published when the

period of confidentiality is expired? yes no

Date: 28.05.2021

Preface

This thesis was written according to the requirements for the Master of Science in Logistics

degree. The thesis was written at Molde University College – Specialized University in

Logistics. The work was supervised by Professor of Quantitative Logistics of Molde

University College (Norway) Lars Magnus Hvattum.

I would like to thank Lars Magnus Hvattum for the motivation, inspiration, supprot provided

during the work on this thesis, for the valuable input and for the amazing jokes that made

the work on the thesis even more enjoyable. I would also like to thank to Håkon Bentsen

and Lars Magnus Hvattum for providing the code base for the implementation of the

algorithm.

Summary

This thesis focuses on creating a construction heuristic algorithm for the general binary

integer problem. A greedy construction heuristic is created and different components are

tested in order to obtain a good algorithm. Greedy Randomized Adaptive Search Procedure

(GRASP) based on the greedy construction is implemented and tested. Conclusions

regarding the possibility of using GRASP for solving binary integer problem are made. The

way of combining the algorithms implemented during the work on the thesis with an

improvement heuristic in order to get better results is shown.

The result of the thesis can be used during the further research of heuristic approaches for

solving binary integer problem.

Contents

1.0 Introduction .. 5

2.0 Literature Review ... 7

2.1 Solving general BIP .. 7

2.2 Greedy Randomized Adaptive Search Procedure and construction heuristics 7

3.0 Problem description ... 9

3.1 Optimum satisfiability problem .. 10

3.2 Multidemand multidimensional knapsack problem ... 11

3.3 Multiple-choice multidimensional knapsack problem ... 11

3.4 Max-cut problem .. 12

4.0 Solution methods .. 13

4.1 Greedy Construction Heuristic ... 13

4.1.1 Calculating weight .. 14

4.1.2 Calculating rating .. 17

4.1.3 Accepting move .. 19

4.1.4 Dealing with infeasibility .. 20

4.2 Comparing solutions ... 21

4.3 Local search .. 21

4.4 GRASP ... 21

5.0 Results .. 24

5.1 Test instances.. 24

5.2 Approaches testing ... 28

5.2.1 Weight ... 29

5.2.2 Rating .. 32

5.2.3 Selecting a value ... 34

5.2.4 Infeasibility ... 36

5.3 Parameters tuning ... 38

5.3.1 𝛼 tuning ... 38

5.3.2 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 tuning ... 41

5.3.3 ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 tuning .. 44

5.3.4 Local search tuning ... 46

5.4 Final algorithm results .. 48

 2

5.5 Discussion... 51

6.0 Conclusion.. 53

Reference list ... 54

 3

List of Tables

Table 4.1 Sum of ranks example ... 18

Table 5.1 Training set instances .. 24

Table 5.2 Test set instances ... 26

Table 5.3 Results for the different approaches for calculating the weight.......................... 29

Table 5.4 Comparison of static and dynamic weight .. 30

Table 5.5 Influence of the importance normalization ... 31

Table 5.6 Results for the sum of ranks .. 32

Table 5.7 Comparison of rating calculation approaches ... 33

Table 5.8 Results for the "Do not make worse" approach .. 34

Table 5.9 Comparison of the approaches for selecting a value... 35

Table 5.10 Results for the different values of infeasibility ... 36

Table 5.11 Alpha testing results. Part 1 .. 38

Table 5.12 Alpha testing results. Part 2 .. 39

Table 5.13 Results for infeasibility testing ... 42

Table 5.14 Results for delta infeasibility testing ... 44

Table 5.15 Results for local search testing.. 46

Table 5.16 Results on the test set .. 48

 4

List of Figures

Figure 4.1 Knapsack problem example ... 15

Figure 4.2 Plot of the importance dependency on free space ... 16

Figure 4.3 Plot of the function y = 1 / x .. 16

Figure 4.4 Importance plot .. 17

Figure 5.1 Plot of average standard scores for alpha testing... 41

Figure 5.2 Plot of average standard scores for infeasibility testing 43

Figure 5.3 Plot of average standard scores for delta infeasibility testing 45

Figure 5.4 Plot of average standard scores for local search testing 47

 5

1.0 Introduction

Many optimization problems with real world applications can be modeled as binary optimization

problems (BIP). Some applications of binary integer problems in logistics are airline crew scheduling,

facility location problems, cutting stock problems. In addition, many different planning problems can

be formulated as binary optimization problems.

Crew scheduling problem is solved to assign crew in order to operate transportation systems. Every

huge company has to solve this problem in order to maintain the transportation system working. All

the airline companies are trying to assign crew in an optimal way to reduce the cost of operating and

to avoid delays and cancelations of flights.

Facility location problem is also very important for logistic companies. The optimal placement of the

facilities helps to reduce transportation costs while having dangerous materials far from housings.

Cutting stock problem is very important for the paper industry (Kallrath et al. 2014). The decisions

made by the stakeholders influence both the company’s revenue and the global climate change. Paper

industry influences the deforestation and therefore it has an influence on global warming. A more

efficient use of paper will help to reduce this influence.

The assembly line balancing problem is widely used to schedule manufacturing. It allows to distribute

task required to manufacture product among several workstations taking into account the precedence

relations between the tasks. Mixed-model assembly line balancing problem was formulated as binary

integer problem by Gökċen & Erel (1998).

With the growth of huge companies and the world in general the amount of the available information

increases. In order to get higher profit companies try to solve different problems with better efficiency.

This results in more constraints taken into account when solving binary integer problems.

The resulting binary integer problems are usually containing a huge number of constraints and very

hard to solve. The exact methods use unacceptably long time to solve these problems. That is why the

reasonable choice would be to use metaheuristic algorithms.

The lack of solvers for this specific problem opens a space for research. The direction of the research

is focused on the creating a heuristic algorithm for the variety of binary integer problems. The existing

solvers usually focus on solving specific binary integer problem (e.g. multidimensional knapsack

problem (Cappanera and Trubian 2005)) or they are targeting a more wide class of problems such as

mixed integer programming.

 6

The goal of the research is to examine whether using Greedy Randomized Adaptive Search Procedure

(GRASP) is a reasonable strategy for solving BIP. The research focuses on selecting strategies for

different parts of the algorithm suitable for solving BIP. Another question of the research is whether

GRASP can be combined with other metaheuristic algorithms, namely improvement metaheuristic, in

order to improve their results and performance.

 7

2.0 Literature Review

The existing solvers usually focus on solving specific binary integer problem (e.g. multidimensional

knapsack problem (Cappanera and Trubian 2005)) or they are targeting a more wide class of problems

such as mixed integer programming (Cplex 2009; Benoist et al. 2011).

2.1 Solving general BIP

There are several papers describing methods for the general BIP.

There are several contributions for solving BIP using heuristic methods. All the contributions are

using improvement algorithms and this leaves space for a research of a construction algorithm for

BIP.

Bertsimas, Iancu, and Katz (2013) created a pseudo-polynomial local search algorithm for BIP. The

test results are presented for set covering and set packing problems.

Gortazar et al. (2010) present a black box scatter search for general BIP tested on different classes.

The idea of solving optimally a linear programming problem first letting the variables to be in range

[0, 1] and then moving to a BIP solution using a heuristic was described by Balas and Martin (1980)

and recently used by Al-Shihabi (2021). The last paper focuses more on multidemand

multidimensional knapsack problem rather than on general BIP.

An approach for sloving optimum satisfiability problem can be applied to general BIP (Jeong and

Somenzi 1993). The algorithm presented is based on Binary Decision Diagrams. Authors claim that

any BIP can be converted to an optimum satisfiability problem. However, the resulting problem can

be too large and this can make the method impractical.

There are also methods based on exhaustive search and branch-and-bound strategies (Marinescu and

Dechter 2010)(Baessler 1992). The study of Balas (1965) presenting an additive algorithm is extended

by Glover (1965) and later by Geoffrion (1967).

2.2 Greedy Randomized Adaptive Search Procedure and construction

heuristics

Greedy Randomized Adaptive Search Procedure (GRASP)(Feo and Resende 1989) is a metaheuristic

algorithm for constructing solutions that was succesfully applied to a number of problems.

Different components of GRASP and successful implementation techniques with parameter tuning

approaches are described by Resende and Ribeiro (2003). GRASP was applied to a boolean

 8

optimization problem, namely to the Maximum Satisfiability problem (Resende, Pitsoulis, and

Pardalos 1997) (Resende and Feo 1996) and later to Weighted Maximum Satisfiability problem

resulting in the solutions better than the ones obtained by commercial solvers (Hvattum, Løkketangen,

and Glover 2005).

Festa and Resenda published several papers with the annotated bibliography of GRASP (Festa and

Resende 2002; 2009b; 2009a).

Another problem that can be formulated as BIP where GRASP was applied is two-partition problem

(Laguna, Feo, and Elrod 1994).

While some papers describe the use of GRASP for constructing solution (Vianna and Arroyo 2004)

there are a number of papers describing improvement metaheuristics or population-based

metaheuristics starting from random solution without using any construction heuristic other than

random (Hristakeva and Shrestha 2004),(Lai, Hao, and Yue 2019). But there are works (Duarte and

Martí 2007) using a combination of GRASP and an improvement metaheuristic to achieve good

results.

 9

3.0 Problem description

Binary integer problem can be formulated as:

max 𝑍 = ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

, (3. 1)

subject to

𝑏𝑖
𝑙 ≤ ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖

𝑢,

𝑛

𝑗=1

 𝑖 = 1, … , 𝑚, (3. 2)

𝑥𝑗 ∈ {0,1}, 𝑗 = 1, … , 𝑛, (3. 3)

where all the coefficients 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 are integers (Bentsen and Hvattum 2020).

Equality constraints can be represented as two inequality constraints with different signs ≤ and ≥. ≥-

constraints can be transformed into ≤-constraints by multiplying by −1 but this is not used to leave

more information about the problem structure. All the non-integer rational coefficients in the

constraints can be transformed into integers by multiplying each constraint by the least common

multiply of the denominators of all coefficients. The non-integer rational coefficients in the objective

function can be avoided by using the same approach.

The solution for the problem is a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ {0,1}𝑛.

The following terms are introduced for the description of different methods:

A set of unassigned variables 𝑉# is a set containing all the variables that haven’t been assigned a value

during the construction of the solution.

Activity level is the value of the left-hand side of the constraint. It is introduced as

𝐴𝐿𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

(3. 4)

Let minimum activity level of a constraint 𝑖 be:

𝑀𝑖𝑛𝐴𝐿𝑖 = min
𝑥∈{0,1}𝑛

(∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) (3. 5)

Let maximum activity level of a constraint 𝑖 be:

 10

𝑀𝑎𝑥𝐴𝐿𝑖 = max
𝑥∈{0,1}𝑛

(∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) . (3. 6)

The maximum and minimum activity levels for a partial solution are defined as:

𝑀𝑎𝑥𝑃𝐴𝐿𝑖 = max
𝑥𝑗∈{0,1}

(∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∈𝑉#

) + ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∉𝑉#

, (3. 7)

𝑀𝑖𝑛𝑃𝐴𝐿𝑖 = min
𝑥𝑗∈{0,1}

(∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∈𝑉#

) + ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∉𝑉#

, (3. 8)

Let the normalized constraint coefficients be

𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑎𝑖𝑗

𝑎𝑖̅

(3. 9)

where

 𝑎𝑖̅ =
∑ |𝑎𝑖𝑗|𝑛

𝑗=1

|{𝑗 ∶ 𝑎𝑖𝑗 ≠ 0}|
(3. 10)

3.1 Optimum satisfiability problem

The optimum satisfiability problem is an optimization problem assigning values to Boolean variables

to satisfy a Boolean expression (Davoine, Hammer, and Vizvári 2003). This problem is an extension

of a well-known Boolean satisfiability problem. Boolean satisfiability problem answers a question

whether there exists an assignment of Boolean variables that satisfies a given formula. The optimum

satisfiability assigns profit for setting each variable to 1 and answers the question what is the most

profitable assignment that satisfies the given formula.

The problem itself was formulated as BIP by da Silva, Hvattum, & Glover, 2020. A Boolean formula

have to be presented in a disjunctive normal form 𝑓 = 𝑇1 ∨ … ∨ 𝑇𝑚 where 𝑇𝑖 is a product of non-

negated and negated variables.

max 𝑧 = ∑ 𝑐𝑗𝑥𝑗 ,

𝑛

𝑗=1

(3. 11)

∑ 𝑥𝑗

𝑗∈𝐴𝑖

− ∑ 𝑥𝑗

𝑗∈𝐵𝑖

≤ |𝐴𝑖| − 1, 𝑖 ∈ {1, … , 𝑚}, (3. 12)

𝑥𝑗 ∈ {0,1}, 𝑗 ∈ {1, … , 𝑛} (3. 13)

 11

where 𝐴𝑖 and 𝐵𝑖 are sets of non-negated and negated variables respectively in clause 𝑇𝑖, 𝑐𝑖 is the profit

from making the variable 𝑥𝑖 true.

3.2 Multidemand multidimensional knapsack problem

The multidemand multidimensional knapsack problem (MDMKP) is a version of a well-known

knapsack problem. Knapsack problem is used to determine a set of items maximizing profit while the

total weigh of items does not exceed the limit. Multidimensional knapsack problem adds more

“knapsack” constraints that are similar to the weight constraint. Multidemand knapsack problem

introduces “covering” constraints which are opposite to “knapsack” constraints. Covering constraint

require the sum of parameters in a dimension to be greater or equal to the limit.

The multidemand multidimensional knapsack problem (MDMKP) has the following formulation

(Cappanera and Trubian 2005):

max 𝑍 = ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

, (3. 14)

∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ,

𝑛

𝑗=1

 𝑖 ∈ {1, … , 𝑚}, (3. 15)

∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 ,

𝑛

𝑗=1

 𝑖 ∈ {𝑚 + 1, … , 𝑚 + 𝑞}, (3. 16)

𝑥𝑗 ∈ {0,1}, 𝑗 ∈ {1, … , 𝑛} (3. 17)

𝑐𝑗 is the profit from including item 𝑗 in the solution, 𝑎𝑖𝑗 is the size of the item 𝑗 in the dimension 𝑖, 𝑏𝑖

is the limit for the dimension 𝑖. Problem has 𝑚 “knapsack” constraints and 𝑞 “covering” constraints.

3.3 Multiple-choice multidimensional knapsack problem

Multiple-choice multidimensional knapsack problem is another version of a knapsack problem. The

difference from the multidimensional knapsack problem is that in this version there are 𝑛 disjoint sets

of items 𝐺1, … , 𝐺𝑛 and exactly one item from each set have to be selected.

The mathematical formulation of this problem is the folowing:

max 𝑍 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐺𝑖

𝑛

𝑖=1

, (3. 18)

∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑗 ≤ 𝑏𝑘

𝑗∈𝐺𝑖

𝑛

𝑖=1

, 𝑘 ∈ {1, … , 𝑚}, (3. 19)

 12

∑ 𝑥𝑖𝑗

𝑗∈𝐺𝑖

= 1, 𝑖 ∈ {1, … , 𝑛} (3. 20)

𝑥𝑖𝑗 ∈ {0,1}, 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ 𝐺𝑖. (3. 21)

This problem has equality constraints that are hard to satisfy and it can be hard to obtain a feasible

solution for this class of problems.

3.4 Max-cut problem

The max-cut problem is defined on a weighted undirected graph 𝐺 = (𝑉, 𝐸). The goal of the

problem is to divide the nodes of the graph into two sets {𝑆 ⊂ 𝑉, 𝑉 \ 𝑆} so that the sum of weights

for all egdes between the sets is maximized. The problem is not originally formulated as BIP but a

BIP formulation is proposed by Lars Magnus Hvattum.

max 𝑍 = ∑ 𝑤𝑢𝑣𝑦𝑢𝑣

𝑛

(𝑢,𝑣)∈𝐸

, (3. 22)

𝑦𝑢𝑣 − 𝑥𝑢 − 𝑥𝑣 ≤ 0, (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 ≥ 0 (3. 23)

𝑦𝑢𝑣 + 𝑥𝑢 + 𝑥𝑣 ≤ 2, (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 ≥ 0 (3. 24)

−𝑦𝑢𝑣 − 𝑥𝑢 + 𝑥𝑣 ≤ 0, (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 < 0 (3. 25)

−𝑦𝑢𝑣 + 𝑥𝑢 − 𝑥𝑣 ≤ 0, (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 < 0 (3. 26)

𝑥𝑢 ∈ {0, 1} 𝑢 ∈ 𝑉 (3. 27)

𝑦𝑢𝑣 ∈ {0, 1} (𝑢, 𝑣) ∈ 𝐸 (3. 28)

Where 𝑥𝑢 shows whether the node 𝑢 belongs to 𝑆, and 𝑦𝑢𝑣 = 1 if and only if nodes 𝑢 and 𝑣 belong to

different sets.

The problem is not a typical BIP so it can be hard to obtain a good solution for this class of problems.

 13

4.0 Solution methods

GRASP is usually based on a greedy construction heuristic followed by an improvement heuristic

which can be a local search a more advanced technique such as variable neighborhood search. In this

chapter the building blocks of GRASP are discussed with their pros and cons.

4.1 Greedy Construction Heuristic

The goal of a greedy construction heuristic is to create a solution for an instance of a problem by

sequentially setting all the variables to a value. One idea can be to select the order of variables and

their values by random. However, the goal of solving a BIP instance is to get a solution that is both

feasible and has a high value of the objective function. This means that the greedy construction

heuristic have to take into account the objective function coefficient corresponding to the variable (a

value of a variable) and the constraints coefficients corresponding to the variable (a weight of a

variable).

Let 𝑉# be the set containing all the unassigned variables. Then the construction heuristic will start

from an empty solution where 𝑉# contains all the variables and end with an empty 𝑉#.

The pseudocode for a greedy construction heuristic is presented below:

1. 𝑉# ≔ {1, … , 𝑛} // make all variables unassigned

2. 𝒘𝒉𝒊𝒍𝒆 𝑉# ≠ ∅ 𝒅𝒐 // while there are unassigned variables

3. 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑗∗ //chose a variable from 𝑉#

4. 𝑥𝑗∗ ≔ 0 𝑜𝑟 1 // set a value for the selected variable

5. 𝑉# ≔ 𝑉# \ {𝑗∗} // mark variable as assigned

6. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

During each step the variable to assign a value is selected greedily following a criterion. This criterion

should be based on a combination of the value of the variable and the weight of the variable.

During the first step of the algorithm all the variables becomes unassigned. But in order to be able to

evaluate solution with partially assigned variables it is important to define what unassigned means.

For the binary problems, it is common to assume that unassigned variable is set to zero (Vianna and

Arroyo 2004). And this is the only implemented part by now, so hopefully I will write more on this

topic later.

Line 3 of the pseudocode requires selecting the best possible variable. In order to do this there is a

need to calculate rating of the variables that shows how good a possible assignment of each variable

 14

is and then select the variable with the highest rating. There are different ways to calculate rating

described later. For deciding how good a possible assignment of the variable can be both influence on

the constraints and influence on the objective function value should be taken into consideration. The

influence on the objective function value is trivial but the influence on the constraints consists of the

influences on every constraint. Weight is an artificial measure introduced to quantify the influence of

the variable on the constraints.

4.1.1 Calculating weight

The weight of the variable is a measure of space occupied by the variable in the constraints if set to 1.

There are different options to calculate this weight.

The easiest way to combine coefficients from different constraints is to take a sum of all coefficients.

This can introduce a problem of different scales for different constraints e. g. :

𝑥1 + 𝑥2 ≤ 1,

10𝑥3 + 10𝑥4 ≤ 10.

The sense is the same for both constraints, however the coefficients in the left-hand side differ. This

can be solved by using normalized coefficients, which are introduced in chapter 3 equation (3.9).

As the problem has both lower bound constraints and upper bound constraints they should be treated

differently. The weight of a variable is positive if setting a variable to 1 reduces free space (the

difference between the bound and the activity level) and negative if setting a variable to 1 increases

free space.

 The formula for static weight is

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑠𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵}

− ∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵}

, (4. 1)

Where UB is a set of all upper bound constraints, LB is a set of all lower bound constraints.

The downside of this method is that the weight is not changing according to the change in the activity

level of constraints and it’s not related to free space in the constraint. If a variable has the same

coefficient for two constraints, but the activity level of one constraint is close to the bound and another

constraint has a lot of free space the contribution to the weight of a variable would be the same for

both constraints.

 15

Figure 4.1 Knapsack problem example

In the example above (a knapsack problem with positive coefficients) the static weight of the first

variable is lower, but setting this variable to one can lead to the second constraint being very close to

bound and the impossibility of setting another variable to one. However, setting the second variable

to one seems more promising because it leaves space in the second constraint to set more variables to

one in order to increase the objective function value.

The advantage of this method is low computational complexity. The weight can be calculated once

and does not change during the solution.

The problem of the static weight approach can be solved by using an importance of each constraint.

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵}

 − ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵}

(4. 2)

This will allow to give different importance to different constraints depending on the difference

between the bound and the activity level (free space) for every constraint.

𝑠𝑝𝑎𝑐𝑒𝑖 = {
𝑏𝑖

𝑢 − 𝐴𝐿𝑖 , 𝑖 ∈ 𝑈𝐵

𝐴𝐿𝑖 − 𝑏𝑖
𝑙 , 𝑖 ∈ 𝐿𝐵

(4. 3)

The upper bound constraint is discussed below. The reasoning for the lower bound is similar. Lower

bound constraint could be changed to the upper bound constraints by multiplying by −1. This results

in the different signs for different part of formulas. Equality constraints are treated as two constraints

with different signs.

Non-zero coefficients in all the constraints for a variable contribute to its weight. And this contribution

depends on the coefficient itself and on free space in the constraint. The less free space the constraint

has the higher importance it will have.

If a constraint has a lot of free space, it’s not quite important right now and the contribution of the

coefficient won’t be huge.

For the positive coefficient if the constraint is currently infeasible making it even more infeasible by

setting a variable to 1 is something which should be avoided. This will work also for a negative

coefficient. It’s quite important to make a currently infeasible constraint (with high importance) more

constraint 1 AL a11 upper bound

constraint 2 Infeasible space

constraint 1 lhs Infeasible space

constraint 2 a22 free space Infeasible spaceActivity Level

a12

a21

free space

free space

Activity Level

 16

feasible. The contribution to the weight should be huge (because of importance) and negative because

of the coefficient. Low weight is beneficial for the variable to be selected during a construction step.

The plot the importance of the constraint will look similar to the following:

Figure 4.2 Plot of the importance dependency on free space

The initial idea is to use an inverse of free space.

This will work for the constraints, which are satisfied from the beginning. But using an inverse can

be not the best choice here because it’s plot is similar to the required only for the positive side.

Figure 4.3 Plot of the function y = 1 / x

A more suitable choice here can be a modified sigmoid function:

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖 = 1 −
1

1 + 𝑒−𝑠𝑝𝑎𝑐𝑒𝑖
(4. 4)

It has a following plot:

Im
p

o
rt

an
ce

 o
f

th
e

co
n

st
ra

in
t

Free space

Contribution to the weight for a coefficient of the
constraint

 17

Figure 4.4 Importance plot

The problem here is that 𝑠𝑝𝑎𝑐𝑒𝑖 can be quite large (or negatively large) and for values greater than

for example 10 the difference in importance is extremely small. In order to solve this the values of

𝑠𝑝𝑎𝑐𝑒𝑖 have to be normalized somehow.

𝑠𝑝𝑎𝑐𝑒𝑖

𝑀𝑎𝑥𝐴𝐿𝑖−𝑀𝑖𝑛𝐴𝐿𝑖
 is a number from −1 to 1. Because 𝑀𝑎𝑥𝐴𝐿𝑖 − 𝑀𝑖𝑛𝐴𝐿𝑖 ≥ |𝑠𝑝𝑎𝑐𝑒𝑖| and 𝑀𝑎𝑥𝐴𝐿𝑖 −

𝑀𝑖𝑛𝐴𝐿𝑖 > 0 if the constraint has at least one non-zero coefficient.

It can be called normalized space. It solves a problem of space being too large but introduces a problem

of space being too small. This can lead to the insensible influence of the importance of different

constraints. In order to make the influence of importance higher normalization can be used.

𝑠𝑐𝑎𝑙𝑒(𝑥) =
𝑥 − 𝜇

𝜎
, (4. 5)

Where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝜇 =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
, 𝜎 = √∑ (𝑥𝑗− 𝜇)

2𝑛
𝑗=1

𝑛
.

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑠𝑐𝑎𝑙𝑒(𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒) − min(𝑠𝑐𝑎𝑙𝑒(𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒)) + 𝛿 (4. 6)

Subtracting the minimum element and adding delta makes 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑎𝑙𝑒𝑑 greater than zero

because a constraint should have a positive importance. Delta can be different.

4.1.2 Calculating rating

In order to choose a variable to set a value greedily we need a rating of all variables. As stated earlier

this rating should depend on the weight of the variable and its objective function value.

It’s beneficial to have a high objective function coefficient and low weight. This means that rating can

be obtained by multiplication of the objective function coefficient by a measure, which is opposite to

weight. An inverse of the weight won’t work because of the reasons described in the previous section.

It’s possible to use 1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑒𝑖𝑔ℎ𝑡) for the weight term of the product and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑐𝑎𝑙𝑒(𝑐))

for the other part. It’s important to use 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑐𝑎𝑙𝑒(𝑐)) and not just 𝑠𝑐𝑎𝑙𝑒(𝑐) to avoid multiplying

𝑤𝑒𝑖𝑔ℎ𝑡 by 0 (in this case we lose all the information about the weight). Scaling is important to avoid

 18

extremely large (small) values that becomes close to 1 (0) after the use of sigmoid. This leaves us

with

𝑟𝑎𝑖𝑡𝑖𝑛𝑔𝑗
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = (

1

1 + 𝑒−𝑠𝑐𝑎𝑙𝑒(𝑐)𝑗
) ∗ (1 −

1

1 + 𝑒−𝑤𝑒𝑖𝑔ℎ𝑡𝑗
) , (4. 7)

The unassigned variable with the highest rating will be used at the next move of the construction

heuristic.

Another approach to study is the sum instead of the multiplication of terms related to the objective

function coefficient and weight. However objective function coefficients and weights have a different

range and distribution. In order to make them comparable a normalization or scaling (statistical) can

be used.

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = 𝑠𝑐𝑎𝑙𝑒(𝑐)𝑗 − 𝑠𝑐𝑎𝑙𝑒(𝑤𝑒𝑖𝑔ℎ𝑡)𝑗 (4. 8)

Where 𝑤𝑒𝑖𝑔ℎ𝑡 can be static or dynamic and 𝑐 is a vector of objective function coefficients

Actually, multiplying or adding of the terms can lead to the loss of information (one term will be

dominating all the time). This can be avoided by creating 2 different ratings for objective function

contribution and weight. After two ratings are created each variable will have a rank in both of them.

The sum of ranks in both ratings can be used to select the best variable at each step (The lower the

sum is, the better the variable). To follow the fact that the best variable to assign has the highest rating

a negative sum can be used.

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = −𝑟𝑎𝑛𝑘(𝑐𝑗) − 𝑟𝑎𝑛𝑘(𝑤𝑒𝑖𝑔ℎ𝑡𝑗) (4. 9)

Table 4.1 Sum of ranks example

rank variable weight rank variable of coefficient variable sum of ranks

1 1 -4.25 1 2 10.5 1 1 + 4 = 5

2 3 0 2 3 7 2 4 + 1 = 5

3 4 2 3 4 3 3 2 + 2 = 4

4 2 14 4 1 -5 4 3 + 3 = 6

Variable 3 is best to assign in this example.

However, this approach is not perfect either. An issue here is the loss of the information. Now

variables having almost identical weight would be one place away from each other. Variables that

have a huge difference in weight can also be neighbors in the rating table if there are no other variables

with the weight between the weights of the selected variables.

 19

4.1.3 Accepting move

After a variable is selected during a step of a construction heuristic its value have to be determined.

One of the following approaches can be used.

Here I understood that all the criteria that I have try to set a variable to 1 even if has a negative

objective function coefficient. This is also something I should think of.

The method «Do not make worse» is based on the feasibility of constraints. The idea is to set a variable

to 1 if this won’t change any constraint from being feasible to being infeasible. If there is a constraint

which is not violated but becomes violated after setting a variable to 1 then a variable value will

become zero. This approach helps to stay in the feasible space but it might fail to find a good solution

because sometimes it’s beneficial to go into infeasible part of the solution space in order to find a

better solution later.

The method «Be able to recover» is based on the possible feasibility of constraints.

Minimum and maximum activity levels for a partial solution show the minimum and maximum values

that can be reached by the left-hand side of the constraint choosing different values only for

unassigned variables. If 𝑀𝑖𝑛𝑃𝐴𝐿𝑖 will become higher than the upper bound value this means that the

constraint cannot be satisfied. The same is true for a situation where 𝑀𝑎𝑥𝑃𝐴𝐿𝑖 becomes lower than

the lower bound value. These two situations have to be avoided. And this is the idea of this method.

A variable would be set to 1 if and only if after making this variable equal to 1 𝑀𝑖𝑛𝑃𝐴𝐿𝑖 ≤ 𝑏𝑖
𝑢 and

𝑀𝑎𝑥𝑃𝐴𝐿𝑖 ≥ 𝑏𝑖
𝑙.

Both approaches described above set a variable to 1 if it is possible. This can be improved by changing

the criteria from possible to beneficial. Now beneficial should be defined. Setting a variable to 1 can

be beneficial for the solution if the assignment is possible following a criteria described above and the

assignment either improves the objective function value or it improves the state of the constraints.

Improving the objective function value means having a positive objective function coefficient for the

assigned variable. Weight of the variable is correlated with the change of the state of constraints. A

negative value of weight can be a sign of the improvement in the state of the constraints. This approach

can help to avoid setting a variable to 1 if this action is possible but it will reduce the objective function

value and it will reduce free space in constraints.

 20

4.1.4 Dealing with infeasibility

The goal of solving a problem is to get a feasible solution. A feasible solution even with a low

objective function value is better than infeasible solution with the maximum possible objective

function value.

It can be beneficial to encourage the construction heuristic to try not to end up in infeasible space.

This can be achieved by setting a higher importance to the constraints which are currently infeasible.

This will contribute to weight of the variables.

Then for the static weight the formula would become

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑠𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐹}

+ 𝛼 ∗ ∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐼}

−

− ∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 − 𝛼 ∗ ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐼}{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐹}

(4. 10)

Where

• UBF stands for upper bound constraints which are currently satisfied (feasible)

• UBI – stands for upper bound constraints which are not currently satisfied (infeasible)

• LBF – stands for lower bound constraints which are currently satisfied (feasible)

• LBI – stands for lower bound constraints which are not currently satisfied (infeasible)

The same idea can be applied to the dynamic weight:

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐹}

+ 𝛼 ∗ ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐼}

 −

− ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐹}

− 𝛼 ∗ ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐼}

, (4. 11)

However, this step can be redundant for the dynamic weight because importance itself contains

information about free space in the constraint which corresponds to feasibility. A better approach for

finding a feasible solution is to give more importance to weight term in rating formula. Using 𝛼 inside

of the 𝑤𝑒𝑖𝑔ℎ𝑡 formula is not that efficient because 𝑤𝑒𝑖𝑔ℎ𝑡 is normalized later. A coefficient

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 can be applied to the whole 𝑤𝑒𝑖𝑔ℎ𝑡 term as

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = 𝑠𝑐𝑎𝑙𝑒(𝑐)𝑗 − 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑠𝑐𝑎𝑙𝑒(𝑤𝑒𝑖𝑔ℎ𝑡)𝑗 , (4. 12)

The sum of ranks for the rating now will look like

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = −𝑟𝑎𝑛𝑘(𝑐𝑗) − 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑎𝑛𝑘(𝑤𝑒𝑖𝑔ℎ𝑡𝑗), (4. 13)

 21

4.2 Comparing solutions

Both improvement heuristic as a part of GRASP and GRASP itself deal with the comparison of

solutions. A high objective function value does not matter a lot if the solution is infeasible. This

means that solution 𝑥′ is better than solution 𝑥 if 𝑥′ has lower infeasibility. And infeasibility can be

expressed as

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑢𝑚 + 𝛽 ∗ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡, (4. 14)

where

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑢𝑚 = ∑ (max (∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑥𝑗 −

𝑏𝑖
𝑢

𝑎𝑖̅

𝑛

𝑗=1

, 0) + max (
𝑏𝑖

𝑙

𝑎𝑖̅
− ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑥𝑗

𝑛

𝑗=1

, 0))

𝑚

𝑖=1

, (4. 15)

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 is a number of unsatisfied constraints.

If solutions have the same infeasibility, then a solution with a higher objective function value is

better.

4.3 Local search

A simple local search is implemented as the improvement part of GRASP algorithm. The

pseudocode of the local search is presented below:

1: input: initial solution, 𝑥

2: input: neighborhood operator, 𝑁

3: while there is a 𝑥′ ∈ 𝑁(𝑥) that is better than 𝑥 do

4: Choose the best neighbor 𝑥′ ∈ 𝑁(𝑥) that is better than x, and update 𝑥 ∶= 𝑥′.

5: end while

Currently local search is implemented only for a double-flip neighborhood.

𝑁2(𝑥) = {𝑥′ : ∑ |𝑥𝑗 − 𝑥𝑗
′| = 2

𝑛

𝑗=1
} (4. 16)

4.4 GRASP

The pseudocode of the resulting GRASP algorithm is presented below:

1. input: initial value for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 and ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

2. input: criteria for running the local search

3. input: 𝛼 parameter

4. while stopping criterion not met do

5. 𝑉# ≔ {1, … , 𝑛}

 22

6. while 𝑉# ≠ ∅ do

7. update 𝑟𝑎𝑡𝑖𝑛𝑔

8. Find a reduced candidate list, 𝐿𝑅𝐶 ⊆ 𝑉# consisting of 𝛼% best ranked variables according

to 𝑟𝑎𝑡𝑖𝑛𝑔

9. select randomly 𝑗 ∈ 𝐿𝑅𝐶

10. set a value to 𝑥𝑗 ≔ 𝑑, according to accepting move criterion

11. 𝑉# ≔ 𝑉#\ {𝑗}

12. end while

13. run local search for the solution 𝑥 if the criteria for running the local search is met

14. update the best solution 𝑥′ a better solution was found

15. update 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

16. end while

17. run local search for the solution 𝑥′ if the criteria for running the local search is met

18. return 𝑥′

There are several parameters that can be changed in the presented algorithm.

𝛼 parameter is used to control the size of the restricted candidate list. A low value of alpha corresponds

to a small size of a restricted candidate list and to a weak influence of randomness. With 0 as a value

for 𝛼 the algorithm becomes a greedy construction. A large value of 𝛼 leads to a large candidate list

and a solution highly influenced by the randomness.

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter is used as described previously. It shows how important is weight comparing

to the objective function coefficient for the rating of a variable. High values of the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑡𝑦

parameter make weight more important. And it more likely to find a feasible solution with weight

being more important. 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑡𝑦 parameter is updated depending on the previous solution found.

If during the last iteration of GRASP an infeasible solution was found then weight should be more

important and 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 is increased additively. If the last solution found was feasible that it

makes sense to focus on getting a solution with a higher objective function value and 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

is decreased.

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖+1 = {
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 + ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 − ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
(4. 17)

Where 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 is the value of the infeasibility used on the 𝑖𝑡ℎ iteration of GRASP and 𝑥𝑖 is

the solution found during the 𝑖𝑡ℎ iteration of GRASP.

There are different options to run the local search.

• Use local search for every solution found by GRASP (always run local search on line 13 of

the pseudocode)

 23

• Use local search for a solution found by GRASP if it is better than the solution that was

improved to get the current best solution (run local search on line 13 of the pseudocode if the

criteria is met)

• Use local search only for the best solution found by GRASP (run local search on line 17 of

the pseudocode)

• Do not use local search

 24

5.0 Results

To evaluate whether GRASP can be used to find solutions for the BIP, the algorithm described in the

previous chapter were implemented using c++ programming language. Computational tests were run

using a laptop with 2.60GHz i7-4720HQ CPU with 8 GB RAM, running Windows 10.

Tables with the results of testing are presented further in this chapter. The result of a test is usually

the objective function value, the number of violated constraints and the normalized sum of violations.

The majority of solutions found are feasible. In order to avoid columns in a table containing only

zeroes (for the number of violated constraints and the normalized sum of violations) the results are

presented in a following way:

• Objective function value, if the solution is feasible

• Objective function value (number of violations; normalized violation sum)

5.1 Test instances

Both training set and test set consist of different instances of BIP from literature. The instances for the

training set and for the test set were selected from literature and they represent different problem

classes.

Training set is used to decide which approaches work better for different parts of the GRASP

algorithm and of the greedy construction algorithm. The same instances are used for obtaining the

best parameter values for GRASP. Training set consists of the following instances:

Table 5.1 Training set instances

Instance Type Number of

variables

Number of

constraints

Non-zero

coefficients

Source

100-5-1-0-0 MDMKP 100 6 600 (Cappanera and

Trubian 2005)

100-5-2-0-0 MDMKP 100 7 700 (Cappanera and

Trubian 2005)

100-5-5-0-0 MDMKP 100 10 1000 (Cappanera and

Trubian 2005)

100-5-5-1-0 MDMKP 100 10 1000 (Cappanera and

Trubian 2005)

 25

250-10-1-0-0 MDMKP 250 11 2750 (Cappanera and

Trubian 2005)

250-10-5-0-0 MDMKP 250 15 3750 (Cappanera and

Trubian 2005)

250-10-10-0-0 MDMKP 250 20 5000 (Cappanera and

Trubian 2005)

g1 MAXCU

T

19976 38352 115056 (Helmberg and Rendl

2000)

g14 MAXCU

T

5494 9388 28164 (Helmberg and Rendl

2000)

sg3dl051000 MAXCU

T

500 750 2250 (Festa et al. 2002)

sg3dl101000 MAXCU

T

4000 6000 18000 (Festa et al. 2002)

100-5-01 MKP 100 5 500 (Chu and Beasley

1998)

250-10-01 MKP 250 10 2500 (Chu and Beasley

1998)

500-30-01 MKP 500 30 15000 (Chu and Beasley

1998)

I1 MMKP 25 10 133 (Khan et al. 2002)

INST01 MMKP 500 60 5022 (Khan et al. 2002)

rn50m30t4s0c0n

um0

OptSAT 50 30 120 (Davoine, Hammer,

and Vizvári 2003)

Test set contains 4 problem classes with 15 instances each. The test set includes the instances used

by Bentsen and Hvattum 2020 to perform a comparison of GRASP and the methotd created by the

authors.

 26

Table 5.2 Test set instances

Instance Type n m non-

Zero

Source

I5 MMKP 250 35 2508 (Khan et al. 2002)

I9 MMKP 2000 210 20009 (Khan et al. 2002)

I11 MMKP 3000 310 30027 (Khan et al. 2002)

I13 MMKP 4000 410 40050 (Khan et al. 2002)

INST01 MMKP 500 60 5022 (Khan et al. 2002)

INST03 MMKP 600 70 6024 (Khan et al. 2002)

INST07 MMKP 800 90 8009 (Khan et al. 2002)

INST18 MMKP 5600 290 61600 (Khan et al. 2002)

INST20 MMKP 7000 360 77000 (Khan et al. 2002)

INST21 MMKP 1076 210 10763 (Shojaei et al. 2013)

INST24 MMKP 584 140 21675 (Shojaei et al. 2013)

INST28 MMKP 1643 310 16439 (Shojaei et al. 2013)

RTI09 MMKP 158 40 1568 (Shojaei et al. 2013)

RTI12 MMKP 241 50 2448 (Shojaei et al. 2013)

RTI13 MMKP 295 60 2954 (Shojaei et al. 2013)

100-5-5-1-0 MDMKP 100 10 1000 (Cappanera and Trubian 2005)

100-10-5-1-0 MDMKP 100 15 1500 (Cappanera and Trubian 2005)

100-30-15-1-10 MDMKP 100 45 4500 (Cappanera and Trubian 2005)

100-30-30-0-1 MDMKP 100 60 6000 (Cappanera and Trubian 2005)

100-50-10-1 MDMKP 100 51 5100 (Cappanera and Trubian 2005)

100-50-q-1 MDMKP 100 51 5100 (Cappanera and Trubian 2005)

100-100-25-1 MDMKP 100 101 10100 (Cappanera and Trubian 2005)

100-100-q-1 MDMKP 100 101 10100 (Cappanera and Trubian 2005)

250-5-2-0-0 MDMKP 250 7 1750 (Cappanera and Trubian 2005)

250-10-1-0-14 MDMKP 250 11 2750 (Cappanera and Trubian 2005)

250-30-30-0-0 MDMKP 250 60 15000 (Cappanera and Trubian 2005)

500-5-5-0-14 MDMKP 500 10 5000 (Cappanera and Trubian 2005)

500-10-10-1-0 MDMKP 500 20 10000 (Cappanera and Trubian 2005)

 27

500-30-15-1-0 MDMKP 500 45 22500 (Cappanera and Trubian 2005)

500-30-30-0-0 MDMKP 500 60 30000 (Cappanera and Trubian 2005)

lmhn1000m5000num1 OptSat 1000 5000 15000 (da Silva, Hvattum, and Glover

2020)

lmhn1500m7500num1 OptSat 1500 7500 22500 (da Silva, Hvattum, and Glover

2020)

qn500m2500t2s0c0num0 OptSat 500 2500 5000 (Davoine, Hammer, and Vizvári

2003)

qn500m5000t2s0c0num0 OptSat 500 5000 10000 (Davoine, Hammer, and Vizvári

2003)

qn1000m10000t2s0c0num0 OptSat 1000 10000 20000 (Davoine, Hammer, and Vizvári

2003)

rn200m1000t10s0c0num0 OptSat 200 1000 10000 (Davoine, Hammer, and Vizvári

2003)

rn200m1000t10s0c25num4 OptSat 200 1000 10000 (Davoine, Hammer, and Vizvári

2003)

rn200m1000t40s20c0num0 OptSat 200 1000 40187 (Davoine, Hammer, and Vizvári

2003)

rn500m1000t25s0c0num4 OptSat 500 1000 25000 (Davoine, Hammer, and Vizvári

2003)

rn500m1000t25s0c25num4 OptSat 500 1000 25000 (Davoine, Hammer, and Vizvári

2003)

rn500m1000t25s0c50num0 OptSat 500 1000 25000 (Davoine, Hammer, and Vizvári

2003)

rn500m1000t100s50c0num0 OptSat 500 1000 99511 (Davoine, Hammer, and Vizvári

2003)

rn500m1000t100s50c25num

0

OptSat 500 1000 100798 (Davoine, Hammer, and Vizvári

2003)

rn500m2500t25s0c25num4 OptSat 500 2500 62500 (Davoine, Hammer, and Vizvári

2003)

rn500m2500t25s0c50num0 OptSat 500 2500 62500 (Davoine, Hammer, and Vizvári

2003)

 28

g5 MaxCut 19976 38352 115056 (Helmberg and Rendl 2000)

g15 MaxCut 5461 9322 27966 (Helmberg and Rendl 2000)

g25 MaxCut 21990 39980 119940 (Helmberg and Rendl 2000)

g35 MaxCut 13778 23556 70668 (Helmberg and Rendl 2000)

g45 MaxCut 10990 19980 59940 (Helmberg and Rendl 2000)

g50 MaxCut 9000 12000 36000 (Helmberg and Rendl 2000)

g54 MaxCut 6916 11832 35496 (Helmberg and Rendl 2000)

sg3dl053000 MaxCut 500 750 2250 (Festa et al. 2002)

sg3dl105000 MaxCut 4000 6000 18000 (Festa et al. 2002)

sg3dl144000 MaxCut 10976 16464 49392 (Festa et al. 2002)

sg3dl1410000 MaxCut 10976 16464 49392 (Festa et al. 2002)

toursg3-8 MaxCut 2048 3072 9216 7th DIMACS Implementation

Challenge

toursg3-15 MaxCut 13500 20250 60750 7th DIMACS Implementation

Challenge

tourspm3-8-50 MaxCut 2048 3072 9216 7th DIMACS Implementation

Challenge

tourspm3-15-50 MaxCut 13500 20250 60750 7th DIMACS Implementation

Challenge

5.2 Approaches testing

In this section the results for testing different approaches for different parts of the greedy construction

algorithm and of the GRASP are presented. To test different approaches for one part of the algorithm

(e.g., weight calculation or rating calculation) the approaches for all the other parts are fixed and then

the results for different approaches are compared to select the best one.

The approaches for calculating weight, rating and selecting a value are tested as a part of greedy

construction algorithm. Using GRASP can lead to results influenced by the randomization and will

not be the evidence of advantages of an approach.

For some instances, obtaining a feasible solution is harder than for other instances. That is why during

testing different approaches for calculating weight, rating and selecting a value each instance was

solved using the greedy construction heuristic using different values for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter.

 29

Then the best solution was selected as the result of the test. The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are

{ 0.5, 1, 2, 3, 5 }.

Several values are used for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter for several reasons. 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter

has a different influence on the result in different approaches, so it is impossible to select one value

for all the approaches. Selecting 1 as a value will result in getting mostly infeasible solutions. Later

the greedy construction will be used as a part of GRASP to obtain feasible solutions (or at least

solutions that are close to feasible) with the help of the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter. So, using 1 as a

value for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 for testing will not show the behavior of the algorithm that will be used

later. That is why different values are used.

5.2.1 Weight

There are different approaches for calculating the weight.

• The weight can be calculated simply as a static weight

• Dynamic weight without the normalization of importance

• Dynamic weight with normalized importance

The fixed parts of the greedy construction algorithm are the following:

• A sum of normalized parts is used for rating calculation (equations (4.8) and (4.12))

• “Be able to recover” rule is used for selecting the value for a variable.

• The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are { 0.5, 1, 2, 3, 5 }.

The results for 3 different approaches follow:

Table 5.3 Results for the different approaches for calculating the weight

Instance Static weight Dynamic weight without

normalization

Dynamic weight with

normalization

100-5-1-0-0 26375 26375 28416

100-5-2-0-0 20804 20795 26534

100-5-5-0-0 15275 16119 16054

100-5-5-1-0 2215 2270 6954

250-10-1-0-0 54868 54868 55728

250-10-5-0-0 40064 40658 51269

 30

250-10-10-0-0 38081 39373 46076

g1 0 0 0

g14 0 0 0

sg3dl051000 -173 -134 -187

sg3dl101000 -1494 -1229 -1500

100-5-01 23244 23306 24034

250-10-01 56325 56325 58474

500-30-01 109259 109259 113485

I1 147 147 147

INST01 8074 7853 8006

rn50m30t4s0c0num0 2912 2863 2863

All the methods are able to find a feasible solution for all the problems. The solutions for problems

g1 and g14 are trivial but local search is not used, so it is hard to find better solutions. The fact that

all the solutions are feasible allows to compare only the objective function values.

Table 5.4 Comparison of static and dynamic weight

Instance Static weight Dynamic weight without normalization Difference

100-5-1-0-0 26375 26375 0

100-5-2-0-0 20804 20795 -9

100-5-5-0-0 15275 16119 844

100-5-5-1-0 2215 2270 55

250-10-1-0-0 54868 54868 0

250-10-5-0-0 40064 40658 594

250-10-10-0-0 38081 39373 1292

g1 0 0 0

g14 0 0 0

sg3dl051000 -173 -134 39

sg3dl101000 -1494 -1229 265

 31

100-5-01 23244 23306 62

250-10-01 56325 56325 0

500-30-01 109259 109259 0

I1 147 147 0

INST01 8074 7853 -221

rn50m30t4s0c0num0 2912 2863 -49

Using dynamic weight is beneficial for all the problem classes except for MMKP and OptSAT. In

general, it can be concluded that using 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 of each constraint is beneficial for the algorithm.

Table 5.5 Influence of the importance normalization

Instance Dynamic weight without

normalization

Dynamic weight with

normalization

Difference

100-5-1-0-0 26375 28416 2041

100-5-2-0-0 20795 26534 5739

100-5-5-0-0 16119 16054 -65

100-5-5-1-0 2270 6954 4684

250-10-1-0-0 54868 55728 860

250-10-5-0-0 40658 51269 10611

250-10-10-0-0 39373 46076 6703

g1 0 0 0

g14 0 0 0

sg3dl051000 -134 -187 -53

sg3dl101000 -1229 -1500 -271

100-5-01 23306 24034 728

250-10-01 56325 58474 2149

500-30-01 109259 113485 4226

I1 147 147 0

INST01 7853 8006 153

rn50m30t4s0c0num0 2863 2863 0

 32

Normalization improves the results for all problem classes except for MAXCUT.

It can be stated that the greedy algorithm works better in general when using dynamic weight with

normalized importance.

5.2.2 Rating

As described in the previous chapter rating relies on two terms: weight and objective function

coefficient. There are different approaches for calculating the rating.

• The sum of normalized terms with the use of 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 coefficient to make one of them

more important (equations (4.8) and (4.12))

• Sum of ranks of the terms with the use of 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 coefficient to make one of them more

important (equations (4.9) and (4.13))

The fixed parts of the greedy construction algorithm are the following:

• Dynamic weight with normalized importance is used to calculate weight

• “Be able to recover” rule is used for selecting the value for a variable.

• The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are { 0.5, 1, 2, 3, 5 }.

The results for the approach with the sum of normalized terms are presented in the previous section

(Table 5.4). The result for the approach with the sum of ranks is below. If the solution is infeasible

violation sum and violation count are presented in parentheses.

Table 5.6 Results for the sum of ranks

Instance

Objective function value

100-5-1-0-0 27590

100-5-2-0-0 23481

100-5-5-0-0 18722

100-5-5-1-0 3482

250-10-1-0-0 61534

250-10-5-0-0 46438

250-10-10-0-0 46142

g1 10268 (722; 722)

g14 1128

sg3dl051000 -181

sg3dl101000 -1496

 33

100-5-01 23584

250-10-01 57508

500-30-01 112271

I1 143

INST01 8237 (1; 1)

rn50m30t4s0c0num0 2870

This approach fails to find a feasible solution for 2 instances from the training set while using the sum

of normalized terms allows to find a feasible solution for all the instances from this set. The

comparison of the objective function values for both methods is presented below (only for the

instances where a feasible solution was found by both methods).

Table 5.7 Comparison of rating calculation approaches

Instance Sum of ranks Normalized sum Difference

100-5-1-0-0 27590 28416 826

100-5-2-0-0 23481 26534 3053

100-5-5-0-0 18722 16054 -2668

100-5-5-1-0 3482 6954 3472

250-10-1-0-0 61534 55728 -5806

250-10-5-0-0 46438 51269 4831

250-10-10-0-0 46142 46076 -66

g14 1128 0 -1128

sg3dl051000 -181 -187 -6

sg3dl101000 -1496 -1500 -4

100-5-01 23584 24034 450

250-10-01 57508 58474 966

500-30-01 112271 113485 1214

I1 143 147 4

rn50m30t4s0c0num0 2870 2863 -7

Each approach works better than the opponent method in approximately half of the instances from the

table 5.8. This fact does not provide an obviously better approach. But taking into account the fact

 34

that the sum of normalized terms approach is able to find a feasible solution for all the instances this

approach is selected to be a part of the final algorithm. It can be beneficial in future to find a way to

combine these two methods to get better results for some of the instances. And this is one of the

questions for the further research.

5.2.3 Selecting a value

As described in the previous chapter there are two different approaches for selecting a value for a

variable:

• “Do not make worse”

• “Be able to recover”

• “Beneficial instead of possible”

The fixed parts of the greedy construction algorithm are the following:

• Dynamic weight with normalized importance is used to calculate weight

• A sum of normalized parts is used for rating calculation (equations (4.8) and (4.12))

• The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are { 0.5, 1, 2, 3, 5 }.

The results for the “Be able to recover” approach are presented earlier (Table 5.4). The results for the

“Do not make worse” approach follow:

Table 5.8 Results for the "Do not make worse" approach

Instance Objective function value

100-5-1-0-0 28416

100-5-2-0-0 26534

100-5-5-0-0 16054

100-5-5-1-0 6954

250-10-1-0-0 55728

250-10-5-0-0 51269

250-10-10-0-0 46076

g1 0

g14 2120

sg3dl051000 -130

sg3dl101000 -956

100-5-01 24034

 35

250-10-01 58474

500-30-01 113485

I1 147

INST01 8006

rn50m30t4s0c0num0 2863

The algorithm is able to find a feasible solution for every instance from the training set.

Table 5.9 Comparison of the approaches for selecting a value

Instance Don't make worse Be able to recover Difference

100-5-1-0-0 28416 28416 0

100-5-2-0-0 26534 26534 0

100-5-5-0-0 16054 16054 0

100-5-5-1-0 6954 6954 0

250-10-1-0-0 55728 55728 0

250-10-5-0-0 51269 51269 0

250-10-10-0-0 46076 46076 0

g1 0 0 0

g14 2120 0 -2120

sg3dl051000 -130 -187 -57

sg3dl101000 -956 -1500 -544

100-5-01 24034 24034 0

250-10-01 58474 58474 0

500-30-01 113485 113485 0

I1 147 147 0

INST01 8006 8006 0

rn50m30t4s0c0num0 2863 2863 0

 36

From the comparison it is clear that the approaches work quite similar. But for several instances “Do

not make worse” approach shows better results. It means that there is no evidence that the algorithm

benefits from the ability to make a constraint infeasible during the construction of a solution.

Setting a variable to 1 if it is possible and beneficial shows exactly the same result on the training set

as setting a variable to 1 if it is possible. But for avoiding unnecessary setting variables with a negative

impact on the solution “beneficial” approach will be used.

The approach “Do not make worse” with setting a variable to 1 if beneficial is selected as a part of

the final algorithm.

5.2.4 Infeasibility

During testing the approaches described above several values were used as values for the

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦. The final greedy construction heuristic is tested with different values for the

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 and the results are presented below.

Table 5.10 Results for the different values of infeasibility

infeasibility 0.5 1 2 3 5

100-5-1-0-0 30274(1;15.3133) 28416 23933 23820 23820

100-5-2-0-0 27655(2;16.4558) 26534 20240 20437 20437

100-5-5-0-0 18368(5;33.2733) 18289(1;0.192336) 16054 14608 14303

100-5-5-1-0 10502(5;33.3803) 6954 2746 2746 1671

250-10-1-0-0 69314(1;36.5684) 67243(1;6.35034) 55728 53734 48738

250-10-5-0-0 48757(5;78.3428) 51269 41165 38115 37050

250-10-10-0-0 47071(10;69.5535) 46076 39333 38057 37139

g1 0 0 0 0 0

g14 2120 0 0 0 0

sg3dl051000 -171 -171 -159 -130 -130

sg3dl101000 -1382 -1382 -1305 -973 -956

100-5-01 22522 24034 23065 23046 22647

250-10-01 57151 58474 54907 53532 52841

500-30-01 113485 111697 107024 103250 100117

 37

I1 147 142 64 64 64

INST01 8583(20;20) 7699(16;16) 8006 7838 7708

rn50m30t4s0c0num0 2849 2814 2863 2863 2863

It is obvious that best solutions for different instances are obtained with different 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

values. Usually, low values of the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter lead to infeasible solutions. But for the

majority of instances feasible solutions obtained with higher 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 values are worse than

feasible solutions obtained with lower 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 values.

 38

5.3 Parameters tuning

The GRASP presented in the previous chapter has several parameters. The parameters are 𝛼,

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 and the criteria for running local search.

For tuning one of the parameters all the other parameters are fixed. The training set used for testing

the greedy construction is used for tuning the parameters of GRASP.

The time limit for the algorithm is 5 minutes. Time limit for a local search is 30 seconds.

The results of testing the algorithm with different parameters and the best parameter values that are

selected for the final algorithm are presented below.

5.3.1 𝜶 tuning

𝛼 is used to control the influence of randomness on a solution. The range of values is [0, 1] with the

algorithm being purely greedy if 𝛼 = 0 and a random construction if 𝛼 = 1. The values for testing

include the extreme values and the values in between. The list of values for testing is

{0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.2, 0.5, 1}.

The fixed parts of GRASP are the following:

• 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 2

• ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.1

• Local search is used for every solution constructed

The results are presented in the tables below.

Table 5.11 Alpha testing results. Part 1

Instance \ 𝛼 0 0.01 0.02 0.03 0.04 0.05 0.06

100-5-1-0-0 30348 30348 30204 30299 30204 30120 30399

100-5-2-0-0 27884 27884 27686 27861 27903 27737 27590

100-5-5-0-0 21271 21271 21031 21304 21019 21032 20785

100-5-5-1-0 9507 9507 9701 9334 9390 9760 9667

250-10-1-0-0 65766 65820 65782 65576 65346 65862 65323

250-10-5-0-0 54265 54166 54516 54278 54901 54482 54250

250-10-10-0-0 50481 50921 50218 50411 50919 50990 50884

 39

g1 0 2977 5346 7045 8519 9268 9746

g14 0 141 284 458 953 1250 1681

sg3dl051000 -141 -132 -123 -117 -115 -122 -107

sg3dl101000 -1500 -1467 -1454 -1437 -1437 -1430 -1420

100-5-01 24270 24270 24202 24285 24381 24231 24177

250-10-01 58807 58794 58871 58877 58725 58833 58729

500-30-01 114900 114773 114664 115111 114551 115192 114873

I1 167 167 167 167 167 173 173

INST01 10265 10306 10303 10323 10329 10307 10308

rn50m30t4s0c0num0 2912 2912 2912 2912 2912 2912 2912

Table 5.12 Alpha testing results. Part 2

Instance \ 𝛼 0.07 0.1 0.2 0.5 1

100-5-1-0-0 30271 30229 29828 28454 28350

100-5-2-0-0 27472 27787 27245 26327 26432

100-5-5-0-0 21064 20966 21186 21352 21137

100-5-5-1-0 9423 9634 9691 9737 9946

250-10-1-0-0 65525 64876 64370 61837 60643

250-10-5-0-0 54205 54618 53657 52932 51831

250-10-10-0-0 50293 50807 50234 49160 49298

g1 9718

(3;3)

9352 (9;9) 7842

(595;595)

10424

(4462;4462)

14465

(8731;8731)

g14 1549 2094 2505 2959 (562;562) 3705

(1461;1461)

sg3dl051000 -115 -105 -64 -32 -19

sg3dl101000 -1417 -1394 -1324 -855 (7;7) -322 (179;179)

100-5-01 24182 24180 23779 23630 23966

250-10-01 58779 58457 58117 57743 57637

 40

500-30-01 114867 114718 114496 113641 111496

I1 173 173 173 173 173

INST01 10336 10266 10254 10201 9975

rn50m30t4s0c0num0 2912 2921 2921 2960 2960

High values of 𝛼 result in infeasible solution for some instances. No value gives the best result for all

the instances. Different 𝛼 values work better for different instances. In order to compare different

results statistical standardizing is applied. The results for each instance are replaced with the standard

score (number of standard deviations from mean). This allows to compare the results originally having

different magnitudes.

Any infeasible solution is worse than a feasible that is why infeasible solutions should be treated

separately and not by the objective function value. The standard scores for the infeasible solutions are

set to −1. This mean that an infeasible solution is below average. The value can be lower but it does

not change the result of the analysis.

Then the means of standard scores for each 𝛼 value are calculated. These values show how different

the result obtained with a specific 𝛼 value is from the average result obtained in all tests. The plot of

the values is presented below.

 41

Figure 5.1 Plot of average standard scores for alpha testing

It is possible to see that all values in the range [0.01, 0.2] show better results than the values 0 and 1 .

This means that GRASP performs better than a greedy construction and a random construction.

The value 0.05 gives better results on average. The values close to 0.05 also give a good result.

Extreme values or alpha perform purely. 0.05 is selected as the 𝛼 value for the final algorithm.

5.3.2 𝒊𝒏𝒇𝒆𝒂𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 tuning

The initial value for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 has a high importance especially for the instances with a huge

number of variables and constraints because the algorithm spends a lot of time during one iteration.

That is why the number of iterations is low and the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter does not change a lot

during the runtime.

 42

The possible values are from 0 to ∞. However, values higher than 10 do not make a huge difference.

The testing was performed for the following list of values: {0, 0.5, 1, 2, 2.5, 3, 5, 7, 10}.

The fixed parts of GRASP are the following:

• 𝛼 = 0.05

• ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.1

• Local search is used for every solution constructed

The results are presented in the tables below.

Table 5.13 Results for infeasibility testing

Instance\

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

0 0.5 1 2 2.5 3 5 7 10

100-5-1-0-0 26832 27379 29707 30120 30121 30294 30294 30603 30429

100-5-2-0-0 26092 26092 26826 27737 27878 27649 27882 27751 28067

100-5-5-0-0 20360 20360 20360 21032 21214 21298 21190 21184 21117

100-5-5-1-0 9308 9308 9441 9760 9685 9760 9668 9559 9562

250-10-1-0-0 57388 59399 65281 65862 65698 65599 65197 65567 65565

250-10-5-0-0 48277 50475 52689 54482 54183 54088 54505 54956 54347

250-10-10-0-0 47784 47866 47880 50990 50976 50722 51057 50864 51123

g1 19176

(16050;

16050)

19174

(16042;

16042)

9627 9268 9442 9331 9337 9124 9208

g14 4483

(2617;

2617)

1762 2508 1250 832 861 840 855 838

sg3dl051000 -2 5 -5 -122 -115 -119 -121 -119 -117

sg3dl101000 -1042 -1282 -1070 -1430 -1393 -1378 -1385 -1389 -1394

100-5-01 21526 21618 23894 24231 24326 24281 24147 24191 24201

250-10-01 53013 57686 58641 58833 58722 58718 58569 58881 58738

500-30-01 107022 113548 114771 115192 114807 114756 115049 114990 114867

I1 173 173 173 173 173 173 173 173 173

INST01 10307 10282 10307 10307 10282 10307 10338 10310 10352

 43

rn50m30t4s0c0n

um0

2794 2849 2871 2912 2912 2912 2912 2912 2912

The idea of using the average standard score is used to determine the best value.

Figure 5.2 Plot of average standard scores for infeasibility testing

All the values starting from 1 perform similarly. But given that low values can lead to infeasible

solutions for instances that are hard to solve a higher value should be selected. Value 5 gives the result

on the training set that is slightly better than all the others and it seems to be high enough to obtain

feasible solutions for the majority of instances. 5 is selected as the initial value for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦

parameter in the final algorithm.

 44

5.3.3 ∆𝒊𝒏𝒇𝒆𝒂𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 tuning

∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 controls how the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 changes. ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0 leads to the same

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 value for all the iterations. Higher values correspond to higher variability of

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦. The range of values for testing is [0, 2]. The values for testing are

{0, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2}.

The fixed parts of GRASP are the following:

• 𝛼 = 0.05

• 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 5

• Local search is used for every solution constructed

The results are presented in the tables below.

Table 5.14 Results for delta infeasibility testing

0 0.05 0.1 0.2 0.3 0.5 1 2

100-5-1-0-0 30665 30626 30294 30547 30235 30134 29837 29834

100-5-2-0-0 28185 27916 27882 27754 27360 27581 27360 27360

100-5-5-0-0 21547 21418 21190 21231 21162 20919 21212 20812

100-5-5-1-0 9555 9951 9668 9760 9616 9336 9391 9308

250-10-1-0-0 64118 65807 65197 65023 65341 65337 64542 64813

250-10-5-0-0 54870 54622 54505 54162 53915 53878 53626 52759

250-10-10-0-0 51173 50867 51057 51056 50736 50371 50544 49647

g1 9343 9255 9337 9433 9109 9386 9303 9087

g14 816 843 840 814 897 829 2313 2449

sg3dl051000 -119 -115 -119 -116 -116 -29 -6 -6

sg3dl101000 -1391 -1388 -1385 -1386 -1382 -1269 -1260 -1325

100-5-01 24007 24192 24147 24125 24121 24165 24199 23848

250-10-01 55403 58679 58569 58516 58675 58680 59016 58511

500-30-01 10745

6

11476

3

11504

9

11451

5

11489

5

11473

9

11421

8

11361

2

I1 159 173 173 173 173 173 173 173

 45

INST01 10305 10295 10338 10312 10324 10326 10294 10271

rn50m30t4s0c0num

0

2912 2912 2912 2912 2912 2912 2912 2912

The approach with calculating average standard scores is used once again to determine the best value.

Figure 5.3 Plot of average standard scores for delta infeasibility testing

Value 0 gives bad results. This means that the approach of changing 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 between GRASP

iterations is profitable. The best value is 0.05. It is quite low and can lead to slow change of

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦. But as the algorithm starts from a high value of 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 this should not cause

the impossibility of the algorithm to obtain a feasible solution.

0.05 is selected as the value of ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 for the final algorithm.

 46

5.3.4 Local search tuning

Four different approaches of using local search are tested:

1. Running the local search only for the best solution found by GRASP

2. Running the local search for every solution found by GRASP

3. Running the local search for a solution found during the iteration of GRASP only if this

solution is better than the solution that was improved to get the current best solution.

4. Not using local search

These approaches are tested because local search improves the solutions but takes some time to do so.

Different approaches have different ratio of the time spend on constructing solution to the time spend

on improving solutions.

The fixed parts of GRASP are the following:

• 𝛼 = 0.05

• 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 5

• ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.05

The results are presented in the table below.

Table 5.15 Results for local search testing

1 2 3 4

100-5-1-0-0 30385 30626 30728 30385

100-5-2-0-0 27614 27916 27916 27614

100-5-5-0-0 20109 21418 21229 20059

100-5-5-1-0 9480 9951 9975 9480

250-10-1-0-0 66082 65807 66236 66098

250-10-5-0-0 54003 54622 54580 53136

250-10-10-0-0 49309 50867 50867 47805

g1 9255 9255 9255 9255

g14 865 843 856 865

sg3dl051000 -3 -116 -108 -45

sg3dl101000 -1369 -1388 -1369 -1369

100-5-01 24164 24192 24164 24164

 47

250-10-01 58667 58679 58667 58080

500-30-01 114553 114763 114763 112709

I1 158 173 173 158

INST01 10169 10295 10301 9035

rn50m30t4s0c0num0 2912 2912 2912 2886

The plot of average standard scores is below.

Figure 5.4 Plot of average standard scores for local search testing

Not using local search shows the worst result. Using local search always is better than using it only

once. Skipping the local search for some «bad» solution improves the result by alowing to constuct

more solutions comparing to always running the local search.

 48

Approach 3 (running local search for good solutions) is selected as a part of the final algorithm.

5.4 Final algorithm results

The test set described previously is used to test different algorithms. The algorithms are the following:

• GRASP: GRASP algorithm described in the previous chapter with the parameters tuned in this

chapter

• VNS: a variable neighborhood search algorithm starting from a random solution described and

implemented by Bentsen and Hvattum 2020

• GRASP + VNS: VNS algorithm which uses GRASP to create an initial solution instead of a

random construction

• Greedy + VNS: VNS algorithm which uses the greedy construction described in this thesis to

create an initial solution instead of a random construction

• GRASP2 + VNS: the same as GRASP + VNS but with slightly modified parameters of

GRASP to make the construction slightly more random (𝛼 = 0.1, ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.5)

• CPLEX: (Cplex 2009)

• Local Solver: (Benoist et al. 2011), https://www.localsolver.com/

The runtime for all the algorithms was set to 5 minutes. Local Solver and CPLEX were tested on a

different machine, so the running times are not comparable.

For the algorithms combining GRASP and VNS the runtime of GRASP part was limited by 40

seconds for one construction.

The results are presented in the following table:

Table 5.16 Results on the test set

Instance GRASP VNS GRASP +

VNS

GRASP2 +

VNS

Greedy +

VNS

CPLEX Local

Solver

g15 778 2758 2031 2145 1985 2922 2717

g25 5778

5833 9321 100 10952 10849

g35 1867

2550 4438 1527 6764 6760

g45 2996

3532 4750 2301 5428 5493

g5 9069

9332 9202 763 9906 9953

g50 476 4550 2069 2745 2177 5880 5814

g54 1140 3476 2525 2775 2487 3426 3387

sg3dl053000 -85 88 82 56 58 106 102

https://www.localsolver.com/

 49

sg3dl105000 -1389 546 402 426 474 656 642

sg3dl1410000 -3830 1239 -89 390 362 1264 1276

sg3dl144000 -3822 962 -23 416 238 1150 1434

toursg3-15 -397448706

-15210101 5016140 -55832572 172938456 196006617

toursg3-8 -56516747 21670541 6361821 18584323 6601816 40402223 35163004

tourspm3-15-50 -4719

-1039 -422 -619 1370 1464

tourspm3-8-50 -541 300 180 168 182 374 364

100-100-25-1 57018 57194 57018 57092 57194 57194 57194

100-100-q-1 85632 85545 85632 85491 85652 85652 82664

100-10-5-1-0 9590 10018 9929 9917 10000 10018 10018

100-30-15-1-10 16611 18200 18028 18306 18713 17797 18250

100-30-30-0-1

9494 9385 9612 9785 8933

100-50-10-1 38130 38130 38130 38130 38130 38130 38130

100-50-q-1 43866 43917 43917 43917 43917 43917 43917

100-5-5-1-0 9975 10263 10041 10100 10263 10263 10263

250-10-1-0-14 172782 172232 172978 172534 172717 173386 173443

250-30-30-0-0 32394 33990 34063 34128 34161 34323 32511

250-5-2-0-0 76784 78100 77970 77992 78105 78486 78486

500-10-10-1-0 50275 50385 49666 50372 49638 52741 52381

500-30-15-1-0 46746 47517 47096 48532 48136 50404 47350

500-30-30-0-0 81912 81984 82998 82444 82565 82265 80000

500-5-5-0-14 309431 311055 311642 311370 311557 312069 311989

I11 49896 71785 71728 71852 71833 73773 73749

I13 65127 95901 95767 95718 95707 98434 98389

I5 39057 39057 39057 39057 39057 39057 39057

I9 35794 47939 47858 47964 48029 49174 49175

INST01 10301 10334 10369 10400 10395 10714 10706

INST03 10513 10650 10574 10591 10652 10942 10934

INST07 15806 15978 16005 15975 16000 16411 16440

INST18 33517 58538 58110 58384 58448 60461 60458

 50

INST20 41798 72733 72341 72510 72701 75610 75606

INST21 76240 85776 85638 85628 85830 87616 87552

INST24

41080 41892 41098

INST28 109066 131632 131564 131968 132050 134630 134598

RTI09 78062 78062 78062 78062 78062 78062 78062

RTI12 11074 11438 11380 11344 11396 11632 11632

RTI13 101508 104862 104132 103474 104204 105612 105612

lmhn1000m5000num1 676851 704840 717860 713409 713430 691461 727020

lmhn1500m7500num1 1493487 1579112 1605637 1614096 1614169 1530720 1628910

qn1000m10000t2s0c0n

um0

121552 134184 132924 135985 134342 137996 139032

qn500m2500t2s0c0nu

m0

47572 51791 52138 51819 51478 52816 52467

qn500m5000t2s0c0nu

m0

31996 35684 34880 34583 34890 35607 35173

rn200m1000t10s0c0nu

m0

19340 19540 19481 19509 19540 19499 19492

rn200m1000t10s0c25n

um4

19777 20614 20423 20580 20614 20510 20570

rn200m1000t40s20c0n

um0

21983 22076 22063 22034 22076 22072 22030

rn500m1000t100s50c0

num0

145684 146683 146591 146540 146683 146649 146582

rn500m1000t100s50c2

5num0

145572 146533 146455 146473 146533 146533 146417

rn500m1000t25s0c0nu

m4

144313 147906 147388 147837 147952 147860 147320

rn500m1000t25s0c25n

um4

144020 146262 145708 145978 146262 146086 145943

rn500m1000t25s0c50n

um0

141608 143372 142972 143123 143372 143113 143217

rn500m2500t25s0c25n

um4

140773 144931 144817 144766 145068 144654 144700

rn500m2500t25s0c50n

um0

139879 142306 141719 142123 142313 141968 141568

 51

A missing value in a cell means that a feasible solution was not found.

The results show that GRASP algorithm is able to find a feasible solution for almost every instance

(it failed to find a feasible solution for 2 instances out of 60). However, the quality of the solutions

obtained by GRASP is usually worse than the quality of the solutions obtained by VNS (where VNS

is able to find a feasible solution) or by the combined methods.

One of the research questions is whether GRASP can be used to improve other heuristic methods. A

comparison of the results of VNS and combined methods can help to answer this question.

GRASP with the parameters obtained during testing combined with VNS is able to find feasible

solutions for 59 instances out of 60. VNS starting from a random solution finds a feasible solution

only for 53 instances. But when both methods are able to find a feasible solution GRASP combined

with VNS shows a better result on 7 instances and a worse result on 41 instances.

Changing parameter in GRASP combined with VNS for constructing slightly more random solutions

result in feasible solutions for 59 instances of the training set and the same number of feasible solutions

are obtained using the original parameters. The objective function value after changing the parameters

is improved for 36 instances and is worsened for 19 ones.

Combining VNS with greedy construction allows to find a feasible solution. Changing random

construction to greedy construction for VNS results in finding a feasible solution for 7 more instances

and improves the solution in 20 cases and worsens a solution in 20 cases.

VNS combined with greedy construction compared to VNS combined with GRASP finds a feasible

solution for 1 more solution and performs better in 36 cases and worse in 19 cases.

5.5 Discussion

The results on the test set show that GRASP is able to find feasible solutions for the majority of

instances. However, the quality of the solutions obtained by GRASP is worse than the quality of the

solution obtained by other methods tested in the previous section.

GRASP used instead of a random construction in VNS makes the algorithm more reliable (able to

find a feasible solution) but obtaining slightly worse solutions. GRASP parameters were tuned for

using GRASP without VNS. A change in the parameters to make GRASP more random resulted in

the improvement of the results. This means that the results can be improved further after testing the

combined algorithm.

 52

Combining greedy construction with VNS is able to find a feasible solution for all the instances and

shows a good quality of the solution. Greedy construction can be used to improve VNS making it

more reliable and without lose in the quality of the solutions.

 53

6.0 Conclusion

Binary integer problem has a number of real-world applications including applications in logistics.

Problem instances usually contain a huge number of constraints and variables which makes it

impossible to use exact methods to solve this problem. There are few heuristic solvers targeted on

general BIP but they are not focused on the construction of a solution.

Greedy construction heuristic algorithm and GRASP for general BIP were implemented and tested.

The approach of dynamically changing the parameter of GRASP between iterations is created and

used to allow the algorithm to solve a variety of BIP classes.

GRASP can be used for constructing solution for general BIP. Implemented construction algorithms

are able to improve VNS algorithm making it able to find a feasible solution for more instances.

There are several directions for further research. The algorithm combining GRASP or greedy

construction and VNS can be studied. Parameter tuning for the combined method may improve the

results. Another option is to change the local search used in GRASP for VNS and use a statistical or

machine learning method to decide whether or not to run the VNS after a construction iteration.

Another direction for the research is creating a population-based method to solve general BIP. This

method can make use of the algorithm created during the work on this thesis.

 54

Reference list

Al-Shihabi, Sameh. 2021. “A Novel Core-Based Optimization Framework for Binary Integer

Programs-the Multidemand Multidimesional Knapsack Problem as a Test Problem.”

Operations Research Perspectives 8: 100182.

Baessler, Felix. 1992. “A Heuristic 0–1 Integer Programming Method.” Operations-Research-

Spektrum 14 (1): 11–18.

Balas, Egon. 1965. “An Additive Algorithm for Solving Linear Programs with Zero-One Variables.”

Operations Research 13 (4): 517–46.

Balas, Egon, and Clarence H Martin. 1980. “Pivot and Complement–a Heuristic for 0-1

Programming.” Management Science 26 (1): 86–96.

Benoist, Thierry, Bertrand Estellon, Frédéric Gardi, Romain Megel, and Karim Nouioua. 2011.

“Localsolver 1. x: A Black-Box Local-Search Solver for 0-1 Programming.” 4or 9 (3): 299–

316.

Bentsen, Håkon, and Lars Magnus Hvattum. 2020. “Variable Neighborhood Search for Binary

Integer Programming Problems.”

Bertsimas, Dimitris, Dan A Iancu, and Dmitriy Katz. 2013. “A New Local Search Algorithm for

Binary Optimization.” INFORMS Journal on Computing 25 (2): 208–21.

Cappanera, Paola, and Marco Trubian. 2005. “A Local-Search-Based Heuristic for the Demand-

Constrained Multidimensional Knapsack Problem.” INFORMS Journal on Computing 17 (1):

82–98.

Chu, Paul C, and John E Beasley. 1998. “A Genetic Algorithm for the Multidimensional Knapsack

Problem.” Journal of Heuristics 4 (1): 63–86.

Cplex, I B M ILOG. 2009. “V12. 1: User’s Manual for CPLEX.” International Business Machines

Corporation 46 (53): 157.

Davoine, Thomas, Peter L Hammer, and Béla Vizvári. 2003. “A Heuristic for Boolean Optimization

Problems.” Journal of Heuristics 9 (3): 229–47.

Duarte, Abraham, and Rafael Martí. 2007. “Tabu Search and GRASP for the Maximum Diversity

Problem.” European Journal of Operational Research 178 (1): 71–84.

Feo, Thomas A, and Mauricio G C Resende. 1989. “A Probabilistic Heuristic for a Computationally

Difficult Set Covering Problem.” Operations Research Letters 8 (2): 67–71.

Festa, Paola, Panos M Pardalos, Mauricio G C Resende, and Celso C Ribeiro. 2002. “Randomized

Heuristics for the MAX-CUT Problem.” Optimization Methods and Software 17 (6): 1033–58.

 55

Festa, Paola, and Mauricio G C Resende. 2002. “GRASP: An Annotated Bibliography.” In Essays

and Surveys in Metaheuristics, 325–67. Springer.

———. 2009a. “An Annotated Bibliography of GRASP–Part I: Algorithms.” International

Transactions in Operational Research 16 (1): 1–24.

———. 2009b. “An Annotated Bibliography of GRASP–Part II: Applications.” International

Transactions in Operational Research 16 (2): 131–72.

Geoffrion, Arthur M. 1967. “Integer Programming by Implicit Enumeration and Balas’ Method.”

Siam Review 9 (2): 178–90.

Glover, Fred. 1965. “A Multiphase-Dual Algorithm for the Zero-One Integer Programming

Problem.” Operations Research 13 (6): 879–919.

Gökċen, Hadı, and Erdal Erel. 1998. “Binary Integer Formulation for Mixed-Model Assembly Line

Balancing Problem.” Computers & Industrial Engineering 34 (2): 451–61.

Gortazar, Francisco, Abraham Duarte, Manuel Laguna, and Rafael Martí. 2010. “Black Box Scatter

Search for General Classes of Binary Optimization Problems.” Computers & Operations

Research 37 (11): 1977–86.

Helmberg, Christoph, and Franz Rendl. 2000. “A Spectral Bundle Method for Semidefinite

Programming.” SIAM Journal on Optimization 10 (3): 673–96.

Hristakeva, Maya, and Dipti Shrestha. 2004. “Solving the 0-1 Knapsack Problem with Genetic

Algorithms.” In Midwest Instruction and Computing Symposium.

Hvattum, Lars M, Arne Løkketangen, and Fred Glover. 2005. “New Heuristics and Adaptive

Memory Procedures for Boolean Optimization Problems.” In Integer Programming, 17–34.

CRC Press.

Jeong, Seh-Woong, and Fabio Somenzi. 1993. “A New Algorithm for 0-1 Programming Based on

Binary Decision Diagrams.” In Logic Synthesis and Optimization, 145–65. Springer.

Kallrath, Julia, Steffen Rebennack, Josef Kallrath, and Rüdiger Kusche. 2014. “Solving Real-World

Cutting Stock-Problems in the Paper Industry: Mathematical Approaches, Experience and

Challenges.” European Journal of Operational Research 238 (1): 374–89.

Khan, Shahadat, Kin F Li, Eric G Manning, and Md Mostofa Akbar. 2002. “Solving the Knapsack

Problem for Adaptive Multimedia Systems.” Stud. Inform. Univ. 2 (1): 157–78.

Laguna, Manuel, Thomas A Feo, and Hal C Elrod. 1994. “A Greedy Randomized Adaptive Search

Procedure for the Two-Partition Problem.” Operations Research 42 (4): 677–87.

Lai, Xiangjing, Jin-Kao Hao, and Dong Yue. 2019. “Two-Stage Solution-Based Tabu Search for the

Multidemand Multidimensional Knapsack Problem.” European Journal of Operational

 56

Research 274 (1): 35–48.

Marinescu, Radu, and Rina Dechter. 2010. “Evaluating the Impact of AND/OR Search on 0-1

Integer Linear Programming.” Constraints 15 (1): 29–63.

Resende, Mauricio G C, and Thomas A Feo. 1996. “A GRASP for Satisfiability.” In CLIQUES,

COLORING, AND SATISFIABILITY: THE SECOND DIMACS IMPLEMENTATION

CHALLENGE, VOLUME 26 OF DIMACS SERIES ON DISCRETE MATHEMATICS AND

THEORETICAL COMPUTER SCIENCE. Citeseer.

Resende, Mauricio G C, L S Pitsoulis, and P M Pardalos. 1997. “Approximate Solution of Weighted

MAX-SAT Problems Using GRASP.” Satisfiability Problems 35: 393–405.

Resende, Mauricio G C, and Celso C Ribeiro. 2003. “Greedy Randomized Adaptive Search

Procedures.” In Handbook of Metaheuristics, 219–49. Springer.

Shojaei, Hamid, Twan Basten, Marc Geilen, and Azadeh Davoodi. 2013. “A Fast and Scalable

Multidimensional Multiple-Choice Knapsack Heuristic.” ACM Transactions on Design

Automation of Electronic Systems (TODAES) 18 (4): 1–32.

Silva, Rodrigo Ferreira da, Lars Magnus Hvattum, and Fred Glover. 2020. “Combining Solutions of

the Optimum Satisfiability Problem Using Evolutionary Tunneling.” In MENDEL, 26:23–29.

Vianna, Dalessandro Soares, and José Elias Claudio Arroyo. 2004. “A GRASP Algorithm for the

Multi-Objective Knapsack Problem.” In XXIV International Conference of the Chilean

Computer Science Society, 69–75. IEEE.

