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Summary 

 

This thesis focuses on creating a construction heuristic algorithm for the general binary 

integer problem. A greedy construction heuristic is created and different components are 

tested in order to obtain a good algorithm. Greedy Randomized Adaptive Search Procedure 

(GRASP) based on the greedy construction is implemented and tested. Conclusions 

regarding the possibility of using GRASP for solving binary integer problem are made. The 

way of combining the algorithms implemented during the work on the thesis with an 

improvement heuristic in order to get better results is shown. 

The result of the thesis can be used during the further research of heuristic approaches for 

solving binary integer problem. 
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1.0 Introduction 

Many optimization problems with real world applications can be modeled as binary optimization 

problems (BIP). Some applications of binary integer problems in logistics are airline crew scheduling, 

facility location problems, cutting stock problems. In addition, many different planning problems can 

be formulated as binary optimization problems. 

Crew scheduling problem is solved to assign crew in order to operate transportation systems. Every 

huge company has to solve this problem in order to maintain the transportation system working. All 

the airline companies are trying to assign crew in an optimal way to reduce the cost of operating and 

to avoid delays and cancelations of flights. 

Facility location problem is also very important for logistic companies. The optimal placement of the 

facilities helps to reduce transportation costs while having dangerous materials far from housings. 

Cutting stock problem is very important for the paper industry (Kallrath et al. 2014). The decisions 

made by the stakeholders influence both the company’s revenue and the global climate change. Paper 

industry influences the deforestation and therefore it has an influence on global warming. A more 

efficient use of paper will help to reduce this influence. 

The assembly line balancing problem is widely used to schedule manufacturing. It allows to distribute 

task required to manufacture product among several workstations taking into account the precedence 

relations between the tasks. Mixed-model assembly line balancing problem was formulated as binary 

integer problem by Gökċen & Erel (1998). 

With the growth of huge companies and the world in general the amount of the available information 

increases. In order to get higher profit companies try to solve different problems with better efficiency. 

This results in more constraints taken into account when solving binary integer problems. 

The resulting binary integer problems are usually containing a huge number of constraints and very 

hard to solve. The exact methods use unacceptably long time to solve these problems. That is why the 

reasonable choice would be to use metaheuristic algorithms. 

The lack of solvers for this specific problem opens a space for research. The direction of the research 

is focused on the creating a heuristic algorithm for the variety of binary integer problems. The existing 

solvers usually focus on solving specific binary integer problem (e.g. multidimensional knapsack 

problem (Cappanera and Trubian 2005)) or they are targeting a more wide class of problems such as 

mixed integer programming. 
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The goal of the research is to examine whether using Greedy Randomized Adaptive Search Procedure 

(GRASP) is a reasonable strategy for solving BIP. The research focuses on selecting strategies for 

different parts of the algorithm suitable for solving BIP. Another question of the research is whether 

GRASP can be combined with other metaheuristic algorithms, namely improvement metaheuristic, in 

order to improve their results and performance. 
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2.0 Literature Review 

The existing solvers usually focus on solving specific binary integer problem (e.g. multidimensional 

knapsack problem (Cappanera and Trubian 2005)) or they are targeting a more wide class of problems 

such as mixed integer programming (Cplex 2009; Benoist et al. 2011). 

2.1 Solving general BIP 

There are several papers describing methods for the general BIP. 

There are several contributions for solving BIP using heuristic methods. All the contributions are 

using improvement algorithms and this leaves space for a research of a construction algorithm for 

BIP. 

Bertsimas, Iancu, and Katz (2013) created a pseudo-polynomial local search algorithm for BIP. The 

test results are presented for set covering and set packing problems.  

Gortazar et al. (2010) present a black box scatter search for general BIP tested on different classes. 

The idea of solving optimally a linear programming problem first letting the variables to be in range  

[0, 1] and then moving to a BIP solution using a heuristic was described by Balas and Martin (1980) 

and recently used by Al-Shihabi (2021). The last paper focuses more on multidemand 

multidimensional knapsack problem rather than on general BIP. 

An approach for sloving optimum satisfiability problem can be applied to general BIP (Jeong and 

Somenzi 1993). The algorithm presented is based on Binary Decision Diagrams. Authors claim that 

any BIP can be converted to an optimum satisfiability problem. However, the resulting problem can 

be too large and this can make the method impractical. 

There are also methods based on exhaustive search and branch-and-bound strategies (Marinescu and 

Dechter 2010)(Baessler 1992). The study of Balas (1965) presenting an additive algorithm is extended 

by Glover (1965) and later by Geoffrion (1967). 

2.2 Greedy Randomized Adaptive Search Procedure and construction 

heuristics 

Greedy Randomized Adaptive Search Procedure (GRASP)(Feo and Resende 1989) is a metaheuristic 

algorithm for constructing solutions that was succesfully applied to a number of problems.  

Different components of GRASP and successful implementation techniques with parameter tuning 

approaches are described by Resende and Ribeiro (2003). GRASP was applied to a boolean 
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optimization problem, namely to the  Maximum Satisfiability problem (Resende, Pitsoulis, and 

Pardalos 1997) (Resende and Feo 1996) and later to Weighted Maximum Satisfiability problem 

resulting in the solutions better than the ones obtained by commercial solvers (Hvattum, Løkketangen, 

and Glover 2005). 

Festa and Resenda published several papers with the annotated bibliography of GRASP (Festa and 

Resende 2002; 2009b; 2009a). 

Another problem that can be formulated as BIP where GRASP was applied is two-partition problem 

(Laguna, Feo, and Elrod 1994). 

While some papers describe the use of GRASP for constructing solution (Vianna and Arroyo 2004) 

there are a number of papers describing improvement metaheuristics or population-based 

metaheuristics starting from random solution without using any construction heuristic other than 

random (Hristakeva and Shrestha 2004),(Lai, Hao, and Yue 2019). But there are works (Duarte and 

Martí 2007) using a combination of GRASP and an improvement metaheuristic to achieve good 

results.  
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3.0 Problem description 

Binary integer problem can be formulated as: 

max 𝑍 = ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

, (3. 1) 

subject to 

𝑏𝑖
𝑙 ≤ ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖

𝑢,

𝑛

𝑗=1

          𝑖 = 1, … , 𝑚, (3. 2) 

𝑥𝑗 ∈ {0,1},                            𝑗 = 1, … , 𝑛, (3. 3) 

 

 

where all the coefficients 𝑎𝑖𝑗 , 𝑏𝑖 , 𝑐𝑗 are integers (Bentsen and Hvattum 2020). 

Equality constraints can be represented as two inequality constraints with different signs ≤ and ≥. ≥-

constraints can be transformed into ≤-constraints by multiplying by −1 but this is not used to leave 

more information about the problem structure. All the non-integer rational coefficients in the 

constraints can be transformed into integers by multiplying each constraint by the least common 

multiply of the denominators of all coefficients. The non-integer rational coefficients in the objective 

function can be avoided by using the same approach. 

The solution for the problem is a vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ {0,1}𝑛.  

The following terms are introduced for the description of different methods: 

A set of unassigned variables 𝑉# is a set containing all the variables that haven’t been assigned a value 

during the construction of the solution. 

Activity level is the value of the left-hand side of the constraint. It is introduced as 

𝐴𝐿𝑖 = ∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

(3. 4) 

Let minimum activity level of a constraint 𝑖 be: 

𝑀𝑖𝑛𝐴𝐿𝑖 = min
𝑥∈{0,1}𝑛

(∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) (3. 5) 

 

Let maximum activity level of a constraint 𝑖 be: 
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𝑀𝑎𝑥𝐴𝐿𝑖 = max
𝑥∈{0,1}𝑛

(∑ 𝑎𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) . (3. 6) 

The maximum and minimum activity levels for a partial solution are defined as: 

𝑀𝑎𝑥𝑃𝐴𝐿𝑖 = max
𝑥𝑗∈{0,1}

( ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∈𝑉#

) + ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∉𝑉#

, (3. 7) 

𝑀𝑖𝑛𝑃𝐴𝐿𝑖 = min
𝑥𝑗∈{0,1}

( ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∈𝑉#

) + ∑ 𝑎𝑖𝑗𝑥𝑗

𝑗∉𝑉#

, (3. 8) 

Let the normalized constraint coefficients be  

𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑎𝑖𝑗

𝑎�̅�

(3. 9) 

where 

 𝑎�̅� =
∑ |𝑎𝑖𝑗|𝑛

𝑗=1

|{𝑗 ∶ 𝑎𝑖𝑗 ≠ 0}|
(3. 10) 

 

3.1 Optimum satisfiability problem 

The optimum satisfiability problem is an optimization problem assigning values to Boolean variables 

to satisfy a Boolean expression (Davoine, Hammer, and Vizvári 2003). This problem is an extension 

of a well-known Boolean satisfiability problem. Boolean satisfiability problem answers a question 

whether there exists an assignment of Boolean variables that satisfies a given formula. The optimum 

satisfiability assigns profit for setting each variable to 1 and answers the question what is the most 

profitable assignment that satisfies the given formula. 

The problem itself was formulated as BIP by da Silva, Hvattum, & Glover, 2020. A Boolean formula 

have to be presented in a disjunctive normal form 𝑓 = 𝑇1 ∨ … ∨ 𝑇𝑚 where 𝑇𝑖 is a product of non-

negated and negated variables.  

max 𝑧 =  ∑ 𝑐𝑗𝑥𝑗 ,

𝑛

𝑗=1

(3. 11) 

∑ 𝑥𝑗

𝑗∈𝐴𝑖

− ∑ 𝑥𝑗

𝑗∈𝐵𝑖

≤ |𝐴𝑖| − 1,                     𝑖 ∈ {1, … , 𝑚}, (3. 12) 

𝑥𝑗 ∈ {0,1},                                                 𝑗 ∈ {1, … , 𝑛} (3. 13) 
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where 𝐴𝑖 and 𝐵𝑖  are sets of non-negated and negated variables respectively in clause 𝑇𝑖, 𝑐𝑖 is the profit 

from making the variable 𝑥𝑖 true. 

3.2 Multidemand multidimensional knapsack problem 

The multidemand multidimensional knapsack problem (MDMKP) is a version of a well-known 

knapsack problem. Knapsack problem is used to determine a set of items maximizing profit while the 

total weigh of items does not exceed the limit. Multidimensional knapsack problem adds more 

“knapsack” constraints that are similar to the weight constraint. Multidemand knapsack problem 

introduces “covering” constraints which are opposite to “knapsack” constraints. Covering constraint 

require the sum of parameters in a dimension to be greater or equal to the limit. 

The multidemand multidimensional knapsack problem (MDMKP) has the following formulation 

(Cappanera and Trubian 2005): 

max 𝑍 = ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

, (3. 14) 

∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ,

𝑛

𝑗=1

                          𝑖 ∈ {1, … , 𝑚}, (3. 15) 

∑ 𝑎𝑖𝑗𝑥𝑗 ≥ 𝑏𝑖 ,

𝑛

𝑗=1

          𝑖 ∈ {𝑚 + 1, … , 𝑚 + 𝑞}, (3. 16) 

𝑥𝑗 ∈ {0,1},                                   𝑗 ∈ {1, … , 𝑛} (3. 17) 

𝑐𝑗 is the profit from including item 𝑗 in the solution, 𝑎𝑖𝑗 is the size of the item 𝑗 in the dimension 𝑖, 𝑏𝑖 

is the limit for the dimension 𝑖. Problem has 𝑚 “knapsack” constraints and 𝑞 “covering” constraints. 

3.3 Multiple-choice multidimensional knapsack problem 

Multiple-choice multidimensional knapsack problem is another version of a knapsack problem. The 

difference from the multidimensional knapsack problem is that in this version there are 𝑛 disjoint sets 

of items 𝐺1, … , 𝐺𝑛 and exactly one item from each set have to be selected. 

The mathematical formulation of this problem is the folowing: 

max 𝑍 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝐺𝑖

𝑛

𝑖=1

, (3. 18) 

∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑗 ≤ 𝑏𝑘

𝑗∈𝐺𝑖

𝑛

𝑖=1

,                    𝑘 ∈ {1, … , 𝑚}, (3. 19) 
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∑ 𝑥𝑖𝑗

𝑗∈𝐺𝑖

= 1,                                      𝑖 ∈ {1, … , 𝑛} (3. 20) 

𝑥𝑖𝑗 ∈ {0,1},                          𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ 𝐺𝑖. (3. 21) 

This problem has equality constraints that are hard to satisfy and it can be hard to obtain a feasible 

solution for this class of problems. 

3.4 Max-cut problem 

The max-cut problem is defined on a weighted undirected graph 𝐺 = (𝑉, 𝐸). The goal of the 

problem is to divide the nodes of the graph into two sets {𝑆 ⊂ 𝑉, 𝑉 \ 𝑆} so that the sum of weights 

for all egdes between the sets is maximized. The problem is not originally formulated as BIP but a 

BIP formulation is proposed by Lars Magnus Hvattum. 

max 𝑍 = ∑ 𝑤𝑢𝑣𝑦𝑢𝑣

𝑛

(𝑢,𝑣)∈𝐸

, (3. 22) 

𝑦𝑢𝑣 − 𝑥𝑢 − 𝑥𝑣 ≤ 0,        (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 ≥ 0 (3. 23) 

𝑦𝑢𝑣 + 𝑥𝑢 + 𝑥𝑣 ≤ 2,        (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 ≥ 0 (3. 24) 

−𝑦𝑢𝑣 − 𝑥𝑢 + 𝑥𝑣 ≤ 0,        (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 < 0 (3. 25) 

−𝑦𝑢𝑣 + 𝑥𝑢 − 𝑥𝑣 ≤ 0,        (𝑢, 𝑣) ∈ 𝐸: 𝑤𝑢𝑣 < 0 (3. 26) 

𝑥𝑢 ∈ {0, 1}                           𝑢 ∈ 𝑉 (3. 27) 

𝑦𝑢𝑣 ∈ {0, 1}                    (𝑢, 𝑣) ∈ 𝐸 (3. 28) 

Where 𝑥𝑢 shows whether the node 𝑢 belongs to 𝑆, and 𝑦𝑢𝑣 = 1 if and only if nodes 𝑢 and 𝑣 belong to 

different sets. 

The problem is not a typical BIP so it can be hard to obtain a good solution for this class of problems. 
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4.0 Solution methods 

GRASP is usually based on a greedy construction heuristic followed by an improvement heuristic 

which can be a local search a more advanced technique such as variable neighborhood search. In this 

chapter the building blocks of GRASP are discussed with their pros and cons. 

4.1 Greedy Construction Heuristic 

The goal of a greedy construction heuristic is to create a solution for an instance of a problem by 

sequentially setting all the variables to a value. One idea can be to select the order of variables and 

their values by random. However, the goal of solving a BIP instance is to get a solution that is both 

feasible and has a high value of the objective function. This means that the greedy construction 

heuristic have to take into account the objective function coefficient corresponding to the variable (a 

value of a variable) and the constraints coefficients corresponding to the variable (a weight of a 

variable). 

Let 𝑉# be the set containing all the unassigned variables. Then the construction heuristic will start 

from an empty solution where 𝑉# contains all the variables and end with an empty 𝑉#. 

The pseudocode for a greedy construction heuristic is presented below: 

1. 𝑉# ≔ {1, … , 𝑛} // make all variables unassigned 

2. 𝒘𝒉𝒊𝒍𝒆 𝑉# ≠ ∅ 𝒅𝒐 // while there are unassigned variables 

3.     𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑗∗ //chose a variable from 𝑉# 

4.     𝑥𝑗∗ ≔ 0 𝑜𝑟 1 // set a value for the selected variable 

5.     𝑉# ≔ 𝑉# \ {𝑗∗}  // mark variable as assigned 

6. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆 

During each step the variable to assign a value is selected greedily following a criterion. This criterion 

should be based on a combination of the value of the variable and the weight of the variable. 

During the first step of the algorithm all the variables becomes unassigned. But in order to be able to 

evaluate solution with partially assigned variables it is important to define what unassigned means. 

For the binary problems, it is common to assume that unassigned variable is set to zero (Vianna and 

Arroyo 2004). And this is the only implemented part by now, so hopefully I will write more on this 

topic later. 

Line 3 of the pseudocode requires selecting the best possible variable. In order to do this there is a 

need to calculate rating of the variables that shows how good a possible assignment of each variable 
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is and then select the variable with the highest rating. There are different ways to calculate rating 

described later. For deciding how good a possible assignment of the variable can be both influence on 

the constraints and influence on the objective function value should be taken into consideration. The 

influence on the objective function value is trivial but the influence on the constraints consists of the 

influences on every constraint. Weight is an artificial measure introduced to quantify the influence of 

the variable on the constraints. 

4.1.1 Calculating weight 

The weight of the variable is a measure of space occupied by the variable in the constraints if set to 1. 

There are different options to calculate this weight.  

The easiest way to combine coefficients from different constraints is to take a sum of all coefficients. 

This can introduce a problem of different scales for different constraints e. g. : 

𝑥1 + 𝑥2 ≤ 1, 

10𝑥3 + 10𝑥4 ≤ 10. 

The sense is the same for both constraints, however the coefficients in the left-hand side differ. This 

can be solved by using normalized coefficients, which are introduced in chapter 3 equation (3.9). 

As the problem has both lower bound constraints and upper bound constraints they should be treated 

differently. The weight of a variable is positive if setting a variable to 1 reduces free space (the 

difference between the bound and the activity level) and negative if setting a variable to 1 increases 

free space. 

 The formula for static weight is  

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑠𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵}

− ∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵}

, (4. 1)
 

Where UB is a set of all upper bound constraints, LB is a set of all lower bound constraints. 

The downside of this method is that the weight is not changing according to the change in the activity 

level of constraints and it’s not related to free space in the constraint. If a variable has the same 

coefficient for two constraints, but the activity level of one constraint is close to the bound and another 

constraint has a lot of free space the contribution to the weight of a variable would be the same for 

both constraints. 
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Figure 4.1 Knapsack problem example 

In the example above (a knapsack problem with positive coefficients) the static weight of the first 

variable is lower, but setting this variable to one can lead to the second constraint being very close to 

bound and the impossibility of setting another variable to one. However, setting the second variable 

to one seems more promising because it leaves space in the second constraint to set more variables to 

one in order to increase the objective function value. 

The advantage of this method is low computational complexity. The weight can be calculated once 

and does not change during the solution. 

The problem of the static weight approach can be solved by using an importance of each constraint.  

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵}

 − ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵}

(4. 2)
 

This will allow to give different importance to different constraints depending on the difference 

between the bound and the activity level (free space) for every constraint.  

𝑠𝑝𝑎𝑐𝑒𝑖 = {
𝑏𝑖

𝑢 − 𝐴𝐿𝑖 , 𝑖 ∈ 𝑈𝐵

𝐴𝐿𝑖 − 𝑏𝑖
𝑙 , 𝑖 ∈ 𝐿𝐵

(4. 3) 

The upper bound constraint is discussed below. The reasoning for the lower bound is similar. Lower 

bound constraint could be changed to the upper bound constraints by multiplying by −1. This results 

in the different signs for different part of formulas. Equality constraints are treated as two constraints 

with different signs. 

Non-zero coefficients in all the constraints for a variable contribute to its weight. And this contribution 

depends on the coefficient itself and on free space in the constraint. The less free space the constraint 

has the higher importance it will have.  

If a constraint has a lot of free space, it’s not quite important right now and the contribution of the 

coefficient won’t be huge.  

For the positive coefficient if the constraint is currently infeasible making it even more infeasible by 

setting a variable to 1 is something which should be avoided. This will work also for a negative 

coefficient. It’s quite important to make a currently infeasible constraint (with high importance) more 

constraint 1 AL a11 upper bound

constraint 2 Infeasible space

constraint 1 lhs Infeasible space

constraint 2 a22 free space Infeasible spaceActivity Level

a12

a21

free space

free space

Activity Level
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feasible. The contribution to the weight should be huge (because of importance) and negative because 

of the coefficient. Low weight is beneficial for the variable to be selected during a construction step. 

The plot the importance of the constraint will look similar to the following: 

 

Figure 4.2 Plot of the importance dependency on free space 

The initial idea is to use an inverse of free space.  

This will work for the constraints, which are satisfied from the beginning. But using an inverse can 

be not the best choice here because it’s plot is similar to the required only for the positive side.  

 

Figure 4.3 Plot of the function y = 1 / x 

A more suitable choice here can be a modified sigmoid function: 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖 = 1 −
1

1 + 𝑒−𝑠𝑝𝑎𝑐𝑒𝑖
(4. 4) 

It has a following plot: 
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Figure 4.4 Importance plot 

The problem here is that 𝑠𝑝𝑎𝑐𝑒𝑖 can be quite large (or negatively large) and for values greater than 

for example 10 the difference in importance is extremely small. In order to solve this the values of 

𝑠𝑝𝑎𝑐𝑒𝑖 have to be normalized somehow. 

𝑠𝑝𝑎𝑐𝑒𝑖

𝑀𝑎𝑥𝐴𝐿𝑖−𝑀𝑖𝑛𝐴𝐿𝑖
 is a number from −1 to 1. Because 𝑀𝑎𝑥𝐴𝐿𝑖 − 𝑀𝑖𝑛𝐴𝐿𝑖 ≥ |𝑠𝑝𝑎𝑐𝑒𝑖| and 𝑀𝑎𝑥𝐴𝐿𝑖 −

𝑀𝑖𝑛𝐴𝐿𝑖 > 0 if the constraint has at least one non-zero coefficient. 

It can be called normalized space. It solves a problem of space being too large but introduces a problem 

of space being too small. This can lead to the insensible influence of the importance of different 

constraints. In order to make the influence of importance higher normalization can be used. 

𝑠𝑐𝑎𝑙𝑒(𝑥) =
𝑥 − 𝜇

𝜎
, (4. 5) 

Where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝜇 =
∑ 𝑥𝑗

𝑛
𝑗=1

𝑛
, 𝜎 = √∑ (𝑥𝑗− 𝜇)

2𝑛
𝑗=1

𝑛
. 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑠𝑐𝑎𝑙𝑒(𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒) − min(𝑠𝑐𝑎𝑙𝑒(𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒)) + 𝛿 (4. 6) 

Subtracting the minimum element and adding delta makes 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠𝑐𝑎𝑙𝑒𝑑 greater than zero 

because a constraint should have a positive importance. Delta can be different. 

4.1.2 Calculating rating 

In order to choose a variable to set a value greedily we need a rating of all variables. As stated earlier 

this rating should depend on the weight of the variable and its objective function value. 

It’s beneficial to have a high objective function coefficient and low weight. This means that rating can 

be obtained by multiplication of the objective function coefficient by a measure, which is opposite to 

weight. An inverse of the weight won’t work because of the reasons described in the previous section. 

It’s possible to use 1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤𝑒𝑖𝑔ℎ𝑡) for the weight term of the product and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑐𝑎𝑙𝑒(𝑐)) 

for the other part. It’s important to use 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑐𝑎𝑙𝑒(𝑐)) and not just 𝑠𝑐𝑎𝑙𝑒(𝑐) to avoid multiplying 

𝑤𝑒𝑖𝑔ℎ𝑡 by 0 (in this case we lose all the information about the weight). Scaling is important to avoid 
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extremely large (small) values that becomes close to 1 (0) after the use of sigmoid. This leaves us 

with 

𝑟𝑎𝑖𝑡𝑖𝑛𝑔𝑗
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = (

1

1 + 𝑒−𝑠𝑐𝑎𝑙𝑒(𝑐)𝑗
) ∗ (1 −

1

1 + 𝑒−𝑤𝑒𝑖𝑔ℎ𝑡𝑗
) , (4. 7) 

The unassigned variable with the highest rating will be used at the next move of the construction 

heuristic.  

Another approach to study is the sum instead of the multiplication of terms related to the objective 

function coefficient and weight. However objective function coefficients and weights have a different 

range and distribution. In order to make them comparable a normalization or scaling (statistical) can 

be used. 

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = 𝑠𝑐𝑎𝑙𝑒(𝑐)𝑗 − 𝑠𝑐𝑎𝑙𝑒(𝑤𝑒𝑖𝑔ℎ𝑡)𝑗 (4. 8) 

Where 𝑤𝑒𝑖𝑔ℎ𝑡 can be static or dynamic and 𝑐 is a vector of objective function coefficients 

Actually, multiplying or adding of the terms can lead to the loss of information (one term will be 

dominating all the time). This can be avoided by creating 2 different ratings for objective function 

contribution and weight. After two ratings are created each variable will have a rank in both of them. 

The sum of ranks in both ratings can be used to select the best variable at each step (The lower the 

sum is, the better the variable). To follow the fact that the best variable to assign has the highest rating 

a negative sum can be used. 

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = −𝑟𝑎𝑛𝑘(𝑐𝑗) − 𝑟𝑎𝑛𝑘(𝑤𝑒𝑖𝑔ℎ𝑡𝑗) (4. 9) 

 

Table 4.1 Sum of ranks example 

rank variable weight rank variable of coefficient variable sum of ranks 

1 1 -4.25 1 2 10.5 1 1 + 4 = 5 

2 3 0 2 3 7 2 4 + 1 = 5 

3 4 2 3 4 3 3 2 + 2 = 4 

4 2 14 4 1 -5 4 3 + 3 = 6 

 

Variable 3 is best to assign in this example. 

However, this approach is not perfect either. An issue here is the loss of the information. Now 

variables having almost identical weight would be one place away from each other. Variables that 

have a huge difference in weight can also be neighbors in the rating table if there are no other variables 

with the weight between the weights of the selected variables. 
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4.1.3 Accepting move 

After a variable is selected during a step of a construction heuristic its value have to be determined. 

One of the following approaches can be used. 

Here I understood that all the criteria that I have try to set a variable to 1 even if has a negative 

objective function coefficient. This is also something I should think of. 

The method «Do not make worse» is based on the feasibility of constraints. The idea is to set a variable 

to 1 if this won’t change any constraint from being feasible to being infeasible. If there is a constraint 

which is not violated but becomes violated after setting a variable to 1 then a variable value will 

become zero. This approach helps to stay in the feasible space but it might fail to find a good solution 

because sometimes it’s beneficial to go into infeasible part of the solution space in order to find a 

better solution later. 

The method «Be able to recover» is based on the possible feasibility of constraints.  

Minimum and maximum activity levels for a partial solution show the minimum and maximum values 

that can be reached by the left-hand side of the constraint choosing different values only for 

unassigned variables. If 𝑀𝑖𝑛𝑃𝐴𝐿𝑖 will become higher than the upper bound value this means that the 

constraint cannot be satisfied. The same is true for a situation where 𝑀𝑎𝑥𝑃𝐴𝐿𝑖 becomes lower than 

the lower bound value. These two situations have to be avoided. And this is the idea of this method. 

A variable would be set to 1 if and only if after making this variable equal to 1 𝑀𝑖𝑛𝑃𝐴𝐿𝑖 ≤ 𝑏𝑖
𝑢 and 

𝑀𝑎𝑥𝑃𝐴𝐿𝑖 ≥ 𝑏𝑖
𝑙. 

Both approaches described above set a variable to 1 if it is possible. This can be improved by changing 

the criteria from possible to beneficial. Now beneficial should be defined. Setting a variable to 1 can 

be beneficial for the solution if the assignment is possible following a criteria described above and the 

assignment either improves the objective function value or it improves the state of the constraints. 

Improving the objective function value means having a positive objective function coefficient for the 

assigned variable. Weight of the variable is correlated with the change of the state of constraints. A 

negative value of weight can be a sign of the improvement in the state of the constraints. This approach 

can help to avoid setting a variable to 1 if this action is possible but it will reduce the objective function 

value and it will reduce free space in constraints. 
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4.1.4 Dealing with infeasibility 

The goal of solving a problem is to get a feasible solution. A feasible solution even with a low 

objective function value is better than infeasible solution with the maximum possible objective 

function value. 

It can be beneficial to encourage the construction heuristic to try not to end up in infeasible space. 

This can be achieved by setting a higher importance to the constraints which are currently infeasible. 

This will contribute to weight of the variables. 

Then for the static weight the formula would become 

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑠𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐹}

+ 𝛼 ∗ ∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐼}

−

− ∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 − 𝛼 ∗ ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐼}{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐹}

(4. 10)
 

Where  

• UBF stands for upper bound constraints which are currently satisfied (feasible) 

• UBI – stands for upper bound constraints which are not currently satisfied (infeasible) 

• LBF – stands for lower bound constraints which are currently satisfied (feasible) 

• LBI – stands for lower bound constraints which are not currently satisfied (infeasible) 

The same idea can be applied to the dynamic weight: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐹}

+ 𝛼 ∗ ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝑈𝐵𝐼}

 −

− ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐹}

− 𝛼 ∗ ∑ 𝑎𝑖𝑗 ∗ 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑖

{𝑖∶𝑎𝑖𝑗≠0,𝑖∈𝐿𝐵𝐼}

, (4. 11)
 

However, this step can be redundant for the dynamic weight because importance itself contains 

information about free space in the constraint which corresponds to feasibility. A better approach for 

finding a feasible solution is to give more importance to weight term in rating formula. Using 𝛼 inside 

of the 𝑤𝑒𝑖𝑔ℎ𝑡 formula is not that efficient because 𝑤𝑒𝑖𝑔ℎ𝑡 is normalized later. A coefficient 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 can be applied to the whole 𝑤𝑒𝑖𝑔ℎ𝑡 term as 

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = 𝑠𝑐𝑎𝑙𝑒(𝑐)𝑗 − 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑠𝑐𝑎𝑙𝑒(𝑤𝑒𝑖𝑔ℎ𝑡)𝑗 , (4. 12) 

The sum of ranks for the rating now will look like 

𝑟𝑎𝑡𝑖𝑛𝑔𝑗 = −𝑟𝑎𝑛𝑘(𝑐𝑗) − 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑟𝑎𝑛𝑘(𝑤𝑒𝑖𝑔ℎ𝑡𝑗), (4. 13) 
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4.2 Comparing solutions 

Both improvement heuristic as a part of GRASP and GRASP itself deal with the comparison of 

solutions. A high objective function value does not matter a lot if the solution is infeasible. This 

means that solution 𝑥′ is better than solution 𝑥 if 𝑥′ has lower infeasibility. And infeasibility can be 

expressed as 

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑢𝑚 + 𝛽 ∗ 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡, (4. 14) 

where 

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑢𝑚 = ∑ (max (∑ 𝑎𝑖𝑗
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑥𝑗 −

𝑏𝑖
𝑢

𝑎�̅�

𝑛

𝑗=1

, 0) + max (
𝑏𝑖

𝑙

𝑎�̅�
− ∑ 𝑎𝑖𝑗

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑥𝑗

𝑛

𝑗=1

, 0))

𝑚

𝑖=1

, (4. 15) 

𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑢𝑛𝑡 is a number of unsatisfied constraints. 

If solutions have the same infeasibility, then a solution with a higher objective function value is 

better. 

4.3 Local search 

A simple local search is implemented as the improvement part of GRASP algorithm. The 

pseudocode of the local search is presented below: 

1: input: initial solution, 𝑥 

2: input: neighborhood operator, 𝑁 

3: while there is a 𝑥′ ∈ 𝑁(𝑥) that is better than 𝑥 do 

4: Choose the best neighbor 𝑥′ ∈ 𝑁(𝑥) that is better than x, and update 𝑥 ∶= 𝑥′. 

5: end while 

Currently local search is implemented only for a double-flip neighborhood. 

𝑁2(𝑥) = {𝑥′ : ∑ |𝑥𝑗 − 𝑥𝑗
′| = 2

𝑛

𝑗=1
} (4. 16) 

4.4 GRASP 

The pseudocode of the resulting GRASP algorithm is presented below: 

1. input: initial value for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 and ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦  

2. input: criteria for running the local search 

3. input: 𝛼 parameter 

4. while stopping criterion not met do 

5.     𝑉# ≔ {1, … , 𝑛}  
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6.     while 𝑉# ≠ ∅ do 

7.         update 𝑟𝑎𝑡𝑖𝑛𝑔 

8.         Find a reduced candidate list, 𝐿𝑅𝐶 ⊆ 𝑉# consisting of 𝛼% best ranked variables according 

to 𝑟𝑎𝑡𝑖𝑛𝑔 

9.         select randomly 𝑗 ∈ 𝐿𝑅𝐶  

10.         set a value to 𝑥𝑗 ≔ 𝑑, according to accepting move criterion 

11.         𝑉# ≔ 𝑉#\ {𝑗} 

12.     end while 

13.     run local search for the solution 𝑥 if the criteria for running the local search is met 

14.     update the best solution 𝑥′ a better solution was found 

15.     update 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

16. end while  

17. run local search for the solution 𝑥′ if the criteria for running the local search is met  

18. return 𝑥′ 

There are several parameters that can be changed in the presented algorithm. 

𝛼 parameter is used to control the size of the restricted candidate list. A low value of alpha corresponds 

to a small size of a restricted candidate list and to a weak influence of randomness. With 0 as a value 

for 𝛼 the algorithm becomes a greedy construction. A large value of 𝛼 leads to a large candidate list 

and a solution highly influenced by the randomness. 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter is used as described previously. It shows how important is weight comparing 

to the objective function coefficient for the rating of a variable. High values of the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑡𝑦 

parameter make weight more important. And it more likely to find a feasible solution with weight 

being more important. 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑡𝑦 parameter is updated depending on the previous solution found. 

If during the last iteration of GRASP an infeasible solution was found then weight should be more 

important and 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 is increased additively. If the last solution found was feasible that it 

makes sense to focus on getting a solution with a higher objective function value and 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

is decreased. 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖+1 = {
𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 + ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 − ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, 𝑖𝑓 𝑥𝑖 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
(4. 17) 

Where 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖 is the value of the infeasibility used on the 𝑖𝑡ℎ iteration of GRASP and 𝑥𝑖 is 

the solution found during the 𝑖𝑡ℎ iteration of GRASP. 

There are different options to run the local search.  

• Use local search for every solution found by GRASP (always run local search on line 13 of 

the pseudocode) 
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• Use local search for a solution found by GRASP if it is better than the solution that was 

improved to get the current best solution (run local search on line 13 of the pseudocode if the 

criteria is met) 

• Use local search only for the best solution found by GRASP (run local search on line 17 of 

the pseudocode) 

• Do not use local search 
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5.0 Results 

To evaluate whether GRASP can be used to find solutions for the BIP, the algorithm described in the 

previous chapter were implemented using c++ programming language. Computational tests were run 

using a laptop with 2.60GHz i7-4720HQ CPU with 8 GB RAM, running Windows 10. 

Tables with the results of testing are presented further in this chapter. The result of a test is usually 

the objective function value, the number of violated constraints and the normalized sum of violations. 

The majority of solutions found are feasible. In order to avoid columns in a table containing only 

zeroes (for the number of violated constraints and the normalized sum of violations) the results are 

presented in a following way: 

• Objective function value, if the solution is feasible 

• Objective function value (number of violations; normalized violation sum) 

5.1 Test instances 

Both training set and test set consist of different instances of BIP from literature. The instances for the 

training set and for the test set were selected from literature and they represent different problem 

classes. 

Training set is used to decide which approaches work better for different parts of the GRASP 

algorithm and of the greedy construction algorithm. The same instances are used for obtaining the 

best parameter values for GRASP. Training set consists of the following instances: 

 

Table 5.1 Training set instances 

Instance Type Number of 

variables 

Number of 

constraints 

Non-zero 

coefficients 

Source 

100-5-1-0-0 MDMKP 100 6 600 (Cappanera and 

Trubian 2005) 

100-5-2-0-0 MDMKP 100 7 700 (Cappanera and 

Trubian 2005) 

100-5-5-0-0 MDMKP 100 10 1000 (Cappanera and 

Trubian 2005) 

100-5-5-1-0 MDMKP 100 10 1000 (Cappanera and 

Trubian 2005) 
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250-10-1-0-0 MDMKP 250 11 2750 (Cappanera and 

Trubian 2005) 

250-10-5-0-0 MDMKP 250 15 3750 (Cappanera and 

Trubian 2005) 

250-10-10-0-0 MDMKP 250 20 5000 (Cappanera and 

Trubian 2005) 

g1 MAXCU

T 

19976 38352 115056 (Helmberg and Rendl 

2000) 

g14 MAXCU

T 

5494 9388 28164 (Helmberg and Rendl 

2000) 

sg3dl051000 MAXCU

T 

500 750 2250 (Festa et al. 2002) 

sg3dl101000 MAXCU

T 

4000 6000 18000 (Festa et al. 2002) 

100-5-01 MKP 100 5 500 (Chu and Beasley 

1998) 

250-10-01 MKP 250 10 2500 (Chu and Beasley 

1998) 

500-30-01 MKP 500 30 15000 (Chu and Beasley 

1998) 

I1 MMKP 25 10 133 (Khan et al. 2002) 

INST01 MMKP 500 60 5022 (Khan et al. 2002) 

rn50m30t4s0c0n

um0 

OptSAT 50 30 120 (Davoine, Hammer, 

and Vizvári 2003) 

 

Test set contains 4 problem classes with 15 instances each. The test set includes the instances used 

by Bentsen and Hvattum 2020 to perform a comparison of GRASP and the methotd created by the 

authors. 
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Table 5.2 Test set instances 

Instance Type n m non-

Zero 

Source 

I5 MMKP 250 35 2508 (Khan et al. 2002) 

I9 MMKP 2000 210 20009 (Khan et al. 2002) 

I11 MMKP 3000 310 30027 (Khan et al. 2002) 

I13 MMKP 4000 410 40050 (Khan et al. 2002) 

INST01 MMKP 500 60 5022 (Khan et al. 2002) 

INST03 MMKP 600 70 6024 (Khan et al. 2002) 

INST07 MMKP 800 90 8009 (Khan et al. 2002) 

INST18 MMKP 5600 290 61600 (Khan et al. 2002) 

INST20 MMKP 7000 360 77000 (Khan et al. 2002) 

INST21 MMKP 1076 210 10763 (Shojaei et al. 2013) 

INST24 MMKP 584 140 21675 (Shojaei et al. 2013) 

INST28 MMKP 1643 310 16439 (Shojaei et al. 2013) 

RTI09 MMKP 158 40 1568 (Shojaei et al. 2013) 

RTI12 MMKP 241 50 2448 (Shojaei et al. 2013) 

RTI13 MMKP 295 60 2954 (Shojaei et al. 2013) 

100-5-5-1-0 MDMKP 100 10 1000 (Cappanera and Trubian 2005) 

100-10-5-1-0 MDMKP 100 15 1500 (Cappanera and Trubian 2005) 

100-30-15-1-10 MDMKP 100 45 4500 (Cappanera and Trubian 2005) 

100-30-30-0-1 MDMKP 100 60 6000 (Cappanera and Trubian 2005) 

100-50-10-1 MDMKP 100 51 5100 (Cappanera and Trubian 2005) 

100-50-q-1 MDMKP 100 51 5100 (Cappanera and Trubian 2005) 

100-100-25-1 MDMKP 100 101 10100 (Cappanera and Trubian 2005) 

100-100-q-1 MDMKP 100 101 10100 (Cappanera and Trubian 2005) 

250-5-2-0-0 MDMKP 250 7 1750 (Cappanera and Trubian 2005) 

250-10-1-0-14 MDMKP 250 11 2750 (Cappanera and Trubian 2005) 

250-30-30-0-0 MDMKP 250 60 15000 (Cappanera and Trubian 2005) 

500-5-5-0-14 MDMKP 500 10 5000 (Cappanera and Trubian 2005) 

500-10-10-1-0 MDMKP 500 20 10000 (Cappanera and Trubian 2005) 
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500-30-15-1-0 MDMKP 500 45 22500 (Cappanera and Trubian 2005) 

500-30-30-0-0 MDMKP 500 60 30000 (Cappanera and Trubian 2005) 

lmhn1000m5000num1 OptSat 1000 5000 15000 (da Silva, Hvattum, and Glover 

2020) 

lmhn1500m7500num1 OptSat 1500 7500 22500 (da Silva, Hvattum, and Glover 

2020) 

qn500m2500t2s0c0num0 OptSat 500 2500 5000 (Davoine, Hammer, and Vizvári 

2003) 

qn500m5000t2s0c0num0 OptSat 500 5000 10000 (Davoine, Hammer, and Vizvári 

2003) 

qn1000m10000t2s0c0num0 OptSat 1000 10000 20000 (Davoine, Hammer, and Vizvári 

2003) 

rn200m1000t10s0c0num0 OptSat 200 1000 10000 (Davoine, Hammer, and Vizvári 

2003) 

rn200m1000t10s0c25num4 OptSat 200 1000 10000 (Davoine, Hammer, and Vizvári 

2003) 

rn200m1000t40s20c0num0 OptSat 200 1000 40187 (Davoine, Hammer, and Vizvári 

2003) 

rn500m1000t25s0c0num4 OptSat 500 1000 25000 (Davoine, Hammer, and Vizvári 

2003) 

rn500m1000t25s0c25num4 OptSat 500 1000 25000 (Davoine, Hammer, and Vizvári 

2003) 

rn500m1000t25s0c50num0 OptSat 500 1000 25000 (Davoine, Hammer, and Vizvári 

2003) 

rn500m1000t100s50c0num0 OptSat 500 1000 99511 (Davoine, Hammer, and Vizvári 

2003) 

rn500m1000t100s50c25num

0 

OptSat 500 1000 100798 (Davoine, Hammer, and Vizvári 

2003) 

rn500m2500t25s0c25num4 OptSat 500 2500 62500 (Davoine, Hammer, and Vizvári 

2003) 

rn500m2500t25s0c50num0 OptSat 500 2500 62500 (Davoine, Hammer, and Vizvári 

2003) 
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g5 MaxCut 19976 38352 115056 (Helmberg and Rendl 2000) 

g15 MaxCut 5461 9322 27966 (Helmberg and Rendl 2000) 

g25 MaxCut 21990 39980 119940 (Helmberg and Rendl 2000) 

g35 MaxCut 13778 23556 70668 (Helmberg and Rendl 2000) 

g45 MaxCut 10990 19980 59940 (Helmberg and Rendl 2000) 

g50 MaxCut 9000 12000 36000 (Helmberg and Rendl 2000) 

g54 MaxCut 6916 11832 35496 (Helmberg and Rendl 2000) 

sg3dl053000 MaxCut 500 750 2250 (Festa et al. 2002) 

sg3dl105000 MaxCut 4000 6000 18000 (Festa et al. 2002) 

sg3dl144000 MaxCut 10976 16464 49392 (Festa et al. 2002) 

sg3dl1410000 MaxCut 10976 16464 49392 (Festa et al. 2002) 

toursg3-8 MaxCut 2048 3072 9216 7th DIMACS Implementation 

Challenge 

toursg3-15 MaxCut 13500 20250 60750 7th DIMACS Implementation 

Challenge 

tourspm3-8-50 MaxCut 2048 3072 9216 7th DIMACS Implementation 

Challenge 

tourspm3-15-50 MaxCut 13500 20250 60750 7th DIMACS Implementation 

Challenge 

5.2 Approaches testing 

In this section the results for testing different approaches for different parts of the greedy construction 

algorithm and of the GRASP are presented. To test different approaches for one part of the algorithm 

(e.g., weight calculation or rating calculation) the approaches for all the other parts are fixed and then 

the results for different approaches are compared to select the best one. 

The approaches for calculating weight, rating and selecting a value are tested as a part of greedy 

construction algorithm. Using GRASP can lead to results influenced by the randomization and will 

not be the evidence of advantages of an approach.  

For some instances, obtaining a feasible solution is harder than for other instances. That is why during 

testing different approaches for calculating weight, rating and selecting a value each instance was 

solved using the greedy construction heuristic using different values for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter. 



 29 

Then the best solution was selected as the result of the test. The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are 

{ 0.5, 1, 2, 3, 5 }. 

Several values are used for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter for several reasons. 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter 

has a different influence on the result in different approaches, so it is impossible to select one value 

for all the approaches. Selecting 1 as a value will result in getting mostly infeasible solutions. Later 

the greedy construction will be used as a part of GRASP to obtain feasible solutions (or at least 

solutions that are close to feasible) with the help of the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter. So, using 1 as a 

value for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 for testing will not show the behavior of the algorithm that will be used 

later. That is why different values are used. 

5.2.1 Weight 

There are different approaches for calculating the weight.  

• The weight can be calculated simply as a static weight 

• Dynamic weight without the normalization of importance 

• Dynamic weight with normalized importance 

The fixed parts of the greedy construction algorithm are the following: 

• A sum of normalized parts is used for rating calculation (equations (4.8) and (4.12)) 

• “Be able to recover” rule is used for selecting the value for a variable. 

• The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are { 0.5, 1, 2, 3, 5 }. 

The results for 3 different approaches follow: 

 

Table 5.3 Results for the different approaches for calculating the weight 

Instance Static weight Dynamic weight without 

normalization 

Dynamic weight with 

normalization 

100-5-1-0-0 26375 26375 28416 

100-5-2-0-0 20804 20795 26534 

100-5-5-0-0 15275 16119 16054 

100-5-5-1-0 2215 2270 6954 

250-10-1-0-0 54868 54868 55728 

250-10-5-0-0 40064 40658 51269 
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250-10-10-0-0 38081 39373 46076 

g1 0 0 0 

g14 0 0 0 

sg3dl051000 -173 -134 -187 

sg3dl101000 -1494 -1229 -1500 

100-5-01 23244 23306 24034 

250-10-01 56325 56325 58474 

500-30-01 109259 109259 113485 

I1 147 147 147 

INST01 8074 7853 8006 

rn50m30t4s0c0num0 2912 2863 2863 

 

All the methods are able to find a feasible solution for all the problems. The solutions for problems 

g1 and g14 are trivial but local search is not used, so it is hard to find better solutions. The fact that 

all the solutions are feasible allows to compare only the objective function values. 

 

Table 5.4 Comparison of static and dynamic weight 

Instance Static weight Dynamic weight without normalization Difference 

100-5-1-0-0 26375 26375 0 

100-5-2-0-0 20804 20795 -9 

100-5-5-0-0 15275 16119 844 

100-5-5-1-0 2215 2270 55 

250-10-1-0-0 54868 54868 0 

250-10-5-0-0 40064 40658 594 

250-10-10-0-0 38081 39373 1292 

g1 0 0 0 

g14 0 0 0 

sg3dl051000 -173 -134 39 

sg3dl101000 -1494 -1229 265 
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100-5-01 23244 23306 62 

250-10-01 56325 56325 0 

500-30-01 109259 109259 0 

I1 147 147 0 

INST01 8074 7853 -221 

rn50m30t4s0c0num0 2912 2863 -49 

 

Using dynamic weight is beneficial for all the problem classes except for MMKP and OptSAT. In 

general, it can be concluded that using 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 of each constraint is beneficial for the algorithm. 

 

Table 5.5 Influence of the importance normalization 

Instance Dynamic weight without 

normalization 

Dynamic weight with 

normalization 

Difference 

100-5-1-0-0 26375 28416 2041 

100-5-2-0-0 20795 26534 5739 

100-5-5-0-0 16119 16054 -65 

100-5-5-1-0 2270 6954 4684 

250-10-1-0-0 54868 55728 860 

250-10-5-0-0 40658 51269 10611 

250-10-10-0-0 39373 46076 6703 

g1 0 0 0 

g14 0 0 0 

sg3dl051000 -134 -187 -53 

sg3dl101000 -1229 -1500 -271 

100-5-01 23306 24034 728 

250-10-01 56325 58474 2149 

500-30-01 109259 113485 4226 

I1 147 147 0 

INST01 7853 8006 153 

rn50m30t4s0c0num0 2863 2863 0 
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Normalization improves the results for all problem classes except for MAXCUT. 

It can be stated that the greedy algorithm works better in general when using dynamic weight with 

normalized importance. 

5.2.2 Rating 

As described in the previous chapter rating relies on two terms: weight and objective function 

coefficient. There are different approaches for calculating the rating.  

• The sum of normalized terms with the use of 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 coefficient to make one of them 

more important (equations (4.8) and (4.12)) 

• Sum of ranks of the terms with the use of 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 coefficient to make one of them more 

important (equations (4.9) and (4.13)) 

The fixed parts of the greedy construction algorithm are the following: 

• Dynamic weight with normalized importance is used to calculate weight 

• “Be able to recover” rule is used for selecting the value for a variable. 

• The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are { 0.5, 1, 2, 3, 5 }. 

The results for the approach with the sum of normalized terms are presented in the previous section 

(Table 5.4). The result for the approach with the sum of ranks is below. If the solution is infeasible 

violation sum and violation count are presented in parentheses. 

 

Table 5.6 Results for the sum of ranks 

Instance 
 

Objective function value 

100-5-1-0-0 27590 

100-5-2-0-0 23481 

100-5-5-0-0 18722 

100-5-5-1-0 3482 

250-10-1-0-0 61534 

250-10-5-0-0 46438 

250-10-10-0-0 46142 

g1 10268 (722; 722) 

g14 1128 

sg3dl051000 -181 

sg3dl101000 -1496 
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100-5-01 23584 

250-10-01 57508 

500-30-01 112271 

I1 143 

INST01 8237 (1; 1) 

rn50m30t4s0c0num0 2870 

 

This approach fails to find a feasible solution for 2 instances from the training set while using the sum 

of normalized terms allows to find a feasible solution for all the instances from this set. The 

comparison of the objective function values for both methods is presented below (only for the 

instances where a feasible solution was found by both methods). 

 

Table 5.7 Comparison of rating calculation approaches 

Instance Sum of ranks Normalized sum Difference 

100-5-1-0-0 27590 28416 826 

100-5-2-0-0 23481 26534 3053 

100-5-5-0-0 18722 16054 -2668 

100-5-5-1-0 3482 6954 3472 

250-10-1-0-0 61534 55728 -5806 

250-10-5-0-0 46438 51269 4831 

250-10-10-0-0 46142 46076 -66 

g14 1128 0 -1128 

sg3dl051000 -181 -187 -6 

sg3dl101000 -1496 -1500 -4 

100-5-01 23584 24034 450 

250-10-01 57508 58474 966 

500-30-01 112271 113485 1214 

I1 143 147 4 

rn50m30t4s0c0num0 2870 2863 -7 

 

Each approach works better than the opponent method in approximately half of the instances from the 

table 5.8. This fact does not provide an obviously better approach. But taking into account the fact 
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that the sum of normalized terms approach is able to find a feasible solution for all the instances this 

approach is selected to be a part of the final algorithm. It can be beneficial in future to find a way to 

combine these two methods to get better results for some of the instances. And this is one of the 

questions for the further research. 

5.2.3 Selecting a value 

As described in the previous chapter there are two different approaches for selecting a value for a 

variable:  

• “Do not make worse” 

• “Be able to recover” 

• “Beneficial instead of possible” 

The fixed parts of the greedy construction algorithm are the following: 

• Dynamic weight with normalized importance is used to calculate weight 

• A sum of normalized parts is used for rating calculation (equations (4.8) and (4.12)) 

• The values for 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 are { 0.5, 1, 2, 3, 5 }. 

The results for the “Be able to recover” approach are presented earlier (Table 5.4). The results for the 

“Do not make worse” approach follow: 

 

Table 5.8 Results for the "Do not make worse" approach 

Instance Objective function value 

100-5-1-0-0 28416 

100-5-2-0-0 26534 

100-5-5-0-0 16054 

100-5-5-1-0 6954 

250-10-1-0-0 55728 

250-10-5-0-0 51269 

250-10-10-0-0 46076 

g1 0 

g14 2120 

sg3dl051000 -130 

sg3dl101000 -956 

100-5-01 24034 
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250-10-01 58474 

500-30-01 113485 

I1 147 

INST01 8006 

rn50m30t4s0c0num0 2863 

 

The algorithm is able to find a feasible solution for every instance from the training set. 

 

Table 5.9 Comparison of the approaches for selecting a value 

Instance Don't make worse Be able to recover Difference 

100-5-1-0-0 28416 28416 0 

100-5-2-0-0 26534 26534 0 

100-5-5-0-0 16054 16054 0 

100-5-5-1-0 6954 6954 0 

250-10-1-0-0 55728 55728 0 

250-10-5-0-0 51269 51269 0 

250-10-10-0-0 46076 46076 0 

g1 0 0 0 

g14 2120 0 -2120 

sg3dl051000 -130 -187 -57 

sg3dl101000 -956 -1500 -544 

100-5-01 24034 24034 0 

250-10-01 58474 58474 0 

500-30-01 113485 113485 0 

I1 147 147 0 

INST01 8006 8006 0 

rn50m30t4s0c0num0 2863 2863 0 
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From the comparison it is clear that the approaches work quite similar. But for several instances “Do 

not make worse” approach shows better results. It means that there is no evidence that the algorithm 

benefits from the ability to make a constraint infeasible during the construction of a solution. 

Setting a variable to 1 if it is possible and beneficial shows exactly the same result on the training set 

as setting a variable to 1 if it is possible. But for avoiding unnecessary setting variables with a negative 

impact on the solution “beneficial” approach will be used. 

The approach “Do not make worse” with setting a variable to 1 if beneficial is selected as a part of 

the final algorithm. 

5.2.4 Infeasibility 

During testing the approaches described above several values were used as values for the 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦. The final greedy construction heuristic is tested with different values for the 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 and the results are presented below. 

Table 5.10 Results for the different values of infeasibility 

infeasibility 0.5 1 2 3 5 

100-5-1-0-0 30274(1;15.3133) 28416 23933 23820 23820 

100-5-2-0-0 27655(2;16.4558) 26534 20240 20437 20437 

100-5-5-0-0 18368(5;33.2733) 18289(1;0.192336) 16054 14608 14303 

100-5-5-1-0 10502(5;33.3803) 6954 2746 2746 1671 

250-10-1-0-0 69314(1;36.5684) 67243(1;6.35034) 55728 53734 48738 

250-10-5-0-0 48757(5;78.3428) 51269 41165 38115 37050 

250-10-10-0-0 47071(10;69.5535) 46076 39333 38057 37139 

g1 0 0 0 0 0 

g14 2120 0 0 0 0 

sg3dl051000 -171 -171 -159 -130 -130 

sg3dl101000 -1382 -1382 -1305 -973 -956 

100-5-01 22522 24034 23065 23046 22647 

250-10-01 57151 58474 54907 53532 52841 

500-30-01 113485 111697 107024 103250 100117 
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I1 147 142 64 64 64 

INST01 8583(20;20) 7699(16;16) 8006 7838 7708 

rn50m30t4s0c0num0 2849 2814 2863 2863 2863 

 

It is obvious that best solutions for different instances are obtained with different 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

values. Usually, low values of the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter lead to infeasible solutions. But for the 

majority of instances feasible solutions obtained with higher 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 values are worse than 

feasible solutions obtained with lower 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 values. 
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5.3 Parameters tuning 

The GRASP presented in the previous chapter has several parameters. The parameters are 𝛼, 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦, ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 and the criteria for running local search. 

For tuning one of the parameters all the other parameters are fixed. The training set used for testing 

the greedy construction is used for tuning the parameters of GRASP. 

The time limit for the algorithm is 5 minutes. Time limit for a local search is 30 seconds. 

The results of testing the algorithm with different parameters and the best parameter values that are 

selected for the final algorithm are presented below. 

5.3.1 𝜶 tuning  

𝛼 is used to control the influence of randomness on a solution. The range of values is [0, 1] with the 

algorithm being purely greedy if 𝛼 = 0 and a random construction if 𝛼 = 1. The values for testing 

include the extreme values and the values in between. The list of values for testing is 

{0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.2, 0.5, 1}. 

The fixed parts of GRASP are the following: 

• 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 2 

• ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.1 

• Local search is used for every solution constructed 

The results are presented in the tables below. 

 

Table 5.11 Alpha testing results. Part 1 

Instance \ 𝛼 0 0.01 0.02 0.03 0.04 0.05 0.06 

100-5-1-0-0 30348 30348 30204 30299 30204 30120 30399 

100-5-2-0-0 27884 27884 27686 27861 27903 27737 27590 

100-5-5-0-0 21271 21271 21031 21304 21019 21032 20785 

100-5-5-1-0 9507 9507 9701 9334 9390 9760 9667 

250-10-1-0-0 65766 65820 65782 65576 65346 65862 65323 

250-10-5-0-0 54265 54166 54516 54278 54901 54482 54250 

250-10-10-0-0 50481 50921 50218 50411 50919 50990 50884 
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g1 0 2977 5346 7045 8519 9268 9746 

g14 0 141 284 458 953 1250 1681 

sg3dl051000 -141 -132 -123 -117 -115 -122 -107 

sg3dl101000 -1500 -1467 -1454 -1437 -1437 -1430 -1420 

100-5-01 24270 24270 24202 24285 24381 24231 24177 

250-10-01 58807 58794 58871 58877 58725 58833 58729 

500-30-01 114900 114773 114664 115111 114551 115192 114873 

I1 167 167 167 167 167 173 173 

INST01 10265 10306 10303 10323 10329 10307 10308 

rn50m30t4s0c0num0 2912 2912 2912 2912 2912 2912 2912 

 

 

Table 5.12 Alpha testing results. Part 2 

Instance \ 𝛼 0.07 0.1 0.2 0.5 1 

100-5-1-0-0 30271 30229 29828 28454 28350 

100-5-2-0-0 27472 27787 27245 26327 26432 

100-5-5-0-0 21064 20966 21186 21352 21137 

100-5-5-1-0 9423 9634 9691 9737 9946 

250-10-1-0-0 65525 64876 64370 61837 60643 

250-10-5-0-0 54205 54618 53657 52932 51831 

250-10-10-0-0 50293 50807 50234 49160 49298 

g1 9718 

(3;3) 

9352 (9;9) 7842 

(595;595) 

10424 

(4462;4462) 

14465 

(8731;8731) 

g14 1549 2094 2505 2959 (562;562) 3705 

(1461;1461) 

sg3dl051000 -115 -105 -64 -32 -19 

sg3dl101000 -1417 -1394 -1324 -855 (7;7) -322 (179;179) 

100-5-01 24182 24180 23779 23630 23966 

250-10-01 58779 58457 58117 57743 57637 
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500-30-01 114867 114718 114496 113641 111496 

I1 173 173 173 173 173 

INST01 10336 10266 10254 10201 9975 

rn50m30t4s0c0num0 2912 2921 2921 2960 2960 

 

High values of 𝛼 result in infeasible solution for some instances. No value gives the best result for all 

the instances. Different 𝛼 values work better for different instances. In order to compare different 

results statistical standardizing is applied. The results for each instance are replaced with the standard 

score (number of standard deviations from mean). This allows to compare the results originally having 

different magnitudes.  

Any infeasible solution is worse than a feasible that is why infeasible solutions should be treated 

separately and not by the objective function value. The standard scores for the infeasible solutions are 

set to −1. This mean that an infeasible solution is below average. The value can be lower but it does 

not change the result of the analysis. 

Then the means of standard scores for each 𝛼 value are calculated. These values show how different 

the result obtained with a specific 𝛼 value is from the average result obtained in all tests. The plot of 

the values is presented below. 
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Figure 5.1 Plot of average standard scores for alpha testing 

It is possible to see that all values in the range [0.01, 0.2] show better results than the values 0 and 1 . 

This means that GRASP performs better than a greedy construction and a random construction.  

The value 0.05 gives better results on average. The values close to 0.05 also give a good result. 

Extreme values or alpha perform purely.  0.05 is selected as the 𝛼 value for the final algorithm. 

5.3.2 𝒊𝒏𝒇𝒆𝒂𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 tuning 

The initial value for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 has a high importance especially for the instances with a huge 

number of variables and constraints because the algorithm spends a lot of time during one iteration. 

That is why the number of iterations is low and the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 parameter does not change a lot 

during the runtime.  
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The possible values are from 0 to ∞. However, values higher than 10 do not make a huge difference. 

The testing was performed for the following list of values: {0, 0.5, 1, 2, 2.5, 3, 5, 7, 10}. 

The fixed parts of GRASP are the following: 

• 𝛼 = 0.05 

• ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.1 

• Local search is used for every solution constructed 

The results are presented in the tables below. 

 

Table 5.13 Results for infeasibility testing 

Instance\

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

0 0.5 1 2 2.5 3 5 7 10 

100-5-1-0-0 26832 27379 29707 30120 30121 30294 30294 30603 30429 

100-5-2-0-0 26092 26092 26826 27737 27878 27649 27882 27751 28067 

100-5-5-0-0 20360 20360 20360 21032 21214 21298 21190 21184 21117 

100-5-5-1-0 9308 9308 9441 9760 9685 9760 9668 9559 9562 

250-10-1-0-0 57388 59399 65281 65862 65698 65599 65197 65567 65565 

250-10-5-0-0 48277 50475 52689 54482 54183 54088 54505 54956 54347 

250-10-10-0-0 47784 47866 47880 50990 50976 50722 51057 50864 51123 

g1 19176 

(16050; 

16050) 

19174 

(16042; 

16042) 

9627 9268 9442 9331 9337 9124 9208 

g14 4483 

(2617; 

2617) 

1762 2508 1250 832 861 840 855 838 

sg3dl051000 -2 5 -5 -122 -115 -119 -121 -119 -117 

sg3dl101000 -1042 -1282 -1070 -1430 -1393 -1378 -1385 -1389 -1394 

100-5-01 21526 21618 23894 24231 24326 24281 24147 24191 24201 

250-10-01 53013 57686 58641 58833 58722 58718 58569 58881 58738 

500-30-01 107022 113548 114771 115192 114807 114756 115049 114990 114867 

I1 173 173 173 173 173 173 173 173 173 

INST01 10307 10282 10307 10307 10282 10307 10338 10310 10352 
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rn50m30t4s0c0n

um0 

2794 2849 2871 2912 2912 2912 2912 2912 2912 

 

The idea of using the average standard score is used to determine the best value. 

 

Figure 5.2 Plot of average standard scores for infeasibility testing 

All the values starting from 1 perform similarly. But given that low values can lead to infeasible 

solutions for instances that are hard to solve a higher value should be selected. Value 5 gives the result 

on the training set that is slightly better than all the others and it seems to be high enough to obtain 

feasible solutions for the majority of instances. 5 is selected as the initial value for the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

parameter in the final algorithm. 
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5.3.3 ∆𝒊𝒏𝒇𝒆𝒂𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 tuning 

∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 controls how the 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 changes. ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0 leads to the same 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 value for all the iterations. Higher values correspond to higher variability of 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦. The range of values for testing is [0, 2]. The values for testing are 

{0, 0.05, 0.1, 0.2, 0.3, 0.5, 1, 2}. 

The fixed parts of GRASP are the following: 

• 𝛼 = 0.05 

• 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 5 

• Local search is used for every solution constructed 

The results are presented in the tables below. 

 

Table 5.14 Results for delta infeasibility testing 
 

0 0.05 0.1 0.2 0.3 0.5 1 2 

100-5-1-0-0 30665 30626 30294 30547 30235 30134 29837 29834 

100-5-2-0-0 28185 27916 27882 27754 27360 27581 27360 27360 

100-5-5-0-0 21547 21418 21190 21231 21162 20919 21212 20812 

100-5-5-1-0 9555 9951 9668 9760 9616 9336 9391 9308 

250-10-1-0-0 64118 65807 65197 65023 65341 65337 64542 64813 

250-10-5-0-0 54870 54622 54505 54162 53915 53878 53626 52759 

250-10-10-0-0 51173 50867 51057 51056 50736 50371 50544 49647 

g1 9343 9255 9337 9433 9109 9386 9303 9087 

g14 816 843 840 814 897 829 2313 2449 

sg3dl051000 -119 -115 -119 -116 -116 -29 -6 -6 

sg3dl101000 -1391 -1388 -1385 -1386 -1382 -1269 -1260 -1325 

100-5-01 24007 24192 24147 24125 24121 24165 24199 23848 

250-10-01 55403 58679 58569 58516 58675 58680 59016 58511 

500-30-01 10745

6 

11476

3 

11504

9 

11451

5 

11489

5 

11473

9 

11421

8 

11361

2 

I1 159 173 173 173 173 173 173 173 
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INST01 10305 10295 10338 10312 10324 10326 10294 10271 

rn50m30t4s0c0num

0 

2912 2912 2912 2912 2912 2912 2912 2912 

 

The approach with calculating average standard scores is used once again to determine the best value. 

 

Figure 5.3 Plot of average standard scores for delta infeasibility testing 

Value 0 gives bad results. This means that the approach of changing 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 between GRASP 

iterations is profitable. The best value is 0.05. It is quite low and can lead to slow change of 

𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦. But as the algorithm starts from a high value of 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 this should not cause 

the impossibility of the algorithm to obtain a feasible solution. 

0.05 is selected as the value of ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 for the final algorithm. 
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5.3.4 Local search tuning 

Four different approaches of using local search are tested: 

1. Running the local search only for the best solution found by GRASP 

2. Running the local search for every solution found by GRASP 

3. Running the local search for a solution found during the iteration of GRASP only if this 

solution is better than the solution that was improved to get the current best solution. 

4. Not using local search 

These approaches are tested because local search improves the solutions but takes some time to do so. 

Different approaches have different ratio of the time spend on constructing solution to the time spend 

on improving solutions. 

The fixed parts of GRASP are the following: 

• 𝛼 = 0.05 

• 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 5 

• ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.05 

The results are presented in the table below. 

 

Table 5.15 Results for local search testing 
 

1 2 3 4 

100-5-1-0-0 30385 30626 30728 30385 

100-5-2-0-0 27614 27916 27916 27614 

100-5-5-0-0 20109 21418 21229 20059 

100-5-5-1-0 9480 9951 9975 9480 

250-10-1-0-0 66082 65807 66236 66098 

250-10-5-0-0 54003 54622 54580 53136 

250-10-10-0-0 49309 50867 50867 47805 

g1 9255 9255 9255 9255 

g14 865 843 856 865 

sg3dl051000 -3 -116 -108 -45 

sg3dl101000 -1369 -1388 -1369 -1369 

100-5-01 24164 24192 24164 24164 
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250-10-01 58667 58679 58667 58080 

500-30-01 114553 114763 114763 112709 

I1 158 173 173 158 

INST01 10169 10295 10301 9035 

rn50m30t4s0c0num0 2912 2912 2912 2886 

 

The plot of average standard scores is below. 

 

Figure 5.4 Plot of average standard scores for local search testing 

Not using local search shows the worst result. Using local search always is better than using it only 

once. Skipping the local search for some «bad» solution improves the result by alowing to constuct 

more solutions comparing to always running the local search. 
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Approach 3 (running local search for good solutions) is selected as a part of the final algorithm. 

5.4 Final algorithm results 

The test set described previously is used to test different algorithms. The algorithms are the following: 

• GRASP: GRASP algorithm described in the previous chapter with the parameters tuned in this 

chapter 

• VNS: a variable neighborhood search algorithm starting from a random solution described and 

implemented by Bentsen and Hvattum 2020 

• GRASP + VNS: VNS algorithm which uses GRASP to create an initial solution instead of a 

random construction 

• Greedy + VNS: VNS algorithm which uses the greedy construction described in this thesis to 

create an initial solution instead of a random construction 

• GRASP2 + VNS: the same as GRASP + VNS but with slightly modified parameters of 

GRASP to make the construction slightly more random (𝛼 = 0.1, ∆𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 0.5) 

• CPLEX: (Cplex 2009) 

• Local Solver: (Benoist et al. 2011), https://www.localsolver.com/ 

The runtime for all the algorithms was set to 5 minutes. Local Solver and CPLEX were tested on a 

different machine, so the running times are not comparable. 

For the algorithms combining GRASP and VNS the runtime of GRASP part was limited by 40 

seconds for one construction. 

The results are presented in the following table: 

 

Table 5.16 Results on the test set 

Instance GRASP VNS GRASP + 

VNS 

GRASP2 + 

VNS 

Greedy + 

VNS 

CPLEX Local 

Solver 

g15 778 2758 2031 2145 1985 2922 2717 

g25 5778 
 

5833 9321 100 10952 10849 

g35 1867 
 

2550 4438 1527 6764 6760 

g45 2996 
 

3532 4750 2301 5428 5493 

g5 9069 
 

9332 9202 763 9906 9953 

g50 476 4550 2069 2745 2177 5880 5814 

g54 1140 3476 2525 2775 2487 3426 3387 

sg3dl053000 -85 88 82 56 58 106 102 

https://www.localsolver.com/
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sg3dl105000 -1389 546 402 426 474 656 642 

sg3dl1410000 -3830 1239 -89 390 362 1264 1276 

sg3dl144000 -3822 962 -23 416 238 1150 1434 

toursg3-15 -397448706 
 

-15210101 5016140 -55832572 172938456 196006617 

toursg3-8 -56516747 21670541 6361821 18584323 6601816 40402223 35163004 

tourspm3-15-50 -4719 
 

-1039 -422 -619 1370 1464 

tourspm3-8-50 -541 300 180 168 182 374 364 

100-100-25-1 57018 57194 57018 57092 57194 57194 57194 

100-100-q-1 85632 85545 85632 85491 85652 85652 82664 

100-10-5-1-0 9590 10018 9929 9917 10000 10018 10018 

100-30-15-1-10 16611 18200 18028 18306 18713 17797 18250 

100-30-30-0-1 
 

9494 9385 9612 9785   8933 

100-50-10-1 38130 38130 38130 38130 38130 38130 38130 

100-50-q-1 43866 43917 43917 43917 43917 43917 43917 

100-5-5-1-0 9975 10263 10041 10100 10263 10263 10263 

250-10-1-0-14 172782 172232 172978 172534 172717 173386 173443 

250-30-30-0-0 32394 33990 34063 34128 34161 34323 32511 

250-5-2-0-0 76784 78100 77970 77992 78105 78486 78486 

500-10-10-1-0 50275 50385 49666 50372 49638 52741 52381 

500-30-15-1-0 46746 47517 47096 48532 48136 50404 47350 

500-30-30-0-0 81912 81984 82998 82444 82565 82265 80000 

500-5-5-0-14 309431 311055 311642 311370 311557 312069 311989 

I11 49896 71785 71728 71852 71833 73773 73749 

I13 65127 95901 95767 95718 95707 98434 98389 

I5 39057 39057 39057 39057 39057 39057 39057 

I9 35794 47939 47858 47964 48029 49174 49175 

INST01 10301 10334 10369 10400 10395 10714 10706 

INST03 10513 10650 10574 10591 10652 10942 10934 

INST07 15806 15978 16005 15975 16000 16411 16440 

INST18 33517 58538 58110 58384 58448 60461 60458 
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INST20 41798 72733 72341 72510 72701 75610 75606 

INST21 76240 85776 85638 85628 85830 87616 87552 

INST24 
    

41080 41892 41098 

INST28 109066 131632 131564 131968 132050 134630 134598 

RTI09 78062 78062 78062 78062 78062 78062 78062 

RTI12 11074 11438 11380 11344 11396 11632 11632 

RTI13 101508 104862 104132 103474 104204 105612 105612 

lmhn1000m5000num1 676851 704840 717860 713409 713430 691461 727020 

lmhn1500m7500num1 1493487 1579112 1605637 1614096 1614169 1530720 1628910 

qn1000m10000t2s0c0n

um0 

121552 134184 132924 135985 134342 137996 139032 

qn500m2500t2s0c0nu

m0 

47572 51791 52138 51819 51478 52816 52467 

qn500m5000t2s0c0nu

m0 

31996 35684 34880 34583 34890 35607 35173 

rn200m1000t10s0c0nu

m0 

19340 19540 19481 19509 19540 19499 19492 

rn200m1000t10s0c25n

um4 

19777 20614 20423 20580 20614 20510 20570 

rn200m1000t40s20c0n

um0 

21983 22076 22063 22034 22076 22072 22030 

rn500m1000t100s50c0

num0 

145684 146683 146591 146540 146683 146649 146582 

rn500m1000t100s50c2

5num0 

145572 146533 146455 146473 146533 146533 146417 

rn500m1000t25s0c0nu

m4 

144313 147906 147388 147837 147952 147860 147320 

rn500m1000t25s0c25n

um4 

144020 146262 145708 145978 146262 146086 145943 

rn500m1000t25s0c50n

um0 

141608 143372 142972 143123 143372 143113 143217 

rn500m2500t25s0c25n

um4 

140773 144931 144817 144766 145068 144654 144700 

rn500m2500t25s0c50n

um0 

139879 142306 141719 142123 142313 141968 141568 
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A missing value in a cell means that a feasible solution was not found. 

The results show that GRASP algorithm is able to find a feasible solution for almost every instance 

(it failed to find a feasible solution for 2 instances out of 60). However, the quality of the solutions 

obtained by GRASP is usually worse than the quality of the solutions obtained by VNS (where VNS 

is able to find a feasible solution) or by the combined methods. 

One of the research questions is whether GRASP can be used to improve other heuristic methods. A 

comparison of the results of VNS and combined methods can help to answer this question. 

GRASP with the parameters obtained during testing combined with VNS is able to find feasible 

solutions for 59 instances out of 60. VNS starting from a random solution finds a feasible solution 

only for 53 instances. But when both methods are able to find a feasible solution GRASP combined 

with VNS shows a better result on 7 instances and a worse result on 41 instances.  

Changing parameter in GRASP combined with VNS for constructing slightly more random solutions 

result in feasible solutions for 59 instances of the training set and the same number of feasible solutions 

are obtained using the original parameters. The objective function value after changing the parameters 

is improved for 36 instances and is worsened for 19 ones. 

Combining VNS with greedy construction allows to find a feasible solution. Changing random 

construction to greedy construction for VNS results in finding a feasible solution for 7 more instances 

and improves the solution in 20 cases and worsens a solution in 20 cases. 

VNS combined with greedy construction compared to VNS combined with GRASP finds a feasible 

solution for 1 more solution and performs better in 36 cases and worse in 19 cases. 

5.5 Discussion 

The results on the test set show that GRASP is able to find feasible solutions for the majority of 

instances. However, the quality of the solutions obtained by GRASP is worse than the quality of the 

solution obtained by other methods tested in the previous section. 

GRASP used instead of a random construction in VNS makes the algorithm more reliable (able to 

find a feasible solution) but obtaining slightly worse solutions. GRASP parameters were tuned for 

using GRASP without VNS. A change in the parameters to make GRASP more random resulted in 

the improvement of the results. This means that the results can be improved further after testing the 

combined algorithm. 
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Combining greedy construction with VNS is able to find a feasible solution for all the instances and 

shows a good quality of the solution. Greedy construction can be used to improve VNS making it 

more reliable and without lose in the quality of the solutions. 
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6.0 Conclusion 

Binary integer problem has a number of real-world applications including applications in logistics. 

Problem instances usually contain a huge number of constraints and variables which makes it 

impossible to use exact methods to solve this problem. There are few heuristic solvers targeted on 

general BIP but they are not focused on the construction of a solution. 

Greedy construction heuristic algorithm and GRASP for general BIP were implemented and tested. 

The approach of dynamically changing the parameter of GRASP between iterations is created and 

used to allow the algorithm to solve a variety of BIP classes. 

GRASP can be used for constructing solution for general BIP. Implemented construction algorithms 

are able to improve VNS algorithm making it able to find a feasible solution for more instances. 

There are several directions for further research. The algorithm combining GRASP or greedy 

construction and VNS can be studied. Parameter tuning for the combined method may improve the 

results. Another option is to change the local search used in GRASP for VNS and use a statistical or 

machine learning method to decide whether or not to run the VNS after a construction iteration. 

Another direction for the research is creating a population-based method to solve general BIP. This 

method can make use of the algorithm created during the work on this thesis.  
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