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Abstract: The double traveling salesman problem with multiple stacks involves the transportation of
goods between two regions. In one region, a vehicle carrying a container visits customers, where
pallets of goods are loaded into the container. The container is then shipped to a different region,
where another vehicle visits another set of customers where the pallets are unloaded. Pallets are
loaded in several rows inside the container, where each row follows the last-in-first-out principle.
The standard test instances for the double traveling salesman problem with multiple stacks implies
the use of a 45-foot pallet wide container to carry EUR-1 pallets. This paper investigates the effect
on transportation costs if an open side container could be used when transporting the pallets.
Computational experiments show savings in transportation costs of up to 20%. Moreover, by using
a container loaded from the side, rather than from the rear, the defining attributes of the double
traveling salesman problem seem to be lost.

Keywords: intermodal transportation; vehicle routing; loading; variable neighborhood search

1. Introduction

Petersen and Madsen [1] introduced an optimization problem referred to as the double traveling
salesman problem with multiple stacks, based on a prospective customer of a company producing
computer software systems for transportation companies. The problem is set in two different regions.
A vehicle carrying a container must visit customers to make pickups in one region. The container is
then transported to a different region, whereupon a different vehicle carries the container while visiting
customers to make deliveries. It is not possible to repack the container en route, and an opening in one
end of the container provides the only access to its contents.

The items transported are standardized pallets and each container can fit a given number of
R rows with a limited number of L pallets each. This information is crucial, due to the inability to
repack the container. Each row of pallets forms a stack that must be loaded and unloaded based on a
first-in-last-out principle. This provides a set of difficult linking constraints that must be taken into
consideration when routing the vehicle in both the pickup region and the delivery region. For a given
total capacity of R ∗ L, the loading constraints are most severe when R is low and L is high, whereas
having a high value of R provides more flexibility.

Since its introduction, the double traveling salesman problem with multiple stacks has received
significant attention from researchers, examining both exact and heuristic solution methods, as well as
performing studies on computational complexity and polyhedral analysis. However, it seems that the
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initial assumptions of the underlying problem structure have not been examined. In this work, one of
the hidden assumptions of the problem is questioned: the type of container available to carry out the
transportation. By replacing the type of container used in the transportation, the defining characteristics of
the problem seem to be lost. This suggests that a technical solution of modifying the container technology
used would have cancelled out the need for advancing the frontier of operations research.

Petersen and Madsen [1] provided test instances where the container could contain three
rows with 11 pallets each. Standardized Euro Pallets (EPAL, or EUR-1) have dimensions of 1200
by 800 millimetres. This provides a good match with the internal dimensions of a 45-foot pallet
wide container, which has an internal width of 2400 millimetres and an internal length of about
13,600 millimetres, with the exact dimensions varying between different manufacturers. Additional
test instances were presented with three rows of 22 pallets each, based on situations where the height
of each pallet is less than half of the height of the container, and where a pallet can be put on top of
another pallet. However, the same loading constraints could also arise from the transportation of
another standardized pallet, the EUR-6 pallet, which has dimensions of 600 by 800 millimetres.

The basic original instances have R = 3 rows of pallets, each row of length L = 11, providing an
overall capacity of R ∗ L = 3 ∗ 11 = 33 pallets. However, there is an alternative configuration given
the dimensions of the container. Placing the EUR-1 pallets with their long side towards the short side
of the container, only two rows of pallets will fit. However, there is enough capacity for either 16 or
17 pallets in each row, depending on the exact length of the container. Therefore, the longest editions
of the 45-foot containers have enough space for 2 ∗ 17 = 34 pallets in total. When pallets are vertically
stackable, the pattern of three rows provides a capacity of 3 ∗ 22 = 66 pallets, whereas the pattern of
two rows provides a maximum capacity of 2 ∗ 34 = 68. Transporting EUR-6 pallets provides another
possibility. Instead of using R = 3 rows of length L = 22 and a total capacity of 3 ∗ 22 = 66, it is
possible to use R = 4 rows of length L = 17 for a total capacity of 4 ∗ 17 = 68.

The above is true for containers loaded from the back, that is, using one of the short sides.
Open side versions also exist for many container sizes, where goods can be loaded from one of the
long sides of the container. The existence of such capabilities would open up a wide range of options
in the context of the double traveling salesman problem with multiple stacks. For any of the previously
mentioned loading options, the number of rows R and their length L can be swapped, producing
instances with many rows of relatively low length. Table 1 provides examples of values for R and
L that may appear, depending on the type of pallet and container used. Figure 1 illustrates two of
the combinations.

Table 1. Selected values for the number of stacks R and their capacity L based on different pallets and
container technologies. The first three rows correspond to values that are covered by existing instances.

R L Configuration of Pallets and Container

3 11 EUR-1 pallets, 45 ft container loaded from the back
3 22 EUR-6 pallets, 45 ft container loaded from the back
3 44 Vertically stacked EUR-6 pallets, 45 ft container loaded from the back

2 17 EUR-1 pallets, 45 ft container loaded from the back
2 34 Vertically stacked EUR-1 pallets, 45 ft container loaded from the back
4 17 EUR-6 pallets, 45 ft container loaded from the back
4 34 Vertically stacked EUR-6 pallets, 45 ft container loaded from the back
11 3 EUR-1 pallets, 45 ft container loaded from the side
11 6 Vertically stacked EUR-1 pallets, 45 ft container loaded from the side
17 2 EUR-1 pallets, 45 ft container loaded from the side
17 4 EUR-6 pallets, 45 ft container loaded from the side
17 8 Vertically stacked EUR-6 pallets, 45 ft container loaded from the side
22 3 EUR-6 pallets, 45 ft container loaded from the side
22 6 Vertically stacked EUR-6 pallets, 45 ft container loaded from the side
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Figure 1. Top: a 45-foot container loaded from the back with three rows of 11 pallets each, resulting in
a problem with R = 3 and L = 11. Bottom: a 45-foot container loaded from the side with two rows of
17 pallets each, resulting in a problem with R = 17 and L = 2.

The rest of this paper is structured, as follows. Section 2 reviews the related literature, while Section 3
presents the mathematical formulation of the double traveling salesman problem with multiple stacks
and the solution methods used in our analysis. Section 4 contains a computational study, with the
aim of determining the importance of considering different container types in the considered problem.
The paper is concluded with Section 5, where some conclusions and additional thoughts about underlying
assumptions of the problem are presented.

2. Literature

The double traveling salesman problem with multiple stacks was first introduced by Petersen and
Madsen [1], who presented several heuristic algorithms for the problem, based on iterated local search,
tabu search, simulated annealing, and large neighborhood search. Variable neighborhood search for
the problem was examined by Felipe et al. [2], with improvements in [3], whereas Urrutia et al. [4]
presented a dynamic programming based local search method.

Several mathematical formulations of the double traveling salesman problem with multiple
stacks with corresponding solution strategies were presented by Petersen et al. [5]. A specialized
algorithm was given by [6] and improved by Lusby and Larsen [6], based on combining separate
traveling salesman problems for the pickup region and the delivery region. Branch-and-cut was used
by Alba Martínez et al. [7], whereas Carrabs et al. [8] presented a branch-and-bound algorithm for
the problem with only two stacks. Two stacks, with infinite capacity each, was also solved by
Barbato et al. [9] using a set covering approach, and in [10] using a branch-and-cut algorithm.

Some of the theoretical properties of the problem were investigated by Casazza et al. [11], leading
to a simple heuristic method. Given a route for the pickup region and a route for the delivery region,
Toulouse and Calvo [12] showed that it can be decided in polynomial time whether or not a feasible
stacking exists. Furthermore, Toulouse and Calvo [12] also showed that, given a stacking, optimal
routes conditional on the stacking can be determined in polynomial time. Bonomo et al. [13] discussed
similar complexity results.

After the introduction of the double traveling salesman problem with multiple stacks, many variants
have also been considered in the literature: Iori and Riera-Ledesma [14] presented a generalization with
multiple vehicles, and gave three mathematical formulations with corresponding exact solution methods.
Heuristics based on iterated local search, simulated annealing, and variable neighborhood descent were
proposed for this problem by da Silveira et al. [15]. Another simulated annealing implementation was
provided by Chagas et al. [16] and a variable neighborhood search by Chagas et al. [17].

Another variation arises when considering a pickup and delivery traveling salesman problem
with multiple stacks, where the nodes to visit are not necessarily split into two separate regions. A large
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neighborhood search was proposed for this generalization by Côté et al. [18], whereas both Pereira
and Urrutia [19] and Sampaio and Urrutia [20] presented branch-and-cut algorithms.

The pickup and delivery problem with time windows and multiple stacks was investigated
by [21]. Other types of loading constraints have been considered in the literature as well. Doerner et al. [22]
considered the transportation of wood products, while using both a tabu search and an ant colony
optimization method. Gendreau et al. [23] used tabu search and Iori et al. [24] a branch-and-cut algorithm
for vehicle routing problems with two-dimensional loading constraints. Fuellerer et al. [25] used ant colony
optimization for a vehicle routing problem with three-dimensional loading constraints, and Chagas et al. [26]
considered partial last-in-first-out loading constraints. Iori [27] presented a survey on combined routing
and loading problems and is recommended for further details about related problems.

Even though a wide variety of problems with loading and capacity constraints leading to stacks of
items have been approached in the literature through different methodologies, as far as the authors are
aware, none of them performed an analysis of the practical consequences that the choice of container
types and packing patterns used for transportation may have on the final costs. This is the research
gap that this paper tries to fill, focusing on the case of the original double traveling salesman problem
with multiple stacks.

3. Background

In this section, we first provide a mathematical model to formally define the studied problem.
Next, we describe the solution methods used in the analysis.

3.1. Mathematical Model

The double traveling salesman problem with multiple stacks was modelled for the first time by
Petersen and Madsen [1]. Let G1 = (V1, A1), G2 = (V2, A2) be two complete graphs representing,
respectively, the pickup and delivery networks of the problem. For every ω ∈ {1, 2}, edge (i, j) ∈ Aω

of Gω has a certain weight cω
ij , representing the travel cost between nodes i and j. Let n be the number

of orders and the node sets Vω = {vω
0 , vω

1 , · · · , vω
n }, ω ∈ {1, 2}, where vω

0 is the depot and vω
1 , . . . , vω

n
represent the n orders. The configuration of the container used for transportation is given by the
number of available stacks, being denoted by R, and their maximum capacity, denoted by L.

In addition, we have set Vω
∗ = Vω\{vω

0 }, containing all nodes, but the depot in each graph ω ∈
{1, 2}, and set P = {1, · · · , R}, representing the R available stacks. The set of orders is D = {1, · · · , n},
in a way that the item associated to each order i ∈ D must be picked up at v1

i ∈ V1
∗ of G1, loaded into a

certain stack p ∈ P, and delivered at v2
i ∈ V2

∗ of G2.
The problem is modelled as a binary program through three sets of binary variables. The routes

of the solution are given by variables {xω
ij }, which determine directly the values of variables {yω

ij },
that indicate precedence between pickups and deliveries. The assignment of orders to stacks is given
by variables {zip}. They are defined in what follows, where ω ∈ {1, 2}.

xω
ij =

{
1 if j is visited immediately after i in network ω

0 otherwise
∀i, j ∈ Vω

yω
ij =

{
1 if j is visited after i in network ω

0 otherwise
∀i, j ∈ Vω

∗

zip =

{
1 if order i is assigned to stack p
0 otherwise

∀i ∈ D, ∀p ∈ P

The model is thus given by Equations (1)–(10).
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min f = ∑
i, j ∈ Vω

ω ∈ {1, 2}

cω
ij · xω

ij (1)

∑
i∈Vω

xω
ij = 1 ∀j ∈ Vω, ∀ω (2)

∑
j∈Vω

xω
ij = 1 ∀i ∈ Vω, ∀ω (3)

yω
ij + yω

ji = 1 ∀i, j ∈ Vω
∗ , i 6= j, ∀ω (4)

yω
ik + yω

kj ≤ yω
ij + 1 ∀i, j, k ∈ Vω

∗ , ∀ω (5)

xω
ij ≤ yω

ij ∀i, j ∈ Vω
∗ , ∀ω (6)

y1
ij + zip + zjp ≤ 3− y2

ij ∀i, j ∈ Vω
∗ , ∀p ∈ P (7)

∑
p∈P

zip = 1 ∀i ∈ D (8)

∑
i∈D

zip ≤ L ∀p ∈ P (9)

x, y, z ∈ {0, 1} (10)

The objective function (1), to be minimized, is the sum of all pickup and delivery costs.
The flow conservation constraints are given in (2) and (3), while the right definition of {yω

ij } variables
is ensured by constraints (4)–(6) and the LIFO order to be followed in each stack is imposed by
Equation (7). Finally, constraints (8) indicate that each order must be assigned to one, and only one,
stack and constraints (9) make sure that the maximum capacity of the stacks is not exceeded.

3.2. Solution Method

Metaheuristics are problem-independent algorithmic frameworks that describe strategies for
developing powerful heuristic optimization methods [28]. Therefore, they can be applied to a wide range
of problems, such as optimizing non-linear functions of continuous variables [29] or linear functions on
binary variables [30]. For the double traveling salesman problem with multiple stacks, to analyze the
choice of container types and packing patters, this paper uses a variable neighborhood search [3].

Variable neighborhood search was introduced by Mladenović and Hansen [31]. It is based
on the performance of several consecutive local search procedures by changing the neighborhood
structure used to define neighbors every time that the search gets stuck in a local optimum. This is
a simple idea that has produced very good results in a wide variety of hard optimization problems.
The algorithm we use to solve the double traveling salesman problem with multiple stacks is based
on an enhanced variable neighborhood search with some additional elements that are specifically
adapted to the problem at hand [3]. Six different neighborhood structures or operators, each of which
define a local search procedure, are used: Route Swap (swaps the positions of two consecutive orders
in one of the routes of the solution), Complete Swap (swaps the stack positions of two orders that
are assigned to different stacks), In-Stack Swap (swaps the stack positions of two orders that are
assigned to the same stack), Reinsertion (moves one order to a different position in both routes of
the solution and reassigns it to a different stack), r-Route Permutation (r orders that are assigned
to different stacks and visited consecutively in one route are permuted), and r-Stack Permutation
(r orders that are loaded consecutively into the same stack are permuted). The core of the solution
method is a variable neighborhood descent (VND) algorithm in which several local search procedures
using these neighborhood structures are concatenated. The VND takes as input an initial feasible
solution S and the set ∆ = {∆k, k = 1, · · · , n∆} of neighborhood structures to be used for the local
search. A pseudocode of the VND algorithm is given in what follows.
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1. Initialization: Do k = 1.
2. Search start: Do Ŝ = S, improve = f alse.
3. Local Search: Find the best solution S̄ ∈ ∆k(Ŝ) belonging to the kth neighborhood of Ŝ.
4. If f (S̄) < f (Ŝ), do Ŝ = S̄, improve = true and go back to step 3.
5. Change of neighborhood structure:

• If improve do k = 1.
• Otherwise do k = k + 1.

6. Stopping condition:

• If k ≤ n∆ go back to step 2.
• If k > n∆ and improve, do k = 1 and go back to step 2.

Otherwise, END: the best solution found is S.

VND outputs an improved solution which is a local optimum with respect to all neighborhood
structures in ∆. Every time a VND execution finishes, a perturbation phase consisting in the
performance of a certain number of random moves is applied, in order to escape from the current
local optimum, and the VND is applied again to the perturbed solution. In addition to this, several
enhancing features are introduced into this basic algorithm in order to improve its performance:
more than one initial solution are generated and a different search is performed from each of them;
an additional intensification phase is carried out, starting from the best improved initial solution;
different orderings of the neighborhood structures used in the VND are considered, choosing randomly
among them according to certain probabilities; if the current solution could not be improved after many
iterations or it is too far from the best known solution, the search process is restarted; to avoid undoing
perturbation moves, tabu lists for the different involved operators are used; the temporal relaxation
of some precedence and capacity constraints, controlled through several infeasibility measures and
correction procedures to ensure feasibility, is considered for diversification purposes.

The algorithm is fed initial solutions generated in two ways. The first one consists in solving the
particular case with only one stack, whose solutions are always feasible for any loading plan with
any container configuration. The advantage of this problem is that it reduces to a standard traveling
salesman problem in a network whose arc weights are the sum of the weights of the two networks of
the original problem. The second one is by using a simple randomized procedure, properly guided in
order to ensure the feasibility of the obtained solutions. This second procedure is important to generate
a wide variety of initial solutions.

In addition, the two traveling salesman problems induced by dropping all loading constraints on
both the pickup and the delivery region of any instance are solved to optimality independently in order
to obtain a lower bound: no container configuration or loading pattern can possibly improve the sum
of the costs of the two optimal traveling salesman problem solutions. This has been done by using the
TSP function of the optimizer OPTMODEL NETWORK from SAS software. This function implements
a variant of the branch-and-cut algorithm by Applegate et al. [32], which is one of the most efficient
exact methods available in the literature. Default parameters regarding the use of cutting planes,
heuristics, node, and branching variable selection, identified as AUTOMATIC by SAS, were used.

4. Computational Study

Test instances for the double traveling salesman problem with multiple stacks were introduced by
Petersen and Madsen [1], consisting of twenty instances with 33 customers, and twenty instances with
66 customers. These instances are used in four different experiments to evaluate how the choice of
containers and packing patterns influences the transportation costs. The experimental design is simply
to solve each of the forty basic instances based on different container configurations and compare the
results, rather than relying on more complex experimental designs [33]. The results are obtained by
applying the heuristic described in Section 3.2.

The heuristic was run on an Intel Core i5-3210M CPU 2.50 GHz with 6 GB RAM, with a running
time of 10 min. for the instances with 33 customers, and 30 min. for the instances with 66 customers.
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A lower bound for each instance has been calculated by solving separately the two independent traveling
salesman problems that arise when dropping the precedence constraints that are associated with the
last-in-first-out principle imposed on the loading of the container. These lower bounds, obtained by
using the SAS software, represent the minimum costs that must be covered, even in the absence of
loading constraints.

The first experiment considers a container loaded from the back with EUR-1 pallets. The standard
packing pattern is R = 3 and L = 11, for a total capacity of 33 pallets. Assume that the company needs
the full capacity to serve regular customers. Now, if the company has an extra demand for transportation
of one pallet from the depot of the pickup region to the depot of the unloading region, one solution is to
use a different packing pattern, such as R = 2 and L = 17, for a total capacity of 34 pallets.

Table 2 provides results showing how the total transportation cost changes for 20 standard test
instances for selected packing patterns. The table shows, for each instance, the lower bound from
solving traveling salesman problems of each region separately (“LB”), the transportation cost (“Cost”),
and the relative deviation between the lower bound and the cost (“Dev”). For the first experiment,
the average deviation from the lower bound increases from 14.1% to 28.4% when switching packing
patterns to facilitate one extra pallet.

The second experiment tests the effect of introducing an open side container, instead of a container
loaded from the back. Suitable open side containers may require additional customization, as compared
to the more standard containers loaded from the back. To balance this, one would expect that the
transportation costs can be reduced, as an alternative packing pattern with many short rows is possible,
yielding much flexibility in the routing decisions. Table 2 shows the results for the most flexible
alternative packing pattern with R = 17 and L = 2. For each of the 20 test instances, the heuristic is
able to find a solution that matches the lower bound, providing a reduction in the transportation costs
of 12% when compared to the use of a standard container loaded from the back (R = 3, L = 11). In the
case where an additional pallet is transported between the depots, the saving in transportation cost
amounts to 22% when using R = 17 and L = 2 instead of R = 2 and L = 17.

In the third experiment, the transportation of EUR-6 pallets is considered. Assuming that 66 pallets
are to be transported in a regular 45-foot pallet wide container, the standard packing pattern of the test
instances could be used, with R = 3 and L = 22. However, for EUR-6 pallets, an alternative pattern is
available, with R = 4 and L = 17, while using the same type of container. This is expected to lead to
lower transportation costs, as the added row provides more flexibility. Table 3 confirms this, as the
average deviations to the lower bound are 29.7% and 18.7% for R = 3 and R = 4, respectively.

The fourth experiment deals with vertically stacked EUR-1 pallets and a demand of 66 pallets
to be transported. For a standard container, the standard packing pattern has R = 3 stacks with
L = 22 pallets, where pallets in each row are placed in two layers on top of each other. If an open
side container is available, however, a packing pattern with R = 11 stacks of length L = 6 can be
used. Table 3 shows that the open side container again leads to significantly reduced transportation
costs, saving almost 21% when compared to the container loaded from the back. However, for this
setting, there is still a 2.8% gap from the solutions obtained to the lower bound, meaning that it is still
important to consider loading decisions when optimizing the routes.
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Table 2. Results for instances with 33 customers and three different container configurations, given as (R ∗ L).

Baseline Experiment 1 Experiment 2
(3 ∗ 11) (2 ∗ 17) (17 ∗ 2)

Instance LB Cost Dev Cost Dev Cost Dev

R00 911 1063 16.7% 1237 35.8% 911 0.0%
R01 875 1032 17.9% 1152 31.7% 875 0.0%
R02 935 1065 13.9% 1194 27.7% 935 0.0%
R03 961 1100 14.5% 1270 32.2% 961 0.0%
R04 937 1068 14.0% 1186 26.6% 937 0.0%
R05 900 1008 12.0% 1132 25.8% 900 0.0%
R06 998 1110 11.2% 1256 25.9% 998 0.0%
R07 963 1105 14.7% 1250 29.8% 963 0.0%
R08 978 1123 14.8% 1258 28.6% 978 0.0%
R09 976 1095 12.2% 1211 24.1% 976 0.0%
R10 901 1016 12.8% 1150 27.6% 901 0.0%
R11 892 1001 12.2% 1115 25.0% 892 0.0%
R12 984 1111 12.9% 1241 26.1% 984 0.0%
R13 956 1085 13.5% 1200 25.5% 956 0.0%
R14 879 1039 18.2% 1181 34.4% 879 0.0%
R15 985 1142 15.9% 1287 30.7% 985 0.0%
R16 967 1093 13.0% 1227 26.9% 967 0.0%
R17 946 1073 13.4% 1211 28.0% 946 0.0%
R18 1008 1126 11.7% 1269 25.9% 1008 0.0%
R19 938 1091 16.3% 1211 29.1% 938 0.0%

Average 14.1% 28.4% 0.0%

Table 3. Results for instances with 66 customers and three different container configurations, given as (R ∗ L).

Baseline Experiment 3 Experiment 4
(3 ∗ 22) (4 ∗ 17) (11 ∗ 6)

Instance LB Cost Dev Cost Dev Cost Dev

R00 1237 1653 33.6% 1491 20.5% 1263 2.1%
R01 1257 1641 30.5% 1474 17.3% 1301 3.5%
R02 1295 1666 28.6% 1513 16.8% 1318 1.8%
R03 1290 1640 27.1% 1553 20.4% 1315 1.9%
R04 1295 1626 25.6% 1511 16.7% 1338 3.3%
R05 1204 1545 28.3% 1406 16.8% 1215 0.9%
R06 1294 1702 31.5% 1551 19.9% 1355 4.7%
R07 1307 1669 27.7% 1525 16.7% 1329 1.7%
R08 1297 1649 27.1% 1501 15.7% 1348 3.9%
R09 1276 1617 26.7% 1509 18.3% 1328 4.1%
R10 1339 1734 29.5% 1559 16.4% 1383 3.3%
R11 1268 1624 28.1% 1477 16.5% 1313 3.5%
R12 1295 1671 29.0% 1558 20.3% 1338 3.3%
R13 1275 1635 28.2% 1519 19.1% 1292 1.3%
R14 1245 1655 32.9% 1516 21.8% 1297 4.2%
R15 1228 1623 32.2% 1515 23.4% 1254 2.1%
R16 1356 1758 29.6% 1602 18.1% 1390 2.5%
R17 1274 1711 34.3% 1521 19.4% 1315 3.2%
R18 1328 1761 32.6% 1577 18.8% 1375 3.5%
R19 1256 1651 31.4% 1529 21.7% 1272 1.3%

Average 29.7% 18.7% 2.8%

The experiments show that the choice of container configuration is important. Using a standard
container loaded from the rear leads to transportation routes that are much longer and more expensive
that what could be achieved with a container loaded from the side. It seems that existing heuristic
solution methods can cope very well with the high number of stacks that result from an open
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side container. One might conjecture that certain exact methods, such as those developed by
Lusby et al. [34], may benefit significantly when solving the problem with open side containers.

5. Concluding Remarks

The double traveling salesman problem with multiple stacks, introduced by Petersen and
Madsen [1], has received substantial interest from researchers. The problem was based on real-world
transportation requirements, which represented a novel challenge in the way that routing decisions
were combined with packing decisions. As the problem provided ample venues for research on
theoretical aspects of the problem, as well as on the development of efficient heuristic and exact
solution methods, it might be valid to ask whether additional aspects of the real-world application
may have been overlooked.

5.1. Main Conclusions

The implied choice of container technology in the double traveling salesman problem with
multiple stacks was examined in this paper. Additional test instances can be derived, depending on
the packing pattern used, and on whether the container is loaded from the back or from the side. It was
demonstrated that the total transportation cost is highly dependent on the container choice, in some
cases resulting in savings of more than 20% by allowing for the use of open side containers.

5.2. Limitations

The current study might not have exhausted all relevant variations of container technologies.
As further examples, one could consider double door containers, where doors are available on both
short sides of the container. This means that the container can be loaded while using one of the doors in
the pickup-region and unloaded using either of the doors in the delivery-region, implying that there is a
choice between last-in-first-out loading and first-in-first-out loading. Yet, other variants can be derived
using open top containers, where goods are loaded and unloaded from the top side of the container,
given that suitable equipment for loading and unloading is available at each customer location.

Different loading decisions may require the consideration of load stability, depending on the
weight of the goods transported. Consider as an example Figure 2: if each pallet has a significant
weight, a load as indicated might lead to dangerous situations on the road, as the content of the
container is much heavier on one side. The issue of stability might be more critical when using open
side containers, but the increased flexibility might nevertheless be economically attractive, at the
expense of dealing with an optimization problem that has additional constraints to ensure stability at
each leg of the routes.

Figure 2. Illustration of stacking with R = 3 and L = 11 that may violate stability restrictions if heavy
goods is transported.

Another issue not tackled in current research is when some customers have more than one pallet
to be transported. The customer might require that only one visit is made, but might also require that
different pallets are delivered to different locations.
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