Revenue Management in the airline industry: problems and solutions

Guillaume Lanquepin-Chesnais

supervisors: Asmund Olstad and Kjetil K. Haugen

Høgskolen i Molde

23rd November 2012
Introduction

Characteristics of the airlines industry
A definition and some numbers
A historical perspective
The main components of RM

Overbooking
Overview of the problem
Initial model of Beckmann (1958)
Dynamic problem of Rothstein (1971)

Seat inventory control
Littlewood (1972): from overbooking to SIC
Nested fare class
Origin-Destination Fare (ODF)
Network revenue management
Bid-Price control for Network Revenue Management

Evidences of RM
The example of Ryanair
Introduction

Characteristics of the airlines industry
A definition and some numbers
A historical perspective
The main components of RM

Overbooking
Overview of the problem
Initial model of Beckmann (1958)
Dynamic problem of Rothstein (1971)

Seat inventory control
Littlewood (1972): from overbooking to SIC
Nested fare class
Origin-Destination Fare (ODF)
Network revenue management
Bid-Price control for Network Revenue Management

Evidences of RM
The example of Ryanair
Characteristics of the airlines industry

- We cannot “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in an airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We can not “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We can not “store” any seat: they are **only available at the departure**. Each empty seat is a revenue loss.
- The number of seats in an airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the *time of purchase*.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We can not “store” any seat: they are *only available at the departure*. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the *time of purchase*.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?

Increasing revenue by segmenting market
Characteristics of the airlines industry

- We cannot “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Introduction

Characteristics of the airlines industry

- We cannot “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in an airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment the market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We cannot “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We cannot “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a plane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We can not “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We can not “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

• We can not “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
• The number of seats in a airplane is fixed.
• The cost of a flight is largely independent of the numbers of occupied seats.
• People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We can not “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the *time of purchase*.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

• We can not “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
• The number of seats in a airplane is fixed.
• The cost of a flight is largely independent of the numbers of occupied seats.
• People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We can not “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in a airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?
Characteristics of the airlines industry

- We cannot “store” any seat: they are only available at the departure. Each empty seat is a revenue loss.
- The number of seats in an airplane is fixed.
- The cost of a flight is largely independent of the numbers of occupied seats.
- People who make their reservations early are more price sensitive: we can segment the market by the time of purchase.

The motivation of Revenue Management

Given that capacity and cost are fixed for each flight, how to increase the profitability?

Increasing revenue by segmenting market
Introduction

A definition and some numbers
A historical perspective
The main components of RM

Overbooking
Overview of the problem
Initial model of Beckmann (1958)
Dynamic problem of Rothstein (1971)

Seat inventory control
Littlewood (1972): from overbooking to SIC
Nested fare class
Origin-Destination Fare (ODF)
Network revenue management
Bid-Price control for Network Revenue Management

Evidences of RM
The example of Ryanair

G.LC (himolde)
A definition and some numbers

Definition (Smith et al., 1992)

A […] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)
A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90's
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
Introduction

A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)
A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefice for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
A definition and some numbers

Definition (Smith et al., 1992)

A [...] description of yield management (YM) as it applies to airlines is the control and the management of reservations inventory in a way that increases (maximizes, if possible) company profitability, given the flight schedule and structure.

- American Airlines (AA) estimates the annual revenue contribution of YM around $500 millions at the beginning of 90’s
- $8.4 billions benefit for the airline industry in 2011 (IATA, 2012)
- Operating margin is on average only 1.64% in US airlines (Bureau of Transportation Statistics, 2011)
- A medium-sized airline operates 1000 flight legs, 10 booking classes and its reservation system accepts booking 330 days in advance (Barnhart et al., 2003).
Introduction

Characteristics of the airlines industry
A definition and some numbers
A historical perspective
The main components of RM

Overbooking

Overview of the problem
Initial model of Beckmann (1958)
Dynamic problem of Rothstein (1971)

Seat inventory control

Littlewood (1972): from overbooking to SIC
Nested fare class
Origin-Destination Fare (ODF)
Network revenue management
Bid-Price control for Network Revenue Management

Evidences of RM

The example of Ryanair
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress,...)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress,...)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, ...)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress,...)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 **Airline Deregulation Act** in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress,…)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First *Low Cost Carriers* (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLEExpress,...)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress,...)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA.

1977 Introduction of *Super Saver* discount fare at AA.

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA.

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of Super Saver discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of Ultimate Super Saver at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with virtual nesting.
A historical perspective: the example of AA

1966 Implementation of SABRE (semi-automated business research environment) a centralized and computerized reservation system at AA

1977 Introduction of *Super Saver* discount fare at AA

1978 Airline Deregulation Act in USA that deregulates schedules and prices. It increases the number and the variety of discount fares. Besides, airlines began offering connecting services, using centrally located airports as hubs.

1981 First Low Cost Carriers (PEOPLExpress, . . .)

1985 Introduction of *Ultimate Super Saver* at AA

1988 Implementation of new Revenue Management System (RMS) called DINAMO (Dynamic Inventory Optimization and Maintenance Optimizer) that manages network effects with *virtual nesting*.
Layout

1. Introduction
 - Characteristics of the airlines industry
 - A definition and some numbers
 - A historical perspective
 - The main components of RM

2. Overbooking
 - Overview of the problem
 - Initial model of Beckmann (1958)
 - Dynamic problem of Rothstein (1971)

3. Seat inventory control
 - Littlewood (1972): from overbooking to SIC
 - Nested fare class
 - Origin-Destination Fare (ODF)
 - Network revenue management
 - Bid-Price control for Network Revenue Management

4. Evidences of RM
 - The example of Ryanair
The main components of RM

- Revenue data
- Historical Booking
- Actual booking
- No-show data
- Forecast model
- Optimization model
- Overbooking model
- Recommended booking limits

Figure 1: Third-generation airline RMS (Barnhart et al., 2003)
Figure 1: Third-generation airline RMS (Barnhart et al., 2003)
The main components of RM

Revenue data
Historical Booking
Actual booking
No-show data
Forecast model
Optimization model
Overbooking model
Recommended booking limits

Figure 1: Third-generation airline RMS (Barnhart et al., 2003)
Introduction

The main components of RM

Revenue data

Historical Booking

Forecast model

Actual booking

No-show data

Optimization model

Overbooking model

Recommended booking limits

Figure 1: Third-generation airline RMS (Barnhart et al., 2003)
Introduction

The main components of RM

- Revenue data
- Historical Booking
- Actual booking
- No-show data

Forecast model

Optimization model

Recommended booking limits

Overbooking model

Figure 1: Third-generation airline RMS (Barnhart et al., 2003)
The main components of RM

- Revenue data
- Historical Booking
- Actual booking
- No-show data
- Forecast model
- Optimization model
- Overbooking model
- Recommended booking limits

Figure 1: Third-generation airline RMS (Barnhart et al., 2003)
Main problematics of RM in airlines

Overbooking
No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of spoiled seats and costs of denied boarding.

Seat inventory control
SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial expected marginal seat revenue (EMSR) to optimal booking limits by Origin-Destination-fare (ODF) control.

Pricing
There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). Bid-prices can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking
No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of *spoiled seats* and costs of *denied boarding*.

Seat inventory control
SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial *expected marginal seat revenue* (EMSR) to optimal booking limits by *Origin-Destination-fare* (ODF) control.

Pricing
There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). *Bid-prices* can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking

No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of *spoiled seats* and costs of *denied boarding*.

Seat inventory control

SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial *expected marginal seat revenue* (EMSR) to *optimal booking limits* by *Origin-Destination-fare (ODF) control*.

Pricing

There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). *Bid-prices* can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking

No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of *spoiled seats* and costs of *denied boarding*.

Seat inventory control

SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial *expected marginal seat revenue* (EMSR) to optimal booking limits by *Origin-Destination-fare (ODF) control*.

Pricing

There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). *Bid-prices* can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking

No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of spoiled seats and costs of denied boarding.

Seat inventory control

SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial expected marginal seat revenue (EMSR) to optimal booking limits by Origin-Destination-fare (ODF) control.

Pricing

There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). Bid-prices can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking

No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of spoiled seats and costs of denied boarding.

Seat inventory control

SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial expected marginal seat revenue (EMSR) to optimal booking limits by Origin-Destination-fare (ODF) control.

Pricing

There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). Bid-prices can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking

No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of spoiled seats and costs of denied boarding.

Seat inventory control

SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial expected marginal seat revenue (EMSR) to optimal booking limits by Origin-Destination-fare (ODF) control.

Pricing

There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). Bid-prices can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking

No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of spoiled seats and costs of denied boarding.

Seat inventory control

SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial expected marginal seat revenue (EMSR) to optimal booking limits by Origin-Destination-fare (ODF) control.

Pricing

There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). Bid-prices can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking
No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of spoiled seats and costs of denied boarding.

Seat inventory control
SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial expected marginal seat revenue (EMSR) to optimal booking limits by Origin-Destination-fare (ODF) control.

Pricing
There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). Bid-prices can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking
No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of *spoiled seats* and costs of *denied boarding*.

Seat inventory control
SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial *expected marginal seat revenue* (EMSR) to optimal booking limits by *Origin-Destination-fare* (ODF) control.

Pricing
There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). *Bid-prices* can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking

No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of spoiled seats and costs of denied boarding.

Seat inventory control

SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial expected marginal seat revenue (EMSR) to optimal booking limits by Origin-Destination-fare (ODF) control.

Pricing

There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). Bid-prices can replace multiple booking limits and complex nesting schemes.
Main problematics of RM in airlines

Overbooking
No-show rates average 5%-25% of final predeparture bookings. Hence, overbooking is a trade off between revenue losses of *spoiled seats* and costs of *denied boarding*.

Seat inventory control
SIC is a trade off between revenue losses of excessive number of low-fare seats and empty seats. Models go from the initial *expected marginal seat revenue* (EMSR) to *optimal booking limits* by *Origin-Destination-fare (ODF) control*.

Pricing
There is a natural duality between price and seat allocation decisions (McGill and Van Ryzin, 1999). *Bid-prices* can replace multiple booking limits and complex nesting schemes.

1. Introduction
 - Characteristics of the airlines industry
 - A definition and some numbers
 - A historical perspective
 - The main components of RM

2. Overbooking
 - Overview of the problem
 - Initial model of Beckmann (1958)
 - Dynamic problem of Rothstein (1971)

3. Seat inventory control
 - Littlewood (1972): from overbooking to SIC
 - Nested fare class
 - Origin-Destination Fare (ODF)
 - Network revenue management
 - Bid-Price control for Network Revenue Management

4. Evidences of RM
 - The example of Ryanair
Overview of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and *no-shows*. But *denied boarding* has a cost as well as *spoiled seats*. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, *no-shows* can lead to empty seats
- *Standby* may appear at flight time
- It may possible to reassign excess passengers
Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and no-shows. But denied boarding has a cost as well as spoiled seats. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, no-shows can lead to empty seats
- Standby may appear at flight time
- It may possible to reassign excess passengers
Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and *no-shows*. But *denied boarding* has a cost as well as *spoiled seats*.

This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, *no-shows* can lead to empty seats
- *Standby* may appear at flight time
- It may possible to reassign excess passengers
Overbooking

Overview of the problem

Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and no-shows. But denied boarding has a cost as well as spoiled seats. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, no-shows can lead to empty seats
- Standby may appear at flight time
- It may possible to reassign excess passengers
Overview of overbooking

Dilemma of overbooking

Overbooking is the fact of **overselling seats** to compensate losses from cancellations and **no-shows**. But **denied boarding** has a cost as well as **spoiled seats**.

This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, **no-shows** can lead to empty seats
- **Standby** may appear at flight time
- It may possible to reassign excess passengers
Overview of overbooking

Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and no-shows. But denied boarding has a cost as well as spoiled seats.

This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, no-shows can lead to empty seats
- Standby may appear at flight time
- It may possible to reassign excess passengers
Overbooking

Overview of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and no-shows. But denied boarding has a cost as well as spoiled seats. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, no-shows can lead to empty seats
- Standby may appear at flight time
- It may possible to reassign excess passengers
Overview of overbooking

Dilemma of overbooking

Overbooking is the fact of **overselling seats** to compensate losses from cancellations and *no-shows*. But **denied boarding** has a cost as well as **spoiled seats**. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, *no-shows* can lead to empty seats
- *Standby* may appear at flight time
- It may possible to reassign excess passengers
Overbooking

Overview of the problem

Overview of overbooking

Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and no-shows. But denied boarding has a cost as well as spoiled seats.

This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, no-shows can lead to empty seats
- Standby may appear at flight time
- It may possible to reassign excess passengers
Overbooking

Overview of the problem

Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and no-shows. But denied boarding has a cost as well as spoiled seats. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, no-shows can lead to empty seats
- Standby may appear at flight time
- It may possible to reassign excess passengers
Overbooking

Overview of overbooking

Overbooking is the fact of **overselling seats** to compensate losses from cancellations and *no-shows*. But *denied boarding* has a cost as well as *spoiled seats*. This **Civil Aeronautics Board** recognized and controlled this practice.

- Booking are accepted up to **330 days** in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, *no-shows* can lead to empty seats
- *Standby* may appear at flight time
- It may possible to reassign excess passengers
Overview of the problem

Overview of overbooking

Dilemma of overbooking

Overbooking is the fact of **overselling seats** to compensate losses from cancellations and *no-shows*. But *denied boarding* has a cost as well as *spoiled seats*.

This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to **330 days** in advance
- Cancellations or new reservations can occur during this period
- Even with a **full booked flight**, *no-shows* can lead to empty seats
- *Standby* may appear at flight time
- It may possible to reassign excess passengers
Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and no-shows. But denied boarding has a cost as well as spoiled seats. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, no-shows can lead to empty seats
- Standby may appear at flight time
- It may possible to reassign excess passengers
Overbooking

Dilemma of overbooking

Overbooking is the fact of overselling seats to compensate losses from cancellations and \textit{no-shows}. But \textit{denied boarding} has a cost as well as \textit{spoiled seats}. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to \textbf{330 days} in advance
- Cancellations or new reservations can occur during this period
- Even with a \textbf{full booked flight}, \textit{no-shows} can lead to empty seats
- \textbf{Standby} may appear at flight time
- It may possible to reassign excess passengers
Overbooking

Overview of the problem

Dilemma of overbooking

Overbooking is the fact of **overselling seats** to compensate losses from cancellations and **no-shows**. But **denied boarding** has a cost as well as **spoiled seats**. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to **330 days** in advance
- Cancellations or new reservations can occur during this period
- Even with a **full booked flight**, **no-shows** can lead to empty seats
- **Standby** may appear at flight time
- It may possible to reassign excess passengers
Overbooking is the fact of overselling seats to compensate losses from cancellations and *no-shows*. But *denied boarding* has a cost as well as *spoiled seats*. This Civil Aeronautics Board recognized and controlled this practice.

- Booking are accepted up to 330 days in advance
- Cancellations or new reservations can occur during this period
- Even with a full booked flight, *no-shows* can lead to empty seats
- *Standby* may appear at flight time
- It may possible to *reassign* excess passengers
Layout

1 Introduction
 Characteristics of the airlines industry
 A definition and some numbers
 A historical perspective
 The main components of RM

2 Overbooking
 Overview of the problem
 Initial model of Beckmann (1958)
 Dynamic problem of Rothstein (1971)

3 Seat inventory control
 Littlewood (1972): from overbooking to SIC
 Nested fare class
 Origin-Destination Fare (ODF)
 Network revenue management
 Bid-Price control for Network Revenue Management

4 Evidences of RM
 The example of Ryanair
Initial model of Beckmann (1958)

A simple model

The model of Beckmann (1958) yields the booking level for reservations that minimizes expected costs.

\[a \int_{0}^{x-c} (x - \kappa - c) dP(\kappa | x) + b \int_{x-c}^{x} \mathcal{N}(\kappa) dP(\kappa | x) \]

- The booking level, \(x \), is given
- Model assume a unique fare
- Model does not give any probability of denied boarding.
The model of Beckmann (1958) yields the booking level for reservations that minimizes expected costs.

\[
a \int_0^{x-c} (x - \kappa - c) dP(\kappa | x) + b \int_{x-c}^x \mathcal{N}(\kappa) dP(\kappa | x) \tag{1}
\]

- The booking level, \(x \), is given
- Model assume a unique fare
- Model does not give any probability of denied boarding.
Initial model of Beckmann (1958)

A simple model

The model of Beckmann (1958) yields the *booking level* for reservations that minimizes expected costs.

\[
a \int_0^{x-c} (x - \kappa - c) dP(\kappa \mid x) + b \int_{x-c}^{x} \mathcal{N}(\kappa) dP(\kappa \mid x)
\]

- The *booking level*, \(x \), is given
- Model assume a unique fare
- Model does not give any *probability of denied boarding*.
Overbooking

Initial model of Beckmann (1958)

A simple model

The model of Beckmann (1958) yields the *booking level* for reservations that minimizes expected costs.

\[
\begin{align*}
 a \int_0^{x-c} (x - \kappa - c) dP(\kappa \mid x) + b \int_{x-c}^{x} \mathcal{N}(\kappa) dP(\kappa \mid x)
\end{align*}
\]

(1)

- The *booking level*, \(x\), is given
- Model assume a unique fare
- Model does not give any *probability of denied boarding*.

G.LC (himolde)
RM in the airline industry
23th November 2012
Initial model of Beckmann (1958)

A simple model

The model of Beckmann (1958) yields the booking level for reservations that minimizes expected costs.

\[
a \int_0^{x-c} (x - \kappa - c) dP(\kappa \mid x) + b \int_{x-c}^{x} N(\kappa) dP(\kappa \mid x)
\]

- The booking level, \(x \), is given
- Model assume a unique fare
- Model does not give any probability of denied boarding.
A simple model

The model of Beckmann (1958) yields the **booking level** for reservations that minimizes expected costs.

$$
\begin{align*}
& a \int_0^{x-c} (x - \kappa - c) dP(\kappa | x) + b \int_{x-c}^{x} \mathcal{N}(\kappa) dP(\kappa | x) \\
& \text{(1)}
\end{align*}
$$

- The *booking level*, x, is given
- Model assume a unique fare
- Model does not give any *probability of denied boarding*.
Initial model of Beckmann (1958)

A simple model

The model of Beckmann (1958) yields the *booking level* for reservations that minimizes expected costs.

\[
a \int_0^{x-c} (x - \kappa - c) dP(\kappa \mid x) + b \int_{x-c}^{x} \mathcal{N}(\kappa) dP(\kappa \mid x)
\]

(1)

- The *booking level*, \(x \), is given
- Model assume a unique fare
- Model does not give any *probability of denied boarding*.
Initial model of Beckmann (1958)

A simple model

The model of Beckmann (1958) yields the *booking level* for reservations that minimizes expected costs.

\[
a \int_0^{x-c} (x - \kappa - c) dP(\kappa \mid x) + b \int_{x-c}^{x} \mathcal{N}(\kappa) dP(\kappa \mid x) \tag{1}
\]

- The *booking level*, \(x \), is given
- Model assume a unique fare
- Model does not give any *probability of denied boarding*.
Layout

1 Introduction
 Characteristics of the airlines industry
 A definition and some numbers
 A historical perspective
 The main components of RM

2 Overbooking
 Overview of the problem
 Initial model of Beckmann (1958)
 Dynamic problem of Rothstein (1971)

3 Seat inventory control
 Littlewood (1972): from overbooking to SIC
 Nested fare class
 Origin-Destination Fare (ODF)
 Network revenue management
 Bid-Price control for Network Revenue Management

4 Evidences of RM
 The example of Ryanair
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a \textit{denied boarding indicator}, \(d \), so the maximum allowed reservation is \(r = d + c \)

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Overbooking

Dynamic problem of Rothstein (1971)

- **Time is discrete**
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, \(d \), so the maximum allowed reservation is \(r = d + c \)

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

![Figure 2: Markovian decision process described by Rothstein (1971)](image-url)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a denied boarding indicator, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a denoted boarding indicator, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

![Figure 2: Markovian decision process described by Rothstein (1971)]
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

![Markovian decision process described by Rothstein (1971)](image)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a **denied boarding indicator**, d, so the maximum allowed reservation is $r = d + c$

![Figure 2: Markovian decision process described by Rothstein (1971)]
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are **time-dependent**
- Cancellation and booking processes have **no memory**
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is **discrete**
- Cancellation and booking probabilities are **time-dependent**
- Cancellation and booking processes have **no memory**
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

![Figure 2: Markovian decision process described by Rothstein (1971)](image)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is **discrete**
- Cancellation and booking probabilities are **time-dependent**
- Cancellation and booking processes have **no memory**
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a denied boarding indicator, d, so the maximum allowed reservation is $r = d + c$

Figure 2: Markovian decision process described by Rothstein (1971)
Dynamic problem of Rothstein (1971)

- Time is discrete
- Cancellation and booking probabilities are time-dependent
- Cancellation and booking processes have no memory
- Define a *denied boarding indicator*, d, so the maximum allowed reservation is $r = d + c$

![Figure 2: Markovian decision process described by Rothstein (1971)](image-url)
Introduction
- Characteristics of the airlines industry
- A definition and some numbers
- A historical perspective
- The main components of RM

Overbooking
- Overview of the problem
- Initial model of Beckmann (1958)
- Dynamic problem of Rothstein (1971)

Seat inventory control
- Littlewood (1972): from overbooking to SIC
- Nested fare class
- Origin-Destination Fare (ODF)
- Network revenue management
- Bid-Price control for Network Revenue Management

Evidences of RM
- The example of Ryanair
Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of *denial boarding* for high-fare is bounded by $Pr(D_{\text{high}} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{\text{low}} \geq f_{\text{high}} Pr(D_{\text{high}} \geq p)$$

(2)
Littlewood (1972): from overbooking to SIC

Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $Pr(D_{high} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{low} \geq f_{high} Pr(D_{high} \geq p)$$ (2)
Littlewood (1972): from overbooking to SIC

Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $Pr(D_{high} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{low} \geq f_{high}Pr(D_{high} \geq p)$$ \hspace{1cm} (2)
Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $Pr(D_{high} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{low} \geq f_{high} Pr(D_{high} \geq p)$$
Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Littlewood (1972) proposed to protect \(p \) high-fare seats so that the probability of denial boarding for high-fare is bounded by \(Pr(D_{\text{high}} \geq p) \). The Expected Marginal Seat Revenue (EMSR) rule is the following:

\[
 f_{\text{low}} \geq f_{\text{high}} Pr(D_{\text{high}} \geq p)
\]
Littlewood (1972): from overbooking to SIC

Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $Pr(D_{high} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{low} \geq f_{high} Pr(D_{high} \geq p)$$

(2)
Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $Pr(D_{\text{high}} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{\text{low}} \geq f_{\text{high}} \cdot Pr(D_{\text{high}} \geq p) \quad (2)$$
Littlewood (1972): from overbooking to SIC

Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect \(p \) high-fare seats so that the probability of denial boarding for high-fare is bounded by \(Pr(D_{\text{high}} \geq p) \). The Expected Marginal Seat Revenue (EMSR) rule is the following:

\[
f_{\text{low}} \geq f_{\text{high}} Pr(D_{\text{high}} \geq p)
\]
Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $Pr(D_{high} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{low} \geq f_{high} Pr(D_{high} \geq p)$$
Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $Pr(D_{\text{high}} \geq p)$.

The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{\text{low}} \geq f_{\text{high}} Pr(D_{\text{high}} \geq p)$$

(2)
Littlewood (1972): from overbooking to SIC

Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect p high-fare seats so that the probability of denial boarding for high-fare is bounded by $\Pr(D_{high} \geq p)$. The Expected Marginal Seat Revenue (EMSR) rule is the following:

$$f_{low} \geq f_{high} \Pr(D_{high} \geq p)$$ \hspace{1cm} (2)
Littlewood (1972): from overbooking to SIC

Overbooking: When prices were regulated, maximizing profit was equivalent to maximize the number of passengers carried by flight.

Seat Inventory Control: When prices are unregulated, maximizing profit leads also to optimize mix of fares.

Single leg Seat Inventory Control

Littlewood (1972) proposed to protect \(p \) high-fare seats so that the probability of denial boarding for high-fare is bounded by \(\text{Pr}(D_{\text{high}} \geq p) \). The Expected Marginal Seat Revenue (EMSR) rule is the following:

\[
f_{\text{low}} \geq f_{\text{high}} \text{Pr}(D_{\text{high}} \geq p)
\]
Layout

1. Introduction
 - Characteristics of the airlines industry
 - A definition and some numbers
 - A historical perspective
 - The main components of RM

2. Overbooking
 - Overview of the problem
 - Initial model of Beckmann (1958)
 - Dynamic problem of Rothstein (1971)

3. Seat inventory control
 - Littlewood (1972): from overbooking to SIC
 - Nested fare class
 - Origin-Destination Fare (ODF)
 - Network revenue management
 - Bid-Price control for Network Revenue Management

4. Evidences of RM
 - The example of Ryanair
Figure 3: Expected Marginal Seat Revenues for 2-class (Belobaba, 1989)
Nested fare class

Figure 3: Expected Marginal Seat Revenues for 2-class (Belobaba, 1989)
Nested fare class

Figure 3: Expected Marginal Seat Revenues for 2-class (Belobaba, 1989)

\[f_{high} \Pr(D_{high} \geq p_{high}) \]

Flight Cap.
Nested fare class

Figure 3: Expected Marginal Seat Revenues for 2-class (Belobaba, 1989)
座席インベントリ制御

階層料金クラス

 Isles}

Figura 3: Expected Marginal Seat Revenues for 2-class (Belobaba, 1989)
1. Introduction
 - Characteristics of the airlines industry
 - A definition and some numbers
 - A historical perspective
 - The main components of RM

2. Overbooking
 - Overview of the problem
 - Initial model of Beckmann (1958)
 - Dynamic problem of Rothstein (1971)

3. Seat inventory control
 - Littlewood (1972): from overbooking to SIC
 - Nested fare class
 - Origin-Destination Fare (ODF)
 - Network revenue management
 - Bid-Price control for Network Revenue Management

4. Evidences of RM
 - The example of Ryanair
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg</th>
<th>Itinerary</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_1)</td>
<td>AB</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>(Y_2)</td>
<td>AB</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>(Y_3)</td>
<td>AC</td>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
<td>H</td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
<td>L</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H,L and 2 itineraries AB,AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
<td>H</td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
<td>L</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td>H</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H,L and 2 itineraries AB,AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg</th>
<th>Itiner.</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y₁</td>
<td>AB</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Y₂</td>
<td>AB</td>
<td>AC</td>
<td>L</td>
</tr>
<tr>
<td>Y₃</td>
<td>AC</td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

Table 1: Virtual class for the leg AB
Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
<th>Itina.</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
<td></td>
<td>L</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
<td>H</td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
<td>L</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Virtual Nesting

We assume two fares H,L and 2 itineraries AB,AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
<th>Itina.</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>H</td>
<td></td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
<td>H</td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>H</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg</th>
<th>AB</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>Y_1</td>
<td>Y_2</td>
<td>Y_3</td>
</tr>
<tr>
<td>Fare</td>
<td>H</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H, L and 2 itineraries AB, AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
</tr>
<tr>
<td></td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares \(H, L \) and 2 itineraries \(AB, AC \)

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_1)</td>
<td>AB</td>
</tr>
<tr>
<td>(Y_2)</td>
<td>AB</td>
</tr>
<tr>
<td>(Y_3)</td>
<td>AC</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Origin-Destination Fare (ODF)

Virtual Nesting

We assume two fares H,L and 2 itineraries AB,AC

<table>
<thead>
<tr>
<th>Virtual Class</th>
<th>Leg AB Itina.</th>
<th>Fare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_1</td>
<td>AB</td>
<td>H</td>
</tr>
<tr>
<td>Y_2</td>
<td>AB</td>
<td>L</td>
</tr>
<tr>
<td>Y_2</td>
<td>AC</td>
<td>H</td>
</tr>
<tr>
<td>Y_3</td>
<td>AC</td>
<td>L</td>
</tr>
</tbody>
</table>

Table 1: Virtual class for the leg AB
Introduction
- Characteristics of the airlines industry
- A definition and some numbers
- A historical perspective
- The main components of RM

Overbooking
- Overview of the problem
- Initial model of Beckmann (1958)
- Dynamic problem of Rothstein (1971)

Seat inventory control
- Littlewood (1972): from overbooking to SIC
- Nested fare class
- Origin-Destination Fare (ODF)
- Network revenue management
- Bid-Price control for Network Revenue Management

Evidences of RM
- The example of Ryanair
A leg-based seat inventory control system cannot discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries j.

\[
\max_{A} \sum_{j} \sum_{k} R_{jk}(A_{jk})
\]

subject to

\[
\sum_{j} \sum_{k \in i} A_{jk} \leq C_i
\]
Network revenue management

A leg-based seat inventory control system cannot discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries j.

$$\max_A \sum_j \sum_k R_{jk}(A_{jk})$$

subject to

$$\sum_j \sum_{k \in i} A_{jk} \leq C_i$$
A leg-based seat inventory control system can not discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries j.

$$\max_A \sum_j \sum_k R_{jk}(A_{jk})$$

subject to

$$\sum_j \sum_{k \in i} A_{jk} \leq C_i$$
A leg-based seat inventory control system can not discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries j.

$$\max_A \sum_{j} \sum_{k} R_{jk}(A_{jk})$$

subject to

$$\sum_{j} \sum_{k \in i} A_{jk} \leq C_i$$
Network revenue management

A leg-based seat inventory control system can not discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries j.

$$\max_A \sum_j \sum_k R_{jk}(A_{jk})$$

subject to

$$\sum_j \sum_{k \in i} A_{jk} \leq C_i$$
Network revenue management

A leg-based seat inventory control system cannot discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries \(j \).

\[
\max_A \sum_j \sum_k R_{jk}(A_{jk})
\]

subject to

\[
\sum_j \sum_{k \in i} A_{jk} \leq C_i
\]
A leg-based seat inventory control system cannot discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries j.

$$\max_A \sum_j \sum_k R_{jk}(A_{jk})$$

subject to

$$\sum_j \sum_{k \in i} A_{jk} \leq C_i$$
Network revenue management

A leg-based seat inventory control system can not discriminate between AB and AC booking on the AB leg: it does not consider itinerary.

Optimal seat allocation with ODF (Curry, 1990)

Curry (1990) proposed the following program to maximize the expected revenue for all itineraries j.

$$\max_A \sum_j \sum_k R_{jk}(A_{jk})$$

subject to

$$\sum_j \sum_{k \in i} A_{jk} \leq C_i$$
Virtual Nesting

We optimize over all legs with new fare class

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over all legs with new fare class.

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D.
Virtual Nesting

We optimize over all legs with new fare class.

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D.
We optimize over all legs with new fare class.

We optimize over all O-Ds with constraint per leg and fares nesting per O-D.
We optimize over all legs with new fare class.
We optimize over all legs with new fare class.

We optimize over all O-Ds with constraint per leg and fares nesting per O-D.
Virtual Nesting

We optimize over all legs with new fare class

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over all legs with new fare class

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over **all legs** with **new fare class**

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over all legs with new fare class

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over **all legs** with **new fare class**

Network RM

We optimize over all **O-Ds** with constraint per leg and fares nesting per **O-D**
Virtual Nesting

We optimize over all legs with new fare class

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over **all legs** with **new fare class**

Network RM

We optimize over **all O-Ds** with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over all legs with new fare class

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Virtual Nesting

We optimize over all legs with new fare class

Network RM

We optimize over all O-Ds with constraint per leg and fares nesting per O-D
Introduction
Characteristics of the airlines industry
A definition and some numbers
A historical perspective
The main components of RM

Overbooking
Overview of the problem
Initial model of Beckmann (1958)
Dynamic problem of Rothstein (1971)

Seat inventory control
Littlewood (1972): from overbooking to SIC
Nested fare class
Origin-Destination Fare (ODF)
Network revenue management
Bid-Price control for Network Revenue Management

Evidences of RM
The example of Ryanair
Bid-Price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the *opportunity cost* of the reduction in leg capacities.

\[u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases} \]

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, ...)
Bid-price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases} 1 & R_j \geq \sum_j \pi_j(X_j) \\ 0 & \text{otherwise} \end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, . . .)
Bid-price control for Network Revenue Management

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated, EMSR, . . .)
Bid-price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$u_{jt}(R_j, X_j) = \begin{cases} 1 & R_j \geq \sum_j \pi_j(X_j) \\ 0 & \text{otherwise} \end{cases}$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, ...)

G.LC (himolde)
Bid-price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the *opportunity cost* of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, ...)

$R \geq \pi_1 + \pi_2$
Bid-price control for Network Revenue Management

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, …)
Bid-Price control for Network Revenue Management

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, ...)

$\pi_2 \geq \pi_1$
Bid-price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, . . .)
Bid-price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, ...)

Similair to dual prices of (4).
Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
How computing π (LP, Prorated EMSR, ...)
Bid-price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP,Prorated EMSR, . . .)
Bid-Price control for Network Revenue Management

Bid-price

We accept a fare only when R exceeds the opportunity cost of the reduction in leg capacities.

$$u_{jt}(R_j, X_j) = \begin{cases}
1 & R_j \geq \sum_j \pi_j(X_j) \\
0 & \text{otherwise}
\end{cases}$$

- Similar to dual prices of (4).
- Suboptimal when $\pi_j \geq \sum_{i \in j} \pi_i$
- How computing π (LP, Prorated EMSR, ...)
Introduction
Characteristics of the airlines industry
A definition and some numbers
A historical perspective
The main components of RM

Overbooking
Overview of the problem
Initial model of Beckmann (1958)
Dynamic problem of Rothstein (1971)

Seat inventory control
Littlewood (1972): from overbooking to SIC
Nested fare class
Origin-Destination Fare (ODF)
Network revenue management
Bid-Price control for Network Revenue Management

Evidences of RM
The example of Ryanair

G.LC (himolde)
Average price and demand

Figure 4: Comparison between the daily average price and the estimated price on CIA–STN route.
Average price and demand

Figure 4: Comparison between the daily average price and the estimated price on CIA–STN route.
Average price and demand

Figure 4: Comparison between the daily average price and the estimated price on CIA–STN route.
Fares according to booking days

Figure 5: Prices on the *Rome Ciampino–London Stansted* route for two specific dates.
Fares according to booking days

Figure 5: Prices on the Rome Ciampino–London Stansted route for two specific dates.
Fares according to booking days

Figure 5: Prices on the *Rome Ciampino–London Stansted* route for two specific dates.
Fares according to booking days

Figure 5: Prices on the *Rome Ciampino–London Stansted* route for two specific dates.
Fares according to booking days

Figure 5: Prices on the Rome Ciampino–London Stansted route for two specific dates.
Figure 5: Prices on the *Rome Ciampino–London Stansted* route for two specific dates.
Evidences of RM

The example of Ryanair

Fares according to booking days

Figure 5: Prices on the *Rome Ciampino–London Stansted* route for two specific dates.
Thanks you for your attention