

Bacheloroppgave

IBE610 Informasjonsbehandling

Web security report

Rubén Rubio Barrera

Totalt antall sider inkludert forsiden: 129

Molde, 30/05/2011

Mandatory statement

Each student is responsible for complying with rules and regulations that relate to

examinations and to academic work in general. The purpose of the mandatory statement is

to make students aware of their responsibility and the consequences of cheating. Failure to

complete the statement does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6

below.

1. I/we herby declare that my/our paper/assignment is my/our own

work, and that I/we have not used other sources or received

other help than is mentioned in the paper/assignment.

2. I/we herby declare that this paper

1. Has not been used in any other exam at another

department/university/university college

2. Is not referring to the work of others without

acknowledgement

3. Is not referring to my/our previous work without

acknowledgement

4. Has acknowledged all sources of literature in the text and in

the list of references

5. Is not a copy, duplicate or transcript of other work

Mark each

box:

1.

2.

3.

4.

5.

3.

I am/we are aware that any breach of the above will be

considered as cheating, and may result in annulment of the

examinaion and exclusion from all universities and university

colleges in Norway for up to one year, according to the Act

relating to Norwegian Universities and University Colleges,

section 4-7 and 4-8 and Examination regulations section 14 and
15.

4. I am/we are aware that all papers/assignments may be checked

for plagiarism by a software assisted plagiarism check

5. I am/we are aware that Molde University college will handle all

cases of suspected cheating according to prevailing guidelines.

6. I/we are aware of the University College`s rules and regulation

for using sources

Publication agreement

ECTS credits: 15

Supervisor: Hans Fredrik Nordhaug

Agreement on electronic publication of master thesis

Author(s) have copyright to the thesis, including the exclusive right to publish the document (The
Copyright Act §2).
All theses fulfilling the requirements will be registered and published in Brage HiM, with the approval
of the author(s).
Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of
charge, make the thesis available for electronic publication: yes no

Is there an agreement of confidentiality? yes no
(A supplementary confidentiality agreement must be filled in)
- If yes: Can the thesis be online published when the
period of confidentiality is expired? yes no

Date: 30/05/2011

Contents

1 Introduction 8

1.1 Motivation . 8

1.2 Report’s structure . 9

2 Website’s description 10

2.1 Description . 10

2.2 Software and programming languages used 11

2.3 Technical description . 12

2.3.1 Front-end . 12

2.3.2 Back-end . 14

2.4 Database . 14

2.4.1 Entity-relationship diagram 14

2.4.2 Logical diagram . 20

2.5 Class diagram . 25

3 Objectives 27

4 SQL injection 29

4.1 Description . 29

4.2 Example . 30

4

CONTENTS

4.3 Issue solution . 39

4.3.1 Prepared statements 39

4.3.2 Escape user input . 41

4.3.3 Additional defenses . 41

4.4 Conclusion . 44

5 XSS (Cross Site Scripting) 45

5.1 Description . 45

5.1.1 Rule #1: HTML escaping before inserting untrusted
data into HTML context 46

5.1.2 Rule #2: Attribute escape before inserting untrusted
data into HTML common attributes 47

5.1.3 Rule #3: Javascript escape before inserting untrusted
data into HTML Javascript data values 48

5.1.4 Rule #4: CSS escape before inserting untrusted data
into HTML style property values 48

5.1.5 Rule #5: URL escape before inserting untrusted data
into HTML URL parameter values 49

5.1.6 Rule #0: never insert untrusted data except in allowed
locations . 49

5.2 Example . 50

5.3 Solution . 57

5.4 Conclusion . 59

6 Broken authentication and session management 60

6.1 Description . 60

6.1.1 Authentication . 60

6.1.2 Session management 63

6.2 Examples . 64

6.2.1 Password strength . 65

5

CONTENTS

6.2.2 Authentication responses 67

6.3 Issues solution . 69

6.3.1 Password strength . 69

6.3.2 Password recovery . 75

6.3.3 Authentication responses 80

6.3.4 Account lockout . 81

6.3.5 Ensure session ID’s . 83

6.3.6 Timeout . 84

6.4 Conclusion . 85

7 Insecure direct object references 87

7.1 Description . 87

7.2 Example . 87

7.3 Issue solution . 88

7.4 Conclusion . 90

8 CSRF (Cross-site request forgery) 91

8.1 Description . 91

8.2 Example . 91

8.3 Solution . 93

8.4 Conclusion . 95

9 Failure to restrict URL access 97

9.1 Description . 97

9.2 Example . 97

9.3 Solution . 99

9.4 Conclusion . 101

10 Insufficient transport layer protection 102

6

CONTENTS

10.1 Description . 102

10.2 Secure server design . 103

10.3 Server certificate and protocol configuration 105

10.4 Conclusion . 106

11 Conclusion 107

A Source code 109

A.1 Source code to check password strength and password verifi-
cation . 109

A.2 Password recovery source code 113

Bibliography 119

List of figures 123

List of tables 126

List of listings 127

7

Chapter 1

Introduction

1.1 Motivation

A family member wants to open a new business using new technologies, so
he thought about to create an online shop. As IT students, we proposed
to build the website, but he was worried about the security: how he can
be secure that nobody will steal the data stored, that nobody attacks the
website obtaining profit of that...

At this point, we thought that web security is a good point to study, because
it includes almost all points of a current web: dynamic content, work with
databases, user accounts with personal data, online payments...

Though we will define some concrete objectives related to web security in
chapter 3, this report’s main objective is to build features to make an existent
website secure against web main weaknesses.

We know that, since the Internet is a complex system and it is in continuous
change, it is impossible to build a hundred percent secure site. But we can
try to enforce our security in order to difficult the access to it, and then only
the expert people can succeed.

Therefore, this website will allow us study security issues (how they work
and how can be exploited), implement the solutions and finally verify if those
solutions are effective and avoid illegal access to the website.

8

CHAPTER 1. INTRODUCTION

1.2 Report’s structure

Aside from introduction, this report structure is as described below.

First of all, it has a description of the website where is explained how it
works, what can a user make and what is it for. It also explains how the
website is made, with a technical explanation.

After that, it has a definition of the report’s objectives, scilicet, issues that
exists on the website and must be solved. That definition is given after a
research along The Web, consulting security paperwork and websites.

Then, the work’s most important part, that is issues’ study inside the web-
site, looking for the issues described in the previous point and maybe others
unlisted. This part contents a technical description of the issues and exam-
ples of each vulnerability in the website. For each issue, it also explains the
solution of the issue on the website and a conclusion.

Finally, the last point is a conclusion, describing the objectives achieved, a
little summary and a personal valuation of the work.

To complete report’s structure, we have to add that to write this report, we
have used the following software:

• To write this report, OpenOffice.org Writer[1] and TexShop[2] have
been used.

• To draw diagrams, OmniGraffle Professional[2] has been used.

9

Chapter 2

Website’s description

2.1 Description

As it has already been said, the website is an online shop where an user can
make an account and then look for products along the site, to add them to the
chart and after buy them; the user can also change his personal information
and check his order’s status.

But the website also has an administration section, where shop’s owner can
manage all over the shop, like adding, modifying or deleting products, sup-
port companies, users... Unfortunately, the shop doesn’t have any accounting
section, but it can be implemented in future releases.

The shop works with promotions: each product is inside one promotion, and
promotions last for a concrete period of time. It is possible to include in
future releases navigation by brand, namely, a client can buy products with
discounts inside a promotion during a period of time, or always out of a
promotion.

We will need to save some information into a database to have all these
features. For each client, we would like to save an ID, his email and his
password to access to the shop; his personal data, like his first name, his
second name, his address and his phone number; and we would like to have
his register date.

The shop will have some support companies that will provide it products and
will deliver orders. From these companies we would like to save an ID, its
name and address, and a contact email and phone and the first and the last

10

CHAPTER 2. WEBSITE’S DESCRIPTION

name of the contact person. For the carriers, we would also like to save its
geographic area and its shipping cost.

Some of these companies provide products to the shop. From these products
we would like to save its reference, name, brand, description and a picture;
we would also like to save provider price, other’s shops price and our shop’s
price, and this product stock on the shop.

Products are inside a promotion. From promotions we would like to save an
ID, its name, its start and finish date and a picture.

We also want to save client’s order data. From orders we would like to save
its status, total amount, all dates: order date, shipping date and delivery
date; another address, if the delivery address is different from the client’s
address, and comments about the order, if the clients want to do it.

Finally, it is necessary to say that to pay an order the shop uses an integration
with PayPal, so all the information related to the order is sent to PayPal and
they are who manage the collection.

2.2 Software and programming languages used

The website has been developed using free tools:

• As a server software, Apache[4] has been used.

• To present the website, HTML[5] has been used.

• As a dynamic programming language, PHP[6] has been used.

• As a database engine, MySQL[7] has been used, and for executing
initial queries, phpMyAdmin[8] has been used though queries has been
written before in a plain text file.

• To check forms, Javascript[9] has been used.

• To improve the administration section, AJAX[10] has been used.

All the code has been written as a plain text, without using any other support
software. To write the code, Kate[11] and TextMate[12] have been used.

11

CHAPTER 2. WEBSITE’S DESCRIPTION

To test the website, three different browsers have been used: Safari[13],
Mozilla Firefox[14] and Opera[15].

The website appearance is not beautiful because any style has been applied
due it was a lot of work that did not belong to this report and it made
the source code more complicated to understand. This way, everybody who
wants to use the website can apply his own unique style.

2.3 Technical description

2.3.1 Front-end

This is the website’s section that everybody can see, but we have to differ-
entiate between common users and registered users. The use case diagram
of this section is described in figure 2.1.

As we can see, a common user can only do the following actions:

• View products on the shop: to see if there is something that interests
him, before he registers.

• Register: to become a registered user.

But a registered user can do more actions, as is described below:

• Login:to access to his account.

• View products on the shop: to search for products of his interest.

• Add products to the chart:so he can buy those products.

• Buy: to buy products in the chart

• Manage orders: a registered user can check his orders’ status and cancel
an order if it is still not prepared

• Modify personal data:to change some data as password, email, ad-
dress...

12

CHAPTER 2. WEBSITE’S DESCRIPTION

Figure 2.1: Front-end use case diagram

13

CHAPTER 2. WEBSITE’S DESCRIPTION

This way, the website uses less resources for unregistered users because, any-
way, if someone wants to buy something, he has to be registered first, so the
shop can have his name and address to send him the orders.

2.3.2 Back-end

This website section is reserved for shop’s owner, and nobody else should
have access to it. The use case diagram of this section is described in figure
2.2.

Actions that the administrator can do are:

• Login: to obtain access to the administration section.

• Manage clients: to add, modify, delete or view a client, if some of those
actions are necessary.

• Manage providers: to add, modify, delete or view a provider, if some
of those actions are necessary.

• Manage carriers: to add, modify, delete or view a carrier, if some of
those actions are necessary.

• Manage products: to add, modify, delete or view a product, if some of
those actions are necessary.

• Manage orders: to view, delete or modify the status of an order; an
order can be deleted only if its status is received.

• Manage promotions: to add, modify, delete or view a promotion, if
some of those actions are necessary, and to add or delete a product
from a promotion.

2.4 Database

2.4.1 Entity-relationship diagram

The database structure is designed to cover all the actions described in the
use case diagrams. The entity-relationship diagram is described in figure 2.3.

14

CHAPTER 2. WEBSITE’S DESCRIPTION

Figure 2.2: Back-end use case diagram

15

CHAPTER 2. WEBSITE’S DESCRIPTION

It is necessary to say that the entities only have their key attributes in order
to make the diagram more readable.

Entities list

• Client: represents shop’s clients. Its attributes are:

– ID: it is client’s ID; it is primary key and numeric type.

– Email: it is client’s contact email; it is alphanumeric type.

– Password: it is client’s password to access the shop; it is alphanu-
meric type.

– Register date: it is client’s register date on the shop; it is date
type.

– First name: it is client’s first name; it is alphanumeric type.

– Last name: it is client’s last name; it is alphanumeric type.

– Address: it is client’s address; it is alphanumeric type.

– Postal code: it is client’s postal code; it is numeric type.

– Town: it is client’s town; it is alphanumeric type.

– Area: it is client’s area; it is alphanumeric type.

– Telephone: it is client’s phone number; it is numeric type.

• Order: represents client’s orders. Its attributes are:

– ID: it is order’s ID; it is primary key and numeric type.

– Status: it is order’s status; it is numeric type and it can only be:
0 for received orders; 1 for prepared orders; 2 for sent orders; and
3 for delivered orders.

– Amount: it is order’s total amount; it is numeric type.

– Order date: it is order’s order date; it is date type.

– Shipping date: it is order’s shipping day; it is date type.

– Delivery date: it is order’s delivery date: it is date type.

– Address: it is delivery’s address, if it is different from the client’s
address; it is alphanumeric type.

16

CHAPTER 2. WEBSITE’S DESCRIPTION

Figure 2.3: Database entity-relationship diagram

17

CHAPTER 2. WEBSITE’S DESCRIPTION

– Postal code: it is delivery’s postal code, if it is different from the
client’s postal code; it is numeric type.

– Town: it is delivery’s town, if it is different from the client’s town;
it is alphanumeric type.

– Area: it is delivery’s area, if it is different from the client’s area;
it is alphanumeric type.

– Comments: it is order’s comments, if user wants to make some; it
is alphanumeric type.

• Support company: represents shop’s support companies. Its attributes
are:

– ID: it is company’s ID; it is primary key and numeric type.

– Name: it is company’s name; it is alphanumeric type.

– Address: it is company’s address; it is alphanumeric type.

– Postal code: it is company’s postal code; it is numeric type.

– Town: it is company’s town; it is alphanumeric type.

– Area: it is company’s area; it is alphanumeric type.

– Contact email: it is company’s contact email; it is alphanumeric
type.

– Contact phone: it is company’s contact phone number; it is nu-
meric type.

– Contact first name: it is company’s contact person’s first name;
it is alphanumeric type.

– Contact last name: it is company’s contact person’s last name; it
is alphanumeric type.

This entity has two specializations:

– Provider: represents provider’s companies; it doesn’t have at-
tributes.

– Carrier: represents carrier’s companies; its attributes are:

∗ Geographic area: it is company’s geographic delivery area; it
is alphanumeric type.

18

CHAPTER 2. WEBSITE’S DESCRIPTION

∗ Shipping cost: it is company’s standard shipping cost; it is
numeric type.

• Product: represents products to be sell in the shop. Its attributes are:

– Reference: it is product’s reference; it is primary key and alphanu-
meric type.

– Name: it is product’s name; it is alphanumeric type.

– Brand: it is product’s brand; it is alphanumeric type.

– Description: it is product’s description; it is alphanumeric type.

– Picture: it is product’s picture’s path inside the server; it is al-
phanumeric.

– Price: it is product’s selling price; it is numeric.

– Shop price: it is product’s price on other shops; it is numeric.

– Stock: it is product’s current stock; it is numeric;

– Provider price: it is product’s provider price; it is numeric.

• Promotion: represents promotions. Its attributes are:

– ID: it is promotion’s ID; it is primary key and alphanumeric type.

– Name: it is promotion’s name; it is alphanumeric type.

– Start date: it is promotion’s start day; it is date type.

– Finish date: it is promotion’s finish day; it is date type.

– Picture: it is promotion’s picture’s path inside the server; it is
alphanumeric.

Interrelations list

• Client – order: 1 to N relationship; one client can have more than one
order, but an order can only belong to one client.

• Order – product: N to N relationship; one product can belong to more
than one order, and one order can have more than one product. It has
an associate attribute, which is Amount, the amount of this product in
this order.

19

CHAPTER 2. WEBSITE’S DESCRIPTION

• Order – carrier: 1 to N relationship; one order can only be delivered
by one carrier, but one carrier can have more than one order to deliver.

• Product – provider: 1 to N relationship; one product can only be sup-
plied by one provider, but one provider can supply more than one
product.

• Promotion – product: N to N relationship; one product can be at more
than one promotion (not at the same time), and one promotion can
have more than one product.

2.4.2 Logical diagram

To get the correct structure to implement the database into the database
engine, it is necessary to convert the entity-relationship diagram into a logical
(or table) diagram. The shop’s logical diagram is described in figure 2.4.

Tables list

• Client: represents shop’s clients; this table comes from the client entity
and its attributes are:

– ID: it is client’s ID; it is primary key and numeric type.

– Email: it is client’s contact email; it is character type.

– Password: it is client’s password to access to the shop; it is char-
acter type.

– Register date: it is client’s register date on the shop; it is date
type.

– First name: it is client’s first name; it is character type.

– Last name: it is client’s last name; it is character type.

– Address: it is client’s address; it is character type.

– Postal code: it is client’s postal code; it is numeric type.

– Town: it is client’s town; it is character type.

– Area: it is client’s area; it is character type.

20

CHAPTER 2. WEBSITE’S DESCRIPTION

Figure 2.4: Database logical diagram

21

CHAPTER 2. WEBSITE’S DESCRIPTION

– Telephone: it is client’s phone number; it is numeric type.

• Order: represents client’s orders; this table comes from the order entity
and its attributes are:

– ID: it is order’s ID; it is primary key and numeric type.

– Status: it is order’s status; it is numeric type and it can only be:
0 for received orders; 1 for prepared orders; 2 for sent orders; and
3 for delivered orders.

– Amount: it is order’s total amount; it is numeric type.

– Order date: it is order’s order date; it is date type.

– Shipping date: it is order’s shipping day; it is date type.

– Delivery date: it is order’s delivery date: it is date type.

– Address: it is delivery’s address, if it is different from the client’s
address; it is character type.

– Postal code: it is delivery’s postal code, if it is different from the
client’s postal code; it is numeric type.

– Town: it is delivery’s town, if it is different from the client’s town;
it is character type.

– Area: it is delivery’s area, if it is different from the client’s area;
it is character type.

– Comments: it is order’s comments, if user wants to make some; it
is character type.

– ID client: it is buyer’s ID; it is numeric type.

– ID carrier: it is carrier’s ID for this order; it is numeric type.

• Support company: represents the support companies; this table comes
from the Support company entity and its attributes are:

– ID: it is company’s ID; it is primary key and numeric type.

– Name: it is company’s name; it is character type.

– Address: it is company’s address; it is character type.

– Postal code: it is company’s postal code; it is numeric type.

– Town: it is company’s town; it is character type.

22

CHAPTER 2. WEBSITE’S DESCRIPTION

– Area: it is company’s area; it is character type.

– Contact email: it is company’s contact email; it is character type.

– Contact phone: it is company’s contact phone number; it is nu-
meric type.

– Contact first name: it is company’s contact person’s first name;
it is character type.

– Contact last name: it is company’s contact person’s last name; it
is character type.

• Provider: represents shop’s providers; this table comes from the Provider
entity, which is a specialization of the Support company entity; its sin-
gle attribute is:

– ID: it is provider’s ID; it is numeric type.

• Carrier: represents carriers; this table comes from the Carrier entity,
which is a specialization of the Support company entity; its attributes
are:

– ID: it is provider’s ID; it is numeric type.

– Geographic area: it is company’s geographic delivery area; it is
character type.

– Shipping cost: it is company’s standard shipping cost; it is nu-
meric type.

• Product: represents the shop’s products; this table comes from the
Product entity and its attributes are:

– Reference: it is product’s reference; it is primary key and character
type.

– Name: it is product’s name; it is character type.

– Brand: it is product’s brand; it is character type.

– Description: it is product’s description; it is character type.

– Picture: it is product’s picture’s path inside the server; it is char-
acter.

– Price: it is product’s selling price; it is numeric.

23

CHAPTER 2. WEBSITE’S DESCRIPTION

– Shop price: it is product’s price on other shops; it is numeric.

– Stock: it is product’s current stock; it is numeric;

– Provider price: it is product’s provider price; it is numeric.

– ID provider: it is product’s provider ID; it is numeric.

• Promotion: represents the shop’s promotions; this table comes from the
Promotion entity and its attributes are:

– ID: it is promotion’s ID; it is primary key and character type.

– Name: it is promotion’s name; it is character type.

– Start date: it is promotion’s start day; it is date type.

– Finish date: it is promotion’s finish day; it is date type.

– Picture: it is promotion’s picture’s path inside the server; it is
character.

• Order products: represents the relationship between order and prod-
ucts, namely, products that are in a order; this table comes from the
interrelation N to N between the Order and the Product entities and
its attributes are:

– ID order: it is order’s ID in the relationship; it is primary key
and numeric type.

– Ref product: it is product’s ID in the relationship; it is primary
key and character type.

– Amount: it is product amount in this order; it is numeric type.

• Promotion products: represents the relationship between promotions
and products, namely, products that are in a promotion; this table
comes from the interrelation N to N between the Promotion and the
Product entities and its attributes are:

– ID promotion: it is promotion’s ID in the relationship; it is pri-
mary key and numeric type.

– Ref product: it is product’s ID in the relationship; it is primary
key and character type.

24

CHAPTER 2. WEBSITE’S DESCRIPTION

2.5 Class diagram

We can see in figure 2.5 the class diagram for the website. The first that we
can see is that there is an abstract object called Collection. The function
of this object is to save a list of objects of the same type, each one in its
own object, in order to present them all together. For example, when the
administrator wants to edit a client, with these objects he can obtain all the
clients in the shop.

Then we can see that, except Chart, all the other objects are the same as
we saw in the database description. The relationships between these objects
are the same as described in that section, so we do not need to explain them
now. All these objects have functions to interact with the data stored in the
database: to read, to modify, to insert and to delete, and they have their
own functions.

Finally, the last object, Chart, represents the shop’s chart. A chart belongs
to an user, and it can not exist without the user. And it has products in it,
and it can not exist without products.

25

CHAPTER 2. WEBSITE’S DESCRIPTION

Figure 2.5: Class diagram of the website

26

Chapter 3

Objectives

Though The Web is a changing environment and because of that it is difficult
to establish the main security problems, the OWASP1[16] develops a ranking
with those problems each three years.

The OWASP is a foundation that collects and produces documentation about
security issues, and several professionals in this area work for that foundation,
that is open, scilicet, everybody can collaborate with it and all its information
is open source.

So, using the OWASP 2010 ranking is a good starting point to establish this
report objectives due to a lot of experts collaborate with it and they group
and rate the issues.

The OWASP top 10 application security risks are described in table 3.1. The
ranking is ordered from the most common to the less common issue.

In the next chapters we will study these issues on the website and we will
solve them. However, we will not study the following objectives:

• Security misconfiguration: this issue solution consists of keeping all the
software, libraries used... updated, and we will not study it because
it is not really related with web development and it depends on the
platform used.

• Insecure cryptographic storage: this issue solution consists of encrypt-
ing the data in the database. We will not study it because the data that
has to be encrypted is different depending on the country where the

1Open Web Application Security Project

27

CHAPTER 3. OBJECTIVES

database is hosted, and because how to do it depends on the platform
and the database engine used.

• Unvalidated redirects and forwards: this issue solution consists of avoid-
ing using redirects in the URL. We will not study it because it does
not exist in the webpage.

Position Issue
1 Injection
2 Cross Site Scripting (XSS)
3 Broken Authentication and Session Management
4 Insecure Direct Object References
5 Cross Site Request Forgery
6 Security Misconfiguration
7 Insecure Cryptographic Storage
8 Failure to Restrict URL Access
9 Insufficient Transport Layer Protection
10 Unvalidated Redirects and Forwards

Table 3.1: Objectives table

28

Chapter 4

SQL injection

4.1 Description

SQL injection is one of the most important issues in web security, because
it is really common along the web, it is really easy to exploit and attackers
can get access to the database’s critical data, which contains attractiveness
data.

This attack occurs when programmers create dynamic database queries that
requires user input. A malicious user can exploit it introducing SQL code in
the data inputs, resulting in a new query different from the original one, that
has bad intentions. The most used places to inject SQL code is on forms and
on URLs.

This kind of attack requires to know how the database is designed, but it
is possible to perform first a not successful SQL injection attack, so the
database engine will show an error message with the affected tables and then
a malicious user will know something about the database. Repeating this
attack several times with different inputs will let the malicious user know
how the database is designed.

With this attack, it is possible from to obtain critical information from the
database to erase it or to gain access to the website with another user account.
Those things are really critical and should not be possible to perform them.

In the next section we will see a concrete example of this vulnerability on
the website.

29

CHAPTER 4. SQL INJECTION

4.2 Example

We will see a concrete example of SQL injection in our website. The page
affected in this case is user login.php, that let users to access to their
accounts.

This page has two forms as we can see in figure 4.11, one to introduce the
email and another one to introduce the password. When the accept button
is pressed, it redirects to the same page and the input is saved in the super-
global PHP variable $ POST. The email is saved in $ POST[’email’] and the
password in $ POST[’pass’].

The source code for the validation process is as follows:

$db = new AuxDB() ;
$db−>connect () ;

$ s q l = ” s e l e c t ∗
from CLIENT
where EMAIL = ’ ” . $ POST [” mail ”] . ” ’ and
PASSWORD = ’ ” . $ POST [” pass ”] . ” ’ ; ” ;

$ r s t = $db−>executeSQL ($ s q l) ;
i f ($ r s t != fa l se) {

$row = $db−>nextRow ($ r s t) ;

$user = new Cl i en t () ;
$user−>read (nu l l , $row [’EMAIL ’]) ;
$ SESSION [” user ”] = $user ;
$ SESSION [” l o g i n ”] = 1 ;

echo ”<h2>You have s u c c e s s f u l l y logged in to your account , ”
. $ SESSION [” user ”]−>getName () . ”.</h2>

<p>You w i l l be r e d i r e c t e d to your pe r sona l
menu in 5 seconds</p>” ;

echo ”<meta http−equiv =’ Refresh ’ content = ’5;URL=user . php ’ />” ;

} else {
echo ”<h2>Email address or password are wrong.</h2>

1It is necessary to say that in order to present the pictures, the password field is treated
as a normal text field

30

CHAPTER 4. SQL INJECTION

Figure 4.1: Website login page

31

CHAPTER 4. SQL INJECTION

<p><a h r e f =’ u s e r l o g i n . php’>Try again</p>” ;
}

Listing 4.1: Login check source code

As we can see, the sql query to check if the email and the password are
correct is stored in the $sql variable, and is

$ s q l = ” s e l e c t ∗
from CLIENT
where EMAIL = ’ ” . $ POST [” emai l ”] . ” ’ and
PASSWORD = ’ ” . $ POST [” pass ”] . ” ’ ; ” ;

Listing 4.2: Login check query source code

In a normal case, if an user with the email test@test.com and the password
123456 exists and he tries to access to his account, the query will be as the
programmer wants:

select ∗
from CLIENT
where EMAIL = ’ t e s t @ t e s t . com ’ and PASSWORD = ’ 123456 ’ ;

Listing 4.3: Normal query

But imagine an attacker who wants to gain access with another user’s ac-
count. We have two scenarios: if the malicious user knows an existing email
in the database, or if he does not know any existing email.

In the first case, the attacker knows that the email account exists in the
database, so he can try to avoid the password verification. He can write as
it is shown in figure 4.2, so the query will be like:

select ∗
from CLIENT
where EMAIL = ’ t e s t @ t e s t . com ’ AND /∗ ’ and PASSWORD = ’ ∗/ ’ ’= ’ ’ ;

Listing 4.4: Case 1: attack knowing an email address

All written between /* and */ is a comment, so it does not count to the
query, and ” = ” is always true (empty equals empty), so the attacker avoid
the password verification and he obtains access as the user test@test.com, as
we can see in figure 4.3.

To complete the information, the query that the server will execute is:

32

CHAPTER 4. SQL INJECTION

Figure 4.2: Example 1: data introduced

33

CHAPTER 4. SQL INJECTION

Figure 4.3: Example 1: login succesful

34

CHAPTER 4. SQL INJECTION

select ∗
from CLIENT
where EMAIL = ’ t e s t @ t e s t . com ’ AND ’ ’= ’ ’ ;

Listing 4.5: Case 1: executed query

Imagine now that the attacker does not know any email that exists in the
database. In this case, he has to avoid both verifications, for the email and
for the password. Changing some information in the input forms, as is shown
in figure 4.4, he can obtain access to the website as an arbitrary user. Result
query will be:

select ∗
from CLIENT
where EMAIL = ’ foo@foo . com ’ or ’ ’= ’ ’ and PASSWORD = ’ ’ OR ’ ’= ’ ’ ;

Listing 4.6: Case 2: attack unknowing any data

In this case, the attacker needs that the AND’s both sides inside the WHERE
clause are true, and the attacker obtains it using an OR. In the left side, the
email can exist or not in the database, but it is sure that empty equals empty,
so this side will be true. It is similar to the right side: the password can be
empty, but empty, for sure, equals empty, so this side will be true too. This
way, if the given email does not exist in the database, the query will return
all records, and the attacker will access as the first user in the list, as it is
shown in figure 4.5; if the given email exists in the database, the attacker
will get access as that email’s user, so this is an alternative method to obtain
access as a known user in the database.

It is necessary to say that in this case, as the website is written, it is not
possible to get the database information using wrong queries as it was said
in the description, because the PHP object that connects with the database
only shows a generic error, without saying details.

This object uses mysql PHP extension, that does not allow to execute mul-
tiple queries, which is safer because does not let an attacker to execute more
than one query, that can be dangerous too. Let’s do an hypothetical example.

Imagine that an attacker write an email and a password as shown in figure
4.6. The resultant query will be:

35

CHAPTER 4. SQL INJECTION

Figure 4.4: Example 2: data introduced

36

CHAPTER 4. SQL INJECTION

Figure 4.5: Example 2: login succesful

37

CHAPTER 4. SQL INJECTION

select ∗
from CLIENT
where EMAIL = ’ foo@foo . com ’ and PASSWORD = ’ 123456 ’ ;

delete
from c l i e n t
where 1 or username=’ ’ ;

Listing 4.7: Case 3: hypothetical attack deleting data

If it were possible to execute multiple queries, this access would delete all the
data from the table client, regardless if the first query is successful or not.

Figure 4.6: Example 3: data introduced

38

CHAPTER 4. SQL INJECTION

4.3 Issue solution

Although SQL injection is one of the most important issues in web security,
it is really easy to prevent this attack, so all web developers should prevent
their websites against it.

There are different techniques to prevent SQL injection, but we only studied
two of them that are enough to prevent SQL injection attacks. We also stud-
ied some additional techniques that intensify the security to the techniques
used.

4.3.1 Prepared statements

This technique, also called parametrized queries, consists of, first, define the
SQL query and then pass in each parameter to the query. This way, the
database can distinguish between the query and the input data, no matter
what is that input data.

So, an attacker can not change the query because it is stored before, and all
SQL commands that he writes as a input will be treated as a string.

We implemented this solution in the webpage, although we had to write a
new database connection object to make it work with parametrized queries,
because it needs a different driver to connect to the database, PDO instead of
mysql. This solution is really effective and it avoids all the attacks described
in section 4.2.

We can try to make one attack of that section, the second one for example,
to see how the defense works. We introduce the same data as it is shown in
figure 4.4. But now, instead of gain access as another user, we are rejected,
as it is shown in figure 4.7. Let’s see how the defense worked taking a look
at the executed query:

select ∗
from CLIENT
where EMAIL = ’ foo@foo . com\ ’ or \ ’ \ ’=\ ’ ’
and PASSWORD = ’ \ ’ OR \ ’ \ ’=\ ’ ’ ;

Listing 4.8: Rejected attack

Database searched an email that is equal to foo@foo.com’ or ’’=’ with a

39

CHAPTER 4. SQL INJECTION

password equals to ’ OR ’’=’ and it did not find a match, so the webpage
denied the access.

Finally, the simplified code for this part is:

$ s q l = ” s e l e c t ∗
from CLIENT
where EMAIL = ? and PASSWORD = ? ; ” ;

$pr ivateStatement−>bindParam (1 , $ POST [” mail ”] , PDO: :PARAM STR) ;
$pr ivateStatement−>bindParam (2 , $ POST [” pass ”] , PDO: :PARAM STR) ;

$pr ivateStatement−>execute () ;

Listing 4.9: Prepared statements source code

Figure 4.7: Rejected attack

40

CHAPTER 4. SQL INJECTION

4.3.2 Escape user input

This technique consists of escape all the critical characters in the user data
input. In SQL injection attacks is usual to use characters like ’ or \ to
close the normal data input and append the SQL malicious code behind it,
but this technique prevents against it, because it escapes these characters,
making them strings, so the result is the same as using prepared statements.

We implemented this solution in the webpage too, but using the original
object to connect to the database, because the use of the escaping function
is not compatible with that driver, PDO. The solution works too, avoiding
illegal accesses to the website.

If we try to make the attack shown in figure 4.2, we will get rejected as is
shown in figure 4.7. The resultant query is the same as shown in listing 4.8,
but the source code is not so different from the original and, in fact, the only
changed line is the one where query definition is, and it is as follows:

$ s q l = ” s e l e c t ∗
from CLIENT
where EMAIL =
’ ” . m y s q l r e a l e s c a p e s t r i n g ($ POST [” mail ”]) . ” ’
and PASSWORD =
’ ” . m y s q l r e a l e s c a p e s t r i n g ($ POST [” pass ”]) . ” ’ ; ” ;

Listing 4.10: Escape user input source code

As we can see, the mysql real escape string() function is which escapes
the input data.

4.3.3 Additional defenses

Using the techniques described before are enough to prevent SQL injection
attacks, but we can add some other defenses to make the website more secure.

Least privileges

This is not a technique in itself, but it can prevent against SQL attacks and
other issues. It consists of use for web applications a database user with
less privileges or making some database users that can only access to some

41

CHAPTER 4. SQL INJECTION

database tables.

In the first case, for example, if we only need to read data from the database,
to show the catalog, it is not necessary to have other privileges as writing or
removing data from the database.

In the second case, we can imagine that we have in the same database web-
site’s data and shop’s accounting data. In this case, we should use two
different database users: one who has access to the database and another
one who has access to the accounting side too.

We did not change any user from the database because it does not belong
to web security report, but to the database security, and we will come over
later, in a different issue.

Checking forms

It is always better to prevent attacks from the beginning, from user’s side,
so we can check all the data input before it is sent to the web server.

If we continue with the same example, user login.php, we can make some
changes in the input form: limit the input size and check that the input data
is really the kind of data that we want.

Normally, SQL injection attacks require a lot of characters, and the email
address is shorter than 40 characters and the password shorter than 16, so we
can limit these fields to those values, so the SQL code has less probabilities
to fit in that space. The HTML code to obtain that is:

<p>Email :
<input name=’mail ’ type=’text ’ id=’mail ’ maxlength= ’40 ’ />

</p>
<p>Password :

<input name=’pass ’ type=’password ’ id=’pass ’ maxlength= ’16 ’ />
</p>

Listing 4.11: Limit input data source code

In the second case, we can check with a regular expression using Javascript
that the input data is really an email, and not any other thing, so we avoid
that an attacker introduces SQL code. We can see it in figure 4.8, and the
javascript code is:

42

CHAPTER 4. SQL INJECTION

f unc t i on formVal idator (){
var mail = document . getElementById (’ mail ’) ;

i f (i sMa i l (mail , ”Wrong emai l address ”)){
return true ;

}
return fa l se ;

}

f unc t i on i sMa i l (elem , helperMsg){
var e m a i l F i l t e r =/ˆ([a−zA−Z0−9 \.\−])+\@(([a−zA−Z0−9\−])
+\ .)+([a−zA−Z0−9]{2 ,4})+$ / ;
i f (! (e m a i l F i l t e r . t e s t (elem . va lue))) {

a l e r t (helperMsg) ;
return fa l se ;

}
else {

return true ;
}

}

Listing 4.12: Check input data source code

Figure 4.8: Checking wrong email address

43

CHAPTER 4. SQL INJECTION

4.4 Conclusion

As we could see, SQL injection attacks are really dangerous due to it is
possible to do several malicious actions like extract critical data or erase all
the data in a table or in the whole database. And this weakness is really
extended along the Internet, so malicious users can perform much damage.

We could see that actually it is not difficult to prevent this kind of attack,
so all web designers should write their websites avoiding it.

Expert people from OWASP[17] recommend to use prepared statements tech-
nique because it is the safest one, so if someone starts to write a website with
database queries, he should use that technique.

But if the website is already written without using prepared statements, it is
faster, less complex and really secure to use the escape user input technique.

And it is recommended to use with both techniques the additional defenses:
to use a good user privilege policy in the database and to check all the input
data. With that combination, website will be safe against SQL injection
attacks.

44

Chapter 5

XSS (Cross Site Scripting)

5.1 Description

As SQL injection, XSS is a really important web issue, due to an attacker
can make another user to do things without knowledge, such as password
extraction, phishing... It usually does not work automatically, but requires
user interaction.

Also as SQL injection, XSS works with the user input data but it consists of
introduce some malicious code that will be stored in the database, so when
someone view that information, the code will be executed. This code is
normally Javascript inserted in HTML, and it is executed according to some
event, as loading an image, for example.

This attack requires to break out a data context1 and to switch into a code
context, using special characters in the used interpreter. The interpreter
in these attacks is the browser, and the malicious code is inserted into the
HTML code.

We can find two types of XSS:

• Injection UP: is the most common way, and consists of close the current
context and start a new context. For example, the attacker closes first
a context with \> and then he starts a new context with <script> to
start the malicious context.

• Injection DOWN: is the less common way, and consists of insert code

1A context is, for example, <div>Data context</div>

45

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

without closing the current context. For example, the attacker changes
 into <img src="javascript:alert

(document.cookie)" />, and he does not have to break the current
context.

But there is another way to inject the code without changing of context, and
it is simply write the code directly in the input forms, because there are a
lot of sites that do not verify input data.

As we can see, XSS is really potential, and it allows attackers to perform a lot
of malicious actions, and nowadays, when all sites are more interconnected,
all untrusted data2 should be verified to not harm other sites.

To prevent XSS attacks, we have to consider that all input data is malicious
and, therefore, we must validate all the input.

Traditionally, input validation has been the preferred technique for check
untrusted data, but actually it is not a complete solution. In first place,
because the validation is done when the input data is received, and at that
moment we do not know which characters will be significant in the target
place. In second place, because we need to write all characters, even if they
are potentially harmful. For example, the character ’ is special in SQL, but
we should let use this character because there are some names with it, like
O’Brien.

However, input validation is recommended and is a good complement for
the prevention techniques that we will describe below. The generic examples
showed are extracted from OWASP[17].

Those techniques are rules, and it is not necessary to add all of them to the
website. According to OWASP, a website will be secure using only rules 1
and 2.

5.1.1 Rule #1: HTML escaping before inserting un-
trusted data into HTML context

This rule is for when the web developer wants to put untrusted data in
somewhere in the HTML body. The tags included are normal tags, like div,

2Untrusted data is all data that comes from inputs and that is not verified

46

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

p, td... Of course, this rule is not sufficient, because there are other HTML
contexts, that will need another rules.

Generic examples of this rule are:

<body> . . . ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE . . .</body>

<div> . . . ESCAPE UNTRUSTED DATA BEFORE PUTTING HERE . . .</div>

Listing 5.1: Rule #1 generic examples

The character conversion is:

• & (ampersand) becomes &

• ” (double quote) becomes "

• ’ (single quote) becomes '

• <(less than) becomes <

• >(greater than) becomes >

The PHP function htmlspecialchars converts special characters into HTML
entities.

5.1.2 Rule #2: Attribute escape before inserting un-
trusted data into HTML common attributes

This rule is for putting untrusted data into common HTML attributes, like
width, name... This rule should not be used for complex attributes, as href,
src or any of the event handler like onmouseover. For the event handler,
use Rule #3.

Generic examples of this rule are:

47

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

<div a t t r = . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE . . .>content</div> i n s i d e Unquoted a t t r i b u t e

<div a t t r = ’ . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE. . . ’>content</div> i n s i d e s i n g l e quoted a t t r i b u t e

<div a t t r=” . . . ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE . . . ”>content</div> i n s i d e double quoted a t t r i b u t e

Listing 5.2: Rule #2 generic examples

5.1.3 Rule #3: Javascript escape before inserting un-
trusted data into HTML Javascript data values

This rule is for putting untrusted data in Javascript events handler that are
specified in some HTML elements. The only safe place to put data in this case
is on quoted data value; including it in another location is very dangerous.

Generic examples are:

<script>a l e r t (’ . . . ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE. . . ’)</ script> i n s i d e a quoted s t r i n g

<script>x = ’ . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE. . . ’</ script> one s i d e o f a quoted exp r e s s i on

<div onmouseover=”x = ’ . . .ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE. . . ’ ”</div> i n s i d e quoted event handler

Listing 5.3: Rule #3 generic examples

5.1.4 Rule #4: CSS escape before inserting untrusted
data into HTML style property values

This rule is for when the web developer wants to put untrusted data into a
stylesheet or a style tag. CSS can be used for several attacks. The only safe
place to put untrusted data is in a property value.

Generic examples are:

48

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

<style>s e l e c t o r { property : . . . ESCAPE UNTRUSTED DATA BEFORE
PUTTING HERE . . . ; } </ style> property value

<style>s e l e c t o r { property : ” . . . ESCAPE UNTRUSTED DATA BEFORE
PUTTING HERE . . . ” ; } </ style> property value

<span style=” property : . . . ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE . . . ”>t ex t</ style> property value

Listing 5.4: Rule #4 generic examples

5.1.5 Rule #5: URL escape before inserting untrusted
data into HTML URL parameter values

This rule is for when web developer wants to put untrusted data into an
HTTP GET parameter value.

A generic example is:

<a href=” http ://www. somes i t e . com? t e s t = . . .ESCAPE UNTRUSTED DATA
BEFORE PUTTING HERE . . . ”> l i n k

Listing 5.5: Rule #5 generic example

5.1.6 Rule #0: never insert untrusted data except in
allowed locations

This rule is to deny all, namely, put untrusted data only in the slots defined
in Rule #1 through Rule #5. The reason for this rule is because there are
several strange contexts in HTML that makes difficult to know the list of
escaping rules.

So, generic examples are:

49

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

<script> . . . NEVER PUT UNTRUSTED DATA HERE . . .</ script> d i r e c t l y
in a s c r i p t

< !−− . . .NEVER PUT UNTRUSTED DATA HERE. . .−−> i n s i d e
an HTML comment

<div . . . NEVER PUT UNTRUSTED DATA HERE. . . = t e s t /> in an
a t t r i b u t e name

<NEVER PUT UNTRUSTED DATA HERE . . . href=”/ t e s t ” /> in a tag
name

Listing 5.6: Rule #0 generic examples

5.2 Example

We will see an example of XSS in our website. The affected pages in this
case are ./admin/login.php, that allows shop’s owner to manage all the
topics related with the shop, prepayment.php, that allows clients to add
some information about the delivery, and ./admin/view order.php, that
allows shop’s owner to view all orders made in the shop by clients.

prepayment.php, as we can see in figure 5.1, has 4 text inputs to add delivery
address if it is different from the user’s address, and another input to add
some information about the delivery, such as delivery’s preferred time; it also
has a drop-down list to select the preferred carrier.

view order.php works with AJAX, and has a drop-down list to select the
order’s status; once it is selected, another drop-down list is charged with all
the orders with the selected status. When an order is selected, all the data
about the order is charged in the page. We can see it in figure 5.2

login.php, has two forms as we can see in figure 5.3, one to introduce the
email and another one to introduce the password. Once the data has been
introduced and the login button pressed, it redirects to the same page and
verifies that the introduced data is right.

Imagine an attacker that wants to obtain the administrator username and
password. He can use XSS to get them.

First of all, he has to make an order buying a product. It does not matter,

50

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

Figure 5.1: Prepayment page

51

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

Figure 5.2: View order page

52

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

Figure 5.3: Admin login page

because he can delete the order later. When he arrives to prepayment.php,
he writes on comments a type of injection down, as we can see in figure 5.4:

Del ive ry between 5 and 8 pm <img src=’ http :// l o c a l h o s t /˜ ruben/
eshop / imags/ white . jpg ’ onload=’window . l o c a t i o n=” http ://
l o c a l h o s t /˜ ruben/ eshop /hack/ l o g i n . php” ’ />

Listing 5.7: Inserted malicious comment

If we analyze this line, we can see mainly two parts, a text to make more
credible the attack, and some code. This code loads an image, that in this
case is just a white pixel, the same color as the background, and, when
the image is loaded, it redirects automatically to another page, that is an
administrator login page fake copy, with a message that the session expired.
When somebody tries to view this order’s comments, he will be redirected
to that login page, which code is as follows:

53

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

<?
i f (i s set ($ POST [”Submit”])) {

//Process data
echo ”<meta http−equiv =’ Refresh ’ content=

’ 0 ;URL=http :// l o c a l h o s t /˜ ruben/ eshop /admin/ pedidos . php ’
/>” ;

} else {
?>
<html>

<head>
<t i t l e >Admin l o g i n − Foo shop</ t i t l e >
</head>
<body>

<center>
<HR width=100% a l i g n=’ cente r ’>

<h1>Ses s i on timeout</h1>
<h2>Admin l o g i n :</h2>
<form method=’ post ’ a c t i on=’ l o g i n . php ’>
<p>Email :
<input name=’ mail ’ type=’ t ext ’ id=’ mail ’ maxlength=’ 40 ’

s i z e=’ 40 ’ />
</p>
<p>Password :
<input name=’ pass ’ type=’ password ’ id=’ pass ’ maxlength=’ 16 ’

s i z e=’ 16 ’ />
</p>

<p><input c l a s s=’ boton ’ type=’ Submit ’ name=’ Submit ’
va lue=’ Login ’ /></p>

</form>
</body>
</html>
<?
}

Listing 5.8: Fake login page source code

Once he finishes writing it, he follows the steps and he pays as if he were a
normal user. After that, he just has to wait.

What happens now? When the shop’s owner checks for new orders, he will
access to this order and, suddenly, he will be redirected to the administrator
login page. But this login page, though it looks the same as the original page,
it is not the same, as we can check in the URL, in figure 5.5. The shop’s
owner will think that his session expired, so he will write his username and

54

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

Figure 5.4: Attack on prepayment

55

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

password, that will be processed by the attacker, and he will return to the
website, without knowing that he just gave his access data to an attacker.

Figure 5.5: Fake admin login page

We have to say that this attack, to make it more credible, requires to know
how the website is made and it is not easy, but most pages are designed in
the same way, so an attacker can guess it.

We can also see that this attack is not very smart, because it requires that
the attacker gives his personal data and pays, so if the shop’s owner notices,
he will be able to denounce him. But it illustrates how easy is to make an
effective XSS attack.

Finally, we have to say that there are a lot of XSS attacks, some more complex
than others, and using different languages, but their operation mode is the
same, being possible to inject code from URL, due to it is input data too.

56

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

5.3 Solution

The website is well constructed, so it is not necessary to apply all the rules.
In fact, we only need Rule #1 because the website only puts untrusted data
in HTML context. It does not put untrusted data in HTML attributes,
Javascript nor URLs. And, referent to CSS, the website does not use it, so
we do not have to worry about that.

As we said in section 5.1.1, there is a PHP function that escape HTML
characters, so the only thing that we have to do is use it when the data
arrives, before storing it in the database, and the result in the code is:

i f (i s set ($ POST [”obs”])) {
$order−>setComments (htmlspecialchars ($ POST [”obs”] ,

ENT QUOTES, ”UTF−8”)) ;
}

Listing 5.9: Solution adopted

Then, when that data is shown, it will show the written code and it won’t
be executed.

We can see it if we repeat the same attack executed in section 5.2. An
attacker makes a purchase and he writes on the order’s comments the same
as listing 5.7, and after that he pays. Now, when the shop’s owner checks for
new orders, as we can see in figure 5.6 he will see on the order’s comments
the code written by the attacker, instead the code executes, as happened in
the example.

This way, we avoided XSS attacks in the website.

57

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

Figure 5.6: Failed attack

58

CHAPTER 5. XSS (CROSS SITE SCRIPTING)

5.4 Conclusion

We could see that XSS attacks are potentially dangerous because it allows
attackers to make malicious actions, from data theft to fraud. And this
weakness is really extended along the Web, so attackers can take profit of it.

But actually, it is not difficult to prevent this kind of attacks, so all web
developers should build their websites avoiding this weakness.

First, developers have to build a good websites, avoiding some potential se-
curity holes, writing secure code. And then, they have to check the rules
described and apply whatever that are necessary to make their websites se-
cure against XSS attacks.

And they should also use input validation, so some attacks will be filtered
before they arrive until the server, where they will be completely filtered.

Using this combination properly, the website will be secure against XSS at-
tacks.

59

Chapter 6

Broken authentication and
session management

6.1 Description

This issue is related with impersonation and it can affect users, not so much
the server. It consists of breaking authentication systems, such as password,
or breaking users’ session, all to get access to the system with another user
account.

We must differentiate between authentication and session management.

6.1.1 Authentication

Authentication is the process of verification that an user is really that user,
and no one has supplanted him. This process of verification is done asking
the user some data that only he can know, usually an ID and a password,
but it is possible to ask him in more complex ways, as we will see.

Password strength

When we identify users using a password, it is necessary that the password is
strong, so it will not be easy to attackers to break it, either using manual or
automated means. We can force users to choose a good password applying
these guidelines:

60

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

• Password length: it is more difficult to guess a password when it has
more characters, because there are more possible combinations. Ac-
cording to OWASP[19], we can set up three classes according to the
application:

– Important applications: minimum of 6 characters length.

– Critical applications: minimum of 8 characters length.

– Highly critical applications: consider multi-factor authentication,
explained in subsection 6.1.1.

• Password complexity: it is more difficult to guess a password when it is
not trivial, namely, when it does not have dictionary words, sequences...
According to OWASP[20], we should force users to create passwords
according to this composition, or a variance of it:

– at least: 1 uppercase character (A-Z)

– at least: 1 lowercase character (a-z)

– at least: 1 digit (0-9)

– at least: 1 special character (!¿*$...)

– no contiguous characters (e.g. 12lmno)

– no more than 2 identical characters in a row (aaaa)

Password recovery

All applications should have a mechanism to let users recovery their account
even if they forgot the data to access, such as password or ID.

Sites that have business relationships with their users should follow these
steps to allow users recovery their passwords.

1. Step #1: gather identity data. This step consists of collect some
user’s data in order to ask him later his security questions. A minimum
of 3 inputs is recommended, and some of them can be email address,
last name, date of birth...

2. Step #2: verify security questions. This step consists of ask users
their security questions that were asked when they registered. If any
answer is incorrect, a generic error message should be displayed.

61

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

3. Step #3: send a token over a side-channel. This step consists
of send via email or SMS a randomly-generated code with 8 or more
characters to the user. This way, we establish an out of band commu-
nication and it would be really difficult for a hacker to overcome.

4. Step #4: allow user to change password. This last step consists
of introduce the code sent in the previous step and allow the user to
change the password, if the code is correct. This password, of course,
should be checked to be strength, as we described in subsubsection
6.1.1, password strength.

Utilize multi-factor authentication

This kind of authentication asks for:

• Something you know (ID, password...).

• Something you have (tokens or mobile phones).

• Something you are (biometrics).

to login into a system. This kind of authentication is really secure, but as
we said in subsection 6.1.1, password strength, is used only in highly critical
applications, because it is really complex to the user to login.

Authentication responses

When there is a failed login, the application should answer with a generic
error message, regardless if it was the ID or the password the incorrect input,
and should not give any indication about the status of the account, if it exists
or not. This way, we avoid attackers to know ID’s that can be used to make
another kind of attacks, like SQL, as we have seen.

A correct response is: Login failed. Invalid ID or password. It does not say
if it was the ID or the password the wrong input, so attackers can not infer
any data.

62

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Transmit password only over TLS

This protection consists of transmit password only over TLS, so the data will
be encrypted and no body will be able to see it.

We will see this protection in chapter 10.

Account lockout

This protection consists of let only do a established number of attempts to
an account in a established period of time. This way, we avoid brute force
attacks, that consist of introducing all password combinations for an account
to get access to it.

6.1.2 Session management

Session management is a process by which the server maintains the state of
an entity interacting with it. We use it for keep users logged in, so once
they log in, they start their session. Sessions should be unique per user and
difficult to predict.

Transmit session ID’s only over TLS

Session ID’s should only be transmitted over TLS, to avoid Man-in-the-
Middle and surf jacking attacks.

We will see this protection in chapter 10.

Ensure session ID’s

Session ID’s should be large and random enough so they ca not be predicted,
avoiding session hijacking and identity theft.

Session ID’s should satisfy:

• Session ID’s should be at least 128 bits, to avoid brute-force attacks.

• Session ID’s should be random, so they can not be guessed.

63

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

• Session ID’s should use the largest character set available to it.

Timeout

The application should implement session idle and absolute timeout to pro-
tect users if their ID’s have been stoled. This way, attacker will have a limited
time to perform his actions.

• Session idle timeout: sessions should be finished after a established
period of inactivity.

• Session absolute timeout: session should be finished after a estab-
lished period of time.

Cookie security

We can follow some procedures to ensure cookies.

• Secure flag: it consists of activate the secure flag over SSL operations.

• HTTP only: it consists of send to the browser the HTTP only direc-
tive, so it will protect the cookie from Javascript manipulation, avoiding
XSS cookie attacks.

• HTTP POST: it consists of use HTTP POST instead of HTTP GET,
due to last one can give some information to attackers along the traffic,
even if SSL is used.

6.2 Examples

The website does not implement good measures in authentication and session
management. We will show some examples to demonstrate the weaknesses
in this area. However, we will not show examples of:

• Password recovery, multi-factor authentication, account lockout, secure
session ID’s and timeouts: because these features are not implemented

64

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

in the website although some of them will be implemented and showed
in solutions section.

• Password and session transmission over TLS: because these features
will be explained in chapter 10.

• Cookie security: because it is not implemented in the website.

6.2.1 Password strength

The website does not implement any control about password strength. We
can register, via new user.php page, using an insecure password, as we can
see in figure 6.21. Once we press the accept button, we are registered with
an insecure password, as we can see in figure 6.1.

Figure 6.1: Registering succesful with a wrong passowrd

1In order to present the pictures, the password field is treated as a normal text field

65

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.2: Registering using an insecure password

66

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

6.2.2 Authentication responses

In some of the pages, the website does not work correctly when it has to
show error messages while authentication or registration. We can see in
new user.php two issues in error messages, one when we use an ID that is
already in use (figure 6.3), and the other one when we use an email that is
already in use (figure 6.4).

The source code for this section is:

$ r e s check = checkCl i ent ($ POST [” id ”] , $ POST [” mail ”]) ;
i f ($ r e s check == 0) {

$ c l i e n t = new Cl i en t (/∗Al l data ∗/) ;

$ c l i e n t−>i n s e r t () ;

echo ”<h2>Thank you f o r r e g i s t e r , ” . $ POST [’name ’] .
”!</h2>” ;

} else {
switch ($ r e s check) {

case 1 : echo ”<h2>The ID a l ready e x i s t s in the
database</h2>” ;

break ;

case 2 : echo ”<h2>The emai l address a l r eady e x i s t s in the
database</h2>” ;

break ;
}

}

Listing 6.1: User verification and error messages

The showed message gives us information about the users: if the email or
the ID exist in the website.

67

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.3: Wrong error message: it gives information about IDs in the
database

Figure 6.4: Wrong error message: it gives information about emails in the
database

68

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

6.3 Issues solution

In this section we will show how we solved the mentioned issues and how we
implemented new features to enforce our website authentication and session
management.

We will show how we solved passwords weaknesses and error messages, and
how we implemented new features: password recovery, account lockout and
timeout.

We did not implement multi-factor authentication because we do not think
that this kind of authentication must be used in an online shop, because it
is tedious to the user, that usually wants speed.

We also did not implement cookies security, because it is a issue related to
cookies, that are not implemented in the website.

6.3.1 Password strength

As we said, we need to assure that the website’s users choose a good password
to avoid some kind of attacks.

To solve this issue, we implemented some features in new user.php webpage.
We inserted two visual markers: one to show if the password is long enough
and strength (figure 6.5), and another one to show if both password and
password confirmation are equal (figure 6.6). And we added a control that
does not allow users to register if the password is not long enough and if the
password and the password confirmation are not equal.

We force users to write twice their password because they do not see what
they are writing, and maybe they make a mistake writing the password and,
then, they will not be able to access to the website. So, it is better to force
users to write it twice, to ensure that they do not make mistakes.

To make the visual markers, we used an already written code found in the
Internet[21]. It uses AJAX and JQuery[22] to show the verification in real-
time, and it uses a simple algorithm to calculate the password complexity:

1. It checks the length of the input string. If it is longer than the minimum
length, it gives base score of 50. If not, the base score is 0.

69

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.5: Password verification: correct password and confirmated

70

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.6: Password verification: correct password but not confirmated

71

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

2. It checks how many extra characters over the minimum the string has,
and gives a bonus for each character.

3. It checks if the string has a combination of upper case letters, numbers
and symbols or all three, and gives a bonus for it. It also gives a bonus
for each presence.

4. It checks if the string only contains either lower case letters or numbers,
and if it does, it penalizes.

5. Finally, it calculates the final score and decides the strength of the
password.

The original code had set the minimum characters at 6, and it only had let
view one input, but we modified it in order to change the minimum characters
at 8 and to allow write twice the password and check if both are equal to
verify it.

We chose a minimum of 8 characters because we consider the website as a
critical application due to it allows to buy, to modify orders...

The source code can be found in the appendix A.1.

The other feature is a control that does not allow users to register if the
password is not correct. We wrote it in Javascript and it checks, in this
order:

1. That both passwords are equal (figure 6.7).

2. That password fields are not empty (figure 6.8).

3. That password has at least 8 characters (figure 6.9).

If one of these conditions is not satisfied, the user ca not register in the
website.

The source code is:

72

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

f unc t i on formVal idator () {
var pass1 = document . getElementById (’ pass1 ’) ;
var pass2 = document . getElementById (’ pass2 ’) ;

i f (i sEqua l (pass1 , pass2 , ”Passwords must be equal ! ”)) {
i f (notEmpty (pass1 , ”You must wr i t e a password ! ”)) {
i f (i sPa s s (pass1 , ”Password must have at l e a s t 8

c h a r a c t e r s ! ”)) {
return true ;

}
}
}

return fa l se ;
}

f unc t i on i sEqua l (elem1 , elem2 , helperMsg) {
i f (elem1 . va lue == elem2 . va lue) {

return true ;
}
else {

a l e r t (helperMsg) ;
return fa l se ;

}
}

f unc t i on notEmpty (elem , helperMsg) {
i f (elem . va lue . l ength == 0) {

a l e r t (helperMsg) ;
return fa l se ;

}
return true ;

}

f unc t i on i sPa s s (elem , helperMsg) {
i f (elem . va lue . l ength >= 8) {

return true ;
}
else {

a l e r t (helperMsg) ;
return fa l se ;

}
}

Listing 6.2: Password verification

73

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.7: Password verification: password not confirmated

Figure 6.8: Password verification: password empty

74

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.9: Password verification: password too short

6.3.2 Password recovery

To implement a password recovery system, we followed the steps described
in subsection 6.1.1, password recovery, and we had to make some changes in
the database.

First, we had to add two new attributes in the Client table, to add the
security question and its answer. So, these attributes description are:

• Question: this is client’s secret question; it is character.

• Answer: this is client’s answer to his secret question; it is character.

After that, we had to let users to introduce both question and answer when
they register, so we had to modify new user.php page (figure 6.10) and the
object.

Then, we had to add a new table in the database, called Pass recovery. Its
attributes are:

• ID: this is user’s ID; it is numeric;

75

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.10: Registering process: security question and answer added

• SID: this is session’s ID, unique and generated randomly; it is primary
key and character.

• Code: this is recovery code; it is character.

We had to create a new page, called password recovery.php. Within this
page we manage all password recovery.

First, it asks for the email address (figure 6.11). When the user writes one
and submit, it checks if the email address is in the database; if it is not, it
shows a generic error message (figure 6.12). But if the email exists in the
database, it generates a randomly session ID and it stores it with the user’s
ID in the Pass recovery table. Then, it sends an email2 to the user with the
link, that has both session ID and user ID, to resume the process.

When the user accesses to the link, the page asks the user his secret question
(figure 6.13). When the user answers it, the page checks if the answer is
correct, and if it is not, it shows a generic error message (figure 6.12). But
if the answer is correct, it generates a code that stores in the Pass recovery
table with the session ID, and sends to the user another email with the link
and the code.

2At the moment, to make easier the tests, it only shows the URL in the page

76

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.11: Password recovery: asking the email

Figure 6.12: Generic error message showed when an error ocurred

77

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.13: Password recovery: asking the secret question

When the user accesses to the new link, the page asks him for the code and a
new password (figure 6.14). When he introduces the code and the password,
that has the controls described in subsection 6.3.1, the page checks if the
code is correct, and if it is not, it shows a generic error message (figure 6.12).
But if it is correct, it changes the password and shows a message to the user
(figure 6.15).

This way, we accomplished the steps described in subsection 6.1.1, password
recovery, avoiding possible attacks.

Finally, we have to say that the table Pass recovery should be emptied every
day, to avoid long session IDs and to not take space in the database.

78

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.14: Password recovery: asking the code and the new password

Figure 6.15: Password recovery: password successfully changed

79

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

6.3.3 Authentication responses

Fixing the issue described in the examples subsection 6.3.5, in the new user.php

page, is really easy, we only have to change the message showed to avoid this
weakness. We can see the source code, that actually is almost the same:

$ r e s check = checkCl i ent ($ POST [” id ”] , $ POST [” mail ”]) ;
i f ($ r e s check == 0) {

$ c l i e n t = new Cl i en t e (/∗Al l data ∗/) ;

$ c l i e n t−>i n s e r t () ;

echo ”<h2>Thank you f o r r e g i s t e r , ” . $ POST [’name ’] .
”!</h2>” ;

} else {
echo ”<h2>Wrong username or password .</h2>” ;

}

Listing 6.3: Password verification

If we try to register now with an existing ID or email, we will see an error
message like in figure 6.16.

Figure 6.16: Generic error message showed when ID or email exists in the
database

80

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

6.3.4 Account lockout

We implemented the account lockout in the user login.php page, because
is where attackers can make brute-force attacks.

To implement the account lockout, we had to add a new table in the database,
called Lockout. Its attributes are:

• Email: this is the email account used to the login attempt; it is primary
key and character.

• Attempts: this is the number of attempts done to gain access to the
account; it is numeric.

• Blocked: this attribute indicates if the account is blocked or not; it is
boolean.

So, the algorithm used to implement account first checks if the used email
is in the lockout table or not. If it is not, it checks if the username and the
password are correct and, if they are, it does what is necessary to log in the
user; if they are not correct, then it inserts the email in the lockout table,
with one attempt and not blocked.

But if the given email is in the database, then it checks if it is blocked or
not. If it is, it denies the access to the user with that email (figure 6.17).

But if not, then it checks if the username and password are correct, and if
they are, it logs in the user and deletes the email from the lockout table. But
if they are not, then it updates the table: if the attempts are 3, it also blocks
the account (figure 6.18).

We can see that it does not say if the account exists in the database. It would
contradict the authentication responses already implemented, so it just say
that the email is blocked, so it is possible to block accounts that are not in
the database.

The source code for this part is in the appendix A.2.

Fixing this vulnerability can cause DoS3 attacks. An attacker can block
accounts juts trying to access with different emails. It is easy to automatize

3Deny of Service

81

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Figure 6.17: Blocked account

Figure 6.18: Blocked account after 3 attempts

82

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

this attack, so the attacker can block a lot of accounts in a brief period of
time.

To avoid this new issue, we should implement the lockout for IP, but it can
block the access to an entire company if an user does not remember his
account, for example, so it is not a good solution. The best that we can do
is implement a process that erases the table every concrete period of time,
each 30 minutes, each hour... This way, the impact of the DoS attacks will
be minimal.

6.3.5 Ensure session ID’s

When we need to use session ID’s, like when we described password recovery
in subsection 6.3.2, we have to use an unique and unpredictable value to
prevent identity theft.

To achieve this, we used a PHP code found in the Internet[23], that generates
tokens, and it is possible to specify the total length and the usage of MD5.
We can see the source code:

f unc t i on genToken ($ l en = 32 , $md5 = true) {
$chars = array (’Q ’ , ’@ ’ , ’ 8 ’ , ’ y ’ , ’%’ , ’ ˆ ’ , ’ 5 ’ , ’Z ’ , ’ (’ ,

’G ’ , ’ ’ , ’O ’ , ’ ‘ ’ , ’ S ’ , ’− ’ , ’N ’ , ’< ’ , ’D ’ , ’ { ’ , ’ } ’ , ’ [’ ,
’] ’ , ’ h ’ , ’ ; ’ , ’W’ , ’ . ’ , ’ / ’ , ’ | ’ , ’ : ’ , ’ 1 ’ , ’E ’ , ’L ’ ,
’ 4 ’ , ’& ’ , ’ 6 ’ , ’ 7 ’ , ’#’ , ’ 9 ’ , ’ a ’ , ’A ’ , ’ b ’ , ’B ’ , ’ ˜ ’ , ’C ’ ,
’ d ’ , ’> ’ , ’ e ’ , ’ 2 ’ , ’ f ’ , ’P ’ , ’ g ’ , ’) ’ , ’ ? ’ , ’H ’ , ’ i ’ , ’X ’ ,
’U ’ , ’ J ’ , ’ k ’ , ’ r ’ , ’ l ’ , ’ 3 ’ , ’ t ’ , ’M’ , ’n ’ , ’= ’ , ’ o ’ , ’+ ’ ,
’ p ’ , ’F ’ , ’ q ’ , ’ ! ’ , ’K ’ , ’R ’ , ’ s ’ , ’ c ’ , ’m’ , ’T ’ , v ’ , ’ j ’ ,
’ u ’ , ’V ’ , ’w ’ , ’ , ’ , ’ x ’ , ’ I ’ , ’ $ ’ , ’Y ’ , ’ z ’ , ’ ∗ ’) ;

$numChars = count ($chars) − 1 ; $token = ’ ’ ;

f o r ($ i =0; $i<$ l en ; $ i++)
$token .= $chars [mt rand (0 , $numChars)] ;

i f ($md5) {
$chunks = c e i l (s t r l e n ($token) / 32) ; $md5token = ’ ’ ;
f o r ($ i =1; $i<=$chunks ; $ i++)

$md5token .= md5(subs t r ($token , $ i ∗ 32 − 32 , 32)) ;
$token = subs t r ($md5token , 0 , $ l en) ;

} re turn $token ;
}

Listing 6.4: Session ID generator

83

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

Every time we needed to use a unique session ID, we called this function to
generate it.

6.3.6 Timeout

To implement session timeout, both idle and absolute, we added two new
variables in the superglobal variable $ SESSION when the user logs into his
account: one indicating what time was the session start, and one indicating
what time was the last activity. We can see the source code:

$ SESSION [” user ”] = $user ;
$ SESSION [” l o g i n ”] = 1 ;
$ SESSION [” s t a r t t i m e ”] = time () ;
$ SESSION [” l a s t a c t i v i t y t i m e ”] = time () ;

Listing 6.5: Session timeout start

Of course, at the beginning both values will be the same, but it does not
matter because we will update the value of last activity time.

Then, we had to check this time in each page that requires user authenti-
cation, to close the session if it is necessary. We implemented a function
that does that, check if one of the times expired and, if it does, it closes the
session:

f unc t i on checkTimeout () {
$ i d l e = 900 ;
$abso lute = 3600 ;

i f ((time () − $ SESSION [” s t a r t t i m e ”]) > $abso lute | | (time ()
− $ SESSION [” l a s t a c t i v i t y t i m e ”]) > $ i d l e) {

session unset () ;
r e turn true ;

}

$ SESSION [” l a s t a c t i v i t y t i m e ”] = time () ;
r e turn fa l se ;

}

Listing 6.6: Session timeout checking

Because we are building an online shop, we thought that the idle time should

84

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

be 15 minutes and the absolute time 1 hour4.

Now, we have to check the time in each page. We can see in figure 6.19 what
message is shown when the session expires, in user.php page, and here is
the source code template for it, that should be in each page that requires
user authentication:

$ s e s s t a r t e d = (i s set ($ SESSION [” l o g i n ”])) ;
$timeout = checkTimeout () ;
super ior menu () ;

i f ($timeout) {
echo ”<center><HR width=100% a l i g n =’ cente r ’>” ;
i f ($ s e s s t a r t e d) {

echo ”<h2>Ses s i on timeout exp i red !</h2>” ;
} else {

echo ”<h2>You don ’ t have a c c e s s to t h i s page !</h2>” ;
}

echo ”<meta http−equiv =’ Refresh ’ content = ’5;URL=index . php ’
/></center>” ;

} else {
//Code i f the user i s au t h en t i c a t e d

}

Listing 6.7: Session timeout template

This way, we implemented a session timeout, avoiding the related attacks.

6.4 Conclusion

We could see that there are a lot of aspects to consider about authentication
and session management, and it is a very important part of the website, due
to if what will keep users safe.

We noticed that is not easy to provide the security in this area, because there
are too many things to manage, but luckily, the code and the logic is reusable
in other projects.

First, web developers have to force users to choose strength passwords, in
order to avoid brute-force attacks against their accounts, and referred to this

4Values in the variables are indicated in seconds.

85

CHAPTER 6. BROKEN AUTHENTICATION AND SESSION
MANAGEMENT

kind of attacks, it is necessary to implement an account lockout.

To make things easier to the user, it is also good to have a good system to
recover the password, in case that the user forgot it. And it is also good
to implement a timeout, so users don not have to worry about closing their
sessions.

Finally, more to the server side, it is right to show generic error messages
and to ensure session IDs, in order to avoid attacks.

With all these features, and some other that we will see in chapter 10, the
website will have an optimal authentication system and session management.

Figure 6.19: Session timeout

86

Chapter 7

Insecure direct object
references

7.1 Description

This kind of attach, though is common, is not critical, because the attacker
can only access to the data related to the weakness, not to another data, so
he can get access to critical that if we do not expose it.

An insecure direct object reference happens when we reference to an internal
object, like a database record, as a URL. This happens, for example, when
we try to access to a record by its primary key and we give the primary key
through the URL. It is easy to see that an attacker can change that primary
key and access to another information that not belongs to him.

But we can also see that this attack is really limited, due to it can only access
to another data of the same type, and if that data is not critical, the attack
is practically useless.

We can avoid this weakness controlling what data is accessible depending of
the user.

7.2 Example

In the website all parameters from a form are passed using the POST method,
and the GET method is used in only two pages: info product.php and

87

CHAPTER 7. INSECURE DIRECT OBJECT REFERENCES

info promotion.php. These pages show products’ info and promotions’ info,
so an attacker can only have access to other products or promotions. This
is not a big problem, precisely because in a shop interests that clients view
the products, but maybe we do not want to show discontinued products or
promotions, so we have to control the access, and to avoid things like it is
shown in figure 7.1.

Figure 7.1: Insecure reference: an empty record is fetched

What happens there is that we try to access to a reference that does not
exist in the database, and because we do not control it, it shows an empty
table, that should not be showed, and, instead of that, it should show an
error message.

7.3 Issue solution

To solve this issue, in the case of the website, we only have to check if the
requested value exists in the database. If it does, then we show it, but if not,
we have to show an error message.

88

CHAPTER 7. INSECURE DIRECT OBJECT REFERENCES

In the page info product.php, we solved it just checking if the reference
exists in the database before reading it, so we can now know if the attacker
tries to access to a non-existent product, and if he does, he will see an error
message (figure 7.2). The source code is:

i f (i s set ($ GET [” r e f ”])) {
$db = new AuxDB() ;
$db−>connect () ;

$ s q l = ”SELECT ∗ from PRODUCT where REFERENCE = ?” ;
$params [] = array ($ GET [” r e f ”] , PDO: : PARAM INT) ;

$ r s t = $db−>executeSQLs ($sq l , $params) ;

i f ($db−>numRows($ r s t) > 0) {
//Code when product e x i s t s

} else {
echo ”<h2>An e r r o r ocurred !</h2>” ;
echo ”<meta http−equiv =’ Refresh ’ content = ’5;URL=index . php ’

/>” ;
}

}

Listing 7.1: Session timeout template

Figure 7.2: Insecure reference when trying to access to an inexistent reference

89

CHAPTER 7. INSECURE DIRECT OBJECT REFERENCES

7.4 Conclusion

Insecure direct object references, as we could see, is not a big problem if the
website is well builded, so to avoid it web designers should not use references
to private objects in the URL.

But if they have to do it, they have to be sure that they use it with data
that is not critical, and controlling it as we saw. If they accomplish these
guidelines, the website will be secure against insecure direct object references
attacks.

90

Chapter 8

CSRF (Cross-site request
forgery)

8.1 Description

CSRF attacks are not especially critical, due to they require, in first place,
that the user makes an action, like follow a link, and in second place they
require that the user is logged in in the website where attackers want to
reference.

This kind of attack consists of inducting the victim to access a page that
contains a malicious request. It is malicious because it inherits victim’s
identity and his privileges to perform an undesired action, like changing
victim’s personal data or password.

We can see that this attack impact depends on victim’s role. If the victim
is a normal user, the attack can only compromise end-user data, but if the
victim is the website administrator, the attack can compromise the entire
website.

8.2 Example

We will see an example of a CSRF attack in the website, in which the attacker
makes the victim changes his password without notice it.

The affected page in this case is modify user.php. This page allows the web-

91

CHAPTER 8. CSRF (CROSS-SITE REQUEST FORGERY)

site users to change their data, like personal data, address data or password
data, using to choose one or another a value passed through the URL.

The template source code for this section is:

i f (i s set ($ POST [”Submit”])) {
switch ($ GET [” opt ion ”]) {

case 0 :
//Modify user ’ s per sona l data
break ;

case 1 :
//Modify user ’ s address data
break ;

case 2 :
i f (strlen ($ POST [” pass1 ”]) > 0) {

$user−>se tPass ($ POST [” pass1 ”]) ;
}
break ;

}
$user−>modify () ;

echo ”<h2>Data c o r r e c t l y modi f i ed !</h2>” ;
echo ”<meta http−equiv =’ Refresh ’ content = ’5;URL=user . php ’ />” ;

} else {
// Input form

}

Listing 8.1: modify user.php template source code

We can see that an attacker can induce a victim to submit a form from an-
other page that redirects to modify user.php, passing all POST parameters,
and that will change the user’s data. For example, we have this script:

92

CHAPTER 8. CSRF (CROSS-SITE REQUEST FORGERY)

echo ”
<form name=’hack ’ method=’ post ’

a c t i on = ’ . . / modi fy usuer . php? opt ion=2’>
<input type=’hidden ’ name=’ pass1 ’ va lue =’qwerty ’>
<input type=’hidden ’ name=’Submit ’ va lue =’1’>

</form>
<s c r i p t

language =’ JavaScr ipt ’>document . hack . submit () ;</ s c r i p t >” ;

Listing 8.2: Malicious script source code

This script will execute automatically when it is accessed, and it will set the
POST variables necessaries to change the personal data. We can see that it
will set the password to qwerty, instead of the user’s original.

This way, the attacker, using social engineering, can trick the victim to access
that script, embedding its URL in a picture link, so when the victim tries
to access the image, will be redirected to the script, that will change his
password.

8.3 Solution

To solve this issue, we must verify that the form has been called from the
website, and not from other page. To achieve that we have to generate a
unique token, using the function described in subsection 6.3.5, and assign it
to the SESSION variable when the users login into the website. Then, when
we show the form, we have to assign the token as a hidden parameter, and
when the user submits the form, check that the token is correct.

We implemented this solution in the webpage. First, we had to generate the
token and store it when the user logs in. We just had to add the following
line to the user login.php:

$ SESSION [” token ”] = genToken () ;

Listing 8.3: Line to add to user login.php

Then, we had to add the token as an input parameter in the modify user.php

form, and before changing user’s data, we had to verify that both token from
the form and session token are the same and then, modify the data. The

93

CHAPTER 8. CSRF (CROSS-SITE REQUEST FORGERY)

template source code is:

i f (i s set ($ POST [”Submit”])) {
switch ($ GET [” opt ion ”]) {

case 0 :
//Modify user ’ s per sona l data
break ;

case 1 :
//Modify user ’ s address data
break ;

case 2 :
i f ($ SESSION [” token ”] == $ POST [”CSRFToken”]) {

i f (strlen ($ POST [” pass1 ”]) > 0) {
$user−>se tPass ($ POST [” pass1 ”]) ;
$msg = ”<h2>Data c o r r e c t l y modi f i ed !</h2>” ;

} else {
$msg = ”<h2>An e r r o r ocurred !</h2>” ;

}
break ;

}
$user−>modify () ;

echo $msg ;
echo ”<meta http−equiv =’ Refresh ’ content = ’5;URL=user . php ’ />” ;

} else {
switch ($ GET [” opcion ”]) {

case 0 :
//User ’ s per sona l data ’ s form
break ;

case 1 :
//User ’ s address data ’ s form
break ;

case 2 :
echo ”<h2>Modify your password</h2>
<form method=’ post ’ a c t i on =’ modi fy user . php? opt ion=2’>

<p>Password :
<input name=’ pass1 ’ type=’password ’ id =’ pass1 ’

maxlength = ’16 ’ />
</p>

<p>Confirm your password :
<input name=’ pass2 ’ type=’password ’ id =’ pass2 ’

94

CHAPTER 8. CSRF (CROSS-SITE REQUEST FORGERY)

maxlength = ’16 ’ />
</p>

<input type=’hidden ’ name=’CSRFToken ’ va lue =’” .
$ SESSION [’ token ’] . ” ’>

<p><input type=’Submit ’ name=’Submit ’ va lue =’Modify ’
/></p>

</form>” ;
break ;

}
}

Listing 8.4: modify user.php template source code with the issue solved

Now, when the victim access to the script described in the example, he will
see an error message (figure 8.1) and his data will not be modified.

8.4 Conclusion

We could see that, using social engineering, is really easy for the attacker to
make a CSRF attack, inducting the victim to access a script that performs
the malicious action.

But the victim has to be logged in in the website and has to access to the
script, so it depends on the victim if the attack is successful or not.

Although, it is really easy to prevent this attack, we only have to generate a
session token and check it every time that the users submit a form, so web
developers should protect their websites against this attack.

95

CHAPTER 8. CSRF (CROSS-SITE REQUEST FORGERY)

Figure 8.1: Message displayed when the token is not verified

96

Chapter 9

Failure to restrict URL access

9.1 Description

This kind of attacks are critical depending on user’s privileges, because at-
tacker takes victim’s privileges, so it is not the same if the attacker gets
access to a normal user account than if he gets access to an admin account.

This attack does not require any technical knowledge, and it only consists
of change manually the URL of the website to access to an unauthorized
page. If there is not a good privilege control, the attacker will get access to
forbidden pages.

We can see that if the victim is a normal user, the impact of the attack will
not be critical, but it will be if the victim is the administrator.

To avoid this weakness, it is necessary to implement privileges control.

9.2 Example

In the website, we can see an example of this attack in the administration
section. Although there is a login page, the whole administration section
does not have any privileges control, so an attacker can just write the URL
of a section and he will get access as an administrator to manage everything.

For example, he can get access to the clients section (figure 9.1), and he will
be able to manage all about the clients, adding new clients or modifying,
deleting or viewing the existing clients.

97

CHAPTER 9. FAILURE TO RESTRICT URL ACCESS

Figure 9.1: Access to a forbidden page without authenticate

98

CHAPTER 9. FAILURE TO RESTRICT URL ACCESS

9.3 Solution

To avoid this issue, we have to implement a permission control system to
allow only logged in users to access the forbidden pages. We had to implement
some new features in the website to solve the issue.

First of all, we had to add a new table to the database to save all adminis-
trator users. We could use the common user table, but, besides we did not
need so many fields, it is better to separate users from administrators.

The new table is called Admin and its attributes are:

• ID: it is admin’s ID; it is primary key and numeric.

• Email: it is admin’s email; it is character.

• Password: it is admin’s password; it is character.

We identify admins by their email, so we can have more than one admin if
it is necessary in the future.

After that, we had to change the login page, and add to it the control to check
if the username and the password are correct and, if they are, give access to
the user. The value to control the session login is 2, because number 1 it is
already in use for the normal web section. The template source code is:

i f ($ SESSION [” l o g i n ”] == 2) {
//User a l r eady l ogged in , so r e d i r e c t to the admin i s t ra t i on

index
} else {

i f (i s set ($ POST [”Submit”])) {
$db = new AuxDB() ;
$db−>connect () ;

$ s q l = ” s e l e c t ∗ from ADMIN where EMAIL = ? and PASSWORD =
? ; ” ;

$params [] = array ($ POST [” mail ”] , PDO: :PARAM STR) ;
$params [] = array ($ POST [” pass ”] , PDO: :PARAM STR) ;

// echo $ s q l ;
$ r s t = $db−>executeSQLs ($sq l , $params) ;

99

CHAPTER 9. FAILURE TO RESTRICT URL ACCESS

i f ($db−>numRows($ r s t) > 0) {
$ SESSION [” l o g i n ”] = 2 ;

echo ”
<h2>Log in s u c c e s s f u l ! .</h2>” ;
echo ”<meta http−equiv =’ Refresh ’

content = ’5;URL=index . php ’ />” ;
} else {

echo ”
<h2>Error l ogg ing in .</h2>” ;
echo ”<meta http−equiv =’ Refresh ’

content = ’5;URL=l o g i n . php ’ />” ;
}

} else {
//Form to wr i t e username and password

}
}

Listing 9.1: Login admin user template source code

We have to say that we should implement all features described in section
6.3 to have a good login system, except the account lockout, because if not,
an attacker could block all the admin accounts and then the admins would
not be able to unlock any account. In this situation we assume that the
admins do not have technical knowledge to access to the database and erase
the blocked accounts

After that, we had to implement the privileges control in all administration
pages to allow only authenticated users to access the pages. The template
source code is:

i f ($ SESSION [” l o g i n ”] != 2) {
echo ”<center><h2>Access fo rb idden !</h2></center>” ;

} else {
//Code i f the user has acces s to the page

}

Listing 9.2: All admin pages template source code

Now, if an unauthorized user tries to access a forbidden page, we will get an
error message (figure 9.2).

100

CHAPTER 9. FAILURE TO RESTRICT URL ACCESS

9.4 Conclusion

As we could see, an access to a forbidden page by an unauthorized user can
become into a critical attack if the target account is the admin account, but
the impact is not so big if the page is from a normal user, for example.

All web developers should avoid this weakness, and to do that, it is necessary
to check every page and decide if it requires privileges control or not, and if
it does, implement it.

Figure 9.2: Error message when trying to access to a forbidden page without
authenticate

101

Chapter 10

Insufficient transport layer
protection

10.1 Description

This issue, although is not entirely related with web development, is impor-
tant while it assures a private data interchange between the website users
and the server, so nobody can get access to that information, besides the
involved parts.

Imagine a situation where an user logs into a website without using Transport
Layer Security1. All his data will be sent as a plain text, including the
password, so an attacker can intercept that data and obtain it. The use of
TLS encrypts the communication, so all the data sent will be encrypted and
if an attacker intercepts the message, he will not have access to it.

Nowadays, the terms SSL2 and TLS are used indistinctly, and, actually, SSL
v3.1 is equivalent to TLS v1.0, but we will refer to the technology as TLS.
Both protocols are supported by all current browsers, and users can notice
that they are using TLS because the protocol used is HTTPS instead of
HTTP.

TLS uses digital certificates to authenticate the server, so users can trust
the communication. It is possible to authenticate the client too, but that is
usually done in the server using an username and a password. The connection

1from now TLS
2Secure Socket Layer

102

CHAPTER 10. INSUFFICIENT TRANSPORT LAYER PROTECTION

establishment is done using a 3-step algorithm:

1. Negotiation between client and server to choose the algorithm to use
during the connection.

2. Public key interchange and authentication using digital certificates.

3. Traffic encryption using symmetric-key encryption.

This 3-step algorithm is automatically done by the server, so web developers
do not have to worry about that, and it is server administrator task to con-
figure the server correctly to use TLS. That is why, although we implemented
TLS in the server, we will not explain it, because it does not behoove to the
report.

But we will explain some rules that are necessary to configure TLS correctly,
making it secure. These rules are a summary extracted from OWASP[24],
and for seeing more information and other rules not explained here, consult
directly to the OWASP web.

10.2 Secure server design

Rule: use TLS for all login pages and all authenticated pages

The login page and all authenticated pages must work only over TLS, in-
cluding the initial login page, called login landing page. If the login landing
page is not served using TLS, an attacker can modify the login form action
and users credentials can be posted to an arbitrary location. If authenticated
pages are not served using TLS, an attacker can view the unencrypted session
ID and compromise the session.[25]

Rule: use TLS on any networks (external and internal) transmit-
ting sensitive data

All networks, both external and internal, that transmit data must use TLS.
It is not enough to say that the internal network is restricted to employees,
because if an attacker cracks that network, he can see all the data sent on
the internal network.[26]

103

CHAPTER 10. INSUFFICIENT TRANSPORT LAYER PROTECTION

Rule: do not provide non-TLS pages for secure content

All pages available over TLS must not be available without using TLS. If an
user type an URL to an HTTP page within the authenticated portion of the
application, the response and all the data will be sent without using TLS, in
plain text.[27]

Rule: do not perform redirects from non-TLS page to TLS login
page

Usually, web developers redirect users from a non-TLS version of the login
page to a TLS version. This creates an additional attack vector for a man in
the middle attack.[28]

Rule: do not mix TLS and non-TLS content

A page available over TLS must not contain any data that is transmitted
without using TLS. An attacker can intercept that unencrypted data and
inject malicious content into the user page.[29]

Rule: use secure Cookie Flag

The secure flag must be set for all user cookies. If it is not set, an attacker
can access the session cookie by tricking the user’s browser into submitting
a request to an unencrypted page.[30]

Rule: keep sensitive data out of the URL

Sensitive data must not be sent via URL arguments. Better places to store
sensitive data are in a server side repository or in user session. The URL
arguments are encrypted using TLS, but there are two scenarios where the
data is exposed[31]:

• In the browser’s history. The entire URL is cached in it, so everybody
with access to the browser can view it.

• When the user clicks on a link to another HTTPS site.

104

CHAPTER 10. INSUFFICIENT TRANSPORT LAYER PROTECTION

Rule: prevent caching of sensitive data

TLS provides confidentiality for the transmitted data, but not if the data
is saved at the client. Server should force the client and the intermediary
proxies to not cache the data.[32]

10.3 Server certificate and protocol configu-

ration

Rule: use an appropriate certificate authority for the application’s
user base

An application must never be presented with a warning that the certifi-
cated was signed by an unknown or untrusted authority. To achieve that,
the administrator has to purchase a certificate from a recognized certificate
authority. Self signed certificates, obviously, must never be used.[33]

Rule: only support strong cryptographic ciphers

TLS can be compromised if a weak cipher is used. The server must only
support strong ciphers and to use sufficiently large key sizes. The following
should be observed[34]:

• Use AES, 3DES for encryption

• Use CBC mode

• Use SHA1 for digest

• MD5 may be used within the TLS protocol

• Do not provide support for NULL ciphersuites

• Do not provide support for anonymous Diffie-Hellman

• Support ephemeral Diffie-Hellman key exchange

105

CHAPTER 10. INSUFFICIENT TRANSPORT LAYER PROTECTION

Rule: only support strong protocols

Some weaknesses have been identified with older SSL protocols. The best
practice is only provide support for the TLS protocols.[35]

Rule: use strong keys and protect them

The private key used must be strong enough for the anticipated life time of
the private key and the corresponding certificate. The current best practice
is to select a key size of at least 2048. The private key must be stored in a
location that is protected from an unauthorized access.[36]

10.4 Conclusion

We could see that using TLS, although is not web developer’s work, but server
administrator, is really important to assure the communication between the
client and the server, and to authenticate this one. This way, we can trust
the communication, making it private and, therefore, nobody is able to read
the information exchanged.

But using TLS is not enough, because TLS strength is its cipher strength, and
it is necessary to choose strong ciphers. Additionally, there are some other
issues that can make the connection insecure and the server administrator
has to take care about all of them.

Finally, we have to say that it is appropriate to purchase a digital certificate
from a recognized certificate authority, so users will not see in their browsers
any alert message.

106

Chapter 11

Conclusion

We could see that web security is a really important area inside computing.
An unique issue can compromise not only the website, allowing attackers to
take advantage of the website, buying products cheaper, for example, but also
users personal data, that is really serious and in some countries is punished
by the law.

To write this report, we needed a lot of work, several researches along the
Web, because books about web security are obsolete at the time that they go
on sale, so we could not consult any book. First, we had to search what are
the main issues in web security, to define report’s objectives. That was not
easy due to there are different opinions, but luckily we found the OWASP,
that every three years develops a list of the most common issues along the
web.

Then, for each objective, we had to research how it works in order to under-
stand it and to test the issue in the website. That was a hard part, because
the examples found were simple and we could not try them on the website,
so we had to make up other new ways to attack the website. Once it was
done, we had to implement optimal solutions in the website and, finally, to
write the corresponding part in the report, illustrating it properly.

We defined seven objectives in chapter 3, that each one corresponds to a web
security issue, and we had to study all of them and solve them in the website.
We can say that we achieved these objectives, because we studied and solved
all of them.

We can also say that we achieved the report main objective, that was, as we
say in the introduction (chapter 1), to make secure an already built online

107

CHAPTER 11. CONCLUSION

shop against the main weaknesses of the web, so the family member who
wants to open the shop is sure that the website will avoid the main issues.
We described and implemented features that avoid those issues. We can say
that the online shop is now safe agains the main attacks.

This report can be useful for the future, to new web developers that ignore
security issues in the Web, because it describes the main issues and how to
solve them. It can also be useful to compare, from here a few years, how web
weaknesses evolve, how new issues appear and how current issues disappear
or reduce their impact.

Issues explained here are not usually taught at university although they are
really important, therefore we feel really good about having learnt it. It has
been a grateful work and really, really useful.

108

Appendix A

Source code

A.1 Source code to check password strength

and password verification

$ (document) . ready (func t i on ()
{

var strPassword ;
var strPassword2 ;
var charPassword ;
var charPassword2 ;
var complexity = $ (”#complexity ”) ;
var comparation = $ (”#comparation ”) ;
var minPasswordLength = 8 ;
var baseScore = 0 , s co r e = 0 ;

var num = {} ;
num. Excess = 0 ;
num. Upper = 0 ;
num. Numbers = 0 ;
num. Symbols = 0 ;

var bonus = {} ;
bonus . Excess = 3 ;
bonus . Upper = 4 ;
bonus . Numbers = 5 ;
bonus . Symbols = 5 ;
bonus . Combo = 0 ;
bonus . FlatLower = 0 ;
bonus . FlatNumber = 0 ;

109

APPENDIX A. SOURCE CODE

outputResult () ;
$ (”#pass1 ”) . bind (”keyup” , checkVal) ;
$ (”#pass2 ”) . bind (”keyup” , checkVal) ;

f unc t i on checkVal ()
{

i n i t () ;

i f (charPassword . l ength >= minPasswordLength)
{

baseScore = 50 ;
ana lyzeS t r ing () ;
ca lcComplexity () ;

}
else
{

baseScore = 0 ;
}

outputResult () ;
}

f unc t i on i n i t ()
{

strPassword= $ (”#pass1 ”) . va l () ;
charPassword = strPassword . s p l i t (””) ;

strPassword2= $ (”#pass2 ”) . va l () ;
charPassword2 = strPassword2 . s p l i t (””) ;

num. Excess = 0 ;
num. Upper = 0 ;
num. Numbers = 0 ;
num. Symbols = 0 ;
bonus . Combo = 0 ;
bonus . FlatLower = 0 ;
bonus . FlatNumber = 0 ;
baseScore = 0 ;
s co r e =0;

}

f unc t i on ana lyz eS t r ing ()
{

for (i =0; i<charPassword . l ength ; i++)
{

110

APPENDIX A. SOURCE CODE

i f (charPassword [i] . match (/ [A−Z] / g)) {num. Upper++;}
i f (charPassword [i] . match (/[0−9]/ g)) {num. Numbers++;}
i f (charPassword [i] . match (/ (. ∗ [! ,@,# ,$,% ,ˆ ,& ,∗ ,? , , ˜]) /))
{num. Symbols++;}

}

num. Excess = charPassword . l ength − minPasswordLength ;

i f (num. Upper && num. Numbers && num. Symbols)
{

bonus . Combo = 25 ;
}

else i f ((num. Upper && num. Numbers) | | (num. Upper &&
num. Symbols) | | (num. Numbers && num. Symbols))

{
bonus . Combo = 15 ;

}

i f (strPassword . match (/ˆ [\ sa−z]+$ /))
{

bonus . FlatLower = −15;
}

i f (strPassword . match (/ˆ [\ s0−9]+$ /))
{

bonus . FlatNumber = −35;
}

}

f unc t i on calcComplexity ()
{

s co r e = baseScore + (num. Excess ∗bonus . Excess) +
(num. Upper∗bonus . Upper) + (num. Numbers∗bonus . Numbers) +
(num. Symbols∗bonus . Symbols) + bonus . Combo +
bonus . FlatLower + bonus . FlatNumber ;

}

f unc t i on outputResult ()
{

i f ($ (”#pass1 ”) . va l ()== ””)
{

complexity . html (” Enter your password”) . removeClass (”weak
st rong s t r onge r s t r o n g e s t ”) . addClass (” d e f a u l t ”) ;

111

APPENDIX A. SOURCE CODE

}
else i f (charPassword . l ength < minPasswordLength)
{

complexity . html (”At l e a s t ” + minPasswordLength+ ”
c h a r a c t e r s ! ”) . removeClass (” s t rong s t r onge r
s t r o n g e s t ”) . addClass (”weak”) ;

}
else i f (score <50)
{

complexity . html (”Weak ! ”) . removeClass (” s t rong s t r onge r
s t r o n g e s t ”) . addClass (”weak”) ;

}
else i f (score >=50 && score <75)
{

complexity . html (”Average ! ”) . removeClass (” s t r onge r
s t r o n g e s t ”) . addClass (” s t rong ”) ;

}
else i f (score >=75 && score <100)
{

complexity . html (” Strong ! ”) . removeClass (” s t r o n g e s t ”
) . addClass (” s t r onge r ”) ;

}
else i f (score >=100)
{

complexity . html (” Secure ! ”) . addClass (” s t r o n g e s t ”) ;
}

i f ($ (”#pass2 ”) . va l ()== ””)
{

comparation . html (”Confirm the password”) . removeClass (”weak
st rong s t r onge r s t r o n g e s t ”) . addClass (” d e f a u l t ”) ;

} else {
i f ($ (”#pass1 ”) . va l () != $ (”#pass2 ”) . va l ())
{

comparation . html (”Password d i f f e r e n t ”) . removeClass (”weak
st rong s t r onge r s t r o n g e s t ”) . addClass (”weak”) ;

}
i f ($ (”#pass1 ”) . va l () == $ (”#pass2 ”) . va l ()) {

comparation . html (”Passwords match”) . removeClass (”weak
st rong s t r onge r s t r o n g e s t ”) . addClass (” s t r o n g e s t ”) ;

}
}

}
}
) ;

112

APPENDIX A. SOURCE CODE

A.2 Password recovery source code

<?
// index . php
include (” header . php”) ;
cabecera (”Password recovery − Foo shop”) ;
super ior menu () ;
?>
<l ink type=” text / c s s ” h r e f=”password/ c s s / s t y l e . c s s ”

r e l=” s t y l e s h e e t ” />
<s c r i p t type=” text / j a v a s c r i p t ”

s r c=”password/ j s / jquery . j s ”></s c r i p t >
<s c r i p t type=” text / j a v a s c r i p t ”

s r c=”password/ j s /mocha . j s ”></s c r i p t >

<s c r i p t type=’ t ext / j a v a s c r i p t ’>

f unc t i on formVal idator () {

var pass1 = document . getElementById (’ pass1 ’) ;
var pass2 = document . getElementById (’ pass2 ’) ;

i f (i sEqua l (pass1 , pass2 , ”Passwords must be equal ! ”)) {
i f (notEmpty (pass1 , ”You must wr i t e a password ! ”)) {
i f (i sPa s s (pass1 , ”Password must have at l e a s t 8

c h a r a c t e r s ! ”)) {
re turn true ;

}
}
}
re turn fa l se ;

}

f unc t i on notEmpty (elem , helperMsg) {
i f (elem . va lue . l ength == 0) {

a l e r t (helperMsg) ;
r e turn fa l se ;

}
re turn true ;

}

f unc t i on i sEqua l (elem1 , elem2 , helperMsg) {

113

APPENDIX A. SOURCE CODE

i f (elem1 . va lue == elem2 . va lue) {
re turn true ;

}
else {

a l e r t (helperMsg) ;
r e turn fa l se ;

}
}

f unc t i on i sPa s s (elem , helperMsg) {
i f (elem . va lue . l ength >= 8) {

re turn true ;
}
else {

a l e r t (helperMsg) ;
r e turn fa l se ;

}
}
</s c r i p t >
<?

echo ”<center>
<HR width=100% a l i g n =’ cente r ’>” ;

switch ($ GET [” step ”]) {
case 1 :

i f ($ SESSION [” l o g i n ”] == 1) {
echo ”
<h2>You have a l r eady logged in in to your

account .</h2>
<p>You ’ l l be r e d i r e c t e d to your pe r sona l menu in 5

seconds</p>” ;
echo ”<meta http−equiv =’ Refresh ’ content = ’5;URL=user . php ’

/>” ;

} else {
i f (i s set ($ POST [”Submit”])) {

$db = new AuxDB() ;
$db−>connect () ;

$ s q l = ”SELECT ID from CLIENT where EMAIL = ?” ;
$params [] = array ($ POST [” mail ”] , PDO: :PARAM STR) ;

$ r s t = $db−>executeSQLs ($sq l , $params) ;
i f ($db−>numRows($ r s t) > 0) {

$row = $db−>nextRow ($ r s t) ;

114

APPENDIX A. SOURCE CODE

$ id = $row [”ID”] ;
$ s id = genToken (32 , true) ;

//Send an emai l wi th the address :
password recovery . php? s t ep=2&id=$ id&s i d=$ s i d

$db−>f r e eRe sour c e s ($ r s t) ;
unset ($params) ;

$ s q l = ”INSERT INTO PASS RECOVERY(ID , SID , CODE)
VALUES (? , ? , ?) ” ;

$params [] = array ($id , PDO: : PARAM INT) ;
$params [] = array ($s id , PDO: :PARAM STR) ;
$params [] = array (nu l l , PDO: :PARAM STR) ;

$ r s t = $db−>executeSQLs ($sq l , $params) ;
} else {

echo ”<h2>An e r r o r ocurred !</h2>” ;
}

} else {
echo ”<h2>Password recovery :</h2>
<form method=’ post ’

a c t i on =’ password recovery . php? step=1’>
<p>Email :
<input name=’ mail ’ type=’ t ext ’ id =’mail ’ maxlength = ’40 ’

s i z e = ’40 ’ />
</p>
<p>An emai l w i l l be sent to your emai l address . Follow

i t s i n s t r u c t i o n s to r e s t o r e your password</p>

<p><input c l a s s =’boton ’ type=’Submit ’ name=’Submit ’
va lue =’Accept ’ /></p>

</form>” ;
}

}
break ;

case 2 :
i f (i s set ($ GET [” id ”]) && i s set ($ GET [” s i d ”])) {

i f (i s set ($ POST [”Submit”])) {
$user = new Cl i en t () ;
$user−>l e e r ($ GET [” id ”]) ;

i f (strcasecmp ($ POST [”answer”] , $user−>getAnswer ()) ==

115

APPENDIX A. SOURCE CODE

0) {
echo ”<h2>Correct answer !</h2>” ;

$code = genToken (8 , fa l se) ;
//Send an emai l wi th the address :

password recovery . php? s t ep=3&s i d=” . $ GET[” s i d ”]

$db = new AuxDB() ;
$db−>connect () ;

$ s q l = ”UPDATE PASS RECOVERY SET CODE = ? WHERE SID =
?” ;

$params [] = array ($code , PDO: :PARAM STR) ;
$params [] = array ($ GET [” s i d ”] , PDO: :PARAM STR) ;

$ r s t = $db−>executeSQLs ($sq l , $params) ;

} else {
echo ”<h2>Wrong answer !</h2>” ;

}
} else {

$db = new AuxDB() ;
$db−>connect () ;

$ s q l = ”SELECT ∗ from PASS RECOVERY where ID = ? and
SID = ?” ;

$params [] = array ($ GET [” id ”] , PDO: : PARAM INT) ;
$params [] = array ($ GET [” s i d ”] , PDO: :PARAM STR) ;

$ r s t = $db−>executeSQLs ($sq l , $params) ;
i f ($db−>numRows($ r s t) > 0) {

$row = $db−>nextRow ($ r s t) ;

$user = new Cl i en t () ;
$user−>l e e r ($row [’ ID ’]) ;

echo ”<h2>Password recovery :</h2>
<p>Secur i ty ques t i on :</p>
<p>” . $user−>getQuest ion () . ”</p>
<form method=’ post ’

a c t i on =’ password recovery . php? step=2&id=” .
$ GET [” id ”] . ”&s i d=” . $ GET [” s i d ”] . ” ’>

<p>Answer :
<input name=’answer ’ type=’ t ext ’ id =’answer ’ />
</p>

116

APPENDIX A. SOURCE CODE

<p><input type=’Submit ’ name=’Submit ’ va lue =’Accept ’
/></p>” ;

} else {
echo ”<h2>An e r r o r ocurred !</h2>” ;

}
}

} else {
echo ”<h2>An e r r o r ocurred !</h2>” ;

}
break ;

case 3 :
i f (i s set ($ GET [” s i d ”])) {

i f (i s set ($ POST [”Submit”])) {
$db = new AuxDB() ;
$db−>connect () ;

$ s q l = ”SELECT CODE, ID from PASS RECOVERY where SID =
?” ;

$params [] = array ($ GET [” s i d ”] , PDO: :PARAM STR) ;

$ r s t = $db−>executeSQLs ($sq l , $params) ;
i f ($db−>numRows($ r s t) > 0) {

$row = $db−>nextRow ($ r s t) ;

i f (strcmp ($row [”CODE”] , $ POST [” code ”]) == 0) {
$ c l i e n t = new Cl i en t () ;
$ c l i e n t−>l e e r ($row [”ID”]) ;

$ c l i e n t−>se tPass ($ POST [” pass1 ”]) ;
$ c l i e n t−>modify () ;

echo ”<h2>Password changed !</h2>” ;
} else {

echo ”<h2>An e r r o r ocurred1 !</h2>” ;
}

} else {
echo ”<h2>An e r r o r ocurred2 !</h2>” ;

}
} else {

echo ”<h2>Password recovery :</h2>
<p>I n s e r t the code that you r e c e i v e d and the new

password :</p>
<form method=’ post ’ onsubmit=’ re turn formVal idator () ’

117

APPENDIX A. SOURCE CODE

ac t i on =’ password recovery . php? step=3&s i d=” .
$ GET [” s i d ”] . ” ’>

<p>Code : <input name=’code ’ id =’code ’ /></p>

<div c l a s s =’ b lock ’>
<input name=’ pass1 ’ type=’password ’ id =’ pass1 ’ />
<div id =’ complexity ’ c l a s s =’ d e f a u l t ’>Enter a random

value</div>
</div>
<div c l a s s =’ b lock ’>

<input name=’ pass2 ’ type=’password ’ id =’ pass2 ’ />
<div id =’comparation ’ c l a s s =’ d e f a u l t ’>Enter a random

value</div>
</div>

<p><input type=’Submit ’ name=’Submit ’ va lue =’Accept ’
/></p>” ;

}
} else {

echo ”<h2>An e r r o r ocurred !</h2>” ;
}
break ;

default :
echo ”<h2>An e r r o r ocurred !</h2>” ;
break ;

}

echo ”</center>” ;

include (” f o o t e r . php”) ;
?>

118

Bibliography

[1] OpenOffice.org site: http://www.openoffice.org

[2] TexShop site: http://pages.uoregon.edu/koch/texshop/

[3] OmniGraffle Professional site: http://www.omnigroup.com/products/
omnigraffle

[4] Apache web server site: http://www.apache.org

[5] w3schools HTML site: http://www.w3schools.com/html/default.

asp

[6] PHP site: http://www.php.net

[7] MySQL site: http://www.mysql.com

[8] phpMyAdmin site: http://www.phpmyadmin.net

[9] w3schools Javascript site: http://www.w3schools.com/js/default.

asp

[10] w3schools AJAX site: http://www.w3schools.com/ajax/default.

asp

[11] Kate site: http://kate-editor.org

[12] TextMate site: http://macromates.com

[13] Safari site: http://www.apple.com/safari

[14] Mozilla Firefox site: http://www.mozilla-europe.org

119

http://www.openoffice.org
http://pages.uoregon.edu/koch/texshop/
http://www.omnigroup.com/products/omnigraffle
http://www.omnigroup.com/products/omnigraffle
http://www.apache.org
http://www.w3schools.com/html/default.asp
http://www.w3schools.com/html/default.asp
http://www.php.net
http://www.mysql.com
http://www.phpmyadmin.net
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/ajax/default.asp
http://www.w3schools.com/ajax/default.asp
http://kate-editor.org
http://macromates.com
http://www.apple.com/safari
http://www.mozilla-europe.org

BIBLIOGRAPHY

[15] Opera site: http://www.opera.com

[16] The OWASP 2010 top ten: https://www.owasp.org/index.php/Top_
10_2010-Main

[17] OWASP: SQL injection prevention cheat sheet:

https://www.owasp.org/index.php/SQL_Injection_Prevention_

Cheat_Sheet#Defense_Option_1:_Prepared_Statements_

.28Parameterized_Queries.29

[18] OWASP: XSS prevention rules: https://www.owasp.org/index.

php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_

Prevention_Rules

[19] OWASP: password length recommendation: https://www.owasp.org/
index.php/Authentication_Cheat_Sheet#Password_Length

[20] OWASP: password complexity: https://www.owasp.org/index.php/

Authentication_Cheat_Sheet#Password_complexity

[21] NetTus+: Build a simple password strength checker:

http://net.tutsplus.com/tutorials/javascript-ajax/

build-a-simple-password-strength-checker/

[22] jQuery site: http://jquery.com/

[23] itnewb: Generating session IDs and random passwords with PHP:

http://www.itnewb.com/v/Generating-Session-IDs-and-Random-Passwords-with-PHP

[24] OWASP: Transport Layer Cheat Sheet:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet

[25] OWASP: Use TLS for all login pages and all authenticated pages:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_

Authenticated_Pages

120

http://www.opera.com
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/Top_10_2010-Main
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Defense_Option_1:_Prepared_Statements_.28Parameterized_Queries.29
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet#XSS_Prevention_Rules
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Length
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_Length
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_complexity
https://www.owasp.org/index.php/Authentication_Cheat_Sheet#Password_complexity
http://net.tutsplus.com/tutorials/javascript-ajax/build-a-simple-password-strength-checker/
http://net.tutsplus.com/tutorials/javascript-ajax/build-a-simple-password-strength-checker/
http://jquery.com/
http://www.itnewb.com/v/Generating-Session-IDs-and-Random-Passwords-with-PHP
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_Authenticated_Pages
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_Authenticated_Pages
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_for_All_Login_Pages_and_All_Authenticated_Pages

BIBLIOGRAPHY

[26] OWASP: Use TLS on any networks transmitting sensitive data:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Use_TLS_on_Any_Networks_.28External_and_

Internal.29_Transmitting_Sensitive_Data

[27] OWASP: do not provide non-TLS pages for secure content:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Do_Not_Provide_Non-TLS_Pages_for_Secure_

Content

[28] OWASP: do not perfrom redirects from non-TLS pages to TLS login
page:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Do_Not_Perform_Redirects_from_Non-TLS_

Page_to_TLS_Login_Page

[29] OWASP: do not mix TLS and non-TLS content:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Do_Not_Mix_TLS_and_Non-TLS_Content

[30] OWASP: use secure Cookie Flag:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Use_.22Secure.22_Cookie_Flag

[31] OWASP: keep sensitive data out of the URL:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Keep_Sensitive_Data_Out_of_the_URL

[32] OWASP: prevent caching of sensitive data:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Prevent_Caching_of_Sensitive_Data

[33] OWASP: use an appropriate certificate authority for the application’s
user base:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Use_an_Appropriate_Certificate_

Authority_for_the_Application.27s_User_Base

121

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_on_Any_Networks_.28External_and_Internal.29_Transmitting_Sensitive_Data
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_on_Any_Networks_.28External_and_Internal.29_Transmitting_Sensitive_Data
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_TLS_on_Any_Networks_.28External_and_Internal.29_Transmitting_Sensitive_Data
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Provide_Non-TLS_Pages_for_Secure_Content
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Provide_Non-TLS_Pages_for_Secure_Content
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Provide_Non-TLS_Pages_for_Secure_Content
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Perform_Redirects_from_Non-TLS_Page_to_TLS_Login_Page
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Perform_Redirects_from_Non-TLS_Page_to_TLS_Login_Page
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Perform_Redirects_from_Non-TLS_Page_to_TLS_Login_Page
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Mix_TLS_and_Non-TLS_Content
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Do_Not_Mix_TLS_and_Non-TLS_Content
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_.22Secure.22_Cookie_Flag
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_.22Secure.22_Cookie_Flag
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Keep_Sensitive_Data_Out_of_the_URL
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Keep_Sensitive_Data_Out_of_the_URL
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Prevent_Caching_of_Sensitive_Data
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Prevent_Caching_of_Sensitive_Data
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_an_Appropriate_Certificate_Authority_for_the_Application.27s_User_Base
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_an_Appropriate_Certificate_Authority_for_the_Application.27s_User_Base
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_an_Appropriate_Certificate_Authority_for_the_Application.27s_User_Base

BIBLIOGRAPHY

[34] OWASP: only support strong cryptographic ciphers:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Only_Support_Strong_Cryptographic_

Ciphers

[35] OWASP: only support strong protocols:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Only_Support_Strong_Protocols

[36] OWASP: use strong keys and protect them:

https://www.owasp.org/index.php/Transport_Layer_Protection_

Cheat_Sheet#Rule_-_Use_Strong_Keys_.26_Protect_Them

122

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Only_Support_Strong_Cryptographic_Ciphers
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Only_Support_Strong_Cryptographic_Ciphers
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Only_Support_Strong_Cryptographic_Ciphers
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Only_Support_Strong_Protocols
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Only_Support_Strong_Protocols
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_Strong_Keys_.26_Protect_Them
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet#Rule_-_Use_Strong_Keys_.26_Protect_Them

List of Figures

2.1 Front-end use case diagram 13

2.2 Back-end use case diagram . 15

2.3 Database entity-relationship diagram 17

2.4 Database logical diagram . 21

2.5 Class diagram of the website 26

4.1 Website login page . 31

4.2 Example 1: data introduced 33

4.3 Example 1: login succesful . 34

4.4 Example 2: data introduced 36

4.5 Example 2: login succesful . 37

4.6 Example 3: data introduced 38

4.7 Rejected attack . 40

4.8 Checking wrong email address 43

5.1 Prepayment page . 51

5.2 View order page . 52

5.3 Admin login page . 53

5.4 Attack on prepayment . 55

5.5 Fake admin login page . 56

123

LIST OF FIGURES

5.6 Failed attack . 58

6.1 Registering succesful with a wrong passowrd 65

6.2 Registering using an insecure password 66

6.3 Wrong error message: it gives information about IDs in the
database . 68

6.4 Wrong error message: it gives information about emails in the
database . 68

6.5 Password verification: correct password and confirmated . . . 70

6.6 Password verification: correct password but not confirmated . 71

6.7 Password verification: password not confirmated 74

6.8 Password verification: password empty 74

6.9 Password verification: password too short 75

6.10 Registering process: security question and answer added . . . 76

6.11 Password recovery: asking the email 77

6.12 Generic error message showed when an error ocurred 77

6.13 Password recovery: asking the secret question 78

6.14 Password recovery: asking the code and the new password . . 79

6.15 Password recovery: password successfully changed 79

6.16 Generic error message showed when ID or email exists in the
database . 80

6.17 Blocked account . 82

6.18 Blocked account after 3 attempts 82

6.19 Session timeout . 86

7.1 Insecure reference: an empty record is fetched 88

7.2 Insecure reference when trying to access to an inexistent ref-
erence . 89

8.1 Message displayed when the token is not verified 96

124

LIST OF FIGURES

9.1 Access to a forbidden page without authenticate 98

9.2 Error message when trying to access to a forbidden page with-
out authenticate . 101

125

List of Tables

3.1 Objectives table . 28

126

Listings

4.1 Login check source code . 30

4.2 Login check query source code 32

4.3 Normal query . 32

4.4 Case 1: attack knowing an email address 32

4.5 Case 1: executed query . 35

4.6 Case 2: attack unknowing any data 35

4.7 Case 3: hypothetical attack deleting data 38

4.8 Rejected attack . 39

4.9 Prepared statements source code 40

4.10 Escape user input source code 41

4.11 Limit input data source code 42

4.12 Check input data source code 43

5.1 Rule #1 generic examples . 47

5.2 Rule #2 generic examples . 48

5.3 Rule #3 generic examples . 48

5.4 Rule #4 generic examples . 49

5.5 Rule #5 generic example . 49

5.6 Rule #0 generic examples . 50

5.7 Inserted malicious comment 53

5.8 Fake login page source code 54

127

LISTINGS

5.9 Solution adopted . 57

6.1 User verification and error messages 67

6.2 Password verification . 73

6.3 Password verification . 80

6.4 Session ID generator . 83

6.5 Session timeout start . 84

6.6 Session timeout checking . 84

6.7 Session timeout template . 85

7.1 Session timeout template . 89

8.1 modify user.php template source code 92

8.2 Malicious script source code 93

8.3 Line to add to user login.php 93

8.4 modify user.php template source code with the issue solved . . 94

9.1 Login admin user template source code 99

9.2 All admin pages template source code 100

128

palabra

	Introduction
	Motivation
	Report's structure

	Website's description
	Description
	Software and programming languages used
	Technical description
	Front-end
	Back-end

	Database
	Entity-relationship diagram
	Logical diagram

	Class diagram

	Objectives
	SQL injection
	Description
	Example
	Issue solution
	Prepared statements
	Escape user input
	Additional defenses

	Conclusion

	XSS (Cross Site Scripting)
	Description
	Rule #1: HTML escaping before inserting untrusted data into HTML context
	Rule #2: Attribute escape before inserting untrusted data into HTML common attributes
	Rule #3: Javascript escape before inserting untrusted data into HTML Javascript data values
	Rule #4: CSS escape before inserting untrusted data into HTML style property values
	Rule #5: URL escape before inserting untrusted data into HTML URL parameter values
	Rule #0: never insert untrusted data except in allowed locations

	Example
	Solution
	Conclusion

	Broken authentication and session management
	Description
	Authentication
	Session management

	Examples
	Password strength
	Authentication responses

	Issues solution
	Password strength
	Password recovery
	Authentication responses
	Account lockout
	Ensure session ID's
	Timeout

	Conclusion

	Insecure direct object references
	Description
	Example
	Issue solution
	Conclusion

	CSRF (Cross-site request forgery)
	Description
	Example
	Solution
	Conclusion

	Failure to restrict URL access
	Description
	Example
	Solution
	Conclusion

	Insufficient transport layer protection
	Description
	Secure server design
	Server certificate and protocol configuration
	Conclusion

	Conclusion
	Source code
	Source code to check password strength and password verification
	Password recovery source code

	Bibliography
	List of figures
	List of tables
	List of listings

