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Abstract

O¤shore platforms are supplied using a �eet of vessels originating from one depot

which serves the installations in a region. The installations need to be supplied

several di¤erent kinds of commodities, i.e. various �uids like water, drilling-liquids

and fuel stored in tanks below deck in addition to other goods stored in containers

etc. up on deck. Pickup and delivery demands for installations not beeing met

may lead to delayed or halted operations on the installation. This is very costly

and makes it important to plan routes for supply vessels so that they are used as

e¢ ciently as possible.

We consider a Single Vehicle Pickup and Delivery Problem with Multiple Com-

modities and extends this further to include Visit Windows and Route Duration

constraints. The objective is to �nd a least cost route for a single vessel starting

and ending at the supply base, visiting all platforms that have delivery and pickup

demands for multiple commodities, while at the same time the vessel capacity

must not be exceeded at any time for any of the commodities. In addition, for the

second problem, some platforms can only be serviced during daytime and the tour

duration must not exceed its maximum limit. This thesis describes mathematical

models and heuristics capable of solving these problems. Computational results

show that when the full capacity of the vessel is utilized, it is suboptimal to impose

a Hamiltonian shape on the solution and is preferable to perform the delivery and

pickup operations separately. Moreover, visiting customers twice may be dictated

by feasibility considerations.
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1 Introduction

In this thesis we consider routing problems arising in the supply of offshore drilling-
platforms off the Norwegian coast using supply vessels. Offshore platforms are supplied
using a �eet of vessels originating from one offshore base which serves the installations
in a region. The installations need to be supplied several different kinds of commodi-
ties, i.e. various �uids like water, drilling-liquids and fuel stored in tanks below deck.
Commodities stored in tanks can also be dry, like cement and bentonite. Additional
goods is stored in containers etc. up on deck. For an installation the consequences of
not getting supplies and not getting rid of waste, empty containers and rented equipment
may lead to delays and even full stop of operations. A stop of operations at a platform
is not acceptable. Therefore it is important to plan routes for supply vessels so that they
are used as ef�ciently as possible.
Planning routes where various commodities are involved can be a tedious process.

Each of the platforms will have pickup and delivery demand. The vessel leaves the
offshore base, the depot, with commodities to deliver at the platforms. Platforms do
also have commodities that should be picked up by the vessel and transported back to
the depot. This will have to be done without exceeding the capacity for each commodity.
Some platforms are also closed at night so routes should be planned with this in mind.
A vessel that arrives too early will have to wait until the platform is open for service. If
a vessel arrives too late to complete the service before the platform closes for the night,
the vessel will have to wait until the next morning. This is not a good option, though,
so the risk of this happening should also be considered when planning a route. The tour
must be completed within a speci�ed time limit, which also increases the dif�culty of
�nding a good route for the vessel. These extensions to the Vehicle Routing Problem
makes the use of a second visit to a platform come in handy. This way, if there is not
enough capacity to do both deliveries and pickups at the same time, the deliveries can
be made at the �rst visit, increasing the available capacity. At a later time, this platform
is visited again to pick up the commodities that could not be picked up at the �rst visit.
Two problems are considered in the thesis. The �rst is an expansion of the Ca-

pacitated Vehicle Routing Problem with the addition of multiple commodities, mixed
pickup and delivery and limited to only one vehicle, more speci�cally, a supply vessel.
In other words our core problem for this thesis is the One-to-many-to-one Multi Com-
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modity Single Vehicle Pickup and Delivery Problem. One-to-many-to-one means that
the vessel leaves an offshore base, visits all the platforms and performs services and
then returns to the offshore base from where it started.
In the second problem Visit Windows and Route Duration are added. For both prob-

lems, two visits are allowed.
In this thesis we formulate mathematical models for these problems and a meta-

heuristic capable of generating solutions for large instances. The metaheuristic is a
Tabu Search algorithm. Analyses are made to examine the robustness and accuracy of
the Tabu Search algorithm. We also examine the effects on route shapes by increasing
the utilization of the cargo capacity.
The rest of the thesis is built the following way: In Chapter 2 the theory background

is discussed. Chapter 3 contains the problem description. In Chapter 4 the formulations
for the mathematical models are presented. Tabu Search is described in Chapter 5. In
Chapter 6 the computational experiments are analyzed. Chapter 7 gives conclusions
reached and further suggestions for research.
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2 Theory Background

This chapter begins with a description of the Vehicle Routing Problem (VRP) followed
by extensions to VRP. Then solution methods are presented. Finally the relevant litera-
ture review is discussed.

2.1 Vehicle Routing Problem

Toth and Vigo (2002) described the Vehicle Routing Problem as follows. All customers
correspond to deliveries and the demands are deterministic, known in advance, and may
not be split. The vehicles are identical and based at a single central depot, and only the
capacity restrictions for the vehicles are imposed. The objective is to minimize the total
cost (i.e., a weighted function of the number of routes and their length or travel time) to
serve all the customers.

2.2 Extensions to VRP

Below are short descriptions of some extensions to VRP:

� Various sized vehicles

When dealing with a problem where some customers are close to the depot, a
vehicle with less capacity than other vehicles can be used. The "normal-sized"
vehicles can then visit the customers further away. This would give better utiliza-
tion of vehicles, than if a large vehicle is used to deliver goods that would only
require half the capacity of the vehicle.

� Multiple depots

The customer can be served from several depots. Each depot has a set of available
vehicles and each vehicle starts and �nishes at the same depot. The location and
demand of each customer is known in advance.

� Fleet size

This problem consists of determining how many vehicles are needed to serve all
customers at a lowest possible cost. The vehicles have predetermined capacity
and the number of available vehicles may be set in advance.
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� Time windows

In general a time window denotes a time-interval in which the servicing of a
customer must be performed. Variations in the implementation of time windows
might allow starting before or after a time window, but then with an additional
cost.

� Single time window

The customers have one speci�c time interval for when they can be serviced.

�Multiple time windows

Customers may have several time intervals for when they can be serviced.
A vehicle arriving between two time windows must wait until the beginning
of the next time window. This extension has primarily been examined for
the multi-period VRP. Each customer must be visited a speci�ed number of
times within the planning horizon.

� Soft time window

When the problem includes soft time windows, the vehicle is allowed to start
service a customer before or after the time window, but the vehicle incurs
additional costs by doing so.

�Hard time window

When the time window is "hard", the vehicle must start and stop the servic-
ing within the start and the end of the time window.

� Maximum tour duration

A vehicle must complete its tour before a speci�ed time limit.

� Multiple commodities

The customer needs different types of commodities to be delivered and/or picked
up. The commodities can share a common compartment or there are separate
compartments for each commodity on the vehicle.

� Pickup

A customer needs to dispose of some commodities in addition to receiving deliv-
eries. At least two types of problems use this extension:
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- VRP with Backhauls, where the deliveries for ALL customers must be com-
pleted, then the vehicle picks up commodities on its way back to the depot;

- the Pickup and Delivery problem, where the pickup can be performed in any
order, as long as the delivery is done earlier or simultaneously as the pickup.

2.3 Solution Methods

Many methods have been used to solve vehicle routing problems. These include exact
solution methods, approximation methods and heuristics. In the later years the focus
has been on metaheuristics.
The exact methods will explore every possible solution for an instance of a problem.

This may take a long time, but eventually the optimal solution will be found, if there is
any. For large instances this method is not suitable, as it takes too long to explore all
solutions.
Approximation methods �nd solutions within a a lower and upper bound that must

be known in advance. Assuming a minimization problem, an upper bound can be found
by applying a heuristic that gives a feasible solution. The lower bound can be found
by relaxing the problem. Relaxation can be achieved by increasing the set of feasible
solutions. Approximation methods need proof that the algorithm returns a value within
the bound.
Heuristics are applied when solving time consuming problems, like large TSP or

VRP instances. For small problem instances an exact solution method would be suf�-
cient. Heuristics are categorized as either classical or modern. The classical heuristics
stop when a local optimum is reached, whereas the modern heuristics can escape local
optima by using various techniques. A local optimum is when you from one solution is
not able to reach a solution with a better cost. Local Search behaves this way; It is an
iterative search procedure that starts from an initial feasible solution and then improves
the solution slightly every iteration by performing moves. When no more improvements
can be done, we say that the search has reached a local optimum. One technique to over-
come this might be to start the search procedure from different initial solutions when
a local optimum is reached, hoping that the search will converge to different local op-
tima. Then the best is chosen among the different solutions. Another approach might
be to enter infeasible space in order to reach otherwise unreachable solutions. Penal-
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ties are then incurred to the infeasible solutions so the feasible solutions will be more
favourable, Cordeau, Laporte and Mercier (2001). Other examples of classical heuris-
tics are the Savings Heuristic, Clarke and Wright (1964), and the Sweep Algorithm,
Gillett and Miller (1974).
Metaheuristics are usually based on things that happen in real life, such as Simulated

Annealing (thermodynamic processes), Kirkpatrick, Gelatt and Vecchi (1983), and Ant
Colony Optimization (i.e. paths are marked as bad if the ants going a speci�c path
do not return), Dorigo (1992). Tabu Search tries to simulate intelligent processes by
implementing memory structures. Tabu Search is a common algorithm for solving VRP.
Tabu Search was introduced by Fred Glover in 1986, as described in Gendreau (2003),
and was simply a guided Local Search heuristic with short term memory in the form
of tabu lists used to �nd neighboring solutions and decide what is the next move. Tabu
Search is an improvement heuristic and requires an initial solution for which to apply
the local search.
One thing that differs between heuristics and exact solution methods is that a heuris-

tic has no guarantee of �nding any solutions. In practice, however, a well implemented
heuristic is capable of �nding optimal and near-optimal solutions in a relatively short
time.
Figure 1 shows a local optimum. The graph represents the solutions in the search

space and the arrow indicates the local optimum. Assuming a minimization problem,
the good solutions are close to the bottom of this graph. A classical heuristic will not
�nd the global optimum, which can be found at the right end of the �gure, close to the
bottom.

Figure 1: A local optimum in the solution space

10



2.4 Literature Review

Classical Vehicle Routing Problem, VRP, is a well known and commonly studied com-
binatorial problem that has many variations. VRP in itself is an NP-Hard problem,
but with a small expansion to include i.e. Time Windows it becomes an NP-complete
problem.
During the last few decades there have been written many articles for solving gen-

eral VRP problems and variations thereof like VRPTW. One example is Desaulniers,
Desrosiers and Solomon (2005). Their solution only allows one visit to every customer,
only considers one commodity and uses a �eet of vehicles. They explore different strate-
gies and variations including multiple time windows and soft time windows.
One article considering multiple-commodities is Choo, Poh and Wong (2005). The

problem described involved multiple sources, discrete time periods, a �eet of vehicles
and it aims to minimize the total number of discrete periods needed to complete an
entire operation.
Cordeau et al. (2000) discuss a multi-commodity network �ow formulation with

time and capacity constraints for the VRPTW: How to derive upper and lower bounds
using different approaches and describe how to adapt those methods to other variants of
the problem like the Multiple TSP with Time Windows and VRP with Backhauls and
Time Windows. For the latter problem it is assumed that all deliveries must be made
before pickups, and they state that; 'more complex algorithms are however necessary
when the pickup and delivery requests can be performed in any order'.
Lu, Dessouky (2006) suggest an insertion-based construction heuristic that evalu-

ates the insertion cost based on the changes in the time window slack. This model is
limited by a constraint stating that the customers pickup request must be served before
its delivery request.
A metaheuristic for the time windowed vehicle routing problem is suggested in Chi-

ang, Russel (2004), but the problem described contains multiple vehicles and is limited
to one visit per customer.
Montané, Galvão (2006) presents an algorithm to solve the one-to-many-to-one

VRP_SPD. Chen, Wu (2005) presents a similar algorithm.
A Vehicle Routing Problem with multiple interdependent time windows is explored

in Doerner et al. (2008) where exact and heuristic algorithms for their problem are pre-
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sented. Their problem concerns pickup of goods, in this case blood, that has a time-limit
for when it needs to be delivered at the depot. Their mixed-integer objective function is
minimizing the total travel distance between all successive stops on all tours, in addition
they have suggested three heuristic solutions and a branch and bound approach to solve
the problem.
For research a bit closer to our problem we have Landrieu, Mati and Binder (2001).

The problem in this article has pickup locations that are visited �rst, then that load is
delivered to a delivery location. Each location is only visited once. Each location has
a time window for which the service must start. The service may end after the end of
the time window if the service time is too long. They use two algorithms: Simple Tabu
Search and Probabilistic Tabu Search and concluded that the Simple Tabu Search was
fastest and most accurate. They state that the single vehicle pickup and delivery problem
with time windows is one of the most dif�cult routing problems to solve, and for larger
problems they had dif�culties ensuring the existence of feasible solutions in less than
one hour.
Mitrović-Minić (1998) did a survey about the Pickup and Delivery Problem with

TimeWindows and various methods to solve them. Multiple vehicles and multiple com-
modities were considered. Examples of problems solved by this problem are dial-a-ride
problems (DARP), handicapped person transportation problems (HTP), courier com-
pany pickup and delivery problems (CCPDP). The First two problems deal with trans-
porting people, while the third problem deals with transporting messages and parcels.
Tam, Tseng (2003) propose a micro-genetic algorithm for solving PDP-TW. They

consider the number of vehicles used, the total traveling cost, the total schedule duration,
and the drivers' total waiting time for the solutions.
Cordeau, Laporte and Mercier (2001) presented a uni�ed tabu search heuristic for

VRPTW and some of its generalizations, Periodic VRPTW, multi-depot VRPTW and
later to the site-dependent VRPTW, Cordeau and Laporte (2001).
In a later article Cordeau, Laporte, Mercier (2004), modify and enhance their pre-

viously mentioned uni�ed tabu search algorithm so that the beginning of service at a
vertex can be postponed without violating time windows. This leads to an increase in
computation time, but yields improved solutions.
Kammarti et al. (2004) presented a hybrid evolutionary approach to solve the single-

vehicle Pickup and Delivery Problem with Time Windows. They allowed only one visit
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to each customer and considered only one commodity.
Gribkovskaia et al. (2007) considered Single Vehicle Pickup and Delivery Rout-

ing Problem and Non-Simultaneous Services where 2 visits are allowed, formulated a
mathematical model and implemented a tabu search algorithm based on Cordeau, La-
porte and Mercier (2001). In Hoff et al. (2007) the multi-vehicle variant of a similar
problem is considered and mathematical formulation with tabu search algorithm is pro-
vided. The tabu search algorithm was able to produce lasso-shaped solutions as well
as general solutions. General solutions were reached by �rst duplicating each customer
then generating a Hamiltonian solution on the extended set of customers. They found
that general solutions outperform other solutions in term of cost, but the computation
can be time consuming.
Zouari and Akselvoll (2007) is the only work we know that investigated on the

same problem as we do, the One-to-Many-to-One Single Vehicle Pickup and Delivery
Problem with Visit Windows. They formulated a mathematical model for solving the
problem for small instances. In this model they used a subcycle elimination constraint
that requires the solution to be manually controlled for subtours. If a subtour is found
the data for the instance has to be manually altered to prevent that subtour. The process
will have to be repeated until no more subtours are found.
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3 Problem Description

In this chapter the problems considered in the thesis are described. Then there are
discussions about splitting pickup between two visits and the bene�ts of two visits.
Finally the purpose of the work is presented.

3.1 Problems De�nitions

The �rst problem considered in the thesis is a variant of the one-to-many-to-one Single
Vehicle Pickup and Delivery Problem. The offshore base supply commodities that the
platforms require. At the same time the platforms have several different commodities
that need to be transported back to the offshore base. The goal of this problem is to
�nd the least cost route to pickup and deliver all the commodities without exceeding the
vessel capacity limits for each commodity. It is also assumed that the vessel starts and
ends the tour in the same offshore base. The vessel is allowed to visit each platform
one or two times. If the platform is visited once, pickups and deliveries are performed
simultaneously. If there are two visits, then in the �rst visit all the deliveries are made
to free some space on the vessel and may do some of pickups, while on the second visit
collections are performed.
In the second problem Visit Windows and Route Duration constraints are added.

Visit Windows (VW) is a variant of Time Windows (TW). These visit windows are
regular time intervals appearing at the same time every day of the week. This results
in more opportunities to service the platform since the trip of a vessel is likely to be
stretched over several days. VW are also stricter when it comes to the servicing. There
are variations to this giving the opportunity to service outside the visit window at an
additional cost, but in this thesis this is not allowed. The duration of the route must not
exceed the maximum allowed duration.

3.2 Bene�ts of Two Visits

There are two bene�ts of allowing two visits at customers. The �rst is that a Hamiltonian
solution may not be feasible. The second is that solutions with two visits may result in
a lower cost.
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Increased Feasibility
When a platform is night closed, it can happen that the visit window is not large

enough to complete both delivery and pickup demands.

Figure 2: Vertex 4 violates visit window

Figure 2 shows a situation where the visit at platform 4 results in a violation of the
visit window. The large vertical lines denotes the start and end of days. In total there are
3 days. The length of the circles represent the time spent for servicing the platform. The
square brackets denote the start and end of the visit window for platform 4. The square
boxes in the beginning and the end denote the offshore base and the circles denote the
platforms. The length of the circles show the service time for the services performed.
The length of the lines between the circles represents the travel time between platforms.
When a platform has a visit window associated with it, the platform is open for service
between 07:00 and 19:00. In Figure 2 the vessel arrives too late to complete the delivery
and pickup services within the visit window.

Figure 3: Vertex 4 is within visit window

By visiting the platform a second time, as shown in Figure 3, the solution becomes
feasible, at the expense of a higher travel cost. The delivery service is performed at the
�rst visit, while the pickup service is performed at the second visit.
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Cost E¢ ciency
In this example four installations and two commodities are considered. Table 1 shows

the capacity qh for each commodity h together with the delivery and pickup demand for
each installation i.

h=1 h=2
i pih dih pih dih
1 2 9 5 3
2 9 4 6 4
3 7 2 1 10
4 1 1 2 5
qh 19 22

Table 1: Vessel capacity and delivery and pickup demand.

0 1 2 3 4
0 626 686 589 591
1 61 118 69
2 156 116
3 52
4

Table 2: Travel time between installations and the depot.

Travel times in minutes between the different installations are shown in Table 2. The
best Hamiltonian solution for this example is 0 - 4 - 1 - 3 - 2 - 0, which has the cost
of 1620 minutes. If two visits are allowed, the route 0 - 3 - 2 - 1 - 4 - 3 - 0 will give a
cost of 1516 minutes. This is a reduction in cost of 104 minutes. This new and better
solution does not have a hamiltonian shape.

3.3 Split of Pickup

During the work on this thesis we have considered a few issues in how simpli�ed the
model and heuristic should be compared to real life. One of these issues are whether or
not to split the pickup of different kinds of commodities over the two visits, that is to
pickup commodity 1 on the �rst visit and commodity two on the second visit, or pickup
both commodities on the second visit if you only have suf�cient capacity to pick up one
of the commodities on the �rst visit.
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Using the travel cost matrix in Table 3 and demand as described below the table this
question is explored:

Travel cost 0 1 2 3 4
0 . 626 686 589 591
1 626 . 61 118 69
2 686 61 . 156 116
3 589 118 156 . 52
4 591 69 116 52 .

Table 3: Travel cost between platforms

Vessel has maximum capacity of 82 units for commodity 1 and 2.
Platforms P1-P4 has the following pickup and delivery demand for commodity C1

and C2 respectively:
P1 has 15 and 27 delivery and 21 and 24 pickup demand.
P2 has 29 and 14 delivery and 13 and 27 pickup demand.
P3 has 25 and 18 delivery and 26 and 18 pickup demand.
P4 has 13 and 23 delivery and 22 and 13 pickup demand.
The vessel starts with 82 units of each commodity, having used all the vessel capac-

ity.

Cust. Commo. D P Sum
0 1 82 0 82
0 2 82 0 82
4 1 69 0 69
4 2 59 0 59
2 1 40 13 53
2 2 45 27 72
1 1 25 34 59
1 2 18 51 69
4 1 25 56 81
4 2 18 64 82
3 1 0 82 82
3 2 0 82 82

Table 4: Optimal route and vessel load.

17



According to CPLEX, route P4 - P2 - P1 - P4 - P3 is the optimal route for this setup.
In Table 4 the optimal route and load of each commodity is shown. The �rst column
shows the number of the platform. The second column shows the type of commodity.
Column 'D' shows the commodities that are left to deliver. Column 'P' shows the
commodities that are picked up along the route. Column 'Sum' shows the total load of
the vessel for each commodity during the tour.
Below is shown what might happen if you do not have space to pick up all types of

commodities, but still decide to pick up those commodities that the vessel can hold:
If at P4 you deliver 13 of C1 and 23 of C2 resulting in 69 of C1 and 59 of C2 on the

vessel with available space for 13 of C1 and 23 of C2.
There is not enough space to pickup everything of C1, but there is space for 13 of

C2 resulting in 69 of C1 and 72 of C2 on the vessel with available space for 13 of C1
and 10 of C2.
At P2, 29 of C1 and 14 of C2 is delivered resulting in 40 of C1 and 58 of C2 on the

vessel with available capacity for 42 of C1 and 24 of C2.
We now see that we do not have enough space to pick up C2 and have to make a

second visit to P2 as well giving us two platforms needing two visits as opposed to only
one in the optimal solution.
As you can see, this decision resulted in us not being able to �nd the optimal route

for this setup. Because of this we have drawn the conclusion that it is better to pick up
all commodities during the same visit. So if there is not enough room for at least one of
the commodities we will not make a pickup of any commodity on that visit.
In regards to travel distance the decision to pick up all commodities during the same

visit will have no negative effect as it will not lead to any extra detours apart from
those already necessary. This also leads to potential fuel-savings and increased speed
from having a lighter load, but Gribkovskaia, Halskau and Aas (2005) argue that the
fuel consumption is almost �xed from the fact that the supply vessels usually cruise at
"economical speed". That we have a �xed fuel consumption is shown by the problems
considered in this thesis consisting of complete non-directed symmetrical graphs.
In regards to time spent loading/unloading we might lose a few minutes from not

being able to fully utilize the crane in loading and unloading at the same time, but since
it is possible to pickup different kinds of commodities simultaneously, like bulk and fuel
in different tubes and containers using the crane, the time lost from not being able to
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make simultaneous pickup and delivery will be negligible. This is due to the fact that
you still have to spend the time to load the commodity you couldn't load on the �rst
visit.
Considering visit windows those few minutes could potentially be "critical" in not

exceeding the limits of the visit window.
As a result of the above arguments, and to simplify the model, we have decided not

to consider those potentially lost minutes from not being able to load and unload at the
same time.
When running problem instances with CPLEX it does happen that the commodities

are picked up at different visits, but as long as it does not result in more second visits it
does not really matter.

3.4 Work Purpose

The goal of this thesis is to describe and implement a Tabu Search heuristic capable of
solving the problems described in Chapter 3.1. Using the work of Zouari and Akselvoll
(2007) we will formulate mathematical models for these two problems. We will use the
results from these models and compare them to the solutions found by our Tabu Search
heuristic to �nd out how well our heuristic performs. The performance and robustness
will also be examined. We will also check if increased capacity for vessels affects the
solutions. Note that only small instances will be tested with the mathematical model
since solving large instances will be too time consuming. We have used the algorithm
from Gribkovskaia et al. (2007) and the work done by Cordeau, Laporte and Mercier
(2001) as guidelines when implementing the algorithm to solve the two problems.

19



4 Mathematical Models

In this chapter the mathematical models used to solve the problems are presented.

4.1 Single-Vehicle Pickup and Delivery Problem withMul-

tiple Commodities

The problem can be formalized as follows: Let G = (V;A) be a complete graph with
vertex set V = f0; :::; ng, where vertex 0 represents the depot and n is the maximum
number of customers. The arc is de�ned as A = f(i; j) : i; j 2 V; i 6= jg. Each arc
(i; j) 2 A has a non-negative length or cost cij (usually equal to the travel time). Let
H = f1; :::; pg be the set of commodities representing types of entities to be transported.
Each vertex, excluding the depot, can have a non-negative delivery and or pickup de-
mand of at least one commodity h. dih is the amount of commodity h to deliver to vertex
i and pih is the amount of commodity h to pickup from vertex i. Only one vessel is used
for the entire tour. Yih shows if both delivery and pickup service is performed simul-
taneously for commodity h at vertex i. Yih is equal to 1 if both services are performed
simultaneously, 0 otherwise. The second visit at a vertex i is represented by a copy i+n.
We set pi+n;h = pih. If the pickup and delivery are performed simultaneously, vertex
i+ n is not visited. The binary variable Zi indicates number of visits for customer i. Zi
is equal to 1 if customer i is visited only once, 0 otherwise. Xij describes the visiting
sequence of customers. Xij is equal to 1 if customer j is visited directly after customer
i, 0 otherwise. qh denotes the capacity of commodity h. The continuous variable Wih

denotes the pickup load of the vessel for commodity h after vertex i has been visited.
The continuous variable Vih denotes the delivery load of the vessel for commodity h
after vertex i has been visited.
In the model presented, variables must be interpreted as zero whenever they are not

de�ned.

Mathematical Formulation
Notation
Sets:
H - Set of commodities
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Parameters
dih - Delivery demand of commodity h for facility i, 8i 2 1; :::; n;8h 2 H
pih - Pickup demand of commodity h for facility i, 8i 2 1; :::; n;8h 2 H
qh - Capacity available for each commodity h on the vessel, 8h 2 H
cij - Extended cost matrix showing travelling cost between facility i and facility j,

8i 2 1; :::; n;8j 2 1; :::; n
Variables
Vih - Delivery load of commodity h after visiting facility i, 8i 2 0; :::; 2n;8h 2 H
Wih - Pickup load of commodity h after visiting facility i, 8i 2 0; :::; 2n;8h 2 H
Xij - Indicates if facility j is visited immediately after facility i, 8i 2 0; :::; 2n; 8j 2

0; :::; 2n

Yih -
�
1; if pickup and delivery for commodity h is performed simultaneously at facility i
0, otherwise

, 8i 2 1; :::; n;8h 2 H
Zi - Indicates number of visits to customer i. Zi = 1 if 1 visit is required, 0 other-

wise, 8i 2 1; :::; n
Mathematical model

(1)min
2nP
i=0

2nP
j=0

cijXij

(2)
2nP
j=0

Xij = 1;8i = 0; :::; n

(3)
2nP
i=0

Xij = 1;8j = 0; :::; n

(4) V0h =
nP
i=1

dih; h 2 H

(5) 0 � Vih +Wih � qh;8i = 0; :::; 2n; h 2 H

(6) Vjh � Vih � djh � (1�Xij)qh;8i = 0; :::; 2n; 8j = 1; :::; 2n; h 2 H

(7)Wjh � Wih + pjhYjh � (1�Xij)qh;8i = 0; :::; 2n; 8j = 1; :::; n; h 2 H

(8) Wjh � Wih + (1 � Yj�n;h)pj�n;h � (1 � Xij)qh;8i = 0; :::; 2n, 8j = n +

1; :::; 2n; h 2 H
(9) Zi �

P
h2H

Yih

jHj ;8i = 1; :::; n

(10)
2nP
i=0

Xij = 1� Zj�n;8j = n+ 1; :::; 2n
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(11)
2nP
j=0

Xij = 1� Zi�n;8i = n+ 1; :::; 2n

(12) Xij 2 f0; 1g ; i 6= j, 8i; j = 0; :::; 2n; j 6= i + n if 1 � i � n; j 6= i � n if
i > n

(13) Zi 2 f0; 1g ;8i = 1; :::; n

(14) Yih 2 f0; 1g ;8i = 1; :::; n; h 2 H

(15) Vih � 0;8i = 0; :::; 2n; h 2 H

(16)Wih � 0;8i = 0; :::; 2n; h 2 H
Description of constraints

� The objective function (1) expresses the minimization of the total travel time.

� Constraints (2) and (3) make sure that the �rst node associated with each customer
is visited once, either for combined pickups and deliveries or for delivery only.

� Constraints (4) de�ne the total load of all commodities on the vehicle when it is
leaving the base.

� Constraints (5) express that when the vehicle has left a customer the combined
pickup- and delivery-load of each commodity should not exceed the capacity for
that commodity.

� Constraints (6) makes sure all delivery demands are satis�ed, (7) and (8) make
sure all pickups are collected. Constraints (6), (7) and (8) also prevent the forma-
tion of subtours.

� Constraints (9), (10) and (11) make sure that if all commodities for a given cus-
tomer are delivered and picked up simultaneously at �rst visit then a second visit
is not required. A second visit is required if at least one commodity is not picked
up in the �rst visit.

� Constraints (9) is a linearization of Zi =
� 1; if

P
Yik = jHj;8i = 1; :::; n

h2H

0; otherwise
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Figure 4: Relation between variables

Figure 4 shows the relation between variables Y and Z. When the pickup and deliv-
ery for both commodity 1 and 2 are performed simultaneously, only one visit is required.
In other words, Z = 1 when both Y1 = 1 and Y2 = 1.

� (12),(13) and (14) are binary requirements for variables.

� (15) and (16) represents lower bounds on the pickup- and delivery-load of each
commodity.

4.2 Single-Vehicle Pickup and Delivery Problem withMul-

tiple Commodities and Visit Windows

Let [ei; li] be the visit window associated with each installation i, where ei and li denote
respectively the earliest time when service may begin and the latest time when service
may �nish at installation i. If the supply vessel arrives to the installation before ei, it will
have to wait until it is possible to provide the service for the installation. If the vessel
arrives to the installation later than li, then it has to wait until the next visit window
starts. In both cases the waiting time will increase the duration of the route, which is
undesirable. let T denote the maximum route duration in hours and th the service time
in hours related to picking up or delivering one unit of commodity h. D denotes a �xed
time of the day at which the vessel leaves the depot, i.e. 4 p.m.. Let Bi be a variable
for the departure time in hours associated to each installation i. When the supply vessel
leaves the offshore base, we set B0 = 0. Let Uai be an integer variable that denotes the
day when the vessel arrives to installation i. Uai = 0 if the vessel arrives at installation i
on the same day it leaves the depot. Uai = 1 if the vessel arrives at installation i one day
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after it leaves the offshore base and so on until
�
T�li
24

�
. Let Udi be an integer variable

that denotes the day when the vessel leaves installation i. Udi = 0 if the vessel leaves
installation i on the same day it leaves the depot. Udi = 1 if vehicle leaves installation i
one day after it leaves the offshore base and so on until

�
T�li
24

�
. The model presented is

linear, which the model in Zouari and Akselvoll (2007) was not.
In the model presented, variables must be interpreted as zero whenever they are not

de�ned. To make sure that customers are served within the visit windows, additional
elements are added to the model:

Mathematical Formulation
Notation
Added Parameters
ei - earliest time, in hours, when service may begin at installation i, 8i = 1; :::; n
li - latest time, in hours, when service may �nish at installation i, 8i = 1; :::; n
T - the maximum route duration, in hours
th - service time, in hours, for picking up or delivering commodity h, h 2 H
D - �xed time, in hours, for when the vessel leaves the depot
Added Variables
Bi - departure time in hours for installation i, 8i = 0; :::; 2n
Uai - denotes the day when the vessel arrives to installation i, 8i = 1; :::; 2n
Udi - denotes the day when the vessel departure from installation i, 8i = 1; :::; 2n
Added Constraints
(17) Bj � Bi +

cij
60
Xij +

P
h2H

djh
th
60
+
P
h2H

pjh
th
60
Yjh � (1 � Xij)T; 8i = 0; :::; 2n,

8j = 1; :::; n
(18) Bj � Bi+ cij

60
Xij+

P
h2H

pj�n;h
th
60
(1�Yj�n;h)� (1�Xij)T;8i = 0; :::; 2n; 8j =

n+ 1; :::; 2n

(19) ei + 24U
a
i � D + (Bi �

P
h2H

dih
th
60
�
P
h2H

pih
th
60
Yih) � li + 24Uai ;8i = 1; :::; n

(20) ei�n + 24U
a
i � D + (Bi �

P
h2H

pi�n;h
th
60
(1 � Yi�n;h)) � li�n + 24U

a
i ;8i =

n+ 1; :::; 2n

(21) ei + 24U
d
i � D +Bi � li + 24Udi ;8i = 1; :::; n

(22) ei�n + 24U
d
i � D +Bi � li�n + 24Udi ;8i = n+ 1; :::; 2n
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(23) Bi +
ci0
60
Xi0 � T;8i = 1; :::; 2n

(24) Bi � 0;8i = 0; :::; 2n

(25) Uai � 0 integer;8i = 1; :::; 2n

(26) Udi � 0 integer;8i = 1; :::; 2n
Description of constraints

� Constraints (17) control the departure times from the current facility when only
one visit is required.

� Constraints (18) control the departure time from the current facility when a second
visit is required.

� Constraints (19) express that for the �rst visit to a facility, the arrival time must
be within the visit window of the arrival day.

� Constraints (20) express that if a second visit to a facility is necessary, the arrival
time must be within the visit window of the arrival day.

� Constraints (21) express that for the �rst visit to a facility, the departure time must
be within the visit window of the departure day.

� Constraints (22) express that if a second visit to a facility is necessary, the depar-
ture time must be within the visit window of the departure day.

� Constraints (23) make sure the total route duration do not exceed the maximum
route duration.

� Constraints (24) express non-negativity requirements for variables.

� Constraints (25) and (26) express non-negativity and integer requirements for
variables.
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5 Tabu Search

In this chapter a general description of tabu search is given, then the tabu search used to
solve the problems is thoroughly described.

5.1 Tabu Search Algorithm

As mentioned earlier, Tabu Search was introduced by Fred Glover in 1986 and is a
metaheuristic using a Local Search heuristic to �nd neighbouring solutions. Tabu Search
is an improvement heuristic and requires an initial solution for which to apply the local
search. The basic principle of Tabu Search is to let the search accept moves that lead to
a worse solution to overcome local optima.
The search space of a TS heuristic is the set of all solutions that can be visited during

a search, i.e. all feasible solutions. A neighbourhood is a collection of all possible new
solutions that can be reached from the current solution. These solutions are usually
represented by the moves required to reach the solutions.

5.1.1 Tabu Tenure and Aspiration Criteria

Tabu Search walks the neighbourhood by doing moves. Such a move can be to inter-
change the origin and destination of an arc in a solution. This kind of move is called
2-opt. For a Knapsack Problem a move can be to either take one item out of the back-
pack or to put one item in. A memory structure, called tabu list, records the recently
performed moves and contains info about when the move is no longer tabu. The tabu
mechanism is used to prevent cycling when moving away from local optima when non-
improving moves are used. An example: the current solution S has reached a local
optimum. The best non-improving move m� leads to a worse solution S�. Then the
available moves are again evaluated and the best move m+leads back to solution S: By
declaring move m+ tabu, another move would have to be performed, thus leading far-
ther away from solution S. Moves remain tabu for a number of iterations, called tabu
tenure. Tabu tenure can be of �xed or dynamic length during the search. When using
dynamic length of a tabu tenure the entries in the list usually contain the iteration for
when the move is no longer tabu.
Sometimes the tabu status can lead to not identifying good moves. There might be a
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move that leads to a better solution, but the move is tabu. Aspiration criteria can then be
applied to the search. The most common criterion for Tabu Search is to allow a move if
it is tabu, when the move results in a new best solution so far.

5.1.2 A Simple Tabu Search Procedure

A simple procedure for tabu search is presented. Suppose that we are trying to minimize
a function f(S) and the best available move at each iteration is chosen from a list of
possible moves.

Notation

� S, the current solution,

� S�, the best known solution,

� f �, value of S�,

� N(S), the neighbourhood of S,

� ~N(S), the "admissible" subset ofN(S), the moves that meet the aspiration criteria
or are non-tabu.

Initialization
Choose an initial solution S0.
Set S := S0, f � := f(S0), S� := S0, T := ?.

Search
While termination criteria not satis�ed do

� Select S in argmin[f(S 0)]; S 0 2 ~N(S)

� If f(S) < f �, then set f � := f(S), S� := S;

� Record tabu for the current move in T ;

End while
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5.1.3 Diversi�cation and Intensi�cation

After the search has been running a while we �nd attributes that are often used in the
solutions. We can focus on these to make sure the best solutions in some areas of the
search space are found. This phase is performed from time to time. The intensi�cation
phase is based on intermediate-term memory, such as a recency memory. This memory
contains the number of consecutive iterations that various "solution components" have
been present in the current solution without interruption. This mechanism is not always
needed. Some search procedures do have a thorough search process, so adding the
diversi�cation process will be redundant and lead to more CPU time.
Diversi�cation on the other hand, forces the search into previously unexplored areas

of the search space. A search without diversi�cation tends to explore most local at-
tributes and may miss many interesting solutions that includes areas at the outer points
of the search space. Diversi�cation is usually based on some form of long-term-memory
of the search, such as a frequency memory, where the total number of iterations various
"solution components" have been present in the current solution, or have been involved
in the selected moves. A proper search diversi�cation is possibly the most critical issue
in the design of TS heuristics. There are two major diversi�cation techniques: Restart
diversi�cation and continuous diversi�cation.
Restart diversi�cation involves forcing a few rarely used components in the cur-

rent solution and restarting the search from this point. Continuous diversi�cation inte-
grates diversi�cation considerations directly into the regular searching process. This is
achieved by biasing the evaluation of possible moves by adding a small term related to
component frequencies to the objective.
A third diversi�cation technique is to allow infeasible solutions. Many problem

constraints in the de�nition of a search space often restricts the searching process too
much and can lead to mediocre solutions. Constraint relaxation is an attractive strategy.
This creates a larger search space that can be explored with "simpler" neighbourhood
structures. Constraint relaxation can be implemented by dropping selected constraints
from the search space de�nition and adding weighted penalties for constraint violations
to the objective. Weights can be adjusted dynamically on the basis of the recent history
of the search. If infeasible solutions were encountered the last iterations the weights
are increased and if the solutions were feasible, the weights are decreased. A technique
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called strategic oscillation consists of systematically modifying penalty weights to drive
the search to cross the feasibility boundary of the search space to induce diversi�cation.

5.1.4 Termination Criteria

In theory a search can run forever, but it has to be stopped at a point. The most common
criteria for this purpose are:

� Run for a �xed number of iterations or a �xed amount of CPU-time

� After a given number of iterations without improvement in the objective function
value.

� When the objective reaches a pre-speci�ed threshold value.

5.1.5 Surrogate and Auxiliary Objectives

The true objective function can be quite costly to evaluate for many problems. An effec-
tive approach to handle this, is to evaluate neighbours using a surrogate objective, i.e. a
function that is correlated to the true objective, but is less computationally demanding,
in order to identify a (small) set of promising candidates. The true objective is then
computed for this small set of candidate moves and the best one is selected.
The objective function may not provide enough information to effectively drive the

search to more interesting areas of the search space. A situation might occur that all ele-
ments in the neighbourhood score equally with respect to the primary objective. In such
a case, it is necessary to de�ne an auxiliary objective function to orient the search. This
function must in some way measure the desirable attributes of solutions. An effective
auxiliary objective is not always easy to implement and may require a lengthy trial and
error process.

5.2 Tabu Search Heuristic for the Single Vehicle Pickup

and Delivery Problem with Multiple Commodities and

Visit Windows

The algorithm is based on the works of Gribkovskaia et al. (2007), Cordeau, Laporte
and Mercier (2001) and Cordeau, Laporte, Mercier (2004). The algorithm is allowed
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to go into infeasible space to search for solutions and has the extension of multiple
commodities, visit windows and duration limit for the tour.

5.2.1 Initial Solution

Figure 5: Sweep algorithm

Gillett and Miller (1974) proposed a construction heuristic called the Sweep al-
gorithm that sorts vertices according to the angle with the depot, assuming euclidean
distances for the instances, and then inserts the nodes into the route in that order. Figure
5 shows the depot in the middle as a square. An "arm" is sweeping the plane of vertices
counter-clockwise (clockwise is also possible) and place them in that order in a list. We
use such a heuristic to create the initial solution. The depot is inserted �rst, then the �rst
vertex to visit is chosen randomly and from there on the other vertices are inserted in
the same order as they appear in the sorted list of vertices. There are no requirements
that the initial solution has to be feasible.

5.2.2 Main Features of the Tabu Search Heuristic

Below are descriptions of the main features implemented in our tabu search.

Load feasibility violations
Load feasibility is checked each time a vertex is visited. The total load infeasibility
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q(s) of a route is equal to the sum of load infeasibilities of all its vertices. This check
simply consists of comparing the current load to the available capacity for the vessel,
for each commodity.

Duration feasibility violation
Each instance has an associated maximum allowed time period T associated with the

traveling and servicing, given in hours. The total duration of the services and travel time
t is not allowed to exceed this limit. The violation of T is given by d(s) = max(0; t�T ).

Visit window feasibility violation
Platforms can be night closed. The visit window for vertex i is given by [ei; li], where

ei is the start of the visit window and li is the end of the visit window. Vessels may arrive
before the start of a visit window resulting in a waiting timeWi = ei�Ai for the vessel,
where Ai is the arrival time at vertex i. The total violation of visit windows w(s) in a

solution is equal to
nP
i=1

(max(0; ai � li)). For vertices i with visit windows, the allowed

service period is given by the interval [7; 19], all other vertices are open for service
the entire day, shown by the interval [0; 24]. Cordeau, Laporte, Mercier (2004) uses a
concept called forward time slack which we have included to postpone the beginning of
service at a given node without causing any visit window violations. Given an ordered
route k = (v0; :::; vi; :::; vq) where both v0 and vq represents the depot, let Bi denote
the beginning of service at vertex vi. Setting B0 = e0 and Bi = maxfAi; eig for
i = 1; :::; q is optimal in terms of minimizing visit window violations. This is because
the vehicle leaves the depot as early as possible and the service at each vertex also
begins as early as possible. Because of route duration constraints, an infeasible solution
that has the properties just described, can be feasible if the departure from the depot is
voluntarily delayed. The forward time slack is the largest increase in the beginning of
service at vertex vi that will not cause any increase in visit window violation, thereby
the + symbol in the following formula. Forward time slack Fi of vertex vi is de�ned by

Fi = min
i6j0q

( P
i<p0j

Wp + (lj �Bj)+
)
. Setting B0 = e0+F0 will yield a modi�ed route

of minimal total duration with equal violations of visit window constraints.

31



Neighbourhood structure and attribute set

The neighbourhoodN(s) of solution s is de�ned by all solutions that can be reached
from s by changing the number of visits for a vertex. When solution s changes to the
solution s0 2 N(s) a move is performed. The move can be expressed by the removal
of attribute (i; v) to B(s0), (v 6= v0). �i denotes the number of visits in a solution. The
problems have two types of move. If a vertex has 1 visit only, a second visit is examined.
If a vertex has 2 visits, removal of the second visit is examined. Some of these moves
may not be valid. If a vertex that has the same predecessor as successor is removed,
there will be two consecutive visits to the same vertex, which is not allowed. These are
left out of the neighbourhood. Moves are performed as follows:

1. Insertion of the second visit at vertex i, �i = 1: Suppose that in the solution s
vertex i is visited once, that is (i; 1) 2 B(s). The second visit to vertex i is inserted
in the route minimizing the increase in the penalized function f(s0) = c(s0) +

�q(s0) + �d(s0) + w(s0). Hence, (i; 2) 2 B(s0). The purpose of visiting vertex
i twice is to obtain a solution s0 with lower total load infeasibility, visit window
infeasibility and route duration infeasibility than that of solution s. Visiting a
vertex twice results in a higher total travel cost and may result in route duration
violation. This is why the insertion of a second visit to vertex i is based on the
penalized function.

2. Deletion of the second visits at vertex i, �i = 2: Suppose that in the solution s
vertex i is visited twice, that is (i; 2) 2 B(s). A neighbour solution s0 is obtained
by deleting the second visit to vertex i from the route maximizing the decrease in
f(s0), and reconnecting its predecessor and successor. The deletion of the second
visit to i implies that (i; 1) 2 B(s0). In solution s0 the vertex i is visited in the
same order as its �rst visit in solution s: If costs satisfy the triangle inequality, the
cost will not be increased if we delete a second visit. The deletion of a second
visit may lead to increased load infeasibility and visit window infeasibility and a
reduction in tour duration infeasibility.

Tabu status of an attribute
Each move performed is de�ned by the attribute used. This attribute gets a tabu status
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associated with it. If number of visits v at customer i is changed to v0, changing back to
v visits at vertex i is not allowed for the next � iterations. Parameter � is a user controlled
parameter and is changed every iteration.

Aspiration criterion
During the search, an attribute may turn out to be very good and lead to a better

solution than the best known solution so far, but the attribute is tabu. To overcome this,
a rule is introduced. The rule is that the tabu status of an attribute (i; v) can be revoked if
this leads to a feasible solution with a smaller cost than the best known solution having
that attribute. The move has to result in solution s0 2 N(s0) with q(s0) = 0, d(s0) = 0,
w(s0) = 0 and c(s0) < �iv, where �iv is the aspiration level of attribute (i; v). The initial
set of �iv is equal so c(s) if (i; v) belongs to the attribute set of the feasible solution and
to 1 otherwise. Every time a feasible solution s is identi�ed, the aspiration level of
each of its attributes (i; v) is updated to minf�iv; c(s)g.

Diversi�cation
Without a diversi�cation strategy, the evaluation of the best solution s0 2M(s)would

be based on the penalized function f . However, we wish to diversify the search, that
is, give a higher chance of being selected to solutions s0 2 M(s) having an attribute
(i; v0) that has not been frequently present in past solutions. The mechanism operates
as follows: Any solution s0 2 M(s) such that f(s0) > f(s) is penalized with a term
p(s0) proportional to the addition frequency �iv of the modi�ed attribute, value of c(s)
and parameter � . Let �iv denote the number of times attribute (i; v) has been added to
the solution and let � denote tabu iteration counter, where the parameter � is used to
control the intensity of the diversi�cation. Then the penalty term is p(s0) = �c(s)�iv=�.
If f(s0) < f(s), we assume that p(s0) = 0. Finally, the selection of the best solution
s0 2M(s) is based on a generalized function g(s0) = f(s0) + p(s0)

Termination criterion
A �xed number � of iterations as termination criteria. In this thesis the search termi-

nates when � = 100:000 iterations have been completed.
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Penalized objective function
For a solution s 2 S, let c(s) denote the total routing cost, let q(s) denote the total

load feasibility violation of the route, let d(s) denote the total duration violation of
the route, and let w(s) denote the total visit window violation of the route. Solutions
s 2 S are evaluated with the help of the penalized cost function f(s) = c(s) + �q(s) +
�d(s) + w(s), where �, � and  are positive parameters. The values of �, � and 
are dynamically adjusted based on the recent history of the search. At each iteration
the values of �, � and  are modi�ed by a factor (1 + �) > 1, where � is a positive
parameter. If the current solution is load-feasible, the value of � is divided by (1 + �);
otherwise, it is multiplied by (1 + �). The same rule applies for � and .

5.2.3 Improvement Procedure

In the algorithm an intra-route procedure is applied each time a better solution is found,
and regularly every ' iterations. In this algorithm each vertex that has only 1 visit is
evaluated. The steps are as follows:

Step1: Delete the current vertex if this does not change the
number of visits to other vertices.

Step2: Reinsert this vertex in the route minimizing the penal-
ized function f, that is without requiring feasibility of
the resulting route. The vertex can be reinserted in the
same position from which it was deleted.

Step3: Consider another vertex on which this procedure has
not been applied yet, go to Step 1 and repeat until all
vertices are checked.

5.2.4 Steps of the Tabu Search Algorithm

The initial solution s0 is always based on the sweep algorithm. The initial solution is
not guaranteed to be feasible. Below is a summary of the notations used for the tabu
search algorithm:
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Notations used in the description of the tabu search algorithm
(i; v) Attribute: number of visits v at customer i
B(s) Attribute set of solution s
c(s) Routing cost of solution s
q(s) Total load violation of the vehicle during the route for given solution s
d(s) Total duration violation of the vehicle during the route for given solution s
w(s) Total visit window violation of the vehicle during the route for given solution s
N(s) Neighbourhood of solution s
M(s) A subset of N(s)
s; es Solutions
s0 Initial solution
s� Best solution identi�ed
� Penalty factor for overload
� Penalty factor for duration violation
 Penalty factor for visit window violation
� Parameter used to update �; �; 
� Factor used to adjust the intensity of the diversi�cation
� Total number of iteration to be performed
� Tabu duration
� Iteration counter
�iv Number of times attribute (i; v) has been added to the solution
�iv Aspiration level of attribute (i; v)
� iv Last iteration for which attribute (i; v) is declared tabu
' Parameter used for intra-route optimization

The search process is de�ned by set of parameters (�; �; �; �; '), and returns, after
execution, the best feasible solution found s�, if any. We assume that c(s�) = 1 if no
feasible solution has been identi�ed after execution of the algorithm.

1. Set s := s0; � = 1. If s is feasible, set s� := s.

2. For every (i; v), do

� Set �iv := 0, � iv := 0:
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� If (i; v) 2 B(s) and s is feasible, set �iv := c(s); else, set �iv :=1

3. For � = 1,...,�; do

a. Update �; �; � :

� � := random value from the open interval (0; 1):
� � := random value from the open interval (0; 1):
� � := random value from the open interval (0; round(10 log 10n):

b. Set N(s) := ;.

c. For each attribute (i; v0) =2 B(s) do

� Create a solution s0 applying a move de�nition. Replace corresponding
attribute (i; v) 2 B(s) by attribute (i; v0), i.e. (i; v) 2 B(s)! (i; v0) 2
B(s0).

� Set N(s) := N(s)[ s0.

b. SetM(s) := ;.

c. For each s0 2 N(s) do

� For (i; v) 2 B(s0)nB(s) such that � iv < � or such that c(s) + (f(s0)�
f(s)) < �iv, setM(s) :=M(s) [ fs0g:

d. For each s0 2M(s), do

� If f(s0) � f(s); set g(s0) := f(s0)+�c(s)�iv=�; else, set g(s0) := f(s0):

e. Identify a solution s0 2M(s) minimizing g(s0):

f. For attribute (i; v) 2 B(s0)nB(s) do

� Set �ik := �ik + 1 and � iv := �+ �:

g. If s0 is feasible (q(s0) = 0 and d(s0) = 0 and w(s0) = 0), do

� If c(s0) < c(s�); set s� := s0:
� For each (i; v) 2 B(s0), set �iv := minf�iv; c(s0)g:
� Set � := �=(1 + �); else, set � := �(1 + �).
� Set � := �=(1 + �); else, set � := �(1 + �).
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� Set  := =(1 + �); else, set  := (1 + �).

h. Set s := s0:

i. If q(s) = 0 and d(s) = 0 and w(s) = 0 and c(s) = c(s�); or � = k'; k =

1; 2; :::, do Intra-route optimization:

� For each (i; 1) 2 B(s) do

(i) Remove customer i from the route in solution s and reinsert cus-
tomer i in the route in solution esminimizing f(es) = c(es)+�q(es)+
�d(es) + w(es) such that B(s) = B(es):

(ii) Set s := es:
� If q(s) = 0 and d(s) = 0 and w(s) = 0 and c(s) < c(s�), set s� := s.

j. Set � := �+ 1.

Note: When running instances without visit windows, the violations for duration
d(s) and visit windows w(s) are always treated as zero.
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6 Computational Experiments

The mathematical models were modeled in AMPL. AMPL is a modelling language used
to formulate mathematical models, which is then supplied to a solver, usually along
with data for the instance. CPLEX is a solver which can solve problems formulated in
AMPL. In this thesis CPLEX 9.0.0 was used.
The heuristic is written in C using Pelles C for Windows, version 5.00.6 beta 4. The

program is available on the internet at the address
http://www.smorgasbordet.com/pellesc, last accessed 20.05.08. The tests for the

heuristic were run on a computer with an Intel Core 2 Quad processor running at 3,65
GHz having 2 GB of memory, running Microsoft Windows XP. All instances solved by
the heuristic were run for 100.000 iterations, except for the largest instances with visit
windows; Some were allowed to run 100.000 iterations, but most of them were run for
a maximum of 2 hours. The reason for this was that the thesis deadline was closing in
rapidly. The tests performed with CPLEX were run on computers with Intel Pentium 4,
2.4 GHz CPU and 1 GB of RAM. These tests were run for a maximum of one hour.

6.1 Test Instances Generation

The capacity of the vehicles qhfor each commodity h is equal to the maximum of the
sum of delivery demand dih for each vertex i and the sum of pickup demand pih for each
vertex i : qh = max(

nP
i=1

dih;
nP
i=1

pih): The service time for delivering and picking up each

commodity is equal to 1 minute per unit. In other words the service time is equal to the
pickup and delivery demand for each commodity.
For this thesis 40 small instances with number of nodes from 5 to 31 were generated.

The �rst group of small instances are the same as those described in Gribkovskaia et al.
(2007). Those instances were based on a CVRP problem and two parts of instances
were made the following way. Let qi denote the demand of customer i in the CVRP
instance, let di denote the delivery demand of customer i; and pi as the pickup demand
of customer i in our problem. In all instances with suf�x 'b20', 7 in total with number
of nodes from 16 to 31, the corresponding delivery and pickup demands are computed
as follows:
di := qi; pi := f

[(1� �)qi] if i is even
[(1 + �)qi] if i is odd

; i = 1; :::; n,
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where � is a real non-negative parameter smaller than 1. � = 0:20 is used to create these
pickup demands. The second part of this group are 9 instances with number of nodes
from 5 to 31. They were generated such that customers demands are geographically
dependent. The instance names for this part have no suf�x. Instances with the same
initial name have the same xi, yi coordinates and delivery demands di as corresponding
instances from the �rst part, but another pattern was used to calculate pickup demands
pi. Pickup demands of 30% of customers geographically closest to the depot were
computed as 120% of their delivery demands. Pickup demands of 30% of customers
furthest from the depot were computed as 80% of delivery demands. Pickup demands
for the rest of the customers were computed as in the �rst group of instances.
The second group of small instances were downloaded from the internet at the URL

http://www.fernuni-hagen.de/WINF/touren/probleme/. The instances found at that URL
are large, so the 24 �rst instances were collected and reduced in size to a random size
between 5 and 25. I.e. in an instance randomly selected to be of size 19 all but the 19
�rst vertices were removed to create the new smaller instances. The number of vertices
is included �rst in the instance name, then follows the original instance name. The
pickup demand for the �rst commodity in these instances were generated the same way
as the instances with the suf�x 'b20' that were used in Gribkovskaia et al. (2007).
The third group of instances are large instances derived from CVRP instances of

VRPLIB containing between 7 and 484 vertices and between two and 25 vehicles. The
instances chosen for this thesis have between 41 to 262 nodes, 13 instances in total.
These instances can be found on the website
http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html. Deliv-
ery and pickup demands were generated as follows. Let qi be the demand of customer
i in the original CVRP instance. Then we set di := qi and pi := b0:8qic if i is even or
pi := b1:2qic if i is odd.
To generate the second type of commodity, h = 2, we let the delivery and pickup

demand be the reverse of the delivery and pickup demand for commodity h = 1. For
customers i = 1; :::; n we let di2 = dn+1�i;1, and pi2 = pn+1�i;1.
The delivery demand of the third commodity, h = 3, is generated by �nding the aver-

age delivery demand of commodity 1 and 2 and multiply this average by a random num-
ber between 0:6 and 1:6: as represented by this formula: di3 =

�
di1+di2

2

�
rand(0:6; 1:6).

The pickup demand was generated in the similar way.
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The heuristic and the mathematical model are general in the way that they accept in-
stances without visit windows as well as instances with visit windows. For the instances
with visit windows we identi�ed and chose vertices that do not need more service time
than the given visit window allows. To �nd a suitable allowed tour duration for the
instances, we let the heuristic run on instances with no time windows, but modi�ed
the heuristic to calculate visit window violations and set the maximum allowed tour
duration to a very large number of hours. Based on these calculations we chose the
maximum allowed tour duration. The instances that have 1 visit window contain the
suf�x 'vw'. For instances with more than one visit window the suf�x is 'vwX', where
X is the number of platforms with visit windows. 'vw2' means there is 2 platforms with
visit windows.
Instances with 2 commodities have the pre�x '2c_' and the instances with 3 com-

modities have the pre�x '3c_'. The number after this pre�x is the number of vertices
in the instance, including the depot. The rest of the �lename is there to identify the
instance.
There are 40 small instances run both on the mathematical model in CPLEX and

using the Tabu-algorithm. All 40 small instances have been run with the cargo-space for
the different commodities at full capacity, called 100% utilization. The instances have
also been run with 5%, 10% and 20% extra capacity on the vessel for each commodity,
further called 95%, 90% and 80% utilization. These instances are generated as follows.
Let qh denote the capacity of commodity h of the vessel, let dih denote the delivery
demand of commodity h of platform i; let pih denote the pickup demand of commodity
h of platform i. The capacity for commodity h is then given by the formula qh =
�max(

nP
i=1

dih;
nP
i=1

pih) , where � denotes the utilization of capacity. For instances with

100% utilization, � = 1. For instances with 95% utilization, � = 1:05. For instances
with 90% utilization, � = 1:1. For instances with 80% utilization, � = 1:2.
In addition, 14 instances of size 16 to 31 are selected to run with one commodity and

1 platform having a visit window. For the same 14 instances, 1 additional visit window
is added and run with 1, 2 and 3 commodities with 100% utilization.
A modi�cation of the mathematical model constrained to �nd only Hamiltonian

solutions were run as well for all instances in group one and two.
The total number of small instances are then 1336 and the total number of large
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instances is 208.

6.2 Computational Results

Below follow tables showing various data extracted from the output from our instances
run with CPLEX and from the runs using the Tabu-search algorithm.
Due to a lack of available computers and the potentially very long runtime for each

instance we had to limit the CPU time of the CPLEX tests to 1 hour per instance. For the
runtime on CPLEX there seems to be other factors than problem-size playing a part as
we during testing had one size 23 instance with a runtime of nearly 4.5 hours and a size
31 instance with a runtime of less than 4 minutes. In comparison the Tabu-algorithm
ran 100000 iterations in 26 and 77 seconds for the same instances and found the optimal
solution for the size 23 problem and came within 0.71% of the found solution by CPLEX
for the size 31 problem. Those instances where CPLEX found the optimal solution is
marked as bold in tables 5a, 5b, 6a and 6b.
3 test cases are examined: The �rst case is the VRP with Multiple Commodities

(VRPMC). The second case is the VRPMC with Visit Windows and Route Duration
limits. Case 1 and 2 are run on small instances and the results from the Tabu-algorithm
are compared to results reported from the mathematical model run on CPLEX. The third
case contains both of these problems, but are run for large instances with Tabu search
only. Some of the instances had pickup demand generated with a geographical aspect in
mind. These geographical aspects does not seem to have any effect due to the method
used to generate instances with 2 and 3 commodities.
After the 3 test cases are examined, optimal solutions found by the mathematical

model is compared to the solutions found by the Tabu algorithm. Then results from test
case 3 is compared to results from the literature.

6.2.1 Test Case 1: Multiple commodities for small instances

The following tables show calculated gap, in percentage, between the results from our
Tabu-algorithm and the results from CPLEX in terms of cost. Positive numbers indicate
that AMPL found the better solution while negative numbers indicate that the Tabu-
algorithm found the best result. Those having a gap of 0.00% indicates that the same
solution was found both for CPLEX and the Tabu-algorithm. This could indicate that
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the optimal solution is found, but we cannot say it with any certainty for those having a
running-time of more than one hour in CPLEX as we did not �nd the con�rmed optimal
solution for those instances. Those instances where CPLEX found an optimal solution
within the given time-restriction have been marked in bold.
To present all instances in one table would take too much space and not �t on one

page, so the tables are split into 2 parts, shown by Table 5a and 5b. The 100% column
indicates that the vessel capacity is fully utilized for every commodity when the vessel
leaves the offshore base or when the vessel returns from its trip.
In the search for the largest problem-size the Tabu-algorithm would be able to solve

to optimality, all instances at 80% utilization in Table 5a and Table 6a were run without
time-limit. Instances 2c_030b20 and 3c_030b20 are not marked as optimal because
CPLEX reported internal errors on these instances after 13 and 15 hours. However in
the Hamiltonian-run, feasible solutions were found in the allotted 1 hour. In comparison
both size 31 instances were solved by CPLEX in less than 10 and 4 minutes for two
commodities and 31 and 17 minutes for three commodities.

Instance 80% 90% 95% 100%
2c_005 0,0 0,0 0,0 0,0
2c_006 0,0 0,0 0,0 0,0
2c_016 0,0 0,0 0,0 0,0
2c_016b20 0,0 0,0 0,0 0,0
2c_021 0,0 0,0 0,0 0,0
2c_021b20 0,0 0,0 0,0 0,0
2c_022 0,0 0,0 0,0 -3,4
2c_022b20 0,0 0,0 0,0 0,2
2c_023 0,0 0,0 0,0 0,2
2c_023b20 0,0 0,0 0,0 -1,1
2c_026 3,9 3,9 3,9 5,9
2c_026b20 3,9 3,9 3,9 0,5
2c_030 0,8 1,5 6,7 -2,7
2c_030b20 0,7 0,3 -0,6 -9,2
2c_031 0,7 0,7 0,7 0,6
2c_031b20 0,7 0,7 0,7 1,5

Table 5a: TABU deviation from CPLEX in percent, 2 commodities, part1
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Instance 80% 90% 95% 100%
2c_6_c110_3 0,0 0,0 0,0 0,0
2c_6_c1_6_3 0,0 0,0 0,0 0,0
2c_7_c1_2_2 0,0 0,0 0,0 0,0
2c_8_c110_5 0,0 0,0 0,0 0,0
2c_8_c1_4_3 0,0 0,0 0,0 0,0
2c_9_c1_2_7 0,0 0,0 0,0 0,0
2c_11_c110_7 0,0 0,0 0,0 0,0
2c_11_c1_2_9 0,0 0,0 1,4 -1,2
2c_12_c110_1 0,0 0,0 0,0 0,0
2c_13_c1_4_4 2,1 2,1 2,1 0,0
2c_13_c1_6_1 0,0 0,0 0,0 0,0
2c_14_c110_9 0,0 0,0 0,0 0,0
2c_15_c1_2_5 6,5 6,5 6,5 -6,0
2c_15_c1_4_6 2,6 2,6 0,0 -1,7
2c_16_c110_8 0,0 0,0 0,0 0,0
2c_19_c110_4 0,0 0,0 0,0 -1,1
2c_19_c1_210 5,9 5,9 5,9 -23,7
2c_19_c1_4_2 8,1 8,1 8,1 -6,5
2c_20_c1_4_7 4,7 4,7 4,7 1,2
2c_20_c1_6_4 0,0 0,0 0,0 0,0
2c_21_c1_2_3 3,6 3,6 3,6 -8,2
2c_22_c110_6 3,1 3,1 3,1 5,7
2c_23_c1_2_8 3,3 3,3 3,3 -31,1
2c_23_c1_4_9 8,4 8,4 8,4 -29,3
Average 1,5 1,5 1,6 -2,7

Table 5b: TABU deviation from CPLEX in percent, 2 commodities, part2
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As mentioned a gap of 0.00% could indicate an optimal solution giving a possible
optimal Tabu-solution in the instance 2c023b20 with 95% utilization of the space on
the vessel, but it cannot be said for certain looking only at this single solution, shown in
tables 5b and 5a. The biggest instance where Tabu found the optimal solution as reported
by CPLEX is the 2c023b20 instance with 80% utilization. Since both the solutions with
90% and 95% utilization have the same cost and route these are most likely optimal as
well since the only change from 80% utilization is the restriction of less capacity of the
vessel. As the name of the instance suggests this instance has 23 nodes including the
depot.
The Tabu-solutions are compared against two runs of CPLEX, one "normal" search

for the optimal solution and one with an additional constraint making it only search for
Hamiltonian solutions. The goal is to show how the Tabu-algorithm compares to the
best found solution, and then it can be seen that for 80%, 90% and 95% the average
gap between the best found solution found using CPLEX, and the solution found using
Tabu, is approximately 1.5%. But when the problem becomes more constrained with
100% utilization of the vessel capacity the situation is reversed and the Tabu-algorithm
produces on average 2.7% better solutions than the best found solution generated by the
mathematical model using CPLEX. This is due to CPLEX using more CPU time as the
problem becomes more dif�cult. CPLEX will �nd optimal solutions given enough time,
but in this thesis CPLEX is limited to 1 hour and is to that end unable to �nd optimal
solutions for all instances. The solutions quality will in many cases get worse as the
vessels cargo hold approaches full capacity for the various commodities.
Table 6a and 6b shows the same as Table 5a and 5b, but with three commodities

instead of two.
3c031b20 100% did not produce a solution in any of the runs in CPLEX and is listed

with a gap of -100,00% since the Tabu-algorithm was the only one to �nd a feasible
solution.
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Instance 80% 90% 95% 100%
3c_005 0,0 0,0 0,0 0,0
3c_006 0,0 0,0 0,0 0,0
3c_016 0,0 0,0 0,6 0,0
3c_016b20 0,0 0,0 0,0 0,0
3c_021 0,0 0,0 0,0 0,0
3c_021b20 0,0 0,0 0,0 0,0
3c_022 0,0 0,0 0,0 -5,0
3c_022b20 0,0 0,0 0,0 0,0
3c_023 0,0 0,0 0,0 0,2
3c_023b20 0,0 0,0 0,0 -3,0
3c_026 3,9 3,9 3,9 -7,3
3c_026b20 3,9 3,9 3,9 0,0
3c_030 -0,4 5,8 5,0 -4,6
3c_030b20 -0,9 -7,5 -2,0 -11,6
3c_031 0,7 0,7 0,7 0,6
3c_031b20 0,7 0,7 0,7 -100,0

Table 6a: TABU deviation from CPLEX, 3 commodities, part1

In these two tables, 6a and 6b, for three commodities it can be seen that the biggest
instance where both the mathematical model and Tabu found the optimal solution is in-
stance 3c_023b20, same as for two commodities. The reason it is known that 3c_023b20
with 80% utilization is optimal is that this instance was run with no time limit using the
mathematical model, it took 5.5 hours, and is included in the results to show how big
solutions the Tabu-algorithm is able to solve to optimality. The Tabu algorithm used 34
seconds to go through the 100000 iterations and solve the instance.

Table 7 has a more compressed version of the previous tables and some additional
info. The average cost gap and avg % gap shows the solution gap between the Tabu and
the CPLEX generated solutions. From this view there is no clear difference between
two and three commodities for 80%, 90% and 95% utilization, however it is worth
noticing the big difference between 95% and 100% utilization of the vessel. These
numbers indicate that CPLEX, when restricted to 1 hour, has more dif�culties than the
Tabu-algorithm in �nding good solutions when the vessel is at full capacity.
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Instance 80% 90% 95% 100%
3c_6_c110_3 0,0 0,0 0,0 0,0
3c_6_c1_6_3 0,0 0,0 0,0 0,0
3c_7_c1_2_2 0,0 0,0 0,0 0,0
3c_8_c110_5 0,0 0,0 0,0 0,0
3c_8_c1_4_3 0,0 0,0 0,0 0,0
3c_9_c1_2_7 0,0 0,0 0,0 0,0
3c_11_c110_7 0,0 0,0 0,0 -0,3
3c_11_c1_2_9 0,0 0,0 2,4 -0,7
3c_12_c110_1 0,0 0,0 0,0 0,0
3c_13_c1_4_4 2,1 2,1 2,1 0,0
3c_13_c1_6_1 0,0 0,0 0,0 0,0
3c_14_c110_9 0,0 0,0 0,0 0,0
3c_15_c1_2_5 6,5 6,5 6,5 -14,2
3c_15_c1_4_6 2,6 2,6 0,0 -3,7
3c_16_c110_8 0,0 5,2 5,2 -1,1
3c_19_c110_4 0,0 0,0 0,0 -1,5
3c_19_c1_210 5,9 5,9 3,2 -15,2
3c_19_c1_4_2 8,1 8,1 8,1 -3,8
3c_20_c1_4_7 4,7 4,7 4,7 3,9
3c_20_c1_6_4 0,0 0,6 0,6 -5,9
3c_21_c1_2_3 -1,0 3,6 1,6 -24,1
3c_22_c110_6 3,1 3,1 0,0 1,8
3c_23_c1_2_8 2,3 2,7 1,4 -30,8
3c_23_c1_4_9 8,4 5,9 8,4 -20,8
Average 1,3 1,5 1,4 -6,2

Table 6b: TABU deviation from CPLEX, 3 commodities, part2
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# Commo. % Util. avg. Cost-gap avg. % gap # TABU best % TABU best
2 80 9,5 1,5 24 60,0
2 90 9,6 1,5 24 60,0
2 95 9,6 1,6 25 62,5
2 100 -19,3 -2,7 32 80,0
2 average 2,4 0,4 26 65,6
3 80 8,6 1,3 27 67,5
3 90 11,0 1,5 23 57,5
3 95 9,5 1,4 23 57,5
3 100 -32,5 -6,2 36 90,0
3 average -0,9 -0,5 27 68,1

Table 7: Average gap for TABU compared to CPLEX and number and percentage
of instances where TABU found the best known solution.

The last column show that for the 80% utilization with two commodities, Tabu has
for 60.0% of the instances found the optimal or best found solution compared to the so-
lutions found using CPLEX. The column "# TABU best" tells howmany of the instances
has their best found solution found by the Tabu-algorithm. 65.6% of the instances with
2 commodities had solutions found by the Tabu-algorithm that were as good as or better
than CPLEX limited to 1 hour. For instances with 3 commodities the share is 68.1%.
Again it is seen that there is a big difference between 95% and 100% utilization of
the cargo space and that the Tabu-algorithm with high utilization is better compared to
the solutions found using AMPL. This goes for both two and three commodities. For
three commodities there is a slight increase in best found solutions by Tabu for 80% and
100% utilization, other than that there is no difference worth mentioning between 80,
90 and 95 percent utilization and between two and three commodities for these levels of
utilization.
In total Tabu found the best found solution in 214 of the 320 instances, that is in

total 66.9% of the best found solutions.

# Commo. 80% 90% 95% 100%
2 55,0 45,0 45,0 42,5
3 52,5 40,0 37,5 40,0

average 53,8 42,5 41,3 41,3

Table 8a: Found optimal solutions by TABU in percent

47



# Commo. 80% 90% 95% 100%
2 67,5 57,5 55,0 42,5
3 65,0 52,5 50,0 42,5

average 66,3 55,0 52,5 42,5

Table 8b: Found optimal solutions by CPLEX in percent

Table 8a shows the percentage of instances solved to optimality by the Tabu-algorithm
for the different utilizations. They are optimal since these instances were solved within
the set time limit for CPLEX. These are mostly solutions with a problem size less than
22 vertices. Table 8b shows the total amount of instances solved to optimality using
CPLEX. Looking at these two tables alone it might look as if CPLEX does a bit better
than Tabu, at least for the instances with lower utilization of the cargo capacity. How-
ever, if the number of best found solutions, shown in Table 7, is considered instead of
only the optimal solutions found, it can be seen that the number of tabu solutions better
than, or equal to, the best found solution using the mathematical model are in favor of
the Tabu-algorithm.

# Commo. % Util. % TABU Ham % best found Ham % Ham found
2 80 82,5 97,5 97,5
2 90 80,0 95,0 97,5
2 95 80,0 90,0 97,5
2 100 35,0 32,5 60,0
2 average 69,4 78,8 88,1
3 80 82,5 97,5 97,5
3 90 77,5 92,5 97,5
3 95 77,5 90,0 97,5
3 100 30,0 32,5 52,5
3 average 66,9 78,1 86,3

Table 9: Percentage of instances where solution produced by the TABU-algorithm
had Hamiltonian-shape, where the best known solution had Hamiltonian-shape &
percentage of instances where Ham-shape is known to exist

Observing the changes in the solution shapes is one of the goals in this thesis and
is shown in Table 9. For 80%, 90% and 95% utilization with two commodities 82.5%,
80% and 80.0%, respectively, of the best Tabu produced solutions have Hamiltonian
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solution shapes. For three commodities the numbers are 82.5% and 77.5%, while there
are Hamiltonian solutions found for 97.5% of the 40 instances for each of the three
lower utilization levels for both two and three commodities. For 100% utilization the
numbers are 35.0% for two commodities and 30.0% for 3 commodities. This indicates
a trend of a decreasing number of Hamiltonian shaped solutions for the Tabu solutions
when increasing the utilization, and perhaps a tiny decrease in Hamiltonian solutions
when going from two to three commodities.
For 100% utilization the number of Hamiltonian shaped solutions found are only

60.0% for two commodities and 52.5% for three commodities. In total Tabu found
a Hamiltonian shaped solution for 68.1% of the instances. Hamiltonian solutions are
found for 87.2% of the 320 possible instances. 78.5% of the best found solutions had
Hamiltonian shape.
The �nal column shows the percentage of the Tabu-solutions having a Hamiltonian

shape. This shows that for 80%, 90% and 95% utilization with both two and three com-
modities there were only one solution that did not �nd a Hamiltonian shaped solution.
Observations show that, in general, the more constrained the problem becomes the less
Hamiltonian solutions are found. For 100 percent utilization of the vessel the number of
Hamiltonian shaped solutions plummet down to 32.5% for the best found solutions. A
similar behaviour is shown in the last three columns for both two and three commodities,
but for the last column the change is not that big.

# Commo. % Util. % 0 double % 1 double
2 80 97,5 2,5
2 90 95,0 5,0
2 95 90,0 10,0
2 100 32,5 67,5
2 Total 78,8 21,2
3 80 97,5 2,5
3 90 90,0 10,0
3 95 90,0 10,0
3 100 32,5 67,5
3 Total 77,5 22,5

Table 10: Percentage of instances having zero or one installation requiring a second
visit in the solutions made by the TABU-algorithm
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Another goal of this thesis is to observe the changes in number of installations re-
quiring two visits when subjected to various changes. Table 10 shows how many sec-
ond visits were required in the best found Tabu-solutions. There seems to be no change
worth mentioning from two to three commodities, but the number of vertices requiring
two visits increase with higher utilization of the vessel. As in the previous tables there
is a big change from 95% utilization to 100% utilization.
The "% 0 double" column indicates the percentage of instances with a best found

solution where no installations require a second visit, these instances have a Hamiltonian
shape.

6.2.2 Test Case 2: Added Visit Windows for small instances

Instance 80% 90% 95% 100%
2c_005vw 0,0 0,0 0,0 0,0
2c_006vw 0,0 0,0 0,0 0,0
2c_016b20vw 0,0 0,0 0,0 0,0
2c_016vw 0,6 0,6 0,6 0,0
2c_021b20vw 0,0 0,0 0,0 0,0
2c_021vw 2,3 2,3 2,3 6,5
2c_022b20vw 5,9 5,9 5,9 12,7
2c_022vw -15,2 -1,8 -32,9 -100,0
2c_023b20vw 3,4 3,4 3,4 -100,0
2c_023vw 1,5 1,5 1,5 -0,9
2c_026b20vw 6,4 6,4 6,4 6,4
2c_026vw 4,7 4,7 4,7 -100,0
2c_030b20vw -100,0 -100,0 -100,0 �
2c_030vw 9,7 12,9 6,4 14,8
2c_031b20vw 1,1 1,1 1,1 2,0
2c_031vw 2,0 2,0 2,0 1,0

Table 11a: Visit windows, TABU deviation from CPLEX, 2 commodities, part 1

Tables 11a and 11b show the cost gap in percentage for the Tabu solution compared
to the best solution found by CPLEX. Positive numbers indicate that CPLEX found the
best solution, while negative numbers indicate that Tabu found the best solution. 0,00%
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Instance 80% 90% 95% 100%
2c_6_c110_3vw 0,0 0,0 0,0 0,0
2c_6_c1_6_3vw 0,0 0,0 0,0 0,0
2c_7_c1_2_2vw 0,0 0,0 0,0 0,0
2c_8_c110_5vw 0,0 0,0 0,0 0,0
2c_8_c1_4_3vw 0,0 0,0 0,0 0,0
2c_9_c1_2_7vw 0,0 0,0 0,0 0,0
2c_11_c110_7vw 0,0 0,0 8,2 -1,2
2c_11_c1_2_9vw 0,0 0,0 2,4 6,3
2c_12_c110_1vw 7,6 7,6 7,6 7,6
2c_13_c1_4_4vw 0,0 0,0 0,0 0,0
2c_13_c1_6_1vw 0,0 0,0 0,0 0,0
2c_14_c110_9vw 2,4 2,4 2,4 1,7
2c_15_c1_2_5vw 6,5 6,5 6,5 -6,3
2c_15_c1_4_6vw 2,3 2,3 0,0 2,7
2c_16_c110_8vw 0,0 0,0 0,0 1,1
2c_19_c110_4vw 0,0 0,0 0,0 -100,0
2c_19_c1_210vw 15,4 15,4 15,4 -100,0
2c_19_c1_4_2vw 9,6 9,6 9,6 -100,0
2c_20_c1_4_7vw 4,7 4,7 4,7 16,2
2c_20_c1_6_4vw 12,3 12,3 12,3 -100,0
2c_21_c1_2_3vw 100,0 100,0 100,0 �
2c_22_c110_6vw 0,0 0,0 0,0 20,4
2c_23_c1_2_8vw -0,5 2,0 5,0 -100,0
2c_23_c1_4_9vw 8,7 8,7 8,7 -100,0
Average 2,3 2,8 2,1 -20,2

Table 11b: Visit windows, TABU deviation from CPLEX, 2 commodities, part 2
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indicates that Tabu and CPLEX both found the same solution, this indicates a likely
optimal solution, but it cannot be said with 100% certainty unless CPLEX was able to
�nish within the given hour per instance. If the optimal solution to an instance is found
the number is written in bold.
There are two instances where neither CPLEX nor Tabu were able to �nd a feasible

solution, indicated by '�'. There are some instances where only the Tabu algorithm
was able to �nd a solution. This is illustrated by the gap being -100.0%. There is also
an instance, 2c_21_c1_2_3vw, where only the Hamiltonian run on CPLEX was able to
�nd a solution, this is shown by the gap being 100.0%.
The biggest instance solved to optimality in this thesis with the Tabu algorithm was

of size 23 without visit windows, and size 21 with visit windows for both two and three
commodities.
For two commodities with visit windows it is observed that the average gap is just

above 2% except for 100% utilization, but there are some instances with a gap of 5-
10% and even one up to 15.4% which is not very good. Then there are also instances
where the gap is just as big, or bigger, but in favour of the solution found by the Tabu-
algorithm.

In tables 12a and 12b the cost gap for three commodities with visit windows is
shown.
These tables show an average in favour of the Tabu-algorithm. Some of this is due to

the fact that for two of the instances with three commodities only Tabu was able to �nd
a feasible solution on all levels of utilization. Looking at individual instances there are
some gaps in the 6-9% range, and for instance 3c_16_c110_8vw at 95% utilization the
gap is 34,9%. This is not a good sign for the robustness of the Tabu-algorithm. However,
the power of the Tabu-algorithm is shown in the number of instances where the Tabu-
algorithm found feasible solutions in a few minutes while the mathematical model was
unable to �nd any feasible solutions in its allotted one hour. And even if some instances
have a bad gap, the average speaks in favor of the Tabu-algorithm. Again there are big
gaps in favour of the Tabu-algorithm as well.
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Instance 80% 90% 95% 100%
3c_005vw 0,0 0,0 0,0 0,0
3c_006vw 0,0 0,0 0,0 0,0
3c_016b20vw 0,0 0,0 0,0 0,0
3c_016vw 0,0 0,0 0,0 0,0
3c_021b20vw 3,2 3,2 6,2 2,0
3c_021vw 2,4 2,4 0,0 -100,0
3c_022b20vw 2,6 -1,0 2,6 -100,0
3c_022vw -1,9 0,2 0,2 -100,0
3c_023b20vw 8,5 8,5 -4,9 -100,0
3c_023vw 5,4 -100,0 -26,9 -100,0
3c_026b20vw 6,9 6,9 6,9 1,8
3c_026vw 6,1 6,1 7,7 -100,0
3c_030b20vw -100,0 -100,0 -100,0 -100,0
3c_030vw -100,0 -100,0 -100,0 -100,0
3c_031b20vw 0,7 0,7 0,7 -100,0
3c_031vw 3,3 3,3 3,3 1,5

Table 12a: Visit windows, TABU deviation from CPLEX, 3 commodities, part 1
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Instance 80% 90% 95% 100%
3c_6_c110_3vw 0,0 0,0 0,0 0,0
3c_6_c1_6_3vw 0,0 0,0 1,0 0,0
3c_7_c1_2_2vw 0,0 0,0 0,0 0,0
3c_8_c110_5vw 0,0 0,0 0,0 0,0
3c_8_c1_4_3vw 0,0 0,0 0,0 0,0
3c_9_c1_2_7vw 0,0 0,0 0,0 0,0
3c_11_c110_7vw 0,0 0,0 0,0 -3,0
3c_11_c1_2_9vw 0,8 0,8 2,4 -0,8
3c_12_c110_1vw 14,4 14,4 14,0 -100,0
3c_13_c1_4_4vw 2,1 2,1 2,1 3,3
3c_13_c1_6_1vw 0,0 0,0 0,0 0,0
3c_14_c110_9vw 1,9 1,9 1,9 1,7
3c_15_c1_2_5vw 6,5 6,5 6,5 -100,0
3c_15_c1_4_6vw 2,3 2,3 2,3 -100,0
3c_16_c110_8vw 7,5 0,0 34,9 -2,1
3c_19_c110_4vw 3,5 3,5 3,6 -100,0
3c_19_c1_210vw 3,2 3,2 1,0 -100,0
3c_19_c1_4_2vw 8,1 8,1 8,1 -100,0
3c_20_c1_4_7vw 12,4 12,4 12,4 5,3
3c_20_c1_6_4vw 5,0 4,3 -4,0 -100,0
3c_21_c1_2_3vw 5,5 7,0 2,5 -100,0
3c_22_c110_6vw 8,6 8,6 11,9 3,3
3c_23_c1_2_8vw 0,7 -6,5 1,9 -100,0
3c_23_c1_4_9vw 5,8 5,8 5,8 -100,0
Average -1,9 -4,9 -2,4 -47,2

Table 12b: Visit windows, TABU deviation from CPLEX, 3 commodities, part 2
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# Commo. % Util. avg. Cost-gap avg. % gap # TABU best % TABU best
2 80 5,8 2,3 20 50,0
2 90 7,5 2,2 19 47,5
2 95 6,1 2,1 18 45,0
2 100 -121.1 -23,0 25 62,5
2 average -25,4 -4,1 21 51,3
3 80 5,1 -1,9 15 37,5
3 90 -12,3 -4,9 18 45,0
3 95 9,7 -2,4 17 42,5
3 100 -228,7 -47,2 33 82,5
3 average -56,5 -14,1 21 51,9

Table 13: Visit windows, TABU average gap from CPLEX

Comparing the gap for two and three commodities with visit windows in Table 13
it is seen that the Tabu-algorithm produces overall better results for three commodities
than for two commodities. The effects of increasing utilization has no clear effect for
80, 90 and 95 percent utilization. But when looking at 100% utilization it seems that
increasing the utilization of the vessel leads to a gap in favour of the Tabu-algorithm.
The table also shows the percentage and number of all instances that has its best

found solution from the Tabu-algorithm. Comparing the levels of utilization the per-
centage of best found solutions found by Tabu is steady at the lower levels of utiliza-
tion, but at 100% it increases and Tabu �nds 62.5% of the best found solutions for two
commodities and 82.5% for three commodities. Some of this increase is from the time
limit imposed on the CPLEX-runs.
Comparing two and three commodities it looks like three commodities lead to more

best found solutions by Tabu when the utilization is 100%. For 80% utilization, CPLEX
�nds better solutions .

Table 14 shows the percentage of solutions where one or more installations require
two visits, for solutions found by Tabu only. For the lower levels of utilization most
solutions are Hamiltonian and have no installations requiring two solutions. For two
commodities there is no change between 80%, 90% and 95% utilization. While for
100% utilization of the vessel capacity there are only 25% of the solutions that have
Hamiltonian shape, as con�rmed by Table 15. For 100% utilization and two commodi-
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# Commo. % Util. % 0 % 1 % 2 % 3 % 4 % 5 % 8 % No solution
2 80 85,0 10,0 2,5 0,0 0,0 0,0 0,0 2,5
2 90 85,0 10,0 2,5 0,0 0,0 0,0 0,0 2,5
2 95 85,0 10,0 2,5 0,0 0,0 0,0 0,0 2,5
2 100 25,0 42,5 15,0 5,0 2,5 2,5 2,5 5,0
2 Average 70,0 18,1 5,6 1,3 0,6 0,6 0,6 3,1
3 80 82,5 12,5 5,0 0,0 0,0 0,0 0,0 0,0
3 90 82,5 10,0 5,0 2,5 0,0 0,0 0,0 0,0
3 95 67,5 20,0 7,5 0,0 2,5 2,5 0,0 0,0
3 100 20,0 55,0 12,5 7,5 5,0 0,0 0,0 0,0
3 Average 63,1 24,4 7,5 2,5 1.9 0,6 0,6 0,0

Table 14: Visit windows. Percentage of instances having X nodes requiring two
visits in TABU generated solutions

ties there is one instance having as much as eight nodes requiring two visits. 27,5% of
the solutions have more than one node requiring two visits.
For three commodities the number of instances having 1 or more nodes requiring two

visits is bigger than for two commodities. Already at 90% utilization there is an instance
with 3 nodes requiring two visits, and at 95% utilization there are instances with 4 and
5 such nodes. At 100% utilization the number of nodes in an instance requiring two
visits decreases some, but there are still 55,0% of the instances having one such node,
and 25% having more than one node requiring two visits.

# Commo. % Util. % TABU Ham % best found Ham % Ham found
2 80 85,0 97,5 97,5
2 90 85,0 97,5 97,5
2 95 85,0 97,5 97,5
2 100 25,0 40,0 50,0
2 average 70,0 83,1 85,6
3 80 82,5 92,5 92,5
3 90 82,5 90,0 90,0
3 95 67,5 85,0 92,5
3 100 20,0 27,5 45,0
3 average 63,1 73,8 80,0

Table 15: Visit Windows, TABU created solutions with Ham-shape & number of
solutions where Ham-shaped solutions are known to exist
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The number of problem instances where a feasible Hamiltonian solution is found is
shown in Table 15. This table also shows how many of the best found solutions have
Hamiltonian shape. As for most of the instances there are little differences between the
three lower levels of utilization. However there is a clear decrease in the number of
Hamiltonian shaped solutions when going from two to three commodities. There is also
a large decrease in the number of Hamiltonian shaped solutions at 100% utilization for
both two and three commodities compared to the lower levels of utilization.
For two commodities, on average 85.6% of the instances have a feasible Hamiltonian

shaped solution found. For three commodities there are on average 80.0% Hamiltonian
shaped solutions found. For the best found solutions there are 83.1% solutions with
Hamiltonian shape for the instances with two commodities. For three commodities
73.8% of the instances have a Hamiltonian shaped solution. For all solutions with visit
windows found by the Tabu-algorithm there are on average 70.0% Hamiltonian shaped
solutions for 2 commodities and on average 63.1% Hamiltonian shaped solutions for 3
commodities.
In other words there is a trend across the board that when the number of commodi-

ties increase there is a decrease in the number of solutions with a Hamiltonian shape.
There is also a decrease in Hamiltonian shaped solutions as the utilization of the vessel
capacities increases.

TABU 80% 90% 95% 100%
2c 30,0 35,0 32,5 32,5
3c 30,0 32,5 30,0 27,5

average 30,0 33,8 31,3 30,0

Table 16a: Percentage of instances with optimal solutions found by the TABU-
algorithm for visit windows

CPLEX 80% 90% 95% 100%
2c 50,0 50,0 50,0 42,5
3c 47,5 47,5 45,0 35,0

average 48,8 48,8 47,5 38,8

Table 16b: Percentage of instances with optimal solutions found by CPLEX for
visit windows
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Tables 16a and 16b show the percentage of instances with 1 visit window with op-
timal solutions found by Tabu and the percentage of optimal solutions found using the
mathematical model.
The numbers show a trend that the amount of optimal solutions found decrease the

more constrained the vessel capacity becomes, but it is not really visible before the
load for the different commodities is at 100% utilization of the vessel capacity. For the
number of optimal solutions found by the Tabu-algorithm the change is not big enough
to be able to say anything. There is also a decrease in the number of optimal solutions
found when going from two to three commodities.
Comparing the results from the Tabu-algorithm to the results found using the math-

ematical model, the Tabu algorithm found 68.2% of all the optimal solutions.

Avg. Cost Gap % MC % MC VW % Cost Change
2c 80% 1,5 2,3 -0,2
2c 90% 1,5 2,8 -0,2
2c 95% 1,6 2,1 0,2
2c 100% -2,7 -20,2 2,6
2c average 0,4 -3,3 0,6
3c 80% 1,3 -1,9 3,1
3c 90% 1,5 -4,9 2,2
3c 95% 1,4 -2,4 5,2
3c 100% -6,2 -47,2 3,9
3c average -0,5 -14,1 3,6

Table 17: Cost gap between solutions with and without visit windows

Multiple Commodities vs Multiple Commodities with Visit Windows
Looking at Table 17, '%MC' is the gap between solutions found by Tabu and CPLEX

while the '% MC VW' column represents the gap between the solutions with visit win-
dows found by Tabu and CPLEX. The '% Cost Change' column contains the change in
cost for the best found solutions with visit windows: The cost for solutions with visit
windows are subtracted from the best found cost in the corresponding instances without
visit windows.
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Looking at the columns showing average cost gap in percentage it seems that there
is a difference in the cost gap between the instances with and without visit windows,
especially for three commodities. For two commodities there is a lower average cost for
the solutions with visit windows at 80% and 90% utilization. At 95% utilization there
is a small increase in cost when adding visit windows, while for 100% utilization the
increase is an average of 2.6%. When adding a commodity the trend of increasing cost
for visit windows when increasing utilization is not so clear. However, when adding
visit windows to three commodities the average cost increase by an average of 3.6%.
This shows that the gap between the solutions with and without visit windows increase
when adding visit windows, most likely because the problem becomes more complex.

Two Visits TABU % MC % MC VW
2c 80% 2,5 12,5
2c 90% 5,0 12,5
2c 95% 10,0 12,5
2c 100% 67,5 70,0
2c average 21,3 26,9
3c 80% 2,5 17,5
3c 90% 10,0 17,5
3c 95% 10,0 32,5
3c 100% 67,5 80,0
3c average 22,5 36,9

Table 18: Percentage of instances having one or more installation requiring two
visits.

Table 18 shows the number of solutions with one or more installations requiring
two visits. Without visit windows it seems that only the different level of utilizations of
the vessel capacities had any effect. However, when adding visit windows there is an
increase in instances where one or more platforms require two visits. This increase is
best seen for instances with 3 commodities.

In Table 19 the amount of Hamiltonian shaped best found solutions are shown for
the test instances with and without visit windows. For both cases a decrease in Hamil-
tonian shaped solutions is observed when going from two to three commodities. When
adding the visit window an increase in solutions with Hamiltonian shape is observed,
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% Best Ham % MC % MC VW
2c 80% 82,5 97,5
2c 90% 80,0 97,5
2c 95% 80,0 97,5
2c 100% 35,0 40,0
2c average 69,4 83,1
3c 80% 82,5 92,5
3c 90% 75,5 90,0
3c 95% 75,5 85,0
3c 100% 30,0 27,5
3c average 66,9 73,8

Table 19: Percentage of best known solutions with Hamiltonian shape for visit
windows and without

but the increase is not so big for three commodities as it is for two commodities. The
expected outcome was a decrease in Hamiltonian shaped solutions when visit windows
was added.

% TABU solved Ham % MC % MC VW
2c 80% 97,5 85,0
2c 90% 95,0 85,0
2c 95% 90,0 85,0
2c 100% 32,5 25,0
2c average 78,8 70,0
3c 80% 97,5 82,5
3c 90% 92,5 82,5
3c 95% 90,0 67,5
3c 100% 32,5 20,0
3c average 78,1 63,1

Table 20: Percentage of TABU-solutions with Hamiltonian shape for visit windows
and without

Table 20 shows the percentage of the Tabu�generated solutions that have Hamilto-
nian shapes. When adding visit windows the amount of Tabu generated solution with
Hamiltonian shape decreases. This result of a decrease in Hamiltonian shaped solutions
is the opposite of what is observed in Table 19.
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6.2.3 Test Case 3: Large Instances

In Table 21 the solution shapes for the instances with multiple commodities are pre-
sented, sorted by the degree of utilization. An H illustrates a Hamiltonian solution
shape, an L illustrates a Lasso solution shape and a G illustrates a General solution
shape. All the solutions show the same trend: With increased capacity, the solution
shapes tend to be of Hamiltonian shape. A lasso solution shape is a solution where the
vessel visits one or more installations only dropping off the delivery demand, then the
vessel visits all other installations performing both deliveries and pickups before it re-
turns to the last installation where only delivery was made. Now the installations that
only received its deliveries are visited in reverse order, and the pickup demand is met,
so that the shape of the route resembles a lasso.
Only a few instances below 100% utilization have a non-Hamiltonian shape, while

no instances with 100% utilization have Hamiltonian solutions. These observations are
the same for the instances with 2 commodities as well as those with 3 commodities.

Table 22 shows the solution shapes for instances with visit windows. There is 1
Hamiltonian solution with 100% utilization, instance 2c_072b20 which have 2 com-
modities. The same instance, with 3 commodities, has a general solution. This shows
that the effect of having one more commodity might affect the solution shapes. As
for Table 21 the Hamiltonian solutions are heavily represented when the utilization is
decreased.

The travel times for all the large instances are presented in Table 23a and Table 23b.
These tables show that the travel time is almost the same for all instances with lower
utilization than 100%. There are exceptions, though. I.e. instances 2c_200b20 and
2c_262b20 do in fact have a shorter travel time with 100% utilization than when the
capacity is increased before visit windows are added. This might be the result of local
optima in the Tabu Search, but since the costs are equal for the instances with 80%,
90% and 95% utilization this seems less likely. The total travel time when 100% of
the cargo space is utilized is 1.4% higher than for the other degrees of utilization for 2
commodity instances. For the instances with 3 commodities the total travel time is 2.2%
higher for the instances with 100% utilization than the instances with 95% utilization
and 2.1% higher than the instances with 80% and 90% utilization. There is also a
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Instance 80% 90% 95% 100%
2c_041b20 H H H L
2c_045b20 L L L G
2c_048b20 H H H G
2c_051b20 H H H G
2c_072b20 H H H G
2c_076b20 H H H L
2c_101b20 H H H G
2c_111b20 H H H G
2c_121b20 G G G G
2c_135b20 H H H G
2c_151b20 H H H L
2c_200b20 G G G L
2c_262b20 H H H G
2c % Ham 76,9 76,9 76,9 0,0
3c_041b20 H H H L
3c_045b20 L L L G
3c_048b20 H H H G
3c_051b20 H H H L
3c_072b20 H H H G
3c_076b20 H H H L
3c_101b20 H H H G
3c_111b20 H H H G
3c_121b20 G G G G
3c_135b20 H H H G
3c_151b20 H H H L
3c_200b20 G G G L
3c_262b20 H H H G
3c % Ham 76,9 76,9 76,9 0,0

Table 21: Solution shapes for large instances
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Instance 80% VW 90% VW 95% VW 100% VW
2c_041b20 H H H H
2c_045b20 H H H G
2c_048b20 H H H G
2c_051b20 H H H L
2c_072b20 H H H G
2c_076b20 H H H H
2c_101b20 H H H G
2c_111b20 H H H G
2c_121b20 H H H G
2c_135b20 H H H G
2c_151b20 G G G G
2c_200b20 G G G G
2c_262b20 H H H G
2c % Ham 84,6 84,6 84,6 15,4
3c_041b20 H H H L
3c_045b20 G G G G
3c_048b20 H H H G
3c_051b20 H H H L
3c_072b20 H H H G
3c_076b20 H H H L
3c_101b20 H H H L
3c_111b20 H H H L
3c_121b20 G G G G
3c_135b20 G G G G
3c_151b20 G G H G
3c_200b20 G G G G
3c_262b20 G G G G
3c % Ham 53,8 53,8 61,5 0,0

Table 22: Solution shapes for large instances with Visit Windows
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Instance 80 % 90 % 95 % 100 %
2c_041b20 370,24 370,24 370,24 376,48
2c_045b20 645,75 645,75 645,75 622,75
2c_048b20 33784,03 33784,03 33784,03 34302,34
2c_051b20 440,43 440,43 440,43 443,08
2c_072b20 197,26 197,26 197,26 212,42
2c_076b20 565,58 565,58 565,58 569,36
2c_101b20 663,88 663,88 663,88 668,51
2c_111b20 553,62 553,62 553,62 559,24
2c_121b20 598,61 598,61 598,61 598,86
2c_135b20 819,26 819,26 819,26 819,45
2c_151b20 778,61 778,61 778,61 761,32
2c_200b20 854,80 854,80 854,80 829,17
2c_262b20 2666,04 2666,04 2666,04 2672,17
2c Total 42938,11 42938,11 42938,11 43435,15
3c_041b20 370,24 370,24 370,24 377,79
3c_045b20 645,75 645,75 645,75 621,33
3c_048b20 33784,03 33784,03 33784,03 34302,34
3c_051b20 440,43 440,43 440,43 445,19
3c_072b20 197,26 197,26 197,26 212,42
3c_076b20 565,58 565,58 565,58 566,67
3c_101b20 663,88 663,88 663,88 666,19
3c_111b20 553,62 553,62 553,62 554,91
3c_121b20 598,61 598,61 598,61 594,86
3c_135b20 819,26 819,26 819,26 823,2
3c_151b20 778,61 778,61 778,61 750,24
3c_200b20 854,80 854,80 854,80 847,73
3c_262b20 2666,04 2666,04 2666,04 2753,55
3c Total 42938,11 42938,11 42938,11 43516,42

Table 23a: Cost/Travel time for large instances
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Instance 80% VW 90% VW 95% VW 100% VW
2c_041b20 366,25 366,25 366,25 383,14
2c_045b20 645,75 645,75 645,75 659,66
2c_048b20 33831,73 33831,73 33831,73 34568,98
2c_051b20 440,43 440,43 440,43 445,21
2c_072b20 199,16 199,16 199,16 257,23
2c_076b20 562,27 562,27 562,27 565,12
2c_101b20 676,56 676,56 676,56 711,03
2c_111b20 571,36 571,36 571,36 580,47
2c_121b20 612,25 612,25 612,25 673,40
2c_135b20 884,72 884,72 884,72 914,44
2c_151b20 803,23 803,23 803,23 781,63
2c_200b20 868,53 868,53 868,53 878,92
2c_262b20 2730,71 2730,71 2730,71 2726,76
2c Total 43192,95 43192,95 43192,95 44145,99
3c_041b20 371,51 371,51 371,51 383,35
3c_045b20 657,77 657,77 657,77 649,56
3c_048b20 33784,03 33784,03 33784,03 35947,64
3c_051b20 440,43 440,43 440,43 445,21
3c_072b20 197,73 197,73 197,73 219,56
3c_076b20 564,70 564,70 564,70 566,02
3c_101b20 666,61 666,61 666,61 690,22
3c_111b20 572,22 572,22 572,22 620,28
3c_121b20 607,17 607,17 607,17 658,17
3c_135b20 883,99 883,99 883,99 890,68
3c_151b20 791,26 791,26 791,26 773,47
3c_200b20 866,82 866,82 866,82 863,52
3c_262b20 2717,08 2717,08 2717,08 2853,25
3c Total 43121,32 43121,32 43121,32 45560,93

Table 23b: Cost/Travel time for large instances with Visit Windows
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consistent increase in cost when adding visit windows, but the cost increase is very
small. The smallest increase is only 0,2% for 3 commodities at 95% utilization, while
for 3 commodities at 100% utilization the cost increase when adding visit windows is
1.0%. The increase of 1% is the largest increase, for 2 commodities at 100% the increase
is 0.5% and for the rest 0.3%. It should be noted that most of the increase comes from
the two instances that has a very large and disproportionate cost compared to the other
instances. Many of the instances with smaller costs actually experience a cost decrease
when visit windows are added.

% Util. 2c 3c 2c VW 3c VW
80 42938,11 42938,11 43192,95 43121,32
90 42938,11 42938,11 43192,95 43121,32
95 42938,11 42938,11 43192,95 43121,32
100 43435,15 43516,42 44145,99 45560,93
Average 43062,37 43082,69 43431,21 43731,38

Table 24: Average Cost/Travel time for large instances

Averages of travel times for both the multiple commodity problems and visit win-
dows problems are given in Table 24. When comparing the average travel times between
instances with 2 and 3 commodities, we see that the average is the same for all levels of
utilization until we reach 100% utilization. The average for instances with this level of
utilization and 3 commodities is 0.2% higher than the ones with 2 commodities. When
comparing the instances with visit windows, the result is a little bit different. Here the
average for 2 commodities is slightly higher than for 3 commodities with 80%, 90% and
95% utilization. The instances with visit windows and 3 commodities at 100% utiliza-
tion have the largest travel time. If we look at the total averages at the bottom row, we
will see that the average travel time increases by the number of commodities and is also
further increased with the addition of visit windows.

Table 25 shows the total number of installations that are visited twice for all in-
stances. The columns '% 0' ,'% 1' and '% 2' show the number of solutions where 0,
1 or 2 installations, respectively, require two visits. Column '% 3 or more' shows how
many solutions have 3 or more installations that require a second visit. The instances
with 100% utilization have the highest number of second visits.
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Commo. & Util. % 0 % 1 % 2 % 3 or more
2c 80% 76,9 15,4 7,7 0,0
2c 90% 76,9 15,4 7,7 0,0
2c 95% 76,9 15,4 7,7 0,0
2c 100% 0,00 53,8 30,8 15,4
2c Avg 57,7 25,0 13,5 3,8
2c 80% vw 84,6 0,0 15,4 0,0
2c 90% vw 84,6 0,0 15,4 0,0
2c 95% vw 84,6 0,0 15,4 0,0
2c 100% vw 15,4 15,4 15,4 53,8
2c Avg vw 67,3 3,8 15,4 13,5
2c Average 62,5 14,4 14,4 8,7
3c 80% 76,9 15,4 7,7 0,0
3c 90% 76,9 15,4 7,7 0,0
3c 95% 76,9 15,4 7,7 0,0
3c 100% 0,0 69,2 15,4 15,4
3c Avg 57,7 28,8 9,6 3,8
3c 80% vw 53,8 23,1 15,4 7,7
3c 90% vw 53,8 23,1 15,4 7,7
3c 95% vw 61,5 15,4 15,4 7,7
3c 100% vw 0,0 23,1 23,1 53,8
3c Avg vw 42,3 21,2 17,3 19,2
3c Average 50,0 25,0 13,5 11,5

Table 25: Percentage of installations requiring two visits for large instances
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For 2 commodities with utilization 80%, 90% and 95% there is an increase in the
number of Hamiltonian solutions when adding visit windows. For 2 and 3 commodi-
ties without visit windows, with 100% utilization, there are no Hamiltonian solutions.
When visit windows are added for 2 commodities and 100% utilization, the number of
Hamiltonian solutions increase. The number of installations per instance requiring 3 or
more second visits are also increased. For 3 commodities and 100% vessel utilization
the number of installations per instance requiring 3 or more second visits are increased,
but there are no increase in Hamiltonian solutions. The average number of Hamiltonian
solutions decrease when going from 2 to 3 commodities.

Table 26a shows the CPU time the tabu search for the large instances. These re-
sults are for instances without visit windows. Instances with 2 commodities are solved
within 1 hour when the problem size is of 121 vertices or less. The CPU time for the
instances are increased when introducing a third commodity. The largest instance with 2
commodities is solved within 11 hours. Another 2 and a half hour is needed for 3 com-
modities. The CPU time between various levels of utilization is negligent and shows
that the heuristic is not affected by the level of utilization.

The CPU time needed for instances with visit windows is much higher than those
without visit windows, as shown in Table 26b. Even the smallest instance now needs
around 13 minutes to be solved, as compared to 2 minutes without visit windows. The
largest instance without visit windows was limited to 10 hours. The CPU time for
instances with visit windows was limited to 2 hours, except for instances with 2 com-
modities up to the size of 111. The CPU time for an instance with a visit window is
on average increased by a factor of higher than 6 when compared to the corresponding
instance without a visit window.

68



Instance 80% 90% 95% 100%
2c_041b20 140 141 141 141
2c_045b20 184 182 181 181
2c_048b20 227 223 224 229
2c_051b20 264 262 262 264
2c_072b20 713 710 710 718
2c_076b20 831 830 828 833
2c_101b20 1909 1912 1910 1930
2c_111b20 1897 1901 1901 1958
2c_121b20 3230 3243 3245 3283
2c_135b20 4522 4547 4547 4612
2c_151b20 6266 6282 6280 6303
2c_200b20 15524 15664 15650 15900
2c_262b20 37878 37884 37952 38833
2c Total 73585 73781 73831 75185
2c Average 5660,38 5675,46 5679,31 5783,46
3c_041b20 178 177 177 182
3c_045b20 235 233 233 229
3c_048b20 286 284 285 292
3c_051b20 336 334 334 339
3c_072b20 913 905 905 917
3c_076b20 1067 1053 1055 1051
3c_101b20 2450 2423 2420 2427
3c_111b20 2436 2414 2411 2486
3c_121b20 4169 4130 4123 4149
3c_135b20 5791 5756 5769 5946
3c_151b20 7973 8002 7994 7977
3c_200b20 19818 19885 19887 20017
3c_262b20 47466 47466 47509 47992
3c Total 93118 93062 93102 94004
3c Average 7162,92 7158,62 7161,69 7231,08

Table 26a: CPU time in seconds for large TABU-instances without Visit Windows
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Instance 80% VW 90% VW 95% VW 100% VW
2c_041b20 1028 1028 1029 1039
2c_045b20 1927 1910 1908 1886
2c_048b20 2509 2493 2515 2508
2c_051b20 2036 1043 2048 1916
2c_072b20 10119 10237 10241 10563
2c_076b20 9589 7828 8063 10005
2c_101b20 19060 19871 19015 16583
2c_111b20 15963 16036 16033 16415
2c_121b20 7200 7200 7200 7200
2c_135b20 7200 7200 7200 7200
2c_151b20 7200 7200 7200 7200
2c_200b20 7200 7202 7200 7200
2c_262b20 7201 7210 7201 7211
2c Total 98232 97458 96853 96926
2c Average 7556,31 7497,77 7450,23 7455,85
3c_041b20 1365 1308 1290 1291
3c_045b20 2163 2160 2349 2358
3c_048b20 2924 2664 2938 2734
3c_051b20 2492 2562 2765 2389
3c_072b20 7200 7200 7200 7200
3c_076b20 7200 7200 7200 7200
3c_101b20 7200 7200 7200 7200
3c_111b20 7200 7200 7200 7200
3c_121b20 7200 7200 7200 7200
3c_135b20 7200 7200 7200 7200
3c_151b20 7200 7200 7200 7200
3c_200b20 7202 7203 7200 7200
3c_262b20 7202 7207 7202 7200
3c Total 73748 73504 74144 73572
3c Average 5672,92 5654,15 5703,38 5659,38

Table 26b: CPU time in seconds for large TABU-instances with Visit Windows
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6.2.4 Tabu vs Optimal

Commo vw CPLEX avg Tabu avg % Gap
2 0 625,79 627,01 0,2
2 1 653,97 663,16 1,4
3 0 633,45 636,69 0,5
3 1 676,11 696,84 3,1

Avg 647,33 655,93 1,3

Table 27: Cost gap between found Optimal using CPLEX and corresponding so-
lutions from Tabu.

The gap between the instances where the mathematical model found the optimal
solution and the solution found by the Tabu-algorithm on the same instances is shown
in Table 27. For two commodities without visit windows the gap is only 0.2%. Both for
two and three commodities there is an increase in the gap when adding a visit window to
one of the installations in the instance. There is also an increase in gap when increasing
the number of commodities from two to three. On average the gap between the solutions
found by the Tabu-algorithm and the optimal solutions found by the mathematical model
was 1.3%.

Commo vw CPLEX avg Tabu avg
2 0 570,17 12,26
2 1 337,18 62,60
3 0 957,04 15,39
3 1 258,20 44,90

Avg 530,65 33,79

Table 28: Di¤erence in CPU-time between optimal solutions found by CPLEX
and corresponding solutions found by Tabu

Looking at the average CPU time in Table 28 it is seen that the CPU time for 100000
iterations in the Tabu-algorithm is much shorter than the time to �nd the optimal solu-
tions using CPLEX. Even with such a big difference in CPU time as is observed here
the gap was only 1.3% as shown in Table 27.
The reason the CPU time for CPLEX is larger without visit windows is that for 80%

utilization some of these instances had no timelimit and that made a big impact on the

71



average. This is carried over to the Tabu average as well since CPLEX were able to �nd
the optimal solution for bigger instances that require more CPU time to be solved.
For both the CPLEX and the Tabu average there is a decrease in the average CPU

time when going from two to three commodities with visit windows. This is caused by
a lower number of instances solved to optimality for three commodities shown in Table
29. The instances that were solved to optimality were smaller and required less CPU
time to be solved, thus the decrease in CPU time.

Commo vw # CPLEX opt # Tabu opt % CPLEX opt % Tabu opt
2 0 89 75 55,6 46,9
2 1 77 54 48,1 33,8
3 0 84 68 52,5 42,5
3 1 70 48 43,8 30,0

Total & Avg 320 245 50,0 38,3

Table 29: Number and percentage of solutions where the optimal solution is found
for solutions generated by CPLEX and Tabu

In Table 29 the number and percentage of optimal solutions found by the mathe-
matical model and the Tabu-algorithm is shown. The numbers tells us that a bigger
percentage of the instances without visit windows than those with visit windows were
solved to optimality. There is also a reduction when adding the third commodity. For all
instances from test case 1 and 2 combined, the mathematical model found the optimal
solution for 50.0% of all the instances while the Tabu algorithm found 38.3% of all the
instances.

In the solutions solved to optimality an average of 82.1% had Hamiltonian shape.
Only 78.7% of the solutions found using the Tabu-algorithm for the same instances had
Hamiltonian shaped solutions. These numbers are shown in Table 30.
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Commo vw CPLEX avg % Ham Tabu avg % Ham
2 0 81,4 81,4
2 1 86,0 79,3
3 0 80,9 80,9
3 1 80,3 73,1

Avg 82,1 78,7

Table 30: Percentage of solutions with Hamiltonian shapes found for solutions gen-
erated by CPLEX to optimality and the solutions from the corresponding instances
solved by the Tabu-algorithm

6.2.5 Tabu vs Results from Literature

Commo vw % Gap Found % non-Ham
1 - 0,0 14,3
1 1 3,9 64,3
1 2 2,8 71,4
2 - 1,7 71,4
2 1 5,9 78,6
2 2 7,8 100,0
3 - 1,4 64,3
3 1 5,5 85,7
3 2 6,6 92,9

Table 31: Gap between the best found solutions from the literature and the solu-
tions to the corresponding instances from this thesis for instance size from 16 to 31.
100% utilization only. Also the percentage of non-Hamiltonian shaped solutions

In Table 31 and Table 32 the results from the run with the Tabu-algorithm in this
thesis is compared to the best found results from Gribkovskaia et al. (2007). Table 31
compares the small instances of size 16-31. The numbers with one commodity without
visit windows is the numbers from Gribkovskaia et al. (2007) and is the baseline for the
gaps. To get a better picture of the effects from adding commodities a short run were
made for these instances with only one commodity using the Tabu-algorithm presented
in this thesis. A run was also made where the instances had two installations with visit
windows instead of only one as is the case in the rest of the thesis.
Looking �rst at one commodity the gap is on average 3.9% when one of the in-

stallations in each instance has a visit window, and when two installations have a visit
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window the gap decreases to 2.8%. For the baseline only 14.3% of the instances had a
non-Hamiltonian shape, while with one and two instances with visit windows the per-
centage of non-Hamiltonian shaped solutions were 64.3% and 71.4%.
For two commodities the gap without visit windows i 1.7% and the amount per-

centage of non-Hamiltonian shaped solutions is 71.4%. When adding one visit window
the gap increases to 5.9% and the non-Hamiltonian shaped solutions increase to 78.6%.
This increase continues when adding the second visit window and the cost gap is 7.8%.
For two commodities and two visit windows there is not a single Hamiltonian shaped
solution.
When adding the third commodity there seems to be an overall decrease in gap com-

pared to with two commodities, but still an increase compared to only one commodity.
Without visit windows the gap is 1.4% and the percentage of non-Hamiltonian shaped
solutions is 64.3%. For one visit window the gap is 5.5% and the percentage of non-
Hamiltonian shaped solutions is 85.7%. For two visit windows these numbers are 6.6%
and 92.9%.

Instance 1c Cost 2c % Gap 3c % Gap 2c vw % Gap 3c vw % Gap
041b20 362,02 4,0 4,4 5,8 5,9
045b20 619,09 0,6 0,4 6,6 4,9
048b20 33523,71 2,3 2,3 3,1 7,2
051b20 433,6 2,2 2,7 2,7 2,7
072b20 202,82 4,7 4,7 26,8 8,3
076b20 555,07 2,6 2,1 1,8 2,0
101b20 653,96 2,2 1,9 8,7 5,5
Avg 5192,9 2,7 2,6 7,9 5,2

Table 32: Gap between the best found solutions from the literature and the solu-
tions to the corresponding instances from this thesis for instance size from 41 to
101. 100% utilization only

Table 32 shows the gap between the solution created by the Tabu-algorithm in this
thesis and the best found solution in Gribkovskaia et al. (2007) for the large instances
ranging from 41 to 101 in size. Once again a decrease in the gap is seen when going
from two to three commodities, just like in Table 31. For two commodities the gap is
7.9% with visit windows and 2.7% without, while for 3 commodities the numbers are
5.2% and 2.6%.

74



7 Conclusions and Further Research

Two problems were examined in this thesis. The �rst was the Single Vehicle Pickup and
Delivery Problem with Multiple Commodities. The second problem was an extension
of the �rst, adding Visit Windows and Route Duration limits. The objective is to �nd a
least cost vessel route starting and ending at the offshore base, visiting all platforms that
have demands, while at the same time the vessel capacities must not be exceeded at any
time. In addition, for the second problem, the Visit Windows must not be violated and
the route duration must not exceed its maximum limit. General solutions are allowed,
that is installations may be visited once or twice. If an installation is visited once, all
pickups and deliveries are performed simultaneously. If an installation is visited twice,
all the deliveries are performed on the �rst visit and pickups may be performed. On the
second visit pickups are performed.
The importance of generating the solution tools for these problems is derived by

the practical applications the problems have in supply of oil and gas installations in
the North Sea. The installations are supplied by supply vessels that are located at an
offshore base. The routes for these supply vessels are currently created manually by a
route planner. In this thesis a single vessel is considered, since the route planning is
done for one vessel at the time. When adding multiple commodities and visit windows
into the planning process it becomes a time consuming task. A heuristic can solve such
problems in a relatively short time compared to what a manual planning process will.
The heuristic will give the planner feasible solutions and the planner can then choose
the ones that are least costly.
This thesis had several goals being:

� To formulate mathematical models for the One-to-Many-to-One Single Vehicle
Pickup and Delivery problem with Multiple Commodities and with Visit Win-
dows.

� To create a Tabu-search algorithm able to produce general solutions to instances
of any size.

� To evaluate the performance of the Tabu-algorithm.
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� To run tests using the Tabu-algorithm to see how the solution shape, cost and CPU
time is affected when we change the problem characteristics in the following way:

- Increase in number of commodities.

- Addition of visit windows and constraint on the route duration.

- Increase in capacity utilization for the vessel.

The results:

� The one-to-many-to-one Single Vehicle Pickup and Delivery Problem with Multi-
ple Commodities and Visit Windows were formulated as MIP mathematical mod-
els. These models contain load controlling constraints that prevent generation of
subtours.

� For computational testing 1544 instances were generated.

- 2 groups of small instances, 40 instances in each group

- 1 group of large instances, 13 instances.

- Number of commodities : 2 and 3

- Vessel capacity generated for 100%, 95%, 90% and 80% utilization.

- In addition, all small instances were run with mathematical models with
the constraint of allowing only Hamiltonian solutions.

- Instances from all 3 groups were run without visit windows and with 1
platform having a visit window.

- In addition to these 3 groups, 14 instances of size 16 to 31 were selected.
These instances were run with 1 commodity with 1 visit window with 100% uti-
lization for vessel capacity.

- These 14 instances were also run with 2 visit windows for commodities 1,
2 and 3 with 100% utilization for vessel capacity.

� The mathematical models found the optimal solution for 49.5% of these instances
within one hour. The maximal size of the instance solved to optimality was 31.
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� Average CPU time for Tabu:

- small instances without visit windows: 23.23 seconds

- small instances with visit windows: 139.30 seconds

- large instances without visit windows: 6439.12 seconds

- large instances with visit windows: These instances had a two hour limit
and the average is therefore omitted.

� The Tabu-algorithm ran for 100 000 iterations found the optimal solution for
38.5% of all small instances.

� The Tabu-algorithm has shown that within 26 seconds it is able to produce optimal
solutions for instances up to the size of 23 nodes.

� 35.7% solutions created by Tabu algorithm are general where an instance has one
or more installations requiring two visits.

� The Tabu-algorithm has an average decrease of 4.3% in cost compared to the
CPLEX solutions found within one hour.

� For some instances while the mathematical model for one hour was unable to �nd
any feasible solutions. The Tabu-algorithm was able to �nd a feasible solution in
few minutes.

� There is almost no change in solutions cost when levels of vessel capacity utiliza-
tion is up to 95%.

� Adding Visit Windows leads to increased cost of the solutions when compared
to instances without Visit Windows. The solution cost in average increases by
3.1% with 100% utilization.

� There is a 20% increase in the number of solutions where one or more installations
require two visits when visit windows are added for one installation per instance.

� When adding a second visit window, the number of general solutions increase
further by 16%.
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� Between 80%, 90% and 95% utilization there is almost no change in the number
of solutions with installations requiring two visits.

� There is a 413% difference in the number of solutions with installations requiring
two visits when changing the level of utilization of the vessel capacity from 95%
to 100%.

� When the instances become larger, the amount of installations requiring two visits
in the solution is increasing.

� There is a 16.9% increase in CPU-time shown when adding a commodity.

� When adding visit windows a 598,4% increase in CPU time to solve a problem
occurs.

� There is a decrease in the number of Hamiltonian shaped solutions as the level of
utilization increases.
% Util non-VW VW
80 92,5 80,2
90 89,6 80,2
95 86,8 75,5
100 24,5 18,9

� There is a 9% decrease in the number of Hamiltonian-shaped solutions when in-
creasing the number of commodities.

� The solutions created by the Tabu-algorithm show the opposite, namely a decrease
in Hamiltonian shapes when adding visit windows.

Possible additional expansions and tests for this heuristic:

� Capacitated platforms

If the platforms have only limited space available, the problem becomes more
complex. The pickups and deliveries might then have to be split in order to make
feasible solutions. When there is low capacity on the platform, loading of the
platform might take longer time since available space must be found. There might
already be reserved space, but care must be taken to not crush anything when
using the crane to load containers onto the platform deck.
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� Transshipments

- If a platform wants to send some commodities over to another platform, this
could be considered if there is enough room on the supply vessel.

- Also, if a platform has a lot of free space, the supply vessel could use this as an
intermediary for storing containers, while the vessel is servicing other platforms.
This could be considered if a route is scheduled to be near the capacity limits later
in the route. This might lead to less time of handling and placing the containers in
the middle of the route when the vessel was supposed to be almost full. However,
it should only be considered if the platform in question is close to the path where
the vessel will sail back to the offshore base or close to another platform which is
scheduled for a visit.

� Include more than one visit window per day per vertex or different windows per
day

If platforms are scheduled for maintenance on a regular basis, there could be more
than one visit window associated to those platforms.

� Multiple Visits

When adding more commodities it could be interesting to see if multiple visits
would give a better solution than with only one or two visits. In order to do this
the demands for different commodities must be split. An example of three visits
could be to deliver all commodities at the �rst visit, then return later for picking
up another type of commodity and return at an even later point in the route to
pickup the last type of commodity.
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