
INF950 Masters Thesis

Time-dependent travel times
- the case with ferries

Nils Ove Erstad

Stian Kroknes

Number of pages included the �rst page: 73

Molde, May 18, 2009

Publication agreement

Title: Time-dependent travel times - the case with ferries

Author(s): Nils Ove Erstad and Stian Kroknes

Subject code: INF950

ECTS credits: 30

Year: 2009

Supervisor: Arne Løkketangen

Agreement on electronic publication of master thesis

Author(s) have copyright to the thesis, including the exclusive right to publish the document (The

Copyright Act §2).

All theses fulfilling the requirements will be registered and published in Brage HiM, with the approval

of the author(s).

Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of

charge, make the thesis available for electronic publication: yes no

Is there an agreement of confidentiality? yes no
(A supplementary confidentiality agreement must be filled in)

- If yes: Can the thesis be online published when the

period of confidentiality is expired? yes no

Date: 18.05.09

Abstract

In the Vehicle Routing Problem (VRP), not considering ferries when ferries are in fact

present could cause the solution to be very inaccurate and very di�cult to implement.

As the travel time between two locations, when ferries are present, is dependent on the

departure time, not considering ferries is in fact solving the wrong problem. This thesis

focuses on the advantages of considering ferries in a VRP, as well as documenting the extra

computational e�ort needed. We present an approach towards ferries using a set of travel

times for each origin - destination pair containing one or more ferries. The travel times

are calculated for departure times of chosen intervals using intermediate times to and from

the ferry connections. Results show that considering ferries yield substantial improvements

when implementing the route plans, in comparison to a standard VRP solver using static

travel times.

Contents

1 Introduction 7

1.1 Motivation and background . 7

1.2 Outline of thesis . 7

2 Vehicle Routing Problem 8

2.1 Extensions . 8

2.2 Time-dependent travel times and costs . 9

2.3 Stochastic time-dependent travel times . 10

2.4 Ferries in VRP . 11

3 Solution methods 12

3.1 Exact methods . 12

3.2 Heuristic algorithms . 12

3.2.1 Classical Heuristics . 12

3.2.2 Metaheuristics . 13

3.3 Time-dependent travel times . 15

4 Solution strategy and implementation techniques 16

4.1 Solution strategy . 16

4.1.1 Advantages and drawbacks of the strategy 17

4.1.2 Other strategies towards ferries in VRP 18

4.2 Metaheuristic . 19

4.3 Implementation language . 19

4.4 Data structures . 20

5 Mathematical model and exact methods 20

5.1 MIP model for CVRP . 21

5.2 MIP model for the TDVRP . 22

5.3 Comparison of models . 23

5.4 Solving with CPLEX . 24

6 Tabu search heuristic 24

6.1 The Tabu Search algorithm implemented 24

6.1.1 Moves . 25

4

6.1.2 Diversi�cation . 25

6.1.3 Solver speci�c details . 26

6.2 Preliminary testing . 27

6.2.1 Test cases . 27

6.3 Parameter values . 27

6.3.1 Run time . 28

6.3.2 Tabu tenure . 29

6.3.3 Infeasibility . 29

6.3.4 Diversi�cation strategy and parameters 29

6.3.5 Initial solution . 30

7 Computational experiments and results 30

7.1 Test cases with ferries . 30

7.1.1 Veiviseren . 31

7.1.2 Strategy . 31

7.1.3 Modi�cation of Veiviseren . 31

7.1.4 Ferries in test case . 32

7.2 Cases from real world . 35

7.2.1 Nortura . 36

7.2.2 Oskar Sylte . 36

7.2.3 Test cases . 36

7.3 Testing environment . 37

7.4 Validation of the time-dependent solver . 37

7.5 Resolution of T . 38

7.6 Analysis of solutions from a CVRP solver using the TDVRP solver 42

7.6.1 Generated test case . 42

7.6.2 Real world test cases . 45

7.7 Using approximation to consider ferries in VRP 49

7.7.1 Approximation on sailing time . 50

7.7.2 Approximation on frequency of departures 51

7.7.3 E�ect of ferry density . 53

7.8 Computational e�ort . 54

7.8.1 Comparison of executable speed using di�erent compilers 54

7.8.2 Performance of solvers . 56

5

8 Conclusions 58

8.1 Future work . 58

References 60

A Tools used for this thesis 62

B Test of data structures 64

C Preliminary testing 66

D Test of time intervals 68

E Test of computational e�ort 72

6

1 Introduction

1.1 Motivation and background

During the time at Molde University College (HiM) we followed an introductory course

given by professor Arne Løkketangen, Heuristic Optimization Methods. There we got to

know the Vehicle Routing Problem (VRP) and when professor Løkketangen proposed a

master thesis covering heuristic implementation of time-dependent travel times into an

already existing VRP solver, we were really interested.

This master thesis covers the problem with time-dependent travel times in a VRP solver

with focus on ferries. Not considering ferries in a VRP solver where ferries are in fact

present, will cause the solver to be inaccurate as the travel time from an origin to the

corresponding destination could be heavily dependent on the departure time from origin.

Solutions provided by a standard VRP solver might look good, but in real life they may

cause the vehicle to wait for a ferry when it could have visited another customer �rst or

the solutions might even be infeasible. Adjusting the routes to connect better with the

departure time of ferries could improve the solution.

Local topography is also a motivation for this thesis as the county we live in contains a lot

of ferry connections. Only in our county, Møre og Romsdal, there are 38 ferry connections.

For local companies, having a planning tool that considers ferries would be very bene�cial.

Two local companies, Oskar Sylte and Nortura, have provided information used in this

thesis. They have been kind enough to provide us with customer data used in their delivery

plans as well as answered questions related to the problem formulated in this thesis. This

thesis builds on the PhD work of Oppen (2008) and his work for Nortura. Oppen has also

contributed by providing us with the source code of his VRP solver as well as valuable

expertise and advice.

1.2 Outline of thesis

In Section 2 we will present the Vehicle Routing Problem as well as topics related to it.

Section 3 looks at di�erent ways to solve the VRP as it has been done previously, while

Section 4 is about strategic choices made in this thesis. In Section 5 we present MIP models

7

for the two problems as well as use of exact methods while 6 is all about the heuristic chosen

in detail. Section 7 contains the computational experiments and results accumulated from

this thesis. The conclusions are presented in Section 8.

2 Vehicle Routing Problem

The VRP is to optimally allocate transportation tasks to a �eet of vehicles, and �nding

an optimal routing for each vehicle thus minimizing costs. The VRP is of high industrial

relevance and can arise in several industries. Examples of applications are the planning of

local pickup and/or deliveries for transportation companies.

A classical capacitated VRP (CVRP) is de�ned over a graph G = (N,A) where N =

{0, ..., n} is a vertex set (0 is the depot, other vertices are customers) and A = {(i, j) :

i, j ∈ A, i 6= j} is a set of arcs. The cost of traveling between customer i and j is de�ned

as cij ≥ 0 while di is the demand at customer i. Each vehicle also have a limited carrying

capacity of Q. The goal is then to design optimal routes according to the objective, with all

routes starting and ending at the depot. In addition all customers must be visited exactly

once. Total demand of all customers in a route must be less than or equal to the capacity

Q of the vehicle assigned to that route. If the total demand of the problem is larger than

the aggregated capacity of the vehicles, the problem is infeasible (if not allowing multiple

tours per vehicle).

2.1 Extensions

There are many extensions to the VRP, some of them need to be considered in this thesis.

These extensions can also be combined to �t most real-world VRP problems.

One extension to the VRP is to include Time Windows (VRPTW). Time windows mean

that the service at a certain location must start within the given time interval and the

vehicle remains at the location for the duration of the service time. These time windows

could also be applied to the depot, for example when a vehicle starts at 8:00am and must

be back at the depot before it closes at 4:00pm. If we limit the time horizon this will in

practice be a time window for the depot.

8

Another extension to the VRP is the introduction of backhauls (VRPB). This has two sets

of customers, linehaul customers requiring a given amount of products to be delivered and

backhaul customers who have inbound products to be picked up and brought back to the

depot.

An extension similar to the VRPB is the VRP with pick-up and delivery (VRPPD). Here

the customers have both demand for goods to be delivered and goods to be picked up. The

vehicle must then pick up goods at one location and deliver it to a di�erent location.

One extension included in this thesis is the time-dependent VRP (TDVRP). In TDVRP,

the travel times between locations are dependent on the departure time of the vehicle.

There are many reasons to why travel times are time-dependent, e.g. rush hour, weather,

accidents and so on. The TDVRP deals with this having a set of travel times dependent

on departure time, between all origin-destination pairs.

A more extended overview of these extensions to the VRP can be found in Toth and Vigo

(2002).

2.2 Time-dependent travel times and costs

The purpose of this thesis is to look at the problem of time-dependent travel times with

emphasis on inclusion of ferries. Time-dependent travel times means that the travel time

from i to j depends on the departure time from i. Looking at ferries this means that

although a ferry crossing has a �xed duration, the travel time is dependent on the vehicles

arrival at the ferry docks. If the vehicle arrives just after a ferry leaves the dock, waiting

time is until the next departure. Not looking at the stochastic aspects of ferry crossings (See

Section 2.3), this problem has exact departure times and is therefore possible to implement

in a standard VRP solver.

Another example of time-dependent travel time is where travel times, especially in urban

areas, �uctuate due to rush hour congestion. At certain periods during the day, when roads

are carrying more tra�c, the travel time will be longer. Compared to ferries these times

are less accurate, but using estimates based on statistics will make it possible to include

this into a VRP solver.

9

There are also examples of time-dependent travel cost for using roads. This will not a�ect

the travel time, but will give a larger cost for using roads at given time of day. As optimal

routes in a VRP solver also can be evaluated from the cost of traveling, this could be

of much importance. An example of this is the road pricing system of Bergen, Norway.

Vehicles entering the city between 6:00am and 10:00pm on weekdays have to pay a charge.

This way the cost for traveling on these roads are higher at certain times, making the cost

time-dependent.

2.3 Stochastic time-dependent travel times

Most of the travel times in the real world are stochastic. Rush hour, weather, accidents and

road work are all examples of why the travel time when traveling between two locations

is stochastic. It is our belief that this is very di�cult and time consuming to handle

accurately in a VRP solver, although estimates can be used to model what is likely. Rush

hour delays in cities are often similar from day to day and one can use real data to evaluate

the congestion during the day. This can then be used as weights on the travel time on that

link so that hours with heavy congestion have longer travel time than less congested hours.

Looking at ferries, there are also stochastic challenges, e.g. ferries not on schedule or ferries

with limited capacity. If a large vehicle arrive at the docks just in time for a departure

it might be the case that there is not enough space left on the ferry, especially on ferry

connections carrying a great deal of tra�c. If this is included in a VRP solver it could be

assumed that the closer to a departure you arrive at the docks, the more likely it is that

you could not embark. This could also be related to the time of day as with rush hour.

Weather is also a factor that can a�ect the travel times. If still looking at our county,

winter conditions in combination with steep and/or curvy roads will give a longer travel

time. Ferries are also a�ected by weather, especially wind. Heavy wind could cause the

ferries to be o� schedule or in worst case laid up. There are also examples of high and low

tide causing problems for ferries loading and unloading because of the angle of the landing

apron.

10

2.4 Ferries in VRP

As mentioned, not considering ferries in a VRP where ferries are in fact present, could

cause the solutions to be very inaccurate. The ferry connections could be included with

zero distance, the real distance of the crossing or even the sailing time. All would be

inaccurate. It is possible that a ferry connection with frequent departures could be an

approximation but still not accurate. For remote places with few departures a day this

could in the worst case lead the solution to be infeasible. An example of this could be if

a vehicle uses a ferry connection to a remote place but the service time at the destination

is so large that the vehicle will not make the last return departure. The precision of the

travel times is proportional to the density of ferries. In this thesis the density of ferries is

de�ned as the share of arcs in the topology containing ferries e.g. 1 means that all arcs in

the topology contain one or more ferry and 0.5 density means that half of the arcs in the

topology contains ferries

Considering the time-dependent travel time aspect of ferries in a VRP, both when making

the instances and when solving the problem will give more accurate solutions. Compared

to a solution from a standard solver not considering ferries, taking the ferries into account

may give a di�erent solution. While the standard solution may choose a link containing

a ferry that in real life would cause a lot of waiting time, the solver considering ferries

might add one or two customers to the route before using the arc with the ferry. A time-

dependent solver might also choose not to use the ferry at all. It could also be the case

that a later departure from the depot will be bene�cial. This way, some of the solutions,

maybe even the optimal solution for a standard VRP could be rendered infeasible or at

least far from the real optimum.

When asking the two companies providing customer data for this thesis, Nortura and Oskar

Sylte, on how they solve the problem with ferries today, the answer from both were that

this is something that is done by the drivers themselves. They both state that they have

not experienced any problems due to bad planning of ferries. The exception for this are

stochastic problems like weather, for example when all ferries are laid up because of storms.

This claim was in a way surprising as the geographical area covered contain loads of ferry

connections. One statement gave away clues that these routes might be carefully planned

as they said that their drivers "always give themselves more time on routes with ferries".

11

This could mean that the routes contain less customers than it could have, and/or that

the driver use more time on the route compared to an optimal solution considering ferries.

This would again lead to larger driver and traveling costs for the companies.

3 Solution methods

This section covers some of the earlier work done on solving the VRP, both with and

without time-dependent travel times. Many methods are proposed to solve a standard

VRP while there is less extensive research done on the case of time-dependent travel

times. There is not much work published on the VRP with ferries.

3.1 Exact methods

Laporte and Nobert (1997) gives a overview over exact methods to solve a VRP prob-

lem. They cover methods like Assignment lower bound, k-degree center tree, Dynamic

programming, Set partitioning and column generation, Two-index vehicle �ow formulation

and Three-index vehicle �ow formulation. Common for all these exact methods is that

they are only capable of solving smaller problem instances of size up to 50 nodes.

3.2 Heuristic algorithms

Heuristics are used to solve larger instances. Heuristics methods can not guarantee solving

a problem to optimality, nor can it prove optimality when an optimal solution is actually

found. Heuristic methods can be able to produce very good results close to the optimum

very quickly thus they are often chosen before exact methods to solve large problem in-

stances. In many cases it is more important, and even bene�cial, to get good solutions

quickly rather than a near-optimal or optimal solution after a long time. Heuristics are

commonly divided into two parts, classical heuristics and metaheuristics (outlined in Sec-

tion 3.2.2).

3.2.1 Classical Heuristics

The most popular classical heuristics are naturally divided into two groups, constructive

heuristics and improvement heuristics.

12

Clarke and Wright (1964) introduced a savings algorithm, a constructive algorithm for

the Traveling Salesman Problem (TSP) with the basic idea of creating small routes to all

nodes in the graph and then merge these one by one by choosing the feasible merge that will

provide the largest savings. This is then repeated until they could not save more, having

a feasible solution to the TSP. The TSP is another combinatorial optimization problem

where the task is to �nd a shortest possible tour that visits all customers exactly once. A

VRP with number of vehicles equal to one is a TSP. The savings algorithm can also be

adapted to the CVRP where customers are inserted into several routes according to the

largest saving and the capacity constraint.

Gillett and Miller (1974) proposed another constructive heuristic using a sweep algorithm.

Starting with a half-line rooted at the depot, this heuristic gradually constructs feasible

routes by rotating a second half-line. Customers are gradually incorporated into the current

route in increasing order of the angle they make with the initial half-line. The route closes

when the inclusion of a further customer becomes infeasible due to capacity constraints.

Laporte (2007) describes two types of improvement algorithms that can be applied to VRP

solutions, Intra-route and Inter-route heuristics. Intra-route heuristics post-optimize each

route by using TSP improvement heuristic e.g. 2-opt or 3-opt as presented by Kernighan

and Lin (1973). Inter-route heuristics consist of moving vertices to di�erent routes. Laporte

also states that the most common moves are simple transfers from one route to another

and transfers involving several routes and vertex exchanges between two ore more routes.

The performance of classical improvement heuristics is good but not excellent and are best

used as building blocks within metaheuristics or to get initial solutions as starting points

for metaheuristics.

3.2.2 Metaheuristics

Metaheuristics are heuristics that explore the solution space beyond the �rst local optimum

encountered. All metaheuristics adapt procedures from classical heuristics and are broadly

classi�ed into three categories in Laporte (2007); local search, population based search and

learning mechanisms.

A local search heuristic start from a initial solution (could be any solution, even infeasible)

13

and moves to a di�erent solution in the neighborhood. The neighborhood of a solution is

de�ned as all the solutions one can reach by one transformation, e.g. a move of a customer

to a di�erent route. Tabu Search by Glover and Laguna (1997) is a very popular local

search based metaheuristic and has proven to be very successful. The idea of tabu search

is to make recent transformations taboo for a certain number of iterations to avoid cycling.

Using tabu search on the VRP is well-studied and has much published work. Many im-

plementations of the tabu search metaheuristic has been successful and has provided good

results. Some that can be mentioned are the approach by Taillard (1993) using two par-

tition methods (problems with polar regions or of arborescent form), the Taburoute by

Gendreau et al. (1994) and Uni�ed Tabu Search Algorithm by Cordeau et al. (2001).

An overview of these algorithms and their performance as well as more can be found in

Gendreau and Laporte (2005).

One population search based algorithm is Genetic Algorithms (GA) by Holland (1975).

GA is inspired by evolutionary biology and evolve a population of solutions represented by

chromosomes through a crossover and mutation process. A common structure of GA is;

First, the crossover takes two parents and combine them to generate one or two o�spring

chromosomes. A mutation process is then applied to the o�spring and the o�spring replace

the worst element in the population. Another very good memetic (GA in combination with

a local search heuristic) algorithm is that of Nagata (2007) who initially relaxes the capac-

ity constraint and handles it through a penalty function when exploring neighborhoods.

Another approach that has proven to yield very good results is the approach by Mester and

Bräysy (2007) where an active-guided evolution strategy is used on the CVRP. Mester and

Bräysy (2007) combines the strengths of the well-known guided local search and evolution

strategies metaheuristics into an iterative two-stage procedure.

Ant Colony Optimization (ACO) is one metaheuristic classi�ed as reinforcement learning

mechanism. This is also inspired by nature and attempt to mimic the behavior of ants.

Ants detects paths containing pheromones and strengthen it with it's own pheromone. As

ants choose the shortest paths, the pheromone on these accumulates faster. In ACO the

system memory is the pheromone and represents edges often appearing in good solutions

making good edges more likely to appear in good solutions.

14

3.3 Time-dependent travel times

The case with time-dependent travel times is when the travel time between two customers

can vary dependent on the departure time. The change in travel time could be due to road

congestion, ferry crossings and so on.

Malandraki and Daskin (1992) propose an ILP formulation of the time-dependent VRP

and TSP. Each link has a cost that is a step function depending on the time of departure.

The paper also gives two heuristics for the time-dependent VRP based on tour construction

and a heuristic cutting-plane approach. The problem with step functions is that the can

be cases where the non-passing property (FIFO) is violated. This property states that if

vehicle A depart at the end of a step where the cost is high and another vehicle B depart in

the beginning of the next step where cost is low, vehicle B might arrive at the destination

�rst.

Ichoua et al. (2003) formulated a model based on time-dependent travel speeds. They

adjust the speed of the vehicle by dividing the time horizon (a day) into time periods, thus

changing the speed when the boundary between two consecutive time periods is reached.

Donati et al. (2003) combines robust shortest path (RSP) algorithm and ant colony op-

timization. The RSP algorithm uses an interval representing the possible travel times for

each arc. The algorithm then use the time-dependent interval data to get more reliable

travel time thus it is more robust than the normal shortest path algorithms. They apply

the method to a VRP based on the Padua road network and dynamic vehicle speeds that

were collected hourly from the tra�c control system Cartesio. The robust shortest path

for each pair of customer locations is precomputed and stored in memory before the opti-

mization starts.

Haghani and Jung (2005) also present an ILP formulation of a pick-up or delivery VRP

with soft time windows in which they consider multiple vehicles with di�erent capacities,

real-time service requests, and real-time variation in travel times between demand nodes.

They use a continuous travel time function instead of a step function, a way that satis�es

the non-passing property.

Kerbache and van Woensel (2004) model a VRP with time windows and stochastic travel

times. Their approach handle the potential tra�c congestion using queuing theory to cap-

ture the stochastic behavior of the travel times. In addition they use a case study to show

that time-independent solutions often are unrealistic within congested tra�c environments.

Donati et al. (2008) present a Multi Ant Colony System for the time dependent VRP. They

15

focus on variable tra�c conditions on real road networks, like in urban environments. They

also formulate a time dependent local search procedure and they provide computational

results of the use of RSP algorithm.

4 Solution strategy and implementation techniques

As well as getting a good problem description, the choice of strategy and techniques are

also important. Presented in this Section are the strategic choices made regarding strategy

towards inclusion of ferries as well choices made for implementation.

4.1 Solution strategy

In a normal network topology the link between two vertices would be represented as one

edge. In real life travel from i to j will normally contain a path of several consecutive

arcs. The distances of the consecutive arcs would make the total distance from i to j. As

some of these arcs could be ferries these have to be treated di�erently. This would also

mean that the graph is not symmetric as the travel time from j to i could di�er from the

travel time from i to j. The main idea for this thesis is to identify connection (i, j) that

contains one or more ferries and use intermediate travel times to and from the ferry docks

to �nd the next departure time for the ferry.

Looking at a real world problem, intermediate times would then mean the time used on

each Section of the route that does not contain a ferry. Going from i to j with one ferry

connection on the route, this will give us two intermediate times. From i to the �rst ferry

dock and from the dock to j. This is illustrated in Figure 1. If there are several ferry

connections the �rst step can be repeated by storing intermediate time from the dock

where the vehicle disembark the �rst ferry and to the next ferry dock.

Figure 1: Illustration of intermediate times before and after ferries

16

The idea is to get an Origin-Destination (O-D) matrix with all travel times from origin i to

destination j, where all routes containing ferries are specially marked and the rest have the

normal static travel times. First the day is partitioned into p time intervals T1, T2, ..., Tp.

Travel times for each route containing ferries are then calculated for all time intervals. By

using the intermediate times accumulated we then �nd the travel time to the �rst ferry

encountered. The ferry's timetable is then processed to �nd the next possible departure

and time is set equal to that departure. Finally the ferry's crossing time is added. This

is then done for all ferries in the route (if more), and the time from the last ferry to the

destination is added.

The resolution of T , the number of intervals (p), is an important issue to address when

using this strategy. Storing the time-dependent travel times for all arcs (i, j) that contain

ferries leads to a growing size for the data �le as p, the number of intervals, gets bigger.

Similarly, the �le size is reduced as the p is reduced. The same principle is valid for the

time needed to generate the instances with time-dependent travel times and reading them

into the TDVRP solver. The precision of the data is also dependent on p as a small p gives

more precision than a large p. A small p could for example mean that the time-dependent

travel times are calculated for each minute throughout the time horizon, while a large p

could be for every 15 minute.

Results from tests regarding intervals are presented in Section 7.

4.1.1 Advantages and drawbacks of the strategy

The strategy using intermediate times to and from ferries is an approach which includes

ferries in a VRP solver without adding much to the complexity of the solver. Where stan-

dard VRP solvers have one lookup for travel times from i to j, the approach in this thesis

needs two; �rst to retrieve the time-dependent travel times for (i, j) and then the travel

time for the right interval. This is also the case if there are several ferry connections on

the arc (i, j). Maintaining the level of complexity in the solver indicate that ferries are

implemented e�ciently. Compared to the bene�ts of getting more accurate solutions when

considering ferries (see Section 2.4), the computational e�ort needed for the extra lookup

would be insigni�cant.

17

The strategy proposed also have some issues that could be considered as drawbacks. The

most signi�cant is the possibility of alternative routes outlined in Section 4.1.2. The strat-

egy proposed focus on the inclusion of ferries in the shortest paths found for the VRP,

although inclusion of ferries could lead to other routes being shortest paths for certain

time intervals. Using the shortest paths could also result in several ferries on the same arc

(i, j). This is not considered a problem as it is assumed that the ferries are there to provide

the shortest path to the destination and that the interval in which the ferries depart is the

optimal schedule to provide this shortest path.

Another less important drawback with this strategy is the aspect of waiting time. Con-

sidering ferries on an arc (i, j) will in most cases lead to some waiting time. This waiting

time will be represented as waiting time on the arc (i, j) for the given interval p. If there

is only one ferry on the arc, the waiting time for (i, j) will be the waiting time before that

ferry. The drawback is when there are several ferries on the arc, the waiting time will be

the accumulated waiting time before all ferries.

4.1.2 Other strategies towards ferries in VRP

There are several ways to approach the problem with inclusion of ferries in a VRP. One

that has been discussed is to use the same approach as used in this thesis but to handle

the ferries while deciding shortest paths between vertices, not after the decision is made.

The purpose is then to �nd the shortest path with relation to time, for all time intervals,

where there are ferries. In that way the algorithm may �nd an alternative route that will

give lower travel time than waiting for a ferry and using the ferry connection. It is our

belief that this would be very time consuming. This would require that the algorithm not

only search for shortest paths between all vertices but also for all time intervals, e.g. 1440

intervals per origin-destination pair if 1 minute intervals are used.

As mentioned, the approach used in this thesis has one major drawback. It has no pos-

sibilities for choosing an alternative route to avoid waiting for a ferry. In some cases this

could cause some problems, for instance having a route over several days when ferries has

less frequent departures at night. In this thesis we assume that taking such an alternative

route would not be bene�cial if there are no customers along the alternative route. We

also assume that this problem can be worked around automatically by the solver as it can

18

add customers prior to a ferry departure or even choose another sequence of customers so

that it will become an alternative route not needing to use the ferry connection.

Another approach is to let the solver �nd shortest paths and handle ferries simultaneously.

Providing the solver with not only the customer data, but the entire topography with sev-

eral road links between customers, could give the solver a chance to �nd optimal routes

considering ferries. With this approach, handling of stochastic behavior through "live up-

date" of for example ferries o� schedule or cancellations is possible. Using this approach

will mean that we will get a very complex solver that would need to handle so much more

than a standard solver normally do. We believe that this approach would need a lot of

programming and would be very heavy computationally at run-time, although the travel

time matrix can be built gradually during the search.

4.2 Metaheuristic

Tabu Search is the metaheuristic chosen for this thesis. There are several reasons for

this choice. Prior knowledge is the biggest contributing factor as Tabu Search was the

heuristic used in the course project where we �rst were introduced to VRP and heuristics.

This will take some of the focus away from building the solver and over to the problem

at hand. As mentioned we also have access to Johan Oppen and his PhD work Oppen

(2008) and we found it appropriate to use the same heuristic as some of the results of our

work might also be implemented in the solver used by Nortura, if found satisfactory.

The history of the Tabu Search is also a major factor in our choice. It has been widely

used on VRP and has proven to yield good results. Bräysy and Gendreau (2001) has

tested several of the implementations of Tabu Search and give an overview of the basic

features as well as a presentation and analyzes of the experimental results from the tested

implementations.

4.3 Implementation language

As programming language for implementing the solver C++ was chosen. This language

is popular in the �eld of operational research, especially when the problem is demanding

fast execution. The solver by Oppen (2008) is also implemented in C++ thus using C++

19

for this thesis would ease the future integration. As we had no prior knowledge of the

language we were also curious to try it.

4.4 Data structures

To minimize the extra e�ort needed to get the travel time for arcs with ferries, the best

possible data structure to use in the time-dependent VRP solver needs to be identi�ed.

The implementation of a standard VRP solver uses a two-dimensional vector of doubles

or ints to hold the travel times. This vector operates in constant time for lookup given

an O-D pair. The goal is then to �nd a data structure that is as close to this time as

possible for the extended lookup needed when ferries are present. More detailed infor-

mation on the mentioned data structures can be found in the C++ Library Reference

(http://www.cplusplus.com/reference/).

In the time-dependent solver, retrieving travel times from O-D pairs that does not contain

ferries will approximately be in constant time. This is not the case when the O-D pair con-

tains one or more ferries as it needs to be checked for the right interval p and its associated

travel time. As this is the main di�erence from the standard solver we have compared the

use of C++ STL Vector and Map (C++ Library Reference) for storing the travel intervals

and using double or int for the time variables.

For the VRPTD solver, vector has been chosen as the data structure. A primary two-

dimensional vector contains objects for each O-D pair. This object holds another vector

containing the travel intervals with its associated travel time and distance.

Computational results from the data structure testing can be found in Appendix B.

5 Mathematical model and exact methods

Making mathematical models for the two problems, CVRP and TDVRP, will be bene�cial

in several ways. First of all, building the solvers would be easier when having exact models

to build from. Solving the problems exactly can only be done on smaller instances, or

lower bounds for larger instances can be provided by running for a certain period of time.

For this thesis the purpose of using exact methods is to get optimal solutions on small

20

instances to validate the standard VRP solver as well as getting a good de�nition of the

problem before creating the solvers.

5.1 MIP model for CVRP

The model presented here is based on standard models of the VRP problem as by Toth

and Vigo (2002). In comparison to standard models, the one presented here has the

extension of sub-tour elimination by using the MTZ (Miller-Tucker-Zemlin) constraint

by Miller et al. (1960). Sub-tours are disjoint tours, in other words tours that are not

connected to the depot. The instances only need to be solved once, in comparison to other

sub-tour eliminating methods that need constraints to be added for each sub-tour found

and then solved again.

min
∑

(i,j)∈A

cijXij (1)

s.t.∑
(s,j)∈A

Xsj = |K| (2)

∑
(i,j)∈A

Xij = 1,∀i ∈ V \ {s} (3)

∑
(i,j)∈A

Xij =
∑

(j,i)∈A

Xji,∀i ∈ V (4)

Uj ≤ Ui − di +Q(1−Xij),∀i, j ∈ V \ {s}, i 6= j (5)

0 ≤ Ui ≤ Q,∀i ∈ V \ {s} (6)

Xij ∈ {0, 1},∀(i, j) ∈ A (7)

Here, V is a set of all nodes including the depot, A is a set of arcs between nodes i and j

and K is the set of vehicles. The parameter cij is the cost of using the arc between i and j

while Xij is a binary decision variable taking the value 1 if the arc between i and j is used

and 0 otherwise. Parameter s represent the depot node while Q is the vehicle capacity. Ui

is a monotonous decreasing load on vehicle after visiting customer i and di represent the

customer demands.

21

The objective function (1) expresses the minimization of the total travel cost. Constraint

(2) expresses that all vehicles must start at the depot while (3) expresses that all customers

must be visited. (4) makes sure that the in-degree is equal to the out-degree for all nodes.

(5) is a sub-cycle eliminating constraint making sure that we have no routes disconnected

from the depot. As the load at j is restricted to be less than the load at j in addition to

the demand at j for all customers, no routes can be disconnected from the depot as those

routes would violate the constraint. (6) are bounds for the load on each vehicle while (7)

impose binary constraints on the Xijvariables.

5.2 MIP model for the TDVRP

A mathematical model has also been developed for the TDVRP, in order to get a good

problem de�nition.

min
∑
k∈K

∑
(i,j)∈A

(cij(Tik))Xijk (8)

s.t.∑
k∈K

∑
(i,j)∈A

Xijk = 1,∀i ∈ V \ {s, s̄} (9)

∑
(s,j)∈A

Xsjk = 1,∀k ∈ K (10)

∑
(i,s̄)∈A

Xis̄k = 1,∀k ∈ K (11)

∑
(i,j)∈A

Xijk =
∑

(j,i)∈A

Xjik,∀i ∈ V \ {s, s̄}, k ∈ K (12)

∑
i∈V \{s,s̄}

∑
(i,j)∈A

diXijk ≤ Q,∀k ∈ K (13)

Tsk = E,∀k ∈ K (14)

Tjk − cij(Tik)− Tik ≤ (1−Xijk)Mij,∀(i, j) ∈ A, k ∈ K (15)

E ≤ Tik ≤ L,∀i ∈ {s, s̄}, k ∈ K (16)

Xijk ∈ {0, 1},∀(i, j) ∈ A, k ∈ K (17)

Here, V is a set of nodes including the depot, A is a set of arcs between i and j while K

is a set of vehicles. cij(Tik) denotes the time-dependent travel time when vehicle k departs

22

from node i while Tik is the variable holding the vehicles departure time from i. Xijk is a

binary variable taking the value 1 if vehicle k travels from node i to node j and 0 otherwise.

To control the time variable we need to make a copy of the depot node as this will have

two recorded times for each vehicle, departure and arrival. If only one depot node is used

in a tour, constraint (15) will always be violated as Tsk can not be both smaller than the

Tjk for the �rst customer visited and larger than Tik for the last customer visited by vehicle

k. The two depot nodes are represented as s and s̄. The demand at customer i is denoted

as di while the vehicle capacity is given as Q. Mij is a big number used to control the

continuity of the time variable.

The objective function (8) expresses the minimization of the total travel costs. (9) makes

sure that all customers are visited by one and only one vehicle. Constraints (10) and (11)

expresses that each vehicle must start and end at the depot (end at copy of depot node)

while (12) is a continuity constraint stating that a vehicle visiting a customer must also

leave it. (13) expresses the capacity for the vehicles. (14) makes sure that the time variable

for each vehicle starts at the start of the time horizon when leaving the depot. Constraint

(15) controls the time variable using big M notation. In short it states that the departure

from j must be equal to the departure from i plus the travel time from i to j if the arc (i, j)

is used by vehicle k. (16) limits the time variable to be within the time horizon where E

is the earliest start time possible and L the latest arrival back at depot, while (17) impose

binary constraints on the Xij variables.

5.3 Comparison of models

The main di�erence in the model in Section 5.2 from the one shown in Section 5.1 is the

time variable. As the travel times are time-dependent we need to ensure that the travel

time calculated is the one corresponding to the vehicles departure time. This time variable

also require some constraints to make sure that the time is continuous, meaning that the

arrival at j is equal to the departure from i and the cost of traveling from i to j. The sub-

eliminating constraint from the CVRP model is also removed, but this is now controlled

by the constraints (10) and (11) forcing all tours to start and end at the depot.

23

5.4 Solving with CPLEX

The model for the CVRP (see Section 5.1) have been coded for AMPL and solved using

CPLEX as solver. The purpose is to obtain optimal solutions for small problems that can

be used to validate the CVRP solver. The model for the TDVRP has not been coded for

AMPL as the time dependency of travel times cij causes the problem to be non-linear. The

model for the TDVRP has only been used as problem de�nition.

6 Tabu search heuristic

As mentioned in Section 3, tabu search (TS) is a metaheuristic that explores the solution

space by using local search. TS explores the solution space by moving from one solution s

to the best solution in its neighborhood N(s) at each iteration. To avoid cycling there must

be some anti-cycling rules. This is done by declaring attributes of recent moves performed

tabu for the length of the tabu tenure θ, where θ is the number of iterations the customer

is not allowed to be moved back to the same route. To further explore the solution space, a

diversi�cation strategy is used to guide the search into other regions of the solution space.

This can be based on frequency based counters on attributes of solutions, e.g how many

times a customer has been added to a tour or how many times a customer has been moved

in total.

6.1 The Tabu Search algorithm implemented

The implementation of TS in this thesis is based on Cordeau et al. (2001) and ideas from

Oppen and Lokketangen (2008). Let c(s) denote the total travel cost for the routes in

a solution s ∈ S and q(s) denote the violation of the capacity constraint. The violation

of the capacity constraint is computed for each route with respect to the vehicle capacity

Q. A solution is evaluated by the cost function (18), where α is a dynamically adjusted

parameter.

f(s) = c(s) + αq(s) (18)

As the parameter α is dynamically adjusted with respect to the load constraint, this allows

exploration of infeasible solutions. This is performed after each move. If the move leads

to a feasible solution, the value of α is decreased to make it cheaper to visit an infeasible

solution. Whenever the move lead to an infeasible solution the value of α is increased to

24

make it more costly to visit infeasible solutions, thus guiding the search back to the feasible

region of the search space.

An attribute set A(s) = {(i, k) : customer i served by route number k} which is associ-

ated with each solution s ∈ S is used for the diversi�cation mechanism. The neighborhood

N(s) of a solution s is de�ned by applying an operator that removes an attribute (i, k)

from A(s) and replace it with a di�erent attribute (i, k′), where k 6= k′. The size of the

neighborhood can then be expressed as |N | = n(m− 1).

As proposed by Oppen and Løkketangen (2006), a 2-opt post-optimization procedure is

performed on solutions that are good. A solution is good if it is feasible and it has a

total cost less than η times the cost of the current best solution and the algorithm has

performed at least 100 iterations. Oppen and Løkketangen (2006) recommend η = 1.1.

For this thesis, the value of η is presented and tested in Section 6.2.

6.1.1 Moves

A move is performed as a simple transfer of a customer i from one route k to a di�erent

route k′. When customer i is removed from route k, the route k is reconnected by linking

the preceding customer with the successor of the moved customer. Customer i is inserted

in route k′ between two consecutive customers. The position is determined by the move

that yields the smallest value of the move evaluation function (18).

After transferring customer i from route k to route k′, moving the customer back to the

same route k will not be allowed (is tabu) for θ iterations by assigning a tabu status for

the attribute (i, k). The only exception is when the aspiration criterion is met, that is the

move yield a solution with a lower cost than the current best solution.

6.1.2 Diversi�cation

Two mechanisms for diversi�cation has been implemented. The reason why two mecha-

nisms were chosen was the ease of implementation in combination with the possibility of

�nding the best strategy for this thesis.

25

Oppen and Løkketangen (2006) diversify the search by giving a penalty p(s′) =

λ
∑

(i,k)∈A(s′) ρik to the f(s′) for any solution s′ ∈ N(s) such that f(s′) ≥ f(s). ρik is

a number indicating how many times the attribute (i, k) has been part of a good solution

(see Section 6.1). The intensity of the diversi�cation is controlled by the parameter λ.

The second mechanism implemented is the method proposed by Cordeau et al. (2001).

They penalize the value of f(s′) only if f(s′) ≥ f(s) by a factor that is proportional to

the number of times the attributes (i, k), in any solution s′ ∈ N(s), have been added

to a solution. This is then multiplied with a scaling factor
√
nm where n is the num-

ber of customers and m is the number of vehicles. Here, ρik is the number of times

attribute (i, k) has been added to the solution during the search process. The penalty

p(s′) = λc(s′)
√
nm

∑
(i,k)∈A(s′) ρik is added to the value of f(s′). λ is a parameter used to

control the intensity of the diversi�cation.

Both these mechanisms drive the search process to less explored regions of the search space

whenever the search has encountered a local optimum. Note that the penalty is not added

to f(s′) if f(s′) < f(s).

6.1.3 Solver speci�c details

A few choices have been made regarding the test cases generated in this thesis. These

choices are needed to reproduce the results presented in Section 7.

• Start of time horizon is set to 9:00 AM and there is no constraint on route duration.

• Service times at customers are included in the travel times.

There are also details about the two solvers worth noting:

• Both solvers are purely deterministic, no randomization is used.

• The TDVRP solver has an option to run post-optimization on routes where the

departure time can be adjusted by ± 1 hour to check if lower total travel time can be

obtained. The value of 1 hour is chosen based on our judgement of what is reasonable

in the real world. In reality, this value would have to be chosen by the company doing

the vehicle routing.

26

• After a move is performed, the total time for the whole tour is recalculated (for

simplicity this is done for both the CVRP and TDVRP solver).

• All time-dependent travel times are calculated and stored before running. When

using span, the spans are stored with it's travel time. During lookup for travel time

for an interval, the right span have to be identi�ed and travel time calculated.

• When using span, an index pointing to the previous span used is used for each origin-

destination pair. The index is initially set to the span containing the interval equal

to the start of the time horizon.

6.2 Preliminary testing

Many parameters are used to guide the tabu search. Even though this thesis focus on

presentation and solution mechanisms for the inclusion of ferries in a VRP-Solver, �nding

the parameters that would yield the best results would be of value.

6.2.1 Test cases

To do preliminary testing and to validate the implementation of the standard solver it

has been used a subset of instances for the CVRP found at the web site Branch Cut and

Price Resource Web (http://branchandcut.org/VRP/data). For most of the instances the

optimal value is known, but for the rest it is provided a best known solution value for

comparison. The subset used for parameter testing contains the instances A-n32-k5.vrp,

B-n50-k7.vrp, E-n101-k14.vrp, F-n135-k7.vrp and P-n70-k10.vrp. The selected set has

instances with customers varying from 31 to 134 and number of vehicles needed varying

from 5 to 14. Using a varied test set give better indication of solver performance relative

to the tested parameters. Note that the euclidean distance calculated for the instances in

the subset are rounded o� to the nearest integer.

Preliminary testing for the TDVRP solver has been done on the test cases made from real

world data (see Section 7.2.3).

6.3 Parameter values

Parameter sets has been generated as all combinations of selected parameter values for

testing. The parameter values selected for testing is presented in Tables 1 and 2. Table

27

1 show the tested parameter values using the geometrical infeasibility strategy (see 6.3.3)

from Cordeau et al. (2001) while Table 2 show the parameter values tested using the

arithmetical strategy proposed by Oppen and Løkketangen (2006). In the tables, the

diversi�cation mechanism by Oppen and Løkketangen (2006) is represented as DivMode

equal to 1, DivMode 2 represent the diversi�cation mechanism by Cordeau et al. (2001).

Table 1: Parameters tested for geometrical infeasibility strategy.
DivMode δ+ δ− λ α η

1 1.02 1.02 0.015 1 1.01
2 1.5 1.5 5 5 1.05

5 5 50 10 1.1
10 10 10 100 10
100 100

Table 2: Parameters tested for arithmetical infeasibility strategy.
DivMode δ+ δ− λ α η

1 0.01 0.01 0.015 1 1.01
2 0.05 0.05 5 5 1.05

0.5 0.5 50 10 1.1
5 5 10 100 10
10 10

For each infeasibility strategy the total number of di�erent parameter sets are 3200. As

the number of test cases for preliminary testing are 5 (see Section 6.2.1), the total number

of test runs required for the standard solver are 32 000. For the TDVRP solver, the total

number of test runs required are 38 400.

6.3.1 Run time

All of the selected test instances have been run for 5 minutes, regardless of problem size.

The only exception is that when known optimums are found, the search is terminated. As

�nding optimums has lower priority and the focus is to �nd a parameter set that will yield

good results, all the instances have been run for the same amount of time regardless of

problem size. The comparison of the results is based on the average objective value for

each parameter set.

28

6.3.2 Tabu tenure

Value of the tabu tenure θ is set to be as Cordeau et al. (2001) proposed, with θ =

[7.5log10n], both for the standard and time-dependent solver. The value of θ is rounded to

the nearest integer.

6.3.3 Infeasibility

A solution can be infeasible if the load of the tours exceed the vehicles capacity. To

move the search to other neighborhoods, exploring the infeasible region is allowed. The

parameter δ is used to control the behavior when infeasible. Two strategies have been

implemented for this.

The parameter α gives the weight of infeasibility in the move evaluation function. The two

di�erent strategies implemented concerns the way this parameter is adjusted during the

search. Cordeau et al. (2001) propose a geometrical adjustment of α where α is multiplied

or divided with the value of δ. For this thesis, δ has been extended with separate values

denoted δ+ and δ−. Oppen and Løkketangen (2006) use an arithmetical adjustment

where the value of δ+ is added and δ− is subtracted to/from the current value of α.

Using di�erent values for δ+ and δ− could help the α being more rapidly decreased than

increased, meaning that it will guide the search quickly out of the infeasible region.

Test results show that the approach proposed by Cordeau et al. (2001) works best for

both solvers. For the CVRP solver, testing also shows that when using two di�erent values

for the adjustment of α, the best values for δ+ and δ− is found to be 1.5 and 5. The

best initial value of α has proven to be α = 10. For the TDVRP solver these values are

δ+ = 1.02, δ− = 1.5 and initial value α = 5.

6.3.4 Diversi�cation strategy and parameters

To further explore the solution space a diversi�cation strategy is used to guide the search

into other regions of the solution space. For the CVRP solver, the strategy proposed by

Cordeau et al. (2001), described in Section 6.1.2, performs best. This yields good results

as well as providing the result within a reasonable amount of time. This strategy with the

parameter values η = 1.1 and λ = 5 will be the ones used for the CVRP solver.

29

For the TDVRP solver, the diversi�cation strategy proposed by Oppen and Løkketangen

(2006) yields the best results and the values η = 1.05 and λ = 0.015 will be used.

Results for the preliminary testing can be found in the Appendix C.

6.3.5 Initial solution

Four construction heuristics has been implemented to generate starting solution for the

TS. Having a good starting solution could help the tabu search to �nd good solutions

faster. The four heuristics are the construction heuristic proposed by Cordeau et al.

(2001), Sweep algorithm by Gillett and Miller (1974), Savings algorithm by Clarke and

Wright (1964) and a pure greedy approach where elements are inserted iteratively at

places that yield the lowest cost.

As �nding an optimal starting solution is not essential for this thesis, only brief testing

has been done. The Savings algorithm adapted for the VRP seem to perform well thus

this is chosen. Testing also show that although the Savings algorithm use length when

constructing tours, this also give the best initial solutions for the TDVRP solver.

7 Computational experiments and results

A summary of the computational experiments and the results obtained are presented in

this section. The purpose of this thesis is as mentioned to include ferries in a VRP. As

the goal is not to develop superior solvers, but to look at the possibility of inclusion and

possible gain of considering ferries, the experiments are done primarily with focus on

quality of solutions and computational e�ort.

7.1 Test cases with ferries

No published test instances with ferries have been found in the literature. To make a

comparison to the corresponding instance without ferries, new test instances have been

generated. This has been done by modifying a program entitled Veiviseren (see Section

7.1.1). The modi�ed version takes a set of locations and provides test instances suitable for

30

the VRP-solvers. In addition, it provides data that can be used by CPLEX (see Appendix

A) to solve small instances to optimality.

7.1.1 Veiviseren

As part of a bachelor degree at HiM, Gjendem et al. (2005) made a program called

Veiviseren. Veiviseren takes two or several locations as input and provides shortest path

between all locations. The program uses Elektronisk vegnett - Elveg, a database that

contains all the information on roads in Norway. Elveg is combined by two databases

where all the geographical data about roads are taken from Veidatabasen - Vbase and

combined with road information from Statens Vegvesen - Vegdatabank. In addition to

the geographical road information, this also gives detailed information on speed limits,

axle load limitations, height limitations, physical road blocks and so on. Veiviseren uses

the shortest path algorithm by Dijkstra (1959), with a binary heap as the primary data

structure.

7.1.2 Strategy

The goal for this thesis is to compare solution quality and computational e�ort between

a standard VRP solver and an extended solver that include ferries, thus two sets of test

instances have to be generated. These have to be identical with the exception of ferries.

Modi�cations has been done to Veiviseren in order to get the information needed to make

these test instance sets.

7.1.3 Modi�cation of Veiviseren

As mentioned, Veiviseren provides shortest paths between two or more locations. These

paths, or routes, are stored and can be processed after the algorithm has �nished. In a

normal network topology the link between two nodes would be represented as one edge.

As this is calculated from real world data, to travel from i to j could contain a lot of arcs.

These have to be traversed to gather the distance of each arc. The distance of all arcs

traversed would make the total distance from i to j.

The shortest path algorithm does not consider ferries as it �nds the shortest path on the

road network in distance, where ferry crossings are given as zero distance. A detour with

shorter travel time than the ferry's crossing time will not be considered, thus there can

31

exist alternative routes that have lower travel time. However, this seems highly unlikely

on our data sets.

Finding the travel time from i to j is done simultaneously with calculating the travel

distance, calculated by dividing the length of the arc with its speed limit multiplied with

a speed factor (less than 1), which increases the travel time slightly. The use of a speed

factor is done to try to simulate the behavior of larger vehicles accelerating more slowly

and not being able to keep the speed on roads with lower standards.

7.1.4 Ferries in test case

Elveg contains all the information about the road network that is needed. As just some

of this was included in Veiviseren, modi�cation was necessary so that the ferry docks and

ferry connections could be identi�ed. As the arcs are traversed, connecting vertices are also

checked for if a ferry dock is encountered. If so, and the next arc is a ferry crossing, the

route itself is marked as route containing one or more ferries. When a route contains one or

more ferries, intermediate times are also stored for the route up until each ferry encountered

and from the last ferry to the destination, as mentioned in Section 4. To make the travel

time matrix, the travel times for each route containing ferries are then calculated for all

time intervals. To �nd the travel time up until the ferry, the �rst intermediate time is

read. The ferry's timetable is then processed to �nd the next possible departure and time

is set equal to that departure. Finally the ferry's crossing time is added. This is then done

for all ferries in the route (if more), and the time from the last ferry to the destination is

added.

As mentioned in Section 4, the resolution of T (number of intervals) will heavily a�ect the

size of the �le containing the time-dependent travel times. By making spans of intervals,

the �lesize is reduced. The idea is that as long as the vehicle reach the same ferry from

several intervals, the travel time is decreasing proportional to the interval. E.g traveling

from interval 0 and 5 connecting to the same ferry using 5 minute interval, the travel

time at 5 is the same as for 0 subtracted the interval. This is also valid when there are

several ferries as the non-passing property is always satis�ed by the last ferry on the arc

(i, j). Figure 2 shows how the travel times decreases towards each ferry departure. When

departing from an interval not connecting with the ferry, waiting time occurs and the travel

time immediately gets larger.

32

Figure 2: Travel times for a selected O-D pair containing ferries in a 24-hour period. Each
low point is a ferry departure.

Figure 3 shows how span of intervals can be used to store the time-dependent travel times.

When connecting to the same ferry, departing from origin at di�erent intervals may result

in the same arrival time at the destination. This is illustrated as a step function where

each step is a ferry departure.

33

Figure 3: Arrival times at destination when departing from origin at given intervals.

In Section 7.5, test results regarding the resolution of T is presented in terms of generating

and reading all intervals as well as span of intervals.

Figure 4 shows output from a small instance containing ferries. The matrix contains static

travel times for every (i, j) not containing ferries while others are marked with 'F'. This

signals that travel times for this (i, j) is found in the �le containing time-dependent travel

times. It is worth noting that as the travel times where ferries occur are not symmetrical,

as there are entries for both (i, j) and (j, i).

Figure 4: Example output from Veiviseren. Matrix containing entries for ferries and travel
times without ferries

Figure 5 shows the output for the time-dependent travel times for routes with ferries.

34

The �gure show how creating spans of intervals save a huge number of entries in the �le

when p is large. The �le containing all intervals starts by giving the number of intervals

used (p). For each (i, j) a header with start node i and end node j is printed as well as

travel and waiting times for all intervals. In the �le containing the spans of intervals the

same header with start node i and end node j is given. For each span, the start (S) and

end interval of the span is given as well as the travel time (TT) and waiting time (WT)

for the �rst interval. The departure time for the intervals can then be calculated as (TT

- (Departure time - S)). Waiting time is calculated using the same procedure as (WT -

(Departure time - S)).

Figure 5: Example output from Veiviseren. Departure, time-dependent travel times and
waiting time for all intervals on the left. First and last interval of the span, time-dependent
travel times and waiting time on the right.

7.2 Cases from real world

Two companies from the local area has been kind enough to provide some of the customer

data from their distribution plans. This is used to make proper test cases to simulate real

world situations.

35

7.2.1 Nortura

Nortura is a big company resulting from a fusion of what was formerly Gilde Norsk Kjøtt

BA and Prior Norge BA. Nortura is the leading market participant in the meat and egg

industry. Nortura has 39 production sites around Norway, including the two sites in Åle-

sund and Oppdal who has provided customer data for this thesis. This customer data is

mainly livestock collection for slaughter houses as used by (Oppen 2008). The data does

not contain any customer demands, only locations, so the demands have been generated

for own purposes.

7.2.2 Oskar Sylte

Oskar Sylte is a local soft drink producer founded in 1929 and located in Molde, Norway.

They deliver to all of Norway although the main customer base is in the county of Møre

og Romsdal. The customer data provided by Oskar Sylte is from this county and is for the

pickup and delivery problem (VRPPD). As this thesis is focused on ferries in a VRP we

only use the customer locations to make the real world instances. Demands are generated

as in Section 7.2.1.

7.2.3 Test cases

Test cases have been generated based on real world customer data provided by the two

companies, Oskar Sylte and Nortura. The generated instances used for testing are presented

in Table 3, with the corresponding tightness ratio and density of ferries. The tightness ratio

is the total demand of customers in relation to the total capacity of the available vehicles.

A tightness ratio of 1.0 indicates that there are exactly as much demand as there are

capacity. The density of ferries is, as explained in Section 2.4, the number of ferries in

relation to number of arcs. Also, m is the number of available vehicles while Q is the

capacity for each vehicle.

36

Table 3: Test cases generated from real world customer data.
Instance m Q n Tightness ratio Density
OS-27 4 100 27 0.98 0.03
OS-31 5 100 31 0.89 0.43
OS-58 9 100 58 0.94 0.49
OS-116 18 100 116 0.92 0.65
Nortura-97 15 100 97 0.93 0.74
Nortura-273 50 100 273 0.80 0.73

7.3 Testing environment

To make the work load less and testing more e�cient, a small test system has been made.

A script takes the parameters and instances from a con�guration �le and generates tests

for all possible combinations of these. These combinations are put into a database system.

Here all the combinations are stored as a set of tests with a status �eld of value 0, 1 or 2.

0 represent a pending test, 1 is while the test is being executed and 2 is when this test is

�nished. The con�guration for the solver then queries the database for a test with status

0. If one is found, this is set to 1 and tested. When the solver is �nished it sets the status

to 2 and stores all relevant data in a separate table together with the test results.

This setup gives much �exibility. Other parameters can be added while testing is being

done. It also helps keeping track of what values are being tested if something should

happen during testing, e.g. power failure, system shutdown and so on.

7.4 Validation of the time-dependent solver

As mentioned in Section 7.1 no test cases with ferries have been found in the literature.

A small test case with n = 4 and ferry density of 0.5 have been generated to manually

validate the solver. The results from the solver was then checked manually to make sure

the correct travel times where chosen, both in the case of static and time-dependent travel

times. In addition, real world data such as the ferry's schedule and the intermediate times

to get to and from the ferries where checked.

37

7.5 Resolution of T

The resolution of T is of great importance to the precision of the time-dependent travel

times (see Section 4). A high resolution, a large p, would be bene�cial as the precision

would get correspondingly better. But increasing p also result in a larger amount of data.

As mentioned in Section 7.1.4 this can be avoided by using spans of intervals.

Several tests have been performed to test the times used to generate and read the instances

into the solver, as well as the �lesize for the time-dependent travel times and memory

usage for the TDVRP solver. Both the aspect of generating all p intervals and generating

the span of intervals have been tested for p ∈ {1440, 720, 288, 144, 96, 48, 24}. All tests

have been run 10 times to achieve some statistical signi�cance.

Figure 6: Time usage for generating and reading instance OS-58

Figure 6 shows that using span of intervals improves the time usage for generating but

most notably for reading the travel times into the solver. In this thesis it is assumed that

companies solving VRP's daily do not have substantial changes in the instances often

except for customer demands, thus the time used by the solver is of greatest importance.

Figure 7, showing the resources used for the same instance, also gives an indication that

the approach using span of intervals is preferable.

38

Figure 7: Memory used when generating and reading instance OS-58

Figures 8 and 9 shows the same tests performed on a bigger instance, Nortura-273. It is

apparent that using span of intervals need less time and computer resources for the same

resolution of T . Using span provides an opportunity to solve bigger instances using a high

resolution of T , as this is dependent on available memory. Faster initiating of the solver

is also desirable as many companies need solutions quickly.

39

Figure 8: Time usage for generating and reading instance Nortura-273

Figure 9: Memory used when generating and reading instance Nortura-273

40

To evaluate if the approach using span of intervals can be used in the solver, it is necessary

to test the di�erence in computational e�ort in the solver. Reading data and initializing

the solver quickly is of little or no use if the computational e�ort is considerably increased.

The same instances used for the tests of the resolution of T has been used to test the

di�erence in computational e�ort. To achieve statistical signi�cance the tests have also

been run 10 times.

Table 4: Average time in m/sec used for 500 iterations having travel times for all intervals
or span of intervals and percentage of extra computational e�ort using span

All T Span Increase
OS-27 1531 1547 1.05%
OS-31 2094 2266 8.21%
OS-58 9051 9398 3.84%
OS-116 49020 52052 6.19%
Nortura-97 31343 35750 14.06%
Nortura-273 418654 434595 3.81%

Table 4 shows that the computational e�ort is marginally larger when using span. When

the approach having all the intervals have two direct lookups, the approach using span

have to �nd the correct span and then calculate the travel time for the departure time.

Choosing the right resolution for T and the approach to use to store the time-dependent

travel times, is very much dependent on what instances to solve and resources available.

Also, the strategy of �nding the solutions are also of importance. If memory is not a

problem and one plan to run the instance for a long time to get a near optimal solution,

using the approach of storing the travel times for all intervals would be bene�cial. A

faster search would compensate for the time to initiate the solver if the run time is long

enough. Using span of intervals would lead to faster initializing of the solver, thus providing

solutions quicker. Using span would also save a lot of memory, giving the opportunity to

have a high resolution of T even for large instances.

As mentioned, a high resolution of T gives better precision. In this thesis a high resolution

of T with p = 1440 will be used, meaning that travel times will be generated starting at all

minutes of the day. To be able to use p = 1440 for instances of all sizes, span of intervals

will also be used. Looking at the bene�ts of memory saving and speed of initiating the

solver, the decrease in performance is insigni�cant.

41

Details for the tests regarding the resolution of T can be found in Appendix D.

7.6 Analysis of solutions from a CVRP solver using the TDVRP

solver

As mentioned in the introduction, not considering ferries in a VRP when ferries are in fact

present would cause the solutions to be inaccurate. In fact, solving the problems without

considering ferries is solving the wrong problem. The TDVRP solver made for this thesis

have been extended with an extra feature to illustrate this, having the possibility to read

a solution provided by the CVRP solver. The TDVRP solver then traverse the routes

provided by the CVRP solver and �nds the exact travel times when using ferries for the

chosen resolution of T .

7.6.1 Generated test case

For the purpose of showing that not considering ferries in VRP solvers might cause the

solution to be infeasible, a test case have been constructed. The instance constructed is

of size n = 8 and number of vehicles m = 1 for simplicity. Only having one vehicle would

make the constructed problem a TSP, but as the purpose is to prove the infeasibility of

the route this is insigni�cant. There is one ferry connecting one node to the rest of the

nodes in the topology. This ferry has one departure a day in each direction, constructed

so that the vehicle have su�cient time to reach the customer and the return departure of

the ferry.

Figure 10 show the generated test case in a map of the area. The depot is located in the

outer region of the area, while most of the customers are clustered in the city. Customer

5 is disjoint from the rest of the topology and is connected using a ferry connection. As

mentioned this ferry is set up having only one departure each day in each direction. The

ferry departs at such a time so that the vehicle must go directly to the dock. This means

that customer 7 have to be visited on the way back. For simplicity the service time at all

customers is 0.

42

Figure 10: Generated test case shown in map. n = 8

Figure 11: Solution to test case provided by CVRP solver. Duration is 123.75 minutes

43

The solution to the test case provided by the CVRP solver is shown in Figure 11.

Shown in Figure 12 is the solution provided by the TDVRP solver considering ferries.

Comparing the two solutions it is apparent that both solvers provides the same se-

quence of customers, only in opposite directions. As mentioned, if considering ferries,

the vehicle need to go directly to the docks. Customer 6 is on the shortest path

found from depot to the disjoint customer 5 and service time at all customers are 0, thus

the vehicle still reach the ferry departure if customer 6 is visited before embarking the ferry.

Figure 12: Solution to test case provided by TDVRP solver. Duration is 229.15 minutes

Table 5: Results from generated test case. Shows duration and expected waiting time for
CVRP and TDVRP as well as the implemented solution for CVRP.

Duration Waiting
Planned CVRP 123.75 0.00

Implemented CVRP 1649.12 1455.54
TDVRP 229.15 35.33

Table 5 shows the results from solving the generated test instance. To �nd the actual

duration of the solution provided by the CVRP solver, the solution is implemented in the

TDVRP solver. The implementation shows that the actual duration of the solution is

1649.12 minutes, a di�erence of 1525.37 minutes. As the ferry only departs one time a

44

day, not connecting with the ferry departure result in almost 24 hours of waiting time.

The total waiting time for the solution provided by the CVRP solver is 1455.54 minutes

compared to 35.33 in the solution provided by the TDVRP solver considering ferries.

Even though this test case is generated, it shows how a solution provided by a CVRP solver

might be wrong. The case itself is not unlikely for this region, as there for instance are

many farmers living in remote places with ferry connections having few departures a day.

For routes not containing many customers, drivers with local knowledge would possibly

adjust the route according to the ferry schedule. When the number of stops on the route

gets larger, manually adjusting the route would be harder. The manually adjusted route

itself would in some cases also be of poor quality compared to a route provided by a solver

considering ferries.

7.6.2 Real world test cases

To further look at the quality of solutions provided by the standard solver, all test

cases made from the customer data provided by Oskar Sylte (see Section 7.2.2) with

n = {27, 31, 58, 116} and Nortura (see Section 7.2.1) of size n = {97, 273}, have been

used. The test cases OS-27 and OS-31 are based on customer data in urban areas, while

OS-58 also include rural areas. Test case OS-116 is a larger test case with OS-27, OS-31

and OS-58 merged. For the instances Nortura-97 and Nortura-273, the customers (farm-

ers) are mostly located in rural areas, but as the customers are spread over a large area,

most of the areas road network have to be used. Ferries in urban areas carry more tra�c

than ferries in rural areas thus they generally have more frequent departures. All tests are

run for 50 000 iterations for all sizes and for both the CVRP solver and the TDVRP solver.

Table 6: Results from the real world test cases. Shows duration and waiting time in
planned and implemented solution from CVRP solver and solution from TDVRP solver.

CVRP CVRP in TDVRP TDVRP
Duration Duration Waiting Duration Waiting Tours

OS-27 847.63 958.25 70.21 909.75 1.86 4
OS-31 219.08 424.60 65.37 420.09 38.88 5
OS-58 928.22 1517.03 419.33 1189.77 51.45 9
OS-116 3484.96 5022.99 597.62 4635.25 212.15 18

Nortura-97 4916.49 6620.79 911.15 6064.39 141.42 15
Nortura-273 13957.40 20629.00 3857.87 17745.90 765.03 42

45

Table 6 shows the results from the two solvers on the real world test cases. As the CVRP

solver does not consider ferries, these values are not directly comparable. Reading the

solution into the TDVRP solver would give the answer to what the total time used for the

solution would be with ferries. The column "CVRP in TDVRP" show the real value of

the CVRP solution implemented in the TDVRP solver. From the results it is apparent

that not considering ferries yield a lot of waiting time compared to the solution from the

TDVRP. Table 7 shows results from the comparison between planned and implemented

solution from CVRP. The extra time that the solution would require is shown, as well as

the potential for improvement in solution provided by the CVRP solver. From the results

it is apparent that not considering ferries cause solutions to be of poor quality, especially

when ferries have less frequent departures.

Table 7: Extra time needed from planned to implemented solution from CVRP solver, as
well as potential for improvement compared to the TDVRP solver in time and percentage.

Improvement Improvement
Extra time CVRP potential potential

OS-27 110.63 48.51 5.06%
OS-31 205.52 4.51 1.06%
OS-58 588.81 327.26 21.57%
OS-116 1538.03 387.74 7.72%

Nortura-97 1704.30 556.40 8.40%
Nortura-273 6671.60 2883.10 13.98%

46

Table 8: Example of a tour in solution from CVRP solver. OS-58.
Length in km Load # orders Started Finished Duration Waiting

129.892 99 7 540 1141.310 601.314 355.351

Table 9: Tour details for CVRP solver example tour.
Arrival time Customer Demand Location Waiting on arc

977.377 42 19 42-1260166-Sæbø 345.240
977.445 41 15 41-1260174-Sæbø
1007.800 35 20 35-3055640-Volda
1013.850 33 8 33-1260539-Volda
1015.940 30 10 30-1258822-Volda
1017.800 36 17 36-3007209-Volda
1029.100 45 10 45-1258228-Hovdebygda
1141.310 0 0 Depot 10.091

Tables 8 and 9 shows one tour from the solution provided by the CVRP solver. The

selected tour is the tour yielding the most waiting time. As shown in the tour details in

Table 9, the vehicle going directly from the depot to customer 42 yields a lot of waiting

time (illustrated in Figure 13). This is because a ferry connection to this customer has

few departures a day. As this waiting occurs to the �rst customer, the departure could

have been delayed from the depot. As the solution is provided by the CVRP solver this is

not apparent to a driver. This is because the CVRP solver does not provide any waiting

time. It can also be the case that there are one or more ferries prior to the ferry yielding

a lot of waiting time. Tables 10 and 11 show the route from the TDVRP solver where the

same customer is included. Another sequence of customers is chosen, avoiding the ferry

with few departures. As the TDVRP solver use time-dependent travel times, it can also

have the possibility to check if there are other departure times from the depot that yield

better solutions. As Table 10 shows, moving the departure time from the depot forward

with 47 minutes give a better route. Note that moving departure times form the depot is

only done for this example and that start of day is set to 540 (09.00) as default.

47

Table 10: Example of tour in solution from TDVRP solver. OS-58
Length in km Load # orders Started Finished Duration Waiting

170.803 99 8 493 781.314 288.314 1.272

Table 11: Tour details for TDVRP solver example tour.
Arrival time Customer Demand Location Waiting on arc

591.833 43 6 43-1280008-Ørsta 0.686
599.772 45 10 45-1258228-Hovdebygda
610.725 28 6 28-3028316-Volda
611.274 34 11 34-3042830-Volda
612.894 30 10 30-1258822-Volda
648.276 41 15 41-1260174-Sæbø
648.344 42 19 42-1260166-Sæbø
684.737 47 22 47-1212597-Ørsta
781.314 0 0 Depot 0.586

Figure 13 show the area of the routes presented in Tables 8 to 11. The area is represented

as a real world map with the selection of customers from the two routes plotted. As the

TDVRP solver optimize the routes with ferries considered, the TDVRP solver choose a

route going west on the main roads, avoiding the ferry with few departures marked with

an A in the map. The CVRP solver chooses the shortest path going south to a more

remote area thus using the mentioned ferry.

48

Figure 13: Illustration of the region of customer 42 in test case OS-58

7.7 Using approximation to consider ferries in VRP

Approximation is one way to include ferries in a VRP. By using an estimate of the travel

time where ferries occur as a static travel time, approximating the time used is possible.

Approximation would give the opportunity to use a CVRP solver to handle ferries in a

VRP, without the need of a solver using time-dependent travel times. This thesis consider

two approaches to approximation, both are approaches that can be implemented with little

e�ort.

To compare the approximation approach with the TDVRP solver, approximation instances

have been made for the same instances as used in Section 7.6.2. The instances are iden-

49

tical with the exception of the travel time on arcs (i, j) where ferries occur. The idea is

to compare the routes suggested by the solver as well as the total time used, to see if

approximation is an acceptable approach toward ferries.

7.7.1 Approximation on sailing time

One approximation approach that can be used, is an approximation based on the sailing

time of the ferry. The departures of the ferry are often based on the sailing time of the

ferry, as they run continuously. For example, if one ferry serves a ferry connection, the

departure times are based on the sailing time added enough time to reload the ferry. The

�rst approximation tested in this thesis is based on the sailing time with half the sailing

time added as average waiting time. This is a fair approach towards ferry crossing with

frequent departures. When generating instances, the only extra information needed is the

sailing time of the ferry.

Table 12 show the planned results of the approximation approach compared to the planned

results from the CVRP and TDVRP solvers. From the table it is apparent that the planned

solution based on the approximation uses more time. This is natural as the CVRP solver

does not have a cost on using ferries.

Table 12: Planned results with approximation approach using sailing times, compared to
planned solutions from CVRP and TDVRP solver.

CVRP Approximation TDVRP
Duration Duration Duration Waiting

OS-27 847.63 907.63 909.75 1.86
OS-31 219.08 429.16 420.09 38.88
OS-58 928.22 1178.03 1189.77 51.45
OS-116 3484.96 4787.18 4635.25 212.15

Nortura-97 4916.49 6102.61 6064.39 141.42
Nortura-273 13957.40 17807.80 17745.90 765.03

To see the real e�ect of the approximation, the planned solution need to be implemented

using the TDVRP solver. Table 13 show the planned solutions from the CVRP solver and

the approximation implemented in the TDVRP solver compared to the solution provided

by the TDVRP solver. The results show that using the approximation based on sailing

time only provide signi�cantly better results than the CVRP solver on the largest instance

with n = 273.

50

Table 13: Results from CVRP solver and approximation using sailing time implemented
in the TDVRP solver, compared to result from TDVRP solver.

CVRP Approximation TDVRP
Duration Waiting Duration Waiting Duration Waiting

OS-27 958.25 70.21 958.25 70.21 909.75 1.86
OS-31 424.60 65.37 425.59 67.18 420.09 38.88
OS-58 1517.03 419.33 1547.27 454.53 1189.77 51.45
OS-116 5022.99 597.62 4876.13 526.01 4635.25 212.15

Nortura-97 6620.79 911.15 6606.35 873.56 6064.39 141.42
Nortura-273 20629.00 3857.87 19255.80 2689.72 17745.90 765.03

Table 14 show how the approximation perform in comparison to the implemented solution

from the CVRP solver as well as the improvement potential that are in comparison to the

TDVRP solver. As mentioned, the approach does not provide substantial improvements

over CVRP with the exception of for instance Nortura-273.

Table 14: Comparison of using approximation on sailing time to CVRP and TDVRP solver.
Improvement Improvement
from CVRP potential

OS-27 0.00% 5.06%
OS-31 -0.24% 1.29%
OS-58 -1.99% 23.11%
OS-116 2.92% 4.94%

Nortura-97 0.22% 8.20%
Nortura-273 6.66% 7.84%

As the approximation uses the sailing time on the ferry with an estimated waiting time, this

would in reality mean that the arc has a cost in relation to the distance. The solver would

then consider this link as a normal road with a given cost choosing another sequence of

customers if it yields better results. The approach will not help the solver optimize routes

to ferry departures, nor will it help the solver avoid ferry connections with few departures.

7.7.2 Approximation on frequency of departures

Another approximation approach is an approach based on the frequency of departures for

the ferry. As some ferries could have less frequent departures, basing the approximation

on this frequency would give a better estimate of the average waiting time when using

this ferry. The second approach tested in this thesis is based on the number of departures

51

during a time horizon similar to a normal work day. For instance, if the time horizon is

given as 09.00 (540) to 17.00 (1020), the ferry has 10 departures during this time horizon

and the sailing time is 30 minutes. The approximation is then the estimated waiting time

added the sailing time, as shown in (19). Waiting time is calculated as the duration of

time horizon divided by the number of departures.

tapp =
end− start

#departures
+ sailingtime =

1020− 540

10
+ 30 (19)

When generating instances, the number of departures and sailing time of the ferries as well

as a chosen time horizon are needed. The time horizon could be the entire day, but as

ferries have less frequent departure during the night, a time horizon similar to a normal

work day is recommended.

Table 15 shows the planned results from the approximation based on frequency of depar-

tures on the same real world test cases used in Section 7.6.2 and 7.7.1.

Table 15: Planned results from approximation approach using departure frequency, com-
pared to planned solutions from CVRP and TDVRP solvers.

CVRP Approximation TDVRP
Duration Duration Duration Waiting

OS-27 847.63 988.63 909.75 1.86
OS-31 219.08 475.16 420.09 38.88
OS-58 928.22 1347.18 1189.77 51.45
OS-116 3484.96 5175.60 4635.25 212.15

Nortura-97 4916.49 6817.80 6064.39 141.42
Nortura-273 13957.40 21442.30 17745.90 765.03

Table 16 show the approximation using the frequency of the ferry combined with the sailing

time implemented in the TDVRP solver. The results show that this approximation yield

far better results than the approximation based on sailing time on most of the instances.

The approach helps to avoid ferries that yield much waiting time thus the result for the

instance OS-58 is signi�cantly better than the result provided by the CVRP solver.

52

Table 16: Results from CVRP solver and approximation using frequency implemented in
the TDVRP solver, compared to result from TDVRP solver.

CVRP Approximation TDVRP
Duration Waiting Duration Waiting Duration Waiting

OS-27 958.25 70.21 958.25 70.21 909.75 1.86
OS-31 424.60 65.37 425.59 67.18 420.09 38.88
OS-58 1517.03 419.33 1248.71 109.46 1189.77 51.45
OS-116 5022.99 597.62 4757.85 371.23 4635.25 212.15

Nortura-97 6620.79 911.15 6458.83 589.90 6064.39 141.42
Nortura-273 20629.00 3857.87 20851.20 3828.05 17745.90 765.03

Table 17 is similar to Table 14 for the approximation approach using departure frequency.

Results show that the approach helps when ferries have less frequent departures (as in

OS-58 and OS-116), but only provide slightly better or even worse results than the CVRP

solver.

Table 17: Comparison of approximation using departure frequency to CVRP and TDVRP
solvers.

Improvement Improvement
from CVRP potential

OS-27 0.00% 5.06%
OS-31 -0.24% 1.29%
OS-58 17.69% 4.72%
OS-116 5.28% 2.58%

Nortura-97 2.45% 6.11%
Nortura-273 -1.08% 14.89%

It is important to note that even though the approximation yield fairly good results to

some of the instances tested in this thesis, using time-dependent travel times is a better

approach. As mentioned, the approximation using frequency of departures helps the solver

to avoid ferry connections with less frequent departures. If this ferry connection has to be

used to reach a customer, the approximation does not optimize the routes to connect with

the departure as the solver using time-dependent travel times do.

7.7.3 E�ect of ferry density

Testing the e�ect of ferry density in the instances is very di�cult as there are more factors

to be considered. The frequency of departures is the most important factor as most of the

problems with not considering ferries in a VRP, are related to the waiting time. One could

53

imagine that if all ferries in a topology had a departure every minute, a density of 1.0 with

all origin-destination pair connected by one or more ferries would not cause any problems.

The solution value would be inaccurate but the routes would be fairly approximate. As

the approximation in Section 7.7.1 showed, giving a cost to the ferry without considering

departure times is of little or no value, especially when ferries have less frequent departures.

7.8 Computational e�ort

As mentioned, using time-dependent travel times in the solver will give better solution

quality. Just as important is it to get the solutions in reasonable time. To measure the

performance, the TDVRP solver has been tested up against the performance of the CVRP

solver.

7.8.1 Comparison of executable speed using di�erent compilers

As the C++ compiler from Microsoft, Visual C++ 2008, is restricted to the Windows

operating system, it was interesting to see if using a di�erent compiler could have any e�ect

on computational e�ort. The comparison to Microsoft Visual C++ 2008 has been done

using MinGW 5.4.1 ("Minimalistic GNU for Windows"), an open source command-line

compiler for Windows based on the GNU GCC project. The two compilers have been

tested on number of iterations performed in 10 minutes. Test results show that choosing

what compiler to use carefully would be bene�cial.

54

Figure 14: Iteration comparison GCC and VC++

Figures 14 and 15 show the number of iterations performed by the GCC and VC++

compiler for the instances OS-116 and Nortura-273. Results show that the GCC compiler

outperforms the VC++ compiler, with the iteration count being around 8 times larger for

the CVRP solver and around 5 times larger for the TDVRP solver. This would be of great

importance as more iterations in the same amount of time would mean that the solution

space is being explored to a greater extent. In addition, the di�erence in computational

e�ort between the CVRP and TDVRP solver is much larger with the GCC compiler

where the TDVRP solver only manage around 50% compared to the CVRP solver. Using

the VC++ compiler, the TDVRP solver manage around 80% in comparison to the CVRP

solver.

55

Figure 15: Iteration comparison GCC and VC++

7.8.2 Performance of solvers

In order to compare the performance of the TDVRP solver to the CVRP solver, the

instances presented in Section 7.2.3 are used. Each instance is run for 1 hour, for both

the CVRP and TDVRP solver. Presented in Table 18 are the time used per iteration for

all runs. For each instance, the numbers are calculated from the total time used divided

by the total number of iterations done. In addition, the table shows the percentage of the

extra computational e�ort needed for the TDVRP solver. The extra time usage needed

vary from 18.44% to 34.43% and the average is 24.28%. As mentioned, the instance OS-27

is made from customer data in an urban area with low density of ferries, thus the extra

computational e�ort needed for the TDVRP solver is small. In comparison, the results

using MinGW GCC compiler are presented in Table 19. Using the GCC compiler, the

extra time usage needed vary from 41.60% to 113.14% and the average is 81.01%.

The results show that the choice of compiler is of great importance. Not only is the MinGW

compiler a lot faster, the di�erence in using a TDVRP solver in comparison to a CVRP

solver is also much larger than for the VC++ compiler.

56

Table 18: Time used per iteration using CVRP and TDVRP solvers with VC++ compiler
and percentage of extra computational e�ort using TDVRP solver.

Instance m/sec CVRP m/sec TDVRP Extra e�ort
OS-27 2.625 3.109 18.44%
OS-31 3.61 4.375 21.19%
OS-58 15.281 18.938 23.93%
OS-116 79.203 100.984 27.50%

Nortura-97 52.094 70.031 34.43%
Nortura-273 759.828 913.046 20.16%

Average 24.28%

Table 19: Time used per iteration using CVRP and TDVRP solvers with GCC compiler
and percentage of extra computational e�ort using TDVRP solver.

Instance m/sec CVRP m/sec TDVRP Extra e�ort
OS-27 0.375 0.531 41.60%
OS-31 0.485 0.797 64.33%
OS-58 1.875 3.453 84.16%
OS-116 9.031 18.297 102.60%

Nortura-97 5.938 12.656 113.14%
Nortura-273 88.844 160.11 80.21%

Average 81.01%

For interested readers, details about the performance of the TDVRP solver can be found

in Appendix E.

57

8 Conclusions

The goal for the work presented in this thesis was to include ferries in a VRP solver and look

at advantages and the extra computational e�ort needed. To include time-dependent travel

times for origin-destination pairs that contain one or more ferries, an approach using travel

times for all intervals of a chosen time resolution is used. Also, an approach using span of

intervals to store time-dependent travel times in order to save memory is introduced. As

mentioned in the introduction, we wanted to show that considering ferries in a VRP where

ferries are in fact present, is bene�cial and in fact necessary.

To make instances containing ferries, modi�cation have been done to an existing program

entitled Veiviseren. Using real world road information and customer data provided by local

companies, real world based test cases containing ferries have been generated. Two solvers,

a CVRP and a TDVRP solver, using the tabu search metaheuristic have been made to

solve the instances and to provide solutions that were comparable.

Test results show that not considering ferries in a VRP when ferries are present, does

not provide good solutions. In fact, not considering ferries in a VRP where ferries are

present, is solving the wrong problem. By using time-dependent travel times stored in

span of intervals, considering ferries can be done in an e�cient manner. Results show that

considering ferries yield substantial improvements in comparison to a standard CVRP

solver using static travel times. Extra computational e�ort is needed for a TDVRP solver

considering ferries, but it is recommended, as a TDVRP solver provides better solutions in

terms of total travel and waiting time, and the fact that a TDVRP solver solves the real

problem.

8.1 Future work

While working on this thesis, several issues emerged that we found interesting. As a result,

there are some issues we would like to point out as an elongation of this thesis. The main

focus of this thesis was on the inclusion of ferries in a VRP solver, not to develop a superior

solver. As a consequence, there are also several possible improvements we would have liked

to have tested.

58

The tabu status used for this thesis used the combination of customer and tour. Testing

di�erent approaches to the tabu status would be interesting to see if this has any e�ect

when using a time-dependent solver. Having the tabu status only on the customer would

give a more strict tabu status. As this thesis uses time-dependent travel times for many

intervals, it would be interesting to see if a tabu status that also consider the time of day

the customer was inserted in the route, would have any e�ect.

The same issues arise when considering the frequency penalty. Having the frequency up-

dated for only the customer or in a combination with time of day would be interesting.

For the TDVRP solver it would be interesting to do more thorough testing to �nd the

best construction algorithm and the most suitable choice of move. As this thesis is mostly

based on ideas towards approaches for tabu search using static travel times, testing if other

methods work better for a time-dependent solver could prove bene�cial.

In this thesis, the objective is to minimize time. As this is only a sub-problem in the real

world, cost-optimizing the routes would be more sensible. Gathering real world data such

as driver cost, truck cost, cost per kilometer and so on, from companies would give the

possibility to cost-optimize in a reasonable fashion.

Testing the approach in this thesis towards other time-dependent problems in the VRP is

another issue for elongation of this thesis. Using the approach with intervals containing the

time-dependent travel times could also be used for rush hour, as long as the non-passing

property is not violated.

59

References

Bräysy, O. and M. Gendreau (2001, 12). Tabu search heuristics for the vehicle routing

problem with time windows. Technical report, SINTEF Applied Mathematics.

Clarke, G. and J. W. Wright (1964, 8). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research 12 (4), 568�581.

Cordeau, J.-F., G. Laporte, and A. Mercier (2001, 8). A uni�ed tabu search heuristic

for vehicle routing problems with time windows. Journal of Operational Research

Society 52 (8), 928�936.

Dijkstra, E. (1959). A note on two problems in connection with graphs. Numerische

Mathematik 1, 269.

Donati, A. V., R. Montemanni, N. Casagrande, A. E. Rizzoli, and L. M. Gambardella

(2008). Time dependent vehicle routing problem with a multi ant colony system.

European Journal of Operational Research 185 (3), 1174 � 1191.

Donati, A. V., R. Montemanni, L. M. Gambardella, and A. E. Rizzoli (2003). Inte-

gration of a robust shortest path algorithm with a time dependent vehicle routing

model and applications. In Proceedings of CIMSA 2003- International Symposium

on Computational Intelligence for Measurement Systems and Applications.

Gendreau, J.-F. and G. Laporte (2005). Tabu search heuristics for the vehicle routing

problem. Metaheuristic Optimization via Memory and Evolution 30, 145�163.

Gendreau, M., A. Hertz, and G. Laporte (1994). A tabu search heuristic for the vehicle

routing problem. Management Science 40, 1276�1290.

Gillett, B. E. and L. R. Miller (1974, 4). A heuristic algorithm for the vehicle-dispatch

problem. Operations Research 22 (2), 340�349.

Gjendem, A., E. Berg, and L. Østby (2005). Ruteberegning i det norske veinett. Technical

report, Molde University College.

Glover, F. and M. Laguna (1997). Tabu Search. Norwell, MA, USA: Kluwer Academic

Publishers.

Haghani, A. and S. Jung (2005). A dynamic vehicle routing problem with time-dependent

travel times. Comput. Oper. Res. 32 (11), 2959�2986.

Holland, J. H. (1975). Adaptation in natural and arti�cial systems. University of Michi-

gan, Ann Arbor.

60

Ichoua, S., M. Gendreau, and J.-Y. Potvin (2003). Vehicle dispatching with time-

dependent travel times. Elsevier 144, 379�396.

Kerbache, L. and T. van Woensel (2004, December). Planning and scheduling trans-

portation vehicle �eet in a congested tra�c environment. Les Cahiers de Recherche

803, Groupe HEC.

Kernighan, B. W. and S. Lin (1973). An e�ective heuristic algorithm for the traveling-

salesman problem. Operations Research 21, 498�516.

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval

Research Logistics 54, 811�819.

Laporte, G. and Y. Nobert (1997). Exact algorithms for the vehicle routing problem.

Surveys in Combinatorial Optimization, North-Holland, Amsterdam 132, 147�184.

Malandraki, C. and M. S. Daskin (1992). Time dependent vehicle routing problems: For-

mulations, properties and heuristic algorithms. Transportation Science 26 (3), 185�

200.

Mester, D. and O. Bräysy (2007). Active-guided evolution strategies for large-scale ca-

pacitated vehicle routing problems. Comput. Oper. Res. 34 (10), 2964�2975.

Miller, C. E., A. W. Tucker, and R. A. Zemlin (1960). Integer programming formulation

of traveling salesman problems. J. ACM 7 (4), 326�329.

Nagata, Y. (2007). Edge assembly crossover for the capacitated vehicle routing problem.

Lecture Notes in Computer Science 4446/2007, 142�153.

Oppen, J. (2008).Models and Solutions for Rich Transportation Problems. Ph. D. thesis,

Molde University College.

Oppen, J. and A. Løkketangen (2006). Arc routing in a node routing enviroment. Com-

puters and Operations Research 33, 1033�1055.

Oppen, J. and A. Lokketangen (2008). A tabu search approach for the livestock collection

problem. Comput. Oper. Res. 35 (10), 3213�3229.

Taillard, D. (1993). Paralell iterative search methods for vehicle routing problem. Net-

works 23 (8), 661�673.

Toth, P. and D. Vigo (2002). The Vehicle Routing Problem. Society for Industrial &

Applied Mathematics.

61

Appendix A Tools used for this thesis

Veiviseren

Veiviseren is a program that provides the shortest path between locations using a real-world

road network.

Microsoft Visual Studio

Development tool by Microsoft with editor and debugger.

http://msdn.microsoft.com/en-us/vstudio/default.aspx

Eclipse

Eclipse is a multi-language software development platform comprising an integrated devel-

opment platfrom and a plug-in system to extend it.

http://www.eclipse.org/

PostgreSQL

PostgreSQL is a open-source object-relational database management system.

http://www.postgresql.org/

Subversion

An open-source revision control system.

http://subversion.tigris.org/

Python

Python is an object oriented programming language.

http://www.python.org/

SPSS

SPSS is a powerful statistical analysis program used for doing advanced statistical analysis

of data for research and other projects.

http://www.spss.com/

62

http://msdn.microsoft.com/en-us/vstudio/default.aspx
http://www.eclipse.org/
http://www.postgresql.org/
http://subversion.tigris.org/
http://www.python.org/
http://www.spss.com/

TeXnicCenter

LaTeX editor to make it easier to write LaTeX documents.

http://www.texniccenter.org/

LaTeX

LaTeX is a document markup language and document preparation system for TeX type-

setting program.

http://www.latex-project.org/

JabRef

JabRef is a front-end to BibTeX and other bibliographies, used to manage references.

http://jabref.sourceforge.net/

AMPL

Modeling language and system for formulating, solving and analyzing large-scale optimiza-

tion (mathematical programming) problems.

http://www.ampl.com/

ILOG CPLEX

CPLEX is an optimization software package, used to solve instances provided in AMPL.

http://www.ilog.com/products/cplex/

Excel2Latex

Convert Excel table to LaTeX table format.

ftp://cam.ctan.org/tex-archive/support/excel2latex.zip

63

http://www.texniccenter.org/
http://www.latex-project.org/
http://jabref.sourceforge.net/
http://www.ampl.com/
http://www.ilog.com/products/cplex/
ftp://cam.ctan.org/tex-archive/support/excel2latex.zip

Appendix B Test of data structures

Test of data structures to store travel times between origin and destination. Tested data

structures are Vector, Hashmap and 2-dimensional vector with one lookup presented as

primitive structure. In addition, both using double and integer where tested, both showing

the similar trends with marginal di�erences. Shown in Figures 16 and 17 are selected

results from creating data structure and lookup time. As the trends are similar for all sizes

and density, only density = 1 with double are shown.

Testing of di�erent densities show that the time to create data structure and time for

lookup, grow as a linear function. Density 0.5 have approximately half the times as density

1.0. Test results also suggest that the computational e�ort grows quadratic in relation to

the instance size. This is also indicated by Figure 18, where a quadratic curve is �tted to

the observed data (create structure - Vector).

Tests are run on Intel R©CoreTM2 Duo 2.4GHz with 4GB RAM, using GCC 4.0.1 compiler.

All times are shown in milliseconds.

Figure 16: Time to create data structure using 1 minute interval and density 1.0

64

Figure 17: Lookup time using 1 minute interval and density 1.0

Figure 18: Quadratic curve �ttet to the observed data

65

Appendix C Preliminary testing

To �nd suitable parameters for the tabu search heuristic, preliminary testing have been

done. Parameters for the CVRP solver have been found by trying several parameter sets

on a set of instances from the literature, A-n32-k5.vrp, B-n50-k7.vrp, E-n101-k14.vrp, F-

n135-k7.vrp and P-n70-k10.vrp. Preliminary testing for the TDVRP solver have been done

on the real world cases generated for this thesis.

In the Tables 20 and 21, the diversi�cation mechanism by Oppen and Løkketangen (2006)

is represented as DivMode equal to 1, DivMode 2 represent the diversi�cation mechanism

by Cordeau et al. (2001). The infeasibility strategy proposed by Cordeau et al. (2001) is

represented as DeltaMode equal to 1.

Table 20: Selection of the 20 best parameter sets found for the CVRP sovler, sorted by
average deviation from best known values. The selected parameter set is highlighted.

DivMode α η λ DeltaMode δ+ δ− Average
2 10 1.1 5 0 1.5 5 0.00195
2 10 1.1 10 0 1.5 5 0.00195
2 1 1.01 5 0 1.5 5 0.00260
2 1 1.01 10 0 1.5 5 0.00282
1 10 1.1 0.015 0 1.5 5 0.00282
2 10 1.05 5 0 1.5 5 0.00304
2 10 1.05 10 0 1.5 5 0.00304
1 1 1.01 0.015 0 1.5 5 0.00347
2 1 1.1 10 0 1.5 5 0.00347
2 1 1.1 5 0 1.5 5 0.00347
2 1 1.05 10 0 1.5 5 0.00369
2 1 1.05 5 0 1.5 5 0.00369
2 5 1.01 5 0 1.5 5 0.00413
1 10 1.05 0.015 0 1.5 5 0.00413
2 1 1.1 0.015 0 1.5 5 0.00413
2 5 1.01 10 0 1.5 5 0.00434
2 5 1.1 0.015 0 1.5 5 0.00478
2 1 1.05 0.015 0 1.5 5 0.00521
2 1 1.1 5 0 1.5 1.5 0.00543
2 1 1.1 10 0 1.5 1.5 0.00543

66

Table 21: Selection of the 20 best parameter sets found for the TDVRP solver, sorted by
average deviation from best known values. The selected parameter set is highlighted.

DivMode α η λ DeltaMode δ+ δ− Average
1 5 1.05 0.015 0 1.02 1.5 0.0136
1 5 1.01 0.015 0 1.02 1.5 0.0139
1 5 1.05 0.015 0 1.02 5 0.0144
1 5 1.1 0.015 0 1.02 1.5 0.0146
1 5 1.01 0.015 0 1.02 5 0.0172
1 5 1.1 0.015 0 1.02 5 0.0180
1 10 1.05 0.015 0 1.02 5 0.0190
1 10 1.1 0.015 0 1.02 5 0.0190
2 1 1.01 10 0 1.5 5 0.0214
1 10 1.01 0.015 0 1.02 5 0.0222
1 5 1.01 5 0 1.02 1.5 0.0228
2 5 1.1 0.015 0 1.5 1.5 0.0231
1 5 1.1 0.015 0 1.5 5 0.0234
1 5 1.01 10 0 1.02 1.5 0.0239
1 5 1.05 0.015 0 1.5 5 0.0240
1 5 1.05 10 0 1.02 1.5 0.0242
1 5 1.1 10 0 1.02 1.5 0.0242
1 5 1.05 5 0 1.02 1.5 0.0243
2 10 1.01 0.015 0 1.5 5 0.0246
1 1 1.1 0.015 0 1.02 1.02 0.0246

.

67

Appendix D Test of time intervals

Tests have been done on computational e�ort using intervals to store time-dependent travel

times. Presented in this appendix is the time needed for generating and reading instances

into the solver, as well as �lesize for time-dependent travel time and memory needed for

the solver. Values are presented both for approaches using all T and span of intervals.

In addition, a comparison of time usage for 500 iterations in the solver are presented for

approaches using all T and span of intervals.

Time is shown in milliseconds, �lesize and memory in megabytes.

Table 22: Time intervals and corresponding test values for generating test instance, n =
58, density = 0.49

Generate all intervals Generate span
Interval Time Filesize Time Filesize

1 9 552.7 27.092 7 336.2 1.688
2 6 701.5 13.616 5 881.5 1.688
5 5 204.6 5.530 5 132.0 1.688
10 5 006.9 2.837 4 681.2 1.688
15 4 549.3 1.940 4 576.6 1.676
30 4 538.3 1.041 4 254.7 0.859
60 4 339.1 0.587 4 147.0 0.415

Table 23: Time intervals and corresponding test values for reading instance into solver, n
= 58, density = 0.49

Read all intervals Read span
Interval Read Memory Read Memory

1 7 906.0 44.712 346.5 5.576
2 3 992.1 31.184 353.1 5.576
5 1 630.7 12.220 350.1 5.580
10 846.8 9.572 352.8 5.584
15 581.0 7.796 353.0 5.584
30 315.5 5.832 181.1 4.928
60 176.2 4.948 88.7 4.376

68

Table 24: Time intervals and corresponding test values for generating test instance, n =
116, density = 0.65

Generate all intervals Generate span
Interval Time Filesize Time Filesize

1 110 942.8 243.989 48 693.7 8.515
2 69 275.5 122.555 34 338.6 8.515
5 40 583.4 49.698 31 041.5 8.500
10 31 698.4 25.410 25 676.9 8.492
15 28 197.2 17.336 25 168.4 8.467
30 25 097.8 9.215 23 939.8 3.907
60 24 349.6 5.156 23 857.6 0.415

Table 25: Time intervals and corresponding test values for reading instance into solver, n
= 116, density = 0.65

Read all intervals Read span
Interval Read Memory Read Memory

1 49 886.0 221.532 1 695.3 12.988
2 25 221.4 149.416 1 703.1 12.988
5 10 240.3 48.168 1 700.2 12.984
10 5 231.7 33.912 1 690.3 12.984
15 3 581.3 24.480 1 698.5 12.984
30 1 883.4 13.948 718.4 7.896
60 1 023.0 9.224 419.8 6.372

69

Table 26: Time intervals and corresponding test values for generating test instance, n =
273, density = 0.73

Generate all intervals Generate span
Interval Time Filesize Time Filesize

1 899 920.5 1 561.308 339 367.7 42.485
2 635 423.1 784.568 270 521.0 42.481
5 302 315.7 318.287 202 975.9 42.441
10 238 974.7 162.853 186 430.0 42.388
15 233 681.1 110.992 181 233.9 42.313
30 230 623.5 59.121 168 919.9 25.416
60 214 251.4 33.245 162 817.1 17.169

Table 27: Time intervals and corresponding test values for reading instance into solver, n
= 273, density = 0.73

Read all intervals Read span
Interval Read Memory Read Memory

1 316 178.3 1 372.776 8 150.0 49.104
2 158 868.2 919.120 8 166.7 49.104
5 64 474.4 282.472 8 163.7 49.096
10 32 885.7 192.060 8 100.3 49.096
15 22 425.9 132.516 8 135.7 49.096
30 11 749.4 66.192 4 526.5 28.772
60 6 371.1 36.452 2 779.7 19.728

70

Table 28: Time usage for 500 iterations for Solver storing all T and using interval span
All T Span Increase

OS-27 1531 1547 1.05%
OS-31 2094 2266 8.21%
OS-58 9051 9398 3.84%
OS-116 49020 52052 6.19%
Nortura-97 31343 35750 14.06%
Nortura-273 418654 434595 3.81%

.

71

Appendix E Test of computational e�ort

A regression analyzis have been done to �nd an approximate measure on how many itera-

tions can be performed per second for instances of di�erent sizes. Regression analyzis show

that the number of iterations can be estimated as shown in Equation 20. Figure 19 show

the number of iterations per second for the test cases generated in this thesis.

#iterations = 1906252 ∗ n−2.22 (20)

Figure 19: Prediction of iterations performed in one second.

Table 29 show how long the TDVRP solver run before stagnating, meaning the last best

solution found. For all test cases, the solver is run for 1 hour. To get signi�cant data for

regression analysis, 4 random test-cases have been made of size n = 10, 75, 150, 200.

72

Table 29: Milliseconds until the TDVRP solver stagnate.
Instance n Density Time
TestCase-10 10 0.60 0
OS-27 27 0.03 78
OS-31 31 0.43 1735
OS-58 58 0.49 66530
TestCase-75 75 0.75 27094
Nortura-97 97 0.74 458313
OS-116 116 0.65 97343
TestCase-150 150 0.72 81312
TestCase-200 200 0.69 556672
Nortura-273 273 0.73 1175860

Tests are run on Intel R©Xeon R©CPU E5450 3.0GHz with 8GB RAM, using MinGW GCC

5.4.1 compiler.

73

	Introduction
	Motivation and background
	Outline of thesis

	Vehicle Routing Problem
	Extensions
	Time-dependent travel times and costs
	Stochastic time-dependent travel times
	Ferries in VRP

	Solution methods
	Exact methods
	Heuristic algorithms
	Classical Heuristics
	Metaheuristics

	Time-dependent travel times

	Solution strategy and implementation techniques
	Solution strategy
	Advantages and drawbacks of the strategy
	Other strategies towards ferries in VRP

	Metaheuristic
	Implementation language
	Data structures

	Mathematical model and exact methods
	MIP model for CVRP
	MIP model for the TDVRP
	Comparison of models
	Solving with CPLEX

	Tabu search heuristic
	The Tabu Search algorithm implemented
	Moves
	Diversification
	Solver specific details

	Preliminary testing
	Test cases

	Parameter values
	Run time
	Tabu tenure
	Infeasibility
	Diversification strategy and parameters
	Initial solution

	Computational experiments and results
	Test cases with ferries
	Veiviseren
	Strategy
	Modification of Veiviseren
	Ferries in test case

	Cases from real world
	Nortura
	Oskar Sylte
	Test cases

	Testing environment
	Validation of the time-dependent solver
	Resolution of T
	Analysis of solutions from a CVRP solver using the TDVRP solver
	Generated test case
	Real world test cases

	Using approximation to consider ferries in VRP
	Approximation on sailing time
	Approximation on frequency of departures
	Effect of ferry density

	Computational effort
	Comparison of executable speed using different compilers
	Performance of solvers

	Conclusions
	Future work

	References
	Tools used for this thesis
	Test of data structures
	Preliminary testing
	Test of time intervals
	Test of computational effort

