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Summary 

This master thesis deals with an extension of the vehicle routing problem (VRP), including 

the balance of the tours length as an additional objective. This particular problem is called 

vehicle routing problem with route balancing (VRPRB).  In general VRPs with more than 

one objective, multi-objective, describe better real life situations. In the case of the route 

balancing, legal restrictions or union agreements can limit the differences in the time 

assigned to the drivers. As part of a Decision Support System, a VRP solver should be able 

to provide the planner with several different solutions to choose from. An attribute based 

distance measure between solutions is implemented to quantify how different two 

solutions are. 

 

An existing VRP solver is extended to include the multi-objective approach to the problem 

and the attribute based distance measure between solutions. Instances from the literature 

are tested. It was found that including an extra objective can have a significant cost. 

Results shows that there is a low/medium correlation between the values from the attribute 

based distance measure and the difference in the relative importance of the objectives in 

the solutions, the first being a better way to measure the difference between two solutions. 

The possibility of providing the planner with dominated solutions was evaluated; finding 

that in such case, the decision maker will have a more diverse set of solutions to choose 

from. 
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1. Introduction 

1.1 Research problem 

The purpose of this master thesis is to implement parts of a decision support system (DSS) 

for the vehicle routing problem, in a multi-objective approach. Two different objectives 

will be considered. One of them is minimizing the total length which comes from the 

traditional vehicle routing problem (VRP). The second objective is minimizing the 

variation in the route lengths. This second objective could be measured by the difference 

between the longest and the shortest tour and the summation of the square differences 

between every route length and the average length. The importance associated with each 

objective will depend on the policy of the decision maker. 

 

A DSS should give the planner different good alternatives for his/her consideration 

(Marakas 2003, pp 3-6). For the case of the VRP, the idea is to provide the decision maker 

with structurally different solutions, where the quality level is above a certain threshold, 

evaluated using the objective function. The measure of how different the solutions are will 

not depend on the quality, since once they are above the threshold, they are considered 

good enough. Part of the research will be focused on finding a way of measuring the 

distance between two solutions in the solution space, considering only the attributes of 

each solution. In addition, the possibility of providing the decision maker with a solution 

that is not necessary the best option to select in a multi-objective framework will be 

evaluated, taking into consideration the diversity of the provided solutions.   

 

The VRP is known to be NP-hard (Toth and Vigo 2002a), so sacrificing optimality in 

order to find a solution in a “reasonable” time becomes a practical option, and this is 

achieved by using heuristics methods. Here a variation of the “unified tabu search heuristic 

for vehicle routing problems with time windows” proposed by (Cordeau, Laporte et al. 

2001) is going to be used. This heuristic has been implemented in a VRP solver, with some 

adjustments and changes, at Molde University College (HiM) by Professor Johan Oppen. 

The purpose of this research is adding the multi-objective approach and the similarity 

measure to Professor Oppen’s solver. 
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The test cases used in this research are instances from the literature for the capacitated 

VRP (CVRP), that is, instances where the vehicle capacity is taken into consideration. In 

addition the distance between customers is Euclidean. Most of test cases were used before 

by Professor Oppen. These instances can be found at http://branchandcut.org/VRP/data.  

 

1.2 Tools used 

The VRP solver described in this master thesis is based on another solver originally 

implemented in C++ using Microsoft Visual Studio .NET 2003, by Professor Johan Oppen 

(Oppen 2004). It has been modified using Microsoft Visual Studio 2008. SVG was used to 

generate plots of the instances and solutions. SPSS was used for statistical analysis and 

generating data figures. Microsoft Visio was used for drawing the conceptual model of the 

solver. The tests were done in regular network PC’s at Molde University College. 

 

1.3 Outline of the thesis 

The rest of this thesis is divided as follows. In Chapter 2 the classical Vehicle Routing 

Problem is presented, including some solution methods. Chapter 3 describes the multi-

objective optimization problem together with some solution methods. Then, Chapter 4 

introduces the distance measure between two solutions. The tabu search heuristic 

implemented in this master thesis is presented in Chapter 5, followed by Chapter 6 which 

presents the computational experiments and the obtained results. Finally, Chapter 7 

outlines the conclusions and further research in this field. 
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2. The Vehicle Routing Problem 

2.1 The classical VRP 

The definition for the VRP used in this research is based on the definition given by 

(Cordeau, Gendreau et al. 2002) for the case in which the cost matrix is symmetric. 

- Given an undirected graph },{ EVG , where }...,,,{ 10 nvvvV  is the vertex set, and 

}.,:),{( jiVvvvvE jiji  is the edge set. 

- 
0v represents the depot, and the other vertices represent the customers, each having 

a non-negative demand 
iq . 

- The set E has an associated cost matrix ijc , representing the cost of travelling from 

vertex i to vertex j  )( jiij cc . 

- A fleet of m vehicles with equal capacity Q is based at the depot. 

 

The VRP then consists of designing  delivery routes with some constraints: 

1. Each route starts and ends at the depot. 

2. Each customer is visited once by exactly one vehicle. 

3. Qqi i, . 

4. The total cost (length) is minimized. 

 

Some authors call the previous definition for the capacitated vehicle routing problem 

(CVRP) (Toth and Vigo 2002a), because of the capacity constraint of the vehicles. So far 

just one single objective function has been defined. This will be extended later on.  

 

An example of a VRP is shown in Figure 2.1, which represents the instance A-n32-k5, 

with one depot, in red, and the other points represent a set of 31 customers. The distance 

between any pair of customers is Euclidean, the length of a straight line that connects 

them. The Figure 2.2 shows a feasible solution for the instance mentioned above. 
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Figure 2.1 Typical VRP used in this research. 

 

 

Figure 2.2 Feasible solution of a VRP instance. 
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2.2 Solution methods for VRPs  

2.2.1 Exact methods 

There are exact methods able to find the optimal solution of a VRP. But for large VRP 

instances, with more than 50 customers generally those methods do not perform well 

(Oppen and Løkketangen 2006), either because they take too long to find the solution or 

because they need more memory than the available capacity. However nowadays 

researchers talk about instances with up to 70 customers where exact methods still have a 

good performance.  

 

A DSS should take into account that in the decision making process, the available 

processing time is short (Marakas 2003, p 4). There is a large number of exact methods for 

the VRP, but in general, they can be classified into three categories: direct tree search 

methods, dynamic programming and  integer linear programming  (Laporte 1992). Branch 

and bound algorithms are classified as part of the direct tree search methods (Toth and 

Vigo 2002a).  

 

Solving the mixed integer programming (MIP) model for the VRP, presented by (Oppen 

and Løkketangen 2006), requires the use of exact methods. This model is presented here as 

an example of where these methods can be used.  
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Where n is the number of customers, the vertex 0 is the depot; ijc is the distance from 

vertex i to vertex j ; jiU is the decision variable, it will take the value 1 if the edge ),( ji is 

used in the solution, 0 otherwise; jq is the demand of vertex j ; Yi is the load of the vehicle 

when it leaves the vertex i ; Q is the capacity of the vehicles; m is the number of vehicles; 

and M is a big number.   

 

The equation (1) is the objective function, minimizing the total length; the equation (2) 

ensures that all the vertices, except the depot, are left just once; the equation (3) ensures 

that all vertices are entered the same number of time that they are left, this includes the 

depot; the equation (4) ensures that sub tours are avoided, because of M, the inequality will 

hold for all the edges that are not traversed, for those that are traversed the equality will 

hold, the load that arrives will be equal to the demand of the vertex plus the load that 

leaves; the equation (5) ensures that the load of the vehicle will not be higher than its 

capacity; equation (6) specify that the decision variable should be binary; and the equation 

(7) establish the number or routes that should be included in the solution. 

 

2.2.2 Heuristic methods 

The heuristics methods can not guarantee any quality level on the found solution. But on 

the other hand, many of them are known because they are able to find a good solution in a 

short time (Oppen and Løkketangen 2006). The Heuristics used for solving VRP are often 

derived from the Travelling Salesman Problem (TSP) (Laporte 1992). Two types of 

heuristics methods can be considered, classical heuristics and metaheuristics (Toth and 

Vigo 2002b, p 109). 

 

Classical heuristics methods 

The classical heuristics methods perform a limited search, but the time consumption is 

quite modest, in addition they can be extended to include real life constraints. They can be 

classified into three categories: constructive heuristics, two phase heuristics and 

improvement methods (Toth and Vigo 2002b, pp 109-110). 
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Constructive heuristics gradually build up a solution, while the cost is minimized. The 

Clarke and Wright algorithm (Savings algorithm) is an example of this type of heuristics 

(Toth and Vigo 2002b, pp 110-113). The two phase algorithms work to find a solution in 

two different phases, clustering and routing. Christofides – Mingozzi – Toth algorithm can 

be classified into this category (Laporte 1992). The improvement methods take an initial 

feasible solution and try to improve it by means of exchanging vertices or edges. This 

process can be done within the tours, single-route improvements, or among  several tours, 

multiroute improvements (Toth and Vigo 2002b, pp 121-125).  

 

Metaheuristic methods 

The term metaheuristics was introduced during the 1980s. This denomination includes a 

large number of search methods, among those are simulated annealing, tabu search, 

genetic algorithms, scatter search and neural networks (Eksioglu, Vural et al. 2009). Those 

methods can eventually escape from a local optimum; however this does not ensure that 

the global optimum will be found.   

 

There are basically three types of metaheuristic methods. Some methods are based on local 

search, like tabu search or simulated annealing, where the search is done starting from a 

initial solution and moving to another solution in the neighbourhood. Other methods are 

based on populations of solutions, like genetic algorithms, where the idea is to combine 

solutions. There are some hybrid methods, which are a combination of search methods, 

e.g. using a local search algorithm to improve the quality of a particular solution, an 

individual of the population, as memetic algorithms do (Sörensen and Sevaux 2006). 
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3. Multi-objective optimization 

In a multi-objective problem several functions are optimized (minimized or maximized) 

subject to the same set of constraints. This problem can be stated as 

DxtsxfxfxfxF n ..)),(...,),(),(()(min 21
, with the number of objective functions being 

2n ; the decision variable vector )...,,,( 21 nxxxx ; the feasible solution space D ; and 

)(xF is the objective vector (Jozefowiez, Semet et al. 2007). A solution of the problem is 

given by )...,,,( 21 nyyyy , where )(xfy ii
. 

 

3.1 Pareto optimal solutions  

The different objective functions in a multi-objective problem are usually conflicting. 

Because of this, it is common that not a single optimal solution is able to minimize all the 

objectives of the problem. Instead of that, a set of solutions is found, which are not 

expected to be optimal. They will minimize some objectives and will not necessarily be 

optimal in the others, those solutions are called tradeoff solutions (Collette and Siarry 

2003, p 21).  

 

The Pareto optimal solutions are obtained using the concept of domination, which was 

defined in (Jozefowiez, Semet et al. 2007). A solution )...,,,( 21 nyyyy dominates a 

solution )...,,,( 21 nzzzz , if and only if
ii zyni }...,,2,1{ , and }...,,2,1{ nj , such that

ii zy . That is, the solution z is not better than y for any objective function, but it is worse 

for at least one. The non dominated solutions, Pareto set or Pareto optimal solutions define 

the solution of a multi-objective optimization problem (Jozefowiez, Semet et al. 2007). 

 

When dealing with metaheuristics, this is when there is no guarantee of finding the 

optimum, one more concept should be included, the potentially Pareto optimal (PPS). A 

solution y  found by a particular algorithm A is considered potentially Pareto optimal, 

relative to A, if that algorithm does not find a different solution z that dominates y

(Jozefowiez, Semet et al. 2007).  
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3.2 Solution methods 

There are several methods for solving multi-objective optimization problems, as well as 

classifications for these methods. One possible classification is done according to the 

characteristics of the method itself: scalar methods, Pareto methods and non-scalar, non-

Pareto methods (Jozefowiez, Semet et al. 2008). In addition, if the interaction of the 

decision maker with the method is considered, then the classification categories would be 

a priori, progressive and a posteriori methods (Collette and Siarry 2003, p 81). A different 

type of methods for solving multi-objective optimization problems is fuzzy methods 

(Collette and Siarry 2003, p 105).  

 

3.2.1 Scalar methods 

These methods are based on mathematical transformation. The most popular method has 

been weighted linear aggregation. This is because when the different objectives are 

aggregated, the result is a new single objective, so the regular methods for the single 

objective optimization problems can be used with minor modifications (Jozefowiez, Semet 

et al. 2008). 

 

The weighted linear aggregation method, also known as weighted sum of objective 

functions method, has some disadvantages (Jozefowiez, Semet et al. 2008). First, the 

weights show how important one objective is compared with the others, which is not 

always easy to establish. On the other hand, the method is not able to find all the Pareto 

optimal solutions, since it can not discover the solutions located in the concavities of the 

feasible set (Collette and Siarry 2003, p 48). Figure 3.1 illustrates this drawback. But this 

method has an important advantage, it is relatively simple to implement (Jozefowiez, 

Semet et al. 2008). In addition, as mentioned before, it allows single objective optimization 

methods to be used.  
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Figure 3.1 Weighted sum of objective function method (Collette and Siarry 2003, p 49). 

 

The goal programming and -constraint methods are also within this category of methods 

(Jozefowiez, Semet et al. 2008). In the goal programming methods, a goal is selected, this 

is a point in the objective space, and then the idea is to minimize the distance between the 

current solution and the goal. Here the disadvantage comes from establishing the goal, 

however it has the advantage that it works on concave feasible sets (Collette and Siarry 

2003, p 64). In the case of the -constraint methods, the idea is optimize one of the 

objectives and the others are considered as constraints )(xfi
. A set of solutions is 

obtained changing the values for  (Jozefowiez, Semet et al. 2008). 

 

3.2.2 Pareto methods 

Pareto Methods are based on the domination concept explained before (Jozefowiez, Semet 

et al. 2008). With Pareto optimal selection criteria, it is not possible to favour one 

objective over the other. The objective when using this approach, is to generate the 

complete set of Pareto optimal solutions or an approximation to it (Loukil, Teghem et al. 

2007). The concept of domination has often been used within an evolutionary framework, 

genetic algorithms, when dealing with multi-objective problems. Genetic algorithms work 

with a population (set) of solutions, which suits the goal of the Pareto methods of finding a 

particular set of solutions (Jaszkiewicz 2002).  
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Pareto methods, when they are used with evolutionary algorithms or any other population 

based method, can deal with problems having any number of objectives. So preliminary 

information about the optimal Pareto sets can be obtained, which is very useful when 

dealing with real-life problems. The Pareto dominance selection criteria can be used also 

with memetic and local search algorithms, where the next current solution is selected from 

the non-dominated solutions in the neighbourhood (Jozefowiez, Semet et al. 2008). 

 

The main difference between the scalar and Pareto methods is that scalar methods are not 

used to find the Pareto set, neither an approximation to it. However scalar methods can be 

used to find solutions that eventually will fit in the set of Pareto optimal solutions. 

 

3.2.3 Non-scalar and non-Pareto algorithms 

Some multi-objective routing problems have been solved using methods, which are neither 

scalar nor Pareto, where every objective is considered separately. These methods are 

usually based on genetic algorithms, lexicographic strategies, ant colony mechanism, or 

some specific heuristics designed to solve multi-objective problems (Jozefowiez, Semet et 

al. 2008). 

 

The genetic algorithms are population based algorithms. The lexicographic methods are 

based on priority values given to the objective functions, and then the problem is 

optimized in order of priority. After an objective function is optimized it becomes a 

constraint of the problem and its value can not be changed (Jozefowiez, Semet et al. 2008). 

The lexicographic method is also considered as part of the scalar methods (Collette and 

Siarry 2003, p 71). 

 

Ant colony mechanisms imitate the behaviour of a real ant colony when the ants are 

looking for a food source. The ants secrete pheromones so they communicate with the 

other members of the colony. In the algorithm the pheromones secreted by some artificial 

ants communicate the most attractive and most travelled paths (Doerner, Gutjahr et al. 

2006). As an example, in the case of bi-objective optimization problems, where the 

objectives are total mean transit time and the variance in the transit time, one type of 

pheromone has been used for each objective (Jozefowiez, Semet et al. 2008). 
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3.2.4 A priori, progressive and a posteriori methods 

This classification is done taking into account the interaction between the decision maker 

and the optimization method.  

 

If the decision maker, before starting the search, provides the method some initial tradeoff 

between the objective functions (a policy) and the result of that search is a single solution, 

then the method will be classified as a priori (Collette and Siarry 2003, p 81). 

 

 On the other hand, the method is progressive if the optimization method allows the 

decision maker to reorient the search during the process. This could be done changing the 

tradeoff between the objective functions. STEP method, Jahn method and simplex method 

(different than linear programming) are part of the progressive methods (Collette and 

Siarry 2003, p 81).   

 

A posteriori methods do not interact with the decision maker. In contrast with the previous 

methods, the result of using these is a set of Pareto optimal solutions. The decision maker 

will be able to compare the solutions and select the one that he/she prefers. Applying an a 

posteriori method can be quite time consuming (Collette and Siarry 2003, p 9). 

 

3.2.5 Fuzzy methods 

These are methods that solve multi-objective problems using fuzzy logic. The functions in 

classical logic works with binary parameters, this is 0 or 1, FALSE or TRUE. In the case 

of fuzzy logic the functions work with continuous values between 0 and 1. Then the AND 

function, CandBA  in classic logic becomes ),min( CBA in fuzzy logic. The OR 

function, CorBA , becomes ),max( CBA . Finally the NOT function, BnotA , 

becomes BA 1 . Two examples of these methods are Sakawa and Reardon methods 

(Collette and Siarry 2003, pp 105-114). 

  

3.3 Selected method 

 

The multi-objective optimization method used to do the research in this thesis is the 

“weighted sum of objective functions method”. This method was selected for two main 
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reasons. First because it was possible to use a modified version of the solver that Professor 

Johan Oppen already implemented. Second, because this method can be easily generalized 

to include more objective functions.  

 

To each objective function is associate a multiplicative weight. The weighted objectives 

are added and then a single function is obtained. The process is repeated changing the 

values of the weights, producing the tradeoff solution set (Collette and Siarry 2003, pp 47-

53). This means that the original multi-objective problem

DxtsxfxfxfxF n ..)),(...,),(),(()(min 21
, will be transformed into a single objective 

problem, DxtsxfwxfwxfwxF nneq ..)),(...)()(()(min 2211 , where 1
1

n

i

iw , this 

new optimization problem with the objective function )(xFeq can be solved with suitable 

optimization methods, depending on the complexity of the problem. The set of w

represents a policy, and shows the relative importance given to each objective.  

 

3.4 Objective functions 

Two objective functions are considered in this work; the balance of the tour lengths and 

the total length. The balance can be measured in two different ways; one option is the 

difference between the longest and the shortest tour, another is the summation of the 

square differences between every tour length and the average tour length. In the last option 

the main purpose is penalizing big differences more than the small ones. This extension of 

the VRP has been called vehicle routing problem with route balancing (VRPRB) 

(Jozefowiez, Semet et al. 2007). 

 

When dealing with route balancing it is important to avoid artificial improvements. If the 

two solutions (a) and (b) in the Figure 3.2 are considered, probably (a) is better balanced 

than (b). Solution (a) has a tour with a line crossing, which makes it suboptimal. Here the 

balance will be minimized, trying to avoid suboptimal tours. The minimization of the total 

tour length will be used as criteria for selecting the position of the customers to be inserted 

into the tours. In addition a 2-opt local search is applied to each tour.  
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Figure 3.2 Artificial improvement of the route balancing (Jozefowiez, Semet et al. 2007) 

 

 

Figure 3.3 shows some tradeoff solutions to the instance A-n45-k7 as a CVRPRB. The 

weights used during the search are between 0 and 1, using a step of 0.1. The weight 

represents the importance associated to the total length. The difference between 1 and the 

weight represents, on the other hand, the importance associated to the route balance. Table 

3.1 shows the results in more detail. In this case the balance has been measured as the 

difference between the longest and the shortest tour. 

 

weight length 1 - weight  balance weighted objective 

0.0 1631 1.0 0 0 

0.1 1610 0.9 0 161 

0.2 1571 0.8 2 315.8 

0.3 1562 0.7 4 471.4 

0.4 1563 0.6 4 627.6 

0.5 1504 0.5 11 757.5 

0.6 1381 0.4 16 835 

0.7 1329 0.3 36 941.1 

0.8 1146 0.2 138 944.4 

0.9 1146 0.1 146 1046 

1.0 1155 0.0 148 1155 

Table 3.1 Tradeoff solutions to the instance A-n45-k7 

 

Figure 3.4 shows similar results to Figure 3.3, but in this case the step-weight used is 0.01, 

which results in 101 solutions. The Figure 3.5 shows the result of using 0.001 as step-

weight. In both cases, and in the figure 3.3, it is possible to find dominated solutions. This 

can be explained because of the heuristic, which does not guarantee optimality in the 

solutions found. However it can be observed that if the step-weight is smaller, more 

potential Pareto optimal solutions are found and the potential frontier is somehow 

delineated. In every case the running time was 5 minutes for each weighted search. That is, 

55 minutes for the total search if the step is equal to 0.1; 505 minutes when the step is 0.01 

and 5005 minutes for a 0.001 step. 
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Figure 3.3 Multi-objective solutions to the instance A-n45-k7 

 

 

 

Figure 3.4 Multi-objective solutions to the instance A-n45-k7 
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Figure 3.5 Multi-objective solutions to the instance A-n45-k7 

 

The Figure 3.6 shows the tradeoff solutions resulting of doing the same search than the one 

represented in Figure 3.5, but this time using the square balance as the balance measure 

during the search. It is possible to see that the solutions are more concentrated in some 

areas of the trade-off solutions frontier. This could be explained by the deficient 

normalization of the move evaluation; this concept will be explained in Section 5.1.2. 
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Figure 3.6 Multi-objective solutions to the instance A-n45-k7 
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4. Distance between solutions 

The mathematical model included in a Decision Support System (DSS) is a simplification 

of the real world, since very often assumptions are made and relevant variables may not be 

included in the model. Because of this, a good solution given by the DSS will not 

necessarily fit or perform so well in the real life when it is implemented. As a consequence 

of this, decisions makers often would like to receive as an output from a DSS a set of 

different good solutions, instead of a single best solution. The ranking of the first two, or 

more, best found solutions might not be the better set to show to the decision maker, since 

these may be very similar. Measure of how different or similar two solutions are should be 

used (Løkketangen and Woodruff 2005).  

 

The difference between two solutions arranged as binary vectors, total or partially, could 

be measured using the Hamming distances (Løkketangen and Woodruff 2005). This is the 

number of elements in which the two solutions are different. Given two solutions 

)0,1,1,0(y and )0,1,0,1(z , the Hamming distances will be equal to 2, since the elements 

if the first and second positions are different in both cases.  

 

The solutions for the VRP are not characterized by having binary vectors. The solutions 

are heterogeneous and can have different sizes. On the other hand there are some 

attributes, not easily captured by the Hamming distances (Løkketangen and Woodruff 

2005), that makes a solution different from another. e.g. the sequence of stops in a route. 

Because of that, a different measure has to be used, when the similarity between two 

different VRP solutions is evaluated. 

 

A VRP solution has some structural properties given by the stops, the arcs and the tours. 

These properties should be considered by the distance measure between two solutions. 

Some properties are not necessarily part of the problem; but they can be used just to 

measure the distance between the solutions. The objective value, on the other hand, should 

not be taken into consideration, since it is assumed that the solutions that are being 

compared are all good enough. In the multi-objective approach, and the solutions methods 

used in this research, some weights are associated to every objective function. These 

objectives are not part of the structural properties of the solutions, so these weights should 

not be considered either.  
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4.1 Attribute based distance measure 

For the specific case of two VRP solutions, x and y, a distance measure with values on 

[0,1] has been proposed (Oppen 2008, pp 89-108). 
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Where  and  are parameters that indicate the relative importance of stops, arcs and 

tours, respectively. These three parameters should sum up one. ww ~,ˆ and w  are vectors that 

gives the weights for the different attributes of the stops, arcs and tours respectively. x̂ is a 

n-vector of sets that represents the stops in the solution x . x~ is a n-vector of sets that 

represents the solution x from the arcs point of view. x is a n-vector correspond to a 

representation of the tours in x . If in any case the attributes of the stops, arcs or tours have 

the same weight, then the respective w will be a vector of ones, which is the case of this 

research.  

 

The function )(d included in the distance measure for two VRP solutions, corresponds to 

the dissimilarity between two sets of vectors. So given A and B, two sets of vectors, )(d  

function is defined as 

 

),;(),;(),;(

),;(
1),;(

ABwgBAwgBAwh

BAwh
BAwd  

 

Where 

 

2

),;(),;(
),;(

ABwgBBAwgA
BAwh   

and  

)( '

' ),;(
),;(

BAk Bk

kk

B

BAw
BAwg  

 



 20 

Given a set C,  denotes the cardinality of C, this is the number of elements of the set. So 

far the functions considered here compare two set of vectors. But to be able to compute 

)(g function, it is required to measure the distance between two vectors )(  
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Where  is the distance between the vectors v and u related to the element j. This is 
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Here  is a measure of the dispersion of the values for the element j, this could be the 

average, the standard deviation or a multiple of this, among others. It is assumed that if 

0)(js , then  0)(jn . 

 

When dealing with categorical data, including binary attributes,  will be equal to one if 

values for the element j are different, zero otherwise. In case that the element j of the 

vectors correspond to a set, then the Tversky’s similarity measure can be used 
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The distance measure described here is classified as a semi-metric, since it obeys the 

properties: 

1. 0),( xxt , 

2. yxifyxt 0),( , 

3. ),(),( xytyxt  

 

It is not a full metric because the triangle inequality ),(),(),( yxtyztzxt , is not being 

considered (Løkketangen and Woodruff 2005). 
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4.2  Solution attributes 

The function )(t that measures the distance between two different solutions, involves the 

concept of attributes of the stops, arcs and tours (Oppen 2008, pp 89-108). For a particular 

solution x, the attributes of the stops are represented as a vector x̂ , with a number of 

elements equal to the number of stops in the solution, without considering the depot. Every 

element i of the vector x̂ is related to a particular stop, and gives the attributes of the stops 

in the same route than i, without considering the depot and the stop i. In the case of the 

instances that will be used in this work, the attributes of a stop will be the customer 

demand and the customer number. The demand is normalized to [0, 1] by dividing it with 

the capacity of the vehicle. 

 

The attributes of the arcs are represented as a vector x~ , as in the previous case, every 

element is related to a stop. The element i of the vector x~ , contains the attributes of the arcs 

that are in the same route than i. Here the arc is characterized by the pair of nodes, origin – 

destination, and the arc length. The arc length is measured relative to the average arc 

length. 

 

The last group of attributes, tour attributes, is represented by the vector x . To every stop is 

associated the number of the tour where this belongs. In the cases analyzed here, no 

difference in the fleet is considered, since all the vehicles have the same capacity and no 

operational costs are involved. However the tour can be associated to a driver, type of 

technology that the vehicle is using or any other characteristic, even though this is not 

considered into the optimization problem, it might introduce some differences between the 

solutions. 

 

Table 4.1 shows four different solutions (A, B, C and D) to the instance A-n32-k5. The 

Figures 4.1 to 4.4 represent these solutions in the plane. It is evident that the solutions A 

and B are similar, since just small variations between them are detected. According to the 

measure used here, the distance between these two solutions is just 0.184521. On the other 

hand the Solutions C and D look very different, which is confirmed by the distance of 

0.758677 between them. Table 4.2 shows the distances between the four solutions in more 

detail. The numbers in parenthesis represent the weight associated with the total length in 

every solution. 
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Solution Tour Customers 

A 

1 30 - 26 - 28 - 18 - 22 - 15 - 29 - 27 

2 21 - 31 - 19 - 17 - 14 - 24 - 20 

3 8 - 13 - 7 - 16 - 12 

4 6 - 3 - 2 - 23 - 4 - 11 - 9 

5 5 - 25 - 10 - 1 

B 

1 30 - 26 - 23 - 28 - 18 - 22 - 15 - 29 - 27 

2 21 - 31 - 19 - 17 - 14 - 24 - 20 

3 8 - 11 - 13 - 16 - 12 

4 7 - 6 - 3 - 2 - 4 - 9 

5 5 - 25 - 10 - 1 

C 

1 30 - 26 - 31 - 19 - 23 - 28 - 18 - 29 - 27 

2 12 - 1 - 21 - 14 - 24 - 10 - 20 

3 15 - 22 - 8 - 11 - 13 - 16 

4 7 - 6 - 3 - 2 - 4 - 9 - 5 

5 25 - 17 

D 

1 29 - 15 - 10 - 25 - 5 - 20 

2 7 - 21 - 31 - 19 - 17 - 13 

3 23 - 3 - 2 - 6 - 30 

4 14 - 28 - 4 - 11 - 8 - 18 - 9 - 22 - 27 

5 12 - 1 - 16 - 26 - 24 

Table 4.1 Different solutions to the instance A-n32-k5 

 

  Solution 2 

Solution 1 A (0.7) B (0.8) C (0.2) D (0.9) 

A (0.7) 0 0.184521 0.535995 0.658771 

B (0.8) 0.184521 0 0.418876 0.680456 

C (0.2) 0.535995 0.418876 0 0.758677 

D (0.9) 0.658771 0.680456 0.758677 0 

Table 4.2 Distances between solutions to the instance A-n32-k5 
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Figure 4.1 Solution A to instance A-n32-k5 

 

 

 

Figure 4.2 Solution B to instance A-n32-k5 
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Figure 4.3 Solution C to instance A-n32-k5 

 

 

Figure 4.4 Solution D to instance A-n32-k5 
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5. A tabu search heuristic for the Multi-objective VRP 

 

Given the multi-objective problem, DxtsxfxfxfxF n ..)),(...,),(),(()(min 21
, using the 

“weighted sum of objective functions method” this is transformed into a single objective 

problem, DxtsxfwxfwxfwxF nneq ..)),(...)()(()(min 2211 ,  where 1
1

n

i

iw . 

 

For every combination of weights )...,,,( 21 nwww a different single objective function is 

obtained. If an exact method is applied, then the solution of this single objective problem is 

a Pareto optimal solution of the original problem (Collette and Siarry 2003, p 41). Here a 

heuristic will be used, so the solution that the heuristic will find will be potentially Pareto 

optimal, relative to the algorithm itself (Jozefowiez, Semet et al. 2007). However it is 

expected that for some set of weights, it will not be possible to find a non dominated 

solution. So not every solution will be a potentially Pareto optimal, relative to this 

heuristic. 

 

Figure 5.1 shows a set of solutions to the instance A-n34-k5. The points in blue indicate 

the non dominated solutions, while these in green show the dominated solutions. To every 

point in green is possible to find another in blue that represents a better value for the total 

length and/or the route balance. These solutions were found assigning weights to the total 

length between 0 and 1, using a 0.1 step. 
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Table 5.1 Set of multi-objective solutions to the instance A-n34-k5 

 

5.1 The basic algorithm  

The implemented algorithm is based on the VRP solver developed by Professor Johan 

Oppen. The original algorithm is based on the “unified tabu search heuristics for vehicle 

routing problem with time windows” (Oppen 2004), which was proposed by proposed  by 

Cordeau, Laporte and Mercier (Cordeau, Laporte et al. 2001). 

 

5.1.1 Moves 

The algorithm accepts infeasible moves, that is, moves that take the search to a solution 

with a capacity constraint violation in at least one tour. So let’s define a set S  which is not 

the set of feasible solutions, but the set of all solutions that satisfy: every tour starts and 

ends at the depot, and every customer belongs to exactly one tour. Every solution Ss  is 

characterized by an attribute set, defined as }:),{()( kvehiclebyvisitedisicustomerkisA . 

The neighbourhood )(sN  of a solution s is defined by applying an operator that removes 

an attribute ),( ki  from )(sA and replaces it with a different attribute ),( 'ki , where 'kk . 

This gives a neighbourhood size of )1(mnN , where n  is the number of customers 

and m corresponds to the number of tours (vehicles). When a customer is removed from a 

tour, the tour is reconnected by linking the predecessor and successor of the removed 
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customer. The insertion of a customer into a tour is done in a way that the tour length 

increasing is minimized, but without changing the order of the customers already in the 

tour. (Oppen 2004). 

 

5.1.2 Move evaluation and diversification 

Given a solution Ss  and a move that takes the search from s to
's , the evaluation of the 

move will depend on the two solutions s  and
's .  Let ),( ' ssc  be the difference of the total 

length of all tours in the solution 
's  and the same length in the solution s . In the same way, 

let ),( ' ssb  be the difference of the balance of the tour lengths in both solution. And finally 

let ),( ' ssq  be the difference of total violation of capacity constraints for the tours. The tour 

balance can be measured either as the difference between the longest and the shortest tour 

or the summation of the square differences between every tour length and the average 

length. 

 

The single objective function used in the search can be associated to a weighted average, 

but in this case every element has different units. This can generate some distortions, since 

the difference between the values of the total length and the tours balance could be so 

significant that the weights sw'  associated to each of them will not affect the search. In 

some cases the total length could be less than 1000, but the tour balance values can be 

more than 30000. This situation is more evident when the tour balance is measured as the 

summation of the square differences between every tour length and the average length. 

Because of this, the total length and the tour balance were normalized to avoid these 

significant differences.  

 

A poor or a lack of normalization of the move evaluation function, can lead to tradeoff 

solutions as the ones represented in the Figures 5.2 and 5.3. In both cases it is easy to see 

that there is a bias to prefer the balance over the length. 
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Figure 5.2 Multi-objective solutions to instance A-n32-k5 

 

 

Figure 5.3 Multi-objective solutions to instance A-n32-k5 
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The normalization of the move evaluation function is done in two different ways, 

depending on the type of measure used for the tour balance. If this is measured as the 

difference between the longest and the shortest tour, then the total length is divided by the 

difference between the longest and the shortest arc in the instance, and the tour balance is 

divided by half of the average arc length. If on the other hand, the tour balance is measured 

by summation of the square differences between every tour length and the average length, 

the total length is then divided by average arc length, and the tour balance is divided by 

two times the square average arc length. In each case, the total violation of capacity 

constraints for the tours is divided by the vehicle capacity. 

 

If the corresponding normalization factor associated to each objective value is defined as

(.)s , then each move can be evaluated using the function
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positive parameters that are dynamically adjusted during the search.  

 

For diversifying the search only the non-improving moves, 0),( ' ssf , are considered. A 

penalty 
)(),(

'

'

),(
sAki

ikssp  is added to ),( ' ssf . Here, 
ik

 is the number of times the 

attribute ( , )i k  has been added to every solution. The parameter  is used to control the 

intensity of the diversification. These penalties are used to lead the search into less 

explored parts of the solution space whenever a local optimum is found. If 0),( ' ssf , the 

move is improving and the penalty term is not added (Oppen 2004, p 28). 

 

5.1.3 Initial solution 

For every set of weights used in the solution method, a complete tabu search is done. In 

every search the first step is generating a starting solution. This can be done either by a 

greedy or a random approach. In both cases, all customers are first put into a list of 

unassigned customers, from which they are removed as they are inserted into tours. A 

number is assign to the customers which follow the order in which they appear in the 

instance file (Oppen 2004, pp 28-29). 
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If the greedy approach is used, the starting solution will be the same for each search. The 

customers are inserted into tours one at the time, starting with the customer with the 

highest customer number. Every customer is inserted into the tour with the lowest possible 

tour number that has enough capacity left. A customer will be inserted into the respective 

tour, in a way that the increase in distance is minimized. If no tour with enough free 

capacity is found, the customer is inserted into the last tour. This gives a starting solution 

where all the tours are feasible, except the last tour, which eventually could be infeasible 

(Oppen 2004).  

 

If a random approach is chosen, the search related to each set of weights will have a 

different starting solution. In this case, the customers are randomly selected, one at the 

time. The selected customer is inserted into a randomly chosen tour. However the position 

in which it is inserted into the tour is selected using the same criteria than in the greedy 

approach, this is, minimizing the length increasing. This procedure is repeated until the list 

of unassigned customers is empty. The random approach will lead to a starting solution 

where several tours may be infeasible (Oppen 2004). In all the tests done in this research, 

the search starts from a greedy solution. 

 

5.1.4 Tabu search 

For every set of weights ),( 21 ww a tabu search is performed. The number of sets is given 

by the user, who will specify a minimum weight, a maximum weight and a step. The first 

search is done using the minimum weight. The weight related to the next search is 

obtained by adding the step to the one used in the previous search. This procedure is done 

until the maximum weight is reached. The number of weights obtained will represent the 

number of searches that have to be performed. 

 

Every weight will represent a set, since just two objective functions are being considered. 

Given a particular weight w , during the search this will be associated to the length, 

whereas the difference between 1 and w  is assigned to the balance. This means that a 

particular set of weights can be expressed just in terms of one of its elements ),( 21 ww .  

 

Every tabu search starts from an initial solution and moves, each iteration, to the non-tabu 

neighbour that minimizes the weighted objective value for all )(sNs . This is, the move 
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with the minimum evaluation is selected; removing the attribute ),( ki  from )(sA . The 

attribute is then declared tabu, for a given number of iterations, equal to the tabu tenure. 

During these iterations, the customer i will not be moved back to tour k. However, an 

aspiration criterion allows the selection of a tabu move if it leads to a solution better than 

the best solution found so far in the search. (Oppen 2004) 

 

After each move, the values of the parameters 1  and 2 are adjusted. If none of the tours 

in the current solution has capacity violations, the values of 1  and 2 are adjusted, 

decreasing them, in order to focus more on the objective function value. If one or more 

tours in the current solution violate the capacity constraints, 1  and 2 are increased in 

order to lead the search back to the feasible region of the solution space. (Oppen 2004) 

 

If the current solution is feasible, has a total length less than 1.1 times the length of the 

best feasible solution found so far during the search, and the number of iterations 

performed has reached 100, the solution is considered to be potentially good. Whenever a 

potentially good solution is found, a 2-opt procedure is applied to each tour in the solution, 

trying to find improvements by evaluating all possibilities of replacing 2 arcs within the 

tour (Oppen 2004).  

 

The search continues until the stopping criterion is reached, which could be either a 

specific number of iterations or an amount of time, established by the user. Every search 

will last for the number of iterations or the time established by the user. To solve a 

problem will require as many searches as the size of the set of weights that the user 

establishes. So the real number of iterations performed by the solver, when finding a 

potentially Pareto set of solutions, will depend on the cardinality of the set of weights and 

the number of iterations established by the user. The same consideration applies when the 

time is the stopping criteria. 

 

5.2 Solver description  
 

The Figure 5.4 shows a conceptual model of the VRP solver. The model has some original 

entities included by Professor Johan Oppen in his solver, most of which were modified 

during this research. A new group of entities were included here, to be able to compute the 
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distance measure between solutions. In the conceptual model, the new entities are in light 

blue, the rest of the model is based on the original one (Oppen 2004). 

 

5.2.1 Original entities of the solver 

VRPSolver 

The solver has an instance object (VRPInstance), so it will know what it has to solve. In 

addition it has a Parameter object with the parameter values required for the search. It has 

two vectors of Solution objects, one of them to store the best solutions found during one 

search, the other is used to store the best solution found on every search, the multi-

objective problem solutions. The solver has also a vector of tours and a vector of solutions 

images. It is responsible for doing the different searches and computing the distance 

between solutions. 

VRPInstance 

The Instance knows the available number of vehicles and their capacity. It has a vector of 

original customers and knows the distance between all of them, including the depot. The 

instance also has a parameter object.  

Solution 

A Solution consists of a vector of tours, and knows its total length, the amount of capacity 

excess and the tour length balance, measure in two different ways. In addition it knows in 

what iteration the solution was found, the weight and the weighted objective function 

value. 

Tour 

A Tour has of a list of customers that define both what customers to visit and in what 

order. It has pointers to both the solver and the instance. It knows the length, the capacity 

excess and the free capacity of the tour.  It needs to deliver results to the solver and ask the 

instance for information. 
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Node 

A Node represents a point in the plane, and originally it could be a road crossing or a 

customer, however here it is considered just as a customer. The node has a Location 

object.  

Customer 

A Customer is a particular type of Node, even thought in this version of the solver a Node 

will be always a Customer. It has the location, inherited from the Node, the demand and a 

customer number. 

Location 

A Location knows its coordinates in the plane.  

 

5.2.2 New entities added to the solver 

The entities included in this section are related to the representation of the solution by 

means of attributes, i.e. arcs, stops and tours. This representation will be used to compare 

the solution with others and being able to measure the distance between them. 

SolutionImage 

A Solution Image has an Instance and a Solution object, so it knows the solution that it is 

representing and also the problem to which the solution is associated to. It has a vector of 

customer images, and it is responsible for creating the images for all customers. 

CustomerImage 

A Customer Image has a Tour and an Instance object, so it will know the other customers 

that share the same tour with the one that it is representing. In addition, it also has the 

index of the customer in the Tour and the tour number. The customer image has a vector of 

Stops and a vector of Arcs. It is also responsible for creating the stops and arcs attributes. 

Stop 

A Stop knows the original customer number and the customer demand, not the real one, 

but standardized by the vehicle capacity.  
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Arc 

The Arc knows the starting point and the ending point of the arc, and the arc length 

standardized by the average original customer distance.  

VRPSolver

CustomerImage

Parameter

VRPInstance

Solution

SolutionImage

Stop

Customer Tour

Location

Node

Arc

 
Figure 5.4 Conceptual model of the VRP solver 

 

5.3 Preliminary testing for finding good parameter values  

A subset of five instances has been used to do preliminary tests for finding good values for 

some search parameters. Not all the parameters considered into the original solver, neither 

all the options were included in this research. The instances selected for the preliminary 

testing were A-n32-k5, P-n55-k8, B-n67-k10, E-n101-k14 and M-n200-k17. More details 

about the test cases can be found in Appendix A. These instances were selected looking to 

have a broad number of customers and vehicles into the problems considered for the 

testing. The instance with the lower number of customers has 31 (plus the depot) and the 

one with the higher number has 199. The number of vehicles varies from 5 to 17.  
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Ten different random seeds will be used for the testing, and each test will last for 5 

minutes. The run time limit is used, since most of the significant improvements in the 

weighted objective value, have been observed to be achieved during the first 5 minutes of 

the search. The weight used during the search was 0.5, this is just one multi-objective 

search was performed, giving the same relevance to every objective function. 

 

5.3.1 Tabu tenure 

The tabu tenure determines the number of iterations in which the tabu status of an attribute 

),( ki will hold. This is, after a customer i has been removed from tour k, the customer 

cannot be returned back to the tour for a certain number if iterations equal to the tabu 

tenure. The tabu restriction is the most distinctive feature of a tabu search (Al-Sultan and 

Fedjki 1997), because of this choosing a good tabu tenure to perform a search is quite 

important. 

 

Several strategies can be followed to set the tabu tenure. It can be fixed during the whole 

search, either the same for all the instances or individually for every instance. An 

additional approach is changing it at every move; in this case it will be randomly selected 

from an integer interval. When the tabu tenure is assigned individually to every instance, it 

is necessary to establish a connection between the instance and the tabu tenure that should 

be selected. Here, just one of these strategies was evaluated. This was setting the tabu 

tenure from an integer interval, different for every instance, but based on the number of 

customers.   

 

To find out which interval could be good for every instance, several intervals were used to 

perform the tests. Then the relation between the number of customers in the instance and 

the interval that perform better was checked, i.e. those that lead to a lower weighted 

objective function.  It was concluded that a good strategy should be [30, 35] if the 

customers are less than 50; [30, 40] if the number of customers is between 50 and 99; [60, 

100] for instances where the number of customers is greater or equal to 100 and less than 

200; finally [100 - 200] for the instances with more than 199 customers. 
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5.3.2 Weight of infeasibility 

The parameters 1 and 2  give the weight of infeasibility for each objective function, 

initially both of them are set equal to 1. So two terms included in every parenthesis in the 

move evaluation function, 2
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will count equally at the beginning of the search. 

 

Several tests were run to find out a good way to adjust these parameters. During the tests, 

the parameters 1 and 2  were adjusted arithmetically, this is all the combinations among 

0.01, 0.1, 0.5, 1 and 2 for add and subtract from the current value of the parameters. The 

best results for both cases were found when the factor 1 is added / subtracted from the 

current value of 1 and 2 . This is if the current solution is feasible then both, 1 and 2  

are decreased by 1. If on the other hand, it is infeasible, then 1 and 2 are increased by 1. 

 

5.3.3 Diversification strategy 

Two additional diversifications strategies were tested to see which could give better 

results. In both cases an additional penalty 
)(),(

'

'

),(
sAki

ikssp  was added to the non-

improving moves. Where  is a fixed parameter and 
ik

 is the number of times than the 

attribute ),( ki  has been added to either every solution or to the good solutions. Depending 

on the criteria used for establishing
ik

, then the strategy will be different, it could be 

related to the good solutions or to every solution. The best results were found when  was 

set equal to 100 and 
ik

established as the number of times that the attribute ),( ki has been 

added to every solution. 

5.3.4 Running time 

The results from the solver are not going to be compared with results from other solvers. 

But as the solver is being considered as a part of a DSS, the solution time can be 

considered as a critical resource for the user.  It has been observed that the number of 

iterations per second that the solver is able to perform varies significantly, depending on 

the number of customers in the instance, as can be seen in Figure 5.5. Then it would not be 

reasonable to assign the same running time to all the instances. 
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Figure 5.5 Iterations per second as function of the number of customers in the instance 

 

The objective of this research is not to find the best solutions, or not necessarily. On the 

other hand as many searches, one per each potentially Pareto optimal solution, have to be 

performed, then establishing a long running time can lead to an extreme situation. This 

situation can occur in the case that several hours would be required for finding the set of 

solutions, which in a DSS framework could be considered prohibitive, since the decision 

maker wish to have the results as soon as possible.  

 

Due to the previous considerations, the running time was established as a function of the 

numbers of customers in the instance. Where the assigned time should be close to the time 

expended in reaching the point where the improvements start to be smaller. To determine 

this time 10 different runs where performed using 3600 seconds for each instance. And 

then a linear regression was done, finding the relationship between the time expended and 

the size of the problem, defined as the number of customers.  
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The Figure 5.6 shows the relation between the best weighted objective value and the 

search time for the instance M-n200-k17. Where after 450 seconds there was just one 

improvement better than 2%, for all random seeds. 

 

 

Figure 5.6 Best weighted objective value, as function of the time, for instance M-n200-k17 

 

It was found that a model represented as NNT log1.096 would be a fair explanation to 

the time for the different instances. The R-Square is equal to 0.8974, which was considered 

good enough. To simplify the problem of assigning the running time to each instance, 

eight different running times were established. The instances were grouped into eight sets, 

depending on the number of customers. To every set a running time was assigned. Table 

5.1 shows the maximum number of customers of the instances in each set. 
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Instance set 
Number of 
customers 

Running time 

1 48 60 

2 72 120 

3 78 180 

4 100 240 

5 135 300 

6 151 360 

7 200 480 

8 262 720 

Table 6.1 Running time per instance set  

5.3.5 Balance measure 

It is assumed here that the decision maker would wish to have not necessary equal tour 

lengths, but none of them longer than the other by certain threshold. Somehow this can be 

computed dividing the difference between shortest tour and the longest tour by the shortest 

one. This difference between the longest and the shortest tour, has been one of the ways to 

measure the balance, it has been called here, basic balance. The other possibility for 

measuring the balance during the search, has been the summation of the square differences 

between every tour length and the average tour length, this balance has been called square 

balance. 

 

The basic balance gives an easier idea to understand of what it is measuring, and it is more 

related to the measure of balancing that is assumed to be used by the decision maker. 

However both balance measures could be used during the search, for evaluating the moves, 

reporting to the decision maker the basic balance, which is easier to understand for 

him/her. Several tests were run to find which balance measure report better results, defined 

as the lowest difference between the shortest and the longest tour. For each balance 

measure 10 different random seeds were used.  

 

For the instances with 32 and 55 customers (including the depot) there was no statistical 

difference between the longest and the shortest tour in the final solutions, no matter which 

balance measure was used during the search. However, for the rest of the instances, with 

67, 101 and 200 customers, the difference between the longest and the shortest tour was 

much higher when the balance measure used during the search was the square balance. 
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Based on these results, it was decided to use the basic balance as the balance measure in 

the tests. 
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6. Experiments and results 

6.1 Test cases  
 

Eight different sets of test cases were used in this research. These are instances from the 

literature for the capacitated VRP (CVRP) and they can be found at 

http://branchandcut.org/VRP/data. However just 92 of the 109 instances reported in the 

previous source have been used.  

 

The set A consists of 27 instances with 32 to 80 customers and 5 to 10 vehicles. The set B 

consists of 23 instances with 31 to 78 customers and 5 to 10 vehicles. The set P consists of 

24 instances with 16 to 101 customers and 2 to 15 vehicles. These three sets are labelled as 

Augurat, et al. Just one of the instances in these sets was not used for the testing, P-n55-

k15, for which the solver was not able to find a feasible solution after 10000 seconds, so it 

was removed from the test cases. The tightness (demand/capacity) of this instance is 0.99 

which could explain the difficulty in finding the solution, however feasible solutions were 

found on instances with similar tightness. 

 

The set CE, labelled as Christofides and Eilon, consists of 13 instances with 13 to 101 

customers and 3 to 14 vehicles. Two of them have a non Euclidean distance type, so just 

11 instances were used in the tests. 

 

The set F, labelled as Fisher, consists of 3 instances with 45 to 135 customers and 4 to 7 

vehicles. Two of them have non integer location coordinates, so just one instance was used 

in the tests. 

 

The set GJ, labelled as Gillet and Johnson, consists of 1 instance with 262 customers and 

25 vehicles. 

 

The set CMT, labelled as Christofides, Mingozzi, and Toth, consists of 5 instances with 

101 to 200 customers and 7 to 17 vehicles. All of them were used in the tests. 

 

The set V, labelled as Converted TSPLIB Problems, consists of 13 instances with 16 to 48 

customers and 3 to 5 vehicles. Just one of these instances has a Euclidean distance type, so 

it is the one used in the tests. 



 42 

More details about the selected instances can be found in the Appendix A. 

 

6.2 General tests  
 

Using the 92 chosen instances, a general basic test was done. Eleven multi-objective 

solutions to every instance were generated, assigning weights to the total length in [0, 1], 

using 0.1 as step. In addition the distance between every pair of solutions was computed. 

 

6.2.1 Cost analysis 

 

Considering a second objective function into the optimization problem could also be seen 

as an additional constraint. So it is expected that the total length will increase when a 

higher weight is assigned to the balance objective. The solver does not guarantee 

optimality, so even though the shortest tour length is expected to be found when the weight 

assigned to the length objective function; this will not be always the result. Actually, in 

57.6% of the instances, the best total length was found when the weight associated to the 

length objective function was different than 1. In 45.6% of the instances the best total 

length was found when the mentioned weight was equal to 0.9. This could mean that 

including a different objective function into the model will diversify the search, forcing the 

algorithm to explore different areas of the search space. However, it could also mean that 

the good search parameters, when the two objectives are considered, do not perform so 

well when only the total length objective is considered. 

 

The cost of including the balance as an objective function into the optimization problem, in 

average, was quite significant. If the best total length is compared with the total length 

found when the weight assigned to it is equal to 0, the total length has an increment of 

72.2%. If the comparison is done between the total lengths when the weights are 0 and 1, 

then the increment in the total length (cost) is equal to 70.3%. The Figure 6.1 shows the 

average increment in the total length, compared with the best value found during the multi-

objective search. 
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Figure 6.1 Cost of including the route balance in the optimization problem 

 

6.2.2 Solution distances 

The distance between solutions, as defined in Section 4.1, was calculated for every pair of 

solutions to the instances. A linear regression was done to find the relation among the 

average distance of the solutions to an instance and the number of customers and / or 

vehicles in the instance. No statistical evidence was found about the relation between the 

average distance of the solutions and the number of customer in the instance. In addition, 

even though it was found statistical evidence of the relation between the average distance 

and the number of vehicles, this last variable does not explain the linear model, since the 

R-Square of the regression is 0.126, which can be considered too low. Different variables 

should be considered to explain the distance between the solutions. 

 

Figure 6.2 shows the frequency of the average distance, between all the pairs of solutions 

in the instances. The frequency shows a high average distance between solutions. 
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Figure 6.2 Frequency of the average distance between solutions, per instance 

 

An additional analysis to the results was done. The average distance between any pair of 

solutions for all the instances was computed. The minimum and maximum distance was 

also found, for every pair of solutions. These results can be found in more detail in 

Appendix B.  Figure 6.3 shows the frequency for the average distance. Figure 6.4 shows 

the behaviour of the maximum, the minimum and the average distance per pair of 

solutions. There are 55 pairs of solutions (0,1), (0,2)… (9,10).   
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Figure 6.3 Frequency of the average distance between every pair of solutions 

 

 

 
Figure 6.4 Minimum, average and maximum distance per pair of solutions 

 

It was observed that varying the difference in the weights associated with the total length 

objective function will not necessary change the distance between the found solutions, or 

at least not as expected. For example, it was found that the distance between two solutions 
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that were found assigning weights of 0 and 0.1 to the total length objective, could be 

greater than the distance between the first solution and the other found when just the total 

length was considered.  

 

Figure 6.5 represents a solution to the instance A-n32-k5, which was found after assigning 

a weight of zero to the total length objective, this solution will be referred as solution E. 

Figure 6.6 represents a solution to the same instance, solution F, but in this case the weight 

associated to the total length objective was 0.1. In addition, the same weight associated to 

the solution represented in Figure 6.7 is 1, solution G. It is evident that the distance 

between the weights associated to the solutions E and F is less than the distance between 

the weights associated to solutions E and G. The result is different when the solutions are 

compared in the solution space; this is using the distance measure between solutions. The 

distance between the solutions E and F is 0.755094, which is greater than the distance 

between solutions E and G, 0.69872. If the difference between the weights associated with 

the total length is used as a distance measure, the result would not correspond to the 

previous one. Table 6.2 shows all the distances between the three solutions, the weight 

difference is in parenthesis. 

 

  Solution 2 

Solution 1 E F G 

E 0 0.755094 (0.1) 0.69872 (1.0) 

F 0.755094 (0.1) 0 0.642543 (0.9) 

G 0.69872 (1.0) 0.642543 (0.9) 0 

Table 6.2 Distances between solutions to the instance A-n32-k5 
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Figure 6.5 Solution E to the instance A-n32-k5 

 

 
Figure 6.6 Solution F to the instance A-n32-k5 
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Figure 6.7 Solution G to the instance A-n32-k5 

 

 

6.3 Specific tests 
 

For running more specific tests, the time factor has to be considered. Since there is a 

limited time for carrying on this research, only 12 instances were selected for more testing.  

The instances A-n36-k5, A-n37-k6, A-n45-k7, A-n60-k9, A-n80-k10, B-n41-k6, B-n57-

k9, P-n70-k10, P-n101-k4, E-n76-k10, G-n262-k25 and M-n200-k17 were selected, so 

different problem sizes, in number of customers and number of vehicles, will be 

considered.  

 

Two different groups of tests were performed. The objective of the first group of tests is to 

generate several solutions where none of the route lengths is above the others by certain 

threshold. A 0.1 (10%) threshold was used here. In the second group of tests the objective 

is to reproduce the general tests, using the instances mentioned above. Ten different 

random seeds will be used, in any case, so it will be possible to get some statistical 

conclusions. 
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6.3.1 Solutions within a threshold 

The tests have two different stages. The first stage is to find eleven potentially Pareto 

optimal solutions, varying the weight associated to the total length from 0 to 1, using 0.1 as 

step. For every solution the balance is checked, measured as the percentage in which the 

longest tour overpasses the shortest one. From those solutions which balance is within the 

threshold given by the decision maker, the highest weight is selected and increased by 0.1. 

The second stage of the search is performed then, varying the weight associated with the 

total length from 0 to the value found in the previous stage, using now 0.01 as step. Part of 

the solutions found during this stage are then classified as either good solutions or non-

dominated solutions. The good solutions are those which balance is within the given 

threshold. The non-dominated solutions are those that, in addition to the previous 

condition, are not dominated by any of the other good solutions.   

 

A set of solutions is then given to the decision maker from each group, good and non-

dominated solutions. The solution with the shortest total length, the solution more distant 

to that one and the two more different solutions are part of the output. The objective of 

doing this is to evaluate if the dominated solutions, included in the good solutions set, 

could be relevant for the decision maker.  

 

Figure 6.8 shows solutions found on every stage of the search for the instance A-n36-k5. A 

set of eleven solutions are represented in blue, these correspond to solutions found on the 

first stage of the search.  The solutions represented in green correspond to solutions from 

the second stage of the search. 51 solutions were found during the last stage. 39 of them 

were good solutions, i.e. none of the tours was longer than any other in more than 10%. 7 

solutions were non-dominated. 
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Figure 6.8 Multi-objective solutions for the instance A-n36-k5 

 

Here it is assumed that all the solutions with a balance within the threshold are equally 

good. So a decision maker can be interested in having different solutions, since the model 

and the instances include assumptions about the real world, and somehow are a 

simplification of it. A good solution for the model will not necessarily fit well in the real 

world, either because it will not be easy to implement or because the quality once is 

implemented is not the expected. This can create an interest in the decision maker for 

seeing a set of different solutions, from where to choose the one to implement. 

 

Test results 

Two statistics test are performed for every instance. One test will evaluate if there is a 

difference between the average distance of the two more different solutions on each set, 

good solutions and non-dominated solutions. The second test will compare the average 

distance between the solution with the shortest length and the solution more distant to it, in 

the two sets. The number of solutions given as an output will not necessary always be the 
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same, since for some cases the solution with the shortest total length is also one of the 

most different solutions in the set. 

 

Table 6.3 shows the interval confidence for the difference between the average distance 

obtained from the good solutions set and the one from the non-dominated solution set. As 

can be seen, there is no evidence to say that the average distances between the solutions in 

the good solutions set are not greater than those in the non-dominated solutions set.  

 

Instance 

95% Confidence Interval of the 

Difference (2 most different) 

95% Confidence Interval of the 

Difference (including best 

length) 

Lower Upper Lower Upper 

A-n36-k5 0.02786 0.037277 0.020446 0.042334 

A-n37-k6 0.013265 0.026446 0.006951 0.030091 

A-n45-k7 0.011534 0.033439 0.003258 0.027043 

A-n60-k9 0.010906 0.01768 0.003764 0.020938 

A-n80-k10 0.009656 0.01831 0.006818 0.018187 

B-n41-k6 0.014714 0.028751 0.01155 0.026128 

B-n57-k9 0.017438 0.027275 0.005286 0.020849 

P-n70-k10 0.00997 0.034916 0.007876 0.025505 

P-n101-k4 0.023153 0.048658 0.018479 0.048621 

E-n76-k10 0.008633 0.040852 0.003707 0.027152 

G-n262-k25 0.019587 0.031169 0.020724 0.032205 

M-n200-k17 0.034734 0.048937 0.028072 0.042864 

Table 6.3 Interval confidence for difference between the average distances of the solutions 

 

Here just a threshold for the route balancing is given. The solutions in both sets, good 

solutions and non-dominated solutions, are considered to be equal, since they are within 

the given threshold. But the length could be a different issue. For the case of the best 

length in the good solutions set, it is not worse than the best length in the non-dominated 

solutions set. What can generate then, a difference for the decision maker, is the length in 

the solution more different to the previous one, and the two most different solutions. This 

will be a tradeoff between diversity of the solutions and total length; however this is part 

of a different analysis. If just the distance between the solutions is considered, then it will 

be possible to say that including dominated solutions in the set to give to the decision 

maker, will increase the diversity of the solutions, which according to previous 

considerations is something that could be interesting for the decision maker.  
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6.3.2 Solutions to the multi-objective problem 

Eleven solutions to the multi-objective problem were generated for each instance, using 

weights on [0, 1] and 0.1 step. The distance between all the solutions was calculated.  This 

procedure was done using ten different random seeds. The cost of including the route 

balancing as an objective function into the problem is evaluated. Another aspect that is 

analyzed from the results is the correlation of the distance between solutions in the 

solution space (attribute based distance measure) and weight space (difference of weights 

associated to the total length). 

   

Test results 

The average total length was calculated for every weight associated with it. In 9 of the 

instances, the average best total length was found when the weight associated with the 

length objective function was 0.9. In the instance G-n262-k25 was found in the search 

performed with a 0.8 weight. The best total length found in the instances P-n101-k4 and E-

n76-k10 was associated with a weight equal to 1. In general, the total length increases 

when the weight associated with it is decreased. These results are compatible with those 

found in Section 6.2.1, and shows that considering another objective function can diversify 

the search. Table 6.4 shows how the average cost as a percentage of the minimum found 

value is related to the weight, for all the instances. 

 

Instance 
weight 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

A-n36-k5 0.636 0.347 0.345 0.290 0.256 0.197 0.158 0.112 0.075 0.000 0.003 

A-n37-k6 0.513 0.377 0.324 0.288 0.244 0.204 0.161 0.068 0.014 0.000 0.009 

A-n45-k7 0.501 0.321 0.283 0.245 0.223 0.198 0.152 0.107 0.033 0.000 0.003 

A-n60-k9 0.689 0.506 0.450 0.393 0.356 0.206 0.090 0.039 0.011 0.000 0.010 

A-n80-k10 0.720 0.470 0.424 0.349 0.307 0.224 0.121 0.081 0.023 0.000 0.005 

B-n41-k6 0.715 0.509 0.358 0.342 0.305 0.236 0.116 0.058 0.025 0.000 0.005 

B-n57-k9 0.474 0.279 0.248 0.171 0.182 0.127 0.102 0.086 0.007 0.000 0.011 

P-n70-k10 0.680 0.468 0.415 0.382 0.346 0.285 0.187 0.077 0.030 0.000 0.013 

P-n101-k4 0.688 0.394 0.379 0.350 0.327 0.279 0.228 0.151 0.056 0.001 0.000 

E-n76-k10 0.795 0.574 0.488 0.459 0.383 0.314 0.145 0.061 0.021 0.006 0.000 

G-n262-k25 1.385 0.735 0.735 0.701 0.685 0.565 0.275 0.024 0.000 0.027 0.031 

M-n200-k17 1.558 0.777 0.684 0.670 0.598 0.552 0.238 0.038 0.009 0.000 0.030 

Table 6.4 Average cost as a percentage of the minimum found value per instance 
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The highest average cost goes from 50.1% in the instance A-n45-k7 to 155.8% in the 

instance M-n200-k17. In every case this value is obtained when the weight associated with 

the total length is 0. It has a significant variation from instance to instance, as a percentage. 

Figure 6.9 shows the relation between the maximum average cost and the number of 

customers. Two cases look to be significantly different than the rest. Similar results if the 

analysis is done with the number of vehicles instead of the customers.  

 

 
Figure 6.9 Relation between the maximum average cost and number of customers 

 

Table 6.5 shows the correlation coefficients of the distance between solutions in the 

solution space (attribute based distance measure) and weight space (difference of weights 

associated to the total length). Two types of correlations were calculated, linear (Pearson) 

and rank correlation (Spearsman). In each case the correlation was smaller than 0.5, which 

can be understood as small or medium.  
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Instance Pearson Spearsman 

A-n36-k5 0.36515 0.36506 

A-n37-k6 0.28984 0.25613 

A-n45-k7 0.30539 0.29047 

A-n60-k9 0.41144 0.40057 

A-n80-k10 0.46281 0.42414 

B-n41-k6 0.32033 0.30559 

B-n57-k9 0.42060 0.39361 

P-n70-k10 0.22111 0.19354 

P-n101-k4 0.18378 0.16201 

E-n76-k10 0.36878 0.33690 

G-n262-k25 0.43685 0.37043 

M-n200-k17 0.49172 0.44411 

Table 6.5 Correlation coefficients between distances in solution space and weight space 

 

Figure 6.10 shows the relation between the distances in the solution space and the weight 

space for the instance E-n76-k10. There is some pattern that was common to all the tested 

instances. The values for the attribute based distance measure are more spread when the 

difference between the weights is smaller.  

 

 

Figure 6.10 Relation between distances of the solutions to instance E-n76-k10 
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7. Conclusions and further research 

Given a problem, several multi-objective solutions were able to be generated. Analyzing 

the obtained results, it was possible to confirm that including an extra objective to a single 

objective VRP, will have a similar effect than adding an extra constraint to the 

optimization problem, this is, it involves a cost. 

 

The distance between multi-objective solutions was computed in the solution space, using 

the structural characteristics of the solutions. The distance between the solutions calculated 

like this seems to be, a more effective way to measure how different two solutions are, 

than using the weights associated to the objective functions. It was found that greater 

differences in the weights associated to the total length objective function, will not 

necessary generate more different solutions. In fact, the correlation between the difference 

of the weights associated with the total length and the attribute based distance measure was 

no different than small or medium. 

 

It was not found statistical evidence of a strong linear relation between the average 

distance of the solutions to an instance and the number of vehicles and/or number of 

customers. Another type of relation or other aspects should be considered for further 

research. 

 

Including a dominated solution into the set of solutions given to the decision maker would 

increase the variability of the set. It can have some benefits for the decision maker, since 

the problem solved by the model includes assumptions and simplifications of the real 

problem. The solutions will not necessary perform as well as expected, so several 

alternatives should be considered. 

 

The multi-objective solver can be improved, since not all the strategies for setting the tabu 

tenure were evaluated, nor the diversification strategies. In addition the distance measure 

between solutions can be improved, either including more details into the measure or 

defining in a different way the distance between some attributes. 

 

The tests were also performed using a single threshold for the route balance. It could be 

interesting to check the results obtained for different thresholds, as well as the importance 
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given to the arcs, stops and routes in the distance measure, which was set to be the same 

for all. 

 

Including the balance into the optimization problem has a cost. The average highest cost 

looks to be significantly higher when the number of customers or vehicles is increased.   

 

This research can be extended to include recovering plans with minimal disruption. When 

some characteristics of the instance are changed, the best found solution to the instance can 

have significant changes also. A decision maker can be interested in having a solution to 

the new problem as close as possible to the best found solution to the initial problem. This 

can be achieved by focusing the search in minimizing the distance between the solution to 

the initial problem and a feasible solution to the new problem. This problem could also be 

considered into a multi-objective approach, with the total length and the distance to the 

initial solution as part of the objective function. 
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Appendix A: Description of test cases 

 

In the following tables are described the instances from the literature that have been used 

here. More general information about them can be found at the web page 

http://branchandcut.org/VRP/data. 

 

Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

A-n32-k5.vrp  31 5 100 0.82 

A-n33-k5.vrp  32 5 100 0.89 

A-n33-k6.vrp  32 6 100 0.9 

A-n34-k5.vrp  33 5 100 0.92 

A-n36-k5.vrp  35 5 100 0.88 

A-n37-k5.vrp  36 5 100 0.81 

A-n37-k6.vrp  36 6 100 0.95 

A-n38-k5.vrp  37 5 100 0.96 

A-n39-k5.vrp  38 5 100 0.95 

A-n39-k6.vrp  38 6 100 0.88 

A-n44-k6.vrp  43 6 100 0.95 

A-n45-k6.vrp  44 6 100 0.99 

A-n45-k7.vrp  44 7 100 0.91 

A-n46-k7.vrp  45 7 100 0.86 

A-n48-k7.vrp  47 7 100 0.89 

A-n53-k7.vrp  52 7 100 0.95 

A-n54-k7.vrp  53 7 100 0.96 

A-n55-k9.vrp  54 9 100 0.93 

A-n60-k9.vrp  59 9 100 0.92 

A-n61-k9.vrp  60 9 100 0.98 

A-n62-k8.vrp  61 8 100 0.92 

A-n63-k9.vrp  62 9 100 0.97 

A-n63-k10.vrp  62 10 100 0.93 

A-n64-k9.vrp  63 9 100 0.94 

A-n65-k9.vrp  64 9 100 0.97 

A-n69-k9.vrp  68 9 100 0.94 

A-n80-k10.vrp  79 10 100 0.94 

Table A.1 Instances Augerat, et al. Set A 

 



 60 

 

 

 

 

Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

B-n31-k5.vrp  30 5 100 0.82 

B-n34-k5.vrp  33 5 100 0.91 

B-n35-k5.vrp  34 5 100 0.87 

B-n38-k6.vrp  37 6 100 0.85 

B-n39-k5.vrp  38 5 100 0.88 

B-n41-k6.vrp  40 6 100 0.95 

B-n43-k6.vrp  42 6 100 0.87 

B-n44-k7.vrp  43 7 100 0.92 

B-n45-k5.vrp  44 4 100 0.97 

B-n45-k6.vrp  44 6 100 0.99 

B-n50-k7.vrp  49 7 100 0.87 

B-n50-k8.vrp  49 8 100 0.92 

B-n51-k7.vrp 50 7 100 0.98 

B-n52-k7.vrp  51 7 100 0.87 

B-n56-k7.vrp  55 7 100 0.88 

B-n57-k7.vrp 56 7 100 1 

B-n57-k9.vrp  56 9 100 0.89 

B-n63-k10.vrp  62 10 100 0.92 

B-n64-k9.vrp  63 9 100 0.98 

B-n66-k9.vrp  65 9 100 0.96 

B-n67-k10.vrp  66 10 100 0.91 

B-n68-k9.vrp  67 9 100 0.93 

B-n78-k10.vrp  77 10 100 0.94 

Table A.2 Instances Augerat, et al. Set B 
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Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

P-n16-k8.vrp  15 8 35 0.88 

P-n19-k2.vrp  18 2 160 0.97 

P-n20-k2.vrp  19 2 160 0.97 

P-n21-k2.vrp  20 2 160 0.93 

P-n22-k2.vrp  21 2 160 0.96 

P-n22-k8.vrp  21 8 3000 0.94 

P-n23-k8.vrp  22 8 40 0.98 

P-n40-k5.vrp  39 5 140 0.88 

P-n45-k5.vrp  44 5 150 0.92 

P-n50-k7.vrp  49 7 150 0.91 

P-n50-k8.vrp  49 8 120 0.99 

P-n50-k10.vrp  49 10 100 0.95 

P-n51-k10.vrp  50 10 80 0.97 

P-n55-k7.vrp  54 7 170 0.88 

P-n55-k8.vrp  54 8 160 0.81 

P-n55-k10.vrp  54 10 115 0.91 

P-n60-k10.vrp  59 10 120 0.95 

P-n60-k15.vrp  59 15 80 0.95 

P-n65-k10.vrp  64 10 130 0.94 

P-n70-k10.vrp  69 10 135 0.97 

P-n76-k4.vrp  75 4 350 0.97 

P-n76-k5.vrp  75 5 280 0.97 

P-n101-k4.vrp  100 4 400 0.91 

Table A.3 Instances Augerat, et al. Set P 
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Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

E-n22-k4.vrp  21 4 6000 0.94 

E-n23-k3.vrp  22 3 4500 0.75 

E-n30-k3.vrp 29 3 4500 0.94 

E-n33-k4.vrp  32 4 8000 0.92 

E-n51-k5.vrp  50 5 160 0.97 

E-n76-k7.vrp  75 7 220 0.89 

E-n76-k8.vrp  75 8 180 0.95 

E-n76-k10.vrp  75 10 140 0.97 

E-n76-k14.vrp  75 14 100 0.97 

E-n101-k8.vrp  100 8 200 0.91 

E-n101-k14.vrp  100 14 112 0.93 

Table A.4 Instances Christofides and Eilon. Set CE 

 

 

Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

F-n72-k4.vrp  71 4 30000 0.96 

Table A.5 Instance Fisher. Set F 

 

 

 

Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

G-n262-k25.vrp  261 25 500 0.97 

Table A.6 Instance Gillet and Johnson. Set GJ 
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Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

M-n101-k10.vrp  100 10 200 0.91 

M-n121-k7.vrp  120 7 200 0.98 

M-n151-k12.vrp  150 12 200 0.93 

M-n200-k16.vrp  199 16 200 1 

M-n200-k17.vrp  199 17 200 0.94 

Table A.7 Instances Christofides, Mingozzi, and Toth. Set CMT 

 

 

 

Problem 
Instance 

# of 
Customers 

# of 
Vehicles 

Vehicle 
Capacity 

Tightness 
(Demand/Capacity) 

att-n48-k4.vrp  47 4 15 0.73 

Table A.8 Instances Converted TSPLIB Problems. Set V 
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Appendix B: Computational results (general tests) 

 

Table B.1 shows the minimum, average and maximum distance between every pair of 

solutions, for all the instances. 

 

Pair 

Weight associated to 
the length objective in 

the solution 
Distance 

Solution 1 Solution 2 minimum average maximum 

1 0 0.1 0.342227 0.736129 0.823248 

2 0 0.2 0.396639 0.732698 0.820853 

3 0 0.3 0.375654 0.737475 0.81144 

4 0 0.4 0.421857 0.735068 0.820282 

5 0 0.5 0.40442 0.735225 0.81309 

6 0 0.6 0.382198 0.74067 0.846737 

7 0 0.7 0.403344 0.732763 0.816292 

8 0 0.8 0.408474 0.735128 0.819334 

9 0 0.9 0.396708 0.735343 0.821525 

10 0 1 0.481801 0.738356 0.819226 

11 0.1 0.2 0.121748 0.705739 0.815913 

12 0.1 0.3 0.351224 0.719213 0.801462 

13 0.1 0.4 0.33333 0.707763 0.81918 

14 0.1 0.5 0.327138 0.70939 0.814121 

15 0.1 0.6 0.406758 0.716007 0.805765 

16 0.1 0.7 0.354541 0.711296 0.813871 

17 0.1 0.8 0.315076 0.713446 0.800967 

18 0.1 0.9 0.348079 0.713621 0.813661 

19 0.1 1 0.467467 0.719041 0.798547 

20 0.2 0.3 0.252878 0.704203 0.797613 

21 0.2 0.4 0.225599 0.698001 0.80876 

22 0.2 0.5 0.287409 0.700963 0.8148 

23 0.2 0.6 0.290259 0.697213 0.796189 

24 0.2 0.7 0.340442 0.696615 0.802846 

25 0.2 0.8 0.33706 0.704026 0.803649 

26 0.2 0.9 0.351811 0.707606 0.796655 

27 0.2 1 0.368008 0.707037 0.796301 

Table B.1 Minimum, average and maximum distance between every pair of solutions 
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Pair 

Weight associated to 
the length objective in 

the solution 
Distance 

Solution 1 Solution 2 minimum average maximum 

28 0.3 0.4 0.290689 0.693372 0.816241 

29 0.3 0.5 0.147461 0.695342 0.794971 

30 0.3 0.6 0.289353 0.690956 0.791046 

31 0.3 0.7 0.304091 0.695892 0.799123 

32 0.3 0.8 0.340634 0.691588 0.792782 

33 0.3 0.9 0.222995 0.692425 0.797026 

34 0.3 1 0.283227 0.703008 0.818989 

35 0.4 0.5 0.285963 0.685424 0.786677 

36 0.4 0.6 0.199948 0.679831 0.78976 

37 0.4 0.7 0.281329 0.685259 0.798068 

38 0.4 0.8 0.379188 0.686271 0.79772 

39 0.4 0.9 0.223192 0.673569 0.79565 

40 0.4 1 0.325605 0.692165 0.780814 

41 0.5 0.6 0.20941 0.672718 0.790199 

42 0.5 0.7 0.326304 0.671726 0.803849 

43 0.5 0.8 0.12656 0.669255 0.801095 

44 0.5 0.9 0.128463 0.666971 0.780255 

45 0.5 1 0.292104 0.6747 0.795272 

46 0.6 0.7 0.100188 0.655609 0.780001 

47 0.6 0.8 0.217877 0.656409 0.770825 

48 0.6 0.9 0.222419 0.653559 0.790453 

49 0.6 1 0.26212 0.660843 0.763687 

50 0.7 0.8 0.193422 0.634099 0.755229 

51 0.7 0.9 0.268758 0.638687 0.776149 

52 0.7 1 0.274313 0.643776 0.775624 

53 0.8 0.9 0.276221 0.628302 0.75097 

54 0.8 1 0.232127 0.628201 0.74878 

55 0.9 1 0.237615 0.615494 0.770642 

Average 0.298795 0.693191 0.798622 

Table B.1 (Continuation) Minimum, average and maximum distance between every pair of 

solutions 
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Appendix C: Computational results (specific tests) 

 

The following tables show the distance between two pair of solutions. The first pair 

corresponds to the two most different solutions. The second pair corresponds to the best 

found solution, defined as the one with the shortest total length, and the one most different 

to it. All the solutions are above a 10% threshold for the tour balance, that is there are no 

tours longer than any other by more than 10%. Each of the ten values, given in the tables, 

corresponds to the results of a search done with a different random seed. 

 

 
Solutions set 

Pair of solutions Good solutions Non-dominated 

Two most different 

0.809501 0.783867 

0.80484 0.784143 

0.813494 0.797773 

0.810579 0.789613 

0.800282 0.758113 

0.801493 0.779569 

0.807636 0.795002 

0.813051 0.797122 

0.809263 0.797843 

0.803894 0.792434 

Best found and most 
different to it 

0.795563 0.783867 

0.791212 0.753193 

0.787855 0.780257 

0.801877 0.772327 

0.78761 0.746268 

0.797284 0.771927 

0.784217 0.784217 

0.797122 0.797122 

0.784156 0.782794 

0.787418 0.757132 

Table C.1 Distance between solutions to instance A-n37-k6 
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  Solutions set 

Pair of solutions Good solutions Non-dominated 

Two most different 

0.790457 0.753156 

0.78486 0.754344 

0.786669 0.752136 

0.789427 0.771517 

0.798316 0.766202 

0.774133 0.736472 

0.795235 0.753945 

0.790379 0.763697 

0.787017 0.754668 

0.787658 0.752327 

Best found and most 
different to it 

0.754369 0.735537 

0.766642 0.72939 

0.765028 0.726562 

0.780664 0.771517 

0.790742 0.738298 

0.748463 0.712276 

0.749484 0.696004 

0.769201 0.735338 

0.757822 0.741597 

0.770332 0.752327 

Table C.2 Distance between solutions to instance A-n36-k5 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.807094 0.793181 

0.814565 0.788209 

0.814211 0.760125 

0.808829 0.784169 

0.807615 0.78666 

0.815547 0.789005 

0.814688 0.814688 

0.81853 0.788646 

0.802362 0.800428 

0.810768 0.784232 

Best found and most 
different to it 

0.787745 0.774402 

0.784143 0.769051 

0.791773 0.746129 

0.780775 0.777302 

0.789053 0.780055 

0.788503 0.778958 

0.80905 0.80905 

0.799208 0.754557 

0.781634 0.781634 

0.786036 0.775279 

Table C.3 Distance between solutions to instance A-n45-k7 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.819917 0.811121 

0.816874 0.80635 

0.816904 0.802804 

0.819839 0.806226 

0.815229 0.808319 

0.813125 0.800431 

0.824546 0.804525 

0.818441 0.799729 

0.814649 0.79776 

0.819867 0.799197 

Best found and most 
different to it 

0.819917 0.811121 

0.803266 0.802434 

0.80902 0.790593 

0.79848 0.794425 

0.808319 0.808319 

0.813125 0.792713 

0.812291 0.798807 

0.798149 0.798015 

0.809751 0.772579 

0.805061 0.784865 

Table C.4 Distance between solutions to instance A-n60-k9 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.818427 0.795015 

0.818946 0.798958 

0.818142 0.804779 

0.815723 0.802317 

0.818844 0.802817 

0.815131 0.803137 

0.820849 0.80354 

0.813472 0.812208 

0.816639 0.807412 

0.824063 0.810225 

Best found and most 
different to it 

0.812275 0.795015 

0.803674 0.791493 

0.814918 0.791965 

0.810471 0.788339 

0.803979 0.79917 

0.800551 0.780073 

0.804898 0.794231 

0.801447 0.792386 

0.807672 0.802191 

0.809678 0.809678 

Table C.5 Distance between solutions to instance A-n80-k10 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.80543 0.785617 

0.805242 0.785002 

0.808195 0.791622 

0.813874 0.780119 

0.81186 0.793135 

0.808082 0.793724 

0.810596 0.773943 

0.799994 0.79677 

0.812433 0.787083 

0.812076 0.783443 

Best found and most 
different to it 

0.799463 0.785617 

0.780014 0.772132 

0.793716 0.779394 

0.786467 0.760975 

0.804247 0.774066 

0.795891 0.781314 

0.802 0.773943 

0.778056 0.752515 

0.787083 0.787083 

0.802419 0.773929 

Table C.6 Distance between solutions to instance B-n41-k6 

  



 72 

  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.829325 0.811857 

0.833305 0.821878 

0.835868 0.802763 

0.838528 0.818486 

0.838487 0.8122 

0.827519 0.814243 

0.831718 0.804399 

0.833505 0.81158 

0.832503 0.807936 

0.833557 0.805407 

Best found and most 
different to it 

0.819157 0.789944 

0.812555 0.782166 

0.80602 0.802763 

0.817079 0.814168 

0.815043 0.807763 

0.813243 0.809535 

0.808195 0.801091 

0.814239 0.79902 

0.814462 0.806683 

0.81579 0.791976 

Table C.7 Distance between solutions to instance B-n57-k9 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.797926 0.7839 

0.800601 0.778976 

0.798194 0.784241 

0.808938 0.766586 

0.801869 0.789284 

0.804737 0.802145 

0.795685 0.77554 

0.801712 0.752048 

0.808501 0.806611 

0.805075 0.759476 

Best found and most 
different to it 

0.786798 0.774652 

0.800601 0.778976 

0.784241 0.784241 

0.789183 0.766586 

0.789284 0.789284 

0.804737 0.802145 

0.789411 0.757062 

0.780765 0.752048 

0.808501 0.790049 

0.787902 0.759476 

Table C.8 Distance between solutions to instance P-n70-k10 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.722803 0.692585 

0.724105 0.682484 

0.721837 0.677634 

0.724318 0.698225 

0.721311 0.685018 

0.724377 0.646486 

0.720889 0.71119 

0.725771 0.687972 

0.728506 0.696451 

0.719191 0.696008 

Best found and most 
different to it 

0.695975 0.645675 

0.704788 0.640656 

0.710855 0.655662 

0.709064 0.698225 

0.701276 0.685018 

0.706648 0.646486 

0.708078 0.688853 

0.704754 0.687972 

0.705593 0.685101 

0.702124 0.680008 

Table C.9 Distance between solutions to instance P-n101-k4 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.796049 0.72498 

0.802302 0.802302 

0.803339 0.788769 

0.802864 0.746378 

0.801753 0.783966 

0.787499 0.782867 

0.795185 0.78005 

0.807378 0.779778 

0.800835 0.773772 

0.79428 0.781196 

Best found and most 
different to it 

0.775163 0.72498 

0.788116 0.774158 

0.790439 0.788769 

0.782472 0.746378 

0.783499 0.783499 

0.775326 0.756163 

0.793496 0.78005 

0.777516 0.771816 

0.787853 0.773772 

0.781196 0.781196 

Table C.10 Distance between solutions to instance E-n76-k10 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.817319 0.789715 

0.81447 0.789189 

0.815384 0.790825 

0.815936 0.783197 

0.810214 0.798085 

0.813767 0.789721 

0.815004 0.800622 

0.815968 0.787644 

0.812573 0.788142 

0.82029 0.780004 

Best found and most 
different to it 

0.817319 0.772078 

0.806183 0.787475 

0.812413 0.790825 

0.810885 0.783197 

0.804931 0.780599 

0.809721 0.781308 

0.81454 0.795641 

0.807576 0.782949 

0.806312 0.784661 

0.813021 0.779523 

Table C.11 Distance between solutions to instance G-n262-k25 
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  Solutions set 

 Pair of solutions Good solutions Non-dominated 

Two most different 

0.807181 0.754767 

0.811436 0.774051 

0.810818 0.753141 

0.798855 0.77096 

0.808036 0.777034 

0.802962 0.761626 

0.803305 0.766787 

0.805248 0.750969 

0.801943 0.761027 

0.802721 0.763788 

Best found and most 
different to it 

0.797525 0.754767 

0.796366 0.756375 

0.802711 0.753141 

0.777814 0.761475 

0.800506 0.763031 

0.794295 0.749145 

0.784321 0.76153 

0.79046 0.750969 

0.79011 0.760148 

0.794941 0.763788 

Table C.12 Distance between solutions to instance M-n200-k17 


