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Summary

The main aim of this thesis is to create an exact mathematical tool that allows

to solve the problem of vessels scheduling to offshore platforms with multiple time

windows.The tool has been tested with several instances and some extended ex-

periments have been carried out with the use of real data.

The problem can be summarized as a number of platforms that need to be

supplied frequently via sea from a single base. What we want to obtain is an

assignation of vessels and times to visit those platforms. At the same time, it

is needed to verify a number of constraints such as: opening times, maximum

duration of the voyages or frequency of the visits.

The solution model consists of 2 parts. In the first part we have to generate

a number of possible voyages and in the second part we have to choose some of

those voyages and assign them to vessels and times under some restrictions and

preferences. It has been validated with two data sets: one small and one medium.

The experiments and the results has been done with a large data set.

The tool has been proved functional, although not fast. To reduce the number

of voyages and accelerate the process a procedure has been applied and suggested.

Furthermore, some experiments on the data has been undergone and one of the

conclusions is that the slacks at the end of the voyages are less costly than to

distribute them along the voyages.

KEY WORDS: SCHEDULING, MULTIPLE TIME WINDOWS, SUPPLY VES-

SELS, PERIODIC VEHICLE PROBLEM, OPTIMIZATION.
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Chapter 1

Introduction

In offshore installations there is a need for regular supplies of commodities from

land. The cargo to be shipped ranges from food and drinking water to drilling

liquid. These commodities are transported using vessels due to high volumes

and weights. They are a costly resource, so their routes and schedules should

be planned carefully. Different mathematical models and computation techniques

have been developed for optimizing and simulating the operation of transport

fleets in order to serve the customers demand with the cost efficiency and service

maximization in mind.

Many fleet management problems correspond to combinatorial optimization

problems, such as vehicle routing and scheduling, that are notoriously difficult to

solve, even in a static context [1]. Moreover, there are many other parameters

and difficulties in those problems to be considered such as service restrictions,

fluctuating demands, limited capacity offshore, limited distance/time travel and

capacity for vessels or bad weather that prevent operations.

The research in improving the planning procedure in different situations is im-

portant because of the need of avoiding shortage cuts, for safety reasons, reducing

emissions and obviously for reducing operational cost. This subject is of special

relevance for the Norwegian government as it gets 78% of taxes of the revenues of

the oil industry and many installations have reached the peak oil. Consequently,

tail production starts to become a reality [20]. Therefore, in this kind of production
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environment logistics gets even more relevant as they suppose more percentage of

the costs.

1.1 Problem description

The problem can be summarized as a number of platforms that need to be supplied

frequently via sea from a base. The solution is an assignation of vessels and times

to visit the platforms verifying a number of constraints such as periodic opening

times of the platforms, maximum duration of the voyages, vessel’s capacity, etc.

The objective is to reduce the number of vessels and the consumed fuel. So, as it

has been hinted so far, there are three main Stakeholders in these problems which

are expanded below:

The platforms / rigs / offshore installations: There are two types of

platforms. The first one are the production platforms which are offshore factories.

Their demand is easily to predict for longer periods. Basically, they need routine

production material (like pipes for example) and provisions of food and water. The

second type are the research platforms: Exploration rigs. They move every some

month and need intensively new equipment. Therefore demands are uncertain and

fluctuate more. They need more frequent service as they cannot predict in advance.

It is variable due to they need unpredictable quantity of pipes and other equipment,

which is usually expensive and rented for short periods. Urgent calls are produced

more often as more incidents happened and they work with uncertainty.

Their location matters, how far are from the base and how they are spread will

change the problem substantially. They have different time windows, some open

24hours a day others close at night. They are more concerned more in service more

than cost. Usually they need small part as the space available at the platforms is

very limited; Decks of ships are bigger than platforms decks usually crowded with

different items. In this work the demands are deterministic and with a known

frequency.
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The supply vessels: In this work only supply vessels are considered not oil

tankers. They are rented for some periods or with permanent contracts. Those

used in permanent contract are thought to be used as much as possible, including

uses they were not intended for like sharing them with other bases or emergencies.

Sometimes even security vessels are used as temporary storages for example and

need to be supplied too. A uniform fleet will be considered.

The main parameters of supply vessels are their speed and they have limited

cargo capacity. Their lead time to delivery and service requirement would change

with different locations of installations. They transport two main kinds of cargo:

Deck and bulk. Deck is often considered alone because it has 84% of returns and

more frequent delivery. However, bulk commodities have a different pattern with

20% of pick up and can affect the solution too [20].

The supply base: They are places inshore from where the vessels depart with

the cargo to the installations. They have limited capacity that influences in the

number of vessel handling process at the same time. Additionally, opening times

affect time of departure and time of arrive of the vessels. They are affected by long

supply chain of some components as some supplies are very unique and delivery

to the base can be delayed. We must play with slacks.

1.2 Field of study

In this research we have studied the problem of scheduling of supply vessels to a

determined number of rigs. This problem is grouped inside the process of planning

of the procurement logistics of finished goods to the customers (rigs). The main

field of these kind of problem is periodic vehicle routing involving multiple time

windows.

The resulting plan is what it is called as ”tactical planning” or guide schedule.

Tis is due to it provides an average schedule that will be modified in practice for

the operational handling of the installations. This is so as demands are variable

and weather conditions are uncertain for more than some days and affect heavily
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the performance of the system. The weekly schedule provided should include slacks

to deal with those uncertainties placed into the foreseeable future and being used

as a guide.

1.3 Motivation

We have to take into account the great number of variables involved. They can

be grouped in three groups. Being the first one related to tactical parameters

of the rigs and the base(distances, demands, frequency of the visits ), operational

parameters of the rigs and the base (opening times, service time, spread of arrivals)

and parameters of the vessels (capacity, speed, visits in a single voyage).

This complex problem has been solved with heuristics and with exacts meth-

ods from different authors (see literature review), but never solved using a single

optimization tool such as AMPL for the whole process. This is what is solved here.

Then, several changes are made into the parameters and several experiments are

carried out which allow to give recommendations for future research.

It is an important field as it is a current topic. The better it is studied the

biggest the savings in costs and risks. So as to keep the rigs and supply vessels

working properly.
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Chapter 2

Objectives

The main aim of this thesis is to create an exact mathematical tool that allows to

solve the problem of scheduling of vessels for the rigs, test the tool and do some

experiments to include different circumstances with the use of real data.

The solution model consists in 2 parts. In the first part we have to generate a

number of possible voyages and in the second part we have to choose those voyages,

assign them to vessels and times under some restrictions and preferences.

The first model has been created from scratch as it uses AMPL for this propose

and is one of the main contributions. In this model a vessel departs from the base

and visits a number of installations and then return to base. All the possible

voyages combinations are initially explored. Because the number of voyage to be

generated is quite large for larger models, it is necessary to reduce the number of

voyages. To do so, the models discard those voyages that visiting a determined

range of installations, have too much demand for the vessels and/or have too much

or too few slack.

After selecting those selected voyages a traveling salesman problem with time

windows (TSPTW) is solved iteratively for each of the them. For each voyages

the model yields the installations visited on each voyage in the form of a binary

parameter, the details of each voyage, the total cost and the total duration. It

allows to consider vessels with different capacities and different departure time

(Both options multiply the number of voyages considerably)
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The second model needs of the data for the voyages obtained in the first model.

It is in practice what is called as ”voyage-based model” in the paper [14]. It selects

the voyage that require a minimum cost while fulfilling the constraints of number

of visits to installations, spread departures, depot capacity and it assigns a vessel

and a time for each of those voyage. This is what is called scheduling and is the

anticipated result of the model.
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Chapter 3

Literature review

Following the definitions given in [18], routing can be defined as the assignment of

sequences of ports to be visited by the ships. The term scheduling is used when

the temporal aspect is brought into routing.

The vehicle routing problem is a well-studied problem. In contrast, the supply

vessel planning problem is more complex than that as it includes opening times

and multiple visits during the planing horizon of one week. In addition, there is a

fleet composition problem with the possible inclusion of different vehicles and the

creation of schedules.

In industry, a fleet of vehicles is not homogeneous. It varies in dimension,

compatibility in cargo and costs. Nevertheless, the majority of the bibliography

deals with homogeneous vehicles to simplify calculations [6] and the there is the

necessity of dealing with a few problems characteristics at a time. In [2], [17]

and [1] presented a wide survey of the different specific problems and the state of

art of the main contributions in the relevant literature for maritime optimization

problems among others.

One type of problem is the fleet size and mix problem routing problem (FS-

MVRP). It tries to minimize the cost of managing the vehicles and the routing

costs. It was first studied by [10]. Later it was expanded with time windows and

multiple vehicles by [7]. Then several heuristics and metaheuristics methods have

been developed to tackle the problem such as [5] where even heterogeneous fleets
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are considered in addition to the fleet sizing problem with a column generation

algorithm.

Another related problem is the Periodic vehicle routing. There, routes are

constructed to visit customers one or more times and the problem is to decide

when. [8] treated this extension problem among others with a exact methodology.

In these kind of problems, application of exact methods is still limited to about

100 customers for vehicle routing problems, less if more parameters are taking

into account such as scheduling or multicomodity. Therefore, it is desirable to

obtain approximate solutions instead of optimal ones. Some of the great amount

of references in periodic that use heuristics for PVRP are [16] or [12]. In [14]

we can find an exact method that solves a combination of both periodic vehicle

routing and fleet composition. The method give exact solutions, consists of two

phases and is detailed in Theoretical background. Nevertheless, it is limited to

twelve installation due to high computational time.

A point that deserve mention are some policies and tools developed so far. In

[9] several scenarios were developed varying opening times and weekly service to

a group of installations. There they conclude that instead of closing during nights

it would produce more savings to have two vessels visiting the installations four

times per week. This high frequency would reduce the need of hiring extra vessels

for rush orders.

According to [15] weather will affect in the following way: if waves are more

than 4,5m it is not possible to undergo load/unload operations due to safety reg-

ulations. If there is rough weather with waves less than 4,5m operations may take

more time and the sail. speed may be reduced as well. This is the most important

element of uncertainty in for vessel planning therefore some robustness approach

should be taken into account.

In [14] it is shown the robustness approach involves adding an slack to each

voyages in a way that voyages that have less slack are discarded. In [15] it is

proposed a method of valuing the different voyages according to a robustness

profit obtained through the idle days of the vessels. The issue is further studied

in [13] where several robustness strategies are compared using a simulator for a 3
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to 12 moths period.

An additional related feature that could be considered for those kind of prob-

lems is the pick up and delivery. In them, the cargo travels both ways from depots

to customers and vice-versa. The capacities are what determines the solution

routes. It is considered at [11] in the service of offshore installations with capac-

itated customers. It is also studied in combination with different commodities

at[22].

The last point to mention is that, as the author in [6] sees it, there is an

exponential growth in the articles published in the vehicle routing field showing

the high interest in the topic.
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Chapter 4

Theoretical background

First we need to present how it looks like a basic vehicle routing of a vessel visiting

a number of installations from a base, considering the existence of time windows:

minimize: ∑
(i,j)∈A

CijXij (4.1)

subject to: ∑
(0,j)∈A

X0j = 1 (4.2)

∑
(i,j)∈A

Xij = 1 (4.3)

∑
(i,j)∈A

Xij =
∑

(i,j)∈A
Xji∀i ∈ N (4.4)

Ti ≥ l;∀i ∈ N (4.5)

Ti + si ≤ u;∀i ∈ N (4.6)

Ti + ti,j + sj ≤ Tj +M(1− xi,j);∀i ∈ N, j ∈ N : i 6= j (4.7)

TSPTW (Traveling salesman problem with time windows)
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Variable Description

X Binary variable to select which arcs i-j are selected in

the final route solution.

T Time of visiting each customer needed in order to satisfy

the time windows constraints.

Parameter Description

A Arcs from i to j.

N Number of customers to be visited.

i, j Origin and destination parameters, 0 for the depot.

t Travel distance between customers.

s Service time spent in each customer.

M Big number.

u Upper boundary time to visit the customer i.

l Lower boundary time to visit the customer i.

Table 4.1: Parameters and variables of the TSPTW model

In (4.1)it is minimized the total cost traveled for all the arcs selected.

In (4.2) there should be an arc in the route that departs from depot which is

considered as the node 0.

In (4.3) This impose the condition of visiting all the customers ( at least one arc

leaving each installation). That is the reason why it is called a traveling salesman

problem as all the customers are visited.

In (4.4) if we visit a installation we should depart from it, this constraint is

called route continuity.

In (4.5) we have the lower time window constraints.

In (4.6) There is the upper time window constraint considering the service time

for the customer.

In (4.7) The time of visit for one costumer has to be more then the time for the

customer visited before. There is the need of using the variable X to distinguish

among the customers who are visited along the route.
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Secondly it is presented a basic industrial ship scheduling model similarly to

what is shown in[2], which allows to select among a number of routes and creating

a schedule:

minimize:

∑
v∈V

∑
r∈Rv

CvrXvr +
∑
i∈N

CSPOTi
Si (4.8)

subject to: ∑
v∈V

∑
r∈Rv

aivrXvr + si = 1,∀i ∈ N (4.9)

N∑
r∈Rv

Xvr = 1 (4.10)

Xvr ∈ [0, 1],∀v ∈ V, r ∈ Rv, Si ∈ [0, 1],∀i ∈ N (4.11)

Basic scheme of scheduling through route selection

Variable Description

Xvr Binary variable which is equal to one if ship v sails the

schedule r and zero otherwise.

Si Binary variable which is equal to one if cargo i is serviced

by a spot charter and zero otherwise.

Parameter Description

V Ships to be scheduled.

N the cargoes

Rv the candidate routes available for each ship v

aivr 1 if schedule r for ship v services cargo i and 0 otherwise.

cvr Cost of the route r for the vessel v.

cSPOTi
Cost of chartering a spot.

Table 4.2: Parameters and variables of the route selection model
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In (4.8) minimizes the sum of the costs of operating the fleet and the costs

of the spot shipments, while constraints(4.9) ensure that all cargoes are serviced

either by a ship in the fleet or by a spot charter. Constraints (4.10) assure that

each ship in the fleet is assigned exactly one schedule (column). Constraints (4.11)

impose the binary requirements on the variables.

Then, we present the methodology to follow. In [9] a first algorithm for the

problem of multi trip vehicle routing problem is proposed. It regards two steps.

Firstly, a number of feasible candidate routes are generated for each vessel (using a

vehicle routing model similar to what is shown before. Secondly, the vessels to be

used and their weekly schedule is determined by solving an integer programming

model which is closely related to the basic industrial ship scheduling model shown

in equations (4.8-4.11).

To do the first step a full enumeration is undergone. Therefore, we start enu-

merating the visit of each single offshore installation, then in all the possible pairs,

groups of three and so forth.

When we have generated all the possible routes we proceed with a model that

has as an objective function to minimize the total cost of using the vessels plus

the cost of hiring each supply vessel to generate the solution schedule. The author

considers only three main restrictions:

• Each offshore installation is serviced at least the minimum number of times.

• The total time of the schedule for a vessel does not exceed 168 h or 1 week.

• Selection of a schedule means that the binary variable for the vessel selection

must be one

In a similar but more advanced way [14] approaches the problem. It includes

the same two steps but with more constraints, parameters and using resources in

a more clever way.

For the first step it proposes an algorithm to be programmed in any computer

language such as C++. In this paper it is called ”voyage generator” and consist

of Creating sets of vessels ordered from larger to smaller loading capacity. Then,
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a enumeration of all sets of installations that fulfill minimum and maximum re-

quirements and capacity is done. Eventually, the voyage is determined by solving

a traveling salesman problem with time windows starting and ending at the supply

depot where all installations of the set are visited exactly once

The second step is an upgrade of [9] as shown in (6.3) and it is called ” voyage-

based model”. In this model there are the same binary variables about ships

selected and voyages selected, but the variable X for voyages selected depends also

on vessels and the day of the week.

The objective is as the previous model to minimize the combined cost of char-

tering a vessel and the cost of the service, but expressed in a different way. The

first constraint ensures that all installations get their required number of visits sim-

ilarly to [9]. The second constraint also ensures that the duration of all voyages

sailed by a vessel does not exceed the maximum number of days instead of a fixed

amount of hours. As in the previous model this constraint also determines the

variable δ which specifies the vessels chosen. Meaning that include two constraints

of the previous models.

There are three important contribution to the previous model apart for rewrit-

ing in a more convenient way the previous constraints Firstly, is that it adds a

capacity for the depot. Secondly it ensures that a vessel does not start on a new

voyage before it has returned to the depot. Finally, it suggest a way to include

spread of departures and avoid simultaneous visits to a instillation what they

called: collision constraints.

The main problem with this procedure is that in the model of second step the

method could not find or prove optimal solutions to the largest problem instances

within a not too big CPU time. Because of this the same author developed in [14]

and [15] a tool for robust scheduling with a simulator for larger models such as:

• Add slacks at the end of each of the voyages.

• Add slacks after each visit to a installation.

• Include a robustness profit in the objective function of the second step that

weights the advantages of a voyage for having idle time.

21



Chapter 5

Research plan

The objective of this research work is to develop a tool using only exact mathe-

matical optimization that allows to build routes with shortest duration and then

select a number of them that fulfill the demands and the number of visits required.

The tool as a consequence is divided in two parts: The route generation model

and the set-covering model.

In the first part there are generated all the routes/voyages that comply with

the capacity of the vessel and the demands. Of those routes, only those that

last for several days and visit a predefined range of installations in a single route

are taking into account. Then we have a pool of candidate routes determined by

different parameters such as cost, installations visited and duration of the voyage.

From all the candidate routes a limited number is selected and there are many

restrictions to be considered. For example a limitation in time to service, the

way the departures spread, how large are the demands, if there are time windows

restrictions, policies of the base (opening times, vessels served,..). Depending on

this restrictions there would be one or another result that need to be studied.
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Therefore the plan for this Thesis has been the following:

• Develop the tool and validate it with a small ( 4 installations) and medium

instance ( 8 installations) with known results.

• Implement the tool with a larger model (13 installations) and get a basic

solution.

• Evaluate what happen to the results for the larger model after several ex-

periments are carried out.

• Understand what is the contribution of this tool and what conclusions can

we draw from it.
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Chapter 6

Solution method description

The procedure for solving the problem starts with defining which voyages are

possible. Then solving a multiple time windows TSP with the route generator

model obtaining all the costs and duration of those voyages. Finally with the help

of the model found in [14] we are able to chose which are the voyages selected

obtaining the final schedule. A resulting schedule would look like this:

Figure 6.1: Schedule of a small instance with four installations to be visited, solved

with the model designed for this work
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6.1 Route generation model

This model consists of enumerating a list of possible voyages a vessel can take in

order to select a limited number of them later using the model in [14].

The process consists in a vessel that departs from the base and visits a number

of installations and then return to base. Once they are generated a traveling

salesman problem with time windows (TSPTW) is solved iteratively for each of

the voyages selected.

The number of voyages to be generated may be quite large:
∑ n

i=1Ci,n and a

program written in C has been used to generate all the possible combinations as

the number is quite large. For a small instance of 4 installations it would be only

15, but 255 for 8 installations and 8191 for 13 installations.

This number would increase dramatically with vessels with different capacities

as it would be multiplied by the number of vessels, it can be also increased if

we want to considerate other different departure time for example. In addition,

it has to be taken into consideration that for each voyage several parameters are

accounted: installations visits, times of arrives and departures, cost and duration.

Furthermore the second model has to assign those voyages to a vessels and to a

time. If the number is to big the required memory would be big as well. For all

those reasons, it is necessary to reduce the number of voyages. It has been done

considering the following assumptions that have been included into the model

designed:

• visiting a determined range of installations discarding the other voyages. For

example only voyages that visit between 3 and 7 installations could be taken

into account.

• The demands covered in a voyage do not surpass the vessels capacities. In

order to consider the demand it is considered as a demand per visit (i.e.

demand/frequency).

• Only voyages that last 2 or 3 days are taken int account, discarding the

others.
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• The model allows to unselect voyages that have a too small (or too big) slack

time. So for example voyages that last exactly 48 hours would be discarded

as there is no slack for operations.

As an input we have the enumeration of installation groups combinations to be

visited, all the data for installations such as opening times, distances, demands,

average service time or the beginning of the shift and the vessels capacity and

speed. As an output, we obtain the cost, the times of arrive to each installation,

the order of visits and the total duration of each of the possible routes.

In order to calculate the distances when given in coordinates the Harvensine

formla has been used ( where R is the Earth radius of 6,371km.

a = sin2(∆φ/2) + cos(φ1).cos(φ2).sin2(∆λ/2) (6.1)

d = 2R arctan

√
(1− a)

a
(6.2)

The objective function consists of minimizing the time of arrive back to the

base. It has been tried another the possibility of minimizing the total cost, under-

stood as fuel consumption. That means reducing the wait. time for each of the

installations visited in the route. This second possibility has been discarded as it

gives more total time per voyage, i.e. worse results.

The restrictions of the model include the restrictions for a traveling salesman

problem with time windows combined with a limitation in the duration, departure

time and imposing the route between the base and the virtual base. See model

from equation (6.3) to (6.14) and list of parameters at table 6.1.

In the model a virtual base (N+1) is used placed in the same place as the

original with a traveling cost between them of 0. In addition, voyages should not

exceed three days and are not less than two days. An exhaustive list of all the

possible combinations of installations visited R is generated. (For example r=14 is

1-2, r=904 is 4-5-9-13 or r =5229 is 2-3-6-7-9-11-12 for a model with 13 installations

and one type of vessel). In order to allow this model to generate all the voyage as
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we want them some programming have been done. It is shown in the table 6.2. as

a pseudocode where N(k) are the installations visited in the voyage k. This has

been implemented in the .run file in AMPL.

minimize:

24 ∗D[N + 1] + T [N + 1] (6.3)

subject to:
N∑
j=1

X0,j = 1 (6.4)

X0,N+1 = 1 (6.5)

N∑
Xi,j∈A

Xi,j = card[Mn] (6.6)

∑
i,j∈A

Xi,j −
∑
j,i∈A

Xj,i = 0;∀i ∈ N (6.7)

Ti ≥ l;∀i ∈ N (6.8)

Ti + si ≤ u;∀i ∈ N (6.9)

24Di + Ti +
Ci,j

v
+ sj ≤ Tj + 24Dj +M(1− xi,j);∀i ∈ N, j ∈ N : i 6= j (6.10)

Ti + 24Di + si + Ci,0 ≤ 24k + a (6.11)

T0 = 16 (6.12)

D0 = 0 (6.13)

d ∈ N ;Xi,j ∈ 0, 1; 0 ≤ Tj ≤ 24 (6.14)

Multi-period TSPTW

In (6.3) we minimize total cost traveled for each voyage

In (6.4) There should be an arc in the route that departs from depot

In (6.5) 0 is the base and N+1 a Duplicate of the base. In order to make a

cycle between all the bases we need that the arc between bases is selected in the

way we want. This could also be done with a cost 0 and infinite.
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In (6.6) Number of arcs in the voyage is equal to to the number of installations

to be visited

In (6.7) If we visit a installation we should depart from it.

In (6.8) and (6.9) time windows should be fulfilled.

In (6.10) time continuity before and after visiting a installation.

arrive(i)+service(i)+(i →j)= arrive(j)

In (6.11) total duration of the voyage less than a limit. That could mean that

the voyage is infeasible.

In (6.12) usually vessels depart at 16:00 from installation

In (6.13) The day the vessels depart is the day 0

model AMPL name Description

N N Number of installations to be visited

P P Period of planing (7 days f.ex.)

C dist travel distance between factory and customers

s service service time spent in each customer

d departure departure from depot (departure at 4pm)

a arrive arrive to depot (maximum, arrive at 8am)

l lowerTW Initial time of service wanted. format of time decimal

p.ex.14,5 → 2:30pm

u upperTW Final time of service wanted.

v v speed in km/h

k duration maximum duration of the voyage 2 or 3 days (the rest

is slack)

Xi,j X Which arcs would be part of the Xs

Ti T hour(0-24) we visit each customer

Ui U order at we visit each customer (subcylce elimination)

Di D day we visit each customer

Table 6.1: Parameters and variables of the first model
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for v in 1..V (vessels)

for k in 1..R (voyages)

if sum (i in N(k)) demand(i)/ frequency(i)<=capacity.vessel (v)

then solve

if total.cost >=24*1 and <=24*3

then calculate and print: origin(k,v), dest.(k,v), arrive(k,v), start(k,v), sail.(k,v), wait.(k,v)

for (i in 1..N(k))

calculate A (k,v)

calculate Arrive (k,v)

calculate Departure (k,v)

end for

calculate duration (k,v)

calculate duration.round (k,v)

calculate wait..time(k,v)

calculate sail..time(k,v)

calculate service.time(k,v)

calculate total.cost(k,v): wait..time(k,v)*wait..time+

sail..time(k,v)*sail..cost+ service.time(k,v)*service.cost

calculate slack(k,v)

If duration.round =2

then Assign voyae to 2.days voyage

else Assign voyae to 3.days voyage

else

else

print ”skip”

end for

end for

display duration-voyages-round,total-cost, A,arrive, departure

display 2-days duration voyages, 3 days duration voyages

Table 6.2: Pseudo-code of the run file used to generate all the voyages
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6.2 Set covering model

This second phase of the model can be found in [14]. The model consists in mini-

mizing the total cost combined of chartering the vessels and the voyages selected,

it is an extension of the model shown in the equations (4.8 to 4.11).The model has

4 main constraints, but others such as spread of departures may be added.

The first of them correspond to installations visited the number of times spec-

ified (6.16). The second one is related with the duration of the voyages avoiding

to use the vessels more than possible and defining the variable δv (6.17). The

third one is related with the base capacity of assisting vessels for departure, if it is

unknown it can be not used (6.18). The last one is used to account that a vessel

returns to depot before departing again, and there are as many constraints as how

many different duration voyages we have. In our case, with voyages of 2 and 3 days

(R2 and R3 respectively) those constraints can be rewritten as (6.19) and (6.20).

minimize: ∑
v∈V

∑
r∈Rv

∑
t∈T

CvrXvrt +
∑
v∈V

C ′
vδv (6.15)

subject to: ∑
v∈V

∑
r∈Rv

aivrXvrt ≥ si, ∀i ∈ N (6.16)

∑
v∈V

∑
r∈Rv

DvrXvrt ≤ Fvδv,∀v ∈ V (6.17)

N∑
r∈Rv

Xvrt ≤ Bt,∀t ∈ T (6.18)

∑
r∈R2

Xvrt +
∑
r∈R2

Xvr,(t+1)mod|T | ≤ 1 (6.19)

∑
r∈R3

Xvrt +
∑
r∈R3

2∑
n=1

Xvr,(t+n)mod|T | ≤ 1 (6.20)

Xvr ∈ [0, 1]∀v ∈ V, r ∈ Rv, ∀t ∈ T (6.21)

Si ∈ [0, 1]∀i ∈ N (6.22)
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Variable Description

Xvr Binary variable that is 1 when we assign the vessel v ∈ V
to one of the voyages generated in the phase 1 r ∈ R

ans to a time 1 to 7 or 0 to 6 if the schedule must be

weekly as it is our case.

δi Binary variable that is 1 if we select the vessel v ∈ V , 0

otherwise.

Parameter Description

V Ships to be scheduled.

N the cargoes

Rv the candidate routes available for each ship v

aivr 1 if schedule r for ship v services cargo i and 0 otherwise.

Cvr Cost of the route r for the vessel v.

C ′
v Cost of chartering a spot.

Dvr Duration of the voyages.

Fv Duration of the voyages.

si Number of visits need by installation i.

Bt Maximum number of vessels departures from the base

on day t.

Table 6.3: Parameters and variables of the route selection model

6.3 Validating the method

Before starting with larger models we checked the model with a small instance (4

installations) and a medium instance (8 installations). Days start at 8:00 for both

instances. Voyages can last 2 or 3 days and the preparation time for the voyages

in the base is 8 hours. Therefore vessels departs at 16:00 from base.

For the small instance of 4 installations, 11 possible routes are generated in

the first stage out of the 15 possible combinations as explained in 6.4. A vessel is

able to visit the installations the required number of times in three voyages and
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one week. The solving time is about a few seconds for both stages. See the results

in figure 6.2.

This model has allowed to check that it works and that the voyages generated

are correct. In the table there is a comparison of times for the route ”Base-1-2-4-

3-Base” for the model developed here and the results supplied by the supervisor of

this work which are identical showing that the model is correct at least in the first

part of generating voyages. Tis can be seen in the figure 6.2. The voyage shown

is the voyage 1 that involves all the 4 installations: 1 2 3 4. Numbers 0 and 5 are

the base and the virtual base respectively.

Figure 6.2: Comparison of the same route between the model created and the

results obtained.

In addition to validate the model we have compared with the results obtained

in [19] by an heuristic procedure. We had a problem with 8 installations the

comparative analysis is given in the table 6.4. There we can see that the voyages

are not the same as the procedure to generate them is not the same. However the

cost is the same with a difference of 0.054% the same number of voyages, vessels

and visits. Thus, we can conclude that the model designed for this work is correct.

In addition the visits are distributed differently because different procedures of

spreading departures may have been used by [19].

32



Current model Shyshou heuristics

Cost 2778270 2779770

Visits 36 36

Vessels 3 3

Routes 6 6

Voyages generated 225 -

Solving time of the first model 1795.93 -

Solving time of the second model 269.25 -

Total solving time 2065.18 -

Installations (visits) visits visits

1 (6) 1 2 3 5 6 7 1 2 3 4 5 6

2(5) 1 2 3 4 7 1 2 4 5 6

3 (5) 1 2 3 5 7 1 2 3 5 6

4 (5) 2 3 5 6 7 1 2 3 4 6

5(2) 4 6 3 6

6(2) 1 3 1 5

7 (5) 1 2 3 5 7 1 2 3 5 6

8 (6) 1 2 3 4 6 7 1 2 3 4 5 6

Table 6.4: Comparison of the results obtained in this work and by [19]

6.4 Illustrative example

In the beginning to check that the model worked properly a small instance of 4

installations was tryied. This could be used as an example to understand how it

works.

We have 4 installations with a service time (2.25 4 4.9 3.5) and the time windows

for the visits ( 7:00-19:00 all). Each installation require the following number of

visits: 1:1, 2:3, 3:1, 4:1. We have also a matrix of distances between them and that

the day starts at 8:00 a.m and 8 hours are required in the base for preparation

of each voyage. The average planned speed is 12knots/M and the capacity of the

vessels (900 tones). We want to visit between 2 and 4 installations in a single

voyage. The fuel consumption per hour sailed is 0.43 ton but when is wait. is

0.20.
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First we need to generate the candidate voyages. The initial possible voyages

would be like those shown in table 6.5. However, due to voyages with one single

visit are not wanted, resulting in the voyages highlighted with a ’*’ are discarded

in the beginning. Voyages are neither affected by the capacity of the vessels nor

the slacks in this small instance. Therefore, more voyages are removed for the

pool of candidates and we continue with 11 out of the 15 initial voyages. In bigger

models this is needed to reduce the computing time as the number of candidates

is quite big.

When all the data is processed correctly we have the voyages with the following

features described in the tables 6.6 and 6.7. In addition we have the details of the

voyages described in the table 6.8

voyage [12*] =1 voyage [13*] =2 voyage [14*] =3

voyage [15*] =4 voyage [1] =1 2 voyage [2] =1 3

voyage [3] =1 4 voyage [4] =2 3 voyage [5] =2 4

voyage [6]=3 4 voyage [7]=1 2 3 voyage [8]=1 2 4

voyage [9]=1 3 4 voyage [10]=2 3 4 voyage [11]=1 2 3 4

Table 6.5: Example of initial voyages
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Voyage number total wait. total service total sail. Total cost

1 16.4583 14.65 23.2417 13.286

2 14.7417 11.15 24.6083 13.53

3 4.85 9.75 21.55 10.236

4 16.7583 10.65 23.0917 13.281

5 16.675 12.4 23.575 13.472

6 4.75 6.25 21.2333 10.08

7 4.55 7.15 23.025 10.811

8 4.85 5.75 21.4 10.172

9 4.55 8.9 22.4833 10.578

10 4.75 7.5 20.8167 9.901

11 4.55 8.4 21.9917 10.366

Table 6.6: Example of initial voyages: costs of the voyages

Voyage number Duration in days Duration in hours Ins1 Ins2 Ins3 Ins4

1 3 62.35 1 1 1 1

2 3 58.5 1 1 1 0

3 2 44.15 1 1 0 1

4 3 58.5 1 0 1 1

5 3 60.65 0 1 1 1

6 2 40.233 1 1 0 0

7 2 42.725 1 0 1 0

8 2 40 1 0 0 1

9 2 43.933 0 1 1 0

10 2 41.067 0 1 0 1

11 2 42.942 0 0 1 1

Table 6.7: Duration and installations visits in the format of the matrix A
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Voy. 1 Voy. 5 Voy. 9

i j arrive start sail wait i j arrive start sail wait i j arrive start sail wait

0 1 25.25 31.00 33.25 5.75 0 2 26.25 31.00 35.00 4.75 0 3 26.45 31.00 35.90 4.55

1 2 34.98 34.98 38.98 0.00 2 3 36.78 36.78 41.68 0.00 2 5 51.93 51.93 51.93 0.00

2 4 39.40 39.40 42.90 0.00 3 4 43.07 55.00 58.50 11.93 3 2 37.68 37.68 41.68 0.00

3 5 70.35 70.35 70.35 0.00 4 5 68.65 68.65 68.65 0.00

4 3 44.29 55.00 59.90 10.71

Voy. 2 Voy. 6 Voy. 10

i j arrive start sail wait i j arrive start sail wait i j arrive start sail wait

0 2 26.25 31.00 35.00 4.75 0 2 26.25 31.00 35.00 4.75 0 2 26.25 31.00 35.00 4.75

1 5 66.50 66.50 66.50 0.00 1 5 48.23 48.23 48.23 0.00 2 4 35.42 35.42 38.92 0.00

2 3 36.78 36.78 41.68 0.00 2 1 36.73 36.73 38.98 0.00 4 5 49.07 49.07 49.07 0.00

3 1 45.01 55.00 57.25 9.99

Voy. 3 Voy. 7 Voy. 11

i j arrive start sail wait i j arrive start sail wait i j arrive start sail wait

0 4 26.15 31.00 34.50 4.85 0 3 26.45 31.00 35.90 4.55 0 3 26.45 31.00 35.90 4.55

1 5 52.15 52.15 52.15 0.00 1 5 50.73 50.73 50.73 0.00 3 4 37.29 37.29 40.79 0.00

2 1 40.65 40.65 42.90 0.00 3 1 39.23 39.23 41.48 0.00 4 5 50.94 50.94 50.94 0.00

4 2 34.92 34.92 38.92 0.00

Voy. 4 Voy. 8

i j arrive start sail wait i j arrive start sail wait

0 3 26.45 31.00 35.90 4.55 0 4 26.15 31.00 34.50 4.85

1 5 66.50 66.50 66.50 0.00 1 5 48.00 48.00 48.00 0.00

3 4 37.29 37.29 40.79 0.00 4 1 36.50 36.50 38.75 0.00

4 1 42.79 55.00 57.25 12.21

Table 6.8: Details of the voyages. Time and visits of the installations
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When all the information of the voyages is gathered and generated in phase

1 we introduce this data in the second model. This model selects a number of

those voyage and assign times to them. Therefore, in this model is when we can

adjust spread departures, collision constraints and other concerns about times like

visits on weekends banned, etc. It assigns also voyages to vessels. In this example

it assigns all the voyage to a single vessel and peaks the voyages 6, 9 and 10 in

the days Monday (0), Wednesday (2) and Saturday (5). It has to be taken into

account that the voyages are generated in a modular way. Therefore, it is possible

starting a voyage on Saturday (5) and finish it on Monday (0). The total cost of

the solution is 1030.56. The results are summarized in the table 6.9

voyage Instalaltion1 Instalaltion2 Instalaltion3 Instalaltion4

6 Tue Mon

9 Sat Fri

10 Wed Thu

Total visits 1 3 1 1

X (r, t, v) Vessels Total Cost

6 0 1 r:voyage 1 1030.56

9 4 1 t:day

10 2 1 v:vessel

Table 6.9: Summary of the final results that highlight which voyages are selected

and when each installation is visited

37



Chapter 7

Extensions of the method

Once the model was completely functional we tried with different changes in pa-

rameters and parts of the model to study how this affects the results.

7.1 Robust schedules

In order to achieve more robust schedules there are several ways. One of them is to

add slacks of time. That means increasing the time for operations in order to cope

with uncertainties such as bad weather that makes operations slower or unforeseen

handling problems. It also helps to deal with demands as we have considered an

example with deterministic demands but they usually tend to be very variable.

To do so we could add an extra time on the end of each voyage. Each vessel

would have to arrive before closing time adding a buffer to the last arrive. When

trying this many voyages that were possible would not be anymore, durations and

cost would increase and more routes are needed. To do this change we just need

to add time to the virtual base for service or as it has been done in the model

limiting the time for the voyage to 4 hours less.

Another way would be adding time after each service spreading the slack along

the voyage. This would be similar to the other slack but presumably results would

be different and more close to reality. To do so we add extra service handling time

for each installation or we can reduce the time windows closing time. We have
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chosen the first option of adding extra service. The time added can be proportional

to the service or a fixed amount.

7.2 Spread departures

Due to rigs want the deliveries the most spread possible we have to considerate

how to spread them. Which policies should be considered among them. In this

part the suggestions of [14] is considered. There a variation of the equation (7.1)

is suggested among other variants. That equation works as following:

∑
v∈V

∑
r∈R

∑
k∈K

AvirXvr,(t+k)mod|T | ≤ 1;∀i ∈ n ⊆ N, t ∈ T (7.1)

∑
v∈V

∑
r∈R

∑
k∈K

AvirXvr,(t+k)mod|T | ≥M ;∀i ∈ n ⊆ N, t ∈ T (7.2)

– For installations with two visits, there will at maximum one departure every

3 days (K=2,equation (7.1), n= subgroup of installations with two visits N2.

Pattern as: [* X *] [* X *] *)

– For three visits, there will be at least one departure in any 3 days periods

(K=2,equation (7.2), n= N3,M=1.Pattern as:[ * X *] [X * X] *)

– For four visits, there will be at least two departure in any 4 days periods

(K=3,equation (7.2), n= N4,M=2.Pattern as: [X X * *] [X * X)

– For five visits, there will be at least one departure in any 2 days periods

(K=3,equation (7.2), n= N5,M=2.Pattern as: [X *] [X X] [X *] [X)

– For six and seven visits, there will beat maximum one departure in any days

(K=0,equation (7.1), n= N ,M=2.Pattern as: X * X X X X X)

The spread of departure conditions will be used in all the models at is a pre-

requisite of the industry.
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7.3 Supply base policy

In this section changes in departures will be undertaken. What would happen

if the base starts to work later than 8 so as to accommodate longer trips. For

example: One vessel start loading at the base at 8:00 and departs at 16:00. After

the voyage it arrives at 11:00 to the base again and the next trip departs at 19:00.

In the case studied before that was not allowed. However, in this section it is

allowed. To do so, trips that start later are included in the process of voyages

generation allowing a more flexible policy. So, there would be trips starting at

16:00, 17:00, 18:00 and 19:00 multiplying per four the number of candidate routes

for example. In the experiments only one other possibility has been added: base

service type 1 from 8:00 to 16:00 and type 2 from 11:00 to 19:00.

In order to add this policy several changes in the model should be implemented.

First of all we should generate p*R voyages, where R is the original combination

of voyages and p is the number of policies. Those voyages would be different in

the start and end. As an example a vessel could start a normal voyage at 16:00 do

it for 2 days and arrive before 8:00 with some slack. That is arrive before the hour

56. Then it would be possible to start one voyage with the modified policy starting

at 19:00 (hour 67) and do another route this time for 3 days arriving before 11:00

(hour 131). Then we have to decide if it is possible to start the next voyage at

16:00 or it must be at 19:00 or later.

In the case it should be at 19:00 or later we may do it adding a new parameter

that indicates for each voyage what kind of starting of the voyage and then adding

a constraint that does not allow it. As in equation 7.3 where r are the voyages in

1...Rl, v the vessels in 1...V and t the days of the week form 1 to 7 as it is a weekly

schedule. g in 1..G is 1 for the earliest departure, 2 for the next and G for the

last. In the equation G is 2 to simplify the explanation. 1 means departure of the

voyage r at 16:00 and 2 at 19:00. L is 2 if the voyage is on the group R2 (group

of voyages that last 2 days) or 3 if it belongs to the group of voyages that last 3

days R3. If we have more possible departures more constraints should be added

such as g < h as shown in the equation 7.4.
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∑
r∈RL

Xr,t,v,g=1 +
∑

r∈RL,l∈L
Xr,(t+l)mod|T |,v,g=2 ≤ 1;∀v ∈ V, t ∈ T (7.3)

∑
r∈RL

Xr,t,v,g +
∑

r∈RL,l∈L
Xr,(t+l)mod|T |,v,h ≤ 1;∀v ∈ V, t ∈ T, g < h (7.4)

7.4 Collision constraints

An important point of the model is to consider collision constraints as, so far, the

model allows them. One way to avoid them is considering non-optimal voyages

according to [14], so an heuristic method should be used.

The same author suggest another way, adding what is called in the same font

”double voyage module” generating two voyages for each group of installations,

duplicating the possibilities generated by the first model. The second voyage

consist of placing the last installation in the beginning. For example the travel

0-5-8-7-1-0 would have another associated voyage that could be 0-1-5-8-7-0 but not

necessarily. The only condition is that the last voyage goes first, so the optimal is

chosen.

Those constraints due to the complexity added are not into the scope of this

research work. Therefore, it is considered in the model later eliminating those

solutions that are visits at the same moment to the same installations by several

different vessels. This solution is not optimal but is a good approximation. if we

wanted optimal solution we would need to use one of the two methods explained

before.
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Chapter 8

Experiments and results

In this chapter we deal with the model application for real data of a model of 13

installations. After validating with two smaller data sets of 4 and 8 installations a

several basic solution have been found for a larger model of 13 installations. Then,

several changes to the constraints of the problem have been added. The computer

used is an Intel (R) Core (TM) i7-2670QM CPU @2.20GHz and 4GB of RAM,

this is relevant for the computing time of the solutions.

8.1 Test instance

The problem consist of determining the delivering times of a determined number

of vessels to a number of installations from a base. It has to be considered that

the installations prefer frequent visits and that demands, weather conditions, etc.

can change in order to take into account possible slacks for robustness.

There are a great number of parameters and considerations for this problem

that are listed below giving numbers range:

• Number of installations (13)

• Capacity of vessels (1000 tones)

• Speed of vessels (12knots/hour)
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• Distances between installations and base (from a few miles to hundreds of

mails)

• Opening times of installations (all day or from 7 to 19:00)

• Opening times of base (8:00 to 16:00 Monday to Friday)

• Minimum and maximum installations to be visited in a single voyage (from

1 to 8)

• Frequency of visits (from 2 to 6 days in a week of 7 days)

• Demands highly variable(150-650 tones/week)

• Maximum departures per day (2)

• Lay time or service time spent in each installation for supplying (from 3 to

4 hours)

• Spread departures. Preferably to have visits along the week and not on

two consequent days (f.ex.. Monday-Thursday-Saturday instead of Monday-

Tuesday-Wednesday).

• Slacks to be considered for possible variations in demands, lay time and

weather.

• Cost of chartering a vessel: 120000Kr/day.

• Cost of sailing that includes fuel cost:2423.86Kr/h .

• Cost of waiting and during service in installations that includes fuel cost:1211.93Kr/h

.
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8.2 Basic solution

In this section the analyzed problem is solved for further comparisons with the

other results in other experiments. Due to the great size of the problem an optimal

solution is not possible to warranty with the available technology as there are many

possible voyages and it is needed a choice among them.

First of all with 13 installations that could be picked in groups from 1 to 8 yields

7098 possible routes. If we took all those voyages for the second model we would

have memory problems resulting in an unsolvable problem with the available tools.

Therefore, different strategies and results have been tried. In all the possibilities

it has been discarded those voyages that have more demand than the capacity of

1000 tons for all the vessels applicable for this data-set.

In the beginning a first non-optimal solution with only the voyages that com-

prehend groups of 1, 2, 3 and some of the 4 possible groups with 819 voyages.

Solution called ”Basic 1-3(5h) As those voyage have a small number of installa-

tions running the model takes less time than with bigger groups as solving a TSP

takes greater time with larger models. It has been solved in 393.7 seconds for the

voyage generation part and 444.9 seconds for the set-covering model giving a total

cost of: 4512230Kr.

This approximation is not the best as it does not takes into account the voyages

with larger number of installations which may be better to reduce the total cost.

Therefore another solution have been found which considers all the 4-grouped in-

stallations (Basic-4). Of the 715 possibilities 697 are chosen and the rest discarded

due to the demands exceed the vessels capacity. The first model takes 478.3 sec-

onds to solve and the second model 540.5 seconds. The total cost is lower than

the above solution: 4332100Kr.

Another approximation has been taken into account like only considering up

to 2 installations on a voyage ( Basic-2). At it was expected, those instances that

take into consideration larger groups of installations to be visited in a single voyage

are those with better results. Consequently, there are 3 solutions that yielded the

same total cost of 4260220Kr. Those solution have been: Basic 4-7 (5h), Basic 1-7

(5h) and Basic 1-7 (10h).
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Type of Cost Number of Computing time

problem Total % increase Vessels phase 1 phase 2

Basic 1-2 (5h) 8138650 91.04% 8 185 82

Basic 1-3(5h) 4512230 5.92% 4 394 179

Basic-4 (5h) 4332100 1.69% 4 478 254

Basic 4-7 (5h) 4260220 0.00% 4 57403 754

Basic 1-7 (5h) 4260220 0.000% 4 57785 541

Basic 1-7 (10h) 4260220 0.000% 4 133514 1258

Table 8.1: Instances for obtaining the basic solution.

Type Voyages/routes

of problem Solution considered selected % shortest longest

Basic 1-2 22 91 91 100.00% 1 2

Basic 1-3 12 820 813 99.15% 2 3

Basic-4 11 715 697 97.48% 4 4

Basic 4-7 9 5434 697 12.83% 4 5

Basic 1-7(5h) 9 6247 1510 24.17% 4 5

Basic 1-7 (10h) 9 6247 2141 34.27% 4 5

Table 8.2: Instances for finding the basic solution (continuation)

Finally the solution chosen is that one that consider all the voyages but starts

to discarded. From the experience acquired in the two trials with groups of 4

installations it sames reasonable not to include those voyage with less than 4

installations. In addition, after consulting how they are operated in the real life,

they do not use visits larger than 7 installations in one route. Therefore, we

could chose not to consider the 8- installations routes. Another reasonable way of

discarding voyages is to avoid those that have too much slack. That is to say those

voyage that allows too much vacant time for the vessels, different numbers have

been tried and it has been seen that with 5 hours we get better results. Thus, the

way to select those voyage has been as following:

• Groups of 1 to 7 installations instead of 1 to 8.

• Voyages that have less than 10 hours of idle time for the vessel.
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• Voyages that the installations demand are within the vessel capacity.

After processing the initial 5434 candidate routes and discarding them accord-

ing to the rules explained before it has been possible to reduce the possible voyages

to 715 voyages for the set covering model. Anyway, we had to process almost all

the candidate voyages, with the exception of capacity discarded voyages, to now

how much free time the voyages had and their duration. To solved this prob-

lem it has been necessary to divide the total 5434 candidate routes in smaller

groups due to memory problems. The total time for the first model has been:

1142.64+3096.81+12140.6+52264.7+64869.6=133514 seconds or around 37 hours.

With a 4-core computer it is in reality almost 10 hours which is in the scope of

affordable.

That is quite a lot of time. Before arriving to try with so many voyages other

possibilities have been studied.

The total cost of this solution is 1380220Kr. That is what we will call as base

solution and for comparison will be called from now on as 100% solution. Some

details of the solution are given in the tables 8.3 to 8.4. In the figure ?? we can see

the details of the solution: vessel occupation, slack time and visits of each vessel.

Number of vessels: 4

Candidates voyages for the set-covering model: 715

Percentage of the initial voyages used: 13.2%

Number of voyages: 9

Number of visits to installations: 43

Total cost: 100%

Computing time of the whole model: 64962.57sec

Table 8.3: Some details of the base solution for a 13-installations real problem
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Mon Tue Wed Thu Fri Sat Sun

1 1 1 2 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

7 1 1

8 2 1 2

9 1 1

10 1 1

11 1 1 2 1

12 2 1 2

13 1 2 1 1

Table 8.4: Visits of the basic solution for a 13-installations real problem

Figure 8.1: Voyages distinguished by colors and the installations visited

Figure 8.2: Voyages distinguished by colors and the slack time after each visit

8.3 Robust schedule: slacks at the end of the voyages

In this section it has been added to the basic result a slack of 4 hours. That means

that the vessel have 4 additional hours to do each voyage. Therefore the voyages
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are limited to 76 for the voyages of 3 days and 52 for the voyages that are planned

for two days. Those number are obtained as:

24 ∗Days+Beginning − Slack (8.1)

Where Days is 2 or 3 depending on the number of days, Beginning is 8 as the

shift starts at 8:00 and they are expected to arrive at 8:00 as explained in the

previous section. Slack is equivalent to 4 hours but could be another quantity if

wanted. The 4 hours is chosen because it is a quantity used in practical operation

[14]. The result is an increase of almost a 5% of the cost with the same number of

vessels but a more distributed schedule with 10 voyages as shown in 8.4 and 8.5.

Figure 8.3: Occupation of the vessels with four hours slack at the end of each

voyage

8.4 Robust schedule: slacks after each visit

As it has been said in the previous chapter there are different options to consider

the slacks in the middle of the voyage. We has opted for the solution of adding

extra time service so every visit to every installation will need more time. We add

a slack to the service for the installations.

Several possibilities has been tried adding different amounts of slack. The firs

one consists of adding 1 hour to the service that in the original problem ranges in

between 3 and 4 hours. Therefore, for a voyage that visits 4 installations the slack

would be 4 hours (1 hour each).

The results of this policy are that the total cost is a 9,5% higher than the basic

solution and 4.5% more than adding a single slack at the end of the voyage. It has
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11 voyages that go between 3 and 4 installations visited and the occupation time

of the 4 vessels is shown in the figure ??.

Another experiment has been trying with 2 hours added slack. Then the voy-

ages are longer and an additional vessel is required, increasing the total cost to

almost 24% more than the basic cost. The voyages are longer between 4 and 6

installations visited on a single voyage and the number of the selected voyages in

the phase 1 is similar to that with the slack of 1 hour. The occupation of the

vessels is shown on figures 8.4 and 8.5.

Figure 8.4: Occupation of the vessels with one hour slack in all installations

Figure 8.5: Occupation of the vessels with two hours slack in all installations

8.5 Collision constraints

As shown in the 8.4 the solution obtained has collision constraints. If we eliminate

them by adding to the solution that the voyages with collisions are not selected at

a determined time t after several trials may be possible to eliminate those collisions

having the same total cost, adding the constraints XV,R1,T1 + XV,R2,T2 ≤ 1 to the

model where R1 and R2 are the voyages at a respective time T1 and T2 that have

49



a constraint. However this way would require manual work and is not advised. A

better way to do it would be as explained at the previous chapter of extensions of

the method, but as it has been said before this would be out of the scope of this

work.

Nevertheless, after trying it has not been possible to achieve a solution with

the available voyages what indicates that the additional voyages may be needed,

making the solution not optimal. And this point has not been studied further,

which can be an interesting research for the future.

8.6 Other policies: several working times for the supply base

In this section we study the possibility of adding a second policy for the supply

base. It can work normally from 8:00 to 16:00 or by the new second policy from

11:00 to 19:00. To solve this it has been done as explained but simplifying the

constraints. In the model studied instead of using G and change all the model R

has been subdivided manually into 4 groups. R21, R22, R31, R32. Where R11

are the voyages of 2 days and G=1, i.e. departure at 16:00 which is virtually the

same as explained in section 6.

The results of applying this policy to the model are slightly different from the

basic result (voyages and times are different) but it was not possible to improve

the solution in this case. However having to generate twice the number of voyages

in this case 1859 out of 12494 makes the generation more slow, around 180000

second for the first phase and 4634 seconds for the second.
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8.7 Other policies: no departures on weekends

Another possible policy is the case that the base closes during the weekends. Hence,

no departures are possible during the says 6 and 7. This policy could be easily

applied setting the departures on the last two days to 0 in the set-covering model.

See equation 8.2 where r are the voyages in 1 ...R, v the vessels in 1...V and t the

days of the week form 1 to 7 as it is a weekly schedule.

∑
r∈R,v∈V

Xr,t,v ≤ 0;∀t ∈ 6, 7 (8.2)

Applying this policy to our model it increases the cost on about 0,19% having

the same number of routes selected:9 but slightly different schedule.
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Chapter 9

Comparative analysis of the obtained

schedules

As we can see in the tables 9.1 and 9.2 there are several solutions for the basic

problem. That is like that because before trying with all the voyages it has been

increased the range step by step. When it says Basic i-j (t) ”i” is the minimum

installations voyages accepted and ”j” the maximum and ”t” is the hours slack

considered to select or discard a voyage. Thus, if it is 5 hours a voyage of 3

days would last at maximum 72 hours. So a voyage that lasts less than 67 is not

counted. The reason beneath that is that those voyage has so much spare time

that there are not candidates for the second phase, saving in computing time and

memory.

As we can see if we compare the Basic 1-7 (5h) and Basic 1-7 (5h) the number

of voyages for the first solution is a 30% lower than the second which reduces the

computing time to more than a half while the final result is the same. This is so,

because the voyages added are not meaningful for the second phase.
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Type of Cost Number of Computing time

problem Total % increase Vessels phase 1 phase 2

Basic 4260220 0.000% 4 133514 1258

Slack-4 (5h) 4327240 1.57% 4 100792 453

m-slack-1(5h) 4392450 3.10% 4 75477 341

m-slack-2 (5h) 5311050 24.67% 5 72829 211

No weekends 4262900 0.06% 4 57785 541

Flexible on departure times 4260220 0.00% 4 122624 4633.58

Table 9.1: Summary of all the solutions obtained in cost, number of vessels used

and computing time.

Type Voyages/routes

of problem Solution considered selected % shortest longest

Basic 9 6247 2141 34.27% 4 5

Slack-4 10 6247 1278 20.46% 4 6

m-slack-1 11 6247 1004 16.07% 3 4

m-slack-2 10 6247 1113 17.82% 4 6

No weekends 9 6247 1510 24.17% 4 5

Flexible on departure times 9 12494 1859 14.88% 4 5

Table 9.2: Summary of the features of the voyages in the solutions obtained.

Number of routes needed, considered previous phase 1, after phase 1 and minimum

and maximum number of installations visited in the voyages used.
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Next we are comparing the results of the basic solution with those of slack and

with a basic not working on weekends in the graphic of the figure 9.1

Figure 9.1: Occupation of the vessels with four hours slack at the end of each

voyage

In conclusion, it has been used the created model with 4 different datasets

and eleven sub-cases for the biggest instance analyzed with 13 installations. After

comparing and contrasting the results the conclusions we can draw out are:

• It has been checked that generating with exact means all the possible takes

a long time for problems as big as 13 installations. Therefore, for bigger

instances other methods such be chosen such as heuristic methods. Fur-

thermore, considering only optimal TSP solutions for the generation of the

voyage adds difficulties to deal with the collision constraints needed in real

life.

• In order to reduce the number of the generated voyage a procedure has been

developed that consists of rejecting those voyage that do not comply with

the capacity and the average demand and those voyage that has a more free

time than 4 or 5 hours. In addition, there is the option of preselecting a

previous range of minimum and maximum installations to be visited.

• In order to add slacks adding them after visiting each installations is more

close to reality than at the end of each voyage but increases the cost sub-

stantially. Adding more than 1 hour of slack (25% of the service time) to

each installation is not recommended as it reduces the number of visits.
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Chapter 10

Conclusions

The objective of this research work was to create a functional tool that creates a

schedule for several supply vessels to several customers from a base with the only

use of exact optimization algebraic modeling language. The created tool selects

a number of voyages and calculates the optimal routes. Then, it assigns some of

the routes to the vessels and times of visit in order to create an optimal schedule.

Thus, the main contributions may be summarized as the following:

• To create and validate the tool in the Mathematical Programming Language

AMPL for the whole process.

• To determine a strategy to deal with high computational time and greats

amounts of data.

• To do several practical extensions for the tool in order to evaluate how to

include slacks or changing the supply base operational policy.

• To suggest a functional way to apply several time operations for the base in

a single problem.
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From the experience of this work it may be relevant to highlight the next points:

• The tool is functional but it takes its time, more than 10.000 seconds for the

13 installations instance.

• To reduce the number of voyages a way is applied and suggested. It consists of

discarding those solutions that the average demand of the costumers/installations

exceed the capacity of the vehicles/vessels and those who has too much idle

time.

• Considering slacks at the end of the voyages is less costly than distributing

it at the end of each installations for the instances tried. With more than a

25% of slack the cost grows substantially for the tried instances.

Future research could be divided in two separate paths. The first one could

be trying and investigating other solution tools, which not necessarily should be

exact mathematical programming, such as simulating the process of creating robust

schedules. While the second would be to improve and research about the solution

tool in several facets, being the main ones detailed next.

• Automatize the whole process in a more user-friendly way, avoiding copy-

paste between the step 1 and the step 2 of the algorithm for example.

• Explore not optimal voyages to maybe achieve a better solution.

• Investigate which time is ideal for discarding voyages due to large vessel idle

time if this strategy is desired to be chosen. In this work 5 hours has been

suggested.

• Deal with the problem of computing time and outrunning the memory by

the use of heuristics or other means.

• Study and develop other strategies of reducing the available number of voy-

ages.

• Expand the number of experiments to include other features such as multi-

commodities or pickup and deliveries.
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All in all, it has been created a functional tool that generates the schedule for

a real instance of periodical supply vessel with time windows with the only use

of a mathematical programming language. It has been possible despite the large

quantities of data involved and the several constraints involved. The importance

of this work has been that the tool is adaptable for different instances for cost

reduction in the planning of schedules, the suggested strategy of preselecting the

voyages and the creation of robust schedules that can be used and improved in the

future.
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