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Abstract

Weather conditions are hard and remorseless in Norway, and they take their toll on the

roads. This is one of various reasons for a multitude of construction and maintenance

work on the Norwegian road network. Road construction companies are challenged in

the planning of their projects, as they need to coordinate teams which conduct the work

on-site on one hand and trucks that provide the necessary asphalt at the locations at the

right time on the other. Moreover, at the end of the working day everybody involved

should be back at the depot at about the same time and as early as possible.

This thesis presents a VRP with exact temporal and spatial operation synchronization.

Two classes of vehicles are synchronized, where a vehicle of one class needs to meet one

of another class to proceed on its tour. This case can be found in many applications

in practice. Examples include the coordination of construction teams and supplying

vehicles for construction companies, the synchronization of special purpose tools with

repair teams at offshore oil drilling platforms or the planning of routes for combine

harvester and trucks for harvest collection.

In contrast to minimizing the sum of travel times of each vehicle, the objective is

to minimize the longest of all tours. This way all tours will be fair, keeping both the

differences between the tours small and the travel time as low as possible. Despite the

good applicability in practice, min-max VRPs are quite rarely researched, and there has

not been paid very much attention the past years to this kind of objectives.

A formulation as a linear program shows, that for practical applicability even small

instances entail too long run times. As a consequence, a heuristic solution method based

on a multistart greedy algorithm was developed. When it comes to synchronization, one

challenge is to construct good and feasible solutions. Thus, we discuss the possibilities

of efficient construction algorithms and the impact on the search process. Furthermore,

particular attention is paid to the solution evaluation. The waiting times to synchronize

the vehicles depend on the concrete solution and are therefore difficult to calculate. As

an approach, the idea of discrete event simulation is proposed. This helps to model more

complex problems while still ensuring good computational performance. An implemen-

tation of the proposed approach in C++ and an analysis of the computational results is

discussed.
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1. Introduction

For more than 50 years, intense research has been done in the field of vehicle route

planning and scheduling, and very sophisticated methods have been developed to solve

huge instances. Commercial vehicle routing software systems have become an indispens-

able tool for dispatchers and other decision makers (Drexl 2012a). This is also due to

the paradigm shift from optimality to reality1, which was heralded by works of Holland

(1975), Christofides (1976), and others, but undoubtedly in effect at latest, when Fred

Glover stated:

”In the face of combinatorial complexity, there must be freedom to depart

from the narrow track that logic single-mindedly pursues, even on penalty

of losing the guarantee that a desired destination will ultimately be reached.

(’Ultimately’ may be equivalent to ’a day before doomsday’ from a practical

standpoint.)” (Glover 1986, p. 534)

The best solution is not a must anymore, the high aims of optimality are sacrificed

to bigger size and complexity of the problems, which are much more near to reality in

1The term “paradigm-shift” caused considerable controversy in the proposal of this master thesis, as
some found this being a too strong expression. However, the author wants to aver that it can well be
named in this way. The Oxford English Dictionary defines the term “Paradigm” as “a typical
example or pattern of something; a pattern or model”, and mentions as an example “the society’s
paradigm of the ‘ideal woman’ ”. The paradigm of an “ideal solution” in this case is exactly the
analogous meaning, considering that an ideal solution does not necessarily need to be optimal.

Furthermore, Barker (1992) refers to a paradigm as “a set of rules and regulations (written or
unwritten) that does two things: (1) it establishes or defines boundaries; and (2) it tells you how to
behave inside the boundaries in order to be successful.” This definition perfectly matches the
described paradigm shift as new boundaries and rules have been established in this field, and
optimality was not a criterion for success anymore. Moreover, Ferguson (1980) describes a paradigm
shift as “. . . a distinctly new way of thinking about old problems . . . it throws open doors and
windows for new explorations.”

The Encyclopedia of Science and Religion (Van Huyssteen 2003, s.v. “Paradigms”) says the
following, referring to Thomas S. Kuhn’s seminal work “The Structure of Scientific Revolutions”
(Kuhn 1996): “A paradigm consists of a group of fundamental assumptions forming a shared
framework that provides the scholar with instruction on what to view as issues of inquiry and how to
deal with these issues. Hence, a paradigm works as a criterion for choosing problems that, as long as
the paradigm is taken for granted, can be assumed to have a solution.”
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their formulations, but non-optimal. However, while human mind is tempted to end its

search as soon as a feasible solution is found, these software systems proceed and can

find better, even near-to-optimal solutions.

Particularly in the field of combined problems, where one sub-problem constraints the

other, only few and special cases of solvers can be found. This field has received growing

attention in the past few years, which in the authors opinion is not only a consequence

of better algorithms, but also more computational power, which allows the scientific

community to extend present problem formulations. The intended thesis focuses on

such a case and will try to contribute to this field by expanding the toolbox of solution

methods. This kind of problems can be found in many different situations, where goods

and services need to be provided at the customer’s location and the teams in the field

need to be provided with resources regularly.

This chapter will outline the general idea of the problem, introduce the terminology,

and illustrate the research design. Furthermore, the current state of research in this field

will be described by analyzing and referring to scientific literature which is connected to

the covered topics.

1.1. Research design

This thesis tries to answer a series of questions connected to synchronized VRP, which

are formulated as follows:

1. What are the specifics of synchronized VRP problems?

2. One representative real-world problem was chosen. What approaches are practical

to solve the described problem?

3. Is Discrete Event Simulation a practical method to evaluate solutions?

4. How do the proposed approaches perform with different parameters and instances?

The research followed the following steps (see Figure 1.1):

• Literature research and determination of possible solution methods

Literature research included analyzing the originating thesis of Rubasheuskaya

(2012) and scanning literature, particularly scientific articles, for similar problems.

Basic literature will be Pinedo (2012) and Toth and Vigo (2002).
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Figure 1.1.: Research process

• Problem definition

The problem was defined, including a prosaic description and a mathematical

formulation. This formulation describes the constraints of the problem and is also

necessary for defining the limits of the problem, to clarify, what is not included in

the model.

• Generation of test instances

The generation of test instances needed some attention, as it should represent

different aspects of real world conditions. Various types of instances regarding

project size were generated, having in mind, that this property could have an

influence on the computational time and solution quality. In order to simplify

matters, a parametrizable script was created, which could take over this task.

• MIP implementation

It was desirable to have optimal values for some test instances. Therefore, a first

approach of solving the problem was to implement it as a MIP model and to solve

it to optimality. However, even before implementing the model, literature review

had already indicated, that the size of instances, which can be solved optimally,

would not be very large, which proved to be true later on empirically.

• Formulation of algorithm

As a next step, larger instances needed to be solved. Literature review showed,

that this could be a kind of heuristic or meta-heuristic. Possible solution methods

were determined and formulated in pseudo-code.
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• Implementation

A reference implementation in C++ was developed to show the proof of concept,

to determine the algorithm, and to refine it. Furthermore, this implementation

provided a basis for further analysis and experiments.

• Computational experiments

The influence of problem size, parameters, and instance structure on the run-time,

solution structure and solution quality will be evaluated. The author is aware

of the concept of statistical significance and was following guidelines of Greenberg

(1990), Barr et al. (1995), Coffin and Saltzman (2000), and Hall and Posner (2001)

in mind, which had been found during literature review.

• Extension of the problem

The basic problem discussed in this thesis mainly focuses on the issue of synchro-

nization. However, in Rubasheuskaya (2012) the problem was somewhat richer.

Thus, some aspects of extending the model were covered in addition.

The structure of the thesis follows a scheme, which closely relates to the conducted

research process. Thus, the chapters build on each other and conclusions are drawn,

which are relevant for the next step. Furthermore, the thesis does not split into theory

and practice, as found in some other works, but discusses and develops theoretical and

practical aspects as needed. In the author’s opinion this makes the research process

more transparent and reproducible.

1.2. State of research and literature review

This section serves two purposes. First, it should give an overview about the current

state of research. Second, it gives ideas about different solution approaches, which can

be taken into account to solve the problem at hand. Solution strategies can be found in

several fields of research, depending on how the problem is constructed. Different possi-

bilities exist, to reshape the problem formulation, in order to fit it to similar problems,

where research has been done already. This formulation seems to be quite critical. As

an example, Beck, Prosser, and Selensky (2003) were investigating the performance of

techniques of solving a routing problem, when they applied VRP solution techniques

in comparison to scheduling techniques. They concluded that, as soon as the problem

becomes richer, scheduling techniques outperform the VRP techniques.
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The problem can be divided into two stages with two different sub-problems of schedul-

ing and VRP, for each of which extensive research has been done over the past decades.

The scheduling of the teams can be seen as a job-shop scheduling problem. Cheung and

Zhou (2001) proposed a genetic algorithm combined with heuristic rules to solve a gen-

eral job-shop scheduling problem with sequence-dependent setup times. This method

focuses on production planning, where the computational time is of minor importance,

but still reasonable. However, it gives considerably better results compared to plain

heuristic methods. Vela, Varela, and González (2010) used a genetic algorithm as well

and combined it with a local search heuristic. Artigues and Feillet (2008) presented a

Branch-and-Bound method.

VRP problems have been extensively researched in the past decades as well. Cordeau

et al. (2002) give an overview over some of the most important classical and modern

vehicle routing heuristics and assesses them in regards to accuracy, speed, simplicity and

flexibility. To mention two approaches, Cordeau, Laporte, and Mercier (2001) used a

tabu search heuristic for vehicle routing problems with time windows and can also solve

periodic and multi-depot problems with this approach. However, Prins (2004) applied

a genetic algorithm combined with local search to solve VRP problems.

There has been done some research on coordinating similar sub-problems. Liu (2011)

presented an approach for sequencing jobs and delivering the completed jobs to the cus-

tomer in batches. They proposed two genetic algorithms, which can find near-to-optimal

solutions within an acceptable amount of computational time. Bredström and Rönnqvist

(2008) studied a combined vehicle routing and scheduling problem with temporal prece-

dence and synchronization constraints and proposed an optimization based heuristic,

i.e. an approach, where significantly restricted MIP problems are solved iteratively with

progressively improved solutions. Kim, Koo, and Park (2010) dealt with a combined

team scheduling and vehicle routing problem. Teams and trucks should be scheduled

separately, but they needed to be synchronized. A constructive heuristic was proposed

to solve this problem, however a particle swarm optimization scheme was applied to find

the parameters.

A promising approach is, to formulate the problem as a VRP problem with synchro-

nization constraints. Drexl (2012b) classified synchronized VRP problems into different

types and discussed the exact and heuristic approaches of solving such a class of prob-

lems. This paper is based on a much more extensive technical report (see Drexl 2011).

It is reasonable to presume, that possible solution methods can be found as well in

the field of Integrated Production and Outbound Distribution Scheduling, which is a

12



rather recent and rapidly growing field. Chen (2010) provided a survey of such existing

models. As an example of such class of problems, Cakici, Kurz, and Mason (2010) worked

on a combined scheduling and transportation problem, where goods are produced and

delivered by vehicles of limited capacity, making a trade-off between total weighted

tardiness and transportation cost. The presented approach gives good hints how to

coordinate two different sub-problems.

Durbin and Hoffman (2008) presented a solution for scheduling concrete deliveries to

customers, which are of interest, as these deliveries are not only critical in terms of time

windows, but also because of the perishable nature of concrete, which can be also an

important factor for the problem at hand. Their approach was to use a time-space-

network representation.

1.3. Problem definition

The problem originates from a past master’s degree thesis. Rubasheuskaya (2012) for-

mulated in her thesis a mathematical model of a road construction company, with the

objective to provide an optimal project execution plan within a defined planning horizon.

This plan needs to take two sub-problems into account.

The first problem is a scheduling problem, where a team is scheduled to execute project

tasks at different locations. The setup times are sequence dependent as the teams need

different times to move from one location to the next.

The second problem is dependent on the solution of the first problem. While the team

is executing their tasks at the location, they need to be supplied with asphalt repeatedly

in a defined interval. A visualization of this problem can be found in Figure 1.2. The

dashed line represents Team 1, the dash-dotted line Team 2. Both teams are assigned

a set of projects with the objective to minimize the maximum execution time for the

longest tour among them. This objective will therefore lead to almost equal work plans

for each team.

While the teams are working at the locations they need to be supplied regularly within

this time interval (shown by a dotted line, which, however, is dependent on the current

time). As an example, we could define a fixed interval of 20 minutes of supplying the

teams. Consequentially, material needs to be delivered for Team 1 at location 3 at 8:00,

8:20, 8:40, . . . , 10:40, at location 4 from 12:00 on and at location 5 from 15:00 on. Team

2, however, should be supplied at location 1 at 8:00, 8:20, . . . , 13:40, and at location 2
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Figure 1.2.: Problem visualization. The route of the truck changes over time.

from 14:30 on. As the supplying trucks have limited capacity, the tours need to include

a source for the material, where they will go, when they are empty.

1.4. Assumptions

This problem contains many different aspects, and as the time for this thesis was a hard

constraint, the only possibility to fit into the timeline was to clearly define and limit the

scope to a manageable amount. The part, which was most interesting from the author’s

point of view was the aspect of synchronization, which is not well researched and thus

has potential to provide new findings. Therefore the original problem was seen more

as an inspiration for a new class of vehicle routing problems than a real world problem

that needs to be solved. A multitude of assumptions facilitated to concentrate on the

synchronization aspect.

As a first assumption the asphalt trucks will have enough capacity to fulfill all demands

on their tour. In other words, there is no capacity restriction on the trucks. For teams

this restriction would not apply anyway. This assumption is maybe the most problematic

one, however it can lead to unsolvable instances, because the number of vehicles is given

and multiple use of one vehicle is not intended to be built into this problem.

Furthermore, we will assume that the speed of teams and trucks to move from one

node to another is constant and independent from any factors. In a real world problem,

the load of a truck would influence the speed, as a fully loaded truck will be slower

than an empty truck. Above all, it is assumed that teams and trucks move with the

same speed. We also assume that all teams work with the same speed, and there is
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no dependency on quantity or quality of workers. There is also no service time for the

trucks to unload the asphalt.

Moreover, when it comes to distances, we will assume an 2-dimensional Euclidean

space. The distance d between two points x and y is defined by the Euclidean metric on

R3

d(x, y) = ||x− y|| =

√√√√ 2∑
i=1

(xi − yi)2

As a consequence, the distance matrix between any point x and y will be symmetrical

d(x, y) = d(y, x)

This implies also that the triangle inequality holds, i.e. any distance from a point x to

a point z will be smaller than the sum of distances from a node x to any other node y

plus the distance from y to z:

d(x, z) < d(x, y) + d(y, z)

Another assumption is that projects only last less than a day and each project gets

only one delivery of asphalt. This is true for small projects, but many projects can get

quite big and even last several days, weeks or months. Clearly, in this case the projects

would need to be supplied by a lot of asphalt transports.

Finally, we do not consider a planning horizon. The planning will be done for only

one day. It is assumed that there is no maximum working time on this day and the work

is done without any time-dependent break (only breaks which are induced by waiting

for a asphalt truck or working team). There is, for example, no lunch break taken into

account. If all teams and trucks did the lunch break at the same time, then this has no

consequences on the solution (only on the objective value). However, the breaks could

be planned individually for every team/truck within a given time-frame such that they

are placed optimally in order to affect the objective value least, which is not the case.
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1.5. Conventional VRP problems - definition and basic

notation

This problem is accountable to the class of vehicle routing problems (VRPs). This

section gives a short overview of the basic problem, terms and definitions, and some

possible variations of the problem.

The basic objective of a VRP involves a fleet of vehicles, which can have the same, but

also distinct characteristics. These vehicles are initially located at one starting point,

called depot. Each node should be visited exactly one, and finally the vehicle should

end up again in the depot. A solution of a VRP will give a set of routes, which will

be executed by one vehicle each. Among the variants, which have received the greatest

attention are the following (Toth and Vigo 2002, pp. 5):

• Capacitated VRP (CVRP): All the nodes represent deliveries with determin-

istic demands known in advance. The demand may not be split. This problem

assumes identical vehicles with a defined capacity. The sum of demands on each

tour must not exceed this capacity.

• Distance-Constrained VRP(DVRP): This is a problem similar to the CVRP,

but the capacity-constraint is replaced by a constraint which limits each tour to a

maximum route length.

• VRP with Time Windows(VRPTW): For each customer a time window and

a service time is given. Along with the time instant, when the vehicle leaves the

depot and the travel time to get to the customer, the service at the customer must

start within the given time window. The vehicle is usually allowed to wait at the

node in case of an early arrival.

• VRP with Backhauls(VRPB): Here some customers are marked as linehaul

customers, where a certain demand has to be delivered, and backhaul customers,

who need to be visited to pick up a defined amount of inbound products. In

addition, if there are both types of customers on one tour, all linehaul customers

need to be served before the first backhaul customer may be visited.

• VRP with Pickup and Delivery(VRPPD): Each customer is associated with

a quantity for pickup and for delivery. Furthermore, for each customer the origin

of the delivery and the destination of the pickup is given. The tours need to be

constructed in a way, that
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– each tour contains the depot

– each customer is visited exactly once

– the load along the tour must be nonnegative and may never exceed the vehicle

capacity

– each customer must be visited after the origin of its associated delivery

– each customer must be visited before the destination of its associated pickup

It also should be mentioned, that the VRP with unlimited capacity corresponds to

the multiple Traveling Salesman Problem (m-TSP). In this thesis, we will always refer

to this problem as VRP and will consider the m-TSP as the aforementioned special case.

1.6. VRP with multiple synchronization constraints

While the classical VRPs have been extensively researched, the synchronized VRP con-

stitutes an emerging field, and receives increasing attention. This section is basically a

summary of Drexl (2012b), who has been very active in this field lately.

The presented problem of road construction and repair could be viewed as VRP with

multiple synchronization constraints (VRPMS), because the classic VRP contains al-

ready synchronization constraints in respect to which vehicle visits which customer.

Beyond that, Drexl defines the VRPMS as “. . . a vehicle routing problem in which more

than one vehicle may or must be used to fulfill a task”. This implies also, that a change

in one route may have effects on other routes. This issue is called the interdependence

problem.

The following types of synchronization are named in the described paper:

1. Task synchronization: A task is a duty, which must be fulfilled at each location.

This can be delivering or collecting supply, or as in our problem, fulfilling a service,

i.e. accomplishing the street construction or repair. Task synchronization is the

typical case of standard VRPs.

2. Operation synchronization: This type describes something, that must be per-

formed by one class of vehicles in order to allow the execution of a task. In our

case we need supply of asphalt at one location in order to fulfill the task of re-

pairing the street. We can subdivide this type of synchronization in respect to the

consideration of the temporal aspect into
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a) Pure spatial operation synchronization: This case does not consider any tem-

poral aspect. The only condition is therefore, that one location needs to be

visited by both types of vehicles on their route.

b) Operation synchronization with precedences: One type of vehicle needs to be

at the location always earlier or always later than the other one, optionally

with some offset. This could be considered for the asphalt delivery, the truck

could just go to the location before the team arrives, unload its supply, and

proceed. However, the asphalt must be kept hot until it is used, and must be

loaded into a spreading machine, which is a tool owned by the team.

c) Exact operation: Both vehicles need to be at the location at the same time in

order to start fulfilling the task. This is the only way to handle the synchro-

nization in our problem, as a synchronization with precedence would lead to

the described issue.

3. Movement synchronization: In this case there is a non-autonomous vehicle,

which can be only moved with an autonomous one. This would be applicable for

a synchronization of trucks and trailers.

4. Resource synchronization: This type describes the fact, that different vehicles

compete for common, scarce resources. Only one truck can load the supply into

the spreading machine of one certain team at a certain location at a certain point

in time.

Following this classification, we can therefore deal with the problem at hand as a

VRPMS with task, resource, and exact operation synchronization.

1.7. Discrete optimization

This problem is attributable to the class of discrete optimization problems. This term is

often used to describe optimization problems, which can be solved by a direct or indirect

search through a finite set of variants (Leont’ev 2007). Well-known classes of problems

in the field of discrete optimization are:

• Discrete programming

• Integer linear programming

• Packing and covering problems

18



• Combinatorial optimization

• Discrete geometry

• Network problems

• Path-finding problems

• Location problems

In theory an exhaustive search could solve any of these problems. However, such

algorithms are very inefficient and search time grows very fast with increasing problem

size. Leont’ev (2007) describes different approaches how to solve discrete optimization

problems:

• exact: Algorithms, which return the optimal value of the problem. Approaches

for algorithms are search algorithms, dynamic programming, matroid optimization,

and linearization.

• approximate: For these class of algorithms some information about the objective

value being optimized in respect to the optimal value is available.

• heuristic: Heuristics do not guarantee the optimal solution. They can even return

a arbitrarily bad solution. However, many applications of heuristics have proven

to be successful.

This master thesis deals with exact algorithms and heuristics.

1.8. Test data

In order to evaluate different approaches of solving this class of problems, data is needed,

which describes concrete problems in numbers. Strong evidence can be found in liter-

ature, that the data can have considerable influence on the solution time and quality2.

Thus the issue of data always needs to be considered in interconnection to the problem.

Following common terminology, a set of data, which describes one concrete problem,

will be named instance. Furthermore, we will refer to properties of an instance, which

define the general character. To name one example of a property, the instance size

2França et al. (1995), for example, found that their algorithm for a m-TSP worked much better for
structured data compared to unstructured ones.
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describes how many nodes the problem contains, which in the case at hand would reflect

the number of road building projects.

There are different ways to get these test instances, and all of them do have their

advantages and disadvantages. Furthermore, it is absolutely legitimate to mix these

approaches in the research process, as long as this is reasonable. The proper approach

depends on availability and accuracy of existing data, and the universality of the prob-

lem.

The availability of the data describes, how difficult it is to get the data. Many com-

panies are reluctant to provide data, as there is fear that this information could fall into

wrong hands. Furthermore, availability of data also concerns the case of data that is

not present, inasmuch as it was not of interest so far. To name one example, the fuel

consumption of each truck in a fleet was maybe not available so far. However, in order

to minimize the costs of a heterogeneous fleet it can be necessary to determine this data.

Finally, the data could be available, but connected to a greater or lesser extent of data

processing in order to convert it into a format, which is suitable for the solver in use. The

generation of the distance matrix of a real-world VRP provides a perfect example for this.

In a vast amount of cases, all the data needed is present. The addresses of customers to

be served is available in an ERP database, and the distances can be obtained from maps

or even routing software. However, it is quite a challenge, to convert these addresses

into geographic coordinates3, since inaccurate address data in the customer database

may not match the data in the geocoding software, or the geocoding database may not

contain up-to-date data. Moreover, a distance matrix needs to be generated based on

the coordinates. As the distances need to be calculated for every possible connection,

this can demand a great deal of effort. To solve a VRP with one depot and n customers,

the number of distances to be calculated is

(n+ 1)2 − (n+ 1)

2

Even with 20 projects on one day, which is a realistic order of magnitude in the case

of the presented asphalt work company, and in the simpler symmetrical case, where the

distance between two arbitrary points does not depend on the direction, this will be 210

different distances to be determined4.

3This process is called geocoding. See Goldberg (2008) for further reading and best practices.
4One example of an asymmetrical case, where the distance between two points can be different, is a
VRP in an urban area with one-way streets.
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One noteworthy aspect to mention is the accuracy of data. It is very important to

bear in mind, that data in ERP systems is only connected to reality by its semantics.

However, this semantics very often is not the one, which is expected or needed. To

formulate it a bit ironically, the final goal of an ERP is still to issue a right invoice, and

this sometimes makes it very difficult, to get the data which should represent what is

expected. Thus, it should not be a surprise, when the data contains negative working

times for adjusting entries or two building projects at the same place and time, because

costs are shared by two customers.

One last aspect to consider is the universality of the problem. The question appears,

if it is reasonable to try to fully reflect all aspects of one company in the data, or if it is

better to see the problem on a more abstract and generic level. The risk is prevalent to

tailor the algorithm too much to one special case. However, research should never end

up in consulting work for one business. Especially in a state, where a problem is not

well researched, it could be a good idea to leave the specialization for later and explore

the problem in a top-down approach, by beginning on the general problem and going

deeper in subsequent steps.

In many cases, the problem originates from a real-world issue, which is based on a

running business or an introduced process. Hence, a straight forward approach would

be to use real-world data from historic records, for example extracts from ERP systems.

This approach can ensure, that the actual problem is solved and the algorithm is suitable

to solve similar problems. Furthermore, this data gives the opportunity to compare the

actual outcomes to the theoretical solutions of the optimization. For example, in case

of the road construction company it would be possible to extract one week of projects

and compare the actual costs to the theoretical costs of a solution gained by applying

the optimization algorithm.

However, even though this approach seems quite reasonable, it has some serious draw-

backs, when it comes to the described issues of availability and accuracy. Moreover, to

gain statistically significant results, it is not sufficient to work with just one instance.

Several instances, which should be quite similar to each other in their properties, should

be tested to gain valid results, however, there should be also instances which differ in

their properties to see the behavior of the algorithm in different circumstances.

Hence, yet another approach is to generate data by a randomized procedure, by apply-

ing building rules, that reflect the circumstances and special properties of the problem

to be solved. This is a much easier approach, as it allows to vary the different building

parameters as needed, and to build an arbitrary number of instances without any need
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to request, process or clean data. Special attention should be paid to generate represen-

tative instances, i.e. test instances, that contain reasonable data and have properties,

that could be an instance of real-world data. A computer program can easily execute

this procedure on demand.

Especially in the early stage of algorithm-development it is very reasonable to make

the instances “as small as possible, but no smaller”. As shown later, the solution time for

a MIP implementation increases very fast with instance size. Waiting even one minute

or more will impede developing and testing the implementation and is not reasonable, if

it can be done with equal results using a small instance of 4 nodes within a split second.

The same applies for a heuristic solver, which could initially provide solutions that are

very far from the optimality. On the other hand, the proof of concept can be made

already with very small instance sizes. However, after being finished with developing

and testing the model, the subsequent discussion should provide information about the

influence of the instance size on solution time and quality. To have instances of different

sizes available for testing is therefore inevitable throughout the development process.

For the problem at hand, data was generated by a program instead of using real-world

data. There were several factors supporting this decision: First, as already indicated,

the synchronized VRP is not well researched and the issue of the contemplated company

was just an inspiration for the problem. It was not an immediate goal to provide the

company with a ready-made planning tool. However, it was much more of interest, how

instances with different properties will influence the solution quality and time, which

can be much easier achieved by generating instances while varying these properties.

Furthermore, as pointed out, it is advisable to have small instances in an initial stage,

which cannot be real-world data anyway. Moreover, concerns regarding accessibility and

accuracy of company data and the related effort of coordination did not justify the use

of real-world data, as this turned out to be disproportionate to the gained benefit.

The test instances contain the following data:

• Node identifier: An unique identifier for referencing the node.

• Distance matrix: This matrix represents the number of time-units to get from

one node to another.

• Project time: This data describes, how many time-units the team will work at

one node until it proceeds to the next node
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Instances are considered to be euclidean, which makes it easier to present and analyze the

solutions. The nodes are represented in an 2-dimensional Cartesian coordinate system,

and the distance matrix is calculated before the optimization procedure starts.

To regulate the instance size, a slightly different approach to common practice was

chosen. Instead of generating various instance sizes all instances were generated with

the same size (100 nodes). However, the number of projects to be planned could be

determined by a parameter in the solver. This made it much easier to discuss the

influence of the instance size on the run-time, and gave the opportunity to be much

more flexible in computational experiments.

Figure 1.3 shows one possible test instance. 0 marks the team-depot and 1 denotes

the truck-depot. The numbers represent the projects to be done, with the duration of

the project as a subscript.

ID X Y Duration

0 315 113 –
1 241 67 –
2 144 85 71
3 291 11 70
4 220 128 306
5 381 114 213
6 297 165 454
7 78 55 143
8 55 107 446
9 171 199 331

10 163 173 245 0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

X
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370

4306 5213

6454

7143
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10245

Figure 1.3.: A test instance in its numerical and graphical representation
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2. Solving to optimality - a classical

approach

To solve this problem, means of classical optimization methods suggest themselves. The

model is easy to formulate, and the solution can be left to widely proven methods, which

are implemented in a black-box style. The inputs, outputs and requirements are clearly

defined, but the internal mechanics are not of particular interest for the modeler.

In this chapter, a Mixed Integer Programming model is formulated, which subsequently

is implemented in a modeling language, where it can be sent to a solver. These are the

prerequisites to discuss this approach and to point out the benefits, but also limits of

this method.

2.1. The min-max objective as an alternative to

min-sum

Before presenting the model formulation, one important issue of this problem should

be discussed, to wit, the objective. Against common practice, a min-max objective was

chosen in favor to min-sum in order to keep the tours as short as possible, but balanced.

While the min-sum problem minimizes the sum of all tour costs (or time, or distance),

the min-max objective minimizes the longest of all tours, as explicated later in more

detail. The min-max VRP has received considerable less attention in comparison to

the min-sum problem. This may be not very surprising due to the objective’s nature,

because at first sight it seems always more attractive to go for minimal costs instead.

The sum of the costs of tours of a min-max problem, however, can never be less than

the corresponding min-sum problem. However, based on his experience from practice,

the author wants to take up the cudgels on behalf of the min-max objective for several

reasons. This chapter will introduce the reader to the motivation to choose min-max

objectives, and expand on how to solve these kind of problems.
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In a lot of cases, the min-sum problem is acting on wrong assumptions and ignores

important facts. First, we have to face the fact, that it is very unlikely, that an optimal

solution will be exactly executed as it was calculated. In the field of optimization the

base is always a model, and as the statistician George Box said, “...all models are wrong,

but some are useful” (Box and Draper 1987, p. 424). As a result, there will never be the

best solution for the given problem, but only an optimal solution of its formulated model.

Too many factors can not be taken into account and changes need to be bargained for.

As outlined by Drexl (2012a), commercial vehicle routing systems will continue to act

as decision support systems1 in the foreseeable future, as there are in most of the cases

side constraints, that can not be dealt with automatically. In a min-sum solution there

can be quite unbalanced, very short or very long tours, and it is always a matter of

luck, if these side constraints can be handled without considerable complications. A

good customer, who is calling for an emergency delivery after the planning is already

finished, could be located near a short tour, which has still quite some room for further

customers, or in a worse case near a tour, which cannot serve this customer anymore

because he would exceed his limit of working hours. Balanced tours are usually much

easier to handle, when changes occur.

Second, the human factor has to be considered. The planner has usually quite some

need for explanation, if one tour gets just a few customers and is finished before lunch,

while there is another tour, that can hardly finish before the end of the working day.

Another important issue is the trade union, which can be a significant stakeholder and

to a great extend co-determine the formulation of objectives and constraints, especially

if these lead to inequity in the assignment of work. Furthermore, particularly for drivers

the issue of exceeding the driving time is quite crucial, as a violation can be penalized

by a considerable fine. A min-max objective would by itself balance the tours, such that

either everybody will be within the allowed working time or everybody will exceed the

time limit, which should lead to subsequent actions as e.g. adding teams and/or trucks,

or postponing projects.

Furthermore, there are many cases, where it is necessary to have balanced routes,

e.g. when it is essential, to serve all customers in reasonable time. One example can be

routing for relief efforts in case of disasters (Ann, Vandenbussche, and Hermann 2008),

where it is extremely important to be at the sites as fast as possible, even at the last

locations of a tour.

1in contrast to decision making systems
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Figure 2.1.: min-max objective

Figure 2.1 shows the effects of applying a min-max objective. The boxes could, for

example, be understood as jobs on machines x1, . . . , x4. The height indicates the length

of one job and each stack represents the sum of all jobs, visualizing the total work length

per machine. In order to gain a lower objective value, job j?, visualized by the light-

gray box, needs to be rescheduled to machine x3. An optimal solution will have quite

equal individual machine working times, as the jobs of the machines with the maximum

working times will be spread to the other machines until this is not possible anymore.

Moreover, vehicle routing problems have the additional property of sequence depen-

dence. Amongst others, this can also be found in machine scheduling problems with

sequence dependent setup times. Figure 2.2 illustrates this characteristic. If we con-

sider picture a) in this figure as starting solution, where machine x1 is running longest,

and shift the job j? depicted by the gray box to machine x3, as shown in picture b),

machine x3 will run longest. The length of the j? changes now, as setup time increases

(for example, because the change of tools from its preceding job j2 from the job j1 on

machine x1). However, if the sequence on machine x3 is changed, as depicted in picture

c), such that j? precedes j2, the setup for j2 only increases a bit, but for j? it decreases

considerably. The sum of jobs decreases, and finally x4 runs longest.
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Figure 2.2.: min-max objective with sequence dependence

2.2. A Mixed Integer Programming formulation

As a base for a subsequent implementation, the model is formulated as the following

mixed integer program:

Sets

{0} team depot

{1} truck depot

N set of projects

T set of teams

Parameters

U maximum working day duration

M number of teams

P number of trucks

Sij traveling time between locations i and j

Zi duration of job i
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Variables

βij =

{
1 if arc between location i and j is traversed

0 otherwise

λij =

{
1 if a team fulfills job j after job i

0 otherwise

ti arrival time at location i

u latest return time of all trucks. The return time is defined as the time, when the

truck arrives at node 1.

xi starting time of job i fulfillment

y latest return time of all teams. The return time is defined as the time, when the

team arrives at node 0.

w latest time

minw (2.1)

subject to

w ≥ u (2.2)

w ≥ y (2.3)∑
j∈N :i 6=j

λij = 1 ∀i ∈ N (2.4)∑
i∈{0}∪N

λij =
∑

k∈{0}∪N

λjk ∀j ∈ {0} ∪ N (2.5)

∑
j∈N

λ0j ≤M (2.6)

U(1− λij) + xj ≥ xi + Zi + Sij ∀i ∈ {0} ∪ N , j ∈ N (2.7)

U(1− λi0) + y ≥ xi + Zi + Si0 ∀i ∈ N (2.8)∑
j∈N :i 6=j

βij = 1 ∀i ∈ N (2.9)∑
j∈{1}∪N

βij =
∑

k∈{1}∪N

βjk ∀j ∈ {1} ∪ N (2.10)

∑
j∈N

β1j ≤ P (2.11)

U(1− βij) + tj ≥ ti + Sij ∀i ∈ {1} ∪ N , j ∈ N (2.12)
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U(1− βi1) + u ≥ ti + Si0 ∀i ∈ N (2.13)

ti = xi ∀i ∈ N (2.14)

The objective function (2.1) minimizes the maximum return time for teams and trucks.

This objective, together with the constraints (2.3), (2.2), (2.8) and (2.13) is a reformu-

lation of the min-max objective (see Fourer, Gay, and Kernighan 2003, pp. 380-382).

Because of constraints (2.2) and (2.3), the maximum return time always has to be

greater or equal than the return time of all teams and all trucks. The family of constraints

(2.4) mean, that each project needs to be visited exactly once by a team. Constraints

(2.5) indicate, that if a node is visited by a team, it should be left as well. Constraints

(2.6) limit the number of teams to a maximum of M outgoing teams from node 0, which

is the team depot.

The following two families of constraints (2.7) and (2.8) define the working time. If

project j does not follow project i, then λij = 0 and the term U(1 − λij) will be a

number, which will always be bigger than the right hand side, consequently xj will not

be forced by this constraint to take a nonzero value. However, if a project j is adjacent

to project i, then λij = 1. Therefore the term U(1 − λij) will be zero, and xj needs

to take a value, which is at least the project start time of xi, plus the time to work on

project i, Zi, plus the time to go from project i to project j, Sij.

One interesting detail here is, that this constraint provides at the same time a means

of sub-cycle elimination, as the constraint says, that time in one tour has to increase

monotonically. In a sub-cycle this could not hold, as the same element on the beginning

would be assigned another time than at the end of the sub-cycle. This principle follows

closely the MTZ formulation of the TSP in Miller, Tucker, and Zemlin (1960).

The constraints (2.9) guarantee, that every project is visited exactly once by a truck.

(2.10) is a set of balance constraints to ensure, that all trucks going to a project are

leaving it as well. The number of trucks which is allowed to leave the truck depot 1

is limited by constraints (2.11). The constraints (2.12) and (2.13) work in the same

manner as (2.7) and (2.8). In this case they determine the working time of the trucks.

(2.14) are the synchronization constraints. They ensure, that for each project on each

day the arrival time of the truck will be the time, when the team starts working on the

project.
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2.3. Implementation of the model

The model was implemented in Pyomo. This is a relatively new Algebraic Modeling

Language (AML), fully integrated in the high-level programming environment Python2.

A description and overview of Pyomo can be found in Hart, Watson, and Woodruff

(2011), and a more detailed insight is presented in Hart et al. (2012). Pyomo was

preferred to other AMLs, as it adds a high degree of flexibility and allows a much better

flow control of the solution process. It was, for example, very easy, to generate graphical

visualizations of the solutions using the Python language and LATEX.

However, Pyomo is just a modeling language and hence needs a solver for the com-

putational part. For this, Gurobi3 was be used. While initially CPLEX was considered,

recent developments and licensing issues for the academic environment lead to this solver

as it is much more open to academic licensing, quite fast, and perfectly integrated with

Pyomo.

It is noteworthy to mention, that in the author’s opinion it is advisable to use a

two-step approach, where development and prototyping of the model is done in another

language, in the concrete case AMPL. Pyomo uses a mighty language, but this leads to a

somewhat confusing notation, which makes it difficult to read. However, as soon as the

model is working, it can be easily re-implemented in Pyomo, where all the power of the

underlying Python-language can be unleashed for further processing. As an example,

from the numerical solutions the graphs shown in this thesis were generated using the

PGF/TikZ language4. One more possibility would be to generate the solution as an

animation, for example using the SVG format5.

During computational experiments one issue popped up, which was hard to track

down, as this happened only in rare cases and not connected to the model, but the

solver: Even if variables are defined as integer or binary, Gurobi has some tolerance.

If variables are within this tolerance, they are considered as integer. By default, this

tolerance is 1e-05. However, with this value objective values are found, which are actually

not feasible.

This issue was discovered, because the heuristic solver, which is presented later on, did

not reach this minimum objective value when comparing run-times to the MIP imple-

mentation. It continued running, as reaching the objective value produced by the MIP

2see http://www.python.org/ (accessed November 22, 2012)
3see http://www.gurobi.com/ (accessed November 22, 2012)
4see http://sourceforge.net/projects/pgf/
5see http://www.w3.org/Graphics/SVG/
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Figure 2.3.: Example solution for instance with 2 teams and 1 truck.

solver was a stopping criterion. However, by sending the parameter IntFeasTol=1e-09

to the solver, this tolerance can be narrowed down. The author is aware, that this is

more of an academic problem, as feasible solutions still may be found in shorter time

by relaxing this tolerance, but on the other hand the requirements when comparing two

approaches should be the same. Thus, the decision was, to set this tolerance as tight as

possible.

Figure 2.3 shows the solution for instance 005 with 2 teams and 1 truck. When

it comes to the run-time, Figure 2.4 shows the big drawback of this approach. With

instances getting bigger, the run-times get disproportionately longer. Even if an instance

with 9 nodes (2 depot nodes + 7 projects) can be still solved within less than 4 seconds,

the calculation run for 12 nodes was aborted after 4 hours. For an application like the

contemplated problem of planning for road construction and maintenance, the solvable

problem sizes are therefore not large enough.
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Figure 2.4.: Run-times for instance 005 with 3 teams and 2 trucks, dependent on the
number of projects

2.4. Advanced methods of solving a min-max VRP to

optimality

As the run-times of the MIP model show, solving min-max VRPs by classical means,

i.e. solving it by branch-and-bound or branch-and-cut algorithms, shows a quite poor

performance. The reason is, that solutions at intermediate nodes of the search tree

usually do not contain sufficient information on the value of the objective to allow

fathoming (see França et al. 1995).

For the min-max VRP without synchronization constraints some, but not much work

is already done to solve bigger instances to optimality. Applegate et al. (2002) could

prove, that a solution for one specific instance with 120 nodes and 4 vehicles, which

was earlier found by a simulated annealing algorithm, was optimal. Before this, França

et al. (1995) solved the min-max m-TSP up to 50 nodes optimally, which is already an

adequate dimension for our real world problem. This approach is interesting, because

the min-max m-TSP was reformulated as distance-constrained asymmetrical VRP and

solved iteratively by a branch-and-bound algorithm described in Laporte, Nobert, and
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Taillefer (1987), decreasing the maximum allowed distance until the problem gets infea-

sible. The last feasible run is finally the optimal solution. As an example, the average

computational time for 10 comparable structured instances with 20 nodes and 3 vehi-

cles were approximately 84 seconds. Considering the computational power of the time

when this paper was published, it should be fairly easy to calculate this solution with up

to date hardware. Furthermore, Almoustafa, Hanafi, and Mladenović (2013) improved

Laporte’s exact algorithm for the asymmetrical DVRP, which could be again utilized to

solve the min-max m-TSP instead of the one used by Laporte.
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3. Solving bigger instances with

heuristics

As shown in the previous chapter, it will not be possible to solve bigger instances to opti-

mality within reasonable time. As already noted, Leont’ev (2007) pointed out heuristics

as an alternative to solve discrete optimization problems. This chapter shows an ap-

proach of building a heuristic solver. Furthermore, the connected topic of evaluating

candidate solutions will be covered.

3.1. Heuristics

Generally heuristics can be divided into two different classes: classical heuristics and

metaheuristics (Toth and Vigo 2002, p. 109). Classical heuristics were most actively

developed between 1960 and 1990. They explore the search space quite sketchy and

provide therefore solutions, which are quite good in reasonable time. Metaheuristics,

on the other hand, explore the promising regions of the solution space much more in

depth, typically using neighborhood search rules, memory structures, and recombina-

tion of solution. Most popular metaheuristics for VRP are Ant Colony Optimization,

Genetic Algorithms, Greedy Randomized Adaptive Search Procedure, Simulated An-

nealing, Tabu Search and Variable Neighborhood Search (see Gendreau et al. 2008, pp.

143–147).

3.2. Evaluation of a candidate solution

In order to determine the quality of a solution, it needs to be evaluated. Figure 3.1

shows different approaches, how to deal with this issue. In the standard min-max VRP

problem the solution can be evaluated analytically, in a very easy and straightforward
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Figure 3.1.: Ways to study a system (Source: Law and Kelton 2000, p. 4)

manner. Given a distance matrix

D =


0 d01 . . . d0j

d10 0 . . . d1j

. . . . . . 0 . . .

di0 di0 . . . 0


where dij denotes the distance between node i and node j, and a solution matrix for

each vehicle k in a set of vehicles K

Sk =


0 s01k . . . s0jk

s10k 0 . . . s1jk

. . . . . . 0 . . .

si0k di0k . . . 0



where sijk ∈ {0, 1} =

{
1 if arc between location i and j is traversed by vehicle k

0 otherwise.
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Then the objective value of this solution will be

z = max
k∈K
{D>Sk}

However, in a system, where the set of vehicles K is synchronized with vehicles of

another class L, waiting times will be involved, where one vehicle is staying at the node,

until the other party arrives.

z = max
k∈K,l∈L

{D>SKk + wKk (SKm, S
L
n |∀m ∈ K, n ∈ L),

D>SLl + wLl (SKm, S
L
n |∀m ∈ K, n ∈ L)}

Thus, the individual waiting times wKk and wLl are not only dependent on their own

solution matrix SKk and SLl , but on also on all other solutions of the own and of the

other vehicle class, K and L. These interdependence makes it much more difficult to

determine the objective value analytically.

Usually analytical methods are still preferable, when they have a solution, because

they are computationally fast. However, as soon as systems get more complex, it is

very difficult or even impossible to find an analytical model (Altiok and Melamed 2007,

p. 3). Furthermore, any change of the model will result in the need to derive a new

analytical model. Therefore, the use of simulation seems reasonable, as models can be

implemented straightforward and changes can be conducted much easier. This idea is

not completely new. Almeder, Preusser, and Hartl (2009), for example, proposed to

connect a nonlinear and stochastic simulation model and a simplified linear program to

support operational decisions for a supply chain network.

3.3. A different view on the problem - the synchronized

VRP as a system

So far we have learned the following features about this problem:

• The applied classical methods were able to solve some small instances, but were

not suitable for bigger ones.

• Therefore we try to apply heuristic approaches.

• For heuristic approaches we need to evaluate a possible solution.
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• The evaluation is not straightforward because we need to consider the inter-

dependencies between the two vehicle classes of teams and trucks, that need to

wait for each other.

In order to tackle the evaluation issue, and to understand how to build an evaluation

function, which can provide the objective value of a candidate solution, we will look at

this problem by considering it as a system (see Cassandras and Lafortune 2008, pp. 2).

The IEEE standard dictionary of electrical and electronics terms1 defines a system as

“a combination of components that act together to perform a function not possible with

any of the individual parts”. Webster’s Dictionary2 describes this term as “a regularly

interacting or interdependent group of items forming a unified whole”. Finally, the

Oxford Dictionaries3 defines a system as “a set of things working together as parts of a

mechanism or an interconnecting network; a complex whole”.

What all of these definitions have in common is the aspect of components, which

perform a defined function. Furthermore, these components show inter-dependency.

This inter-dependency is a necessity to fulfill the purpose of this system. While it can

be left to discussion, if a standard VRP can already be considered as a system, the

VRPMS is clearly describable by this term.

As a part of this thesis, and as a consequence of what we have learned until now from

the problem, the question arises, how we can deal with such a system, and how we can

explore its behavior under given circumstances by providing it with input (in our case

the candidate solution) and measuring certain indicators as shown in Figure 3.2. This

should be performed in the best possible way, i.e. the chosen approach should be

• useful: It should be possible to obtain the necessary and relevant information

about the system as an output. This will be for sure the objective value, the

length of the longest tour, but it could also be necessary to retrieve the length of

the other tours or the waiting times. Also feasibility can be an information to be

obtained.

• efficient: The approach for studying the system should require the least possible

effort (e.g. computational cost). Features, that are not of interest, can be disre-

garded in order to enhance performance. For example, as we will see later, it can

1Radatz, Jane. The IEEE standard dictionary of electrical and electronics terms. 6th ed. s.v.
“System.” New York: IEEE, 1996.

2Merriam-Webster’s Collegiate Dictionary. 11th ed. s.v. “System.” Springfield, MA:
Merriam-Webster, 2003. Accessed April 16, 2013. http://www.merriam-webster.com/.

3Oxford Dictionaries. April 2010. s.v. “System.” Oxford University Press. Accessed April 16, 2013.
http://oxforddictionaries.com/definition/english/system.
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be of advantage to discretize time, or even ignore big parts of the timeline and

concentrate only on the “interesting” points in time.

• flexible: It should be easy to change the behavior of the system. Additional mea-

surements should be possible without reconsidering the approach. For improving

the metaheuristic it could be necessary to determine additional indicators, and

this should to be possible without much effort. Furthermore, extending or altering

the problem should not lead to issues in evaluating the solution.

Candidate solution  System

Objective value     

Tour lengths     

Other indicators

Figure 3.2.: Obtaining indicators from the system after providing a candidate solution.
Source: adapted from Gill 1962, p. 2.

To understand better, how the synchronized VRP system can be handled, we will dis-

cuss it by focusing on some major classification criteria of systems named by Cassandras

and Lafortune (2008) (pp. 44):

• Static and Dynamic Systems: While in static systems, the output is always inde-

pendent from past inputs in history, dynamic systems will have different outputs

when provided with other inputs in history. To describe such systems, differential

or difference equations are usually used. The considered synchronized VRP system

can clearly be classified as dynamic system. Using the next node to go with a

vehicle as an input, it will make a difference, where this vehicle is departing from,

as the distances are most probably different and the sequence of nodes to be visited

will be a different one.

• Time-varying and Time-invariant Systems: Time-varying systems will behave dif-

ferent at various points of time, whereas time-invariant do not. In our system the

behavior will not change over time, it is therefore time-invariant.
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• Continuous-state and discrete-state systems: When examining the possible states

of a system, there are two possibilities: If the system variables can take on any real

value, then this is a continuous-state system. Otherwise, if the state of the system

can be described by a finite set of states, we deal with a discrete-state system.

In principle, we could define the synchronized VRP system as continuous-state

system. This would, for example, be necessary if we would like to know the exact

position of the vehicles at any time t. However, considering it as a discrete-state

system will make the evaluation much easier, as shown in section 3.4.

• Continuous-time and discrete-time systems: Additionally to the state of the sys-

tem, the time needs to be considered. In many classical systems, as for example in

the field of physics, which often works with differential equations, time is consid-

ered to be continuous, that is, t is a real value. However, it can be handy or even

necessary to discretize time for several reasons. One of these reasons could be,

that systems (like most of modern computer architectures) are already designed

as discrete-time systems, and driven by a clock generator, which provides the tim-

ing for processing a list of commands. Another reason could be to approximate

a continuous-time system by discretizing time in order to facilitate system evalu-

ation. In our system we will consider time as discrete, as only certain points in

time are of interest.

• Time-driven and Event-driven Systems: In time-driven systems the state of the

system continuously changes over time. In event-driven systems state transitions

are triggered by asynchronously generated events. Between events the system state

does not change. Our system is considered as an event-driven system. To name

one example, the arrival of an asphalt truck at a certain node is considered as an

event, and will trigger a waiting working team to begin its work at this node. The

behavior of our system can be fully described by events.

• Deterministic and Stochastic Systems: If it is possible to predict the future behav-

ior of a system at the time t = t0, assuming knowledge of the input, the system is

considered to be deterministic. However, if the system has unpredictable elements

in it, it is stochastic. The synchronized VRP under examination does not have

any stochastic elements in it. However, as a possible extension of the problem,

uncertainty could be included by adding, for example, stochasticity in working or

driving times. For now we will consider it as deterministic.
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Cassandras and Lafortune (2008) (p. 32) define a discrete event system as “. . . a

discrete-state, event-driven system, that is, its state evolution depends entirely on the

occurrence of asynchronous discrete events over time.” Our system features these prop-

erties and can therefore be classified as a discrete event system. In order to implement

a discrete event simulation, we first need appropriate tools for describing the model.

While the MIP formulation is perfect for solving the model by classical optimization,

for simulation it may be better to view the model as system of various model elements

that act dependent on the system state. The discrete behavior of these entities can be

described through finite-state transition systems, by so-called Finite State Machines.

The idea behind this is an abstract machine which can be in a defined, finite number

of states. It is only possible to be in one state at a time, however the machine changes

between states through triggering events or conditions (see Gill 1962).

Figure 3.3 shows the behavior of the two vehicle classes, the teams and the trucks, as

Finite State Machines. This follows the specification of the Object Management Group

(2011).

Team

Waiting

Working

Going to next project

Leave from team depot

Arriving at project

Asphalt transport arriving or already there

Arriving at team depot

Truck

Waiting

Going to next project

Leave from vehicle depot

Arriving at project

Team arriving or already there

Arriving at vehicle depot

Working finished

Figure 3.3.: State machines describing working teams and asphalt trucks
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3.4. Evaluation using discrete event simulation

As already pointed out, in discrete event systems state variables change instantaneously

at separable points in time (Law and Kelton 2000, p. 6). This differs from a continuous

system, where the state variables change steadily over time.

A B 

A B 

clock=0 
Truck leaves A 

clock=80 
Truck arrives at B 

Position is known at any time 

Continuous simulation 

Discrete simulation 

Figure 3.4.: An asphalt truck going from A to B in a continuous and discrete simulation
model

Figure 3.4 visualizes the difference between these two approaches. In the case of

continuous simulation, the asphalt truck leaves from A at clock = 0, and over time,

the position will always be known. However, in the discrete simulation case, after the

truck leaves A at clock = 0, the system will stay in this state until it approaches B at

clock = 80, and until then there is no new information about the truck, except that it

is on its way. For evaluating the VRPMS system, it is not of interest what happens on

the arcs. The synchronization of the vehicles should be the matter of case, which can

be expressed by discrete events.

There are several software products on the market, which allow to design, run and

evaluate discrete event systems using different approaches. The simulation package

Arena4 allows to design the models graphically and provides a rich set of tools to evaluate

the solutions statistically. Furthermore, there are libraries, that integrate into a high

4see http://www.arenasimulation.com/ (accessed March 17, 2013)
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level language to provide tools for simulation. SystemC5, for example, provides a library

for C++. Parsec6 is a C-based simulation language. JiST7 is a discrete event simulation

engine that runs over a standard Java virtual machine. SimPy8 is an object-oriented,

process-based discrete-event simulation language for Python.

However, each of these products has some drawbacks, that do not qualify them for

using them for the intended purposes. The main argument for that is performance, as

the search process will involve a high amount of evaluations. Even though only little

advice can be found in scientific literature, which options to choose, it is reasonable to

presume, that none of these aforementioned approaches will reach the performance of a

self-made implementation.

First, some of the packages are just not able to provide the highest possible perfor-

mance by design. To name an example, some simulators interpret the model at run-time,

like SimPy. JiST, on the other hand, runs the simulation as compiled Java-code and

therefore is able to outperforms SimPy by far, as Weingartner, Lehn, and Wehrle (2009)

show in a network simulation model.

Second, these packages usually include big overhead, as they are written for a broader

field of applications. They contain tools for statistics collection, random number gener-

ation and functionality, that allows the implementation of models which go far beyond

what is needed for the synchronized VRP.

These arguments lead to the decision to implement a tailor-made greenfield implemen-

tation of a basic discrete-event simulator in form of a library, which can be utilized and

tightly integrated with the simulation model. The model can, as well as the simulator,

run as compiled code. C++ was chosen as implementation language, because this is con-

sidered as one of the high-level programming languages, which generates very efficient

code. In order to implement a discrete-event simulator for the concrete VRPMS system

at hand, the following central elements needed to be programmed (see Law and Kelton

2000, pp. 9):

• System state: Set of variables representing the state of the system at a particular

time. These variables are changing, when specific events occur.

• Simulation clock: A variable denoting the point of time in the course of simulation.

5see http://www.accellera.org/downloads/standards/systemc/about\_systemc/ (accessed
March 18, 2013)

6see http://pcl.cs.ucla.edu/projects/parsec/ (accessed March 18, 2013)
7see http://jist.ece.cornell.edu/ (accessed March 18, 2013)
8see http://simpy.sourceforge.net/ (accessed March 17, 2013)
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• Event list: A list containing the events, which will be the trigger for transitions

from one system state to another. This list will be processed one by one.

• Initialization routine: A routine which sets the state of the system to a defined

initial point.

• Timing routine: Two different mechanisms are suggested historically to advance

the clock, the next-event time advance and the fixed-increment time advance. The

great majority of implementations, including the one for the VRPMS simulation,

uses the next-event time advance mechanism, which will be presented subsequently.

• Event routine: A routine which processes each event. Usually the state variables

are changed based on the type of event.

• Main program: The program responsible for coordinating the different compo-

nents, initializing the state, invoking the timing routine to get the next event and

processing the event through the event routine.

As mentioned above, the simulator uses a next-event time advance mechanism. Figure

3.5 visualizes this concept using the example of the events occurring on a synchronized

tour of one team and one truck. In this example the event list is shown as time bar on

the x-axis, with the team (T1) and the truck (V1) as two separate lanes. Furthermore,

the triangle shows the position of the simulation clock.

The list is initialized with two events: The event of T1 arriving at node 1 at time

20, and V1 arriving at the same node 1 at time 50. These are the travel times from

the team / truck depots to this node and can be easily obtained through the distance

matrix. The simulation clock is set to 0.

In the first step the simulation clock is set to 20, which is the first occurring event

after its present position, this is the arrival event at node 1 (A1) of team T1. In this

step, not very much happens, as this team needs an asphalt delivery from a truck to

commence work. Only the system state changes, as the truck is moved from the truck

depot node to node 1.

The simulation proceeds in step 2 to the next event in the event list, the arrival of

truck V1 at node 1 (A1), which happens at time 50. The position of the truck is moved

to node 1 as well, and because team 1 is already at node 1, the state of team 1 changes

to “working”. Furthermore, now we can insert two more events: Team 1 will stay in the

working state until an event work done at node 1 (W1). The duration of the work can

be again just looked up from the provided data, in this case team 1 works for 20 time
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units. Meanwhile truck 1 will proceed to node 2 for 30 time units, arriving at the time

when event A2 occurs at time 80.

Step 3 marks the end of the work of team 1 at node 1. The team departs from the

node, and one more event is created at the point of time, where the team is arriving

at node 2 (A2). At this time the truck is already traveling to node 2, but has not yet

arrived.

In the next step, the system clock is set to the arriving event for truck 1. Besides of

setting the position of the truck in the system state nothing more happens, as it is still

waiting for the team to arrive.

Finally, the team arrives in step 5, and can instantly begin to work, while the truck

can proceed to node 3. Again, 2 more events are created, the event to mark the end of

the work of the team, and the event of truck 1 arriving at node 3.

In order to implement this mechanism into a solver, we need to consider how we can

represent it in terms of data which can be processed by a computer. The event list can

be described as a list of entries, which is monotonically increasing by system time and

of the following structure:

1. Point in time: When does a specific event happen?

2. Object: Which object is this event connected to?

3. Event type: Which kind of event is it? This determines how the simulation engine

reacts on the event, e.g. how the system state will be changed.

To exemplify this, the event list will look like this in step 5, with the system clock set

to 100:

Clock Event Arg 1 Arg 2

20 A T1 Node 1

50 A V1 Node 1

70 W T1

80 A V1 Node 2

100 A T1 Node 2

130 W T1

140 A V1 Node 3

As events are not needed anymore, after they are processed, we can design this list

as a queue, which contains the elements in increasing order by system time, and always
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points to the current event as the first in list. If the event is processed, then this element

is discarded and the following event will be the first in list. In computer science this

concept is called priority queue (see Cormen et al. 2001, pp. 138–142).

There are efficient implementations of priority queues in most of the common high level

languages, including C++, which perform much better compared to naive implementa-

tions with respect to inserts and removals of elements. Moreover, using this mechanism

facilitates the execution of the simulation and keeps memory usage low.

Initial state

0 20 50

V1
T1

A1

A1

Step 1

0 20 50

V1
T1

A1

A1

Step 2

0 20 50 70 80

V1
T1

A1 A2

A1 W1

Step 3

0 20 50 70 80 100

V1
T1

A1 A2

A1 W1 A2

Step 4

0 20 50 70 80 100

V1
T1

A1 A2

A1 W1 A2

Step 5

0 20 50 70 80 100 130 140

V1
T1

A1 A2

A1 W1 A2 W2

A3

t

Figure 3.5.: Execution of the event list
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3.5. Experiments with a ruin and recreate algorithm

One metaheuristic, which has proven to be successful, is Ruin and Recreate, first pro-

posed by Schrimpf et al. (2000). The reason to choose this algorithm lies in the nature of

the VRPMS: Improving the solution of one vehicle class can affect the tours of the other

synchronized class. Even a very simple 2-opt move can make the solution infeasible,

which results in the need for rearranging the tours of the synchronized class. However,

this rearrangement can again cause the need for rearranging the first class to remain a

feasible solution. This seems one of the big issues in exact operation synchronization,

as Drexl (2012b) states in his survey as well.

In the ruin and recreate algorithm however, nodes are taken out of the solution in both

classes and the tours still stay feasible. Constructing a candidate solution by reinserting

the nodes one by one is easier (however, still not straightforward, as we will see in section

3.6).

The idea of the algorithm is to start with an initial solution, to iteratively destroy

large parts of it, and to rebuild it as good as possible. A simple min-max VRP (without

any synchronization of vehicles) was implemented following algorithm 1 in order to test

the approach.

Data: pool = A set of nodes in randomly generated sequence, numDestroy =

Number of nodes to be ruined after one iteration

Result: A tour for each vehicle

while stopping criterion not met do

while pool not empty do

newNode ← next element from pool;

insert newNode at the tour and position which increases the maximum

travel cost over all tours the least;

end

for numDestroy times do

Take an arbitrary node of any tour and put it into the pool;

end

end
Algorithm 1: Ruin-and-Recreate Algorithm for min-max VRP

Figure 3.6 shows the objective value trajectory during an optimization run with 1,300

iterations. The upper trajectory visualizes a run with 20 ruined nodes. After the creation
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of an initial solution in iteration 0 the objective value escapes to a much higher level

than the initial objective value and is not able to return, even if there are phases of

improvement. It turns out, that increasing the number of ruined nodes improves the

algorithm notably. When ruining 90 nodes, some better solutions than the initial solution

are found. However, going to the extreme and deleting all nodes seems to be the best

possibility.
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Figure 3.6.: Objective value trajectory of optimizing a 100-nodes instance with an ruin-
and-recreate algorithm

The reason, why there are still different objective values when applying the algorithm,

is the fact that the nodes in the pool are shuffled in each iteration. Another sequence,

in which nodes are inserted into the solution, gives different solutions, even if the same

algorithm is applied. By storing the solution with the best objective value and comparing

it to subsequent iterations with different starting sequences, good solutions could be

achieved.

3.6. Description of a construction algorithm for the

VRPMS

Because this approach showed useful for a simple min-max VRP, the algorithm was

extended to construct both team and truck tours as described in Algorithm 2. It was

decided, not to try to find other, maybe more reasonable, insertion procedures for the
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ruin-and-recreate approach, but to accept, that it works quite well to construct all

tours from scratch instead. By removing all nodes this cannot be called an improvement

algorithm anymore, because it does not search in neighborhoods to some current solution,

but just creates a completely new one from scratch. This method can therefore be

described much better as a multistart greedy construction algorithm. It does not even

fulfill the properties of a GRASP as described e.g. in Pitsoulis and G.C. (2001), but as

the computational results show, this still proves to be sufficient.
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Data: pool = A set of nodes in randomly generated sequence

Result: A tour for each team and truck

while stopping criterion not met do

while pool not empty do

newNode ← next element from pool;

for each team position in each team tour do

temporarily insert newNode at team position;

for each truck position in each truck tour do

temporarily insert newNode at truck position;

objectiveValue ← evaluate (solution);

if (solution feasible) and (objectiveValue < tempOptimalValue) then

tempOptimalValue ← objectiveValue ;

optimal team position ← team position;

optimal truck position ← truck position;

end

remove newNode from truck position;

end

remove newNode from team position;

end

insert newNode permanently in team tour at optimal team position;

insert newNode permanently in truck tour at optimal truck position;

end

if (tempOptimalValue < optimalValue) then

optimalValue ← tempOptimalValue ;

optimal team tour ← team tour;

optimal truck tour ← optimal truck tour;

end

put back all nodes in pool and shuffle;

end
Algorithm 2: Multistart greedy construction algorithm for VRPMS

It is important to note, that the insertion of a vehicle can generate an infeasible

solution. Considering following temporary solution while constructing the tours:
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Team 1: 0-2-3-4-0

Truck 1: 1-2-4-1

Truck 2: 1-3-1

We want to insert node 5, for example in the tour of team 1, between 3 and 4.

Team 1: 0-2-3-5-4-0

Truck 1: 1-2-4-1

Truck 2: 1-3-1

This position within the tour of team 1 restricts feasible positions for the insertion in

the tours of truck 1 or 2. One position, which could not work in this case would be for

truck 1 right after leaving the depot:

Team 1: 0-2-3-5-4-0

Truck 1: 1-5-2-4-1

Truck 2: 1-3-1

In this case, team 1 goes from the depot to node 2 and would wait for a truck. However,

truck 1 leaves the depot proceeding to node 5 and would wait for a team. This leads to

a deadlock situation, where each vehicle waits for one of the other class, which makes

the solution is infeasible. By positioning node 5 after node 2 in the tour of truck 1 or

after node 3 in the tour of truck 2 gives a feasible solution, because these nodes will

have been visited by the team at the time of arriving node 5. The solver is checking

infeasibility in the evaluation procedure, and the described situation of infeasibility was

already prevented in the solver in the construction algorithm in an effort to optimize it.

However, there can be still infeasibilities when it comes to interdepencies with additional

teams. Preventing more of these situations already in the construction phase could help

making the solver more effective.

3.7. Solver description

Figure 3.7 describes the basic architecture of the solver. The solver class is responsible

for the overall coordination and solution process. In the beginning, this class creates a

new instance, based on the data given in the external data file. This instance contains
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Solver

+solve(): Solution

+produceCandidate(): Solution

Instance

+load(instanceName:File)

+evaluate(Solution)

Truck
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Node

+x: int

+y: int

+workTime: int

1

1
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1..n

Vehicle

+position: Node

1

1..n
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Eventqueue

+addEvent(Event)

+popEvent(): Event

Event

+time: int

TransferEvent

+Entity: Vehicle

WorkEvent

+Entity: Team

1

0..n

1
0..n

Solution

Figure 3.7.: UML diagram describing the solver
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the defined nodes, for which one Node-class is created each. Furthermore, the teams

and trucks are instantiated9 as given by a command-line parameter, and placed on the

team- and truck-depots.

The solver generates candidate solutions as explained in section 3.5 and passes them to

the instance for evaluation. When starting the evaluation, the instance takes control of

the discrete event simulation and generates TransferEvents and WorkEvents and places

them in the Eventlist. The process works exactly as explained in section 3.4. After

the solution is simulated, the obtained objective value or infeasibility of the solution is

passed back to the solver.

3.8. Lower bounds

Heuristics do usually not produce optimal results, and moreover, the gap to optimality is

unknown. As shown above, a plain approach with a MIP implementation allows to find

optimal solutions only for very small instances. On the other hand, in order to evaluate

the quality of a heuristic procedure, this information would be essential, particularly for

bigger instances. In order to assess the solution quality, it is therefore advisable to reflect

about alternatives for finding a value with less computational effort, which is guaranteed

to be less or equal, but as close as possible to the optimal solution.

As a principle, an objective value will always be better or equal, if constraints are

removed10. Thus, it would be interesting to decouple the two vehicle classes and see,

what solutions can be found without the synchronization constraint.

If z?T represents the minimum value for the team min-max VRP, and z?A the analogous

value for the trucks, we could define a lower bound of the synchronized problem as

z = max(z?T , z
?
A)

Table B.5 in the appendix shows the optimal objective values for both unsynchronized

cases of the test instances, including run-times, and the solutions to the synchronized

problems. Indeed, the run-times for solving the unsynchronized MIP models are gener-

ally less than solving the synchronized model. However, the gain is not big, and what

is even more unfavorable, the sum of the run-times for both unsynchronized problems

9This is a term of object oriented programming and describes the creation of an object which is
described by its class definition.

10In our minimization problem this means it goes down.
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sometimes exceeds the run-time of the original problem. Still, this is already progress

for two main reasons.

First, to determine if a heuristic solution is optimal, it is not obligatory to solve both

unsynchronized models. If the heuristic solution equals the solution of the unsychronized

integer program which is solved first, then this will be the indisputable optimum solution

of the synchronized problem. However, if this is not the case, the second problem has

to be solved as well, and the higher value will be the lower bound.

Second, as already mentioned in section 2.4, some work has been done on solving

min-max problems to optimality. This algorithms could be adapted to produce good

lower bounds within a practicable period of time.
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4. Discussion of results and

computational experiments

In this chapter we will discuss the proposed heuristic algorithm and amongst others try

to answer the questions stated by Barr et al. (1995):

1. What is the quality of the best solution found?

2. How long does it take to determine the best solution?

3. How quickly does the algorithm find good solutions?

4. How robust is the method?

5. How “far” is the solution from those more easily found?

6. What is the trade-off between feasibility and solution quality?

On one hand, the properties of the algorithm will be evaluated by theoretical analysis,

on the other hand the solver will be considered as black box, on which computational

experiments are conducted in an empirical analysis. Hall and Posner (2001) noted,

that there is wide concern about many computational experiments being inadequate.

Amongst other errors, test data may be biased, or comparison of algorithms lack statis-

tical significance. The design and analysis of the experiments was done with guidelines

of Greenberg (1990), Barr et al. (1995), Coffin and Saltzman (2000), and Hall and Posner

(2001) in mind. The given suggestions were followed as long as they showed reasonable,

practicable and realizable.
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4.1. Computational environment

The computational tests were conducted in the following environment:

Model: Acer Aspire TimelineX 5820TG

Processor: Intel(R) Core(TM) i5 CPU M 480 @ 2.67GHz

Memory: 8 GB RAM

Operating System: Windows 7 (64 Bit)

4.2. Evaluation of the proposed approach

Cordeau et al. (2002) assessed VRP heuristics with respect to 4 different criteria. This

section evaluates the proposed heuristic approach in respect to these attributes.

Accuracy

This property focuses on several aspects of accuracy. First, it describes the gap of an

heuristic solution from an optimal value. The presented heuristic solver was mostly able

to find the optimal value, where it was possible to determine an exact solution within

reasonable time with the MIP model. Only in 2 cases the optimal value could not be

found by the heuristic1. However, if the optimal value is not known, it is not possible

to determine, if the obtained heuristic value is optimal.

One other aspect regarding the accuracy of the heuristic is consistency. This means,

that an accurate heuristic should perform well most of the time. There should be no

sporadic situations, where it performs poorly. The presented algorithm worked well for

all test-instances. However, it must be again pointed out, that in some very rare cases,

which are also dependent on number of teams and trucks, optimality cannot be reached,

but still good solutions were obtained.

The last aspect is the fact, that users prefer algorithms, that give quite good solution at

an early stage. Also in this respect the presented algorithm works quite well. As shown

in the exemplary solver run in Figure 4.1, the algorithm improves the best solution

quickly in the beginning, giving a solution after 9 seconds or 68 iterations, which is only

6.15% away from the best known solution and was found after 6076 seconds or 45.000

iterations. One interesting property, which is striking here, is the fact, that the minimum

objective values over time can be closely approximated by a logarithmic regression. This

follows the ideas of Oppen and Woodruff (2009) and gives interesting opportunities of

predicting search behavior.

1These two cases were found when performing tests for Table B.2 in the appendix.
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Figure 4.1.: Minimum objective value while optimizing 40-nodes in instance 000, 3 teams
and 2 trucks

To provide a numerical indication how fast this algorithm can find good solutions, the

quality-effort relationship r0.05 was determined. This measure follows a suggestion of

Barr et al. (1995) and is basically an indicator, how fast a good solution can be found.

If we define t0.05 as the time to find a solution which is within 5% of the best known

value, and t̂ the time to find the best known solution, then this indicator is defined as

r0.05 =
t0.05

t̂

The results can be found in appendix B.2. The very small values of r0.05 indicate a

fast convergence of the solution value.

Speed

The importance of the speed of the solver is very much dependent on its application and

the planning level. While there are applications, where an instant answer is required

because the customer is waiting on the phone-line, tactical planning allows considerably

more calculation time. Describing the speed of an algorithm can be quite difficult,

especially if it should be compared to other algorithms in scientific literature. Run-

times depend considerably on the used hardware. Even if another algorithm is run on

the same machine, it still depends on the quality of the implementation and the degree

of optimization in the program code.
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In order to measure the performance of the heuristic solver, the MIP implementation

was taken as a reference. Figure 4.2 shows the run-time of both MIP solver and heuristic

solver in comparison. It is worth to mention, that the y-axis is logarithmic.

In order to determine run-time behavior, the instance was solved in multiple runs for

the first 6 to 11 nodes. The MIP solver was used to obtain the optimal value, and this

value used as a stop-criterion for the heuristic solver in the second step. Both run-times

were recorded and visualized in the chart. The test was done with other instances as

well and showed the same behavior. The results of all instances are shown in Table B.3

in the appendix.
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Figure 4.2.: Comparison of MIP and metaheuristic solver. Run-times for instance 005,
with 3 teams and 2 trucks, dependent on the number of projects.

Especially two things are noticeable. First, the heuristic solver is much faster than the

MIP implementation. But what is even more important, is the fact, that the heuristic

solver shows a much flatter slope with increasing number of projects. This provides

evidence, that the solver will be able to handle also bigger instances with a good solution

quality.
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Simplicity

Even if some heuristics show superior performance to other ones, the effort of imple-

mentation needs to be considered as well. The savings heuristic of Clarke and Wright

(see Clarke and Wright 1964), for example, is easy to understand and to implement, and

many times serves its purpose. It is therefore still taught at universities and popular

among practicioners.

Furthermore, particularly in the field of metaheuristics, one issue regarding simplicity

is the use of parameters. The number of parameters of some metaheuristics are legion.

Xu and Kelly (1996), for example, use 32 different parameters in their network flow-

based tabu search heuristic. Articles like Coy et al. (2000) just deal with how to find

effective settings of parameters by statistical design of experiments and gradient descent,

and there are even metaheuristics like the one of Hepdogan et al. (2005), which optimize

the parameter settings of metaheuristics. It is discussible, to what extent a metaheuristic

which contains a multitude of parameters, that are tailored and tuned to perform well

on the test instances, can be ranked superior to competitors.

The proposed algorithm is extremely easy to understand and requires little implemen-

tation effort. The most complex part is actually the evaluation routine. Moreover, this

solver does not need any parameters which need to be set and tuned.

Flexibility

Extending a heuristic to solve a VRP with additional constraints can be a critical issue.

Especially if real world problems need to be solved, this can be a deal-breaker. Coming

back to the aforementioned Clark and Wright heuristic, it is to note that for this very

fast and simple algorithm it is difficult to include additional constraints. The difficulty

lies not only in how to include this constraint, but also in the fact, that solution quality

can deteriorate sharply.

For the presented algorithm additional constraints can be added easily, and the be-

havior of the system can be changed without effort, as the concept of discrete event

simulation is very flexible. However, it is to suspect that this will strongly impair the

solution quality, as in its character it is a greedy algorithm. There are no mechanisms to

correct “youthful follies” in the construction process, that is, earlier insertions will stay

at their place. Yet the algorithm can be improved by adding such a mechanism, which

is subject to further research.
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4.3. Processor utilization
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Figure 4.3.: Processor utilization while running the solvers.

Figure 4.3 shows the processor utilization on a quad-core CPU, running the MIP-

solver the first 17 seconds and immediately after that running the Metaheuristic solver

from second 17 to second 36. This diagram is not intended to provide any information

about the run-times of these two solvers, but it points out something, that should be

taken into consideration when comparing run-times: It is important to set the stated

run-times in relation to processor utilization. Modern processors have multiple cores,

that can run in parallel.

However, software needs to be adapted to fully utilize the possibilities of paralleliza-

tion in order to speed-up run-times. While the MIP solver utilizes all cores, the heuristic

solver only uses one. The program is not always run on the same core, which results in

times of utilization on all cores, but it can be clearly seen, that the total processor uti-

lization is at around 25%. The presented metaheuristic solver can easily be parallelized,

as there would be no need of coordinating the parallel threads among each other, which

would require more advanced mechanisms as researched in Jin (2013). One can assume

that this will lead to a significant speed gain, however this topic is not within the scope
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of the thesis and is subject to further research, where Crainic (2008) or Crainic and

Toulouse (2010) could be a good starting point.

The stated run-times of the MIP solver are under assumption of using 4 cores, the

heuristic solver uses just 1 core. This inequity in terms of prerequisites always should

always be kept in mind when comparing the run-times.

4.4. Code profiling

In order to find potentials for improvement, the solver code can be examined by profiler

software, as it was done in this case with the open source profiler “Very Sleepy”2. This

software is able to evaluate, how much time is spent in various functions. Figure 4.4

shows the different function calls, and how much time is spent. The “Exclusive” column

shows the time spent barely in the named function, without considering calls of other

functions. The “Inclusive” column considers the time of other function calls as well.

The profiling shows, that considerable time, namely 87.27% of the time is spent with

evaluating the solutions. Within the 96 seconds of profiling the evaluation was called

3.700.000 times. This is already the result of some tuning which was conducted within

the evaluation function. However, it would be still desirable to improve it.

Figure 4.4.: Profiling the code reveals potentials for improvement

Two approaches of improving the existing algorithm could be identified:

2see http://www.codersnotes.com/sleepy (accessed 23.04.2013)
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• Improve the speed of the evaluation: Any improvement that can be achieved within

the evaluation algorithm would have a considerable impact on the overall perfor-

mance: A reduction of 10% just in the evaluation function would lead to a theo-

retical reduction of the solver runtime by 10% x 87.27% = 8.73%. An interesting

approach could be to store the system state at some point for reuse. When insert-

ing a node into a solution, all the previous part would still be feasible and there is

no need to simulate the model again up to this point.

• Limit the need of evaluating the solution: The algorithm uses the evaluation func-

tion not only to determine the objective value, but also to check feasibility. The

detection of infeasibility may be achieved by approaches that are cheaper in terms

of computational time. Furthermore, if it would be possible to create only feasible

solutions, then a feasibility check would not be needed. However, in the concrete

case only 170.000 of the 3.700.000 were infeasible. If it would be possible to elimi-

nate these infeasibilities, this would mean a theoretical performance gain of around

4% for the solver.

Another possibility to decrease the number of evaluations needed would be to de-

tect earlier in the course of constructing the tours, that the solution so far will not

lead to an improved solution. The present version inserts nodes from the pool one

by one until the pool is empty and the solution is complete. The insertion of one

node into a solution with n nodes leads to nearly (n+ 1)2 evaluations3. Especially

if insertions into nearly complete solutions could be avoided, one can assume that

this will lead to a performance gain.

4.5. Possible applications

With the heuristic solver as a tool to find good solutions for generated instances, it is

interesting to perform some computational experiments to analyze the behavior of so-

lutions for synchronized problems and to reflect on different applications of the solver.

It should again be pointed out very clearly, that without capacity constraints the al-

gorithm will not be ready for the real world problem which served as a starting point.

However, in this thesis the focus is on the synchronization aspect, and this section deals

with peculiarities and consequences of working with a synchronized system.

3it is less than (n + 1)2 because it was possible to avoid some clearly infeasible solutions
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Figure 4.5.: Instance 041 with 5 teams and 2 trucks
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The most obvious application is the operative tour-planning for teams and trucks.

Figure 4.5 shows an example of planned tours. It is striking that in this solution the

team tours do not follow the cloverleaf-pattern which is typical for a VRP. In fact, the

tours are placed rather in parallel, in a way, that it is easy for the trucks to be at another

node quickly after having supplied one node. On the other hand, the truck tours try

to follow the main bundle of these parallel team tours in order to minimize the tour

distance.

Even without capacity constraints for the trucks these solutions could be practicable.

When following the solution for the team tours as suggested, the projects are scheduled

to be close in respect to time and space, therefore trucks can easily supply the projects

in one area without moving too long distances between them.

Talking about synchronization, we have a mutual dependency of resources. Even if

the number of teams is increased, there may be not enough trucks, and they will spend

a disproportional part of their working time waiting to be supplied with asphalt. On

the other hand, too many trucks will be of no use for the same reasons. Therefore, it

is reasonable to plan the fleet sizes of these two different classes, obtaining a balance

between them. For this purpose, the solver could serve as a support decision tool for

fleet sizing.

Figure 4.6 shows the minimum objective value as a function of the number of teams

and shows to alternatives, one with 1 truck, the other with 2 trucks. The objective value

was determined by running the solver for 1 minute for each combination of teams and

trucks.

It is quite obvious, that a higher number of teams improves the objective value consid-

erably, but the improvement flattens out with an increasing number of teams. However,

using 2 trucks instead of 1 has no big impact. The same calculations were done on

another instance, which is shown in Figure 4.7.

In this case increasing the number of teams has very little effect when using just 1

truck. However, adding 1 truck more causes a significant improvement by itself, and

increasing the number of teams gives again a better objective value.

In general the two instances were generated with the same parameters, however the

vital difference is the project sizes. In the first case the sizes are much wider spread

between 5 and 3000 time units, while the second instance contains only small projects

between 5 and 200 time units. This indicates, that the structure of projects to be planned

influences the requirements of an ideal fleet composition.
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Figure 4.6.: Instance 025 with 18 projects between 5 and 3000 time units
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Figure 4.7.: Instance 000 with 18 projects between 5 and 500 time units

64



5. Extending the model

Until now the problem focused mainly on the synchronization part of the problem, which

is also the main purpose of the master thesis. Time is very limited for a master thesis,

whereas possibilities are manifold. However, the author wants to unlock some doors on

the way to real world problems, particularly the road construction problem, which was

the initial motivation and inspiration. In this chapter we will look at the main extensions

of the basic problem, that will enable us to have a much more realistic model, which

already could be considered useful for supporting real-world applications.

5.1. An extended MIP model

The model so far has four serious drawbacks, that makes this version prohibitive for use

in the presented problem:

1. The asphalt trucks are assumed to have unlimited capacity. Thus the tours can

get too long, and the truck can get empty when fulfilling its tour.

2. If there would be capacity restrictions, we would need a possibility to reload the

trucks with asphalt at specialized nodes within its tour in order to fulfill its deliv-

eries.

3. In this model it is assumed that the project gets only one delivery of asphalt and

it lasts less than one day.

4. The planning is only done for one day. No multiple-days planning-horizon is im-

plemented.

Regarding the first point, we have to add capacity constraints. There will still be

assumptions, but they are much more realistic: We will assume, that each project will

get the same amount of asphalt per delivery. This is quite realistic, inasmuch as the

asphalt supply is usually loaded onto an asphalt-spreading machine, which typically has

65



a capacity of 10 tons. We define the amount for one filling of this asphalt-spreading

machine as one load unit. By assuming this, we can easily see, that the capacity of the

truck equals at the same time the number of projects, which can be supplied at most by

this vehicle. Thus, if the trucks have the capacity of three load units each, at most three

projects can be supplied by them. We will also assume, that the fleet is homogeneous,

having the same capacity restriction of C load units each.

Having this capacity restriction in mind, the process of the model must be extended,

such that a truck would be able to load asphalt at loading depots. This kind of nodes

are not obligatory to visit, however, by visiting one of them the truck will be able to

continue its tour, even if it has reached the maximum projects to be served before.

Furthermore, the truck needs to visit one of these depots after leaving the truck depot

in order to begin its supply tour. A typical tour of such an asphalt truck with capacity

C = 2 would look like this: [Truck depot]–[Loading depot]–[Project 1]–[Project 2]–

[Loading depot]–[Project 3]–[Project 4]–[Truck depot].

These loading depots usually can be visited multiple times in reality. In the model this

will be approached by duplicating the loading depot, similar to what was proposed by

Rubasheuskaya (2012). This approach gives not only the opportunity to base it on the

original formulation, but also adds the flexibility to place alternatively located loading

depots, such that the nearest location can be chosen in the optimization run.

To tackle issue number three, the project nodes can be duplicated for each needed

delivery. Thus, a project that needs 60 time units, but delivery is needed every 20

time units, could be splitted into 3 projects with 20 time units each. Typically these

splitted projects would be in a row, but this is not obligatory. An adjacency constraint

as proposed by Rubasheuskaya (2012), which allows these projects only to be executed in

a row could be considered, however it would exclude the possibility to work on projects

with more than one team and other cases, where the optimal solution would propose to

split one big project into several units of construction. Other constraints to represent

real-world conditions as, e.g., set-up times when going to another project location, would

in this case perhaps be more reasonable, but are not within the scope of this thesis.

Finally, in order to plan for several days, the dimension of the decision variables need

to be extended and constraints need to be added to ensure integrity. Not to forget,

teams and trucks need to be scheduled for the same day, this means if a team visits a

project node, a truck needs to do the same and vice versa.
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Finally, we have the following MIP model:

Sets

{0} team depot

{1} truck depot

N set of projects

T set of teams

L set of loading depots

D set of time periods within a planning horizon (number of working days)

Parameters

U Maximum working day duration

M Number of teams

P Number of trucks

C Capacity of trucks in load units

Sij traveling time between locations i and j

Zi Duration of job i

Variables

βd
ij =

{
1 if arc between location i and j is traversed on day d

0 otherwise

λdij =

{
1 if a team fulfills job j after job i on day d

0 otherwise

edi number of arcs to node i from last depot on day d

fd biggest number of arcs from last depot on day d

tdi arrival time from location i at day d

ud latest return time of all trucks on day d. The return time is defined as the time,

when the truck arrives at node 1.

xdi starting time of job i fulfillment at day d

yd latest return time of all teams on day d. The return time is defined as the time,

when the team arrives at node 0.

w latest time

minw (5.1)

subject to

w ≥ ud ∀d ∈ D (5.2)
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w ≥ yd ∀d ∈ D (5.3)∑
d∈D

∑
j∈N :i 6=j

λdij = 1 ∀i ∈ N (5.4)∑
i∈{0}∪N

λdij =
∑

k∈{0}∪N

λdjk ∀j ∈ {0} ∪ N , d ∈ D (5.5)

∑
j∈N ,d∈D

λd0j ≤M ∀d ∈ D (5.6)

U(1− λdij) + xdj ≥ xdi + Zi + Sij ∀i ∈ {0} ∪ N , j ∈ N , d ∈ D (5.7)

U(1− λdi0) + yd ≥ xdi + Zi + Si0 ∀i ∈ N , d ∈ D (5.8)∑
d∈D

∑
j∈N∪L:i 6=j

βd
ij = 1 ∀i ∈ N , d ∈ D (5.9)∑

j∈{1}∪N∪L

βd
ij =

∑
k∈{1}∪N∪L

βd
jk ∀j ∈ {1} ∪ N ∪ L, d ∈ D (5.10)

∑
j∈N∪L

βd
1j ≤ P ∀d ∈ D (5.11)

U(1− βd
ij) + tdj ≥ tdi + Sij ∀i ∈ {1} ∪ N ∪ L, j ∈ N ∪ L, d ∈ D (5.12)

U(1− βd
i1) + ud ≥ tdi + Si0 ∀i ∈ N ∪ L, d ∈ D (5.13)

tdi = xdi ∀i ∈ N , d ∈ D (5.14)∑
j∈{0}∪N

λdij =
∑

j∈{1}∪N∪L

βd
ij ∀i ∈ N , d ∈ D (5.15)

∑
d∈D

∑
j∈{1}∪N∪L:i 6=j

βd
ij ≤ 1 ∀i ∈ L (5.16)

C(1− βd
ij) + edj ≥ edi + 1 ∀i ∈ {1} ∪ N ∪ L, j ∈ {1} ∪ N , d ∈ D (5.17)

C(1− βd
i1) + fd ≥ edi + 1 ∀i ∈ N ∪ L, j ∈ {1} ∪ L, d ∈ D (5.18)

fd ≤ C + 1 ∀d ∈ D (5.19)∑
j∈L

βd
1j = P ∀d ∈ D (5.20)

This model is an extension of the basic model and contains the following additions:

First, most of the variables have been extended by the dimension of the planning horizon,

i.e. an index d was added. This index describes, on which day within the planning

horizon this variable is taking the value. All existing constraints have been changed

to incorporate this new dimension. It was also necessary, to add the new family of
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constraints (5.15), which causes, that a project is visited by both the team and the

truck on the same day.

The constraints (5.16) allow maximum one truck to visit a loading depot within the

planning horizon. However, it is not obligatory to visit all loading depots. Even if this

approach allows one to include more loading depots than needed into the instance data,

it is advisable to keep the number of loading depots as small as possible in order to keep

the problem small. This applies especially when duplicating a depot to imitate multiple

supplies from the same location. However, this approach can be also used to select the

best locations, which makes it necessary to include all options.

Constraints (5.17) and (5.18) determine the number of arcs from the last loading

depot. In principle they work similar to the constraints (5.7 and 5.8), (5.12 and 5.13)

for determining the time1. However they are formulated in a way, such that the variable

which determines the number of arcs can take on the value zero after a loading depot

without violating the constraints. The constraints (5.19) restrict the maximum distance

between two loading depots or a loading depot and the truck depot to the truck capacity

plus one. This is because we do not count the nodes between the depots, but the

connections. If, for example, 2 nodes are placed between the depots, 3 arcs connect

them.

Finally, constraints (5.20) state, that the sum of all outgoing connections from the

asphalt depot to a loading depot should be the number of trucks used. Moreover,

together with constraint (5.11) this means, that it is not allowed to go from the truck

depot to other nodes but loading depots.
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Figure 5.1.: Solution for instance 040, 3 teams and 2 trucks, planning horizon 1 day.

1See the constraints (2.7) and (2.8) in the basic model in section 2.2 for an explanation of this
mechanism.
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Figure 5.1 shows a solution for instance 040. We route 3 teams and 2 trucks, and

assume the capacity C of the trucks to be 2 load units. In table form the tours of the

teams and trucks are as follows:

Team 1 0-101-103-0

Team 2 0-102-106-107-0

Team 3 0-103-103-0

Truck 1 1-2-101-103-4-103-103-1

Truck 2 1-5-102-3-106-107-1

Still, node 0 is the team depot, and node 1 is the truck depot. Additionally, there are

now depots 2 to 6, which are depots for loading asphalt. The projects are numbered from

101 upward to distinguish them better from the infrastructural facilities. One important

fact is also node 103. This is a node, which is duplicated, as it is a bigger project and

needs 3 times longer than the others ones. This means, in the instance data node 104

and 105 are placed on the same location as node 103.

Team 3 is busy exclusively with project 103. However, after team 1 is finished with

project 101, it will also join to help team 3 with finishing the big project. Meanwhile,

team 2 works on the rest of the projects. Truck 1 goes first to the asphalt depot 2 and

continues further to 101. Then it can supply also project 103 the first time, before it

gets empty and needs to go to asphalt depot 4 to fill up again. Afterwards, the truck

can go back to project 103 to supply it again. It will just stay there and wait until

the second load is demanded for this project. After this, it will go back again to the

truck depot. Truck 2 will supply the other projects meanwhile. It is to mind, that it

seems more advantageous to only load supply for project 102 at asphalt depot 5, and

to take 2 loads on depot 3 for supplying project 106 and 107. Depot 6 is not taken into

consideration.

Figure 5.2 shows the - admittedly rather trivial - solution for the other extension, the

planning horizon, again in tabular form as well:
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Figure 5.2.: Solution for instance 040 (extended version), 3 teams and 2 trucks, planning
horizon 2 days.
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Day 1 Day 2

Team 1 0-103-0 0-101-0

Team 2 0-103-0 0-102-0

Team 3 0-106-107-0 0-103-0

Truck 1 1-4-106-107-1 1-2-101-103-1

Truck 2 1-5-103-103-1 1-3-102-1

Project 103 is spread over 2 days, which seems reasonable. This solution is a proof-

of-concept, however, run-times make it impossible to work on bigger problem sizes.

5.2. Run-times of the MIP solver with extended model

Even if the basic model still showed reasonable run-times up to 10 projects, the ex-

tended model proves to be prohibitive for instances of this size. Besides the additional

constraints, decision variables for the loading depots need to be added, which increases

the problem size considerably.

Figure 5.3 shows a comparison of the 2 models on basically the same data (however,

the extended instance uses additional loading depots). It is quite visible, that the run-

time behavior of the extended model is by far worse than the basic model.

What is very striking, is the considerable sensitivity to the number of teams and trucks

compared to the basic model. While one instance with 8 nodes, 3 teams, 2 trucks, and

a planning horizon of 2 days still could be solved in 7 minutes, the same instance with

2 teams and 1 truck needed more than 6 hours.

5.3. Extending the heuristic solver

Even if a ready-made implementation of the extensions in the heuristic solver is not in

the scope of this thesis, some propositions are given, how this implementation could look

like.

The extension of the discrete event simulator for evaluation of the solution is fairly

easy and straight-forward. Particular attention should be paid to the fact, that the

simulation has to consider load, and should indicate infeasibility in case the truck is

empty when trying to supply a project.

The main challenge in extending the heuristic solver is beyond doubt the adaption

of the algorithm to construct a candidate solution. While it was already difficult to
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Figure 5.3.: Comparison of basic and extended MIP model. Run-times for instance 040,
with 3 teams, 2 trucks, planning horizon 1 day, dependent on the number
of projects.
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maintain feasibility for the basic model, the new process of loading together with the

capacity constraint makes it not easy to construct a solution, which is still feasible.

One approach would be to construct the synchronized tours first without considering

capacity, and then place the visits to the loading depots within the tour until the solution

gets feasible. Having fixed the sequence of projects which should be visited by the teams

and trucks, the placement of visits to the loading depots cannot make the tours infeasible,

they can only turn into feasible solutions by respecting the capacity restrictions. It is

suspected, that good solutions could be achieved by inserting them in a reasonable

manner.

Finally, the solver should add the possibility of distributing the projects over several

days within a defined planning horizon in order to achieve an optimal objective value.

This is not so difficult in respect to the feasibility of the solution, because the only

condition should be, that projects should be scheduled for teams and trucks on the same

day. However, this extension increases the search space considerably, which will make it

even more difficult to find not only a feasible, but also good solution.

It is quite possible and even to suspect, that a pure greedy construction algorithm,

as it was used for the basic problem, will not work anymore for this quite rich problem.

A guided search could make sense, and to develop the destroy-and-recreate approach

further and to refine it would be a reasonable try.
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6. Conclusions and further research

In this thesis a way to approach the VRPMS with min-max objective was presented.

While there has been sparse research done about both main features, VRP with min-

max, and VRPMS, no work is known to the author, which connects these two type of

problems.

It turned out, that the main specific of vehicle routing problems with multiple syn-

chronization constraints is the interdepency between vehicles, which results in difficulties

of keeping feasibility in any heuristic or metaheuristic solution method on the one hand,

and in evaluating candidate solutions on the other hand.

A multistart constructive greedy heuristic was proposed. A series of computational

experiments showed superior performance over the MIP implementation for larger in-

stances from 10 nodes on. For most of the test-instances which could be solved to

optimality in a MIP model, the heuristic solver found the optimal value as well in con-

siderable less time, and it was possible to obtain solutions for larger instances as well,

however, the quality of the solution could not be evaluated, as there are no competing

approaches. An approach for finding good lower bounds was presented, but the imple-

mentation was not in the scope of the thesis due to time restrictions. While the search

part of the heuristic is very simple and performs well on this problem, is to suspect, that

performance will deteriorate with increasing problem complexity.

However, the core innovative feature of the solver is the evaluation of candidate solu-

tions, which utilizes discrete event simulation. This turned out to be beneficial because

of its ease of implementation and flexibility.

There is great potential to develop the proposed ideas further in various directions.

• As already mentioned, the original problem was mostly reduced to the aspect of

the synchronization of different classes of vehicles. To make it usable for real

world problems, the existing model needs to be extended by adding constraints

regarding vehicle capacity, precedence, multiple use of vehicles and many more.

For this, the greedy algorithm needs to be improved in order to correct earlier

misleading insertions.
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• At the moment the model plans just for one day. The model could be extended to

assign projects to a day within a defined planning horizon.

• The solver can be extended to run multi-threaded in order to utilize multiple cores.

This is believed to improve run-time considerably, as there is no interdependence

among the threads and no synchronization is needed.

• Construction algorithms can be improved to avoid invalid candidate solution.

• The search can be improved by scanning the solution space in a smarter way.

• Evaluation should be invoked less to improve run-times.

• An interesting direction could also be to add stochasticity to the model. Particu-

larly interesting would be, how stochastic driving times between the nodes would

affect solutions, as synchronization among vehicles is required.

• There are only few discrete event simulation libraries available, and none of them

proved to be helpful for the presented purpose. The implemented discrete event

simulator could be generalized and provided as a library, which would be preferably

Open Source Software for use in the academic environment.

• The algorithm performed very well even in the min-max VRP without any syn-

chronization. It would be very interesting to compare the performance of this

algorithm to other approaches.

• A combined approach of heuristic and MIP solver as presented in França et al.

(1995) would be an interesting possibility to solve this problem to optimality. The

heuristic solver can give upper bounds which can be used as constraints to limit

the search space for solving a distance constrained VRPMS.
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A. Description of test data

The test data was generated by a script. Algorithm 3 shows the pseudocode of the

generator.

Input: numNodes = Number of nodes to be created for the instance, xmax =

maximum x coordinate, ymax = maximum y coordinate, pmin and pmax =

bounds for p (project size), dmin = minimum euclidean distance from any

other node

Result: A test instance

for (x ← 0; x < numNodes; x++) do

repeat

nodeValid ← TRUE;

x ← Uniform random between 0 and xmax;

y ← Uniform random between 0 and ymax;

if x ≤ 1 then
p ← Uniform random between pmin and pmax

else
p ← 0

end

newNode ← new Node(position at cooridnates x and y with project size p);

for each insNode in instance do

d = Euclidean distance from insNode to newNode;

if d < dmin then
nodeValid ← FALSE

end

end

until nodeValid ;

Add newNode to instance;

end
Algorithm 3: Algorithm for generating test data
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The test instances are named to reflect the parameters:

[Instance number] [numNodes] [xmax]x[ymax] [pmin]-[pmax] [dmin]

Following parameters were used to create the instances:

Instance number from to xmax ymax pmin pmax dmin

000 009 1000 500 5 500 40

010 019 1000 500 500 3000 40

020 029 1000 500 5 3000 40

030 039 1000 500 0 0 40

040 Adapted for extended model

041 Adapted for visualization purposes

Instance 040 and 041 are special purpose instances and not included in the computational

tests. The whole package of test instances can be requested by e-mail: m.bracher@gmail.com
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B. Output of computational

experiments

B.1. Speed comparison MIP solver / heuristic solver

Run with 10 nodes (8+2), 3 teams and 2 vehicles. In each group g the instance, where

the metaheuristic performed worst is marked with W, the one which performed average

is marked with M, and finally the best performing instance is marked with B.

g Group number based on project sizes

t? Time do find optimal value

tHmin Minimum time in seconds from 11 runs with different random seeds to obtain

optimum value with heuristic solver

tHmax Minimum time in seconds from 11 runs with different random seeds to obtain

optimum value with heuristic solver

t̂H Median time in seconds from 11 runs with different random seeds to obtain

optimum value with heuristic solver

s Measure for speed improvement t?/t̂H

Table B.1.: Speed comparison

Instance name g z? t? tHmin tHmax t̂H s

000 100 1000x500 5-500 40 1 1793 65.433 0.04 0.326 0.125 523

001 100 1000x500 5-500 40 1 2558 22.033 0.013 0.092 0.034 648

002 100 1000x500 5-500 40 1 2748 49.034 0.021 0.565 0.215 228

003 100 1000x500 5-500 40 1 1912 70.177 0.008 0.451 0.106 662

004 100 1000x500 5-500 40 1 1861 38.459 0.03 1.435 0.177 217

005 100 1000x500 5-500 40W 1 2644 27.623 0.062 0.314 0.195 142

006 100 1000x500 5-500 40B 1 2324 115.765 0.024 0.109 0.047 2463
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Table B.1 – Continued from previous page

Instance name g z? t? tHmin tHmax t̂ s

007 100 1000x500 5-500 40 1 1897 73.138 0.034 1.32 0.388 189

008 100 1000x500 5-500 40 1 2148 58.173 0.031 0.097 0.049 1187

009 100 1000x500 5-500 40M 1 1830 34.741 0.05 1.166 0.119 292

010 100 1000x500 500-3000 40 2 6716 161.92 0.011 0.134 0.04 4048

011 100 1000x500 500-3000 40W 2 5450 79.085 0.182 2.065 0.635 125

012 100 1000x500 500-3000 40M 2 5867 148.985 0.095 2.119 0.368 405

013 100 1000x500 500-3000 40 2 6483 119.105 0.014 0.368 0.048 2481

014 100 1000x500 500-3000 40 2 5725 44.883 0.022 0.818 0.155 290

015 100 1000x500 500-3000 40 2 7507 36.581 0.029 0.502 0.118 310

016 100 1000x500 500-3000 40 2 6906 334.582 0.012 0.567 0.143 2340

017 100 1000x500 500-3000 40 2 6949 178.968 0.025 0.316 0.102 1755

018 100 1000x500 500-3000 40B 2 7088 3411.75 0.034 1.91 0.624 5468

019 100 1000x500 500-3000 40 2 6633 33.655 0.024 0.593 0.209 161

020 100 1000x500 5-3000 40 3 5571 32.285 0.018 0.975 0.219 147

021 100 1000x500 5-3000 40 3 5759 33.089 0.014 0.93 0.084 394

022 100 1000x500 5-3000 40 3 5351 32.982 0.061 0.299 0.14 236

023 100 1000x500 5-3000 40 3 6434 33.932 0.101 0.759 0.178 191

024 100 1000x500 5-3000 40 3 5698 115.226 0.04 0.498 0.183 630

025 100 1000x500 5-3000 40 3 5767 35.083 0.044 3.856 0.399 88

026 100 1000x500 5-3000 40M 3 5903 42.065 0.022 0.904 0.11 382

027 100 1000x500 5-3000 40B 3 4701 154.963 0.014 0.866 0.125 1240

028 100 1000x500 5-3000 40W 3 6312 41.138 0.518 20.269 7.805 5

029 100 1000x500 5-3000 40 3 6198 137.73 0.049 0.601 0.328 420

030 100 1000x500 0-0 40M 4 1362 143.196 0.01 0.041 0.02 7160

031 100 1000x500 0-0 40 4 1192 236.101 0.01 0.054 0.018 13117

032 100 1000x500 0-0 40 4 1553 326.247 0.019 0.061 0.038 8585

033 100 1000x500 0-0 40 4 1455 122.785 0.017 0.428 0.077 1595

034 100 1000x500 0-0 40W 4 1349 40.475 0.016 0.086 0.035 1156

035 100 1000x500 0-0 40 4 1822 90.98 0.009 0.032 0.019 4788

036 100 1000x500 0-0 40 4 1893 157.843 0.009 0.053 0.026 6071

037 100 1000x500 0-0 40 4 1684 161.002 0.01 0.035 0.016 10063

038 100 1000x500 0-0 40B 4 1936 404.262 0.011 0.052 0.027 14973
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Table B.1 – Continued from previous page

Instance name g z? t? tHmin tHmax t̂ s

039 100 1000x500 0-0 40 4 1528 218.5 0.011 0.036 0.017 12853

All instances marked with W, M or B were picked in order to conduct further tests

by varying teams and trucks, one at each time. In 2 out of 589 cases the instance was

not solved to optimality (marked in the table by X ):

• 011 100 1000x500 500-3000 40 with 9 nodes, 4 teams and 1 truck, objective value

4377 instead of 4354

• 022 100 1000x500 5-3000 40 with 9 nodes, 4 teams and 1 truck, objective value

3920 instead of 3824

The value in the cells of table B.2 denotes the measure for the speed improvement

s = t?/t̂H . This is the time for a run with the MIP solver divided by the median time

of 11 runs with different random seeds with the heuristic solver.

Table B.2.: Speed comparison dependent on number of teams and trucks

Teams Trucks →
Instance name ↓ 1 2 3 4 5 6 7

005 100 1000x500 5-500 40 1 694 2248 695 904 995 700 1275

2 126 155 116 207 419 1529 120

3 467 15 201 51 40 29 58

4 146 54 154 891 449 431 849

5 360 39 614 817 9128 4490 504

6 398 107 1259 332 739 499 403

7 244 132 529 805 641 282 4856

006 100 1000x500 5-500 40 1 1326 555 538 446 398 619 1177

2 4381 535 509 1977 901 853 737

3 3195 242 109 200 139 280 277

4 4489 443 396 968 413 792 558
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Table B.2 – Continued from previous page

Teams Trucks →
Instance name ↓ 1 2 3 4 5 6 7

5 8211 493 135 732 248 171 635

6 2559 3071 337 168 264 257 250

7 3218 558 546 762 889 872 1234

009 100 1000x500 5-500 40 1 1245 781 1314 864 822 759 925

2 1111 194 132 134 97 82 153

3 345 490 109 84 89 92 60

4 467 12 141 276 159 128 683

5 1247 7 171 74 116 118 72

6 764 119 85 801 423 311 505

7 2062 952 330 253 283 297 358

011 100 1000x500 500-3000 40 1 407 355 297 328 320 471 289

2 126 396 175 262 601 210 294

3 51 56 15 22 13 12 13

4 X 15 38 49 91 51 56

5 51 43 111 182 233 157 145

6 754 635 471 431 291 382 459

7 558 366 414 1094 1199 905 274

012 100 1000x500 500-3000 40 1 619 638 567 358 415 504 372

2 187 118 140 108 84 74 76

3 48 55 72 58 41 34 33

4 106 18 26 25 28 22 17

5 92 32 17 32 49 69 21

6 177 428 742 749 590 659 261

7 203 486 763 303 352 343 400

018 100 1000x500 500-3000 40 1 991 745 769 814 756 534 580

2 140 28 21 19 23 17 11

3 58 77 140 70 80 67 53

4 17 14 46 43 33 31 28

5 71 34 139 97 98 78 92

6 608 94 139 76 91 87 84

7 535 419 696 593 301 367 253
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Table B.2 – Continued from previous page

Teams Trucks →
Instance name ↓ 1 2 3 4 5 6 7

022 100 1000x500 5-3000 40 1 745 887 874 555 546 556 360

2 203 70 31 30 32 25 20

3 110 39 68 47 66 64 33

4 X 30 23 23 25 24 18

5 482 318 255 396 294 265 201

6 517 531 686 365 458 457 542

7 602 1216 650 501 416 368 520

027 100 1000x500 5-3000 40 1 914 791 1035 845 580 682 811

2 40 73 154 52 50 46 45

3 21 73 49 47 49 36 27

4 161 403 817 483 229 208 270

5 641 658 627 440 517 486 771

6 460 603 484 516 479 437 585

7 511 603 3353 540 383 408 1131

028 100 1000x500 5-3000 40 1 688 507 428 1431 475 410 291

2 106 77 47 38 128 37 23

3 26 104 55 49 50 44 31

4 10 3 6 6 6 5 5

5 153 248 418 454 303 459 436

6 192 607 455 473 361 342 342

7 958 434 354 446 373 341 318

030 100 1000x500 0-0 40 1 4662 2112 1494 13687 12699 2280 3274

2 2881 5998 1007 2020 765 603 1239

3 3688 13164 234 340 1051 782 133

4 11842 5246 426 3030 1021 1160 1966

5 3265 924 2516 497 3070 2167 1668

6 12884 3837 327 3768 3206 1218 806

7 1058 587 1114 3474 1121 997 2534

034 100 1000x500 0-0 40 1 3312 6644 2681 6279 20197 22083 2958

2 4857 1043 581 367 1040 615 792

3 1987 1568 7810 5186 4412 1063 8538
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Table B.2 – Continued from previous page

Teams Trucks →
Instance name ↓ 1 2 3 4 5 6 7

4 7355 1528 1211 2884 8544 7659 3570

5 9911 1073 2212 10967 1971 3916 1431

6 5431 1467 5139 3888 1813 3088 2159

7 15528 1079 4722 1477 5110 2844 1888

038 100 1000x500 0-0 40 1 1103 5351 3605 2003 757 12227 796

2 6564 896 3320 501 275 526 533

3 14338 1899 2286 1283 1021 1160 337

4 14767 1615 1206 2153 2228 1864 1717

5 1841 767 1163 870 1878 4159 2931

6 2370 1498 2266 1668 8638 1797 4093

7 17774 854 3306 1239 1394 1378 1617

Table B.3 provides data about run-times of both solvers based on the size of the

instance.
n number of nodes in the instance (including team and truck depot)

t? Time do find optimal value

tHmin Minimum time in seconds from 11 runs with different random seeds to obtain

optimum value with heuristic solver

tHmax Minimum time in seconds from 11 runs with different random seeds to obtain

optimum value with heuristic solver

t̂H Median time in seconds from 11 runs with different random seeds to obtain

optimum value with heuristic solver

s Measure for speed improvement t?/t̂H

Table B.3.: Speed comparison dependent on instance size

Instance name n z? t? tHmin tHmax t̂H s

005 100 1000x500 5-500 40 6 2227 0.175 0.004 0.018 0.005 35

005 100 1000x500 5-500 40 7 2259 0.555 0.005 0.007 0.006 92.5

005 100 1000x500 5-500 40 8 2441 1.386 0.016 0.047 0.035 39.6

005 100 1000x500 5-500 40 9 2486 3.913 0.054 0.369 0.238 16.44
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Table B.3 – Continued from previous page

Instance name g z? t? tHmin tHmax t̂ s

005 100 1000x500 5-500 40 10 2644 28.818 0.057 0.328 0.183 157.48

005 100 1000x500 5-500 40 11 2669 616.553 0.387 3.349 1.503 410.21

009 100 1000x500 5-500 40 6 1521 0.177 0.008 0.014 0.01 17.7

009 100 1000x500 5-500 40 7 1521 0.385 0.007 0.023 0.012 32.08

009 100 1000x500 5-500 40 8 1599 1.373 0.016 0.061 0.027 50.85

009 100 1000x500 5-500 40 9 1772 21.178 0.009 0.212 0.037 572.38

009 100 1000x500 5-500 40 10 1830 24.526 0.056 1.164 0.122 201.03

009 100 1000x500 5-500 40 11 1968 1882.584 1.228 28.759 12.327 152.72

006 100 1000x500 5-500 40 6 1908 0.209 0.003 0.005 0.004 52.25

006 100 1000x500 5-500 40 7 1990 0.708 0.007 0.04 0.016 44.25

006 100 1000x500 5-500 40 8 1990 1.677 0.011 0.038 0.018 93.17

006 100 1000x500 5-500 40 9 2246 7.877 0.016 0.215 0.043 183.19

006 100 1000x500 5-500 40 10 2324 118.421 0.023 0.094 0.054 2,192.98

011 100 1000x500 500-3000 40 6 3595 0.189 0.004 0.013 0.005 37.8

011 100 1000x500 500-3000 40 7 4094 0.341 0.008 0.031 0.013 26.23

011 100 1000x500 500-3000 40 8 4357 0.818 0.009 0.094 0.029 28.21

011 100 1000x500 500-3000 40 9 4843 5.604 0.04 0.917 0.099 56.61

011 100 1000x500 500-3000 40 10 5450 84.433 0.169 2.099 0.63 134.02

012 100 1000x500 500-3000 40 6 3173 0.161 0.006 0.013 0.008 20.13

012 100 1000x500 500-3000 40 7 3781 0.408 0.008 0.033 0.017 24

012 100 1000x500 500-3000 40 8 4158 1.037 0.018 0.279 0.053 19.57

012 100 1000x500 500-3000 40 9 4963 3.657 0.046 0.249 0.075 48.76

012 100 1000x500 500-3000 40 10 5867 135.093 0.12 2.138 0.398 339.43

018 100 1000x500 500-3000 40 6 4626 0.177 0.004 0.008 0.005 35.4

018 100 1000x500 500-3000 40 7 5387 0.266 0.012 0.025 0.019 14

018 100 1000x500 500-3000 40 8 5599 0.94 0.011 0.077 0.028 33.57

018 100 1000x500 500-3000 40 9 6784 4.487 0.01 0.089 0.045 99.71

018 100 1000x500 500-3000 40 10 7088 3477.953 0.03 1.813 0.622 5,591.56

028 100 1000x500 5-3000 40 6 3924 0.172 0.005 0.007 0.006 28.67

028 100 1000x500 5-3000 40 7 4801 0.249 0.014 0.023 0.016 15.56

028 100 1000x500 5-3000 40 8 4801 0.766 0.012 0.052 0.039 19.64

028 100 1000x500 5-3000 40 9 5294 3.912 0.007 0.092 0.042 93.14
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Table B.3 – Continued from previous page

Instance name g z? t? tHmin tHmax t̂ s

028 100 1000x500 5-3000 40 10 6312 39.906 0.533 19.766 7.565 5.28

022 100 1000x500 5-3000 40 6 3471 0.185 0.008 0.016 0.01 18.5

022 100 1000x500 5-3000 40 7 3471 0.359 0.008 0.017 0.013 27.62

022 100 1000x500 5-3000 40 8 4198 0.872 0.018 0.047 0.035 24.91

022 100 1000x500 5-3000 40 9 4590 3.05 0.019 0.307 0.078 39.1

022 100 1000x500 5-3000 40 10 5351 32.347 0.057 0.282 0.125 258.78

027 100 1000x500 5-3000 40 6 4023 0.15 0.004 0.006 0.005 30

027 100 1000x500 5-3000 40 7 4023 0.393 0.004 0.007 0.006 65.5

027 100 1000x500 5-3000 40 8 4023 0.771 0.01 0.022 0.015 51.4

027 100 1000x500 5-3000 40 9 4363 2.859 0.019 0.206 0.049 58.35

027 100 1000x500 5-3000 40 10 4701 151.825 0.015 0.812 0.127 1,195.47

034 100 1000x500 0-0 40 6 950 0.197 0.007 0.011 0.009 21.89

034 100 1000x500 0-0 40 7 1094 0.586 0.01 0.029 0.014 41.86

034 100 1000x500 0-0 40 8 1094 4.114 0.009 0.036 0.021 195.9

034 100 1000x500 0-0 40 9 1305 54.709 0.013 0.055 0.032 1,709.66

034 100 1000x500 0-0 40 10 1349 39.718 0.011 0.1 0.036 1,103.28

030 100 1000x500 0-0 40 6 822 0.228 0.006 0.016 0.008 28.5

030 100 1000x500 0-0 40 7 829 0.629 0.007 0.021 0.014 44.93

030 100 1000x500 0-0 40 8 1007 2.35 0.009 0.02 0.011 213.64

030 100 1000x500 0-0 40 9 1007 98.391 0.01 0.017 0.013 7,568.54

030 100 1000x500 0-0 40 10 1362 143.609 0.014 0.05 0.024 5,983.71

038 100 1000x500 0-0 40 6 1807 0.185 0.008 0.018 0.011 16.82

038 100 1000x500 0-0 40 7 1862 0.611 0.007 0.017 0.009 67.89

038 100 1000x500 0-0 40 8 1862 2.621 0.008 0.033 0.018 145.61

038 100 1000x500 0-0 40 9 1883 33.577 0.013 0.041 0.022 1,526.23

038 100 1000x500 0-0 40 10 1936 401.612 0.013 0.065 0.033 12,170.06

B.2. Best known values and quality-effort relationship

Table B.4 shows the output of solution runs for instances with 20 nodes (2 depots + 18

customers), 3 teams and 2 trucks.
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zH Best known value from heuristic solver

tH Time in seconds to obtain best known value from heuristic solver

tmin
0.05 Minimum time in seconds from 11 runs with different random seeds to obtain

solution within 5 % of best known value

tmax
0.05 Maximum time in seconds from 11 runs with different random seeds to obtain

solution within 5 % of best known value

t̂0.05 Median time in seconds from 11 runs with different random seeds to obtain

solution within 5 % of best known value

r0.05 Measure for quality-effort relationship t̂0.05/t (see Barr et al. 1995). A low value

indicates fast convergence towards the best known value.

Table B.4.: Best known value and quality-effort relationship

Instance name zH tH tmin
0.05 tmax

0.05 t̂0.05 r0.05

000 100 1000x500 5-500 40 2860 77.619 3.562 52.606 24.026 0.30954

001 100 1000x500 5-500 40 3390 110.282 0.202 8.419 2.269 0.02057

002 100 1000x500 5-500 40 3558 172.847 0.335 19.815 6.056 0.03504

003 100 1000x500 5-500 40 3492 326.248 0.129 4.047 1.66 0.00509

004 100 1000x500 5-500 40 3236 163.062 0.313 4.723 2.775 0.01702

005 100 1000x500 5-500 40 3751 168.476 0.105 6.635 1.268 0.00753

006 100 1000x500 5-500 40 3331 215.97 0.144 7.471 0.974 0.00451

007 100 1000x500 5-500 40 2893 332.829 0.493 10.96 2.01 0.00604

008 100 1000x500 5-500 40 3010 7.799 0.155 3.557 1.449 0.18579

009 100 1000x500 5-500 40 3482 33.816 0.127 4.089 1.029 0.03043

010 100 1000x500 500-3000 40 12183 63.717 0.052 1.55 0.36 0.00565

011 100 1000x500 500-3000 40 11416 120.37 0.045 0.824 0.18 0.0015

012 100 1000x500 500-3000 40 12149 215.541 0.154 2.238 0.428 0.00199

013 100 1000x500 500-3000 40 12391 112.175 0.042 1.237 0.219 0.00195

014 100 1000x500 500-3000 40 12790 72.432 0.074 0.804 0.215 0.00297

015 100 1000x500 500-3000 40 15609 222.455 0.03 0.792 0.112 0.0005

016 100 1000x500 500-3000 40 11465 152.736 0.044 0.514 0.148 0.00097

017 100 1000x500 500-3000 40 14556 242.638 0.027 0.348 0.13 0.00054

018 100 1000x500 500-3000 40 12261 175.84 0.039 1.593 0.291 0.00165

019 100 1000x500 500-3000 40 11897 110.011 0.052 0.724 0.28 0.00255
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Table B.4 – Continued from previous page

Instance name zH tH tmin
0.05 tmax

0.05 t̂0.05 r0.05

020 100 1000x500 5-3000 40 11376 165.848 0.101 1.143 0.197 0.00119

021 100 1000x500 5-3000 40 10775 213.565 0.037 0.426 0.179 0.00084

022 100 1000x500 5-3000 40 11457 2.391 0.033 0.894 0.254 0.10623

023 100 1000x500 5-3000 40 11825 170.419 0.073 1.744 0.403 0.00236

024 100 1000x500 5-3000 40 10112 237.095 0.047 1.513 0.503 0.00212

025 100 1000x500 5-3000 40 10382 262.174 0.105 1.215 0.386 0.00147

026 100 1000x500 5-3000 40 12237 257.404 0.079 2.324 0.67 0.0026

027 100 1000x500 5-3000 40 10787 231.015 0.037 2.485 0.264 0.00114

028 100 1000x500 5-3000 40 12208 62.324 0.034 0.808 0.337 0.00541

029 100 1000x500 5-3000 40 12847 202.697 0.065 0.984 0.222 0.0011

030 100 1000x500 0-0 40 1901 37.908 0.043 0.631 0.144 0.0038

031 100 1000x500 0-0 40 1551 11.198 0.042 0.866 0.191 0.01706

032 100 1000x500 0-0 40 1823 2.592 0.049 0.786 0.323 0.12461

033 100 1000x500 0-0 40 2143 55.267 0.067 0.356 0.192 0.00347

034 100 1000x500 0-0 40 1747 4.708 0.049 1.464 0.39 0.08284

035 100 1000x500 0-0 40 2158 0.242 0.05 0.776 0.266 1.09917

036 100 1000x500 0-0 40 2176 1.595 0.045 0.619 0.079 0.04953

037 100 1000x500 0-0 40 1814 2.284 0.057 0.575 0.32 0.14011

038 100 1000x500 0-0 40 2130 5.242 0.094 0.967 0.238 0.0454

039 100 1000x500 0-0 40 1825 0.229 0.076 0.952 0.246 1.07424

B.3. Lower Bounds

Table B.5 shows the calculated lower bounds for the 40 main test instances for 1 nodes

(team depot + truck depot + 8 customers). The headings in this table are defined as

follows:
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t Solution time for synchronized problem in seconds

tT Solution time for teams without waiting for trucks in seconds

tA Solution time for trucks without waiting for teams in seconds

z? Optimal solution value for synchronized problem

z?T Optimal solution value for teams without waiting for trucks

z?A Optimal solution value for trucks without waiting for teams

z Lower bound, max(z?T , z
?
A)

z/z? Measure for gap to optimality

Table B.5.: Lower bounds and optimality gap

Instance name t tT tA z? z?T z?A z z/z?

000 100 1000x500 5-500 40 65.433 2.465 5.399 1793 1701 1371 1701 0.95

001 100 1000x500 5-500 40 22.033 2.555 7.274 2558 2557 1873 2557 1

002 100 1000x500 5-500 40 49.034 2.041 3.866 2748 2716 1276 2716 0.99

003 100 1000x500 5-500 40 70.177 2.891 12.492 1912 1750 1531 1750 0.92

004 100 1000x500 5-500 40 38.459 2.465 6.9 1861 1715 1419 1715 0.92

005 100 1000x500 5-500 40 27.623 3.093 4.048 2644 2488 1214 2488 0.94

006 100 1000x500 5-500 40 115.765 2.272 5.415 2324 2038 1872 2038 0.88

007 100 1000x500 5-500 40 73.138 1.739 5.832 1897 1897 1162 1897 1

008 100 1000x500 5-500 40 58.173 3.253 6.512 2148 1873 1890 1890 0.88

009 100 1000x500 5-500 40 34.741 3.038 6.251 1830 1680 1225 1680 0.92

010 100 1000x500 500-3000 40 161.92 3.177 6.781 6716 6602 1335 6602 0.98

011 100 1000x500 500-3000 40 79.085 2.651 6.087 5450 5241 1594 5241 0.96

012 100 1000x500 500-3000 40 148.985 3.235 5.943 5867 5867 1386 5867 1

013 100 1000x500 500-3000 40 119.105 2.978 10.838 6483 6483 1469 6483 1

014 100 1000x500 500-3000 40 44.883 3.611 13.323 5725 5483 1871 5483 0.96

015 100 1000x500 500-3000 40 36.581 3.502 11.772 7507 7507 2300 7507 1

016 100 1000x500 500-3000 40 334.582 3.121 11.704 6906 6906 1350 6906 1

017 100 1000x500 500-3000 40 178.968 3.629 3.319 6949 6949 1302 6949 1

018 100 1000x500 500-3000 40 3411.75 3.325 4.487 7088 6975 1217 6975 0.98

019 100 1000x500 500-3000 40 33.655 3.701 4.853 6633 6633 1046 6633 1

020 100 1000x500 5-3000 40 32.285 2.926 5.715 5571 5411 1294 5411 0.97

021 100 1000x500 5-3000 40 33.089 2.777 7.235 5759 5745 1687 5745 1
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Table B.5 – Continued from previous page

Instance name t tT tA z? z?T z?A z z/z?

022 100 1000x500 5-3000 40 32.982 2.798 4.899 5351 5245 1328 5245 0.98

023 100 1000x500 5-3000 40 33.932 3.153 4.707 6434 6434 1368 6434 1

024 100 1000x500 5-3000 40 115.226 3.265 10.624 5698 5698 1254 5698 1

025 100 1000x500 5-3000 40 35.083 3.458 8.1 5767 5761 1412 5761 1

026 100 1000x500 5-3000 40 42.065 2.668 7.747 5903 5903 2005 5903 1

027 100 1000x500 5-3000 40 154.963 2.925 4.864 4701 4701 1017 4701 1

028 100 1000x500 5-3000 40 41.138 2.85 6.456 6312 6312 1564 6312 1

029 100 1000x500 5-3000 40 137.73 3.086 4.115 6198 6198 1395 6198 1

030 100 1000x500 0-0 40 143.196 2.279 4.933 1362 1092 1362 1362 1

031 100 1000x500 0-0 40 236.101 2.255 6.052 1192 1132 1190 1190 1

032 100 1000x500 0-0 40 326.247 2.502 8.078 1553 1214 1502 1502 0.97

033 100 1000x500 0-0 40 122.785 2.148 6.373 1455 1264 888 1264 0.87

034 100 1000x500 0-0 40 40.475 2.777 6.103 1349 1001 1305 1305 0.97

035 100 1000x500 0-0 40 90.98 2.321 5.675 1822 1366 1814 1814 1

036 100 1000x500 0-0 40 157.843 2.556 8.367 1893 957 1880 1880 0.99

037 100 1000x500 0-0 40 161.002 2.136 9.66 1684 1391 1452 1452 0.86

038 100 1000x500 0-0 40 404.262 2.234 5.588 1936 1738 1889 1889 0.98

039 100 1000x500 0-0 40 218.5 2.476 4.859 1528 1290 1332 1332 0.87
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