
Arbeidsnotat
Working Paper

2013:7

Øyvind Halskau sr.
Kurt Jörnsten

Some new bounds for the travelling
salesman problem

Øyvind Halskau sr.
Kurt Jörnsten

Some new bounds for the travelling salesman problem

Arbeidsnotat / Working Paper 2013:7

Høgskolen i Molde Molde University College
Vitenskapelig høgskole i logistikk Specialized University in Logistics

Molde, Norway 2013

ISSN 1501-4592 (trykt)

ISBN 978-82-7962-172-0 (trykt) ISBN 978-82-7962-173-7 (elektronisk)

1

Some new bounds for the travelling salesman problem

by

Øyvind Halskau sr
1
. and Kurt Jörnsten

2

1
 Corresponding author, Molde University College, Postbox 2110, NO-6402, Molde, Norway,

oyvind.halskau@himolde.no , Phone: 00 47 71214000, Fax: 0047 71214100
2
 Norwegian school of business administration, Helleveien 30 NO-5045, Bergen, Norway.

Kurt.jornsten@nhh.no

mailto:oyvind.halskau@himolde.no
mailto:Kurt.jornsten@nhh.no

2

Abstract

The Clarke and Wright heuristic for the travelling salesman problem (TSP) has been used for

several decades as a tool for finding good solutions for TSP and other vehicle routing

problems (VRP). In this paper we offer a simple, but fundamental relationship between the

cost of a Hamiltonian cycle measured in the original cost matrix and the cost of the same

cycle measured in a saving matrix. This relationship leads to a new and simple lower bound

for TSP that some times is better than more traditional bounds based on so-called 1-trees. We

also offer some upper bounds for the optimal solution of TSP. Some examples are given in

order to illustrate the new bounds and compare these with the classical ones.

Key words: Clark and Wright savings, Travelling Salesman Problem, lower bounds, upper

bounds

1. Introduction

The Clark and Wright saving algorithm is one of the oldest heuristics for the vehicle routing

problem, see Clark and Wright (1964) and probably also one of the most popular. It has been

used as a basic heuristic in different software programs and as example of a heuristic in many

text books. The literature about the Clark and Wright saving heuristic is huge. A recent

article, (G. K Rand 2009) gives an comprehensive overview over its history and how this

heuristic has been used in different versions, adapted to many different varieties of the VRP,

used in practical applications in order to find good solutions to real life problems. Rand shows

that the Clarke and Wright heuristic has been and still is used as an integrated part of many

software packages dealing with VRP and its many extensions. This heuristic was originally

made for dealing with VRP, but can of course also be used when one wants to find solutions

to TSP. In this case one can define the depot one self. This gives the possibility to calculate as

many saving matrices as there are nodes in the underlying graph. Each of them yielding

potentially different solutions. In this paper we will restrict our selves to dealing with TSP.

We offer a simple but revealing relationship between the cost of a Hamiltonian cycle

measured in the original cost matrix and the cost of the same cycle measured in a saving

matrix. This relationship gives rise to new and simple lower bounds for TSP as well as upper

bounds for the same problem. By examples we show that these new lower bounds sometimes

are better and sometimes are worse than more traditional and well known lower bounds for

TSP. The rest of this paper is organised as follows: In section 2 the new relationship between

the original cost matrix and the saving matrices are given. In section 3 the new lower bounds

and its relationship to the traditional lower bounds are displayed. Further, a small illustrative

example is given as well as three examples showing that it will be impossible to prove in

general that one of these bounds always is better than the other. The details of these three

examples are given in an appendix. In section 4 we offer some conclusions and thoughts for

further research.

3

2. The travelling salesman problem and the saving algorithm

Let C be a cost matrix for a TSP with n nodes where the elements of the matrix is denoted by

0, ijij cc . In the original article by Clark and Wright the depot was given and the so-called

saving values were calculated relatively to this depot. Applying the saving procedure to a TSP

problem every node can be chosen as a depot. We denote the saving values relatively to the

chosen depot d as d

ijs and the resulting saving matrix based on the chosen depot as dS . The

savings can be calculated according to formula (2.1) below.

ijdjid

d

ij cccs )1.2(

Note that what ever the values of the cost elements in C may be, the saving values for

js d

dj  ,0 and isd

id  ,0 . Hence, in dS row number d and column number d all elements

will be zero. We will denote the sum of all the elements in row number d in C as dR and the

sum of all the elements in column number d in C as dK . Further, we will denote the cost of a

Hamiltonian cycle H measured in C , as H(C)and the corresponding cost in the saving matrix
dS with H(dS).

It is well known that TSP is a NP-complete problem. However, many polynomial special

cases have been identified over the years. Among these is the so-called constant-TSP, see

Berenguer, X. (1979). In this special case of the TSP all the cost elements have the following

structure: jiij bac  . The cost of every Hamiltonian cycle in such a cost matrix will have

the same length and will be equal to 



n

j

j

n

i

i ba
11

. The Clark and Wright saving algorithm is

an example of a so called equivalent matrix transformation (EMT), see Gutin and Punnen

(2002) page 23 – 24. Such transformations leave the optimal solution of TSP unchanged.

In Halskau and Jörnsten, (1995) and in Halskau (2000) the following simple lemma is proved.

For convenience the proof is reproduced here.

Lemma 2.1

For any Hamiltonian cycle H the following relation holds for all choices of d:

dd

d KRSHCH )()()2.2(

Proof:

Restructuring (2.1) gives djid

d

ijij ccsc  . Then applying this structure on any Hamiltonian

cycle H gives dd

n

i

di

d

j

jd

d RKccSHCH  
 11

)()(.

If the triangle inequality holds in C, the saving values will be non-negative and as a

consequence will)(dSH be non-negative for all Hamiltonian cycles and for all d. The result

of the lemma can then be illustrated as in figure 1 below.

4

Fig1 Illustration of lemma 2.1

Lemma 2.1 and figure 1 shows that for any Hamiltonian cycle were the triangle inequality

holds, the sum of the costs measured in the original cost matrix and the chosen saving matrix

will end up on the periphery of an ellipse. Since there are only a finite number of Hamiltonian

cycles, not every point on the periphery will represent a Hamiltonian cycle. For a given choice

d, we can choose the foci points freely as long as the distance between the two focal points are

strictly less than dd RK  .

Now let H* denote the optimal solution for TSP. If the distance from the right hand side focal

point to the right hand extreme point of the ellipse is larger than H*(C), the optimal solution

can not be represented in this ellipse. Hence, in order to include this possibility, the above

mentioned distance must be less than the optimal solution. Since we do not necessarily know

the optimal solution, we can let the distance from the focal point to the extreme point of the

ellipse be less than any known lower bound for TSP, but still strictly positive.

Figure 1 indicates that for the optimal solution or Hamiltonian cycles with costs close to

H*(C), the cost of the cycle measured in C is smaller than the cost measured in the

corresponding saving matrix. This turns out to be wrong as shown by a small example in

section 3.

The classical way of applying the Clark and Wright heuristic is to calculate the savings for a

given choice of the depot, then sorting the saving values in a decreasing order and then

perform a greedy algorithm choosing the largest saving first and so on deleting any saving

that leads to sub-cycles or that the degree of a node becomes larger than 2. One ends up with a

path spanning all nodes but the depot. Then one goes back to the original cost matrix and

calculate the costs of the found Hamiltonian cycle. This is not necessary any more. One can as

well add the costs of the found path directly in the used saving matrix and then apply the

equation in lemma 2.1 to find the cost in the original cost matrix. In other words the cost in a

chosen saving matrix for a given Hamiltonian cycle and the cost of the same cycle in the

original cost matrix are complementary. More over, any heuristic for the TSP can – with some

minor changes – be applied on any of the saving matrices generating different solutions to the

)(dSH
H(C)

5

same basic problem. For more details about such possibilities, see Halskau and Jörnsten

(1995) and Halskau (2000).

The following corollary follows directly from lemma 2.1.

Corollary 2.2

If the cost matrix C is symmetric then for any d, d

d RSHCH 2)()(

3. Bounds for the Travelling Salesman Problem

When solving the TSP to optimality, it is often convenient to have lower bounds. Such lower

bounds can be of different qualities and can be found in many different ways. For an overview

of such techniques, see for example Gutin and Punnen (2002) or Lawler et al. (1985).

In this paper we will restrict ourselves to consider some new simple bounds for TSP and

compare these with other well known simple bounds.

Let C be any symmetric nxn-matrix. We let 



n

j

iji cR
1

denote the row sum of row i and we let

   i
i

i
i

RRRR max and min maxmin  be the smallest and the largest row sum, respectively. For

symmetric matrices we let MIST(C) denote the minimal spanning tree in the graph with the

cost matrix C. In a similar fashion MAST(C) will denote the cost of the maximal spanning

tree. It is well known that the so-called minimal spanning one tree in a cost matrix for a

symmetric TSP – that is the MIST(C) plus the smallest unused edge when making the MIST –

is a lower bound for the TSP. We will denote this as MIN(1-tree)(C). Further, we can delete

one node i from the graph, make the MIST among the remaining nodes and then add the two

smallest edges from the deleted node. We then have a 1-tree. This tree is evidently also a

lower bound for TSP and will be equal to or larger than the MIN(1-tree). We will denote these

lower bounds as iDB and let  i
i

DBDB maxmax  . Hence, we have the following string of

inequalities for some simple and well known lower bounds for TSP.

)(*))(1()()1.3(max CHDBDBCtreeMINCMIST i 

Lemma 3.1

In any cost matrix where the triangle inequality holds, the following inequalities hold:

)(min)(dd
d

KRCH 

  dd

d

dd
d

dd KRSHKRKR )(min

Proof:

From lemma 2.1 we have – since 0)(dSH , dd

d

dd KRSHKRCH )()(. Since we

can choose any d the first inequality comes forth.

6

Again, from lemma 2.1 we have that dddd

d KRCHKRSH )()(. On the other hand

we have that  dd
d

dddd

d KRKRCHKRSH  min)()(.

If we restrict the cost matrices to be symmetrical we get corollary 3.1.

Corollary 3.1

In any symmetrical cost matrix where the triangle inequality holds, the following bounds

hold:

minmax 2)(RCHDB 

d

d

d RSHRR 2)()(2 min 

New lower bounds for symmetric TSP

These new bounds will depend on which node that is chosen as the depot and the associated

saving matrix. We will denote these new lower bounds as dSB . Since the depot can be chosen

in n different ways, we will get n lower bounds. Hence, the best one among these will be

denoted as  d
d

SBSB maxmax  .

Corollary 3.1 can now be sharpened as shown in lemma 3.2

Lemma 3.2

In any symmetrical cost matrix where the triangle inequality holds the following bounds hold:

   2,,max)(minmaxmax RDBSBCH 

    ,max2),(min,22)(maxmaxmin DBSBRSMASTRRSH d

d

d

d 

where  )(2maxmax

d

s
d

SMASTRSB 

Proof:

From Corollary 2.2 we have that d

d RSHCH 2)(*)(*  . Hence, since)(* CH is at its

minimum,)(* dSH will be at its maximum. Since all the saving values from the chosen depot

d to any of the other nodes are zero, the two edges from the depot in the optimal solution can

be deleted without changing the value of)(* dSH . The remaining graph will be a spanning

path among all the nodes except the depot. A spanning path is a tree and hence

)()(* dd SMASTSH  . Note that if)(dSMAST becomes a path, the optimal solution is

found.

From the above consideration we can obtain a new lower bound for the optimal solution

measured in C.

d

d

d

d

dd

d SBSMASTRSHRCHRSHCH )(2)(*2)(*2)(*)(* .

7

Including this new bound in the sequence of inequalities given by 3.1, we have

 )(*,max))(1()()2.3(maxmax CHDBSBDBCtreeMINCMIST i 

In a similar fashion we obtain new upper bounds for)(* dSH as shown below

 maxmax ,max2)(*2)(*2)(*)(* DBSBRCHRSHRSHCH dd

d

d

d  .

Hence,

  maxmax ,max2),(min)(*)3.3(DBSBRSMASTSH d

dd 

In order to illustrate these bounds we offer a small example. Consider the small graph in

figure 2 and the corresponding cost matrix in table 1 below.

Fig. 2 Graph of the small example

Table 1 Cost matrix for the small example

 1 2 3 4 5 Row sum

1 - 2 2 2 2 2 4+3 2

2 - 2 2 2 2 4+3 2

3 - 2 2 4 2

4 - 2 4+3 2

5 - 4+3 2

Now the MIST(C) consists of the edges: (1,3); (2,3); (3,4); and (3,5) and the cost becomes

4 2 . Adding the smallest edge not used in the MIST – for example (1,2) – gives a cost for

MIN(1-tree)(C) of 2+4 2 .

It is easily seen that an optimal cycle will be H* = 1 – 2 – 3 – 5 – 4 – 1 with cost 6+2 2

which is strictly larger than the two lower bounds found so far.

Due to the symmetry of the graph it is only necessary to calculate the two lower

bounds 3 1 and DBDB . Deleting node 1, gives the same 1-tree as MIN(1-tree). Hence,

2421 DB .

8

Deleting node 3, will give the 1-tree consisting of the edges (1,2); (1,4); (4,5) and the added

edges (3,2) and (3,5) gives a cost of 6+2 2 , confirming that the H* above is an optimal

solution. Hence, 3DB finds the optimal solution.

A Hamiltonian cycle with a maximal cost will be for example the cycle 1 – 5 – 3 – 2 – 4 – 1

with cost 2+6 2 . This is strictly less than two times the smallest row sum, which becomes

8 2 .

Due to the same symmetry we only need to find the saving tables corresponding to the

choices of node 1 and 3 as the depot. These two saving matrices are given in table 2 and 3

respectively

Table 2 Saving values when node 1 is chosen as the depot node

 1 2 3 4 5

1 - 0 0 0 0

2 - 2 4-2 2 2 2

3 - 2 2 2

4 - 2 2

5 -

For this saving matrix the maximal spanning tree will consists of the three edges (5,2); (5,3),

and (5,4) with cost 6 2 . The lower corresponding lower bound will be

826268)(2 1

11  SMASTRSB which is better than 1DB but less than 3DB .

Table 3 Saving values when node 3 is chosen as the depot node

 1 2 3 4 5

1 - 222  0 222  22 

2 - 0 0 222 

3 - 0 0

4 222 

5 -

For this saving matrix the maximal spanning tree will consists of the three edges (1,4); (1,5);

and (4,5) with cost 6 2 - 6. The lower corresponding lower bound will be

22662628)(2 3

33  SMASTRSB which is equal to 3DB .

Note that in this case the cost of the optimal cycle measured in the saving matrix 3S becomes

242)(3* SH which is less than)(* CH .

In this small example it turns out that the two simple lower bounds maxmax and DBSB become

equal. A natural question to ask if this always is the case, and if not, will one of them always

become better than the other? In the appendix three examples are given showing that the

answers to these questions are negative.

9

Example 1 in the appendix is a graph with 16 nodes distributed in a grid where the distance

horizontally and vertically between two neighbouring nodes is one.

It is easy to see that a minimal 1-tree in this matrix has the cost 16 and there exists several

Hamiltonian cycles with the same cost, for example the cycle 1 – 5 – 9 – 13 – 14 – 15 – 16 –

12 – 11 – 10 – 6 – 7 – 8 – 4 – 3 – 2 – 1. Since the minimal 1-tree finds the optimum, all the

lower bounds obtained by deleting a node will give the same result.

Due to the symmetry of the graph it is only necessary to find the saving bounds generated by

choosing node 1, 5 or 6 as depot nodes. The results are summarised in table 4 below:

Table 4 The results using example 1 in the appendix

Node

number
iDB)(dSMAST dR iSB dR2 max2 DBRd  min22 RRd 

1 16 64.12 38.49 12.87 76.98 70.98 26.12

5 16 52.54 32.53 12.52 65.06 49.03 14.20

6 16 37.44 25.43 13.42 50.86 34.86 0

As can be seen from table 4.The saving bounds can not compete with the minimal 1-tree in

this case. The gap is fairly large. We can also see that any Hamiltonian cycle will be in the

interval [16, 50.86]. We also see that the optimal cycle has a cost that is strictly less than the

smallest row sum. The cost of any Hamiltonian cycle measured in the saving matrices 1, 5,

and 6 will be in the intervals [26.12, 64.12], [14.20, 49.03], and [0, 34.86], respectively.

Example 2 in the appendix is a graph with 9 nodes distributed like a cross. Due to the

symmetry of the graph it is only necessary to consider bounds associated with nodes 1, 2, and

5.

It is easily seen that the MIST(C2) = 8 and that (1-tree)(C2) = 41.928  . The optimal

cycle becomes 1 – 2 – 5 – 4 – 3 – 8 – 9 – 7 – 6 – 1 with cost

30.1322526)2(* CH . The other bounds are given in table 5 below.

Table 5 The results using example 2 in the appendix

Node

number
iDB)(dSMAST dR iSB dR2 max2 DBRd  min22 RRd 

1 10.24 40.26 20.13 12.05 40.26 30.04 16.26

2 9.41 28.60 14.30 12.07 28.60 18.36 4.60

5 10.24 11.51 12.00 12.29 24.00 13.76 0

As can be seen from the table, the best bounds found by deleting a node is strictly larger than

the MIN(1-tree). On the other hand this bound is outperformed by all the three bounds based

on the saving procedure, the best being found by using node 5 giving 12.29 as a lower bound

for the TSP which is less than 0.8% from the optimal solution. In this example the optimal

solution is larger than the smallest row sum. Disregarding the fact that we know the optimal

solution, any Hamiltonian cycle will be in the interval [12.29, 48]. The cost of any

Hamiltonian cycle measured in the saving matrices 1, 2, and 5 will be in the intervals

[16.26, 30.04], [4.60, 18.36], and [0, 13.76], respectively.

10

Example 3 is identical with example 2 apart from that node 5 has been deleted from the

graph. It is easily seen that the MIST(C3) = 24.8234  and that (1-tree)(C3)

= 66.9244  . The optimal cycle becomes 1 – 2 – 4 – 3 – 8 – 9 – 6 – 7 – 1 with cost

71.1223524)3(* CH . The other bounds are given in table 6 below.

Due to the symmetry it is only necessary to consider node 1 and 2.

These three examples show that it is in general, not possible to prove that one of the two

candidates for a lower bound always will better than the other.

Table 6 The results using example 3 in the appendix

Node

number
iDB)(dSMAST dR iSB dR2 max2 DBRd  min22 RRd 

1 10.48 24.12 18.13 12.14 36.26 25.26 9.66

2 10.48 14.43 13.30 12.07 26.60 16.12 0

As can be seen from the table, the best bounds found by deleting a node is strictly larger than

the MIN(1-tree), but these bounds are out performed by both bounds found by the saving

procedure. On the other hand this bound is outperformed by both bounds based on the saving

procedure, the best being found by using node 1 giving 12.14 as a lower bound for the TSP

which is less than 5% from the optimal solution. In this example the optimal solution is

smaller than the smallest row sum. Disregarding the fact that we know the optimal solution,

any Hamiltonian cycle will be in the interval [12.14, 26.60]. The cost of any Hamiltonian

cycle measured in the saving matrices 1 and 2 will be in the intervals

[29.66, 30.04] and [4.60, 18.36], respectively.

4. Conclusions and further research

We have presented new and simple lower bounds for TSP based on the Clarke and Wright

heuristic. These lower bounds sometimes outperform more classical simple bounds obtained

by making minimal 1-trees, and sometimes not. A natural question to ask can be if it is

possible to find special cost structures such that one á priori can decide which type of a lower

bound is the largest. Further, both the treated lower bounds can be calculated in n different

ways. Hence, it could be convenient to find assumptions that make it unnecessary to calculate

all the bounds of a specific type, that is, that the search for the best bound can be restricted to

a subset of the nodes performing as starting nodes for the lower bound. Finally, will it be

possible to establish saving based bounds for cost matrices where the triangle inequality does

not hold or for asymmetric cost matrices?

References:

Berenguer, X: A Characterization of Linear Admissible Transformations for the m-Travelling

Salesman Problem.European J. Oper. Res. 3, 232-249. [4:2], (1979)

Gutin, G. and Punnen, A. P. The travelling salesman problem and its variations.’

 Combinatorial Optimization, volume 12. Kluwer Academic Publishers, (2002)

Halskau, Ø. and Jörnsten, K. The Clark and Wright Heuristic Revisited. Proceedings from

Nordic Operations Research Conference, University of Iceland, Reykjavik, (1995)

Halskau, Ø. Decompositions of Travelling Salesman problems. Doctoral thesis. Norwegian

 School of Economics and Business Administration,(2000)

11

Lawler, Lenstra et al. (ed):The Traveling Salesman Problem. A Guided Tour of Combinatorial

Optimization. John Wiley & Sons, (1985)

Rand, G. K.The life and times of the Saving Method for Vehicle Routing Problems. Orion,

volume 25 (2), pp 125- 145, (2009)

Appendix

Example 1

Table 7 The complete graph has 16 nodes in a grid with the following coordinates.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x-co 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

y-co 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0

This gives the following symmetrical cost matrix

Table 8 The cost matrix for example 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 - 1 2 3 1 2 5 10 2 5 22 13 3 10 13 23

2 - 1 2 2 1 2 5 5 2 5 22 10 3 10 13

3 - 1 5 2 1 2 22 5 2 5 13 10 3 10

4 - 10 5 2 1 13 22 5 2 23 13 10 3

5 - 1 2 3 1 2 5 10 2 5 22 13

6 - 1 2 2 1 2 5 5 2 5 22

7 - 1 5 2 1 2 22 5 2 5

8 - 10 5 2 1 13 22 5 2

9 - 1 2 3 1 2 5 10

10 - 1 2 2 1 2 5

11 - 1 5 2 1 2

12 - 10 5 2 1

13 - 1 2 3

14 - 1 2

15 - 1

16 -

Due to the symmetry, there will be only 3 different row sums:

43.2554268

53.321310254248

49.38132102522612

111076

15141298532

161341







RRRR

RRRRRRRR

RRRR

It is easy to see that a minimal 1-tree in this matrix has the cost 16 and there exists several

Hamiltonian cycles with the same cost, for example the cycle 1 – 5 – 9 – 13 – 14 – 15 – 16 –

12

12 – 11 – 10 – 6 – 7 – 8 – 4 – 3 – 2 – 1. Hence the minimal 1-tree finds the optimal value. We

also see that the smallest row sum is larger than the minimal 1-tree. Based on node no.1 we

get the saving matrix in table 9.

Table 9 The saving matrix based on node 1 as the depot node

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 - 2 2 0.59 1.41 1.82 1.93 0.76 1.24 1.54 1.78 0.84 1.16 1.44 1.63

3 - 4 0.76 2 3.24 3.75 1.17 2 2.82 3,37 1.39 2 2.61 3.08

4 - 0.84 2.18 3.82 5.16 1.39 2.40 3.59 4.61 1.76 2.56 3.44 4.24

5 - 1.41 1.24 1.16 2 1.82 1.59 1.44 2 1.93 1.78 1.64

6 - 2.65 2.58 2 2.65 2.83 2.78 2.41 2.34 2.19 2.05

7 - 4.40 2 3.06 4.06 4.43 2.41 3.16 3.84 4.24

8 - 2 3.16 4.58 5.77 2.57 3.50 4.53 5.40

9 - 3.24 2.83 2.61 4 3.75 3.37 3.05

10 - 4.06 3.84 3.82 4.40 4.43 4.24

11 - 5.43 3.59 4.58 5.43 5.65

12 - 3.44 4.53 5.80 6.85

13 - 5.16 4.61 4.24

14 - 5.77 5.40

15 - 6.85

16 -

From the table above we get the maximal spanning tree shown in figure A1 below. The value

of this tree becomes 64.12 and hence, .1212.6499.76)S(MASTR2SB 1

11  , which is

strictly less than the (1-tree)(C).

Fig.3 Maximal spanning tree based on saving matrix for node 1

Based on node no.5 we get the saving matrix in table 10.

13

Table 10 The saving matrix based on node 5 as the depot node

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 - 1.41 1.24 1.16 0 0.59 0.76 0.84 0 0.18 0.41 0.56 0 0.07 0.22 0.36

2 - 2.65 2.58 0 1.41 2 2.18 0.8 0.83 1.41 0.97 0.25 0.65 1.08 1.41

3 - 4.40 0 1.83 3.24 3.82 0.41 1.41 1.64 3.16 0.63 1.31 2.06 2.68

4 - 0 1.93 3.75 5.16 0.56 1.75 3.16 4.32 0.92 1.79 2.83 3.77

5 - 0 0 0 0 0 0 0 0 0 0 0

6 - 2 2 0.59 1.41 1.82 1.93 1 1 1 1

7 - 4 0.76 2 3.24 3.78 1.17 2 2.83 3.37

8 - 0.84 2.18 3.82 5.16 1.39 2.41 3.59 4.61

9 - 1.41 1.24 1.16 2 1.82 1.59 1.44

10 - 2.65 2.28 2 2.65 2.83 2.78

11 - 4.40 2 3.06 4.06 4.43

12 - 2 3.16 4.58 5.77

13 - 3.24 2.83 2.61

14 - 4.06 3.84

15 - 5.43

16 -

From the table above we get the maximal spanning tree shown in figure 4 below. The value of

this tree becomes 52.44 and hence, 52.1254.5206.65)(2 5

55  SMASTRSB , which is

strictly less than the (1-tree)(C) and maxDB .

Fig. 4 The maximal spanning tree based on node 5 as the depot

14

Based on node no.6 e get the saving matrix in table 11.

Table 11 The saving matrix based on node 6 as the depot node

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 - 1.41 0.83 0.65 1.41 0 0.18 0.25 0.83 0.18 0 0.04 0.41 0.49 0.64 0.78

2 - 1.41 1.24 0.59 0 0.59 0.76 0.18 0 0.18 0.41 0.07 0 0.07 0.22

3 - 2.65 0.18 0 1.41 2 0 0.18 0.83 1.41 0.04 0.25 0.65 1.08

4 - 0.07 0 1.82 3.24 0.04 0.41 1 1.65 0.82 0.87 1.07 1.47

5 - 0 0 0 1.41 0.59 0.18 0.07 1.24 0.76 0.41 0.22

6 - 0 0 0 0 0 0 0 0 0 0

7 - 2 0.18 0.59 1.41 1.82 0.41 0.76 1.24 1.59

8 - 0.25 0.76 2 3.24 0.63 1.17 2 2.83

9 - 1.41 0.83 0.65 2.65 2 1.41 1.08

10 - 1.41 1.24 1.82 2 1.82 1.59

11 - 2.65 1.41 2 2.65 2.83

12 - 1.31 2 3.06 4.06

13 - 3.24 2.47 2.06

14 - 3.24 2.83

15 - 4.06

16 -

From the table above we get the maximal spanning tree shown in figure 5 below. The value of

this tree becomes 37.44 and hence, 42.1344.3786.50)(2 6

66  SMASTRSB , which is

strictly less than the (1-tree)(C) and DB.

Fig.5 Maximal spanning tree based on node 6 as the depot node.

Example 2

We consider a graph with 9 nodes. The coordinates for the nodes are given in table 12.

Table 12. Coordinates for the nodes in example 2

Node 1 2 3 4 5 6 7 8 9

15

x-co 2 2 0 1 2 3 4 2 2

y-co 4 3 2 2 2 2 2 1 0

The cost matrix C) is given in table 13.

Table 13 Cost matrix C2 for example 2

 1 2 3 4 5 6 7 8 9

1 - 1 22 5 2 5 22 3 4

2 - 5 2 1 2 5 2 3

3 - 1 2 3 4 5 22

4 - 1 2 3 2 5

5 - 1 2 1 2

6 - 1 2 5

7 - 5 22

8 - 1

9 -

It is easily seen that the MIST(C2) = 8 and that (1-tree)(C2) = 41.928  . The optimal

cycle becomes 1 – 2 – 5 – 4 – 3 – 8 – 9 – 7 – 6 – 1 with cost

30.1322526)2(* CH . Due to the symmetry of the graph it is sufficient to

calculate the DB only for node 1, 2, and 5. We get

24.10236;41.928;24.1058 521  DBDBDB .

Hence, none of these lower bounds finds the optimal value.

The saving values based on node 1 as the depot node are given in table B14.

Table 14 Saving matrix for example 2 based on node 1 as a depot node

 1 2 3 4 5 6 7 8 9

1 - 0 0 0 0 0 0 0 0

2 - 1.59 1.82 2 1.82 1.59 2 2

3 - 4.06 2.83 2.06 1.66 3.59 4

4 - 3.24 2.37 2.06 3.83 4

5 - 3.24 2.83 4 4

6 - 4.06 3.83 4

7 - 3.59 4

8 - 6

9 -

The corresponding maximal spanning tree is illustrated in figure 6 and has the value 28.12.

The row sum 13.205224101 R . Hence,

08.1212.2826.40)(2 1

11  SMASTRSB , which is larger than DB

16

Fig.6 Maximal spanning tree for saving matrix based on node 1 as depot node in example 2

Choosing node 2 as the depot node gives the saving matrix in table 14.

Table 14 Saving matrix for example 2 based on node 2 as a depot node

 1 2 3 4 5 6 7 8 9

1 - 0 0.41 0.18 0 0.18 0.41 0 0

2 - 0 0 0 0 0 0 0

3 - 2.65 1.24 0.97 0.47 2 2.41

4 - 1.41 0.82 0.97 2 2.18

5 - 1.41 1.24 2 2

6 - 2.65 2 2.18

7 - 2 2.41

8 - 4

9 -

The corresponding maximal spanning tree is illustrated in figure 7 and has the value 16.53.

The row sum 30.14522272 R . Hence,

07.1253.1660.28)(2 2

22  SMASTRSB , which is larger than maxDB .

17

Fig.7 Maximal spanning tree for saving matrix based on node 2 as depot node in example 2

Choosing node 5 as the depot node gives the saving matrix in table 15.

Table 15 Saving matrix for example 2 based on node 5 as a depot node

 1 2 3 4 5 6 7 8 9

1 - 2 1.17 0.76 0 0.76 1.17 0 0

2 - 0.76 0.59 0 0.59 0.76 0 0

3 - 2 0 0 0 0.76 1.17

4 - 0 0 0 0.59 0.76

5 - 0 0 0 0

6 - 2 0.59 0.76

7 - 0.76 1.17

8 - 2

9 -

The corresponding maximal spanning tree is illustrated in figure 8 and has the value 11.51.

The row sum 125 R . Hence, 49.1251.1124)(2 5

55  SMASTRSB , which is larger

than maxDB .

Hence, in this example all the saving bounds outperform the bounds obtained by deleting a

node and then making a 1-tree in the original matrix as described in section 2.

18

Fig.8 Maximal spanning tree for saving matrix based on node 1 as depot node in example 2

Example 3

This example is the same as the previous one except that node 5 has been removed. The cost

matrix is given in table 16.

Table 16. Cost matrix C3 for example 3

 1 2 3 4 6 7 8 9

1 - 1 22 5 5 22 3 4

2 - 5 2 2 5 2 3

3 - 1 3 4 5 22

4 - 2 3 2 5

6 - 1 2 5

7 - 5 22

8 - 1

9 -

It is easily seen that 24.8234)3(CMIST and that (1-tree)(C3) = 66.9244  .

The optimal cycle becomes 1 – 2 – 4 – 3 – 8 – 9 – 6 – 7 – 1 with cost

71.1223524)3(* CH . Due to the symmetry of the graph it is sufficient to

calculate the DB only for node 1 and 2. We get 48.10523421  DBDB .

19

Hence, none of these lower bounds finds the optimal value.

Due to the symmetry it is sufficient to calculate the saving values based on node 1 and 2 only.

The saving values based on node 1 as a depot are shown in table 17.

Table 17. Saving matrix for example 3 with node 1 as a depot

 1 2 3 4 6 7 8 9

1 - 0 0 0 0 0 0 0

2 - 1.59 1.82 1.82 1.59 2 2

3 - 4.06 2.06 1.66 3.59 4

4 - 2.47 2.06 3.83 4

6 - 4.06 3.83 4

7 - 3.59 4

8 - 6

9 -

From table 17 we find the maximal spanning tree as illustrated in figure 9. The cost is 24.12.

The edges used are marked with bold numbers.

Hence, 14.1212.2426.36)(2 1

11  SMASTRSB , which is larger than maxDB .

Fig.9 The maximal spanning tree for the saving matrix based at node 1 as the depot.

The saving values based on node 2 as a depot are shown in table 18.

Table 18 Saving matrix for example 3 with node 2 as a depot

 1 2 3 4 6 7 8 9

1 - 0 0.41 0.18 0.18 0.41 0 0

2 - 0 0 0 0 0 0

3 - 2.65 0.65 0.47 2 2.41

20

4 - 0.83 0.65 2 2.18

6 - 2.65 2 2.18

7 - 2 2.41

8 - 4

9 -

From table 18 we find the maximal spanning tree as illustrated in figure 10. The cost is 14.53.

The edges used are marked with bold numbers.

Hence, 07.1253.1460.26)(2 2

22  SMASTRSB , which is larger than maxDB .

Fig.10 The maximal spanning tree for the saving matrix based at node 2 as the depot.

	201307a-omslag_til_e-utgave
	201307b-tittel_til_e-utgave
	201307c-manus Some_new_bounds
	201307d-bakside_til_e-utgave

