
Arbeidsnotat
Working Paper

2013:7

Øyvind Halskau sr.  
Kurt Jörnsten 

Some new bounds for the travelling 
salesman problem 



 

 

 

 

 

Øyvind Halskau sr. 
Kurt Jörnsten 

 
 
 
 
 

    
Some new bounds for the travelling salesman problem 

 
 
 
 
        

                                                  
 

Arbeidsnotat / Working Paper 2013:7 
 
 

 
 

Høgskolen i Molde  Molde University College 
Vitenskapelig høgskole i logistikk  Specialized University in Logistics 

 
 
 
 

Molde, Norway 2013 
 
 
 
 
 
 

 
ISSN 1501-4592 (trykt)   

ISBN  978-82-7962-172-0 (trykt)  ISBN 978-82-7962-173-7 (elektronisk) 
 



1 

 

Some new bounds for the travelling salesman problem 

 

by 

 

Øyvind Halskau sr
1
. and Kurt Jörnsten

2
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
  Corresponding author,  Molde University College, Postbox 2110, NO-6402, Molde,  Norway, 

oyvind.halskau@himolde.no , Phone: 00 47 71214000, Fax: 0047 71214100 
2
 Norwegian school of business administration, Helleveien 30  NO-5045, Bergen, Norway. 

Kurt.jornsten@nhh.no  

mailto:oyvind.halskau@himolde.no
mailto:Kurt.jornsten@nhh.no


2 

 

 

 

 

 

 

 

Abstract 

 
The Clarke and Wright heuristic for the travelling salesman problem (TSP) has been used for 

several decades as a tool for finding good solutions for TSP and other vehicle routing 

problems (VRP). In this paper we offer a simple, but fundamental relationship between the 

cost of a Hamiltonian cycle measured in the original cost matrix and the cost of the same 

cycle measured in a saving matrix. This relationship leads to a new and simple lower bound 

for TSP that some times is better than more traditional bounds based on so-called 1-trees. We 

also offer some upper bounds for the optimal solution of TSP. Some examples are given in 

order to illustrate the new bounds and compare these with the classical ones. 

  

Key words: Clark and Wright savings, Travelling Salesman Problem, lower bounds, upper 

bounds 

 
1. Introduction 

 
The Clark and Wright saving algorithm is one of the oldest heuristics for the vehicle routing 

problem, see Clark and Wright (1964) and probably also one of the most popular. It has been 

used as a basic heuristic in different software programs and as example of a heuristic in many 

text books. The literature about the Clark and Wright saving heuristic is huge. A recent 

article, (G. K Rand  2009) gives an comprehensive overview over its history and how this 

heuristic has been used in different versions, adapted to many different varieties of the VRP, 

used in practical applications in order to find good solutions to real life problems. Rand shows 

that the Clarke and Wright heuristic has been and still is used as an integrated part of many 

software packages dealing with VRP and its many extensions. This heuristic was originally 

made for dealing with VRP, but can of course also be used when one wants to find solutions 

to TSP. In this case one can define the depot one self. This gives the possibility to calculate as 

many saving matrices as there are nodes in the underlying graph. Each of them yielding 

potentially different solutions. In this paper we will restrict our selves to dealing with TSP. 

We offer a simple but revealing relationship between the cost of a Hamiltonian cycle 

measured in the original cost matrix and the cost of the same cycle measured in a saving 

matrix. This relationship gives rise to new and simple lower bounds for TSP as well as upper 

bounds for the same problem. By examples we show that these new lower bounds sometimes 

are better and sometimes are worse than more traditional and well known lower bounds for 

TSP. The rest of this paper is organised as follows: In section 2 the new relationship between 

the original cost matrix and the saving matrices are given. In section 3 the new lower bounds 

and its relationship to the traditional lower bounds are displayed. Further, a small illustrative 

example is given as well as three examples showing that it will be impossible to prove in 

general that one of these bounds always is better than the other. The details of these three 

examples are given in an appendix. In section 4 we offer some conclusions and thoughts for 

further research. 
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2. The travelling salesman problem and the saving algorithm 

 
Let C be a cost matrix for a TSP with n nodes where the elements of the matrix is denoted by 

0, ijij cc . In the original article by Clark and Wright the depot was given and the so-called 

saving values were calculated relatively to this depot. Applying the saving procedure to a TSP 

problem every node can be chosen as a depot. We denote the saving values relatively to the 

chosen depot d as d

ijs and the resulting saving matrix based on the chosen depot as dS . The 

savings can be calculated according to formula (2.1) below. 

 

ijdjid

d

ij cccs           )1.2(  

 

Note that what ever the values of the cost elements in C may be, the saving values for 

js d

dj  ,0   and isd

id  ,0 . Hence, in dS row number d and column number d all elements 

will be zero. We will denote the sum of all the elements in row number d in C as dR and the 

sum of all the elements in column number d in C as dK . Further, we will denote the cost of a 

Hamiltonian cycle H measured in C , as H(C )and  the corresponding cost in the saving matrix 
dS with H( dS ). 

 

It is well known that TSP is a NP-complete problem. However, many polynomial special 

cases have been identified over the years. Among these is the so-called constant-TSP, see 

Berenguer, X. (1979). In this special case of the TSP all the cost elements have the following 

structure: jiij bac  . The cost of every Hamiltonian cycle in such a cost matrix will have 

the same length and will be equal to 



n

j

j

n

i

i ba
11

. The Clark and Wright saving algorithm is 

an example of a so called equivalent matrix transformation (EMT), see Gutin and Punnen 

(2002) page 23 – 24. Such transformations leave the optimal solution of TSP unchanged. 

 

In Halskau and Jörnsten, (1995) and in Halskau (2000) the following simple lemma is proved. 

For convenience the proof is reproduced here. 

 

Lemma 2.1 

 
For any Hamiltonian cycle H the following relation holds for all choices of d: 

 

dd

d KRSHCH  )()(          )2.2(  

 

Proof: 

 

Restructuring (2.1) gives djid

d

ijij ccsc  . Then applying this structure on any Hamiltonian 

cycle H gives    dd

n

i

di

d

j

jd

d RKccSHCH  
 11

)()( .                                    

 

If  the triangle inequality holds in C, the saving values will be non-negative and as a 

consequence will )( dSH be non-negative for all Hamiltonian cycles and for all d. The result 

of the lemma can then be illustrated as in figure 1 below. 
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Fig1  Illustration of lemma 2.1 

 

Lemma 2.1 and figure 1 shows that for any Hamiltonian cycle were the triangle inequality 

holds, the sum of the costs measured in the original cost matrix and the chosen saving matrix 

will end up on the periphery of an ellipse. Since there are only a finite number of Hamiltonian 

cycles, not every point on the periphery will represent a Hamiltonian cycle. For a given choice 

d, we can choose the foci points freely as long as the distance between the two focal points are 

strictly less than dd RK  . 

 

Now let H* denote the optimal solution for TSP. If the distance from the right hand side focal 

point to the right hand extreme point of the ellipse is larger than H*(C), the optimal solution 

can not be represented in this ellipse. Hence, in order to include this possibility, the above 

mentioned distance must be less than the optimal solution. Since we do not necessarily know 

the optimal solution, we can let the distance from the focal point to the extreme point of the 

ellipse be less than any known lower bound for TSP, but still strictly positive. 

 

Figure 1 indicates that for the optimal solution or Hamiltonian cycles with costs close to 

H*(C), the cost of the cycle measured in C is smaller than the cost measured in the 

corresponding saving matrix. This turns out to be wrong as shown by a small example in 

section 3. 

 

The classical way of applying the Clark and Wright heuristic is to calculate the savings for a 

given choice of the depot, then sorting the saving values in a decreasing order and then 

perform a greedy algorithm choosing the largest saving first and so on deleting any saving 

that leads to sub-cycles or that the degree of a node becomes larger than 2. One ends up with a 

path spanning all nodes but the depot. Then one goes back to the original cost matrix and 

calculate the costs of the found Hamiltonian cycle. This is not necessary any more. One can as 

well add the costs of the found path directly in the used saving matrix and then apply the 

equation in lemma 2.1 to find the cost in the original cost matrix. In other words the cost in a 

chosen saving matrix for a given Hamiltonian cycle and the cost of the same cycle in the 

original cost matrix are complementary. More over, any heuristic for the TSP can – with some 

minor changes – be applied on any of the saving matrices generating different solutions to the 

)( dSH  
H(C) 
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same basic problem. For more details about such possibilities, see Halskau and Jörnsten 

(1995) and Halskau (2000). 

 

The following corollary follows directly from lemma 2.1. 

 

Corollary 2.2 
 

If the cost matrix C is symmetric then for any d, d

d RSHCH 2)()(   

 

3. Bounds for the Travelling Salesman Problem 
 

When solving the TSP to optimality, it is often convenient to have lower bounds. Such lower 

bounds can be of different qualities and can be found in many different ways. For an overview 

of such techniques, see for example Gutin and Punnen (2002) or Lawler et al. (1985). 

 

In this paper we will restrict ourselves to consider some new simple bounds for TSP and 

compare these with other well known simple bounds. 

Let C be any symmetric nxn-matrix. We let 



n

j

iji cR
1

denote the row sum of row i and we let 

   i
i

i
i

RRRR max and min maxmin   be the smallest and the largest row sum, respectively. For 

symmetric matrices we let MIST(C) denote the minimal spanning tree in the graph with the 

cost matrix C. In a similar fashion MAST(C) will denote the cost of the maximal spanning 

tree. It is well known that the so-called minimal spanning one tree in a cost matrix for a 

symmetric TSP – that is the MIST(C) plus the smallest unused edge when making the MIST – 

is a lower bound for the TSP. We will denote this as MIN(1-tree)(C). Further, we can delete 

one node i from the graph, make the MIST among the remaining nodes and then add the two 

smallest edges from the deleted node. We then have a 1-tree. This tree is evidently also a 

lower bound for TSP and will be equal to or larger than the MIN(1-tree). We will denote these 

lower bounds as iDB  and let  i
i

DBDB maxmax  . Hence, we have the following string of 

inequalities for some simple and well known lower bounds for TSP. 

 

)(*))(1()(          )1.3( max CHDBDBCtreeMINCMIST i   

 

Lemma 3.1 

 
In any cost matrix where the triangle inequality holds, the following inequalities hold: 

 

 )(min)( dd
d

KRCH   

  dd

d

dd
d

dd KRSHKRKR  )(min   

Proof: 

 

From lemma 2.1 we have – since 0)( dSH , dd

d

dd KRSHKRCH  )()( . Since we 

can choose any d the first inequality comes forth. 
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Again, from lemma 2.1 we have that dddd

d KRCHKRSH  )()( . On the other hand 

we have that  dd
d

dddd

d KRKRCHKRSH  min)()( .  

 

If we restrict the cost matrices to be symmetrical we get corollary 3.1. 

 

Corollary 3.1 

 
In any symmetrical cost matrix where the triangle inequality holds, the following bounds 

hold: 

 

minmax 2)( RCHDB   

d

d

d RSHRR 2)()(2 min    

 

 

New lower bounds for symmetric TSP 

 

These new bounds will depend on which node that is chosen as the depot and the associated 

saving matrix. We will denote these new lower bounds as dSB . Since the depot can be chosen 

in n different ways, we will get n lower bounds. Hence, the best one among these will be 

denoted as  d
d

SBSB maxmax  . 

Corollary 3.1 can now be sharpened as shown in lemma 3.2 

 

Lemma 3.2 

 
In any symmetrical cost matrix where the triangle inequality holds the following bounds hold: 

 

    2,,max)( minmaxmax RDBSBCH   

    ,max2),(min,22)( maxmaxmin DBSBRSMASTRRSH d

d

d

d   

where  )(2maxmax

d

s
d

SMASTRSB   

Proof: 

From Corollary 2.2 we have that d

d RSHCH 2)(*)(*  . Hence, since )(* CH is at its 

minimum, )(* dSH will be at its maximum. Since all the saving values from the chosen depot 

d to any of the other nodes are zero, the two edges from the depot in the optimal solution can 

be deleted without changing the value of )(* dSH . The remaining graph will be a spanning 

path among all the nodes except the depot. A spanning path is a tree and hence 

)()(* dd SMASTSH  . Note that if )( dSMAST becomes a path, the optimal solution is 

found. 

 

From the above consideration we can obtain a new lower bound for the optimal solution 

measured in C. 

 

d

d

d

d

dd

d SBSMASTRSHRCHRSHCH  )(2)(*2)(*2)(*)(* . 
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Including this new bound in the sequence of inequalities given by 3.1, we have 

 

  )(*,max))(1()(          )2.3( maxmax CHDBSBDBCtreeMINCMIST i   

 

In a similar fashion we obtain new upper bounds for )(* dSH as shown below 

 

 maxmax ,max2)(*2)(*2)(*)(* DBSBRCHRSHRSHCH dd

d

d

d  . 

 

Hence,  

 

  maxmax ,max2),(min)(*          )3.3( DBSBRSMASTSH d

dd   

 

In order to illustrate these bounds we offer a small example. Consider the small graph in 

figure 2 and the corresponding cost matrix in table 1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Graph of the small example 

 

Table 1 Cost matrix for the small example 

 1 2 3 4 5 Row sum 

1 - 2 2  2 2 2  4+3 2  

2  - 2  2 2  2 4+3 2  

3   - 2  2  4 2  

4    - 2 4+3 2  

5     - 4+3 2  

 

Now the MIST(C) consists of the edges: (1,3); (2,3); (3,4); and (3,5) and the cost becomes 

4 2 . Adding the smallest edge not used in the MIST – for example (1,2) – gives a cost for 

MIN(1-tree)(C) of 2+4 2 . 

 

It is easily seen that an optimal cycle will be H* = 1 – 2 – 3 – 5 – 4 – 1 with cost 6+2 2  

which is strictly larger than the two lower bounds found so far. 

 

Due to the symmetry of the graph it is only necessary to calculate the two lower 

bounds 3 1  and DBDB . Deleting node 1, gives the same 1-tree as MIN(1-tree). Hence, 

2421 DB . 
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Deleting node 3, will give the 1-tree consisting of the edges (1,2); (1,4); (4,5) and the added 

edges (3,2) and (3,5) gives a cost of 6+2 2 , confirming that the H* above is an optimal 

solution. Hence, 3DB finds the optimal solution. 

 

A  Hamiltonian cycle with a maximal cost will be for example the cycle 1 – 5 – 3 – 2 – 4 – 1 

with cost 2+6 2 . This is strictly less than two times the smallest row sum, which becomes 

8 2 . 

 

Due to the same symmetry we only need to find the saving tables corresponding to the 

choices of node 1 and 3 as the depot. These two saving matrices are given in table 2 and 3 

respectively 

 

Table 2 Saving values when node 1 is chosen as the depot node 

 1 2 3 4 5 

1 - 0 0 0 0 

2  -  2 4-2 2  2 2  

3   - 2 2 2  

4    - 2 2  

5     - 

 

For this saving matrix the maximal spanning tree will consists of the three edges (5,2); (5,3), 

and (5,4) with cost 6 2 . The lower corresponding lower bound will be 

826268)(2 1

11  SMASTRSB which is better than 1DB but less than 3DB . 

 

Table 3 Saving values when node 3 is chosen as the depot node 

 1 2 3 4 5 

1 - 222   0 222   22   

2  -  0 0 222   

3   - 0 0 

4     222   

5     - 

 

For this saving matrix the maximal spanning tree will consists of the three edges (1,4); (1,5); 

and (4,5) with cost 6 2 - 6. The lower corresponding lower bound will be 

22662628)(2 3

33  SMASTRSB which is equal to 3DB . 

 

Note that in this case the cost of the optimal cycle measured in the saving matrix 3S becomes  

242)( 3* SH which is less than )(* CH . 

 

In this small example it turns out that the two simple lower bounds maxmax  and DBSB become 

equal. A natural question to ask if this always is the case, and if not, will one of them always 

become better than the other? In the appendix three examples are given showing that the 

answers to these questions are negative. 
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Example 1 in the appendix is a graph with 16 nodes distributed in a grid where the distance 

horizontally and vertically between two neighbouring nodes is one.  

 

It is easy to see that a minimal 1-tree in this matrix has the cost 16 and there exists several 

Hamiltonian cycles with the same cost, for example the cycle 1 – 5 – 9 – 13 – 14 – 15 – 16 – 

12 – 11 – 10 – 6 – 7 – 8 – 4 – 3 – 2 – 1. Since the minimal 1-tree finds the optimum, all the 

lower bounds obtained by deleting a node will give the same result. 

 

Due to the symmetry of the graph it is only necessary to find the saving bounds generated by 

choosing node 1, 5 or 6 as depot nodes. The results are summarised in table 4 below: 

 

Table 4 The results using example 1 in the appendix 

Node 

number 
iDB  )( dSMAST  dR  iSB  dR2  max2 DBRd   min22 RRd   

1 16 64.12 38.49 12.87 76.98 70.98 26.12 

5 16 52.54 32.53 12.52 65.06 49.03 14.20 

6 16 37.44 25.43 13.42 50.86 34.86 0 

 

As can be seen from table 4.The saving bounds can not compete with the minimal 1-tree in 

this case. The gap is fairly large. We can also see that any Hamiltonian cycle will be in the 

interval [16, 50.86]. We also see that the optimal cycle has a cost that is strictly less than the 

smallest row sum. The cost of any Hamiltonian cycle measured in the saving matrices 1, 5, 

and 6 will be in the intervals [26.12, 64.12], [14.20, 49.03], and [0, 34.86], respectively. 

 

Example 2 in the appendix is a graph with 9 nodes distributed like a cross. Due to the 

symmetry of the graph it is only necessary to consider bounds associated with nodes 1, 2, and 

5.  

 

It is easily seen that the MIST(C2) = 8 and that (1-tree)(C2) = 41.928  . The optimal 

cycle becomes 1 – 2 – 5 – 4 – 3 – 8 – 9 – 7 – 6 – 1 with cost 

30.1322526)2(* CH . The other bounds are given in table 5 below. 

 

Table 5 The results using example 2 in the appendix 

Node 

number 
iDB  )( dSMAST  dR  iSB  dR2  max2 DBRd   min22 RRd   

1 10.24 40.26 20.13 12.05 40.26 30.04 16.26 

2 9.41 28.60 14.30 12.07 28.60 18.36 4.60 

5 10.24 11.51 12.00 12.29 24.00 13.76 0 

 

As can be seen from the table, the best bounds found by deleting a node is strictly larger than 

the MIN(1-tree). On the other hand this bound is outperformed by all the three bounds based 

on the saving procedure, the best being found by using node 5 giving 12.29 as a lower bound 

for the TSP which is less than 0.8% from the optimal solution. In this example the optimal 

solution is larger than the smallest row sum. Disregarding the fact that we know the optimal 

solution, any Hamiltonian cycle will be in the interval [12.29, 48]. The cost of any 

Hamiltonian cycle measured in the saving matrices 1, 2, and 5 will be in the intervals  

[16.26, 30.04], [4.60, 18.36], and [0, 13.76], respectively. 

 



10 

 

Example 3 is identical with example 2 apart from that node 5 has been deleted from the 

graph. It is easily seen that the MIST(C3) = 24.8234  and that (1-tree)(C3) 

= 66.9244  . The optimal cycle becomes 1 – 2 – 4 – 3 – 8 – 9 – 6 – 7 – 1 with cost 

71.1223524)3(* CH . The other bounds are given in table 6 below. 

Due to the symmetry it is only necessary to consider node 1 and 2. 

 

These three examples show that it is in general, not possible to prove that one of the two 

candidates for a lower bound always will better than the other. 

 

Table 6 The results using example 3 in the appendix 

Node 

number 
iDB  )( dSMAST  dR  iSB  dR2  max2 DBRd   min22 RRd   

1 10.48 24.12 18.13 12.14 36.26 25.26 9.66 

2 10.48 14.43 13.30 12.07 26.60 16.12 0 

 

As can be seen from the table, the best bounds found by deleting a node is strictly larger than 

the MIN(1-tree), but these bounds are out performed by both bounds found by the saving 

procedure.  On the other hand this bound is outperformed by both bounds based on the saving 

procedure, the best being found by using node 1 giving 12.14 as a lower bound for the TSP 

which is less than 5% from the optimal solution. In this example the optimal solution is 

smaller than the smallest row sum. Disregarding the fact that we know the optimal solution, 

any Hamiltonian cycle will be in the interval [12.14, 26.60]. The cost of any Hamiltonian 

cycle measured in the saving matrices 1 and 2 will be in the intervals  

[29.66, 30.04] and [4.60, 18.36], respectively. 

 

4. Conclusions and further research 
 

We have presented new and simple lower bounds for TSP based on the Clarke and Wright 

heuristic. These lower bounds sometimes outperform more classical simple bounds obtained 

by making minimal 1-trees, and sometimes not. A natural question to ask can be if it is 

possible to find special cost structures such that one á priori can decide which type of a lower 

bound is the largest. Further, both the treated lower bounds can be calculated in n different 

ways. Hence, it could be convenient to find assumptions that make it unnecessary to calculate 

all the bounds of a specific type, that is, that the search for the best bound can be restricted to 

a subset of the nodes performing as starting nodes for the lower bound. Finally, will it be 

possible to establish saving based bounds for cost matrices where the triangle inequality does 

not hold or for asymmetric cost matrices? 
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Appendix 
 

Example 1 

 

Table 7 The complete graph has 16 nodes in a grid with the following coordinates. 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

x-co 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

y-co 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0 

 

This gives the following symmetrical cost matrix 

 

Table 8 The cost matrix for example 1 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 1 2 3 1 2  5  10  2 5  22  13  3 10  13  23  

2  - 1 2 2  1 2  5  5  2 5  22  10  3 10  13  

3   - 1 5  2  1 2  22  5  2 5  13  10  3 10  

4    - 10  5  2  1 13  22  5  2 23  13  10  3 

5     - 1 2 3 1 2  5  10  2 5  22  13  

6      - 1 2 2  1 2  5  5  2 5  22  

7       - 1 5  2  1 2  22  5  2 5  

8        - 10  5  2  1 13  22  5  2 

9         - 1 2 3 1 2  5  10  

10          - 1 2 2  1 2  5  

11           - 1 5  2  1 2  

12            - 10  5  2  1 

13             - 1 2 3 

14              - 1 2 

15               - 1 

16                - 

 

Due to the symmetry, there will be only 3 different row sums: 

 

43.2554268

53.321310254248

49.38132102522612

111076

15141298532

161341







RRRR

RRRRRRRR

RRRR

 

 

It is easy to see that a minimal 1-tree in this matrix has the cost 16 and there exists several 

Hamiltonian cycles with the same cost, for example the cycle 1 – 5 – 9 – 13 – 14 – 15 – 16 – 
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12 – 11 – 10 – 6 – 7 – 8 – 4 – 3 – 2 – 1. Hence the minimal 1-tree finds the optimal value. We 

also see that the smallest row sum is larger than the minimal 1-tree. Based on node no.1 we 

get the saving matrix in table 9. 

 

 

 

Table 9 The saving matrix based on node 1 as the depot node 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2  - 2 2 0.59 1.41 1.82 1.93 0.76 1.24 1.54 1.78 0.84 1.16 1.44 1.63 

3   - 4 0.76 2 3.24 3.75 1.17 2 2.82 3,37 1.39 2 2.61 3.08 

4    - 0.84 2.18 3.82 5.16 1.39 2.40 3.59 4.61 1.76 2.56 3.44 4.24 

5     - 1.41 1.24 1.16 2 1.82 1.59 1.44 2 1.93 1.78 1.64 

6      - 2.65 2.58 2 2.65 2.83 2.78 2.41 2.34 2.19 2.05 

7       - 4.40 2 3.06 4.06 4.43 2.41 3.16 3.84 4.24 

8        - 2 3.16 4.58 5.77 2.57 3.50 4.53 5.40 

9         - 3.24 2.83 2.61 4 3.75 3.37 3.05 

10          - 4.06 3.84 3.82 4.40 4.43 4.24 

11           - 5.43 3.59 4.58 5.43 5.65 

12            - 3.44 4.53 5.80 6.85 

13             - 5.16 4.61 4.24 

14              - 5.77 5.40 

15               - 6.85 

16                - 

 

From the table above we get the maximal spanning tree shown in figure A1 below. The value 

of this tree becomes 64.12 and hence, .1212.6499.76)S(MASTR2SB 1

11  , which is 

strictly less than the (1-tree)(C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Maximal spanning tree based on saving matrix for node 1 

 

Based on node no.5 we get the saving matrix in table 10. 
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Table 10 The saving matrix based on node 5 as the depot node 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 1.41 1.24 1.16 0 0.59 0.76 0.84 0 0.18 0.41 0.56 0 0.07 0.22 0.36 

2  - 2.65 2.58 0 1.41 2 2.18 0.8 0.83 1.41 0.97 0.25 0.65 1.08 1.41 

3   - 4.40 0 1.83 3.24 3.82 0.41 1.41 1.64 3.16 0.63 1.31 2.06 2.68 

4    - 0 1.93 3.75 5.16 0.56 1.75 3.16 4.32 0.92 1.79 2.83 3.77 

5     - 0 0 0 0 0 0 0 0 0 0 0 

6      - 2 2 0.59 1.41 1.82 1.93 1 1 1 1 

7       - 4 0.76 2 3.24 3.78 1.17 2 2.83 3.37 

8        - 0.84 2.18 3.82 5.16 1.39 2.41 3.59 4.61 

9         - 1.41 1.24 1.16 2 1.82 1.59 1.44 

10          - 2.65 2.28 2 2.65 2.83 2.78 

11           - 4.40 2 3.06 4.06 4.43 

12            - 2 3.16 4.58 5.77 

13             - 3.24 2.83 2.61 

14              - 4.06 3.84 

15               - 5.43 

16                - 

 

From the table above we get the maximal spanning tree shown in figure 4 below. The value of 

this tree becomes 52.44 and hence, 52.1254.5206.65)(2 5

55  SMASTRSB , which is 

strictly less than the (1-tree)(C) and maxDB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The maximal spanning tree based on node 5 as the depot 
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Based on node no.6 e get the saving matrix in table 11. 

 

Table 11 The saving matrix based on node 6 as the depot node 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 1.41 0.83 0.65 1.41 0 0.18 0.25 0.83 0.18 0 0.04 0.41 0.49 0.64 0.78 

2  - 1.41 1.24 0.59 0 0.59 0.76 0.18 0 0.18 0.41 0.07 0 0.07 0.22 

3   - 2.65 0.18 0 1.41 2 0 0.18 0.83 1.41 0.04 0.25 0.65 1.08 

4    - 0.07 0 1.82 3.24 0.04 0.41 1 1.65 0.82 0.87 1.07 1.47 

5     - 0 0 0 1.41 0.59 0.18 0.07 1.24 0.76 0.41 0.22 

6      - 0 0 0 0 0 0 0 0 0 0 

7       - 2 0.18 0.59 1.41 1.82 0.41 0.76 1.24 1.59 

8        - 0.25 0.76 2 3.24 0.63 1.17 2 2.83 

9         - 1.41 0.83 0.65 2.65 2 1.41 1.08 

10          - 1.41 1.24 1.82 2 1.82 1.59 

11           - 2.65 1.41 2 2.65 2.83 

12            - 1.31 2 3.06 4.06 

13             - 3.24 2.47 2.06 

14              - 3.24 2.83 

15               - 4.06 

16                - 

 

From the table above we get the maximal spanning tree shown in figure 5 below. The value of 

this tree becomes 37.44 and hence, 42.1344.3786.50)(2 6

66  SMASTRSB , which is 

strictly less than the (1-tree)(C) and DB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 Maximal spanning tree based on node 6 as the depot node. 

 

Example 2 

 

We consider a graph with 9 nodes. The coordinates for the nodes are given in table 12. 

 

Table 12. Coordinates for the nodes in example 2 

Node 1 2 3 4 5 6 7 8 9 
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x-co 2 2 0 1 2 3 4 2 2 

y-co 4 3 2 2 2 2 2 1 0 

 

The cost matrix C) is given in table 13. 

 

 

Table 13 Cost matrix C2 for example 2 

 1 2 3 4 5 6 7 8 9 

1 - 1 22  5  2 5  22  3 4 

2  - 5  2  1 2  5  2 3 

3   - 1 2 3 4 5  22  

4    - 1 2 3 2  5  

5     - 1 2 1 2 

6      - 1 2  5  

7       - 5  22  

8        - 1 

9         - 

 

It is easily seen that the MIST(C2) = 8 and that (1-tree)(C2) = 41.928  . The optimal 

cycle becomes 1 – 2 – 5 – 4 – 3 – 8 – 9 – 7 – 6 – 1 with cost 

30.1322526)2(* CH . Due to the symmetry of the graph it is sufficient to 

calculate the DB only for node 1, 2, and 5. We get 

24.10236;41.928;24.1058 521  DBDBDB . 

 

Hence, none of these lower bounds finds the optimal value. 

 

The saving values based on node 1 as the depot node are given in table B14. 

 

Table 14 Saving matrix for example 2 based on node 1 as a depot node 

 1 2 3 4 5 6 7 8 9 

1 - 0 0 0 0 0 0 0 0 

2  - 1.59 1.82 2 1.82 1.59 2 2 

3   - 4.06 2.83 2.06 1.66 3.59 4 

4    - 3.24 2.37 2.06 3.83 4 

5     - 3.24 2.83 4 4 

6      - 4.06 3.83 4 

7       - 3.59 4 

8        - 6 

9         - 

 

The corresponding maximal spanning tree is illustrated in figure 6 and has the value 28.12. 

The row sum 13.205224101 R . Hence, 

08.1212.2826.40)(2 1

11  SMASTRSB , which is larger than DB 
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Fig.6  Maximal spanning tree for saving matrix based on node 1 as depot node in example 2 

 

Choosing node 2 as the depot node gives the saving matrix in table 14. 

 

Table 14 Saving matrix for example 2 based on node 2 as a depot node 

 1 2 3 4 5 6 7 8 9 

1 - 0 0.41 0.18 0 0.18 0.41 0 0 

2  - 0 0 0 0 0 0 0 

3   - 2.65 1.24 0.97 0.47 2 2.41 

4    - 1.41 0.82 0.97 2 2.18 

5     - 1.41 1.24 2 2 

6      - 2.65 2 2.18 

7       - 2 2.41 

8        - 4 

9         - 

 

The corresponding maximal spanning tree is illustrated in figure 7 and has the value 16.53. 

The row sum 30.14522272 R . Hence, 

07.1253.1660.28)(2 2

22  SMASTRSB , which is larger than maxDB . 
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Fig.7 Maximal spanning tree for saving matrix based on node 2 as depot node in example 2 

 

Choosing node 5 as the depot node gives the saving matrix in table 15. 

 

Table 15 Saving matrix for example 2 based on node 5 as a depot node 

 1 2 3 4 5 6 7 8 9 

1 - 2 1.17 0.76 0 0.76 1.17 0 0 

2  - 0.76 0.59 0 0.59 0.76 0 0 

3   - 2 0 0 0 0.76 1.17 

4    - 0 0 0 0.59 0.76 

5     - 0 0 0 0 

6      - 2 0.59 0.76 

7       - 0.76 1.17 

8        - 2 

9         - 

 

The corresponding maximal spanning tree is illustrated in figure 8 and has the value 11.51. 

The row sum 125 R . Hence, 49.1251.1124)(2 5

55  SMASTRSB , which is larger 

than maxDB . 

 

Hence, in this example all the saving bounds outperform the bounds obtained by deleting a 

node and then making a 1-tree in the original matrix as described in section 2. 
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Fig.8 Maximal spanning tree for saving matrix based on node 1 as depot node in example 2 

 

Example 3 

 

This example is the same as the previous one except that node 5 has been removed. The cost 

matrix is given in table 16. 

 

Table 16. Cost matrix C3 for example 3 

 1 2 3 4 6 7 8 9 

1 - 1 22  5  5  22  3 4 

2  - 5  2  2  5  2 3 

3   - 1 3 4 5  22  

4    - 2 3 2  5  

6     - 1 2  5  

7      - 5  22  

8       - 1 

9        - 

 

It is easily seen that 24.8234)3( CMIST  and that (1-tree)(C3) = 66.9244  . 

The optimal cycle becomes 1 – 2 – 4 – 3 – 8 – 9 – 6 – 7 – 1 with cost 

71.1223524)3(* CH . Due to the symmetry of the graph it is sufficient to 

calculate the DB only for node 1 and 2. We get 48.10523421  DBDB . 
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Hence, none of these lower bounds finds the optimal value. 

 

Due to the symmetry it is sufficient to calculate the saving values based on node 1 and 2 only. 

The saving values based on node 1 as a depot are shown in table 17. 

 

Table 17. Saving matrix for example 3 with node 1 as a depot 

 1 2 3 4 6 7 8 9 

1 - 0 0 0 0 0 0 0 

2  - 1.59 1.82 1.82 1.59 2 2 

3   - 4.06 2.06 1.66 3.59 4 

4    - 2.47 2.06 3.83 4 

6     - 4.06 3.83 4 

7      - 3.59 4 

8       - 6 

9        - 

 

From table 17 we find the maximal spanning tree as illustrated in figure 9. The cost is 24.12.  

The edges used are marked with bold numbers. 

Hence, 14.1212.2426.36)(2 1

11  SMASTRSB , which is larger than maxDB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 The maximal spanning tree for the saving matrix based at node 1 as the depot. 

 

The saving values based on node 2 as a depot are shown in table 18. 

 

Table 18 Saving matrix for example 3 with node 2 as a depot 

 1 2 3 4 6 7 8 9 

1 - 0 0.41 0.18 0.18 0.41 0 0 

2  - 0 0 0 0 0 0 

3   - 2.65 0.65 0.47 2 2.41 
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4    - 0.83 0.65 2 2.18 

6     - 2.65 2 2.18 

7      - 2 2.41 

8       - 4 

9        - 

 

From table 18 we find the maximal spanning tree as illustrated in figure 10. The cost is 14.53.  

The edges used are marked with bold numbers. 

Hence, 07.1253.1460.26)(2 2

22  SMASTRSB , which is larger than maxDB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 The maximal spanning tree for the saving matrix based at node 2 as the depot. 

 




	201307a-omslag_til_e-utgave
	201307b-tittel_til_e-utgave
	201307c-manus Some_new_bounds
	201307d-bakside_til_e-utgave

