Master's degree thesis

LOG950 Logistics

Measuring effects on inventory by centralization for a wholesaler in the industry sector - A case study

Axel Frost

Number of pages including this page: 57

Molde, 26.05.2014

Mandatory statement

Each student is responsible for complying with rules and regulations that relate to examinations and to academic work in general．The purpose of the mandatory statement is to make students aware of their responsibility and the consequences of cheating．Failure to complete the statement does not excuse students from their responsibility．

	complete the mandatory statement by placing a mark in each box for	ments 1－6
1.	I／we herby declare that my／our paper／assignment is my／our own work，and that I／we have not used other sources or received other help than is mentioned in the paper／assignment．	】
2.	I／we herby declare that this paper 1．Has not been used in any other exam at another department／university／university college 2．Is not referring to the work of others without acknowledgement 3．Is not referring to my／our previous work without acknowledgement 4．Has acknowledged all sources of literature in the text and in the list of references 5．Is not a copy，duplicate or transcript of other work	Mark each box： 1．\boxtimes 2. \boxtimes 3．\boxtimes 4.区 5．\boxtimes
3.	I am／we are aware that any breach of the above will be considered as cheating，and may result in annulment of the examinaion and exclusion from all universities and university colleges in Norway for up to one year，according to the Act relating to Norwegian Universities and University Colleges， section 4－7 and 4－8 and Examination regulations section 14 and 15.	区
4.	I am／we are aware that all papers／assignments may be checked for plagiarism by a software assisted plagiarism check	】
5.	I am／we are aware that Molde University college will handle all cases of suspected cheating according to prevailing guidelines．	区
6.	I／we are aware of the University College｀s rules and regulation for using sources	】

Publication agreement

ECTS credits: 30

Supervisor: Øyvind Halskau

```
Agreement on electronic publication of master thesis
Author(s) have copyright to the thesis, including the exclusive right to publish the document (The
Copyright Act §2).
All theses fulfilling the requirements will be registered and published in Brage HiM, with the approval
of the author(s).
Theses with a confidentiality agreement will not be published.
I/we hereby give Molde University College the right to, free of charge, make the thesis available for electronic publication:
``` \(\qquad\)
``` \(\square\) no
```

Is there an agreement of confidentiality?
(A supplementary confidentiality agreement must be filled in) - If yes: Can the thesis be online published when the period of confidentiality is expired?

```
Date: 26.05.2014
```


Høgskolen i Mold

STANDARD AGREEMENT

This agreement is between

$$
\begin{aligned}
& \text {.Axel..Frost..(Student(s)). } \\
& \text {.oyvinde...tablca. } \\
& \text { (Faculty Advisor at Mode University College), } \\
& 5
\end{aligned}
$$

And Molde University College/MSc Logistics Program Coordinator, concerning the use of specifications and results reported in the Master's degree thesis in accordance with the study plan for the Master's degree program in Logistics at Mold University College.

1. The student will complete the work assigned for the Master's degree thesis in cooperation with the company/institution Tools As (Optional): \qquad The title of the thesis is: ... Changing. dumbuhon policirs in a supply chain to
oitrimize the inventory - \& Case shady
2. The student has copyrights to the thesis. Those copies of the thess submited 2. The student has copyrights to the thesis. Those copies of the thesis submitted for evaluation along with descriptions and models, such as computer software that is included as part of or as an attachment to the thesis, belongs to Molde University College. The thesis and its attachments can be used by the College for teaching and research purposes without charge. The thesis and its attachments must not be used for other purposes.
3. The student has the right to publish the thesis, or parts of it, as an independent study or as part of a larger work, or in popularized form in any publication.
4. The companyyinstitution has the right to receive a copy of the thesis with attachments, and the College's evaluation of it. The company/institution will have three (3) months from the time the thesis is submitted to the College for censoring to determine whether a patent is possible and to apply for a patent for all or part of the results in the thesis. The specifications and results in the thesis can be used by the companyfinstitution in its own activities.
5. An additional confidentiality agreement may be entered into between the parties, if the company/institution sees this as necessary.
6. Each part of the agreement should have one copy of the agreement. The final signature should be from the Program Coordinator/Dean validating the agreement.

Acknowledgements

This thesis concludes the Master of Science in Logistics program and my five years stay at Molde University College.

I would like to express my gratitude to my supervisor Associate Professor Øyvind Halskau for his helpful guidance and advice throughout the Master thesis process.

I would also like to thank TOOLS Molde AS for the opportunity to write this thesis, especially Klaus Inge Røsberg who was my main contact at the firm.

Thanks to the entire faculty who has taught, challenged, and motivated me during this period and to my fellow students who have helped made it fun and memorable.

Molde, May 2014.
Axel Frost

Abstract

Inventory is a substantial investment in assets for most wholesalers and affects not only its profitability, but their degree of service. By correctly managing its inventory a company can achieve a competitive advantage through higher service level at a lower cost.

This case study investigates inventory allocation by virtual centralization as a way to decrease inventory among several warehouses for a wholesaler in the industry sector. Demand data from ten warehouses are analyzed, and estimates on safety stock and cycle stock are made. The status quo is compared against different degrees of centralization. The possible savings in holding cost along with ordering costs are estimated and compared against transportation cost.

Table of Contents

1. Introduction 1
1.1 Company Overview 1
1.2 Problem Description 2
1.3 Structure of the Thesis 4
2. Literature Review 5
2.1 Inventory 5
2.1.1 Inventory Carrying Cost 8
2.1.2 Safety Stock 9
2.2 The Pooling Effect, the "Square Root Law", and The Portfolio Effect 11
2.2.1 The "Square Root Law" 13
2.2.2 The Portfolio Effect. 14
2.3 Centralized Versus Decentralized 15
2.4 Transshipments 16
2.5 Facility Location 16
3. Methodology 18
3.1 Research Questions 18
3.2 Research Design 18
3.3 Data Classification 20
3.4 Quality Criteria 20
4. Discussion 22
4.1 Current Situation 22
4.2 Data Collection and Preliminary Analysis 23
4.2.1 Safety Stock 24
4.2.2 Cycle Stock and Ordering Cost 30
4.2.3 Ton Kilometers. 31
4.3 Analysis 33
4.4 Discussion 35
5. Conclusion, Limitations, and Further Research 36
6. List of references 37
7. Appendix I
A Description and variation of 5 articles. I
B Lead time from internal suppliers. I
C List of 8 scenarioes II
D List of scenarios III
E Comparison between sample and population. Safety stock. North IV
F Comparison between sample and population. Safety stock. South V
G Cycle inventory and ordering cost. South VI
H Cycle inventory and ordering cost. North VII
I Percent reduction. Cycle inventory and ordering cost. South VIII
J Percent reduction. Cycle inventory and ordering cost. North IX
K Distances between warehouses X
L Savings per added ton kilometer X
List of Tables
Table 1 - Assumptions under SRL (Maister 1976) 14
Table 2 - Decision rules for inventory (Wanke and Saliby 2009) 16
Table 3 - Relative amount of equal SKUs sold at the different locations. 23
Table 4 - Correlation 24
Table 5 - Safety stock, 5 SKUs 25
Table 6 - Difference of safety stock value between aggregating demand method versus sum of variation under zero correlation 26
Table 7 - Comparison between different service levels and lead times 27
Table 8 - Reduction in safety stock value. 28
Table 9 - Degree of centralization on safety stock 29
Table 10 - Comparison of reduction in ordering cost and cycle inventory reduction 30
Table 11 - Degree of centralization on cycle stock. 31
Table 12 - Added ton kilometer by centralization. 32
Table 13 - Cost per ton kilometer (Grønland 2011) 33
List of figures
Figure 1 - Current and Suggested situation 3
Figure 2 - Locations of the warehouses in the Northern district 3
Figure 3 - Inventory cycles - adapted from (Waters 2003) 6
Figure 4 - Annual savings versus added ton kilometers. Southern region 33
Figure 5 - Annual savings versus added ton kilometers. Northern region 34

1. Introduction

Inventory for a wholesaler represents between 20 percent and 50 percent of its total assets and is the largest single investment in the company (Stock and Lambert 2001). Inventory management has a direct effect on a company's profitability (Jonsson 2008, Waters 2003, Silver, Pyke, and Peterson 1998). Too much inventory can reduce the net profit or reduce the total assets (Grant et al. 2006). Inventory can also affect the profitability indirectly with service factors as; availability, lead time, and reliability (Jonsson 2008, Waters 2003),

1.1 Company Overview

TOOLS AS is a subsidiary company of the Swedish company B\&B TOOLS AB. They are a wholesaler of tools, machinery, industrial supplies, and personal protective equipment to customer within oil and gas, construction, and the public sector (TOOLS AS).

B\&B TOOLS was established in 1906 and is "the largest supplier of industrial consumables and industrial components, and related services for the industrial and construction sector in the Nordic region". With their core activities located in Sweden, Finland, and Norway they employ some 2,800 persons. Their annual revenue of approximately 7,700 MSEK (TOOLS 2012). Approximately 50 percent of their total sales are from proprietary product brands from four business areas:

- Tools and Machinery
- Personal Protection Equipment
- Fastening Elements
- Workplace Equipment \& Consumables (TOOLS 2014)

The largest customer segment for B\&B TOOLS is the industrial sector which accounts for 67 percent of the total sales. The construction sector accounts for 20 percent, the private market have 3 percent, and other sectors are responsible for the remaining 10 percent of total sales. Sales in Norway represent 32 percent of the total group sales. With competitors on a national level like Tess, Würth, ProffPartner, and Albert E Olsen, TOOLS' competitive focus lies within the following areas:

- Reliability: The right product in the right place at the right time.
- Competence: A high level of competency ensures that the customer receives the optimal solution.
- Proximity: Both physically and in understanding the customer's needs.
- Product range: A wide product rage gives the customers more choice and the opportunity for fewer suppliers.
- Low cost: Including product price, shipping/logistics, and administrative cost.
- Sustainability: With in-house workshops they decrease the customers cost by extending the life time of each product.
- Flexibility: With close proximity to the customers and as a major player they can adapt to unexpected situations quickly (TOOLS 2012).

TOOLS AS has 60 warehouses located all over Norway from Mandal in the south and up to Hammerfest in the north. (TOOLS AS). These are divided into three districts; North, West, and East. All warehouses have a retail store as well as storage facilities to accommodate customers, mainly craftsmen, which do not want to order and wait until delivered. Their products come both from within the group from several large warehouses through a distribution center near Oslo, Norway, and from more than 300 external suppliers.

1.2 Problem Description

This thesis is concentrated around the ten company owned warehouses in the northern district. TOOLS believe that their combined inventory levels are too high and are looking at ways to reduce it. Combined, the northern district holds inventory for approximately 76.5 million NOK. This research will try to measure the effect allocating into virtual centralization has on the inventory when reducing the number of storage facilities, allowing some warehouses to supply the customers from other warehouses by designation products to each warehouse as rudimentary illustrated in Figure 1.

Suggested situation

Figure 1 - Current and Suggested situation
Figure 2 shows the locations of the ten warehouses

Figure 2 - Locations of the warehouses in the Northern district.

TOOLS operate with short lead times to the customers. If the customer orders in the morning one day, the customer should have it by start of business the next day. This means that full decentralization is not an option as there is no point between Førde and Kirkenes that could supply all warehouses with a lead time to customers of one day. Due to the distance between Narvik and Verdal the five most southern warehouses in the northern district; Førde, Ålesund, Molde, Trondheim, and Verdal will in this thesis be mentioned as the southern region. The rest will logically be referred to as the northern region.

1.3 Structure of the Thesis

Chapter 2 in the thesis presents the literature review that formed the basis of the research. The methodology is discussed in chapter 3 along with the research questions. The current state is discussed in chapter 4 with analyzes and discussion. Chapter 5 concludes the research listing limitations and suggestions for further research.

2. Literature Review

This chapter includes the literature on centralization that the thesis is based on. Firstly, a review of inventory theory is presented. Theory on what effect centralization has on inventory follows. The chapter is concluded with a brief review on transshipments and facility location.

2.1 Inventory

Nahmias (2009) presents 7 motivation factors for holding inventory.

1. Economies of scale. With large setup cost or ordering cost, higher inventories may be economical.
2. Uncertainties. Variations in supply and demand are both motivators for holding inventories. Other factors such as supply of labor, the price of resources, and the cost of capital also affect the inventory decision.
3. Speculation. With fluctuations in price, a large purchase before a large price increase has proven to improve savings.
4. Transportation. Higher transportation time leads to higher in-transit inventories.
5. Smoothing. With seasonality and other changes in demand, storing inventory before these peaks helps evening out changes in production levels and workforce stock.
6. Logistics. There are aspects of real life which makes it impossible to not have some sort of inventory, for instance minimum purchase quantities and continuity in a manufacturing process.
7. Control cost. By minimizing the inventory, there is a need to spend more time and money controlling the inventory levels and maintaining detailed records. It might be better financially to have higher levels of inventory, especially for the low cost items, where you spend less time controlling it (Nahmias 2009).

Inventory can be divided into the following six groups: - Cycle stock, in-transit inventories, safety stock, speculative stock, seasonal stock, and dead stock (Stock and Lambert 2001). Cycle stock is normal inventory resulting from a company's replenishment program. In-transit inventory is inventory on the way to a company from a producer. Safety stock is inventory held in excess of the cycle stock, this will be discussed further in 2.1.2. Speculative and seasonal stock, are describes points 3 and 5 above. Dead stock is
stock that hasn't moved for a period of time and has to be dealt with accordingly (Stock and Lambert 2001).

When determining how much to order one of the most used formula is known as the economic order quantity (EOQ) or the Wilson formula. The EOQ finds the order quantity where the sum of holding and reorder cost is the least. It does this by taking total cost and deriving it with respect to Q and solving to zero. This is expressed in this equation:
$Q^{*}=\sqrt{\frac{2 D A}{i v}}$
The economic order quantity Q^{*} is the square root of 2 multiplied with the yearly demand D multiple the order cost A divided by the internal interest rate i multiplied with the value of the stock-keeping-unit (SKU) v. The advantage with the EOQ is its robustness in term of cost, as a relative large change in order quantity, up or down, results in a small change in total cost. This means that as long as the order quantity is in the proximity of the EOQ, the corresponding costs are close to optimal. The EOQ does not take lead time into consideration, only order quantity. If the demand and lead time is known and constant, the reorder point is simply the demand in the lead time (Waters 2003). Demand is, in the real world, seldom constant. Safety stock is therefore needed as a buffer, making the inventory cycles look somewhat like Figure 3 below.

Figure 3 - Inventory cycles - adapted from (Waters 2003).

In general there are two ways of monitoring the inventory; continuous and periodic.

- Continuous monitoring triggers orders to be placed immediately when the inventory hits the re-order point. The order could then be some determined quantity, an (s, Q) system. Alternatively the order size is determined by the inventory level and an order-up-to-level, (s, S) system. If SKUs are removed from the inventory one unit at a time these are of course identically.
- Periodic monitoring differs from continuous in that the inventory level is checked at given time intervals. This can also be combined with an order-up-to-level policy $((\mathrm{R}, \mathrm{s})$ system) without a specified reorder point. If the inventory is below the up-tolevel, an order is placed to fill that cap with such a system. An ($\mathrm{R}, \mathrm{s}, \mathrm{S}$) system is a combination of (s, S) and (R, S). The inventory is monitored periodically, but no orders are made until it reaches the reorder point. (Silver, Pyke, and Peterson 1998)

When dealing with inventory, a useful way to categorize the SKU is by an ABC analysis. This is also known as following the Pareto principle.

- Twenty percent of the SKU's produce eighty percent of the company's sales. These twenty percent is categorized as A -items and should receive the most attention when deciding service level and ordering policies (Stock and Lambert 2001).
- The next thirty percent of SKU's account for fifteen percent of sales, and are called B-items.
- C-items hold fifty percent of the SKU's and five percent of the total sales (Nahmias 2009).

These boundaries are not fixed, but are subject to judgment by the responsible. The main idea is that A items have high volume with a few SKUs, B items have medium volume with a medium number of SKUs, and C items have low volume with a high number of SKUs. There could also be more than three groups which can include properties like;

- Highly critical
- Fast moving
- Moving
- Slow moving
- Slowest
- Non moving
- Obsolete (Emmett and Granville 2007)

One could also extend the ABC analysis to include variation of demand by introducing an ABC-XYZ classification where XYZ represents for instance the variation of weekly demand (Reiner and Trcka 2004).

2.1.1 Inventory Carrying Cost

As aforementioned, inventory has a direct influence on a company's profitability. A company therefor has to consider several cost aspects of inventory other than the purchase cost. Stock and Lambert (2001) discuss four categories of these cost;

1. Capital cost. When a company has a large amount of inventory which they have bought, they also have a lot of money tied up in it. Money they could have spent elsewhere or put in the bank where they could earn interest. This is also called opportunity cost (Silver, Pyke, and Peterson 1998).
2. Inventory service cost. The inventory service cost is both the taxation cost and insurance cost of the inventory.
3. Storage space cost. This is the cost of maintaining a storage facility for the inventory, such as rent, electricity, and so on.
4. Inventory risk cost. This category can be divided into the following groups

- Obsolescence. If the demand for the SKU's decreases the company might have to sell the inventory at a reduced price to get rid of it or sit on it indefinitely.
- Damage. When an SKU gets damaged in the inventory and is no longer saleable, the company takes a loss.
- Shrinkage. This has to do with internal theft, or security measures to minimize theft. It also occurs if the company sends the wrong quantity or SKU to a customer, or is experienced through bad record keeping (Stock and Lambert 2001).

One of the primary goals in Supply Chain Management (SCM) is to reduce inventory holding (Mangan, Lalwani, and Butcher 2008). They list several ways this can be accomplished:

- Pooling the inventory. Consequently reducing safety stock while maintain the service level.
- Reduce variation at all levels. I.e. supply and demand.
- Reduce lead time. Consequently reducing re-order points, and variation in lead time.
- Implementing just-in-time. Streamlining the entire supply chain (Mangan, Lalwani, and Butcher 2008).

2.1.2 Safety Stock

Safety stock, or buffer stock as some call it, is an addition of inventory the company has to counteract any variation in the demand or lead time (Stock and Lambert 2001). When a stockout that inevitable occur from time to time one of four things can result.

1. The customer could wait until the SKU is back in stock, without any cost to the supplier.
2. The customer could put the SKU on backorder. This could cost the supplier slightly more as they might need two purchase order and some follow up work.
3. The customer could buy the SKU somewhere else, causing a lost sale for the supplier.
4. The customer could change supplier. This is the worst case scenario where the supplier loses any future sales from the customer. (Coyle et al. 2009).

There are several ways of determining the safety stock. Silver, Pyke, and Peterson (1998) discuss four such methods;

1. Safety Stocks Established Through the Use of a Simple-Minded Approach.

One could use an equal safety factor k and set the safety stock to be the safety factor multiplied with the standard deviation of demand in the lead time, σ_{L}, so the safety stock $S S$ would be: $S S=k \sigma_{L}$.

Another way is to set the equal time supplies, meaning that the reorder point is demand in a given time period plus the forecasted demand in the lead time.

2. Safety Stock Based on Minimizing Cost.

It might cost more to meet demand than the cost of stockout. This approach minimizes the total cost, but the cost of unmet demand has to be calculated. And there are several types of stockout cost;

- Specified Fixed Cost (B_{I}) per Stockout Occasion.

This does not consider to what degree or how long the stockout occurs, just the fact that it has happened.

- Specified Fractional Charge (B_{2}) per Unit Short.

This means the fraction of the cost of the SKU the company loses by not meeting demand for that SKU.

- Specified Fractional Charge (B_{3}) per Unit Short per Unit Time.

This is the same as the previous charge, but including the duration of the stockout.

- Specified Charge (B_{4}) per Customer Line Item Short.

This is a fixed cost per item the customer has to put on backorder.

3. Safety Stock Based on Customer Service

The company has to decide with percentile of the demand should be routinely met. There are again several types of service levels;

- P1-Cycle Service Level.

This is called the cycle service level because it is the fraction of order cycles where stockout does not appear, or in other words, the probability of no stockout per cycle.

- P2 - Fill Rate.

This is the fraction of demand to be met without stockout.

- P3-Ready Rate.

This is a specified fraction of time where the inventory is positive.

- TBS - Time Between Stockout.

As this is the average time between stockouts, one could use this to set an average number of times during a year were stockouts happen.

4. Safety Stock Based on Aggregate Considerations.

The safety factor is set by minimizing total cost of the aggregated SKUs; one could also weigh the SKUs in terms of importance (Silver, Pyke, and Peterson 1998).

2.2 The Pooling Effect, the "Square Root Law", and The Portfolio Effect

Brandimarte and Zotteri (2007, p. 57-58) present two beneficial concepts of aggregating demand:

- "A central distribution center aggregate demands and thus enables the company to enjoy economies of scale in transportation and order processing."
- "A central distribution center aggregates demand. Aggregate demand tends to be more stable, thus reducing the need for safety stocks."

They further state that as the correlation in demand between the different nodes gets closer to 1 , the gain in demand smoothing reduces. If the correlation coefficient p between locations is equal to one, meaning full correlation, the effect is lost (Eppen 1979, Tallon 1993). If p is -1 on the other hand, it creates an inverse relationship where a high demand at one location is cancelled out by low demand at another, eliminating the need for safety stock all together (Tallon 1993).

By centralizing you can often reduce the overall safety stock, but it may reduce the service level as customers may have to wait for the items to be shipped from the distribution center to the demand node (Brandimarte and Zotteri 2007). By aggregating the demand from several nodes there will be a reduction in the demand variation and therefore result in a reduction in safety stock (Mangan, Lalwani, and Butcher 2008).

The standard deviation of two independent variables can be defined as the square root of the sum of variance of both variables given that the correlation between them is zero. If this is not the case the equation changes from:

$$
\begin{aligned}
& \sigma_{1,2}=\sqrt{\operatorname{Var}\left(D_{1}+D_{2}\right)} \\
& \text { to } \sigma_{1,2}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}},
\end{aligned}
$$

where ρ is the correlation coefficient (Newbold, Carlson, and Thorne 2013).
Chopra and Meindl (2013) says that if the correlation coefficient is less than $1, \rho<1$, the joint standard deviation of two variables are smaller than the sum of the two standard deviations.
$\sigma_{1,2}<\sigma_{1}+\sigma_{2}$

They further list five variables that affect the effect of safety stock aggregation compared to holding separate safety stock;

- Increased service level causes an increase in aggregated safety stock savings. If one compares separated safety stock of two locations to an aggregated safety stock option, an increase in service level from, for instance, 95 percent to 97 percent would lead to a higher cost saving in the aggregated option.
- Increased lead time causes an increase in aggregated safety stock savings. As the lead time increases, so would the standard deviation for the lead time, resulting in higher safety stock for both separated and aggregated safety stock. The aggregated safety stock would, however, increase less than the combined value of the separated options.
- Increased holding cost causes an increase in aggregated safety stock savings. As an aggregated stock holds, in total, less safety stock than two separated one. The savings increases along with the holding cost.
- An increase in the coefficient of variation causes an increase in aggregated safety stock savings.
- An increase in the correlation coefficients causes a decrease in aggregated safety stock savings (Chopra and Meindl 2013).

Xu and Evers (2003) mentions two types of demand aggregation. First they discuss about physical aggregation. This is when the actual number of inventory locations is reduced, and you have a centralization of the inventory. Lastly, they mention virtual aggregation. This is when the management is centralized, but the inventory remains at the same place. Here the aggregation takes effect by lateral transshipments between the locations. Furthermore, they produce evidence to that complete aggregation, where all demand points are served by one supply point, is always better than partial aggregation. However, this is only true for the correlation coefficient since other factors as transportation cost and lead time may make it more beneficial for the supply chain to have partial aggregation. (Xu and Evers 2003).

2.2.1 The "Square Root Law"

The "Square Root Law" (SRL) states that in the case of centralization of n number of inventory location into one location, the amount of inventory as a ratio of the decentralized inventory, $\frac{\text { decentralized system inventory }}{\text { centralized system inventory }}$, is equal to \sqrt{n}. It also follows that the percent reduction in inventory by centralization is given by $\frac{\text { Decentralized invetory-Centralizes inventory }}{\text { Decentralized inventory }}=1-\frac{\text { Centralized inventory }}{\text { Decentralized inventory }}=1-\frac{1}{\sqrt{n}} \quad$ (Maister 1976).In 1976 D.H. Maister proved the SRL correct both for cycle stock and safety stock, with the assumptions listed in Table 1.

Maister furthermore introduced an adaptation SRL equation this where one consolidate n locations into m locations, $n>m$, as the ratio $\frac{\sqrt{m}}{\sqrt{n}}$. This is only valid under the assumption that each location have the same proportion of the total demand (Maister 1976).

2.2.2 The Portfolio Effect

The portfolio effect (PE) as defined by Zinn, Levy, and Bowersox (1989, p. 3) as "the percent reduction in aggregate safety stock made possible by consolidation of inventories from multiple locations into one location". The equation for PE is as follows; $P E=1-\frac{S S_{a}}{\sum_{i=1}^{n} S S_{i}}$, for $0 \leq P E \leq 1$, where;
$S S_{a}$ is the aggregate safety stock for a given product if inventory is consolidated.
$S S_{i}$ is the safety stock for a given product at location i.

The portfolio effect goes from zero to one and at zero there is no reduction in safety stock by aggregating. While Maister assumed zero correlation between demands at
different locations in the SRL, the PE accounts for both correlation and the relative values of the standard deviation which Zinn, Levy, and Bowersox (1989) called Magnitude (M).
$M=\frac{\sigma_{1}}{\sigma_{2}}$, for $\sigma_{1} \geq \sigma_{2}$ and $\sigma_{2} \neq 0$
By inserting this into the equation for safety stock they derived that:
$P E=1-\frac{\sqrt{M^{2}+1+2 M p_{12}}}{M+1}$
Consequently they proved that it is the relative values of correlation, and not the absolute value, that affects the PE (Zinn, Levy, and Bowersox 1989).

Ronen (1990) argues that since a centralized stock will have more order cycles per year than any of the decentralized facilities under the assumption that they have the same ordering policies and holding cost. Consequently, by using the a safety factor based on the probability of not running out of inventory during the lead time, the results can be misleading.

2.3 Centralized Versus Decentralized

By centralizing their activities, a company can achieve significant savings due to the economy of scale (Stock and Lambert 2001). There are more benefits of a centralized inventory other than the aforementioned inventory chapter. A centralized system can work towards better solutions for the entire supply chain while the decentralized systems tend to work with a local optimum. This is especially the case, if the supply chain is owned by one company since they can use coordinated strategies to reduce total costs and improve the service level (Simchi-Levi, Kaminsky, and Simchi-Levi 2004). A centralized purchasing system can also lead to lower purchase price due to higher purchase volumes and improvement in the purchasing procedures. It can also reduce the duplication of effort (Monczka et al. 2011). The authors also discuss multiple advantages of a decentralized system like;

- Higher responsiveness to change in the customers' requirements
- Better understanding of local differences
- Higher "ownership" in the effects of their decision (Monczka et al. 2011).

2.4 Transshipments

There are, however, other possibilities to improve the supply chain other than aggregating the demand. "Risk pooling through lateral transshipment in inventory distribution system is an effective means of improving customer service and reducing total cost" (Tagaras 1999, p. 39). Tagaras (1999) further discuss two types of transshipment policies;

- Emergency lateral transshipments that occur when the shortage happens as a means to reduce stockouts
- Preventive lateral transshipments that happen before any stockouts and helps reduce the risk of shortage.

Wanke and Saliby (2009) came up with a decision framework for inventories based on the property of the SKU which can be seen in Table 2.

Table 2 - Decision rules for inventory (Wanke and Saliby 2009)

Major decision	Should inventories be pooled?		
	Yes		No
If yes, how should inventories be pooled?	Inventory Centralization	Regular Transshipments	Independent Systems
Adequacy in terms of product, demand, and operation characteristics for a minimal total cost	High holding costs Negative correlation	Low holding costs Moderate positive correlation	Medium holding costs High positive correlation
	High and homogeneous lead time means High and homogeneous demand std. deviations	Possibility of balancing high/low lead time means and std. deviations of demand at different centralized locations	Low lead time means Low demand std. deviations
	Homogeneous levels of lead time variability	Heterogeneous levels of lead time variability	Homogeneous levels of lead time variability
Type of pooling	Demand	Lead time demand	None
Additional benefits	One also benefits from the consolidation at the best performance facility in terms of lead time variability	None	One also benefits from the fact that undesirable or unexpected cross-effects in terms of demand peaks (or valleys) and/or lead time delays (or anticipations) are avoided

Lateral transshipments will always be outperformed by centralization of inventory in terms of holding and shortage cost, but not on accessibility and service (Tagaras 1999).

2.5 Facility Location

The decision of facility location tends to be taken at the strategic level (Brandimarte and Zotteri 2007). Their decision is costly and hard to reverse, and the parameters can vary widely in the time horizon (Snyder 2006).

Edgar M. Hoover (1963) outlined three general strategies for location theory; material-oriented, market-oriented, and intermediated stages. Production sites tend to be located closer to the supply of raw materials, while the end-products tend to be closer to the customers. The center-of-gravity approach is a simplistic facility location theory where the objective is minimization of the transportation cost (Grant et al. 2006). This theory says that one should place the warehouse closer to where the largest part of the transportation cost is, equalizing the transportation cost in all directions. Within the location modeling science this thesis would fall under the discrete category. Daskin (2008) divides this group into three classes; Covering-based Models, Median-based Models, and Other Models.

The Covering-based Models entail some crucial distance or time limit that has to be covered from a supply node and can be split by their objective and constraints.

- It could be desirable to minimize the number of supply nodes to cover a given area or response time. This is called the Set Covering Model.
- With limited resources one would want to maximize the covering given a determined number of supply nodes, the Max Covering Model.
- The p-center Model is used to find the minimum coverage distances while covering all demand nodes.
The Median Models differ from the Covering Models in that they include actual distances.
- The p-median Model minimizes the product of distance and demand given a determined number of supply nodes available.
- The Fixed Charge Model also includes any cost of establishing supply nodes.

The last category is for the models that do not fit into the other categories.

- P-dispersion where the objective is to maximize the minimum distance between each node. For instance in retail, if your own stores are too close together, they will fight for the same customers (Daskin 2008).

3. Methodology

When formulating a research problem, it is important to find what unit of analysis to be studied. Although there are no limitations on what the unit of analysis could be, careful selection is important as it affects not only the research design, data collection methods, and data analysis, but also the scope of the research and its level of generalization and theorizing (Frankfort-Nachmias and Nachmias 2008). In this research the unit of analysis is the reduction of inventory levels by centralization. Both cycle stock and safety stock will be analyzed.

3.1 Research Questions

The research questions should meet the following criteria listed by Bryman and Bell (2011).

1. Questions should be clear. So that both the author(s) and reader(s) alike should understand them.
2. Questions should be searchable. The questions should lead to a research design and enable data collection.
3. Questions should connect with established theory and research.
4. Questions should be linked to each other. Allowing for a single line of argument throughout the thesis.
5. Questions should have potential for making a contribution to knowledge.
6. Questions should be neither too broad nor to narrow.

With these criteria in mind the research question was formulated as:

How does centralization affect the inventory for a wholesaler in the industry sector?

3.2 Research Design

The main purpose with a research designs is to help the researchers with a conceptual framework that will guide them to utilize principles of scientific inquiry to answer the research questions (Edmonds and Kennedy 2013). Bryman and Bell (2011) gives five different types of research design; experimental, cross-sectional, longitudinal, comparative design, and case-study.

The experimental research design requires manipulation of the independent variables to look for changes in the dependent variable. It is often used to check differences between a treatment group and a control group. Since this thesis is based on historical data with no possibilities to manipulate the dependent variable, this was not a good fit for this thesis.

Cross-sectional design, or social survey design as it is some time called, is defined as:
"(...) the collection of data on more than one case (...) to detect patterns of association" (Bryman and Bell 2011, p. 53)

This often entails structured interviews and questionnaires to collect data so that variations between the different cases may be examined. Although this may be an appropriate design to use in order to answer the research question, it is not in this case since this work focuses on only one company.

Longitudinal design is used to look for changes over time, and requires samples from more than one time period (Bryman and Bell 2011). Time limitation presented a problem in using this kind of research method.

Comparative design "embodies the logic of comparison" (Bryman and Bell 2011, p. 63), with similar methods used on contrasting cases to be able to better understand a social phenomenon. As aforementioned, this thesis is centered on one company so the comparative design could therefore not be applied.

The case study design necessitates an intensive analysis of a single case (Bryman and Bell 2011), and can be used to gain insight in what effect different structures of logistics and purchasing organization has on the logistics role in an organization (Ellram 1996). It is an iterative process used to empirically analyze a contemporary phenomenon within its real-life context (Yin 2009). Since this research used data from an existing company, it lies within the real-life context. The subject research question should be considered contemporary as inventory is a constant factor in a company's competitive advantages, and there is continuous process to improve it. With this in mind, a case study research design was used for this thesis. With focus primarily on safety stock for the northern district of TOOLS, the thesis fell under the single-case design group (Yin 2009).

Several different cases exists within this research design there exist. This thesis was a representative case study. A representative case is one that can be used as an example for
form of organization (Yin 2009, Bryman and Bell 2011). The northern part of Norway has properties that would impede the comparison to other countries or other parts of Norway. With vast distances between population centers, any results should be looked at with caution as an example for other regions. As a wholesaler TOOLS have more than 350,000 SKUs in its assortment (TOOLS AS) As long as the data foundation is wide enough it should represent the sector of wholesaler to the industry sector.

3.3 Data Classification

A normal way to categorize data in any research is by primary and secondary data. Primary data can be defined as; data that has not been collected before and therefor the researches have to collect it to answer their questions. Secondary data is data that already exist, and are faster and less costly to obtain. One could also say that primary data becomes secondary data if it is used by another researcher who did not participate in the primary data collection. Within secondary data we can distinguish between internal and external secondary data. Internal secondary data is data that comes from within the organization or company, while external secondary data can be obtained from government or industry sources, the internet, etc. (Bradley 2010).

This thesis dealt mainly with internal secondary data provided by TOOLS ERP system with regards to demand pattern and a distance matrix calculated from google maps. Since the data from TOOLS are collected through the system they use daily, they have an incentive to keep the data as accurate as possible. Consequently they can be considered to be reliable. Data from google maps were used to supplement existing distance data from TOOLS as it was easily available and should be considered adequate in the calculations done in this research.

3.4 Quality Criteria

The main goal in any research is to achieve valid results based on the relevant application of the scientific method. Validity, in regards to research design, is defined as:
"The extent to which the outcome accurately answers the stated research questions of the study" (Edmonds and Kennedy 2013, p. 3). In relation to the case study design the quality criteria used are;

- Internal validity. This can be summed up in the known phrase: correlation does not imply causation. The concept is how certain we are that that the independent variable is responsible for changes in the dependent variable.
- External validity. This deals with the concept of whether the results can be generalized beyond the specific research question (Bryman and Bell 2011, Edmonds and Kennedy 2013, Yin 2009).
- Reliability. If the research is done again it should lead to the same results and conclusion (Bryman and Bell 2011, Yin 2009).

Since the company uses previous experience when determining safety stock, a theoretical safety stock for the current situation is used to measure any improvements. When determining safety stock by a predetermined service level based on customer service, the only variable is variation in demand. Hence, we can assume internal validity to be high. In terms of external validity and the possibility of generalization of a single-case, it is hard to do without further testing on similar cases (Yin 2009). So even though the situation in itself is not uncommon, it is a single-case. Consequently one should keep that in mind related to any generalization.

Reliability is the concept of documenting the research to such detail that the process can be repeated by others. To overcome any reliability deficiencies it is important to establish a case study protocol (Yin 2009). The case study protocol should include description of the steps undertaken as well as any interview guide (Ellram 1996). This research dealt primarily with secondary data, so the need for such a protocol is not that imperative. If this case study were to be research again, the data foundation would be identical.

A final issue in the quality criteria is that of conformability, or objectivity in other words. The concept is that the findings in the research represent the data and not the researcher's biases (Bryman and Bell 2011, Halldórsson and Aastrup 2003). Regarding this thesis, the author considers himself to have no personal gain from any results presented. Combined with a thorough literature review and a substantial amount of secondary data this should document that the results presented are that of the original inquiry, and not influenced by the researcher's potential biases.

4. Discussion

This chapter starts describing the current situation at TOOLS regarding inventory before data collection and preliminary analyzes of safety stock, cycle stock, and ton kilometers. These are followed by further analyzes in the next part before a discussion ends the chapter

4.1 Current Situation

This thesis is centered on four quantifiable costs in order to answer the research question; cycle stock cost, ordering cost, safety stock cost, and transportation cost. At the present point in time TOOLS have no rules set on neither safety stock nor order quantity. They rely instead on the experience of the purchasers in the different warehouses. This causes a problem when measuring any solution against the status quo since any theoretical solution might be distorted when measuring against the real-world data. If any warehouse holds far too much or too little inventory, any theoretical findings compared against the current situation is difficult. TOOLS do not calculate holding cost and purchasing cost. Consequently, assumptions have been made for these costs. With many large customers and competitors on a local and national level, TOOLS want to operate with a high service level. In light of this, a theoretical baseline for the safety stock and cycle stock is used to calculate any improvement by virtual centralization.

TOOLS pay no extra transportation cost for stock SKUs sent from the internal supplier whether they are sent to the warehouses or directly to the customers. However, their internal supplier will start to charge extra for direct shipments to customers. The management therefore finds it less costly to have the SKUs shipped to the warehouses and subsequently from there to the customers. By letting the warehouses stock fewer SKUs, but more of each, they will act as supply nodes for the customers of, what are now, customers of another warehouse as illustrated in Figure 1. Consequently, any added transportation cost from virtual centralization is of interest.

4.2 Data Collection and Preliminary Analysis

In order to have any benefit from virtual centralization, there has to be demand for the same SKU in more than one warehouse. Sales data containing orders delivered to customers and over the counter from each location was collected. The time period was from 01.11.2012 to 31.10 .2013 . These included which warehouse they were sold from, article number, description, number of items sold, cost, and revenue. Non-physical SKUs like services were removed. A comparison was made to see the relative number of equal SKUs between the different warehouses. This is shown in Table 3.

Table 3 - Relative amount of equal SKUs sold at the different locations.

	Kirkenes	Hammerfest	Troms \varnothing	Finnsnes	Narvik	Verdal	Trondheim	Molde	Ålesund	Førde
Kirkenes	100.00%	34.78%	44.75%	42.25%	39.51%	26.33%	41.94%	36.58%	46.23%	41.16%
Hammerfest	31.46%	100.00%	51.49%	40.97%	36.98%	23.95%	39.73%	33.11%	45.19%	39.22%
Troms \varnothing	24.11%	30.67%	100.00%	34.81%	32.86%	19.11%	34.43%	28.64%	38.47%	33.69%
Finnsnes	22.45%	24.06%	34.32%	100.00%	33.14%	18.60%	34.07%	27.15%	37.14%	33.44%
Narvik	27.33%	28.27%	42.18%	43.15%	100.00%	22.35%	37.08%	31.28%	40.41%	37.98%
Verdal	20.18%	20.29%	27.17%	26.84%	24.77%	100.00%	30.56%	28.54%	35.50%	30.11%
Trondheim	19.92%	20.86%	30.35%	30.47%	25.46%	18.94%	100.00%	29.39%	39.55%	34.37%
Molde	16.80%	16.80%	24.41%	23.47%	20.77%	17.10%	28.41%	100.00%	35.63%	32.73%
Ålesund	15.77%	17.04%	24.35%	23.85%	19.93%	15.80%	28.40%	26.47%	100.00%	31.80%
Førde	13.87%	14.61%	21.06%	21.21%	18.50%	13.24%	24.38%	24.02%	31.40%	100.00%

Table 3 should be read like (Hammerfest, Kirkenes), where the first name is found along the rows and the second name is found along the columns, is the number of SKUs sold in Kirkenes as a percent of the total of the SKUs sold in Hammerfest which is 31.46 percent. And (Kirkenes, Hammerfest) we see that 34.78 percent of SKUs sold at Kirkenes was also sold in Hammerfest. By disregarding the ten values representing the same warehouses, (Kirkenes, Kirkenes), (Hammerfest, Hammerfest), and so on, the average is 29.35 percent and the two warehouses with the highest percent of equal SKUs is (Hammerfest, Tromsø) at 51.49 percent. This means that over half of the items sold in Tromsø were also sold in Hammerfest. The two warehouses with the least amount of equal SKUs are (Førde, Verdal) with 13.24 percent. However, Førde has more than twice the number of SKUs sold than Verdal. Førde also has the least average percent at 20.25 against the overall percent which is 29.35 . Kirkenes has the most equal SKUs with the other warehouses with 39.28 percent on average. This might be because Kirkenes has the least amount of different SKUs sold in the time period with 6662 unique SKUs. This might mean that the demand is closer to the core assortment, but this is pure speculation. The ten warehouses have, on average, sold 12508 different SKUs each.

4.2.1 Safety Stock

To check for correlation between the warehouses a small amount of data containing a hundred SKUs where collected; these were the top ten SKUs in respect of revenue for each of the ten locations. Several SKUs were in the top ten for more than one location. When that happened, the next item in respect to revenue from either of the locations was also selected. There were also SKUs that had been replaced with another SKU. The new SKU was then included in the set and the article number for the replaced SKU was changed to that of the new one. This data set contained order date, the customers unique ID-number, customer name, order number, amount of each SKU ordered, their description, delivery date, and amount. Another data set containing the purchase price of the SKUs was also collected. By summing the product of the SKUs and their price, an estimate for correlation was made as shown in Table 4.

Table 4 - Correlation

	Kirkenes	Hammerfest	Troms \varnothing	Finnsnes	Narvik	Verdal	Trondheim	Molde	Ålesund	Førde
Kirkenes	0.000	0.051	-0.020	-0.003	-0.003	0.029	0.001	0.013	0.010	0.020
Hammerfest		0.000	-0.019	-0.021	-0.042	-0.008	0.037	0.058	0.010	0.042
Troms \varnothing			0.000	-0.028	-0.085	0.019	0.011	0.000	-0.051	0.062
Finnsnes				0.000	0.096	0.193	0.152	0.122	0.064	0.021
Narvik					0.000	0.171	0.029	0.059	0.071	0.128
Verdal						0.000	0.137	-0.004	0.091	-0.052
Trondheim							0.000	-0.016	0.145	0.161
Molde								0.000	0.042	0.023
Ålesund									0.000	0.034
Førde										0.000

Table 4 shows that the correlation is very small. The highest correlation coefficient is 0.193 and the lowest is -0.085 . The average correlation between them is 0.039 . As this is very close to zero, zero correlation between the warehouses is assumed.

When a large amount of independent variables are combined, their probability distribution tend to approach normal distribution, this is called the Central Limit Theorem. (Mattsson 2007). If there are more than thirty observations, normal distribution can be used as an approximation (Johnson and Bhattacharyya 2011). In this thesis, weekly demand over one year was used so the assumption of normal distribution has therefore been applied.

A second test to check the assumption of zero correlation between the different warehouses was carried out with five SKUs. The five SKUs were picked out of the highest A-items where the demand was high. By using the Customer Service approach from
chapter 2.1.2; where safety stock is the product of a safety factor for a service level P1 of 95 percent and the standard deviation of demand for the lead time, $S S=k \sigma_{L}$. The middle case lead time from the internal suppliers were used. The description, price, and weekly standard deviation of the five SKUs can be found in Appendix A along with the lead time for the different warehouses from their internal supplier. The warehouse that should act as a supply node was selected by these criteria;

- When an odd number of warehouses were combined, the warehouse in the middle was chosen.
- When an even number of warehouses were combined, the warehouse with the highest demand in term of value of the two in the middle was chosen.
- The case of the three warehouses furthest to the north, (Tromsø, Finnsnes, and Kirkenes) presents a special case when looking at distances and lead times. In the case of all three combined Tromsø was selected as the supply node. When Kirkenes and Hammerfest were combined Kirkenes was selected as the supply node.

As it can be seen from Table 5 the safety stock was approximately NOK 143,000 in total for all ten locations.

Table 5 - Safety stock, 5 SKUs.

Kirkenes	kr	3104.92
Hammerfest	kr	-
Troms \varnothing	kr	673.04
Finnsnes	kr	13397.44
Narvik	kr	3231.30
Verdal	kr	16345.97
Trondheim	kr	509.20
Molde	kr	33265.34
Ålesund	kr	59494.16
Førde	kr	13149.61
Sum	kr	143170.98

This result was then analyzed by both manually aggregating the demand of each SKU over two scenarios; using two warehouses and four warehouses. The two scenarios were also analyzed by and adding the variation with zero correlation. Table 6 is showing potential benefit of centralization and the comparison of the two methods. A maximum
reduction of up to 29 percent could be achieved. The differential between the two methods was 4.1 percent at the most.

Table 6 - Difference of safety stock value between aggregating demand method versus sum of variation under zero correlation.

Aggregating Demand		$\sigma_{1,2}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}$	
Two Warehouses		Two Warehouses	
South	kr 93219	South	kr 90414
North	kr 13982	North	kr 10965
Sum	kr 107201	Sum	kr 101379
Percent reduction	25.1 \%	Percent reduction	29.2 \%
Four Warehouses		Four Warehouses	
Trondheim \& Verdal	kr 16319	Trondheim \& Verdal	kr 16373
Molde, Ålesund, \& Førde	kr 82535	Molde, Ålesund, \& Førde	kr 80508
Narvik, Finnsnes, \& Tromsø	kr 13727	Narvik, Finnsnes, \& Tromsø	kr 13741
Hammerfest \& Kirkenes	kr 2443	Hammerfest \& Kirkenes	kr 2443
Sum	kr 115024	Sum	kr 113064
Percent reduction	19.7 \%	Percent reduction	21.0\%

In light of these results the decision to assume zero correlation was made. New data sampling for 150 SKUs from each warehouse, 50 in each Pareto group. All were randomly selected with a random number generator ${ }^{1}$ for a total of 1500 SKUs. No attempt to remove duplicates was made. The large amount of SKUs was chosen to make the number of SKUs without duplicates substantial. The same procedure, with replaced SKUs, was done as before, making a total of 1457 SKUs to be evaluated further. Eight scenarios were chosen and calculated with all three possibilities of lead time and a service level of 90 percent, 95 percent, and 99.9 percent respectively. Scenario 1 represents zero centralization and scenario 2 is full possible aggregation, meaning that there is one supply node in the northern region and one supply node in the southern region. The others are combinations that are defined in Appendix C. Table 7 shows the monetary value as well as percent reduction of the safety stock in the eight scenarios.

[^0]Table 7 - Comparison between different service levels and lead times.

NOK				Reduction percent			
Scenario 1				Scenario 1			
P1=	Best	Middle	Worst	P1=	Best	Middle	Worst
90.0\%	kr 3150278	kr 3265976	kr 3369754	90.0\%	0\%	0\%	0\%
95.0\%	kr 3314233	kr 3496990	kr 3646739	95.0\%	0\%	0\%	0\%
99.9\%	kr 4183143	kr 4628896	kr 4984407	99.9\%	0\%	0\%	0\%
Scenario 2	Metric tonne	-kilometers	351995 tkm	Scenario 2			

P1=	Best	Middle	Worst	P1=	Best	Middle	Worst
$\mathbf{9 0 . 0 \%}$	kr 1574045	kr 1683923	kr 1766126	$\mathbf{9 0 . 0} \%$	50%	48%	48%
$\mathbf{9 5 . 0 \%}$	kr 1728458	kr 1868936	kr 1977455		$\mathbf{9 5 . 0} \%$	48%	47%
$\mathbf{9 9 . 9 \%}$	kr 2429472	kr 2703490	kr 2956905	$\mathbf{9 9 . 9} \%$	42%	42%	41%

Scenario 3

P1=	Best	Middle	Worst	P1
$\mathbf{9 0 . 0 \%}$	kr 1840055	kr 1960616	kr 2051098	
$\mathbf{9 5 . 0 \%}$	kr 2006524	kr 2150297	kr 2279931	
$\mathbf{9 9 . 9 \%}$	kr 2713703	kr 3046526	kr 3325494	

Scenario 3

Scenario 4

P1=	Best	Middle	Worst	P1
$\mathbf{9 0 . 0 \%}$	kr 2102785	kr 2234454	kr 2321570	
$\mathbf{9 5 . 0 \%}$	kr 2268108	kr 2433913	kr 2560022	
$\mathbf{9 9 . 9 \%}$	kr 2989551	kr 3394548	kr 3660919	

Scenario 5

P1=	Best	Middle	Worst	P
$\mathbf{9 0 . 0 \%}$	kr 1740400	kr 1858039	kr 1938004	
$\mathbf{9 5 . 0 \%}$	kr 1904572	kr 2045320	kr 2157740	
$\mathbf{9 9 . 9 \%}$	kr 2673030	kr 2950250	kr 3219175	
Scenario 6			S	

Scenario 6

P1=	Best	Middle	Worst
$\mathbf{9 0 . 0 \%}$	kr 2056645	kr 2162820	kr 2244616
$\mathbf{9 5 . 0 \%}$	kr 2231114	kr 2357052	kr 2475067
$\mathbf{9 9 . 9 \%}$	kr 2956088	kr 3243877	kr 3479085

Scenario 7

P1=	Best	Middle	Worst
90.0\%	kr 2637487	kr 2751605	kr 2843486
95.0\%	kr 2801779	kr 2965609	kr 3100083
99.9\%	kr 3620876	kr 4066381	kr 4343263

Scenario 8

P1=	Best	Middle	Worst
$\mathbf{9 0 . 0 \%}$	kr 2344337	kr 2468828	kr 2568586
$\mathbf{9 5 . 0} \%$	kr 2518687	kr 2681556	kr 2823622
$\mathbf{9 9 . 9} \%$	kr 3288044	kr 3652293	kr 3959751

Scenario 6

P1=		Best	Middle
Worst			
$\mathbf{9 0 . 0} \%$	35%	34%	33%
$\mathbf{9 5 . 0} \%$	33%	33%	32%
	$\mathbf{9 9 . 9} \%$	29%	30%

Scenario 7

P1=	Best	Middle	Worst
$\mathbf{9 0 . 0} \%$	16%	16%	16%
$\mathbf{9 5 . 0} \%$	15%	15%	15%
	$\mathbf{9 9 . 9} \%$	13%	12%
		13%	

Scenario 8

P1 $=$		Best	Middle	Worst
	$\mathbf{9 0 . 0} \%$	26%	24%	24%
$\mathbf{9 5 . 0} \%$	24%	23%	23%	
	$\mathbf{9 9 . 9} \%$	21%	21%	21%

It can be seen from Table 7 that the second scenario gives a reduction of safety stock between 50 percent with service level at 90 percent and best case in lead time, to 41 percent with 99.9 percent service level and worst case lead time. This is a nine percent difference between the best case and the worst case. This difference gets smaller as the scenario gets closer to decentralized. Scenario 7 is the least centralized scenario with seven warehouses instead of ten: the difference is only three percent.

Under the assumption that warehouses can only be joined together if they are adjacent and that the five in the northern region cannot be joined with the five in the southern region, there are 256 possible ways of centralizing the warehouses. However, by looking at the northern and southern region as two different cases the number of possibilities decreases to two cases of 16 possibilities each. A list over these all scenarios is found in Appendix D along with what will for the rest of this thesis be called degree of centralization. The degree of centralization is how many virtual warehouses the estimates are based on.

Calculation of all 32 scenarios with a P1 service level of 95 percent, middle lead time from internal supplier, and selecting warehouse by the aforementioned criteria was done and is summarized in Table 8. The monetary value can be found in Appendix E and Appendix F along with estimates on the value for all SKUs sold during one year.

Table 8 - Reduction in safety stock value.

South	
Scenario	Reduction in percent of decentralized value
S01	43.44%
S02	34.76%
S03	30.44%
S04	24.80%
S05	28.40%
S06	23.24%
S07	21.96%
S08	15.55%
S09	17.99%
S10	14.41%
S11	16.41%
S12	9.25%
S13	11.25%
S14	8.73%
S15	5.16%
S16	0.00%

North	
Scenario	Reduction in percent of decentralized value
S01	50.14%
S02	40.16%
S03	35.85%
S04	31.13%
S05	32.70%
S06	27.09%
S07	26.54%
S08	19.79%
S09	22.81%
S10	16.94%
S11	19.41%
S12	11.33%
S13	13.80%
S14	11.47%
S15	5.61%
S16	0.00%

From the estimates in Appendix E and Appendix F when adjusting to all SKUs sold, the ten warehouses hold a combined theoretical safety stock of NOK 83 million. This is higher than the combined total inventory of the current state of NOK 76.5 million mentioned in chapter 1.2. There are a number of reasons why this theoretical number is artificially high;

- When using Customer Service to determine safety stock, the answer is generally a fractioned number. To ensure that the safety stock help to achieve a P1 service level of at least 95 percent, this number has been rounded up to the closest integer. By doing this there are SKUs with low demand that should mean that the SKUs should not be held in stock, would in this case have one in stock.
- There are a number of SKUs that in today situation is not in stock. Especially slow moving A-items which are ordered when there is a demand for them. This means that the numbers of items sold are not equal to the number of items in stock leading to this high value of the theoretical safety stock.

Consequently, the percent decreasing safety stock would be a more accurate picture of the possibilities. When averaging these percentiles for scenarios with the same degree of centralization for North and South it is clear that a higher degree of centralization leads to lower safety stock. This is shown in Table 9.

Table 9 - Degree of centralization on safety stock

Reduction in percent of decentralized value			
Number of warehouses	South	North	Square Root Law
1	43.44%	50.14%	55.28%
2	29.60%	34.96%	36.75%
3	18.26%	22.10%	22.54%
4	8.60%	10.55%	10.56%
5	0.00%	0.00%	0.00%

The northern region follows Maister (1976) square root law on consolidating n location into m location rather close, while the southern region shows a slighter potential reduction in safety stock.

4.2.2 Cycle Stock and Ordering Cost

No basic data foundation for ordering cost and holding cost exist at TOOLS. Hence, the EOQ have been calculated with several values for both. For the ordering cost the values NOK 250, 500, 1000, and 1500 have been used. For the holding cost 10, 20, and 30 percent have been used. To calculate the EOQ it is assumed that there is one order per SKU. The values and percent reduction for all alternatives can be found in Appendix G to J. The percent reduction in both ordering cost and inventory value are close to identical for all values of ordering cost and holding cost. The average is shown in Table 10

Table 10 - Comparison of reduction in ordering cost and cycle inventory reduction

Ordering cost		
Scenario	South	North
S01	36%	38%
S02	29%	28%
S03	24%	26%
S04	20%	22%
S05	23%	23%
S06	19%	19%
S07	17%	17%
S08	12%	15%
S09	15%	14%
S10	13%	12%
S11	13%	13%
S12	8%	7%
S13	8%	8%
S14	6%	7%
S15	4%	5%
S16	0%	0%

Inventory		
Scenario	South	North
S01	36%	38%
S02	29%	28%
S03	24%	26%
S04	20%	22%
S05	23%	24%
S06	19%	19%
S07	17%	17%
S08	12%	15%
S09	14%	14%
S10	12%	12%
S11	13%	13%
S12	8%	7%
S13	8%	9%
S14	6%	7%
S15	4%	5%
S16	0%	0%

Since the EOQ is located in the intersection between ordering cost and holding cost, it is naturally that these two tables are close to identical. The ordering value was rounded to its closest integer. This explains why the values are not completely identical. When comparing South and North, there are a lot of similarities. They are only separated by a maximum of three percent. By averaging the same degree of centralization the results are presented in Table 11.

Table 11 - Degree of centralization on cycle stock.

Reduction in percent of decentralized value		
Inventory Value		
Number of warehouses	South	North
1	36.35%	37.85%
2	24.08%	24.90%
3	14.58%	14.93%
4	6.75%	6.79%
5	0.00%	0.00%
Ordering Cost		
Number of warehouses	South	North
1	36.38%	37.67%
2	24.14%	24.70%
3	14.64%	14.79%
4	6.79%	6.71%
5	0.00%	0.00%

The reduction in cycle stock is less than that of the safety stock, but with 37.85 percent reduction at most, it still represent a major possibility to decrease their inventory value.

4.2.3 Ton Kilometers

TOOLS do not operate with transportation cost into the warehouses. With centralization it is expected to be an increase in transportation cost out from the warehouses. There is no data foundation for what the transportation cost is, but ton kilometers were used as an indication of cost. If we assume that all the customers are located equally around the warehouses, a reasonable approximation would be to say that ton kilometers from one warehouse to the customers of another warehouse is the same as from one warehouse to another. TOOLS do not monitor the weight of the SKUs. Data for all SKUs were therefore not obtained. Knowing the weight of 1046 SKUs, the average was used for the rest. Calculations were made for all scenarios by letting the warehouse with the highest demand, of each SKU in each collaboration group, store it. The added transportation was then product of the demand from the other warehouses in that group, the weight, and the distance from the supply node to the demand node. A table over the distances used is listed in Appendix K. Table 12 shows the added ton kilometers for each centralization scenario.

Table 12 - Added ton kilometer by centralization

North		South	
S01	99445 tkm	S01	150462 tkm
S02	43705 tkm	S02	123457 tkm
S03	80569 tkm	S03	68328 tkm
S04	57841 tkm	S04	75142 tkm
S05	30165 tkm	S05	72743 tkm
S06	16007 tkm	S06	68749 tkm
S07	31201 tkm	S07	24613 tkm
S08	53012 tkm	S08	31948 tkm
S09	25255 tkm	S09	50760 tkm
S10	18987 tkm	S10	47189 tkm
S11	19981 tkm	S11	15340 tkm
S12	4829 tkm	S12	43195 tkm
S13	5823 tkm	S13	11346 tkm
S14	20426 tkm	S14	7565 tkm
S15	14159 tkm	S15	3994 tkm
S16	0 tkm	S16	0 tkm

When looking at ton kilometer for the northern region Scenario 12 and 13 stand out. These scenarios represent the combination that only Narvik and Finnsnes, and Finnsnes and Troms \varnothing collaborating respectively. These two scenarios are also the ones with the shortest distance between them; Narvik and Finnsnes are only 159 kilometers apart, while Finnsnes and Troms \varnothing are 160 kilometers apart.

For the southern region it is Scenarios 14 and 15 that stand out. This is Molde and Trondheim, and Trondheim and Verdal collaborating respectively. Interestingly the two with the least distance between them are Ålesund and Molde at 74 kilometers, while scenarios 14 and 15 have 216 and 88 kilometers respectively between them. It is naturally that the scenarios which give the least amount of added ton kilometers are the ones with the lowest degree of centralization, but these are also the ones that give the least benefit in terms of lower inventory and ordering cost.

Average cost per ton kilometers can be calculated with data from Norway's Institute of Transport Economics (Transportøkonomisk institutt). Costs are depended on what kind of transport it is by sea, land, or rail. Since land transportation is the type used mostly by TOOLS now, these are the cost issues of interest. The relevant statistical cost data are listed in Table 13.

Table 13 - Cost per ton kilometer (Grønland 2011)

Transport Type	Capasity (ton)	Per ton kilometer	
Semi-trailer, closed unit	33	kr	3.55
Semi-trailer, container	33	kr	3.77
Heavy distribution, containers	12	kr	10.18
Light distribution	5.7	kr	11.77
Heavy distribution, Panel Van	9	kr	12.26
Van	2.2	kr	28.22

The numbers listed in Table 13 have been calculated with an assumption of speed at 60 kilometers per hour and represent the actual cost of land transportation. The cost through a third party logistics operator would most likely be higher.

4.3 Analysis

To compare annual savings associated with potential centralization between ordering cost, cycle stock, safety stock, and ton kilometers it was decided to use ordering cost of NOK 500 and holding cost of 20 percent. These were assumed to be closest to real-life cost. The annual savings can be calculated by using these parameters for each scenario. A graph compering potential savings and added ton kilometers for the different scenarios for the northern region is shown in Figure 4.

South

Figure 4 - Annual savings versus added ton kilometers. Southern region
Scenario 15 is the best in term of annual savings compared to added ton kilometers; this is when Trondheim and Verdal collaborate. This gives an annual saving of NOK 26.42 per ton kilometer (TKM). For three virtual warehouses Scenario 11 is best; this is the
collaboration of Trondheim and Verdal, and a separate group of Molde and Ålesund whereas Førde operates on its own. Here the savings are 20.9 NOK/TKM. When all warehouses except Førde collaborates, Scenario 3, the savings are 8.9 NOK/TKM. This is the best option for two warehouses. Full collaboration gives an annual savings of 6 NOK/TKM. A graph comparing annual savings versus added ton kilometers for the different northern scenarios is shown in Figure 5.

North

Figure 5 - Annual savings versus added ton kilometers. Northern region
Scenario 13 is the best option for the northern region. This gives a saving of 29.3 NOK/TKM and is the collaboration of Finnsnes and Tromsø. Scenario 12, which is where Narvik and Finnsnes collaborate, is very close to the best with 28.3 NOK/TKM. Scenario 6 yields the best results with 23 NOK/TKM when looking at the scenarios with 3 warehouses is. Here the three southernmost, Narvik, Finnsnes, and Tromsø collaborate. Scenario 5 is the best of the alternatives within 2 warehouses at 15.1 NOK/TKM. This is the same as Scenario 6, but with the collaboration of the two northernmost warehouses, Hammerfest and Kirkenes. With full virtual centralization the savings are 7.3 NOK/TKM.

4.4 Discussion

There are qualitative and quantitative advantages and disadvantages of centralization that is not covered in this thesis. By splitting the product range or groups between different warehouses, the purchasers get more time to focus on the SKUs (s)he are responsible for, leading to better service for the customers and more accurate orders. Furthermore, by having less number of SKUs to order, while ordering more of each can lead to lower unit purchasing cost (Monczka et al. 2011). Since the total amount of each SKU should be lower after any centralization. Any dead stock, should also decreased if the product becomes obsolete and the purchaser could response to it quicker when they have to focus on fewer SKUs.

When one warehouse deal with half of the SKUs both in ordering and stocking, and the collaborating warehouse deal with the rest, the purchasers are moved away from the demand in half of the cases. This could lead to poorer understanding of local differences and lower ownership of their decisions (Monczka et al. 2011).

When comparing annual savings to added ton kilometer, the possibilities of profitable centralization under the estimates presented in this thesis are limited. When comparing with heavy distribution (containers) from Table 13, full collaboration are not favorably for neither region as both have less than 10 NOK/TKM. With two warehouses there exist two possibilities above 10 NOK/TKM. This is Scenario 2 and 5, both from the northern region. When the degree of centralization decreases there are more favorable possibilities with seven out of twelve scenarios within the three warehouses group, although only two are from the southern region. The last group has five scenarios where centralization is favorable, three from the southern region and two from the northern. There appear to be a higher profitability of centralization the lower the grade of centralization is. Four warehouses give on average 17.73 NOK/TKM, three give 12 NOK/TKM, two give 8.86 NOK/TKM, and one warehouse give 6.68 NOK/TKM. There are factor that would improve these results that are not taken into account, like the aforementioned economy of scale and order precision. But these are hard to estimate.

5. Conclusion, Limitations, and Further Research

Effects on inventory by centralization have been presented. Both the literature and the estimates support that the total inventory decreases as the degree of centralization increases. Choosing the degree of centralization is a decision that needs to be taken on a strategic level. The decision has consequences beyond economic of scale, demand aggregation, and transportation cost. There are pros and cons on for choosing centralization that have to be taken into consideration. In terms of saving cost, it is transportation cost that could counteract any benefits gained by this virtual centralization. The distances between the warehouses suggest that having all five warehouses in each region collaborate is not as beneficial since this causes a lot of added ton kilometer and with it; transportation cost.

The author recommends TOOLS to start with collaboration the warehouses closest together in light of these results. The collaboration of Narvik and Finnsnes is the scenario in the northern region that offers the highest savings per added ton kilometer at NOK 29 per ton kilometer. For the southern region it is the collaboration of Trondheim and Verdal which gives an annual saving of NOK 26 per ton kilometer. Decision on further centralization could be based on the results theses give.

As the numbers presented in this research are measured against a theoretical inventory and the lead time from the internal suppliers have been used for all SKUs, there are no guaranties that the effect will be the same if TOOLS implement centralization. The locations where the SKUs should be stored for estimating the added ton kilometers were decided by where the demand is the highest. However, distances are also important parameters. It might be optimal to store the SKUs elsewhere dependent on the demand of other locations.

Further investigation should be put into the holding, ordering, and transportation cost in order to evaluate any annual savings by centralization accurate. Further research on inventory locations should also be carried out, by optimizing the product of demand and distances in order to minimize the added ton kilometers with a p-median Model mentioned in chapter 2.5 . There are other factors as well that should be considered in order to view the whole situation from a strategic, and not only cost reduction, side. Customer satisfaction and ability to respond to changes in the demand pattern are some factors that need consideration.

6. List of references

Bradley, Nigel. 2010. Marketing research: tools \& techniques. Oxford: Oxford University Press.

Brandimarte, Paolo, and Giulio Zotteri. 2007. Introduction to distribution logistics. Hoboken, N.J.: Wiley.
Bryman, Alan, and Emma Bell. 2011. Business research methods. Oxford: Oxford University Press.

Chopra, Sunil, and Peter Meindl. 2013. Supply chain management: strategy, planning, and operation. Boston: Pearson.
Coyle, John J., C. John Jr Langley, Brian J. Gibson, Robert A. Novack, and Edward J.
Bardi. 2009. Supply chain management: a logistics perspective. Mason, Ohio: South-Western Cengace Learning.
Daskin, Mark S. 2008. "What you should know about location modeling." Naval Research Logistics (NRL) no. 55 (4):283-294.

Edmonds, W. Alex, and Tom D. Kennedy. 2013. An applied reference guide to research designs: quantitative, qualitative, and mixed methods. Thousand Oaks, Calif.: Sage Publications.

Ellram, Lisa M. 1996. "The use of the case study method in logistics research." Journal of business logistics.

Emmett, Stuart, and David Granville. 2007. Excellence in inventory management: how to minimise costs and maximise service. Cambridge: Cambridge Academic.

Eppen, Gary D. 1979. "Note Effects of centralization on expected costs in a multi-location newsboy problem." Management Science (pre-1986) no. 25 (5):498.
Frankfort-Nachmias, Chava, and David Nachmias. 2008. Research methods in the social sciences. New York: Worth Publishers.

Grant, David B, Douglas M Lambert, James R Stock, and Lisa M. Ellram. 2006. Fundamentals of logistics management. London: McGraw-Hill.

Grønland, Stein Erik. 2011. "Kostnadsmodeller for transport og logistikk." TØI rapport no. 1127:2011.

Halldórsson, Árni, and Jesper Aastrup. 2003. "Quality criteria for qualitative inquiries in logistics." European Journal of Operational Research no. 144 (2):321-332.
Hoover, Edgar M. 1963. The location of economic activity. New York: McGraw-Hill.

Johnson, Richard Arnold, and Gouri K. Bhattacharyya. 2011. Statistics: principles and methods. Hoboken, N.J.: Wiley.

Jonsson, Patrik. 2008. Logistics and supply chain management. London: MacGraw-Hill.
Maister, D.H. 1976. "Centralization of inventories and the square root law." International Journal of Physical Distribution no. 6 (3):124-134.

Mangan, John, Chandra Lalwani, and Tim Butcher. 2008. Global logistics and supply chain management. Hoboken, N.J.: Wiley.

Mattsson, Stig-Arne. 2007. "Inventory control in environments with short lead times." International Journal of Physical Distribution \& Logistics Management no. 37 (2):115-130. doi: http://dx.doi.org/10.1108/09600030710734839.

Monczka, Robert M., Robert B. Handfield, Larry C. Giunupero, and James L. Patterson. 2011. Purchasing and supply chain management. Mason, Ohio: South-Western.

Nahmias, Steven. 2009. Production and operations analysis. Boston: McGraw-Hill.
Newbold, Paul, William L. Carlson, and Betty M. Thorne. 2013. Statistics for business and economics. Boston, Mass.: Pearson.
Reiner, Gerald, and Michael Trcka. 2004. "Customized supply chain design: Problems and alternatives for a production company in the food industry. A simulation based analysis." International Journal of Production Economics no. 89 (2):217-229. doi: http://dx.doi.org/10.1016/S0925-5273(03)00054-9.
Ronen, D. 1990. "Inventory centralization/decentralization-the 'square root law'revisited again." Journal of Business Logistics no. 11 (2):129-138.

Silver, E.A., D.F. Pyke, and R. Peterson. 1998. Inventory Management and Production Planning and Scheduling: Wiley.
Simchi-Levi, David, Philip Kaminsky, and Edith Simchi-Levi. 2004. Managing the supply chain: the definitive guide for the business professional. New York: McGraw-Hill.
Stock, James R, and Douglas M Lambert. 2001. Strategic logistics management.
Tagaras, George. 1999. "Pooling in multi-location periodic inventory distribution systems." Omega no. 27 (1):39-59.

Tallon, William J. 1993. "The impact of inventory centralization on aggregate safety stock: The variable supply lead time case." Journal of Business Logistics no. 14 (1):185.
TOOLS AS. 2014. [cited 05.03 2014]. Available from http://www.tools.no/om-tools/.
TOOLS, B\&B. Annual Report 2012/2013 2012. Available from http://www.irpublications.com/bb/annualreport/2012/en/d/20130703/?page=1\&mo de=50\&noConflict=1.

TOOLS, B\&B. 2014. The Group 2014 [cited 02.05 2014]. Available from http://www.bb.se/web/The_Group.aspx.

Wanke, Peter F, and Eduardo Saliby. 2009. "Consolidation effects: Whether and how inventories should be pooled." Transportation Research Part E: Logistics and Transportation Review no. 45 (5):678-692.

Waters, C. D. J. 2003. Inventory control and management. Chichester: Wiley.
Xu, Kefeng, and Philip T. Evers. 2003. "Managing single echelon inventories through demand aggregation and the feasibility of a correlation matrix." Computers \& Operations Research no. 30 (2):297-308. doi: http://dx.doi.org/10.1016/S0305-0548(01)00097-1.

Yin, Robert K. 2009. Case study research: design and methods. Thousand Oaks, Calif.: Sage.

Zinn, Walter, Michael Levy, and Donald J Bowersox. 1989. "Measuring the effect of inventory centralization/decentralization on aggregate safety stock: the 'square root law'revisited." Journal of Business Logistics no. 10 (1):1-14.

7. Appendix

A Description and variation of 5 articles.

Article	Price	Description	Førde	Ålesund	Molde	Trondheim	Verdal	Narvik	Finnsnes	Trømsø	Hammerfest	Kirkenes
1	kr 18.41	LAMELLSKIVE K40 125X22,2	0.00	1201.33	813.48	0.00	64.89	0.00	0.00	0.00	0.00	0.00
2	kr 13.40	GLASSFIBERDUK M/ALU 620 GR/MTR	164.78	1479.55	22.58	34.57	296.04	8.86	15.59	5.35	0.00	30.47
3	kr 28.00	NAVRONDELL $178 \times 4,0 \times 22,2$	0.00	0.00	0.00	0.00	312.70	0.00	0.00	0.00	0.00	0.00
4	kr 32.18	HALVMASKE FILT 3M 9332+ FFP3V	250.84	31.80	0.00	0.00	8.16	67.81	327.76	13.96	0.00	41.61
5	kr 7.83	KAPPESKIVE 41F 125X1X22,2	241.66	1563.66	1992.10	0.00	125.12	0.00	0.00	0.00	0.00	0.00
		Lead Time						5		4		5

B Lead time from internal suppliers.

Warehouse	Number of days lead time from supplier. Best case/Middle/Worst case
Førde	$2 / 3 / 4$
Ålesund	$2 / 3 / 4$
Molde	$2 / 3 / 4$
Trondheim	$2 / 3 / 4$
Verdal	$2 / 3 / 4$
Narvik	$3 / 5 / 6$
Finnsnes	$3 / 4 / 5$
Troms \varnothing	$3 / 4 / 5$
Hammerfest	$7 / 8 / 10$
Kirkenes	$3 / 5 / 6$

C List of 8 scenarios

Scenario 1:	Status Quo
Scenario 2:	Full Aggregating:
Group 1	Førde, Ålesund, Molde, Trondheim, Verdal
Group 2	Narvik, Finnsnes, Tromsø, Hammerfest, Kirkenes
Scenario 3	
Group 1	Trondheim, Verdal
Group 2	Molde, Ålesund, Førde
Group 3	Narvik, Finnsnes, Troms \emptyset, Hammerfest, Kirkenes
Scenario 4:	
Group 1	Trondheim, Verdal
Group 2	Molde, Ålesund, Førde
Group 3	Narvik, Finnsnes, Tromsø
Group 4	Hammerfest, Kirkenes
Scenario 5:	
Group 1	Førde, Ålesund, Molde, Trondheim, Verdal
Group 2	Narvik, Finnsnes, Troms \varnothing, Hammerfest
Group 3	Kirkenes
Scenario 6:	
Group 1	Trondheim, Verdal
Group 2	Molde, Ålesund
Group 3	Førde
Group 4	Narvik, Finnsnes, Tromsø, Hammerfest, Kirkenes
Scenario 7:	
Group 1	Trondheim, Verdal
Group 2	Molde, Ålesund
Group 3	Førde
Group 4	Finnsnes, Tromsø
Group 5	Narvik
Group 6	Kirkenes
Group 7	Hammerfest
Scenario 8:	
Group 1	Trondheim
Group 2	Verdal
Group 3	Molde
Group 4	Ålesund
Group 5	Førde
Group 6	Finnsnes, Narvik, Kirkenes, Tromsø, Hammerfest

D List of scenarios.

E Comparison between sample and population. Safety stock. North

From 1457 SKUs

Scenario	Combined Independent Value		Combined Centralized Value		Total Savings		Savings in percent of decentralized value
S1	kr	1626274	kr	810841	kr	815433	50.14\%
S2	kr	1406743	kr	753559	kr	653183	40.16\%
S3	kr	1304949	kr	721962	kr	582987	35.85\%
S4	kr	1626274	kr	1120041	kr	506233	31.13\%
S5	kr	1626274	kr	1094456	kr	531818	32.70\%
S6	kr	1117286	kr	676692	kr	440594	27.09\%
S7	kr	1085418	kr	653844	kr	431574	26.54 \%
S8	kr	930819	kr	608908	kr	321911	19.79\%
S9	kr	1406743	kr	1035848	kr	370894	22.81\%
S10	kr	1204442	kr	928897	kr	275546	16.94\%
S11	kr	1304949	kr	989314	kr	315636	19.41\%
S12	kr	695455	kr	511133	kr	184322	11.33\%
S13	kr	795961	kr	571550	kr	224412	13.80\%
S14	kr	711288	kr	524716	kr	186573	11.47 \%
S15	kr	508988	kr	417764	kr	91224	5.61\%

Warehouse	Safety stock sample	Number of SKUS from sample	Number of SKUs from all SKUs	Safety stock all SKUs	
Narvik	kr	321325	531	9632	kr
Finnsens	kr	374130	568	12541	kr
Troms \varnothing	kr	421831	625	12364	kr
Hammerfest	kr	289457	464	7365	kr
Kirkenes	kr	219531	648	826260500	

Scenario	Combined decentralized value		Combined centralized value		Total savings		Savings in percent of decentralized value
S1	kr	30293497	kr	15103976	kr	15189521	50.14\%
S2	kr	27028462	kr	14861254	kr	12167208	40.16\%
S3	kr	24464874	kr	13605256	kr	10859618	35.85\%
S4	kr	30293497	kr	20863620	kr	9429877	31.13\%
S5	kr	30293497	kr	20387037	kr	9906460	32.70\%
S6	kr	22433961	kr	14226778	kr	8207183	27.09\%
S7	kr	21199839	kr	13160671	kr	8039168	26.54\%
S8	kr	16204374	kr	10207960	kr	5996414	19.79\%
S9	kr	27028462	kr	20119611	kr	6908851	22.81\%
S10	kr	21948659	kr	16815920	kr	5132740	16.94\%
S11	kr	24464874	kr	18585356	kr	5879519	19.41\%
S12	kr	14089123	kr	10655661	kr	3433463	11.33\%
S13	kr	16605338	kr	12425097	kr	4180241	13.80\%
S14	kr	12939339	kr	9463950	kr	3475389	11.47 \%
S15	kr	7859536	kr	6160259	kr	1699277	5.61\%

F Comparison between sample and population. Safety stock. South

From 1457 SKUs

Scenario	Combined Independent Value		Combined Centralized Value		Total Savings		Savings in percent of decentralized value
S1	kr	1870716	kr	1058095	kr	812621	43.44\%
S2	kr	1600150	kr	949924	kr	650226	34.76\%
S3	kr	1475025	kr	905567	kr	569458	30.44\%
S4	kr	1870716	kr	1406757	kr	463958	24.80\%
S5	kr	1870716	kr	1339457	kr	531259	28.40\%
S6	kr	1269420	kr	834711	kr	434709	23.24\%
S7	kr	1204459	kr	793561	kr	410898	21.96\%
58	kr	1023912	kr	733045	kr	290867	15.55\%
S9	kr	1600150	kr	1263678	kr	336472	17.99\%
S10	kr	1448099	kr	1178458	kr	269641	14.41\%
S11	kr	1475025	kr	1168056	kr	306969	16.41\%
S12	kr	846804	kr	673713	kr	173091	9.25\%
S13	kr	873730	kr	663311	kr	210419	11.25\%
S14	kr	753346	kr	589965	kr	163381	8.73\%
S15	kr	601295	kr	504745	kr	96550	5.16\%

Warehouse	Safety stock sample	Number of SKUS from sample	Number of SKUs from all SKUs	Safety stock all SKUs	
Førde	kr	395691	618	19773	kr
Arlesund	kr	451113	666	19528	kr
Molde	kr	422616	576	14508	kr
Trondheim	kr	330729	597	14024	kr
Verdal	kr	270566	409	13909	kr

Scenario	Combined decentralized value		Combined centralized value		Total savings		Savings in percent of decentralized value
S1	kr	53502391	kr	30261467	kr	23240924	43.44 \%
S2	kr	44301157	kr	25704728	kr	18596429	34.76\%
S3	kr	40842214	kr	24555746	kr	16286468	30.44 \%
S4	kr	53502391	kr	40233202	kr	13269189	24.80\%
S5	kr	53502391	kr	38308403	kr	15193988	28.40\%
S6	kr	36532066	kr	24099407	kr	12432659	23.24\%
S7	kr	31640979	kr	19889305	kr	11751675	21.96\%
S8	kr	27614973	kr	19296187	kr	8318786	15.55 \%
S9	kr	44301157	kr	34678075	kr	9623082	17.99\%
S10	kr	42857743	kr	35146010	kr	7711733	14.41\%
S11	kr	40842214	kr	32062915	kr	8779299	16.41\%
S12	kr	25887418	kr	20937015	kr	4950403	9.25\%
S13	kr	23871889	kr	17853919	kr	6017969	11.25\%
S14	kr	18413739	kr	13741061	kr	4672678	8.73\%
S15	kr	16970325	kr	14208996	kr	2761330	5.16\%

G Cycle inventory and ordering cost. South

H Cycle inventory and ordering cost. North

Order Cost																											
	10\%									20\%										30\%							
Scenario\ Order cost	kr	250	kr	500	kr	1000	kr	1500		kr	250	kr	500	kr	1000	kr	1500			kr	250	kr	500	kr	1000	kr	1500
S01	kr	233702	kr	329779	kr	468082	kr	569706	S01	kr	329586	kr	467405	kr	659559	kr	808398		S01	kr	401576	kr	570776	kr	810320	kr	989338
S02	kr	270505	kr	381565	kr	540370	kr	658409	S02	kr	379602	kr	541011	kr	763130	kr	934281		S02	kr	464581	kr	661280	kr	935260	kr	1144695
SO3	kr	277669	kr	392553	kr	557637	kr	679630	S03	kr	389468	kr	555339	kr	785105	kr	965369		S03	kr	474079	kr	678921	kr	967099	kr	1177658
S04	kr	294265	kr	415148	kr	589323	kr	719403	504	kr	411238	kr	588531	kr	830296	kr	1021695		S04	kr	500528	kr	714711	kr	1019261	kr	1245444
S05	kr	287302	kr	405850	kr	577413	kr	702822	S05	kr	403378	kr	574604	kr	811699	kr	996343		S05	kr	489815	kr	704415	kr	997017	kr	1217549
S06	kr	304591	kr	430066	kr	611590	kr	744551	S06	kr	426766	kr	609182	kr	860131	kr	1056920		506	kr	522030	kr	746922	kr	1055735	kr	1290197
S07	kr	311354	kr	439911	kr	624608	kr	761769	S07	kr	435894	kr	622707	kr	879821	kr	1082107		S07	kr	533859	kr	760874	kr	1081466	kr	1319732
508	kr	319052	kr	452450	kr	642783	kr	785682	S08	kr	447078	kr	638105	kr	904900	kr	1110937		508	kr	544776	kr	776861	kr	1113584	kr	1357350
S09	kr	322862	kr	455693	kr	648285	kr	789773	S09	kr	450350	kr	645724	kr	911387	kr	1123344		S09	kr	551626	kr	784425	kr	1119739	kr	1367080
S10	kr	331188	kr	469614	kr	667928	kr	813126	S10	kr	462238	kr	662375	kr	939229	kr	1153194		S10	kr	563355	kr	808595	kr	1151069	kr	1408843
S11	kr	325677	kr	462533	kr	657628	kr	799988	S11	kr	455975	kr	651353	kr	925066	kr	1132845		S11	kr	556478	kr	797995	kr	1137503	kr	1387599
S12	kr	348477	kr	493831	kr	702105	kr	854856	S12	kr	485626	kr	696953	kr	987661	kr	1213771		S12	kr	595571	kr	851102	kr	1209787	kr	1481492
S13	kr	342966	kr	486749	kr	691805	kr	841717	S13	kr	479364	kr	685931	kr	973499	kr	1193422		S13	kr	588694	kr	840502	kr	1196222	kr	1460248
S14	kr	347649	kr	492995	kr	701745	kr	856053	S14	kr	486191	kr	695298	kr	985991	kr	1212586		S14	kr	595873	kr	846575	kr	1214062	kr	1478986
S15	kr	355974	kr	506917	kr	721387	kr	879406	S15	kr	498078	kr	711949	kr	1013833	kr	1242436		S15	kr	607603	kr	870745	kr	1245392	kr	1520750
S16	kr	373263	kr	531133	kr	755564	kr	921135	S16	kr	521466	kr	746527	kr	1062265	kr	1303013		S16	kr	639818	kr	913252	kr	1304111	kr	1593398

Inventory																									
	10\%							20\%										30\%							
Scenario\ Order cost	kr 250	kr 500	kr	1000	kr	1500		kr	250	kr	500	kr	1000	kr	1500			kr	250	kr	500	kr	1000	kr	1500
S01	kr 2332388	kr 3296869	kr	4645054	kr	5718818	S01	kr	1652932	kr	2332388	kr	3296869	kr	4033697		S01		1345318	kr	1912610	kr	2687660	kr	3296869
S02	kr 2689263	kr 3801461	kr	5367059	kr	6601311	S02	kr	1910323	kr	2689263	kr	3801461	kr	4656283		S02		1551792	kr	2203630	kr	3106136	kr	3801461
S03	kr 2774564	kr 3935004	kr	5535237	kr	6804997	S03	kr	1968463	kr	2774564	kr	3935004	kr	4793692		S03		1607841	kr	2276396	kr	3201554	kr	3935004
504	kr 2944744	kr 4155996	kr	5851844	kr	7186293	S04	kr	2065547	kr	2944744	kr	4155996	kr	5061584		504		1686352	kr	2403531	kr	3395042	kr	4155996
S05	kr 2867986	kr 4064498	kr	5710708	kr	7029502	S05	kr	2024151	kr	2867986	kr	4064498	kr	4961788		S05		1659165	kr	2344032	kr	3316404	kr	4064498
S06	kr 3037593	kr 4305236	kr	6050983	kr	7447531	506	kr	2149034	kr	3037593	kr	4305236	kr	5250287		506		1751749	kr	2481411	kr	3514901	kr	4305236
S07	kr 3108008	kr 4407738	kr	6203053	kr	7621826	S07	kr	2206049	kr	3108008	kr	4407738	kr	5368899		S07		1794249	kr	2551264	kr	3593296	kr	4407738
S08	kr 3195531	kr 4545780	kr	6384612		7831932	508	kr	2242054	kr	3195531	kr	4545780	kr	5540306		508		1843385	kr	2605492	kr	3706805	kr	4545780
S09	kr 3238538	kr 4567302	kr	6419764	kr	7897780	S09	kr	2270367	kr	3238538	kr	4567302	kr	5554827		S09		1843044	kr	2645422	kr	3728894	kr	4567302
S10	kr 3336400	kr 4699905	kr	6605197	kr	8131151	S10	kr	2328065	kr	3336400	kr	4699905	kr	5736772		S10		1901287	kr	2715362	kr	3846812	kr	4699905
S11	kr 3262534	kr 4619349	kr	6489385	kr	7992753	S11	kr	2304385	kr	3262534	kr	4619349	kr	5646989		S11	kr	1883062	kr	2672377	kr	3766080	kr	4619349
S12	kr 3506007	kr 4940643	kr	6945471	kr	8549180	S12	kr	2452948	kr	3506007	kr	4940643	kr	6025271		S12		1993872	kr	2852740	kr	4045310	kr	4940643
S13	kr 3432141	kr 4860087	kr	6829660	kr	8410782	S13	kr	2429268	kr	3432141	kr	4860087	kr	5935487		S13	kr	1975647	kr	2809755	kr	3964578	kr	4860087
S14	kr 3489324	kr 4957086	kr	6952532		8543420	S14	kr	2446875	kr	3489324	kr	4957086	kr	6033549		S14	kr	2000076	kr	2847383	kr	4040657	kr	4957086
S15	kr 3587187	kr 5089689	kr	7137964	kr	8776790	S15	kr	2504572	kr	3587187	kr	5089689	kr	6215495		S15	kr	2058320	kr	2917323	kr	4158575	kr	5089689
S16	kr 3756793	kr 5330427	kr	7478239		9194819	S16	kr	2629456	kr	3756793	kr	5330427	kr	6503993		S16	kr	2150904	kr	3054702	kr	4357073	kr	5330427

I Percent reduction. Cycle inventory and ordering cost. South

J Percent reduction. Cycle inventory and ordering cost. North

Percent reduction																	
Order Cost																	
	10\%						20\%						30\%				
Scenario\ Order cost	kr 250	kr 500	kr 1000	kr 1500			kr 250	kr 500	kr 1000	kr 1500			kr 250	kr 500	kr 1000	kr	1500
S01	37\%	38\%	38\%	38\%			37%	37\%	38%	38%			37%	38\%	38\%		38%
502	28\%	28\%	28\%	29\%			27\%	28\%	28\%	28\%			27%	28\%	28\%		28\%
503	26\%	26\%	26\%	26\%			25\%	26\%	26\%	26\%			26\%	26\%	26\%		26\%
S04	21\%	22\%	22\%	22\%			21\%	21\%	22%	22%			22\%	22\%	22\%		22\%
S05	23\%	24%	24%	24\%			23%	23\%	24\%	24\%			23\%	23\%	24\%		24\%
S06	18\%	19\%	19\%	19\%			18%	18\%	19\%	19\%			18%	18\%	19\%		19\%
S07	17\%	17\%	17\%	17\%			16\%	17\%	17\%	17\%			17\%	17\%	17\%		17\%
508	15\%	15\%	15\%	15\%			14\%	15\%	15\%	15\%			15\%	15\%	15\%		15\%
S09	14\%	14%	14%	14\%			14%	14%	14%	14%			14%	14\%	14\%		14\%
S10	11\%	12\%	12\%	12\%			11\%	11\%	12\%	11\%			12\%	11\%	12\%		12\%
S11	13\%	13%	13%	13\%			13%	13\%	13%	13\%			13%	13\%	13%		13\%
S12	7\%	7\%	7\%	7\%			7\%	7\%	7\%	7\%			7\%	7\%	7\%		7\%
S13	8\%	8\%	8\%	9\%			8\%	8\%	8\%	8\%			8\%	8\%	8\%		8\%
S14	7\%	7\%	7\%	7\%			7\%	7\%	7\%	7\%			7\%	7\%	7\%		7\%
S15	5\%	5\%	5\%	5\%			4\%	5\%	5\%	5\%			5\%	5\%	5\%		5\%
S16	0\%	0\%	0\%	0\%			0\%	0\%	0\%	0\%			0\%	0\%	0\%		0\%
Inventory																	
	10\%						20\%						30\%				
Scenario\ Order cost	kr 250	kr 500	kr 1000	kr 1500			kr $\quad 250$ kr	kr 500 k	kr 1000	kr 1500			kr 250	kr 500	kr 1000	kr	1500
S01	38\%	38\%	38%	38\%			37\%	38\%	38%	38\%			37\%	37\%	38\%		38\%
S02	28\%	29\%	28\%	28\%			27%	28\%	29\%	28\%			28\%	28\%	29\%		29\%
503	26\%	26\%	26\%	26\%			25\%	26\%	26\%	26\%			25\%	25\%	27\%		26\%
S04	22\%	22\%	22\%	22\%			21\%	22\%	22\%	22\%			22\%	21\%	22\%		22\%
S05	24\%	24%	24%	24\%			23\%	24%	24%	24%			23%	23\%	24\%		24\%
S06	19\%	19\%	19\%	19\%			18\%	19\%	19\%	19\%			19\%	19\%	19\%		19\%
507	17\%	17\%	17\%	17\%			16\%	17\%	17\%	17\%			17\%	16\%	18\%		17\%
508	15\%	15\%	15\%	15\%			15\%	15\%	15\%	15\%			14\%	15\%	15\%		15\%
S09	14\%	14%	14\%	14\%			14%	14\%	14\%	15\%			14%	13\%	14\%		14\%
S10	11\%	12\%	12\%	12\%			11\%	11\%	12\%	12%			12\%	11\%	12\%		12\%
S11	13\%	13\%	13\%	13\%			12\%	13\%	13%	13%			12\%	13%	14\%		13\%
S12	7\%	7\%	7\%	7\%			7\%	7\%	7\%	7\%			7\%	7\%	7\%		7\%
S13	9\%	9\%	9\%	9\%			8\%	9\%	9\%	9\%			8\%	8\%	9\%		9\%
S14	7\%	7\%	7\%	7\%			7\%	7\%	7\%	7\%			7\%	7\%	7\%		7\%
S15	5\%	5\%	5\%	5\%			5\%	5\%	5\%	4\%			4\%	4\%	5\%		5\%
S16	0\%	0\%	0\%	0\%			0\%	0\%	0\%	0\%			0\%	0\%	0\%		0\%

K Distances between warehouses

South								
Distances	Førde		Ålesund		Molde	Trondheim		Verdal
Førde		0	,	235		277	524	612
Ålesund				0		74	290	376
Molde						0	216	303
Trondheim							0	88
Verdal								0
North								
Distances	Narvik		Finnsens		Troms \varnothing		Hammerfest	Kirkenes
Narvik		0		159		255	641	1017
Finnsens				0		160	546	922
Tromsø						0	538	914
Hammerfest							0	532
Kirkenes								0

L Savings per added ton kilometer

	North		South	
S01	kr	7.31	kr	6.06
S02	kr	12.58	kr	5.89
S03	kr	6.26	kr	8.99
S04	kr	7.29	kr	6.81
S05	kr	15.12	kr	7.90
S06	kr	23.07	kr	6.83
S07	kr	10.89	kr	17.93
S08	kr	5.38	kr	9.56
S09	kr	11.03	kr	7.21
S10	kr	11.76	kr	6.62
S11	kr	12.87	kr	20.91
S12	kr	28.29	kr	4.78
S13	kr	29.27	kr	18.96
S14	kr	6.95	kr	21.05
S15	kr	6.13	kr	26.43
S16	kr	-	kr	-

[^0]: ${ }^{1}$ http://www.random.org/integers/

