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Abstract 

Due to the complex nature of capacity planning, sophisticated methods for decision 

support are used in order to handle challenges like uncertainties in demand, processes and 

capacity. Analytical and simulation models can help to understand a system’s behavior and 

its reaction to demand, process and capacity changes and therefore build to basis to take 

decisions on when, how and to which extend to adjust capacity. 

The research problem of this thesis was defined as a tactical capacity planning problem for 

a system operating in a Make-to-stock environment and producing two products, which 

leads to the necessity of changeovers and production is taking place in lot sizes. Lot sizes 

are variable in dependency of productive machine hours per day, as one product is always 

produced at least for one day. Furthermore demand and capacity are uncertain due to 

unplanned downtimes. The products are classified as fast-moving consumer products 

(FMCG) with complete standardization. 

In this thesis there was developed and applied a methodology for decision support for 

capacity planning under uncertainty. The developed methodology is based on a system 

analysis, including process, demand and production capacity analysis and a discrete-event 

simulation model to test possible future scenarios, which are based on different demand 

levels and capacity configurations. Performance measures were defined based on the 

company’s preferences.  

The developed simulation model represents the production planning and production 

process of a packaging line and can build the basis for an evaluation of capacity 

alternatives. The driven tests within this thesis focus on the system’s performance 

measured by fill rates (based on stock keeping units), overtime usage and utilization. The 

results show that fill rates decrease exponentially with an increasing utilization, and 

overtime increases exponentially when increasing demand. It was furthermore detected 

that the system would, without the usage of overtime, have fill rates just slightly below the 

ones with overtime, but the difference gets greater when demand increases. The developed 

model is set to be a tool for future capacity planning within the system at the case company 

and build the basis for similar problems. 

Key words: Capacity planning, Make-to-stock, Demand uncertainty, Capacity flexibility, 

Discrete-event simulation, Case study 
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1 Introduction 

1.1  Problem statement 

While traditionally for many companies highly sophisticated capacity planning methods 

were not required as uncertainties could be handled through inventory and over-capacity 

(Bakke and Hellberg 1993), the increasing competition over the last decades has led to the 

necessity of putting more focus towards this problem. When making decisions on capacity 

to acquire and maintain, companies need to balance costs and benefits of over- or under-

capacity. An inadequate capacity can lead to the loss of customers and slow service while 

excessive capacity on the other hand might lead to the need of reducing prices to stimulate 

demand, carry too much inventory or leave workforce and equipment idle (Yang, Haddad 

and Chow 2001). The decisions taken on a company’s capacity configuration can affect 

several aspects of performance, which have been identified from Slack, Jones and 

Johnston (2013) as the following: 

 Costs.  

 Revenues. 

 Working capital. 

 Quality of goods and services. 

 Dependability of supply. 

As capacity changes are often connected to financial investments, the issue of evaluating 

possible investments arises and a financial analysis should be done in order to make good 

investment decisions. 

The challenge in deciding on capacity levels is that the actual production capacity is often 

dependent on several factors which face uncertainty. Uncertainties to be considered when 

planning capacity can lie in the operations, such as stochastic breakdowns or variable 

processing times, in the supply, such as variable lead times and in the demand (Nyaga et 

al. 2007).  

Furthermore there exists a variety of options to modify or use existing capacity which 

brings up the question of the impact on the performance when modifying the capacity with 
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different options. Also the timing in acquiring capacity needs to be considered (compare 

Heizer and Render 2006, Slack et al. 2013).  

The complexity of the problem arising through uncertainties combined with the broad 

range of affected performance aspects makes the problem of capacity planning under 

uncertainty an important and complicated issue. Decision support systems (DSS) shall help 

decision makers to understand the impact of their choices and to determine capacity levels 

in a manner that helps the organization to achieve its goals. 

1.2 Research environment 

TINE is a food manufacturing group based in Norway, which aims to be a leading supplier 

of food and drink brands with a focus on dairy products. The company was founded in 

1928 as “Norske Meieriers Eksportlag” with the main focus on exporting butter and cheese. 

Further on the company grew and had several name changes. In 1942 the company was 

renamed to “Norske Meieriers Salgssentral” and in 1984 to “Norske Meierier”. The name 

TINE was first registered as a trademark in 1992. In 2002 the TINE Group was formed out 

of “TINE Norske Meierier”, several dairy companies and other daughter organizations. In 

the same year “TINE Norske Meierier” was renamed to TINE BA. Later on in 2010 TINE 

BA merged with the dairy companies and was from then on named TINE SA (TINE 

2013). The TINE Group organization and structure today is shown in figure 1. 

 

Figure 1: TINE Group organization 
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In 2012 the TINE group consisted out of the parent company TINE SA and several fully 

and partly owned daughter companies. Fully owned daughter organizations are the 

“Diplom-Is AS”, “FellesJuice AS” and “OsteCompagniet AS”. TINE SA is owned by 

more than 14,000 dairy farmers, which are to be provided with the best possible milk 

price, and offers more than 1,300 product lines. In 2012 the TINE Group had more than 

5,000 employees and revenue of NOK 19.8 billion. The primary market is Norway, but 

TINE is also growing internationally, with most of the international operations being based 

in the United States, Sweden, and the United Kingdom. The dairy industry in Norway has, 

in recent years, become more and more competitive through national and international 

actors entering the market (TINE 2012). 

TINE’s supply chain begins with picking up the milk from the dairy farmers and 

transporting it to the 36 dairies within Norway, where the milk is processed into the 

different products. Afterwards the products can either be delivered directly to customers or 

shipped to either one of the three terminals or one of the two central warehouses, where the 

products are stored and delivered towards customer orders. For some products there are 

certain operations carried out at the warehouses, as for example cutting and/or packaging. 

The central warehouses store the full range of TINE’s products and can deliver mixed 

orders. Shipments also take place between the central warehouses, based on inventory and 

demand levels. The delivery to the customers is usually carried out by TINE itself rather 

than being picked up by the customer, which means that TINE is controlling their 

complete central supply chain. Other players only supply the processes with certain 

materials (packaging material, by-products).  

This research will focus on an automated cheese-cutting and packaging line at TINE’s 

central warehouse in Heimdal. The production management and control system is based on 

demand forecasts and the system is operating in a Make-to-Stock (MTS) environment. As 

there are produced two products on the same production line, the production is taking 

place in lots and changeover times occur when switching the production from one product 

to another. Changeover times in the considered system are not sequence-dependent. The 

products can be classified as perishable, fast moving consumer goods (FMCG) with high 

volumes and a full standardization.  There are several sources of uncertainty in the demand 

(fluctuations), capacity (unplanned downtimes) and forecasting accuracy. 
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1.3 Research objectives and questions 

The main purpose of this research was to develop a methodology for decision support for 

capacity planning under uncertainty and demonstrate the application on a specific case. 

Therefore, two sub-problems were explored: 

The first sub-problem focuses on the development of an appropriate method. To address 

this research problem, it is necessary to identify possible approaches of analyzing and 

evaluating different capacity plans. Consequently the thesis describes general methods and 

specific approaches and evaluates those towards the applicability on the specific case. In 

order to do that, the research environment needs to be considered. As the research is 

focusing on a specific case, it is important to identify the critical features of the system, 

especially those which are critical for capacity planning and the following questions need 

to be addressed: 

 Which approaches for capacity planning exist? 

 How can capacity planning under uncertainty be approached? 

 What is an appropriate method to address the case study problem? 

The second sub-problem is an application of the methodology, developed within the first 

sub-problem. The application will contain an analysis of the system in the current state and 

the development of a DSS for future planning. The analysis of the current state includes 

quantitative methods in order to understand the current settings and identify future options, 

both of external and internal factors. The decision support system shall support the case 

company on capacity decisions in the future, build the basis for addressing similar 

problems on other systems and meet several requirements: 

 Flexibility: The possibility to integrate future changes. 

 Reusability: The possibility to use the model logic on similar cases. 

 Support a broad range of capacity configurations and performance measures. 

1.4 Research process 

The general research process used to address the specific research sub-problems and 

questions in this research is presented in figure 2. 
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Figure 2: Research process 

The research process started with the definition of the research problem, based on the 

research environment and the defined real-world problem by the case company, which was 

transferred into the stated research problem. 

The theoretical background (chapter 2) will explore general capacity planning approaches, 

methods and specific applications under uncertainty. While the first part of the literature 

review examines capacity planning in general, the second part focuses on how to address 

the challenge of uncertainty. Sources of uncertainty as well as problem types are presented 

before investigating the possibilities of addressing such problems by means of quantitative 

models for decision support. 

The literature review is followed by the presentation of the methodology (chapter 3), 

which will build the basis for the case study. The chapter presents the case study research 

model, applied research methods as well as data collection and analysis. 

Afterwards, chapter 4 describes the application of the methodology, including executed 

steps as well as results.  

Chapter 5 is discussing the methodology and the developed DSS, identifying strengths and 

weaknesses and critical factors as well as possible future developments and applications.  

The thesis finalizes with conclusions and possible future research directions (chapter 6), 

which can focus on similar problems, developing the approach used to address the case 

and further usage of the developed model. 
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2 Literature review  

2.1 General terms and concepts 

The objective of capacity planning is “to ensure that the service provider has, at all times, 

sufficient capacity to meet the current and future demands of the customer’s business 

needs” (Dugmore and Lacy 2006). There are several definitions of capacity, as for 

example “the amount of output a system is capable of achieving over a specific period of 

time” (Yang, Haddad and Chow 2001) or “the maximum level of value-added activity over 

a period of time that the process can achieve under normal operating conditions” (Slack, 

Jones and Johnston 2013). 

Production capacity planning is strongly interlinked with the according production 

planning tasks and the production system, which is why the Manufacturing Planning and 

Control (MPC) system has to be considered. Jacobs et al. (2011) present the capacity 

planning tasks in relation to the MPC System (Figure 3). 

 

Figure 3: Capacity planning in the MPC System (Jacobs et al. 2011) 
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The hierarchy of capacity planning decisions puts the overall planning of resource needs 

on top and in interdependence with the sales and operations plan, which is affected by the 

demand management. In demand management one can differentiate between the main 

concepts of Make-to-Stock (MTS), Assemble-to-Order (ATO) and Make-to-Order (MTO) 

environment. In an MTS environment the demand management focuses on keeping the 

inventory of finished goods on a specified level or within a specified interval by producing 

the demand based on forecasts. Demand management in an ATO environment on the other 

hand is focusing on assembling the products from an inventory of components with the 

configuration defined by the customer. Whereas those two concepts are based on inventory 

(either finished goods or components), in the MTO concept, the products are produced 

towards specific customer orders. The resource planning is usually an aggregated and 

long-range planning problem. Rough-cut capacity planning (RCCP) is done towards a 

specific Master production schedule (MPS), which is “the disaggregated version of the 

sales and operation plan” (Jacobs et al. 2011). It shows which end items are to be produced 

in certain time intervals in the future. RCCP can be done by means of the following 

techniques as presented by several sources (for example Jacobs et al. 2011, Scott 1994): 

capacity planning using overall factors (CPOF), capacity bills and resource profiles. Scott 

(1994) describes resource planning and RCCP as two methods with a similar level of 

detail. In resource planning the main purpose is “to provide a statement of resources 

needed for achievement of the highest-level production plan, normally at product family 

level” (Scott 1994), while RCCP has the purpose of testing the feasibility of an MPS. 

When using material requirements planning (MRP) to achieve a detailed material plan, 

capacity requirements planning (CRP) can lead to a detailed plan of capacity requirements 

per planning horizon. The CRP techniques focus on machine centers and labor skills, 

typically for a time horizon from several weeks up to one year (Jacobs et al. 2011). 

Jonsson and Mattson (2002) compared the four capacity planning methods of CPOF, 

capacity bill procedures, resource profiles and CRP. They found that the applicability of 

those methods depends on the planning environment and horizon as well as the level of 

detail and can therefore lead to the necessity of combining two or more methods. 

Furthermore they conclude that CPOF and CRP are the most common methods, CPOF 

being used “in simple and stable environments and rough long-term planning”, while CRP 

is used “in more complex environments and for more detailed decisions”. 



8 

 

Finite loading is interrelated with production scheduling. The difference to CRP is that 

while CRP only calculates the capacity requirements, finite loading adjusts the plan to fit 

the finite loading constraints. The input/output analysis is concerned with monitoring the 

capacity utilization and is based on the actual shop-floor system. 

2.2 Capacity planning process 

2.2.1 Measurement of demand and capacity 

The first step in capacity planning is to measure demand and capacity of the system (Slack, 

Jones and Johnston 2013). As capacity decisions address the future, demand forecasts play 

an important role. In literature there is presented a broad range of forecasting techniques, 

but since forecasting is not the focus of this thesis, the following sections will only 

describe the requirements of demand forecasts in capacity planning as defined by Slack, 

Jones and Johnston (2013): 

 “It is expressed in terms which are useful for capacity management”: It has to 

be expressed in the same units as the capacity. 

 “It is as accurate as possible”: Whereas there exists a time between the decision 

to change capacity and its effect, the demand can change instantaneously. 

Therefore the decisions have to be taken in advance and lead to the necessity of 

good forecasts. 

 “It gives an indication of relative uncertainty”: Demand is usually subject to 

fluctuations within certain time periods and often faces seasonality. To address the 

different demand levels with appropriate capacity changes, the relative uncertainty 

has to be represented in the forecast. 

Capacity measures can be divided into input (i.e. Machine hours available) and output 

measures (i.e. Number of units per week). Whether capacity is measured in input or output 

capacity depends on the studied system. Krajewski, Ritzman and Malhotra (2013) state 

that output measures are “best utilized when applied to individual processes, or when the 

firm provides a relatively small number of standardized services and products” while input 

measures are “generally used for low-volume, flexible processes”. However output 

capacity measures may be inappropriate or insufficient in several situations: 

 High product variety and process divergence. 
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 Changing product or service mix. 

 Changing productivity rates. 

When measuring capacity, it can be differentiated between certain terms. First one needs to 

distinguish between design capacity, e.g. the maximum output under optimal conditions, 

and effective capacity, which takes current operating constraints into consideration and 

accordingly represents the expectations on the actual capacity. Utilization is a fraction, 

calculated by dividing the actual output/input capacity of a system by its design capacity, 

while efficiency is the ratio of input/output to effective capacity (Heizer and Render 2006, 

Slack et al. 2013). Another measure is Operation equipment effectiveness (OEE) and 

according to that the availability rate, performance rate and quality rate, as shown in figure 

4. 

 

Figure 4: Operating equipment effectiveness (Slack, Jones and Johnston 2013) 

The loading time is the time of scheduled hours. When subtracting time lost through set-

ups, changeovers, breakdowns and time without scheduled work (unplanned), one gets the 

total operating time and the availability rate as a fraction of the loading time. In the next 

step, idle equipment time and a loss through slow running equipment sum up to speed 

losses and result in the net operating time and the performance rate. In the last step, quality 

losses, e.g. time “wasted” through producing products which do not pass the quality 

control, lead to the valuable operating time and the quality rate. The OEE is then 

calculated as the product of availability, performance and quality rate: 

𝑂𝐸𝐸 = a ∗ p ∗ q =
Valuable operating time

Loading time
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2.2.2 Identification of alternative capacity plans 

The second step proposed by Slack, Jones and Johnston (2013) is the identification of 

alternative capacity plans. In order to do that one first needs to understand options, plans 

and strategies for capacity planning. The general goal of the future planning is to match the 

capacity to the demand and there exist different strategies to approach that problem. The 

demand forecasts build the basis for the planning of future capacity, i.e. the decision on 

when to acquire extra capacity. Heizer and Render (2006) identified four strategies for 

capacity planning (Figures 5 (a) – (d)). 

 

Figure 5: Capacity planning strategies (Heizer and Render 2006) 
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In strategies (a) and (b) the goal is to keep the capacity level above the demand level at any 

time by increasing the capacity when the demand approaches the capacity limit. Those 

strategies will lead to idle equipment or overproduction, but will result in high service 

levels. The difference between the two strategies is that (a) uses incremental capacity 

increases, while (b) has a larger expansion with one step. Strategy (c) on the other hand 

adds capacity whenever the demand exceeds the capacity in a manner that demand and 

capacity are matched. This strategy leads to lower service levels, but can result in high 

utilization levels. Strategy (d) is a combination of (a) and (c), using a middle ground 

between over- and under-capacity. 

Furthermore, a company has to decide how to address demand fluctuations within the 

planning horizon. Slack, Jones and Johnston (2013) define the following capacity plans to 

do that: 

 Level capacity plan: In this approach the capacity level is set to a defined level 

and kept on that level throughout the planning horizon, ignoring demand 

fluctuations. 

 Chase demand plan: This is the opposite of the level capacity plan, trying to 

adjust the capacity constantly within the planning horizon to match the capacity to 

the demand as closely as possible.  

 Demand management: Rather than adjusting the capacity, this approach focuses 

on influencing the demand. The most common technique to do that is to change the 

price, but also for example advertising can have an impact on demand levels. 

The capacity plan has a strong impact on an organizations performance. A level capacity 

plan can help to achieve a stable employment pattern and high utilization levels, but on the 

other hand can lead to high inventory levels. A chase capacity plan “is much more difficult 

to achieve, as different numbers of staff, different working hours and different amounts of 

equipment may be necessary in each period”, but average inventory levels can be lower 

than with a level capacity plan (Slack, Jones and Johnston 2013). To achieve a chase 

capacity plan, methods of adjusting capacity on short term are required, which can be the 

following: 

 Overtime and idle time. 

 Varying the size of the workforce 
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 Using part-time staff. 

 Subcontracting. 

Besides deciding on capacity strategy and plan, one needs to define how to modify or use 

capacity. Heizer and Render (2006) present several methods for capacity configuration in 

dependence of the planning horizon. They characterize long-range planning with time 

horizons with more than one year, intermediate-range planning with a time horizon 

between three and 18 months and short-range planning with a horizon of up to three 

months. Table 1 gives an overview over which actions may be taken for the specified 

planning horizons: 

Table 1: Capacity configuration options per planning horizon (adapted from Heizer and Render 2006) 

 Modify capacity Use capacity 

Long-range planning 

 Add facilities 

 Add long lead time 

equipment 

 Limited options  

exist 

Intermediate-range 

planning 

 Subcontract 

 Add equipment 

 Add shifts 

 Add personnel 

 Build or use 

inventory 

Short-range planning 

 Limited options exist  Schedule jobs 

 Schedule personnel 

 Allocate machinery 

Those options can be used to modify the capacity towards a desired level. In long-range 

planning there exist only limited options on using the capacity, while on the operational 

level capacity can hardly be modified. To take a decision on which methods to apply, one 

needs to consider several factors, such as costs and the impact on the system’s 

performance. Mahadevan (2010) describes long-term planning with a time-horizon of two 

to five years with the planning premise of “augmenting capacity for projected growth”, 

medium term planning for typically one year focusing on balancing demand and supply 

and short-term planning for a time horizon of one week to three months, targeting to 

maximize availability and efficient use of resources. 
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2.2.3 Evaluation of alternative capacity plans 

Capacity planning effects a broad range of performance aspects as was already indicated in 

the introduction to this thesis. As capacity decisions can affect all parts of a supply chain it 

is important to understand how performance measuring can be done in supply chains. 

There have been several approaches to develop frameworks for supply chain performance 

measuring:  

Gunasekaran, Patel and McGaughey (2004) for example developed a framework for 

supply chain performance measurement and divided the performance measures according 

to the supply chain activities “plan”, “source”, “make/assemble” and “deliver/customer” 

and present a number of performance measures on a strategic, tactical and operational 

level for each of the activities. As the analyzed system within this research considers only 

the activities “make/assemble” and “deliver/customer”, the following will focus on those. 

For the “make/assemble” activity they present the following performance measures:  

 Strategic: Range of products. 

 Tactical and operational: Cost per operation hour and capacity utilization. 

 Tactical: Utilization of economic order quantity. 

 Operational: Human resource productivity index. 

For the “deliver” activity they present a range of flexibility and effectiveness measures and 

also state the importance of delivery reliability performance on a tactical and operational 

level. 

Beamon (1999) has investigated and evaluated which performance measures were used on 

supply chain modelling in previous studies. She found that in most cases either costs or a 

combination of costs and customer responsiveness have been used. Another approach 

presented is a combination of customer responsiveness and flexibility. On this basis she 

developed “an overview and evaluation of the performance measures used in supply chain 

models and […] a framework for the selection of performance measurement systems for 

manufacturing supply chains” (Beamon 1999), dividing the performance measures into 

three types and defining goal and purpose of those types as listed in table 2: 
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Table 2: Performance measure types (adapted from Beamon 1999) 

Performance measure 

type 
Goal Purpose 

Resources High level of efficiency 

Efficient resource 

management is critical to 

profitability 

Output 
High level of customer 

service 

Without acceptable output, 

customers will turn to other 

supply chains 

Flexibility 
Ability to respond to a 

changing environment 

In an uncertain environment, 

supply chains must be able 

to respond to change 

Resource performance measures include inventory levels, which can be measured per 

inventory group (Work-in-progress (WIP), raw materials and finished goods), personnel 

requirements, equipment utilization, energy usage and costs. The total costs may be 

divided by their source: 

 Distribution costs. 

 Manufacturing costs. 

 Inventory holding costs. 

Output measures focus on customer responsiveness, quality and quantity. Typical 

performance measures are for example sales, profit, fill rates (proportion of demand 

fulfilled from shelf), where one can differentiate between order fill rate, stock keeping unit 

(SKU) fill rate (from here on out referred to as fill rate) and case fill rate (Sople 2012), on-

time deliveries, backorder or stock-out situations, customer response time, manufacturing 

lead time, shipping errors and customer complaints. 

All those performance measures give indications on how a system is performing and can 

serve as decision support, when evaluating the impact of decisions on performance 

measures. However, when investing in capacity, there are several options to evaluate the 

investment, based on evaluating the costs of investment against the profit, such as for 

example a Break-even-analysis or Return on Investment (ROI) analysis. A break-even 

analysis focuses on determining the break-even point in which the revenue will cover the 
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costs of an investment (Heizer and Render 2006). The ROI is calculating the efficiency of 

an investment by dividing the net profit through investment costs.  

Harder to measure is the flexibility of a system. There are approaches to quantify a 

manufacturing or supply chain system’s flexibility with measures such as volume 

flexibility, delivery flexibility, mix flexibility and new product flexibility. The flexibility is 

important when a system exists in an uncertain environment and has a broad range of 

advantages, as presented by Beamon (1999): 

 “Reductions in the number of backorders. 

 Reductions in the numbers of lost sales. 

 Reductions in the number of late orders. 

 Increased customer satisfaction. 

 Ability to respond to and accommodate demand variations, such as seasonality. 

 Ability to respond to and accommodate periods of poor manufacturing 

performance (machine breakdowns). 

 Ability to respond to and accommodate periods of poor supplier performance. 

 Ability to respond to and accommodate periods of poor delivery performance. 

 Ability to respond to and accommodate new products, new markets, or new 

competitors.” 

Besides the decision on which performance measures to use, one must decide how to 

evaluate the impact of alternative capacity plans and configurations on chosen 

performance measures and how the system will perform in uncertain conditions. Figure 6 

shows different ways to study a system as proposed by Law and Kelton (2000). They 

categorize systems into discrete systems, in which state variables change instantaneously 

at certain times and continuous systems, in which state variables change steadily over time. 
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Figure 6: Ways to study a system (Law and Kelton 2000) 

The experimentation with the actual system will have the advantage over experimentation 

with a model of the system as it will always be known to be valid. On the other hand 

experimentation with the actual system can be very costly and lead to disruptions. When 

deciding to experiment with a model of the system, there exist the options of using a 

physical or a mathematical model. Physical models have rarely been used in operations 

research and system analysis. A mathematical model is representing the system with 

logical and quantitative relationships and is used to study the system’s behavior under 

different settings and can either be an analytical or a simulation model. Altiok and 

Melamed (2007) describe the difference between analytical and simulation modelling as 

follows: 

 “An analytical model calls for the solution of a mathematical problem, and the 

derivation of mathematical formulas, or more generally, algorithmic procedures. 

The solution is then used to obtain performance measures of interest” 

 “A simulation model calls for running (executing) a simulation program to produce 

sample histories. A set of statistics computed from these histories is then used to 

form performance measures of interest.” 

If the system is simple enough to use an analytical approach, this should be done. However 

many systems are very complex and are facing many stochastic factors, which makes 

analytical solutions very complicated. Simulation models can help to study such systems 

(Law and Kelton 2000). Gokhale and Trivedi (1998) see the advantage of simulation over 
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analytical modelling “in the fact that very detailed system behavior can be captured”, 

while analytical models can be more cost effective than simulation. 

2.3 Uncertainties in capacity planning 

Uncertainties in capacity planning can appear throughout the whole supply chain. The 

main sources of uncertainty in a supply chain that may affect the performance and need to 

be considered when taking decisions are demand uncertainty, uncertainty in processes and 

uncertainty of lead-times (Peidro et al. 2009).  

The challenge of demand uncertainty is not only an issue in capacity planning, but in 

general in supply chain management and production planning. Demand seasonality and 

fluctuations within shorter time horizons have to be considered (Slack, Jones and Johnston 

2013). Within the production process there can be uncertainties, such as “operation yield 

uncertainty, production lead time uncertainty, and quality uncertainty, failure of production 

system and changes to product structure” (Mula et al. 2006). The uncertainty of lead-times 

appears within all parts of the supply chain. Each member of the supply chain faces the 

previous uncertainties and a company has to consider that lead-times for raw materials, 

components and other working materials may have a high variation. 

Bakke and Hellberg (1993) have investigated challenges in capacity planning, focusing on 

“companies, producing fairly complex, and assembly intensive and customized products” 

and concluded that the challenge is the cumulated uncertainty of the following factors: 

 MPS uncertainties towards composition and time. 

 Capacity uncertainties due to unknown process or manpower qualifications. 

 Load uncertainties through data collection problems, unknown process or a short 

planning horizon. 

 Scheduling methodology uncertainties, for example a weak connection between 

work- and customer orders and the inability to simulate accurate work flow at 

work-center level. 

 Pre-production uncertainties, e.g. failures in the capacity planning. 

 Subcontracting uncertainties, especially the inability to identify items at an early 

stage. 

 Capacity loss through idle bottleneck resources or the production of wrong items. 
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Even though these challenges focus on a different product type than considered in this 

thesis, many of those uncertainties can occur nevertheless.  

Uncertainties are typically handled by “stochastic” or “probabilistic” approaches, what 

means that uncertainties are represented with probabilities. A stochastic model can be 

defined as “a model describing how the probability of a system being in different states 

changes over time” (Otto and Day 2007). 

2.4 Classification of capacity planning problems under uncertainty 

Within the research for this thesis no approach focusing exactly on the classification of 

capacity planning problems under uncertainty was found. However, within reviews there 

were developed taxonomies for supply chain planning (Peidro et al. 2009) and production 

planning (Mula et al. 2006) problems under uncertainty.  

Peidro et al. (2009) based their taxonomy to classify supply chain planning problems on 

three dimensions: 

 Source of uncertainty. 

 Problem type. 

 Modelling approach. 

Sources of uncertainty which may affect capacity planning have been studied in detail in 

the previous chapter. The problem type is typically defined by the planning range, e.g. 

operational, tactical and strategic. As for the modelling approach, they distinguish between 

analytical models, models based on artificial intelligence, simulation models and hybrid 

models.  

The study by Mula et al. (2006) focuses production planning models under uncertainty and 

their application to real-world problems. They did not differentiate by means of the source 

of uncertainty, but rather focused on the combination of the production planning area and 

the modelling approach. The research topics “Aggregate planning”, “Hierarchical 

production planning”, “Material requirement planning”, “Capacity planning”, 

“Manufacturing resource planning”, “Inventory management” and “Supply Chain 

planning” have been identified. Their classification of general types of uncertainty models 

in manufacturing systems distinguishes between conceptual models, analytical models, 
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artificial intelligence based models and simulation models. For the field of capacity 

planning, they only describe approaches with analytical models and simulation models. 

Those two approaches will be presented in the following chapters, including their 

advantages and disadvantages as well as applications within capacity planning. The two 

main approaches will be complemented by considering the possibility of combining 

analytical and simulation models in a recursive manner to study a system’s behavior. 

2.5 Approaches to capacity planning under uncertainty 

2.5.1  Analytical modelling 

Mula et al. (2006) classified the following approaches as analytical modelling in 

production planning:  

 Hierarchy process. 

 Mathematical programming (Linear programming, Mixed-integer linear 

programming, Non-linear programming, Dynamic programming and Multi-

objective programming). 

 Stochastic programming. 

 Deterministic approximations. 

 Laplace transforms. 

 Markov decision processes.  

They have identified that especially deterministic approximation and stochastic 

programming have been used for production planning under uncertainty.  

Chen, Li and Tirupati (2002) for example use a scenario-based stochastic programming 

approach in an uncertain environment with several products. They apply scenarios to 

capture the demand development and the programming approach to determine technology 

choices and capacity plans. They incorporate strategic (investment in new capacity) as well 

as tactical (allocation of the capacity) decisions in their model. 

 

Alp and Tan (2008) consider a make-to-stock environment and include flexible capacity 

decisions in a finite-horizon dynamic programming approach to address the tactical 

capacity problem with a periodic review under non-stationary stochastic demand. The 
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model is used to investigate “the optimal capacity levels, the effect of operating on a 

suboptimal capacity level and the value of utilizing flexible capacity”. 

Analytical models can have the goal of optimization, e.g. the objective of minimizing or 

maximizing a function subject to given constraints. In capacity planning, optimization 

models usually use a least cost objective under operational constraints (Ku 1995). 

Sahinidis (2004) found that the modelling philosophies when optimizing under uncertainty 

have a broad variety and included expectation minimization, minimization of deviation 

from goals, minimization of maximum costs and optimization over soft constraints.  He 

states that main approaches to optimization under uncertainty are stochastic programming 

(resource models, robust stochastic programming and probabilistic models), fuzzy 

programming (flexible and possibilistic programming) and stochastic dynamic 

programming.  

2.5.2 Simulation modelling 

“Simulation is the imitation of the operation of a real-world process or system over time. 

Simulation involves the generation of an artificial history of the system and the 

observation of that artificial history to draw inferences concerning the operating 

characteristics of the real system that is represented” (Banks 1998).  

In comparison to the goal-seeking optimization, simulation is a more descriptive and 

exploratory approach. Rather than finding an optimal solution, simulation experiments 

with a system by using different values on input parameters. Mula et al. (2006) have 

classified the following approaches as Simulation modelling:  

 Monte Carlo techniques. 

 Probability distributions.  

 Heuristic methods.  

 Freezing parameters.  

 Network modelling. 

 Queuing theory.  

 System dynamics. 

Strengths and weaknesses of simulation modelling have been investigated by Banks 

(2000), who has identified several advantages and disadvantages (Table 3). 



21 

 

Table 3: Advantages and disadvantages of simulation (based on Banks 2000) 

Advantages Disadvantages 

Understand “Why” to certain phenomena Model building requires special training 

Deal with complex systems 
Simulation results can be difficult to 

interpret 

Visualization Time consuming and expensive 

Consideration of “What-if” scenarios Inappropriate usage  

Two simulation modelling approaches commonly used as decision support tools in 

logistics and supply chain management are Discrete event simulation (DES) and system 

dynamics (SD) (Tako and Robinson 2012). While SD is mostly used for strategic 

problems, DES is used more frequently for operational and tactical planning problems and 

can be classified into two types, dependent on the simulation output data: steady state 

simulation and terminating simulation (Law and Kelton 2000). 

 Steady-state simulation: The purpose of this simulation is to study the long-run 

and steady-state behavior of a system. For a steady-state simulation one needs to 

consider a warm-up period, in which performance measures achieve stability. 

 Terminating simulation: In this case the simulation starts in a specific state and 

runs until a terminating event occurs or for finite planning horizon. 

Umeda and Jain (2004) have studied “Modelling and Design Issues for Integrated Supply 

Chain Simulation Systems” and defined terminating simulation models to be specifically 

useful for supply chain problems, including capacity planning problems, if it is done for a 

defined time horizon. 

Nyaga et al. (2007) applied DES with ARENA to experiment with different capacity 

configurations in a configure-to-order environment under demand uncertainty. They 

investigate the effects on customer service performance measured by order fill rate, case 

fill rate and response time and found that the variables demand skew, demand variability 

and configuration capacity have a significant impact on the customer service. 

Vlachos, Georgiadis and Iakovou (2007) applied the method of system dynamics to a long-

term capacity planning problem in a reverse supply chain and used the total supply chain 

profit as performance indicator. DES usually tries to achieve a close match between the 
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model behavior and the real world behavior, they use SD to investigate the major dynamic 

patterns and focus on an approximation of profit development under certain conditions 

rather than trying to forecast profits. 

2.5.3 Hybrid modelling 

According to Byrne and Bakir (1999) traditional approaches like RCCP and CRP as well 

as mathematical solutions for capacity constrained MRP problems “have generally failed 

in realistically modelling the capacity”  and analytical as well as simulation modelling 

have specific advantages and disadvantages. They focus on overcoming some of the 

disadvantages by using a combination of both approaches. They present an iterative 

approach, using a hybrid modelling procedure as shown figure 7: 

 

Figure 7: Hybrid modelling procedure (Byrne and Bakir 1999) 

In this hybrid approach an analytical model is used to determine optimal production levels, 

which are then tested with a simulation model for capacity satisfaction, which should be 

defined in accordance with the desired output or performance. Based on the simulation 

output, the analytical model is adjusted and new optimal production levels are determined. 

This is done repeatedly until capacity satisfaction is reached. 

http://www.sciencedirect.com/science/article/pii/S0925527398001042#gr1
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Nolan and Sovereign (1972) have done research on the advantages and disadvantages of 

analytical and simulation models and propose a recursive optimization and simulation 

approach, using optimization to take resource level decisions and determine optimal 

schedules, followed by testing the schedules with simulation and use the productivity 

measurement to start again on the resource level. 
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3 Methodology   

3.1 Problem classification 

The problem classification was done according to the classification procedure of supply 

chain planning problems used by Peidro et al. (2009) and in consequence based on the 

three subcategories “Source of uncertainty, “Problem type” and “Modelling approach”.  

The analyzed system faces several sources of uncertainty on the demand side as well as in 

the capacity and availability of raw material. In the processes the uncertainty lies mostly 

within unplanned downtimes, which can arise through breakdowns and failures of the 

machine or non-availability of raw-materials, which lead to fluctuations in the machine’s 

actual capacity. As due to the nature of the product (perishable) the goods shall not lay on 

inventory for a long time, the demand should be produced when it occurs, keeping the 

inventory levels within a certain range. The challenge is that all those uncertainties arise 

together, leading to changing capacity and demand levels and accordingly to periods with 

over- and periods with under-capacity.   

The approaches and methods to be used are dependent on the problem type and it is 

therefore important to decide which problem type (strategic, tactical or operational) is 

addressed before developing the methodology. Due to the decisions, which shall be 

supported (increased production speed, schedule changes etc.), the problem type can be 

classified as a tactical planning problem. 

The modelling approach in this case study will be a discrete-event simulation with 

sensitivity analysis. It was decided to use this approach for several reasons. First of all, 

TINE has previously addressed similar problems with analytical models and wants to get 

an insight in opportunities to use simulation for this kind of problem. The uncertainty and 

complexity in the case leads to the conclusion that the problem is suitable to be addressed 

with simulation. As the problem type is a tactical capacity planning problem, it was 

decided to use the simulation method DES. 
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3.2  Case study research model 

The case study research model (Figure 8) used to address the problem have four main 

steps: 

1. System analysis. 

2. Scenario development. 

3. Decision support modelling. 

4. Impact analysis. 

 

Figure 8: Case study research model 

Observations, interviews and provided data build the basis for the system analysis, which 

is divided into an analysis of processes, demand and production capacity. Those three 

analysis parts shall lead to a deep understanding of the system and are the foundation for 

the development of the DSS. Besides, performance measures were chosen on the basis of 

the company’s preferences, literature review and system analysis. For the evaluation of the 

scenarios, consisting of demand scenarios and capacity configurations, the method of 

experimenting with a DES model was chosen. Whether to use a steady-state or terminating 

simulation model depends on the objective of the simulation, especially which 

performance measures shall be taken as output and whether the model is used for strategic 

(steady-state) or tactical (terminating simulation for a finite time horizon) planning. As the 

case study addresses a tactical planning problem with a finite time horizon, it was decided 

to use a terminating simulation. 
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3.3 Research methods 

Interviews and observations 

Observations were taken in order to understand the physical process of the production and 

were important for accessing the different production steps and evaluating which steps are 

critical for capacity planning. The observations were taken at a visit at TINE’s facilities. 

Interviews with planners were another method used to study the system. Specialists who 

know the system can provide a research with essential information and help to understand 

the real-world decision making. Interviews were taken with a focus on production and 

capacity planning methods at TINE and were carried out with production planners and the 

contact person at TINE. Several questions arising throughout the project have been 

delivered to the contact person, who discussed the questions with relevant persons in order 

to give feedback. 

Experiments (simulation modelling) 

Another research method is experimentation in order to evaluate the impact of demand 

changes and capacity configurations on performance measures. The development of the 

simulation model was based on the methodology of discrete event simulation in logistics 

and supply chain research as proposed by Manuj, Mentzer and Bowers (2009) and was 

accordingly carried out with the following steps: 

1. Problem formulation. 

2. Specification of independent and dependent variables. 

3. Development and validation of the conceptual model. 

4. Data collection and analysis. 

5. Development and verification of the computer-based model. 

6. Validation of the model. 

7. Performance of simulations. 

8. Analysis and documentation of results.  

For the development of the model, the general-purpose simulation software ARENA was 

chosen. The ARENA product family consists out of the ARENA Input Analyzer to 

determine probability distributions, the ARENA simulation software, which uses DES 
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based on simulation blocks, and the ARENA Process Analyzer for experimenting with 

different input parameters.  

3.4  Data collection and analysis 

Data collection and analysis is essential for both the understanding and analysis of the 

system, as well as for the development of the simulation model. Altiok and Melemed 

(2007) describe data collection in simulation modelling as necessary for estimating input 

parameters and model validation, which contains comparing the system’s historical output 

statistics with those obtained from the model. 

The data was provided from TINE SA and has been collected before through TINE’s 

Enterprise Resource Planning-system MR3. The following data, all as observed in the year 

2013 and separated per item, was provided by TINE: 

 Daily demand. 

 Amount and start dates of the production. 

 Weekly production plans (including available and planned hours). 

 Weekly production amount (including used hours). 

 Lost sales. 

 Daily machine downtimes, separated into planned, operational and unplanned 

downtimes. 

 Daily scheduled machine hours.  

The provided data was cleaned and prepared for further analysis using Microsoft Excel 

2010. This step also included the matching of the measurement units (originally some data 

was provided in weights and amounts as well as in different time units). For the further 

analysis it was decided to measure in amounts of single stock keeping units (SKUs) and 

hours. Besides, Microsoft Excel 2010 was used for the general analysis of the system, for 

example for calculating performance measures, building graphs and bar charts etc. 

Furthermore the ARENA Input Analyzer, which has the functionality of fitting probability 

distributions to sample data sets and can recommend parameters which provide the best fit, 

was used for probability distribution analysis. For testing the “goodness of fit”, the tool 

provides options of using a Chi-Square test (Chi2-test) and Kolmogorov-Smirnoff test (KS-
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test) (Altiok and Melemed 2007), which will be described within the data analysis in the 

simulation modelling part.   
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4 Case Study  

4.1 System analysis 

4.1.1 Process analysis 

The considered system in this thesis (Figure 9) is a part of TINE’s cheese supply chain, 

with the main focus on an automated cheese-cutting and packaging line (from here on out 

called production or packaging line) at TINE’s central warehouse in Heimdal. On the 

production line, there are produced two products: Norvegia Cheese-0.83 kg (from here on 

out referred to as item 1) and Norvegia Cheese-1.0 kg (from here on out referred to as item 

2). The system will besides the production line include the underlying inventory of 

finished goods, the incoming demand and the corresponding production planning and 

scheduling tasks. 

 

Figure 9: System overview 

The figure above presents the analyzed system and its position within the supply chain. 

The system is supplied with Cheese-blocks from TINE’s production sites. The cheese 

production will only be considered in accordance to its impact on the considered 

packaging line, e.g. when stock-outs cause the machine to be idle. The packaging process 

consists out of the process steps “cutting”, “weight control”, “packaging” and “labelling”.  

The weight control checks whether the product’s weight lies within a predefined range and 

rejects the product if it does not. Even though rejected products may still be used as by-

products on other production lines, it can still be considered as “waste” within the analyzed 

system. 
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As the production line is used for the production of two different products, changeovers, 

consisting out of a “clean-up”, “set-up” and “start-up” time, occur when switching from 

one item to the other. In this case the changeover times are not sequence-dependent, 

meaning that the changeover time will be the same for every changeover and the time is 

known to be half an hour. There might be small variations, but as these do not have a 

major impact on the performance, it is assumed that the time is constant. Furthermore the 

machines in the packaging process are subject to stochastic breakdowns. After a period of 

normal operation (uptime) a failure event takes place, leading to a stop of the operation for 

the duration of repairing (downtime). After the production, the end items are stored in a 

central warehouse, but are not supposed to be delivered before the end of a cool-down 

period. 

Production planning is done based on demand forecasts for “the next few days”. This is 

hard to define, but it was indicated that usually the next three days are considered. The 

production will then be done to stock based on those forecasts. However the production 

plan is not strictly following the demand forecasts as shown in figure 10, which presents 

the cumulated demand, production and forecasts over one year. 

 

Figure 10: Cumulative comparison of demand, production and demand forecast 

A production order is only issued, if the forecasted demand would decrease the inventory 

to a lower value than the item’s safety stock (SS), which is 15,000 SKUs for item 1 and 

36,000 SKUs for item 2. Besides the production plan may be adjusted on a daily level in 

order to address the problem of forecasting inaccuracy. The production time is subject to 

several constraints due to agreements with trade union and employment rights: 
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 From Monday to Thursday there are two shifts, with 6 hours in the early shift and 

7.5 hours in the late shift. 

 On Friday there is only one shift (6 hours). 

 Optionally, after regular working hours, 3.5 hours of overtime can be used.  

 If a production is started on a certain day, it will be produced until the end of the 

day. Thus if there is a production order that can be completed in less than a day, 

production still takes place for the complete day, leading to “Overproduction”. The 

same applies for the 3.5 hours of overtime. 

Overtime is used whenever the total inventory (including inventory in cool-down) of the 

item currently in production is below its SS at the end of the regular production. 

Changeovers will occur if the produced item has fulfilled the production plan (based on 

demand forecasts for the next three days) or the inventory of the other product dropped 

below its SS.  

The total throughput of the system depends on the product mix as the items have different 

throughput rates with a value of 1,695 per hour for item 1 and 2,439 per hour for item 2. 

The production cycle time (time between the completions of two subsequent units) is 

0.00059 hours for item 1 and 0.00041 hours for item 2. The fill rates in 2013 were 99.49% 

(item 1) and 99.74% (item 2). 

4.1.2 Demand analysis 

The analysis of the demand was carried out on a weekly level. The first part focused on 

measuring the demand on a weekly basis to get an overview over volume, product mix and 

variation. Therefore the total demand, minimum and maximum weekly demand, weekly 

average as well as standard deviation (all measured in SKUs) and variation coefficient 

(standard deviation divided by average) have been calculated (Table 4). As the demand for 

item 2 is partly fulfilled from other locations, the following measures will all refer to the 

fraction of the demand which was actually fulfilled from the analyzed system. Because the 

amount of fulfilled demand from other production lines does not depend on the system’s 

performance, but on the performance of the other lines, this cannot be planned based on an 

analysis of the considered system. 
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Table 4: Measurement of weekly demand 

Measure Item 1 Item 2 

Total demand  886,056 1,755,544 

Minimum per week 758 15,611 

Maximum per week 24,480 63,716 

Weekly average 17,039.54 33,760.47 

Standard deviation 4,344.51 11,234.09 

Variation coefficient 25.50% 33.28% 

The measures show that the demand for item 2 is higher and has a higher variation than the 

one of item 1. However the coefficient of variation indicates that the demand of both 

products has a relatively low variance, as the values lay far below 100%.  

As the product mix is varying between the weeks, it was decided to focus on input capacity 

measures in order to be able to compare the demand (measured in SKUs) to the capacity 

(measured in machine hours).  Therefore the demand was transformed into necessary 

production hours based on cycle times. The fraction of the demand from item 1 is 33.54%; 

the one from item 2 is 66.46%. On this basis the average time for an aggregate unit can be 

calculated as follows: 

hourshourshours 00047.000041.0*%56.6600059.0*%54.33   

As for the analysis of the weekly development, not the yearly product mix was used as a 

basis but rather the product mix in the specific weeks. Figure 10 presents the development 

of weekly needed input capacity to fulfill the demand per item and cumulated. 
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Figure 11: Weekly capacity demand 

The graph supports the hypothesis that the variation of product item 2 is mostly 

determining the variation of the cumulated demand. While item 1 has a quite constant 

demand, item 2 has several extreme peaks. As the two items are quite similar, it was 

necessary to check whether there exists a pattern of substitution between the two products, 

but no clear pattern can be identified based on the development of weekly demand levels. 

Another conclusion is that there are no clear seasonal patterns, but only fluctuations of the 

weekly demand levels. 

4.1.3 Production capacity analysis 

This part is separated into the analysis of the actual production, measured in terms of total 

production, average, minimum and maximum weekly production and standard deviation, 

all taken for each product and measured in SKUs, as well as the variation coefficient 

(Table 5).  
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Table 5: Measurement of weekly production 

Measure Item 1 Item 2 

Production  886,664 1,790,617 

Minimum per week 0 0 

Maximum per week 40,168 95,520 

Weekly average 17,051.23 34,424.90 

Standard deviation 9,454.37 17,264.20 

Variation coefficient 55.45% 50.15% 

While the total production amounts are close to the total demand, the weekly production 

amounts per item have a higher variation than the weekly demand. This can be explained 

by the fact that only one product is produced at each time, while customer orders can come 

in for both products simultaneously and that there are weeks with over- and 

underproduction based on production plans. The variation coefficient is in consequence 

higher when considering the products separately. However the variation coefficient for the 

cumulated weekly production is lower with a value of 36.08%. 

The second part of the production capacity analysis is focusing on the capacity measures, 

which were found to be appropriate for measuring capacity within the literature review. 

The following analysis will focus on the following measures: 

 Design capacity. 

 Effective capacity. 

 Utilization. 

 Efficiency. 

For the measurement of the capacity, data on downtimes, scheduled and productive 

machine hours was provided. The data was already divided into planned downtime, such 

as planned meetings and breaks, operational downtime (shift change times, changeover 

times and preventive maintenance) and unplanned downtime (machine breakdowns, 

quality failure inspection and missing material). This division was taken as the basis for 

the further calculations. Furthermore important is the time without scheduled work. As not 

all days are used for production (if the complete forecasted demand has been produced), 
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the machine has idle time. The calculation of the efficient capacity and the actual output 

was done as follows: 

Design Capacity 

- Planned downtime 

- Operational downtime 

- Idle time 

+ Overtime 

= Effective capacity 

- Unplanned downtime 

= Actual input capacity. 

On this basis efficiency and utilization can be calculated following the description within 

the literature review. The system had, in the year 2013, a utilization of 47.0% and an 

efficiency of 74.6%. For utilization the minimum weekly value is as low as 8.9%, while 

the highest value is 122.9% in a week in which overtime was used. The differences mainly 

occur through time in which no production is scheduled (1,441.41 hours in 2013) or 

through unplanned downtimes (434.73 hours in 2013) because planned and operational 

downtimes (together 90.68 hours in 2013) are low in comparison. For the efficiency the 

value varies between 45.9% and 87.4%. The variation between the values shows the 

challenge of planning capacity accurately under the uncertainty of demand and unplanned 

downtimes. 

 

Figure 12: Output, design and effective capacity 
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Figure 12 illustrates the actual, effective and design input capacity per week. The 

differences in design capacity are based on holidays or other days without operations. The 

system mostly operates with idle time to adjust the capacity downwards, while overtime is 

not used extensively. However, even in weeks in which the effective capacity is below the 

design capacity, there can be overtime, as the decision on overtime usage is taken on a 

daily rather than a weekly basis. In 2013 there was used 28 hours of overtime out of 

1,276.59 productive machine hours. As the utilization is, with less than 50%, quite low, it 

seems logical that idle time is used much more extensive than overtime. Besides the figure 

indicates that the unplanned downtime is dependent on the effective capacity and 

consequently might be modelled in relation to that. 

4.1.4 Comparison of production capacity and demand 

The last part of the system analysis focused on comparing production capacity and 

demand. In a first step it was checked how the capacity usage corresponds with the input, 

which would have been necessary to fulfill the demand. Figure 13 shows the necessary, 

design and actual input capacity per week. 

 

Figure 13: Actual, necessary and design input capacity 

The graph shows that the capacity usage (actual input capacity) is chasing the demand, but 

due to demand variation, forecasting inaccuracy, lot production and uncertainty uses more 

or less capacity when comparing on a weekly basis. Measured in design capacity, there are 

only two weeks with a capacity lag, which proves the importance of considering 

unplanned downtimes as those can lead to capacity lags. 
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4.2 Scenario development 

The following section will focus on defining possible scenarios and options as a basis for 

future capacity planning. The presented options will not all be tested and used within this 

thesis, but shall give an indication on how the system can be configured and will also build 

the basis for defining the goal of the decision support model. For the development of 

scenarios the following points were investigated. 

 Capacity plan. 

 Possible capacity configurations. 

Capacity strategies are not included here, since the case study is focusing on a tactical 

planning problem, but should be considered for strategic planning. 

As described within the literature review, there exist the three options of “Level capacity 

plan”, “Chase capacity plan” and “Demand management”, which can be combined. The 

system follows a chase capacity plan, using the method of overtime (limited) and idle time. 

There are several options to explore impacts of using a different capacity plan. For 

example it could be explored how the system reacts if the capacity can only be adjusted 

downwards (idle time), but not upwards (overtime). As overtime is rather costly, it is 

interesting to explore the impact on the system’s performance without using overtime. 

Also different rules for when and how to apply overtime (for example only if the demand 

on the following day could not be fulfilled) and when to leave the system idle are options 

that could be investigated.  

There exist several options for modifying the system’s capacity, which will either 

increase/decrease the capacity by increasing/decreasing the scheduled time (number and 

length of shifts), increasing/decreasing the throughput rate (adding of personnel, process 

optimization or change of production speed) or by increasing/decreasing the efficiency 

(more or less downtime). The last factor is however not fully controllable, but can only be 

influenced. The non-availability of the raw-material on the one hand is an external factor 

as it is delivered to the system from a supplier1, but can be partly controlled through high 

inventory levels. The breakdowns and failures of the machine are in general not 

                                                 

1 The supplier in this case is TINE itself, but it can still be considered as an external supplier to the system. 
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controllable, but it might be possible to adjust the length and probability of breakdowns by 

for example purchasing new equipment. 

Furthermore the future demand will be considered. When talking about alternative future 

demand scenarios, the total demand as well its variation might be changed. As in the 

current case there are two products with different throughput rates, also the product mix 

plays an important role.  

The actual scenarios to be tested with the simulation model have been developed in 

cooperation with the contact person at TINE. The previously described options have been 

presented and scenarios to be tested have been agreed upon with the company. They are 

particularly interested in the following alternatives: 

 Increase in demand: This means an increase of the total demand without a change 

in the variation or the product mix, e.g. the distribution is kept and both products 

are increased simultaneously. The demand increases are to be tested in combination 

with different capacity configurations. 

 Higher production speed: Increasing the system’s throughput rate by increasing the 

production speed. 

 Schedule changes: This category focuses on the possible capacity modifications 

“adding shifts” or  increasing/decreasing the length of shifts 

 Reduce unplanned downtimes: This can be tested in the simulation model, but only 

be controlled partly in real life. It must also be distinguished between a lower 

probability for breakdowns or shorter durations of repair times. 

 Overtime Usage: Testing how the system would perform without overtime or 

different rules for overtime usage. 

Within each of those factors an unlimited number of scenarios can be developed by 

adjusting the measures on different levels. Furthermore all factors can be combined in 

many different ways, as for example through increasing demand combined with a higher 

production speed. To limit the number of experiments it was decided to use increases and 

decreases in steps of 10%. Based on discussions it was decided to test the following three 

test classes within this research: 

 Test class 1: Current capacity settings with increasing demand 



39 

 

 Test class 2: No usage of overtime with increasing demand. 

 Test class 3: Higher production speed with increasing demand. 

Those tests shall give an indication on how simulation can be used and explore how the 

system will react to certain changes. However, the model shall support all defined options, 

which can be tested in the future. 

For the evaluation of capacity plans, performance measures were defined based on the 

performance measures, which have previously been applied by TINE, and the literature 

review. For TINE, the output performance measures are the most important ones, focusing 

on fill rate levels close to 100%. The output performance is dependent on the resource 

performance, which will be measured by terms of utilization and efficiency, and the 

flexibility of the system, which will just be explored by how much the previously 

mentioned performance measures are affected by changing input values. 

The tests will focus on the impact on the performance measures fill rate (as only daily 

demand data was available, order fill rates could not be measured), machine utilization and 

overtime and compare the results of test classes 2 and 3 to the results obtained with the 

current settings. The decision support model however shall support further measures such 

as inventory levels, productive machine hours and efficiency as a basis for a monetary 

analysis and investment evaluation.  

4.3 Decision support model 

4.3.1 Problem formulation 

The objective is to develop a simulation model that can estimate the effects of changes 

within the previously described factors, e.g. it should be possible to make adjustments for 

the values of those factors. The model shall be constructed in a way that makes it reusable 

for similar systems as TINE has several similar packaging lines. Especially the process and 

the model logic shall be identifiable for the purpose of using the model logic for simulating 

similar production lines. 

It was agreed that the focus shall lie on the utilization of the machine, the amount of 

overtime used to adjust the capacity on short term and fill rates. The model shall also 

support the calculation of monetary performance measures. As the occurring costs can be 
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calculated on the basis of costs per operating machine hour, cost per non-operating 

machine hour and cost per hour on overtime, the actual used hours in those three 

categories should be calculable. Furthermore inventory levels and stock-out situations shall 

be given as output.  

The system faces the problem that capacity (downtimes), demand and planning accuracy 

are uncertain, which means that there exist the possibility that demand peaks occur in 

weeks with low capacity or the opposite. The model shall represent the range of those 

combinations of different capacity, demand and forecasting accuracy levels with a 

stochastic approach. 

4.3.2 Definition of dependent and independent variables 

The next step presented by Manuj, Mentzer and Bowers (2009) is the definition of 

dependent and independent variables. The independent variables can be seen as parameters 

of the system, which are affecting the performance measures, represented by the dependent 

variables. The independent variables can be defined on the basis of the scenario 

development to be the following: 

 Demand. 

 Scheduled machine hours. 

 Cycle time (for example for testing production speed changes). 

 Length and probability of unplanned downtimes. 

 Overtime rule. 

The dependent variables are defined, based on the performance measures, which are to be 

investigated as the following: 

 Efficiency. 

 Utilization.  

 Overtime hours. 

 Fill rates. 

 Production, downtime and idle time hours. 

 Inventory levels. 

 Stock-out situations. 
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4.3.3 Development and validation of conceptual model 

Manuj, Mentzer and Bowers (2009) define the tasks within this step to be the specification 

of assumptions, algorithms and model components for the development of the conceptual 

model and suggest performing a structured walk-through with experts for the validation of 

the model. The conceptual model was developed based on interviews and regular 

discussions with employees from TINE and validated through a structured walk-through 

with several process experts from TINE. 

Several assumptions were taken prior to the development of the simulation model: 

In practice finished products have to go into cool-down storage for 24 hours before getting 

available for delivery. In the model the products will be made available at the beginning of 

the next day and the daily demand arrives after the products are made available, assuming 

that the products are available for delivery the next day. This seems like a reasonable 

assumption as early orders can usually be fulfilled from inventory or with the products 

produced early on the previous day. Furthermore the following assumptions were taken: 

 The model will focus on the machine capacity and it is assumed that there are no 

capacity limitations on inventory, personnel or other related resources.  

 Stock-outs of raw and working-materials have the same probability when 

increasing the demand. In practice a higher demand might lead to delivery 

problems on raw and working-materials and consequently a higher probability of 

stock-outs, leading to machine idling. 

The conceptual flow diagram (Figure 14) consists out of three main parts: 

 Scheduling and production. 

 Production planning. 

 Demand and inventory management. 

The demand and inventory management is driving the production planning, which then 

builds the basis for the production and scheduling. The scheduling is also dependent on 

inventory levels as changeovers and overtime usage are decided upon based SS. 
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Figure 14: Conceptual flow diagram 
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4.3.4 Data analysis 

While the previous analysis has focused on getting a deep understanding of the system’s 

behavior and real-world decision making, the following data analysis will target the 

necessary simulation input. In the first step it was specified what was needed as input to 

the model: 

 Probability distributions for the daily demand per item. 

 Probability distribution for the daily downtime.  

 Probability distribution for the forecasting accuracy in dependency of the demand. 

 Daily schedule. 

 Cycle time per batch (one pallet with 96 SKUs for item 1 or 84 SKUs for item 2). 

 SS per item. 

It was decided to use probability distributions rather than historical data for demand, 

forecasting accuracy and downtimes for two main reasons: Firstly, probability distributions 

make future testing easier as not only the total value but as well different levels of 

variation can be tested without changing the complete data set. The second reason is that 

this will allow the different combinations of demand, capacity and forecasting accuracy 

levels. The demand distributions are based on the daily values as no data on customer 

orders was available. Because the production planning is based on forecasts, which do not 

represent the actual demand, it was decided to include the forecasting accuracy into the 

model by fitting a probability distribution on the forecasting accuracy, measured as the 

ratio of forecasts to actual demand. The probability distribution for the unplanned 

downtime was determined on a daily basis and in relation to the scheduled time on a 

certain day, because no appropriate data for fitting probability distributions for length of 

downtime per occurrence and inter-arrival times of occurrences was available. 

For the daily schedule there were taken the actual values instead of a probability 

distribution since this is a planned input, which can be subject to capacity configurations.  

The model uses a daily schedule (scheduled machine hours), which was obtained by 

subtracting the daily planned and operational downtimes. Rather than using the actual 

planned and operational downtimes from the data, it was decided to use fixed subtractions, 

which are used at TINE, as this will make future planning easier and because planned and 
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operational downtimes do not have a large impact on the output. Changeover times were 

excluded from those subtractions as they will be considered within the model. 

The probability distributions were determined using the ARENA Input Analyzer and the 

statistical methods Chi2-test and KS-test were applied to test the goodness of fit. As the 

statistical methods for fitting the distributions are not the focus of this thesis and have been 

done using the ARENA Input Analyzer, the methods will not be described in detail, but the 

focus will rather be on how to interpret the test results. First there are two hypothesis 

stated: 

 H0: The fitted distribution does represent the data set on an appropriate level. 

 H1: The fitted distribution does not represent the data set on an appropriate level. 

The H0-hypothesis represents the taken assumption and it is tested whether this assumption 

can be accepted or has to be rejected on a certain significance level, which is to be chosen 

by the researcher.  

The ARENA Input Analyzer provides the option of fitting all probability distributions, 

which are supported by the tool2, and provides output measures for all distributions as well 

as suggesting a best fit distribution with parameters. Both mentioned tests will give a so-

called p-value and their test statistic as an output. If the p-value is higher than the chosen 

significance level, the test indicates that the H0-hypothesis cannot be rejected on the 

current significance level, leading to the assumption that the fitted distribution represents 

the sample data appropriately. In general it can be stated, that a higher p-value indicates a 

better fit. Table 6 gives an overview over the fitted distributions, their parameters and the 

results from the goodness-of-fit tests3. 

 

 

 

 

 

                                                 

2 Probability distributions supported by the ARENA Input Analyzer are listed in Appendix A. 

3 Extended probability distribution analysis results are shown in appendix B. 
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Table 6: Fitted probability distributions 

Data set Best-fit 

distribution 

p-value 

Chi2- test 

KS-test 

statistic 

p-value 

KS-test 

Square error 

Daily 

Demand  

item 1 

Beta 0.338 0.058 > 0.15 0.00385 

Daily 

Demand  

item 2 

Erlang 0.495 0.0613 > 0.15 0.00190 

Forecasting 

Accuracy 

item 1 

Normal 0.0587 0.0761 > 0.15 0.00735 

Forecasting 

Accuracy 

item 2 

Erlang < 0.05 0.0848 > 0.15 0.01050 

Unplanned 

downtimes  

Lognormal 0.0624 0.0792 > 0.15 0.01077 

The data indicates that the fitted probability distributions represent the data set on an 

appropriate level. For the two demand distributions both tests indicate that the fitted 

distributions are appropriate on very high significance levels. As for the unplanned 

downtimes and accuracy measures, the Chi2-test only accepts the H0-hypothesis on a lower 

significance level. But according to Altiok and Melemed (2007) “the chi-square test 

requires a considerable amount of data (to set up a reasonably “smooth” histogram) […] 

the K-S test can get away with smaller samples, since it does not require a histogram.” 

Since all distributions have a rather low KS-test statistic, which also indicates a good fit, 

and the p-value of the KS-test indicates that the distributions can be accepted, the H0 –

hypothesis was accepted for all fitted distributions. 

Cycle times per pallet were chosen on the basis of the planning values, which already take 

“waste” due to the quality control into consideration by calculating with more time to 

include defined percentage of “waste”.  

4.3.5 Model development and verification 

The model was developed using the ARENA simulation software package and is 

accordingly based on general simulation blocks, which build a logical flow of entities 

through the system. The computer-based model consists out of three main blocks, which 

interact through global variables. The three simultaneously running model segments are 
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the “demand and inventory management segment”, the “production planning segment” and 

the “scheduling and production segment”, based on the developed conceptual model. The 

global variables connecting the three segments are demand, inventory and production 

plans. 

In the following paragraphs the logic of the three segments will be presented separately. 

Variables, attributes and expressions, which are part of the model, are written in italic4. 

Also are all variables and expressions, which are focusing on amounts (demand, 

production and inventory) dependent on the product, which is defined by its item number 

and therefore have, at any time, two separate values. Variables representing time are not 

dependent on this and in consequence have only one value at each time. The time variables 

are set to represent one day, starting at time zero (representing the start of the operation) 

and up to 24 (end of the day). Furthermore there is applied a variable for used time, which 

measures how much time was used within the production process. 

Part 1: Demand and inventory management segment 

 

Figure 15: ARENA Model Part 1: Demand and inventory management segment 

The demand and inventory management segment (Figure 15) starts with the creation of the 

daily demand. Per item one entity is created every day with the first creation taking place 

at time zero. After assigning the demand value, the entity is delayed for three days. This is 

done because the production plans are created for the next 49 hours. Since the model 

defines the production plan in dependency of the demand, the first plan will be created at 

beginning of day two (when three daily forecasts have been created). As a specified 

assumption is that the produced amount from the previous day can be used to fulfill the 

demand, it has to come in shortly after the production starts and consequently needs to be 

delayed for more than two days. Afterwards it is checked whether the complete demand 

                                                 

4 The variables, attributes and expressions will not be written with the actual names used in the simulation 

model for the purpose of better reading, but will clearly indicate them. 
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can be fulfilled, either leading to a reduction of the inventory or setting the inventory to 

zero. At the same time fulfilled and non-fulfilled amount variables are updated. In the case 

of lost sales, the production plan is decreased by that amount as the lost amount no longer 

needs to be produced.  The new inventory level is then compared to the SS and the 

production plan increased by the difference of SS and inventory level, if it is below, in 

order to react to forecasting inaccuracy. 

Part 2: Production planning segment 

 

Figure 16: ARENA Model Part 2: Production planning segment 

The production planning segment (Figure 16) starts with the creation of one forecast per 

item and day at time zero. Three daily forecasts, based on the demand and the probability 

distribution on forecasting accuracy, get batched to represent the forecasted demand for 

the next three days. In the following step, it is checked, whether the forecasted demand 

will cause the inventory to fall below its SS and issue a production order with the value of 

the forecasted demand and becomes a production plan. 
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Part 3: Scheduling and production segment 

 

Figure 17: ARENA Model Part 3: Scheduling and production segment 

Figure 17 represents the overall scheduling simulation with the production, represented by 

a sub-model, which will be described separately afterwards. In this segment only one 

entity per item is created at time two (first time a production plan is available). Those 

entities represent PO’s, which will get assigned values based on the production planning. 

The following machine changeover process seizes the resources machine and system and 

will choose the item based on a First Come First Serve rule, which is why the first item to 

be produced is chosen randomly. Afterwards the variable changeover time is set to 0.5, 

indicating that the machine is set-up for the product. In the following step the scheduled 

machine hours for regular production (based on the schedule calculation described in the 

data analysis) are read from a data file and the entity enters the production sub-model, 

consisting out of regular and overtime production. At the end of the production day, the 

entity will carry information about the daily produced amount and will then 

simultaneously (the entity is separated) enter the non-production time in the schedule and 

the cool-down period, which will always take as much time as there is left on the day (“24 

hours – productive machine hours – overtime – changeover time)”. After that time the 

inventory is increased and the next day starts, setting the time variables back to zero. 

The model then checks which item was produced and based on that, the two options which 

will lead to a changeover are explored: Either the other item’s inventory will have fallen 

(1) 

(2) 

(1) 

(2) 
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below its SS (1) or the current item has a production plan equal to zero (2). If this is the 

case the resource system is released, causing the entity of the other item to seize the system 

instantaneously as it is queued in front of the seize-module. If not, the same product will 

be produced another day and starts again with reading the scheduled machine hours for the 

next day. 

Sub-model “Production” 

 

Figure 18: ARENA Sub-model “Production” (regular production) 

The first part of the production sub-model (Figure 18) starts with checking whether it 

actually can be produced (if scheduled machine hours > 0) and whether it should be 

produced (if production plan > 0). If one of those tests is not true the machine will be idle 

the following day and the entity is delayed for the scheduled machine hours. If however 

production can and shall take place, the daily downtime is assigned according to the 

probability distribution in dependence on the scheduled machine hours and the production 

starts. 

The production process itself is represented by a circle taking place for the length of the 

available productive machine hours (scheduled machine hours – daily downtime – 

changeover time). There is produced one batch at a time with a cycle time delay. 

Afterwards the variable used time is updated and the production plan decreased by the 

produced amount. The next step is to check whether there is enough time left for the 

production of another batch or not, comparing the used time to the total available 

productive machine hours: 

Used Time + cycle time per batch > scheduled machine hours – daily downtime – 

changeover time 
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Therefore, whenever the production of the next batch would lead to exceeding the 

available time, the regular production is over. The final step is delaying the entity for the 

length of the daily downtime and the entity enters the overtime section (Figure 19). 

 

Figure 19: ARENA Sub-model “Production” (overtime production) 

In the beginning it is checked whether overtime should be used or not. This will be the 

case whenever the sum of inventory will be below the SS at the beginning of the next day: 

Inventory + daily produced amount < SS 

If overtime will be used, the following process is a copy of the regular production using 

3.5 hours instead of the scheduled machine hours. At the end the entity will always be 

assigned the value of the daily produced amount and leave the sub-model. 

Model verification was done constantly during the process of model development. As the 

model was developed, starting with simple models and adding complexity subsequently, 

the model development was accompanied by discussions with stakeholders. Besides, some 

parts of the model were tested by comparing the simulation output to manually calculated 

values. The final model was checked with several persons who have experience with the 

use of ARENA as a simulation tool in order to verify rather the model works as intended. 

Averages and standard deviations of the probability distributions were compared to the 

actual data. As the demand was simulated on a daily level, it was checked whether this 

also represents the weekly fluctuations of the demand by measuring the values every five 

days and comparing the standard deviation to historical data. Another method of 

verification used, was to check the reasonability of the effects of changing input 

parameters on the model output. For example was the demand increased and the cycle 

times decreased and the effect on overtime, fill rate and utilization was checked. A higher 

demand should lead to more overtime, a higher utilization and/or lower fill rates, while a 

lower cycle time per batch should have the opposite effect. In both cases the measures 

reacted in a logical way. 
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4.3.6 Model validation 

For the model validation, there was done a structured walk-through with several 

employees from TINE in order to validate whether the model represents the real-world 

decision making process and logical relations.  Also an input-output model validation was 

done by comparing the output of the model (30 replications) with the data from 2013 and 

calculating their relative difference (Table 7). 

Table 7: Model validation 

Measure Model Output Historical 

Data 

Relative 

difference 

Demand item 1 (SKUs) 894,976.27 886,056 -1.01% 

Demand item 2 (SKUs) 1,740,934.50 1,755,544 -0.83% 

Production item 1 (SKUs) 902,601.50 886,664 +1.80% 

Production item 2 (SKUs) 1,749,952.50 1,790,617 -2.27% 

Productive machine hours 1,254.36 1,276.59 -1.74% 

Unplanned downtime (hours) 415.88 434.73 -4.34% 

Utilization 46.15% 46.97% -1.75% 

Fill rate item 1 99.62% 99.49% +0.13% 

Fill rate item 2 99.64% 99.74% -0.10% 

As the relative differences for all performance measures are below 5%, the model was 

accepted to represent the reality in appropriate detail. Overtime was not used in this 

validation because there was only one value available, which is highly dependent on the 

sources of uncertainty. Furthermore in week 51, excessive overtime was used, when there 

was no need according to the rule and in consequence the overtime usage of 28 hours in 

year 2013 was not considered representative. The model output on overtime was 21.12 

hours with a 95% confidence interval (CI) between 18.24 and 24 hours. 

4.3.7 Performance of simulations 

The main dimensions, which have to be determined for the performance of the simulation, 

are the number of independent model replications (sample size), the run length and the 

warm-up period (Manuj, Mentzer and Bowers 2009).  However, the factors of run-length 

and warm-up period are only critical for steady-state simulation models, while for 

terminating simulation models, the number of replications is the only critical factor (Altiok 
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and Melemed 2007). As it was defined to use a terminating simulation model, the 

important factor to determine was the number of replications. 

Manuj, Mentzer and Bowers (2009) write that “increasing the number of runs reduces the 

standard deviation of the sampling distribution, and therefore, for a given level of 

confidence, the half-width of the confidence interval decreases”. However it is very 

complicated to decide on an appropriate number of replications since the time and money 

to perform additional simulations has to be weighed against the value of additional runs. A 

common method to decide of the amount of replications is to gradually increase the 

number of simulations, until either an absolute or relative degree of precision, measured by 

the half-width was obtained (Bienstock 1996). For this case study it was chosen to use the 

relative precision method with a 5% desired relative precision level for all continuous 

variables. However, for overtime, as a discrete variable which can only take multiple 

values of 3.5, it was decided to use the absolute precision approach to get a half-width 

below 3.5 (one occurrence). The specified precision values were achieved with twelve 

replications, but as a large number of replications increase accuracy and confidence in the 

results and the computing time was quite short, the number of replications was set to 30. 

The length of the simulation was determined based on the defined planning horizon. As the 

model is focusing on output data on a yearly basis (time horizon for tactical capacity 

planning), the run-length was set to represent one year. As no operations take place at 

weekends, only five days per week are simulated.  

4.3.8 Impact analysis 

Test class 1: Increase in demand with current settings 

For this test class six scenarios were considered, each with a demand increase of 10% for 

both products. The analysis of the results focuses on the fill rate per item, the utilization 

and overtime5. As it can be expected that a higher demand leads to a higher utilization and 

decreasing fill rates, the relation between those three factors was investigated (Figure 20). 

                                                 

5 The simulation output values per test class are listed in appendix C. 
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Figure 20: Relation between utilization and fill rate 

The data labels indicate the factor of the demand (1.1 standing for a 10% demand increase 

for both products etc.). The graph shows that an increasing demand and consequently a 

higher utilization will lead to an exponential decrease in the fill rate. For increases of 10% 

and 20% the fill rates are expected to still be above 98.5%. It is interesting to see that on 

very high demand levels (50% and 60%) the difference in the fill rates between items 1 

and item 2 increases. Increases of 50% and 60% might seem extreme, but this must not 

necessarily be an increase of the external demand, but can also come into existence 

through a different allocation to production lines.  

At this point another effect has to be considered: As the used overtime depends on the 

demand, an increased demand level will probably lead to more overtime. This effect was 

investigated and the results are shown in figure 21. 
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Figure 21: Effect of increasing demand on overtime 

The graph shows the different levels of overtime, including 95% CIs, calculated based on 

the half-width. Overtime increases exponentially with a linear increase in demand. When 

looking at both previous figures together, one can conclude that 10% and 20% demand 

increases have a relatively small impact, as the system is operating on a low utilization. 

The increase in overtime is counteracting the decrease in fill rate and it can be expected 

that without using overtime the fill rates would decrease faster. Test 2 was driven in order 

to examine how well the system would perform in terms of fill rate without any overtime 

allowance. 

Test class 2: Increase in demand without overtime 

This test class is checking the impact of using overtime on the fill rates. The previous 

results are compared to the results obtained when disabling the model to use overtime 

(Figure 22). To test that, the decide-module within the model was set to a zero percent 

chance, when deciding on overtime. 
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Figure 22: Effect of overtime prohibition on fill rates 

The results show the expected effect that overtime is counteracting the decrease of the fill 

rate with an increasing demand. While with lower demand factors, the fill rates are just 

slightly smaller, the fill rate is decreasing in bigger steps without overtime, leading to 

larger differences with demand factors of 1.2 or higher. Those test results are very relevant 

when deciding on whether or not to use overtime. As the overtime production is cost 

intensive, there should be done a monetary analysis comparing the negative impact on the 

income (lost sales) with the positive effect of lower costs (no overtime) in order to decide 

whether overtime is desirable or not. However, also strategic goals should be considered. 

Test class 3: Increase in demand with a higher production speed  

For the last test the cycle time per batch was decreased by 20% (production speed factor 

PS: 1.2) and the results compared to the actual output with the actual production speed. In 

a first step the fill rates in both cases with increasing demand were compared (Figure 23). 

The production speed is a method to increase the throughput rate. For the testing the cycle 

time per batch and item was decreased by 20%. 
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Figure 23: Effect of increased production speed on fill rates 

With the higher production speed the fill rates decrease in smaller steps. The graph 

indicates that especially from demand increases of 30% or more, the higher production 

speed has a significant impact on the fill rate. At the same time less overtime is used and 

reacts with smaller increases to higher demand levels, as shown in figure 24.  

 

Figure 24: Effect of increased production speed on overtime 



57 

 

In the current state an increased production speed would not have a strong impact on fill 

rates and overtime, but from demand increases of 30% or more, the impact gets more 

significant. One must also consider that while fill rates are higher and less overtime is 

used, the utilization of the machine will be lower (between 9.28% and 11.54% lower in the 

tested scenarios). 

The previous tests have all shown that at the utilization level the system is operating right 

now, capacity configurations have a rather small impact on the performance measured by 

fill rates and overtime. The tests have demonstrated that the system has very high fill rates 

without using overtime and that the usage of overtime or increasing the production speed 

will have major impacts only when high demand increases take place. However, 

production time and overtime will affect costs and utilization of flexible resources (staff), 

who can be appointed to other tasks, are affected.  
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5 Discussion  

This section will focus on advantages and disadvantages of the simulation model and the 

general methodology as well as discuss opportunities to develop the model and use the 

model for further capacity planning and analysis.  

I believe that the developed methodology builds a good basis for a structured approach to 

capacity planning. The classification is an important factor for the development of 

methodology, as the modelling approach depends on the problem type and the uncertainty 

within the system. The problem type is furthermore important to decide on appropriate 

system analysis methods. As the development of simulation models is rather time-

consuming, a suggestion for the future is to focus first on systems, which do not meet the 

goals, are operating on high utilization levels or have a capacity lag in several weeks, 

which can be found based on the system analysis as presented. 

As a disadvantage it can be seen that the simulation model could in this case not consider 

the effect of the deliveries from other plants as they are not dependent on the production in 

Heimdal, but instead on the production of the other plants. This was addressed by a 

relative decrease of the demand over the whole year, while in practice the relative decrease 

may vary between weeks. Another issue on demand modelling was the data availability 

and purity, as demand values were only available on a daily level and on many days 

throughout the year were not registered at all.  Furthermore the developed simulation 

model is (like models in general) not usable for all kind of capacity decisions, but was 

developed towards a special purpose. Besides it must be stated, that the model is a 

representation of reality and uses logical relations to simulate choices the way they are 

usually taken and planned. However, in reality some decisions might be taken in a 

different manner due to subjectivity. 

Nevertheless an advantage is that a broad range of capacity configurations can be tested 

within the model and yearly performance measures can be estimated under different 

capacity configurations and demand scenarios, which can help to understand the impact of 

decisions. The model has been found to represent the system accurately and in appropriate 

detail and includes the possibility of getting output measures on regular production hours, 

overtime production hours and idle time hours, which based on machine hour costs helps 

estimating operating costs. Also total sales and average inventory levels are supported and 
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can be monetized. With those measures a monetary analysis can be driven to further 

support decisions. The model also helps to understand the system with its logical 

mathematical relations and rules. The reusability of many parts of the model for similar 

problems is considered another positive aspect as the general ideas and approaches can be 

applied within TINE.  

The data collection and analysis for the simulation model was very difficult since 

necessary data often was not available or only available on aggregate levels that did not fit 

the simulation. The model was changed several times in order to react to those factors. 

Those are of course “real world” issues that have to be dealt with, either actively by 

intruding measurements of the data or passive by making assumptions and adjusting the 

model.  

The model so far represents a system without sequence dependent changeovers, which 

might be the case in other systems. For such systems, the scheduling will be more difficult 

to model. The opportunities for the further development of the simulation model can be 

divided into three parts:  

 Horizontal integration 

 Vertical integration 

 Level of detail. 

Horizontal integration means that several production lines will be simulated and run 

simultaneously, which will on the one hand allow to take out biases such as the relative 

decrease of the demand over the whole time, as the other line which supplies Heimdal 

would be simulated as well, and on the other hand give a better decision support as limited 

resources should be used in an optimal manner. This means that even though increasing 

the capacity on one machine would lead to better results, the resources might be better 

used on other production lines. 

Vertical integration refers to a simulation of other parts of the addressed supply chain with 

the goal of simulating the complete supply chain starting from the milk production and 

ending with the delivery to the customer. So far the model works with a set of 

assumptions, basically focusing on assuming that the capacity on other parts of the supply 

chain will not be an issue even when demand increases. Especially when considering 
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horizontal and vertical integration, the problem of limited capacity should be considered. If 

for example the demand for all cheese products would increase and the model tests the 

possibility to fulfill the demand on the packaging lines, the cheese production will at some 

point not be able to deliver everything, leading to “starving” of the machines. The same 

might apply downstream of the supply chain as for example in the transportation capacity. 

The vertical integration will allow a bottleneck analysis on a supply chain level. 

As for the level of detail it can be said that the simulation on the current level of detail 

gave appropriate results and is in consequence considered to be detailed enough. 

Furthermore the development of a more detailed simulation would use more resources. 

However a more detailed simulation could be achieved for example by separating the 

downtime distribution by occurrence whether than taking the daily downtime and then 

used in combination with the uptime distribution between the occurrences.  Also the 

demand distribution could be found for customer orders with inter-arrival times instead of 

using the daily demand, when the data is made available.  

For a further analysis and to accomplish a more sophisticated decision support, other 

performance measures should be calculated. The model can support several other 

performance measures, also including monetary measures, which will support decisions 

better by means of a financial investment analysis (Break-even-analysis or ROI). The 

model was built with the intention of making this possible, but for the testing in this work 

it was decided to focus on some measures rather than doing a complete analysis. 
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6 Conclusions and further research 

6.1 Conclusions 

The first research objective was to develop a methodology to address the problem of 

decision support for capacity planning when facing uncertainties. Based on the literature 

review and earlier applications of modelling approaches under uncertainty, it was 

established a research methodology, consisting out of a system analysis, the definition of 

appropriate performance measures, analysis of opportunities to define alternative capacity 

plans and the development of a simulation model to analyze the impact of capacity 

decisions, which uses probability distributions to capture uncertainties. Performance 

measures were defined based on the case company’s preferences and the opportunities for 

alternative capacity plans are based on investigating capacity plans and configurations as 

well as demand scenarios. 

The second sub-problem was to apply the developed methodology on a real-life case 

study. Following the defined steps, a deep understanding of the system was acquired and a 

simulation model was developed, which can help estimating effects of a broad range of 

capacity configurations on several defined performance measures. The impact analysis 

within this thesis has shown the development of utilization, fill rate and overtime usage 

under different capacity settings (increased production speed and no overtime allowance) 

and found that the impact on the current demand levels and with small increases is rather 

small as the system is operating on a low utilization level, but gets more significant with 

higher demand levels. The model supports more capacity decisions and performance 

measures than were actually used and can build the basis for future planning within the 

analyzed system, including a financial analysis. 

It can be stated that with the simulation model a tool was developed which can support 

TINE on future capacity planning. Several parts of the model, and especially the 

simulation logic, can be used to model similar production lines.  Furthermore the 

methodology can help to address similar problems with a structured approach. 
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6.2 Further research 

After this exploratory approach to the problem, there could be found determined several 

possibilities for future research. The first group of future research options focuses on the 

development of the model and the general methodology:  

 Apply downtimes by occurrence and inter-arrival times rather than on a daily level, 

when data is made available. 

 Apply demand in terms of customer orders and inter-arrival time of orders when 

data is made available. This would allow measuring order fill rates instead of SKU 

fill rates. 

 Develop the model towards the use on production lines with more than two items, 

which might need more sophisticated rules for changeover assignment. 

 Develop the model to support production lines with sequence-dependent 

changeovers. 

 Adjust the model for the purpose of studying the system’s long-term behavior with 

a steady-state simulation. On that basis also strategic decisions could be 

approached. 

A second group of future research is the application of the model for more detailed and 

sophisticated decision support and analysis: 

 Usage of the model for monetary analysis: As the model can give output on regular 

production hours, overtime production hours and downtime hours, these could be 

monetized by terms of a machine-hour rate, considering costs of driving the 

machine, personnel costs etc. Furthermore inventory levels can be measured by 

holding costs and the total sales by income per sold item. On this basis an 

investment analysis, as for example by calculating the ROI, could be done. 

 Horizontal integration by simulating several production lines to support capacity 

planning on an aggregate level. 

 Vertical integration by simulation operations down- and up-stream the supply chain 

for a bottleneck analysis. 

 The developed model could be used in combination with an analytical model for 

production planning in order to test the capacity satisfaction of optimum production 

levels in a hybrid modelling approach. 
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Appendices 

Appendix A: Probability distributions supported by the ARENA Input 

Analyzer 

 

Beta distribution Lognormal distribution 

Empirical distribution Normal distribution 

Erlang distribution Poisson distribution 

Exponential distribution Triangular distribution 

Gamma distribution Uniform distribution 

Johnson distribution Weibull distribution 
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Appendix B: Probability distribution analysis 

Daily demand item 1: 

Histogram: 

 

Distribution summary: 
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Daily demand item 2: 

Histogram: 

 

Distribution summary: 
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Daily downtime as a fraction of scheduled hours: 

Histogram: 

 

Distribution summary: 
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Forecasting accuracy item 1: 

Histogram: 

 

Distribution summary: 
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Forecasting accuracy item 2: 

Histogram: 

 

 

Distribution summary: 
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Appendix C: Simulation output 

Baseline (30 replications): 

Performance measure Value Half-width 

Demand Item 1 (SKUs) 894,976.27 8,538.45 

Demand Item 2 (SKUs) 1,740,934.50 30,874.37 

Production item 1 (SKUs) 902,601.50 9,238.76 

Production item 2 (SKUs) 1,749,952.50 32,312.42 

Productive machine hours 1,254.36 14.43 

Unplanned downtime (hours) 415.88 10.39 

Utilization 0.4615 0.01 

Fill rate item 1 0.9962 0.00 

Fill rate item 2 0.9964 0.00 

 

Test class 1 (30 replications): 

Demand-

factor 

Fill rate 

item 1 

Fill rate 

item 2 

Utilization Overtime 

(hours) 

95% CI 

down 

95% CI 

up 

1 99.62% 99.64% 46.15% 21.12 18.24 24 

1.1 99.54% 99.52% 50.22% 28.12 25 31.24 

1.2 99.14% 98.90% 54.40% 37.57 33.09 42.05 

1.3 98.57% 98.01% 58.60% 54.83 49.67 59.99 

1.4 97.58% 97.02% 62.42% 76.88 69.58 84.18 

1.5 95.89% 94.82% 65.94% 109.78 101.48 118.08 

1.6 94.40% 91.99% 67.93% 145.48 136.92 154.04 
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Test class 2 (30 replications): 

Demand-factor Fill rate item 1 Fill rate item 2 Utilization 

1 99.53% 99.43% 45.71% 

1.1 99.32% 99.09% 50.19% 

1.2 98.73% 98.16% 54.20% 

1.3 97.94% 96.59% 57.72% 

1.4 96.42% 95.30% 61.43% 

1.5 94.33% 90.14% 63.51% 

1.6 91.46% 86.42% 64.46% 

 

Test class 3 (30 replications): 

Demand-

factor 

Fill rate 

item 1 

Fill rate 

item 2 

Utilization Overtime 

(hours) 

95% CI 

down 

95% CI 

up 

1 99.68% 99.70% 36.87% 9.57 7.46 11.68 

1.1 99.64% 99.58% 40.32% 14.23 11.5 16.96 

1.2 99.19% 99.38% 43.90% 16.57 13.74 19.4 

1.3 99.00% 98.85% 47.91% 21.47 18.35 24.59 

1.4 98.55% 98.57% 50.87% 24.5 21.57 27.43 

1.5 97.99% 97.61% 54.40% 34.42 30.08 38.76 

1.6 97.18% 97.22% 57.41% 45.38 39.4 51.36 

 



 

 

 

 

 

 

 

 


