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Abstract 

The uncertainty associated with the price of the underlying asset is the key determinant 

when pricing an option. Therefore, knowledge about the dynamics of volatility is of great 

interest and relevant to several financial applications, such as pricing of hedging 

instruments and fund management. It has also become a central topic in the field of 

empirical studies. In this thesis, we have investigated the multi-step ahead dynamics of 

volatility, and the responses to shocks hitting the systems.  

The study features an analysis of impulse-response dynamics of non-linear time series. 

Using a semi-nonparametric GARCH model, we have been able to extract conditional one-

step-ahead densities and forecast one-step-ahead conditional volatility. In addition, we 

study shocks from conditional variance functions, analyze multi-step ahead dynamics for 

mean return and volatility, and calculate measures of volatility persistence. The approach 

includes an examination of profile bundles for evidence of damping or persistence, which 

is important for our thesis. We have examined univariate time series consisting of the daily 

return for seven stock indices, four individual company shares, and three commodity 

indices. The SNP-method has been applied to generate empirical evidence on the multi-

step ahead price dynamics. An interesting feature is to investigate if the mean impulse 

responses are symmetric about the baseline and if they are heavily damped.  Our results 

show that this symmetry is present, and we observe almost no serial dependence beyond 

lag one. The results suggest that an increase in volatility after a shock does not lead to a 

permanent change in volatility. Furthermore, we have studied the extent to which the 

impulse responses indicate a leverage effect, where price decrease has a greater effect on 

subsequent volatility than the price increase. Our findings suggest that the leverage effect 

is present. We find the highest degree of asymmetry for stock indices and the asymmetry 

seems to be persistent. Lastly, we have studied the persistence of volatility. The assets with 

the highest degree of asymmetry in variance also have the lowest persistence. The 

persistence ranges from 17 to 130 days, and it was found to be shortest for the stock 

indices and longest for the individual shares and commodity indices. Due to the time 

constraint that the master thesis composes, we have not performed significance tests of our 

findings. We find that the persistence of asymmetry deviate from existing literature. 

Although the significance of our findings is not tested, it can be an important contribution 

to this field of research, serving as a preliminary study for further work.  
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1.0 Introduction  

The uncertainty associated with the price of the underlying asset is the key determinant 

when pricing an option. Volatility is a measure of risk associated with changes in the value 

of a financial instrument. Therefore, knowledge about the dynamics of volatility is of great 

interest and relevant to several financial applications, such as pricing of hedging 

instruments and fund management. This knowledge is a key input to the general 

understanding of market risk. We investigate the volatility dynamics by studying financial 

time series, which are widely acknowledged to be nonlinear processes. The series are 

likely to have non-normal error distributions, and the use of higher order moments is, 

therefore, decisive in terms of adequately describing the series. To investigate these higher 

order moments, features like ARCH/GARCH (Engle 1982, Bollerslev 1986), leptokurtosis 

(Clark 1973) and asymmetries (Nelson 1991) are of interest. Black (1976) highlighted the 

dependency of higher moments by finding evidence of a negative correlation between 

return and volatility. This has proved to be central to later research. 

 

Impulse-response functions have been broadly used to study the dynamics of a linear 

process. A natural definition of the nonlinear impulse response is the net effect of the 

impulse, which we obtain by comparing the profile for the impulse to the baseline profile 

(Gallant, Rossi et al. 1993). Gallant, Rossi et al. (1993) developed an approach for 

analyzing the multi-step-ahead dynamics of nonlinear time series, using a nonparametric 

estimate of its one-step-ahead conditional density. They studied the persistence of 

asymmetry for the S&P composite price index and found evidence showing a heavily 

damped effect within six to ten days after a shock. Tauchen, Zhang et al. (1996) came to 

the same conclusion while examining four different individual stocks on the NYSE. They 

claimed that the asymmetry in volatility had a low persistence of maximum four days. The 

two analyses were based on sample periods from 1982-1987 and 1982-1989 respectively. 

Another study conducted by Figlewski and Wang (2000) examined the individual stocks in 

the S&P 100 Index and the index itself. They found that the degree of asymmetry in 

volatility was higher for indices than for individual shares. We expect to find similar 

features of volatility dynamics; still we are aware that our samples, which include 

additional periods of substantial price fluctuations, might give different results. 
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The framework for impulse-response analysis developed by Gallant, Rossi et al. (1993) 

will be of great importance to our thesis. We are going to study the impulse-response 

dynamics in a univariate case for the time series. In this setting, forecasts depend only on 

present and past values of the single time series. The objective is to study the persistence 

properties of stochastic volatility, as well as to examine the asymmetric property of the 

conditional variance function. We measure the persistence by calculating the half-life of 

volatility. Engle/Patton (2000) did this in a similar study and measured the volatility half-

life of the DJIA. Based on the broad selection of financial assets, we want to extract the 

different characteristics of stock indices, individual stocks, and commodity indices. By 

doing so, we hope to contribute by giving more empirical insight to this field of research.  

 

The remainder of the thesis is structured as follows. Section 2.0 presents the descriptive 

statistics for each of the studied time series. Theoretical aspects are described in section 

3.0. Section 4.0 outlines the definition of nonlinear impulse-response functions. Section 

5.0 explains the method of semi-nonparametric estimation of univariate conditional 

densities for each of the time series. The empirical results and discussions are presented in 

section 6.0. Section 7.0 concludes the thesis.  

 

The thesis is structured in a way so that the reader can interpret each of the time series 

separately.  
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2.0 Descriptive Statistics 

We have considered long data sets, which provide sufficient information about the 

conditional and unconditional distribution of returns, as well as giving a broad range in the 

composition of volatility. The raw data consist of daily returns on seven different stock 

indices; Dow Jones industrial average (DJIA), FTSE 100 Index (FTSE), S&P 100 Index 

(OEX), S&P 500 Index (GSPC), Oslo Stock Exchange Benchmark Index (OSEBX), Oslo 

Stock Exchange Index (OBX) and the Oslo Stock Exchange All Share Index (OSEAX), 

four shares; Microsoft Corporation (MSFT), Micron Technology, Inc. (MU), Norsk Hydro 

ASA (NHY) and Tomra Systems ASA (TOM) and three commodity indices; the ICE 

Carbon Forward Contract, Brent Oil Future Contracts and Salmon Forward Contracts.  

All data regarding the stock indices, as well Micron Technology, Inc. and Microsoft 

Corporation, are obtained from the stock database obtained by Yahoo! Finance (2016). 

Prices for Oslo Stock Exchange Index (OBX), Oslo Stock Exchange All Share Index 

(OSEAX), Norsk Hydro ASA and Tomra Systems ASA are extracted from the stock 

database provided by Netfonds Bank (2016). The Intercontinental Exchange (2016) and 

Fish Pool ASA (2016) provide the prices for Brent oil, carbon and salmon future/forward 

contracts. 

 

2.1 The physical marketplace for commodities  

The Intercontinental Exchange, Inc. (ICE) was founded in 2000, and it was introduced as 

an electronic trading platform that brought transparency and accessibility to the OTC 

energy markets. Other markets were later added and today it consists of regulated 

exchanges and clearing houses for financial and commodity markets. The exchange 

markets are diverse and provide trading and clearing of international derivatives such as 

futures and options on interest risk, commodities, indexes, and FX, as well as equities and 

equity options. The company operates exchanges such as The ICE Commodity Exchange, 

which is the market for trading energy and metals commodities, and The ICE Derivatives 

Markets, an electronic order book that mainly trades forwards/futures and options. The 

usage of these markets often consist of risk management activities (Intercontinental 

Exchange 2016).  
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2.1.1 Oil 

The crude oil market is the largest commodity market in the world. The world benchmark 

price for purchases of oil is the Brent Crude, which is extracted from the North Sea. We 

have applied the Brent oil prices to our analysis.  

The Brent oil futures contracts are standardized, exchange-traded contracts, where the 

buyer of the contract agrees to take delivery from the seller, a given quantity of crude oil 

(one contract equals 1,000 barrels quotes in U.S. dollars) at a predetermined price, on a 

future delivery date. The Brent oil futures contracts are traded at the ICE Futures Europe 

and work as cash-settled contracts. The term “front month contract” refers to the contract 

month with an expiration date closest to the current date, typically in the same month. This 

means that the front month contracts have the shortest duration of the contracts that are 

available in the futures market. They are also the ICE markets underlying assets for active 

option trading, which makes it interesting in terms of pricing mechanisms and risk 

management activities (Intercontinental Exchange 2016). 

 

2.1.2 Carbon 

The carbon market originates from the trading of carbon emission allowances to help 

nations and companies limit their carbon dioxide (CO2) emissions. It is a way of cutting 

down the greenhouse gasses caused by the polluters. Exceeding the allowance of carbon 

emission means that the company has to purchase further permits to cover this. If the limit 

is never reached, the unused permits may be sold in the carbon market.  

The carbon products are mainly traded as forward/futures and options, and the market is 

typically used for risk management activities. The front December forward contracts act as 

the underlying asset for all-active derivative trading and will be utilized in this analysis. 

This thesis is based upon contracts traded at the ICE Futures Europe (Intercontinental 

Exchange 2016).  

 

2.1.3 Salmon 

The price of salmon is volatile, and it is, therefore, a great source of risk to both the 

producing company and to the consumer. Forward- and future contracts aims to protect 

against the risk of price fluctuations. The forward contracts are agreements to buy/sell a 

given quantity of a commodity (salmon) at some particular time in the future for a 
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predetermined price, determined from the daily closing prices of an index (the forward 

price). These contracts are common derivative assets in today’s commodity markets and 

provide a more realistic indication of future salmon prices. They are widely traded for risk 

management purposes, such as pricing of hedging instruments and fund management.  

This thesis is based upon Salmon forward contracts that are traded at Fish Pool. Fish Pool 

ASA is an international, regulated market for the trading of financial salmon contracts, and 

its main shareholder is Oslo Stock Exchange ASA. Physical trading of salmon is not 

offered in this marketplace. The contracts are cleared through Nasdaq OMX (Fish Pool 

ASA 2016). 

 

The return (logarithmic) of a forward/future contract is computed using one-month 

contracts. As an example, we calculate the return between the prices of a January contract 

within the month. When January ends, we find the return of the first trading day in 

February, by taking the difference between the price of the February contract and the price 

at the first trading day in February. 

 

2.2 Stationarity 

All traded assets have a price. In order to use the extended GARCH model in the SNP 

model properly, we need stationary time series. The price of an asset is non-stationary in 

the way that it shows a positive or negative trend over time.  

In order to make the time series stationary, we compute the return (logarithmic) as   

 

𝑦𝑡 = 100 ∗ [𝑙𝑛(𝑃𝑡) − 𝑙𝑛(𝑃𝑡−1)] 

 

As non-stationary series moves in a large variety, stationary series moves around its mean. 

A stationary series has the property of being mean reverting because it moves to its mean 

return in the long run. Stationary processes also have the property that the variance and 

autocorrelation structure do not change over time. If the price moves based on an event, it 

keeps going from this new level in the following time (autocorrelation). This is not the 

case with stationary series. It will have a jump in the return and then move back to its 

mean; the autocorrelation seems to decline within few days. This suggests that a stationary 

series only has a transient effect of stochastic shocks, which is an important property for 

statistical analysis (Verbeek 2012).   
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To find out if the time series are stationary, we use the Augmented Dickey-Fuller test 

(ADF) (Dickey and Fuller 1979) and the Kwiatkowski, Phillips, Schmidt, and Shin test 

(KPSS) (Kwiatowski, Phillips et al. 1992). Both tests are conducted in EViews.  

Under the null hypothesis of a unit root, the ADF statistic does not follow the typical 

Student’s t-distribution, and it derives asymptotic results and simulates critical values for 

various test and sample sizes (Dickey and Fuller 1979). Rejection of the null hypothesis at 

some level of confidence means that the time series have no unit root present and that the 

series are stationary.  

The KPSS test differs from the ADF test in that the series is assumed stationary under the 

null hypothesis. “The series is expressed as the sum of a deterministic trend, a random 

walk, and a stationary error and the test is the LM test of the hypothesis that the random 

walk has zero variance” (Kwiatowski, Phillips et al. 1992).  

 

2.3 Autocorrelation  

Before applying the GARCH/SNP model to a time series, we need to check for 

autocorrelation in the raw series. To estimate autocorrelation we use the Ljung Box  test 

statistic (Q) (Ljung and Box 1978). If autocorrelation is present, it is a sign of dependency 

in the data. This relationship between lags makes it possible to build a model that 

incorporates this phenomenon and describes the innovations in a good manner. A good 

measure of a model describing the time series is whether the residuals reject the null 

hypothesis of no autocorrelation or not. If the residuals of the model show no 

autocorrelation, this tells us that the model has managed to incorporate the autocorrelation 

of the raw data, and the residuals are approximately white noise.  

We use EViews to check for autocorrelation of raw data and residuals. The test is 

computed for both normal (Q) and squared (𝑄2) data. The Ljung-Box test statistic is  

 

𝑄𝐾 = 𝑇(𝑇 + 2) ∑
1

𝑇 − 𝑘

𝐾

𝑘=1

𝑟𝑘
2 

 

where rk is the estimated autocorrelation coefficients of the residuals. K is the number of 

lags we want to investigate; in this case, we use 12 lags for all the time series. The statistic 

QK is approximately Chi Squared distributed with K-p-q degrees of freedom for an ARMA 
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(p,q) process under the null hypothesis that the ARMA is correctly specified (Verbeek 

2012). 

 

We use the 12
th

 lag of the Q-test for all the time series. 

 

2.4 BDS Test for Independence 

The BDS test is a non-parametric method for testing for serial dependence and nonlinear 

structure in a time series. The test examines a time series by its correlation integral, 

considering repeated patterns in the data. The correlation integral, given n observations of 

a series X, can be estimated by 

 

Cm,n(ϵ) =
2

n − m + 1 (n − m)
 ∑ ∑ ∏ Iϵ

m−1

j=0

n−m+1

t=s+1

n−m+1

s=1

(Xs+j, Xt+j)     

 

where Iɛ is the indicator function 

 

Iϵ(x, y) =  {
1     𝑖𝑓 |𝑥 − 𝑦| ≤∈
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

     

   

The test can be applied to the estimated residuals of fitted models. It detects nonlinear 

structures and serial dependence in a time series, by testing the null hypothesis that the 

sample comes from a generating process which is independent and identically distributed 

(IID). There is no alternative hypothesis specified.  

The estimates of Cm,n(ϵ) is used to generate a test statistic for independence: 

 

𝑏𝑚,𝑛(∈) = 𝐶𝑚,𝑛(∈) − 𝐶1,𝑛−𝑚+1(∈)𝑚 

 

This statistic should be close to zero if we assume no dependence in the sample. 

The standard deviation can be estimated consistently. The “goodness of fit” of an 

estimated model can be measured by checking if the residuals are IID. If the null 

hypothesis is rejected, it suggests that there is a remaining structure in the data which can 

include nonlinearity and nonstationarity. If the null hypothesis is rejected when testing the 

residuals, the model is misspecified (Brock, Dechert et al. 1996). 
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We use EViews to compute the BDS test, with epsilon (ϵ) value of 1 and maximum 

correlation dimension of 5. The ϵ is calculated based on the standard deviation of the 

series.  

 

2.5 Value at Risk (VaR) 

Value at risk (VaR) is a risk measure applied to time series consisting of financial data. 

JPMorgan developed VaR to capture the total risk of a portfolio, and it is in the form of 

stating that we will not lose more than V in time T at X percent certainty. V is the VaR of 

the investigated security, T is the time horizon and the X describes the confidence level. 

VaR is frequently used by companies and regulators in the financial industry to measure 

the amount of assets needed to cover possible future losses (Hull 2015).  

 

2.5.1 Conditional Value at Risk (CVaR) 

Conditional value at risk measures the average loss in the tail of the loss distribution. 

Financial time series often has fatter tails compared to a normal distribution. The CVaR is 

often higher than the VaR, supporting this phenomenon. The tail, in this case, is the excess 

beyond the confidence band of the VaR. It is a good technique to ensure that we do not 

overlook potentially massive losses (Hull 2015). 
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2.6 Description of Data 

2.6.1 Dow Jones Industrial Average (DJIA) 

The daily return (logarithmic) of the DJIA data set from the beginning of 1987 to the end 

of 2015 is yt, t= 1, . . . , 7299. Features of the DJIA Index are reported in Table 1. The 

mean is positive and the standard deviation is 1.15. The index reports a maximum 

(minimum) value of 10.50 (-25.63), which is relatively high (low). The kurtosis is high, 

indicating that the data are heavy-tailed relative to a normal distribution. The table reports 

excess kurtosis, meaning that positive kurtosis indicates leptokurtosis features. The 

Cramer-von-Mises and Quantile normal test statistic support non-normal return 

distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. 

Both the KPSS statistic and the ADF test support stationary series. The BDS test statistic 

reports highly significant dependence in the data. The price and return series are plotted in 

Figure 1 and the return series, together with a Kernel distribution to the left, is shown in 

Figure 2. From the price plot, we clearly see that the series is non-stationary, unlike the 

price change (log-returns) which is stationary. From the return plot, the series show some 

volatility clustering, as illustrated by higher volatility when prices are falling. The return 

level seems to change randomly. The fact that the skewness is different from zero supports 

the feature of non-normal distribution.  

 

 

Table 1 Returns Characteristics from the DJIA Index 

 

 

Statistics for DJI Index

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.03039 0.05293 10.5083 41.64478 0.27054 22.2676 22.33867 57.2580 692.670

0.00000 1.14625 -25.6320 -1.67450 0.00260 {0.0000} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

14.1290 20.1089 24.4952 28.8058 0.04868 -0.00001 -65.3260 438.294 -2.2322      

{0.0000} {0.0000} {0.0000} {0.0000} {0.0697} {0.4312} {0.0000} {0.0000} -3.4676      

The figures in braces are P-values for statistical significance
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Figure 1 DJIA Index Price and Returns 
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Figure 2 DJIA Index Returns 
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2.6.2 FTSE 100 Index (FTSE) 

 

The daily return (logarithmic) of the FTSE data set from the beginning of 1987 to the end 

of 2015 is yt, t= 1, . . . , 7551. Features of the FTSE 100 Index are reported in Table 2. The 

mean is positive and the standard deviation is 1.11. The index reports a maximum 

(minimum) value of 9.38 (-13.03), which is relatively high (low). The kurtosis is high, 

indicating that the data are heavy-tailed relative to a normal distribution. The table reports 

excess kurtosis, meaning that positive kurtosis indicates leptokurtosis features. The 

Cramer-von-Mises and Quantile normal test statistic support non-normal return 

distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. Both the KPSS statistic and 

the ADF test support stationary series. The BDS test statistic reports highly significant 

dependence in the data. The price and return series are plotted in Figure 3 and the return 

series, together with a Kernel distribution to the left, is shown in Figure 4. From the price 

plot, we clearly see that the series is non-stationary, unlike the price change (log-returns) 

which is stationary. From the return plots, the series show some volatility clustering, as 

shown by higher volatility when prices are falling. The return level seems to change 

randomly. The fact that the skewness is different from zero supports the feature of non-

normal distribution.  

 

 

Table 2 Returns Characteristics from the FTSE Index 

 

 

Statistics for FTSE 100 Index

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.01739 0.00998 9.3842 10.64884 0.17434 13.0371 15.23015 73.1870 4365.600

0.00000 1.11340 -13.0286 -0.48944 0.05254 {0.0015} {0.0000} {0.0040} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

16.9418 22.7004 27.3308 31.4319 0.03868 -0.00001 -40.4579 1578.519 -2.2994      

{0.0000} {0.0000} {0.0000} {0.0000} {0.1312} {0.3374} {0.0000} {0.0000} -3.3893      

The figures in braces are P-values for statistical significance
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Figure 3 FTSE Index Price and Returns 
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Figure 4 FTSE Index Returns 
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2.6.3 S&P 100 Index (OEX) 

 

The daily return (logarithmic) of the S&P 100 data set from the beginning of 1987 to the 

end of 2015 is yt, t= 1, . . . , 7311. Features of the S&P 100 Index are reported in Table 3. 

The mean is positive and the standard deviation is 1.19. The index reports a maximum 

(minimum) value of 10.65 (-23.78), which is relatively high (low). The kurtosis is high, 

indicating that the data are heavy-tailed relative to a normal distribution. The table reports 

excess kurtosis, meaning that positive kurtosis indicates leptokurtosis features. The 

Cramer-von-Mises and Quantile normal test statistic support non-normal return 

distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. Both the KPSS statistic and 

the ADF test support stationary series. The BDS test statistic reports highly significant 

dependence in the data. The price and return series are plotted in Figure 5 and the return 

series, together with a Kernel distribution to the left, is shown in Figure 6. From the price 

plot, we clearly see that the series is non-stationary, unlike the price change (log-returns) 

which is stationary. From the return plots, the series show some volatility clustering, as 

shown by higher volatility when prices are falling. The return level seems to change 

randomly. The fact that the skewness is different from zero supports the feature of non-

normal distribution.  

 

 

Table 3 Returns Characteristics from the S&P 100 Index 

 

     

 

Statistics for S&P 100 Index

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.02825 0.05627 10.6551 28.71837 0.30141 27.8945 22.83270 69.4010 1117.200

0.00000 1.19334 -23.7769 -1.27747 -0.01343 {0.0000} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

15.4415 22.4543 27.3440 32.5046 0.04542 0.00000 -65.8377 601.120 -2.3391      

{0.0000} {0.0000} {0.0000} {0.0000} {0.1037} {0.4774} {0.0000} {0.0000} -3.6202      

The figures in braces are P-values for statistical significance
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Figure 5 S&P 100 Price and Returns 
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Figure 6 S&P 100 Returns 
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2.6.4 S&P 500 Index (GSPC) 

The daily return (logarithmic) of the GSPC data set from the beginning of 1987 to the end 

of 2015 is yt, t= 1, . . . , 7311. Features of the GSPC Index are reported in Table 4. The 

mean is positive and the standard deviation is 1.17. The index reports a maximum 

(minimum) value of 10.96 (-22.90), which is relatively high (low). The kurtosis is high, 

indicating that the data are heavy-tailed relative to a normal distribution. The table reports 

excess kurtosis, meaning that positive kurtosis indicates leptokurtosis features. The 

Cramer-von-Mises and Quantile normal test statistic support non-normal return 

distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. Both the KPSS statistic and 

the ADF test support stationary series. The BDS test statistic reports highly significant 

dependence in the data. The price and return series are plotted in Figure 7 and the return 

series, together with a Kernel distribution to the left, is shown in Figure 8. From the price 

plots, we clearly see that this series is non-stationary, unlike the price change (log-returns) 

which is stationary. From the return plots, the series show some volatility clustering, as 

shown by higher volatility when prices are falling. The return level seems to change 

randomly. The fact that the skewness is different from zero supports the feature of non-

normal distribution. 

 

Table 4 Returns Characteristics from the S&P 500 Index 

 

 

 

Statistics for S&P 500 Index

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.02918 0.05852 10.9572 27.68730 0.31743 30.8648 23.51701 58.4880 1281.900

0.00000 1.17322 -22.8997 -1.27273 -0.01180 {0.0000} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

14.6550 21.9052 26.7649 31.7154 0.04406 0.00000 -65.1543 657.633 -2.3390      

{0.0000} {0.0000} {0.0000} {0.0000} {0.1084} {0.5312} {0.0000} {0.0000} -3.5885      

The figures in braces are P-values for statistical significance
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Figure 7 S&P 500 Price and Returns 
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Figure 8 S&P 500 Returns 
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2.6.5 Oslo Stock Exchange Benchmark Index (OSEBX) 

 

The daily return (logarithmic) of the OSEBX Index data set from the beginning of 1987 to 

the end of 2015 is yt, t= 1, . . . , 7277. Features of the OSEBX Index are reported in Table 

5. The mean is positive and the standard deviation is 1.37. The index reports a maximum 

(minimum) value of 10.14 (-10.74), which is relatively high (low). The kurtosis is 

relatively high, indicating that the data are heavy-tailed relative to a normal distribution. 

The table reports excess kurtosis, meaning that positive kurtosis indicates leptokurtosis 

features. The Cramer-von-Mises and Quantile normal test statistic support non-normal 

return distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. Both the KPSS statistic and 

the ADF test support stationary series. The BDS test statistic reports highly significant 

dependence in the data. The price and return series are plotted in Figure 9 and the return 

series, together with a Kernel distribution to the left, is shown in Figure 10. From the price 

plots, we clearly see that this series is non-stationary, unlike the price change (log-returns) 

which is stationary. From the return plots, the series show some volatility clustering, as 

shown by higher volatility when prices are falling. The return level seems to change 

randomly. The fact that the skewness is different from zero supports the feature of non-

normal distribution. 

 

 

Table 5 Returns Characteristics from the OSEBX Index 

 

Statistics for OSEBX Index 

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.03672 0.08932 10.1387 7.50623 0.19271 12.1261 17.94628 59.8550 6515.900

0.00000 1.37085 -10.7379 -0.61930 -0.02671 {0.0023} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

21.8789 29.1330 33.9507 38.3601 0.04573 0.00000 -79.6684 1673.268 -2.8626      

{0.0000} {0.0000} {0.0000} {0.0000} {0.1549} {0.7464} {0.0001} {0.0000} -4.4471      

The figures in braces are P-values for statistical significance
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Figure 9 OSEBX Index Price and Returns 
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Figure 10 OSEBX Returns 
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2.6.6 Oslo Stock Exchange Index (OBX) 

 

The daily return (logarithmic) of the OBX Index data set from the beginning of 1998 to the 

end of 2015 is yt, t= 1, . . . , 4512. Features of the OBX Index are reported in Table 6.The 

mean is positive and the standard deviation is 1.58. The index reports a maximum 

(minimum) value of 11.02 (-11.27), which is relatively high (low). The kurtosis is 

relatively high, indicating that the data are heavy-tailed relative to a normal distribution. 

The table reports excess kurtosis, meaning that positive kurtosis indicates leptokurtosis 

features. The Cramer-von-Mises and Quantile normal test statistic support non-normal 

return distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. Both the KPSS statistic and 

the ADF test support stationary series. The BDS test statistic reports highly significant 

dependence in the data. The price and return series are plotted in Figure 11 and the return 

series, together with a Kernel distribution to the left, is shown in Figure 12. From the price 

plot, we clearly see that the series is non-stationary, unlike the price change (log-returns) 

which is stationary. From the return plots, the series show some volatility clustering, as 

shown by higher volatility when prices are falling. The return level seems to change 

randomly. The fact that the skewness is different from zero supports the feature of non-

normal distribution.  

 

 

Table 6 Returns Characteristics from the OBX Index 

 

 

Statistics for OBX-index

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.03072 0.09264 11.0198 6.06763 0.17319 6.3228 9.56415 28.6540 5626.400

0.72728 1.58331 -11.2730 -0.51277 -0.03015 {0.0424} {0.0000} {0.0040} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

17.3060 23.1739 27.3544 31.0860 0.02051 0.00000 -66.8920 1343.320 -3.3708

{0.0000} {0.0000} {0.0000} {0.0000} {0.6635} {0.8026} {0.0000} {0.0000} -5.0370

The figures in braces are P-values for statistical significance 
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Figure 11 OBX Index Price and Returns 
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Figure 12 OBX Returns 
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2.6.7 Oslo Stock Exchange All Share Index (OSEAX) 

 

The daily return (logarithmic) of the OSEAX Index data set from the beginning of 1998 to 

the end of 2015 is yt, t= 1, . . . ,4514. Features of the OSEAX Index are reported in Table 

7.  The mean is positive and the standard deviation is 1.41. The index reports a maximum 

(minimum) value of 9.19 (-9.71), which is relatively high (low). The kurtosis is relatively 

high, indicating that the data are heavy-tailed relative to a normal distribution. The table 

reports excess kurtosis, meaning that positive kurtosis indicates leptokurtosis features. The 

Cramer-von-Mises and Quantile normal test statistic support non-normal return 

distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. Both the KPSS statistic and 

the ADF test support stationary series. The BDS test statistic reports highly significant 

dependence in the data. The price and return series are plotted in Figure 13 and the return 

series, together with a Kernel distribution to the left, is shown in Figure 14. From the price 

plot, we clearly see that the series is non-stationary, unlike the price change (log-returns) 

which is stationary. From the return plots, the series show some volatility clustering, as 

shown by higher volatility when prices are falling. The return level seems to change 

randomly. The fact that the skewness is different from zero supports the feature of non-

normal distribution.  

 

 

Table 7 Returns Characteristics from the OSEAX Index 

 

 

Statistics for OSEAX Index 

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.02982 0.09580 9.1864 5.73096 0.17450 6.0794 9.17645 28.2530 5188.300

0.00000 1.41334 -9.7088 -0.58741 -0.02164 {0.0478} {0.0000} {0.0050} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

16.8152 22.1216 26.0232 29.5705 0.02109 0.00002 -66.0007 1267.595 -2.9933

{0.0000} {0.0000} {0.0000} {0.0000} {0.6163} {0.8105} {0.0000} {0.0000} -4.5130

The figures in braces are P-values for statistical significance
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Figure 13 OSEAX Index Price and Returns 

 

 

 

 

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

98 00 02 04 06 08 10 12 14

Return_OSEAX

 

Figure 14 OSEAX Index Returns 
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2.6.8 Microsoft Corporation (MSFT) 

 

The daily return (logarithmic) of the MSFT data set from the beginning of 1987 to the end 

of 2015 is yt, t= 1, . . . , 7311. Features of the MSFT are reported in Table 8. The mean is 

positive and the standard deviation is 2.21. The index reports a maximum (minimum) 

value of 17.87 (-35.83), which is high (low). The kurtosis is high, indicating that the data 

are heavy-tailed relative to a normal distribution. The table reports excess kurtosis, 

meaning that positive kurtosis indicates leptokurtosis features. The Cramer-von-Mises and 

Quantile normal test statistic support non-normal return distributions. Serial correlation in 

the mean equation is strong and the Ljung-Box Q-statistic is significant. The Ljung-Box 

test statistic for squared returns (Q
2
) and the ARCH statistic show that volatility clustering 

is significantly present. Both the KPSS statistic and the ADF test support stationary series. 

The BDS test statistic reports highly significant dependence in the data. The price and 

return series are plotted in Figure 15 and the return series, together with a Kernel 

distribution to the left, is shown in Figure 16. From the price plot, we clearly see that the 

series is non-stationary, unlike the price change (log-returns) which are stationary. From 

the return plots, the series show some volatility clustering, as shown by higher volatility 

when prices are falling. The return level seems to change randomly. The fact that the 

skewness is different from zero supports the feature of non-normal distribution.  

 

 

Table 8 Returns Characteristics from MSFT 

 

Statistics for MSFT Share

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.08429 0.00000 17.8692 15.49519 0.21526 23.4622 14.56884 33.2970 1081.700

0.00000 2.21104 -35.8310 -0.65275 0.08759 {0.0000} {0.0000} {0.0010} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

19.0659 24.6665 29.3205 34.4300 0.17707 0.00003 -52.7417 648.637 -4.1751

{0.0000} {0.0000} {0.0000} {0.0000} {0.0006} {0.0383} {0.0000} {0.0000} -6.3621

The figures in braces are P-values for statistical significance
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Figure 15 MSFT Price and Returns 
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Figure 16 MSFT Returns 
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2.6.9 Micron Technology Inc. (MU) 

The daily return (logarithmic) of the MU data set from the beginning of 1998 to the end of 

2015 is yt, t= 1, . . . , 4529. Features of the MU Share are reported in Table 9.  The mean is 

positive and the standard deviation is 3.88. The index reports a maximum (minimum) 

value of 21.06 (-26.19), which is relatively high (low). The kurtosis is relatively high, 

indicating that the data are heavy-tailed relative to a normal distribution. The table reports 

excess kurtosis, meaning that positive kurtosis indicates leptokurtosis features. The 

Cramer-von-Mises and Quantile normal test statistic support non-normal return 

distributions. Serial correlation in the mean equation is not strong and the Ljung-Box Q-

statistic is not significant. The Ljung-Box test statistic for squared returns (Q
2
) and the 

ARCH statistic show that volatility clustering is significantly present. Both the KPSS 

statistic and the ADF test support stationary series. The BDS test statistic reports highly 

significant dependence in the data. The price and return series are plotted in Figure 17 and 

the return series, together with a Kernel distribution to the left, is shown in Figure 18. 

From the price plots, we clearly see that this series is non-stationary, unlike the price 

change (log-returns) which is stationary. From the return plots, the series show some 

volatility clustering, as shown by higher volatility when prices are falling. The return level 

seems to change randomly. The fact that the skewness is different from zero supports the 

feature of non-normal distribution.   

 

Table 9 Returns Characteristics from MU 

 

Statistics for MU Share

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00194 0.00000 21.0611 3.36057 0.16134 4.9652 5.77836 19.5780 1451.200

0.00000 3.87548 -26.1913 -0.11271 -0.00836 {0.0835} {0.0000} {0.0750} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

14.7219 20.1111 24.2027 28.0643 0.00809 0.00000 -65.8956 544.870 -7.9625

{0.0000} {0.0000} {0.0000} {0.0000} {0.9440} {0.9509} {0.0000} {0.0000} -11.1315

The figures in braces are P-values for statistical significance
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Figure 17 MU Price and Returns 
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Figure 18 MU Returns 
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2.6.10 Norsk Hydro ASA (NHY) 

 

The daily return (logarithmic) of the NHY data set from the beginning of 1998 to the end 

of 2015 is yt, t= 1, . . . , 4499. Features of the NHY Share are reported in Table 10.  The 

mean is positive and the standard deviation is 2.22. The index reports a maximum 

(minimum) value of 18.76 (-16.47), which is relatively high (low). The kurtosis is 

relatively high, indicating that the data are heavy-tailed relative to a normal distribution. 

The table reports excess kurtosis, meaning that positive kurtosis indicates leptokurtosis 

features. The Cramer-von-Mises and Quantile normal test statistic support non-normal 

return distributions. Serial correlation in the mean equation is strong and the Ljung-Box Q-

statistic is significant. The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH 

statistic show that volatility clustering is significantly present. Both the KPSS statistic and 

the ADF test support stationary series. The BDS test statistic reports highly significant 

dependence in the data. The price and return series are plotted in Figure 19 and the return 

series, together with a Kernel distribution to the left, is shown in Figure 20. From the price 

plots, we clearly see that this series is non-stationary, unlike the price change (log-returns) 

which is stationary. From the return plots, the series show some volatility clustering, as 

shown by higher volatility when prices are falling. The return level seems to change 

randomly. The fact that the skewness is different from zero supports the feature of non-

normal distribution. 

 

 

Table 10 Returns Characteristics from NHY 

 

Statistics for NHY Share

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00904 0.00000 18.7601 6.96596 0.18066 6.9478 7.23170 40.5220 2540.700

0.00000 2.22250 -16.4733 -0.13780 0.03327 {0.0310} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

14.5442 19.2582 22.0472 24.1960 0.03077 0.00001 -69.1574 783.659 -4.4090

{0.0000} {0.0000} {0.0000} {0.0000} {0.6499} {0.7139} {0.0000} {0.0000} -6.5517

The figures in braces are P-values for statistical significance
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Figure 19 NHY Price and Returns 
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Figure 20 NHY Returns 
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2.6.11 Tomra Systems ASA (TOM) 

The daily return (logarithmic) of the TOM data set from the beginning of 1998 to the end 

of 2015 is yt, t= 1, . . . , 4499. Features of the TOM Share are reported in Table 11.  The 

mean is positive and the standard deviation is 2.92. The index reports a maximum 

(minimum) value of 21.65 (-47.57), which is high (low). The kurtosis is high, indicating 

that the data are heavy-tailed relative to a normal distribution. The table reports excess 

kurtosis, meaning that positive kurtosis indicates leptokurtosis features. The Cramer-von-

Mises and Quantile normal test statistic support non-normal return distributions. Serial 

correlation in the mean equation is present and the Ljung-Box Q-statistic is significant. 

The Ljung-Box test statistic for squared returns (Q
2
) and the ARCH statistic show that 

volatility clustering is not significantly present. Both the KPSS statistic and the ADF test 

support stationary series. The BDS test statistic reports highly significant dependence in 

the data. The price and return series are plotted in Figure 21 and the return series together 

with a Kernel distribution to the left is shown in Figure 22. From the price plot, we clearly 

see that the series is non-stationary, unlike the price change (log-returns) which is 

stationary. From the return plots, the series show little volatility clustering, as suggested by 

the test statistics for Q
2
 and ARCH. The return level seems to change randomly. The fact 

that the skewness is different from zero supports the feature of non-normal distribution.  

 

 

Table 11 Returns Characteristics from TOM 

 

Statistics for TOM Share

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.01920 0.00000 21.6455 22.87798 0.20072 7.6355 10.90318 23.5600 18.649

0.00000 2.92436 -47.5734 -1.12335 -0.01053 {0.0220} {0.0000} {0.0230} {0.0970}

BDS-Z -statistic (e = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

12.2077 16.1311 18.6860 20.5971 -0.01293 0.00001 -69.5023 16.369 -5.5308

{0.0000} {0.0000} {0.0000} {0.0000} {0.8821} {0.6704} {0.0000} {0.1749} -8.3849

The figures in braces are P-values for statistical significance
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Figure 21 TOM Price and Returns 
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Figure 22 TOM Returns 
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2.6.12 The ICE Carbon one month Forward Contracts 

 

The daily return (logarithmic) of the Carbon Forward Contracts data set from the 

beginning of 2008 to the end of 2015 is yt, t= 1, . . . , 2007. Features of the Carbon 

Forward Contracts are reported in Table 12.  The mean is negative and the standard 

deviation is 3.22. The index reports a maximum (minimum) value of 24.02 (-45.23), which 

is relatively high (low). The kurtosis is high, indicating that the data are heavy-tailed 

relative to a normal distribution. The table reports excess kurtosis, meaning that positive 

kurtosis indicates leptokurtosis features. The Cramer-von-Mises and Quantile normal test 

statistic support non-normal return distributions. Serial correlation in the mean equation is 

strong and the Ljung-Box Q-statistic is significant. The Ljung-Box test statistic for squared 

returns (Q
2
) and the ARCH statistic show that volatility clustering is significantly present. 

Both the KPSS statistic and the ADF test support stationary series. The BDS test statistic 

reports highly significant dependence in the data. The price and return series are plotted in 

Figure 23 and the return series, together with a Kernel distribution to the left, is shown in 

Figure 24. From the price plot, we clearly see that the series is non-stationary, unlike the 

price change (log-returns) which is stationary. From the return plots, the series show some 

volatility clusters, as shown by higher volatility when prices are falling. The return level 

seems to change randomly. The fact that the skewness is different from zero supports the 

feature of non-normal distribution. 

 

 

Table 12 Returns Characteristics from Carbon 

 

 

Statistics for Front December Forward Contracts Carbon

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.05279 0.00000 24.0141 25.18876 0.30561 8.0832 7.90779 62.5190 157.080

0.00000 3.21655 -45.2282 -1.16896 0.02857 {0.0176} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

11.7125 15.2580 18.3065 21.3580 -0.14668 0.00009 -22.8697 115.864 -6.8051

{0.0000} {0.0000} {0.0000} {0.0000} {0.3070} {0.4502} {0.0000} {0.0000} -10.0746

The figures in braces are P-values for statistical significance
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Figure 23 Carbon Price and Returns 
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Figure 24 Carbon Returns 
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2.6.13 Brent oil front month Future Contracts 

 

The daily return (logarithmic) of the Brent Oil Future Contracts data set from the 

beginning of 2008 to the end of 2015 is yt, t= 1, . . . , 2063. Features of the Brent Oil 

Derivative are reported in Table 13.  The mean is negative and the standard deviation is 

2.18. The index reports a maximum (minimum) value of 12.71 (-10.95), which is relatively 

high (low). The kurtosis is relatively high, indicating that the data are heavy-tailed relative 

to a normal distribution. The table reports excess kurtosis, meaning that positive kurtosis 

indicates leptokurtosis features. The Cramer-von-Mises and Quantile normal test statistic 

support non-normal return distributions. Serial correlation in the mean equation is strong 

and the Ljung-Box Q-statistic is significant. The Ljung-Box test statistic for squared 

returns (Q
2
) and the ARCH statistic show that volatility clustering is significantly present. 

Both the KPSS statistic and the ADF test support stationary series. The BDS test statistic 

reports highly significant dependence in the data. The return series is plotted in Figure 25 

together with a Kernel distribution to the left. From this plot, we clearly see that the return 

series is stationary. It also shows some volatility clustering, as shown by higher volatility 

when prices are falling. The return level seems to change randomly. The fact that the 

skewness is different from zero supports the feature of non-normal distribution.  

 

 

Table 13 Returns Characteristics from Brent oil 

 

Statistics for Brent Oil Derivative

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.06281 -0.01505 12.7066 3.81490 0.36369 11.6166 4.90892 23.4200 1398.800

0.00000 2.17998 -10.9455 -0.14027 -0.02681 {0.0030} {0.0000} {0.0240} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

12.5894 15.5706 18.1255 21.0406 0.02616 -0.00009 -48.2876 425.805 -4.9395

{0.0000} {0.0000} {0.0000} {0.0000} {0.7852} {0.2844} {0.0000} {0.0000} -6.7188

The figures in braces are P-values for statistical significance
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Figure 25 Brent oil Returns 

 

2.6.14 Salmon Forward Contracts 

 

The daily return (logarithmic) of the one month Salmon Forward Contracts data set from 

June 2006 to the end of 2015 is yt, t= 1, . . . , 2400. Features of the Salmon Forward 

Contracts are reported in Table 14. The mean is positive and the standard deviation is 1.12. 

The index reports a maximum (minimum) value of 8.41 (-9.31), which is relatively high 

(low). The kurtosis is relatively high, indicating that the data are heavy-tailed relative to a 

normal distribution. The table reports excess kurtosis, meaning that positive kurtosis 

indicates leptokurtosis features. The Cramer-von-Mises and Quantile normal test statistic 

support non-normal return distributions. Serial correlation in the mean equation is strong 

and the Ljung-Box Q-statistic is significant. The Ljung-Box test statistic for squared 

returns (Q
2
) and the ARCH statistic show that volatility clustering is significantly present. 

Both the KPSS statistic and the ADF test support stationary series. The BDS test statistic 

reports highly significant dependence in the data. The return series is plotted in Figure 26 

together with a Kernel distribution to the left. From this plot, we clearly see that the return 

series is stationary. It also shows some volatility clustering, as shown by higher volatility 

when prices are falling. The return level seems to change randomly. The fact that the 

skewness is different from zero supports the feature of non-normal distribution.  
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Table 14 Returns Characteristics from Salmon 
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Figure 26 Returns Salmon 

  

Statistics for Salmon one month Forward Contract  

Mean / Median Maximum / Moment Quantile Quantile Cramer- Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.02360 0.00000 8.4083 7.72358 0.72941 54.3777 13.97996 116.5200 93.949

0.00000 1.11540 -9.3149 0.03555 0.05417 {0.0000} {0.0000} {0.0000} {0.0000}

BDS-Z-statistic (Ɛ = 1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Intercept Trend DF-test (12) CVaR 2.5%

5.9157 7.3299 7.7997 8.3252 -0.02326 -0.00004 -40.8526 72.043 -2.3119

{0.0000} {0.0000} {0.0000} {0.0000} {0.6098} {0.2349} {0.0000} {0.0000} -3.3308

The figures in braces are P-values for statistical significance
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3.0 Theoretical aspects  

3.1 Persistence 

A stationary time series is said to be mean reverting, meaning that it tends to return to its 

mean in the long run. It suggests that today’s information has no influence on long-run 

estimates. If today’s return has a large impact on the forecast variance several periods in 

the future, the volatility is said to be persistent. Due to this fact, persistence is of great 

interest examining the effect of a shock to a time series. A time series with a unit root has 

persistence indefinitely in the way that it never returns to its mean. The half-life of a shock 

is a good measure of persistence. It measures the time span needed for the volatility to 

move halfway back to its unconditional mean. 

It is given by: 

 

τ = k ∶  |ℎ𝑡+𝑘|𝑡 −  𝜎2| =  
1

2
|ℎ𝑡+1|𝑡 −  𝜎2|         

 

 

where ℎ𝑡+1|𝑡 is the expected value of the variance in return k periods in the future, and 𝜎2 

is the long-term volatility (Engle and Patton 2001). 

The persistence is interesting in the way that if the volatility after a shock is highly 

persistent, it can change the risk premium in the stock market. This can influence the stock 

prices in later periods. However, if the half-life is low, it only affects required returns for a 

short period. In response to this, volatility shocks have little impact on the stock market 

prices (Poterba and Summers 1986). Higher risk premium raises the required return on 

capital. With ceteris paribus, the discounted value of a company’s income decline, and so 

does the value.  

 

3.2 Asymmetry 

Asymmetry is a common feature of financial time series. In the period after a shock in the 

market, like the great shocks in 1987 and 2007-2008, we have a significant correction in 

the price of assets. Between 2007 and 2009 the DJIA index went from 14.000 to 6.600. 

The volatility was high while the stock prices declined dramatically. This suggests that 

there is a correlation between volatility and return. Nelson (1991) argues that this is the 

case, referring to the events of October 1987, saying that stock market volatility does not 

necessarily change randomly over time. There is evidence of a negative correlation 
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between changes in return and volatility (Christie 1982). “Bad news” leads to higher 

volatility and “good news” leads to lower volatility. This asymmetry is explained by the 

leverage effect and the risk premium effect. The volatility tends to rise when the stock 

prices fall. This is because when bad news occurs, and the price of stocks falls, the debt-to-

equity ratio grows. The value of the equity falls relative to the debt and the volatility rise. 

Meanwhile, investors get news of higher volatility, leading to lower demand for shares 

because of risk aversion. This asymmetric response of volatility to large price movements 

is referred to as the leverage effect (Engle and Patton 2001). In this setting, the term 

“leverage” is used to explain asymmetry in the conditional variance function (Gallant, 

Rossi et al. 1993). 

 

3.3 Portfolio Theory 

In 1952, Markowitz presented a paper describing the portfolio theory. Every investor 

wants to (or should) maximize their return. Because of uncertainty about the future, the 

expected return counts. A risk adverse investor will minimize the risk for the given return. 

The portfolio theory states that we can get rid of unsystematic risk by combining different 

shares. It is not the variance of each share that is interesting; it is the covariance between 

them. In this way, we can construct a portfolio where different shares outweigh each other. 

As an example, we have a situation in Norway today with low oil price. If we in front of 

the price fall had one share, we would have experienced a great loss if this share were 

within the oil industry. If it were in the Salmon industry, the return would be very good. 

When the price of oil decline, the oil company can get its value decreased. On the other 

side, we see that lower oil price increase the disposable income for people buying fish for 

dinner, leading to a rise in demand. The lower oil price has reduced the value of the 

Norwegian Krone, which makes it more profitable to export salmon. In this way, if we had 

two shares in front of the oil-drop, the salmon shares would outweigh the drop in oil 

shares. The covariance of salmon and oil shares has indeed been negative the last year, and 

this makes it a great example for showing the value of diversifying.  

It is widely discussed how many shares a well-diversified portfolio should consist of, 

ranging from over 100 to about 20. Diversification cannot remove all variance. An 

efficient portfolio is one where the investor can’t get more return without raising the 

variance and vice versa (Markowitz 1952).  
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4.0 Impulse response analysis of nonlinear models  

 

Impulse response functions (IRF) have been widely used to study the dynamics of a linear 

process. The IRF measure the effect of shocks on future values of a time series relative to 

some reference value. It may be used for studying the persistence of shocks as well as 

asymmetric effects (Koop 1996), and it works as an important tool in empirical causal 

analysis. As discussed by Gallant, Rossi and Tauchen (Gallant, Rossi et al. 1993) the 

analysis of dynamics can also be extended to be applied to non-linear time series.  

This approach includes an examination of profile bundles for evidence of damping or 

persistence, which embraces some of the key aspects to this thesis.   

In the general non-linear case, a structural model is needed to link shocks to endogenous 

variables back to shocks in underlying exogenous or policy variables (Gallant, Rossi et al. 

1993). A natural definition of the nonlinear impulse response is the net effect of the 

impulse, which is obtained by comparing the profile for the impulse to the baseline profile. 

Both the effect of shocks to the mean (return) and the effects on volatility will be 

considered. The SNP- method will be applied to generate empirical evidence on the multi-

step ahead price dynamics. The focus lies in the persistence of the response of volatility to 

price shocks, as well as studying the asymmetrical effects. The analysis uses the 

nonparametric estimate of the conditional density of price changes (Gallant and Tauchen 

1990).   

4.1 Definition 

The simplest and most prevalent form of impulse response function is referred to as the 

traditional impulse response function. 

The traditional impulse response function is defined as the difference between two 

different realizations of yt+n that are identical up to t-1. One realization assumes that 

between t and t+n the system is hit only by a shock of size δ at period t, while the 

second realization, being the benchmark profile, assumes that the system is not 

hit by any shocks between t and t+n. The function is defined as  

 

𝐼𝑌(𝑛, 𝛿, 𝑤𝑡−1) = 𝐸[𝑌𝑡+𝑛|𝑉𝑡 = 𝛿, 𝑉𝑡+1 = 0, … , 𝑉𝑡+𝑛 = 0, 𝑤𝑡−1] −

𝐸[𝑌𝑡+𝑛|𝑉𝑡 = 0, 𝑉𝑡 = 0, 𝑉𝑡+1 = 0, … , 𝑉𝑡+𝑛 = 0, 𝑤𝑡−1],  

 

For n = 1,2,3,…. 
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The traditional impulse response aims to disclose the effect of a shock of size δ 

hitting the system at time t on the state of the system at time t+1, given that no 

other shocks hit the system. In the case of nonlinear models, the traditional IRF 

generally depends on wt-1 , the history chosen as the baseline profile for 

comparison of the two realizations. The impulse responses rely on the initial 

condition, reflecting the nonlinearity of the system. Assuming stationarity, the 

mean of the baseline forecast is the unconditional mean. The traditional IRF also 

depends on the size of the shock, δ (Koop, Pesaran et al. 1996). 

Both the effect of shocks on the means of subsequent returns and the effects on subsequent 

volatility are of interest.  
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5.0  Method  

 

5.1 The ARCH and GARCH Methodology 
 

Time-varying volatility clustering is a well-known phenomenon in financial time series. 

Volatility one day seems to have a positive correlation with the volatility of the next day. 

ARCH and GARCH models may be used for modeling this feature.  

The ARCH model developed by Engle (Engle 1982) uses earlier observations to estimate 

the one-period forecast variance. The lag structure of the model uses the last observation of 

squared residuals in order to derive the next days’ volatility. 

 

𝜎𝑡
2 =  𝛼0 +  ∑ 𝛼𝑗𝜀𝑡−𝑗

2

𝑝

𝑗=1

 

 

 

The GARCH (Generalized Autoregressive Conditional Heteroscedastic) model (Bollerslev 

1986) is used to calculate the one-step-ahead volatility. This is done by including both the 

last period squared return and the last period forecast. 

 

GARCH (p,q)    

𝜎𝑡
2 =  𝛼0 +  ∑ 𝛼𝑗𝜀𝑡−𝑗

2

𝑝

𝑗=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑞

𝑗=1

 

 

GARCH (1,1)                             

                                                   𝜎𝑡
2 =  𝛼0 +  𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2   

 

Where 𝛼0 > 0, 𝜀1 > 0, 𝛽1 > 0, and 𝛼1 + 𝛽1 < 1 to ensure stationarity.  

 

 

By including the last period forecast of the volatility, the model manages to cooperate 

better with the persistence of a shock than an ARCH model, where next periods variance 

only depends on the squared residuals from last period. The model has proved to give a 

good fit to empirical data. Maximum likelihood is used to estimation and specification of 

the GARCH (Verbeek 2012).  
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5.2 Model Selection 

Bayesian Information Criterion (BIC) or Schwarz criterion is an index used to help us find 

the appropriate dimensionality of a model that will fit our set of observations (Schwarz 

1978). The criterion chooses the model with the best fit, measured by the maximum 

likelihood function, subject to a penalty term that increases with the number of parameters 

included. This should diminish the possibility of overfitting the model. The penalty term is 

greater for BIC than for the related Akaike Information Criterion (AIC) (Akaike 1969). In 

time-series analysis, the BIC should be preferred to the ordinary AIC, especially when the 

number of model parameters is high compared to the number of observations (Chatfield 

2000). In large-sample cases, the Bayes solution ideally corresponds to the model which is 

a posteriori most probable, i.e. the model that is considered most credible by the data at 

hand (Schwarz 1978).  

The BIC can be defined as: 

 

𝐵𝐼𝐶 =  −2 ln 𝑓(𝑦|𝜃𝑘) + 𝑘 ln 𝑛 

 

 

where y  is the observed data, 𝜃𝑘 are the parameter values that maximizes the likelihood 

function; n is the sample size and k is the total number of parameters estimated. The term 

𝑓(𝑦|𝜃𝑘) is the maximized value of the likelihood function of the model. The model with 

the lowest BIC is preferred while models with higher values are rejected (Schwarz 1978). 

Using this procedure, the selected model for our dataset is a semi-nonparametric GARCH-

model (Gallant and Tauchen 1990). 

 

 

5.3 SNP Method for Nonparametric Time Series Analysis 
 

SNP is a semi-nonparametric method, based on an expansion in Hermite functions, for the 

estimation of the conditional density. The Hermite polynomial expansion used by Gallant 

and Tauchen (1990) is based on ARCH, and it allows a deviation without knowing the 

property of normality and conditional heterogeneity. By applying this to univariate time 

series, we get an estimation of the fitted conditional density. This expansion works well for 

simulation, and we eliminate the problem of non-normality (Walter 1977).  

The semi-nonparametric term tells us that it lies halfway between being a nonparametric 
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(number and nature of parameters are adjustable and not fixed in the advance) and 

parametric method. The one-step-ahead conditional density incorporates all the 

information about various characteristics of time series including conditional 

heteroscedasticity, non-normality, time irreversibility and other forms of nonlinearities. 

The SNP model is, therefore, a moment generator and well described by Gallant and 

Tauchen (1990). The model is flexible written in C++ and therefore available on many 

platforms. The model specification provides an appropriate and detailed statistical description 

of uni- and multivariate data series. Starting from a VAR model, the methodology if necessary, 

elaborates the description of the data set from VAR, to Normal (G) ARCH, to Semi-parametric 

GARCH, and to Nonlinear Nonparametric. It features an extension of the GARCH model with 

parameters for level and asymmetric (leverage) effects. The Schwarz criterion (BIC) is used 

for model selection (Schwarz 1978). The preferred model for the data set is selected with a 

minimum of four Hermite polynomials for non-normal features of data series. The statistical 

methodology describes the GARCH process using a BEKK (Engle and Kroner 1995) 

formulation for the conditional variance allowing for BIC-efficient volatility asymmetry and 

level effects. Moreover, for evaluation purposes, the residuals are easily available for an 

appropriate model test statistic (Gallant and Tauchen 1990). The program provides an 

opportunity of specifying a good model and simulates shocks with corresponding output, 

which is important in our analysis. 

 

5.3.1 Limitations 

Due to the time constraint that the master thesis composes, we are not able to perform 

significance tests of our findings. This is a limitation of this paper, but it can work as a 

preliminary study, in hope of uncovering some interesting features. 

 

5.4 Estimation of the Conditional Density  
 

5.4.1 Semi-nonparametric (SNP) Estimators 

As mentioned above, the SNP method depends on the fact that a Hermite expansion can be 

used as a common method for approximating the density function.    

Letting z denote an M-vector, the Hermite density has the form ℎ(𝑧)𝛼[𝑃(𝑧)]2∅(𝑧) 

where 𝑃(𝑧) denotes a multivariate polynomial of degree 𝐾𝑧 and ∅(𝑧) denotes the 

density function of the (multivariate) Gaussian distribution with mean zero and the 
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identity as its variance-covariance matrix. The constant of proportionality is 

1/ ∫[𝑃(𝑠)]2 ∅(𝑠)𝑑𝑠 which makes ℎ(𝑧) integrate to one. Because of this division, 

the coefficients can only be determined to within a scalar multiple. To achieve a 

unique representation, the constant term of the polynomial part is set to one. 

The location/scale shift 𝑦 = 𝑅𝑧 + 𝜇, where 𝑅 is an upper triangular matrix and 𝜇 is 

an M-vector, leads to a parameterization denoted as 𝑓(𝑦|𝜃)𝛼{𝑃[𝑅−1(𝑦 −

𝜇)]}2{∅[𝑅−1(𝑦 − 𝜇)]/|det (𝑅)|}. Because {∅[𝑅−1(𝑦 − 𝜇)]/|det (𝑅)|} is the 

density function of the M-dimensional multivariate Gaussian distribution with 

mean 𝜇 

and variance-covariance matrix ∑ = 𝑅𝑅′, and because the main term of the 

polynomial part equals unity, the leading term of the entire expansion is the 

multivariate Gaussian density function. The parameters 𝜃 of 𝑓(𝑦|𝜃) are made up of 

the coefficients of the polynomial 𝑃(𝑧) plus 𝜇 and 𝑅 and are estimated by 

maximum likelihood.  

Since the method is parametric yet has nonparametric properties, it is termed semi-

nonparametric to suggest that it lies halfway between the two procedures. The 

conditional density, given the entire past, depends only on 𝐿 lags from the past. 

This basic approach is characterized as having a Markovian structure.  

A density is then obtained by a location/scale shift 𝑦𝑡 = 𝑅𝑧𝑡 + 𝜇𝑥 off a sequence of 

normalized errors {𝑧𝑡}. This makes the leading term of the expansion a Gaussian 

vector autoregression (VAR). 

In time series analysis, the {𝑧𝑡} are usually referred to as linear innovations. In 

order to let them me conditionally heterogeneous, the coefficients of the 

polynomial 𝑃(𝑧) are polynomials of degree 𝐾𝑥 in 𝑥𝑡−1. This polynomial is denoted 

as 𝑃(𝑧, 𝑥). When 𝐾𝑥 = 0, the {𝑧𝑡} are homogeneous, as the conditional density of 

𝑧𝑡 does not depend on 𝑥𝑡−1. The tuning parameter 𝐾𝑧 controls the extent to which 

the model deviates from normality while the 𝐾𝑥 controls the extent to which these 

deviations vary with the history of the process. One additional tuning parameter is 

added, 𝐼𝑥, to control the high order of interactions caused by large values of 𝑀. 

𝐼𝑥 = 0 in all univariate estimation. 

The SNP method distinguishes between several different lag descriptions. The total 

number of lags under consideration is denoted 𝐿. We then use the following 

notations: 
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 𝐿𝑢:  Number of lags in VAR 

 𝐿𝑔:  Number of lags in GARCH 

𝐿𝑝:  Total number of lags in the 𝑥 part of the polynomial 𝑃(𝑧, 𝑥)  

  𝐿𝑟:  Number of lags of 𝑦𝑡 in 𝑅𝑥 (number of lags in ARCH) 

  𝐿𝑣:  Lags in leverage effect of GARCH  

  𝐿𝑤:  Lags in additive level effect  

 

 

Setting certain of the tuning parameters to zero will lead to strong restrictions on 

the process of {𝑦𝑡}. These implied restrictions are shown in Table 15. In this table, 

the parameters 𝐿𝑣 and 𝐿𝑤 are set to zero. The parameter 𝐼𝑥 has no effect when 

𝑀 = 1 (Gallant and Tauchen 1990). 

 

Table 15 Restrictions Implied by Settings of the Tuning Parameters (Gallant and Tauchen 

1990) 

 

 

SNP Models

Characterization of {yt}

L u = 0 L g = 0 L r ≥ 0 L p ≥ 0 K z = 0 K x = 0 Iid Gaussian

L u > 0 L g = 0 L r ≥ 0 Lp ≥ 0 K z = 0 K x = 0 Gaussian VAR

L u > 0 L g = 0 L r ≥ 0 Lp ≥ 0 K z > 0 K x = 0 Semi-parametric VAR

L u ≥ 0 L g = 0 L r ≥ 0 Lp ≥ 0 K z = 0 K x = 0 Gaussian ARCH

L u ≥ 0 L g = 0 L r ≥ 0 Lp ≥ 0 K z > 0 K x = 0 Semiparametric ARCH

L u ≥ 0 L g > 0 L r ≥ 0 Lp ≥ 0 K z = 0 K x = 0 Gaussian GARCH

L u ≥ 0 L g > 0 L r ≥ 0 Lp ≥ 0 K z > 0 K x = 0 Semi-parametric GARCH

L u ≥ 0 L g ≥ 0 L r ≥ 0 Lp > 0 K z > 0 K x > 0 Nonlinear nonparametric

Parameter setting

 

The method starts by setting one lag in the VAR model, which is later extended to two 

lags. The lags in ARCH are set to find the best-fitted ARCH model, before adding a 

GARCH lag. The next is to check whether the leverage effect and additive level are 

significant. Applying the Schwarz criterion (Schwarz 1978) for model selection, we 
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choose the best-fitted model before adding the degree of polynomials in z. We start with a 

polynomial degree of 4 (Gallant and Tauchen 1990) and extend this to 6 and 8, in order to 

find the model that gives us the best fit, being the model with the lowest BIC. We end up 

with a semi-nonparametric GARCH model for each of our datasets.  

5.4.2 SNP- (univariate) Estimation  

This section follows an estimation of the conditional density of the univariate return 

process. Table 16 presents the final model selected for each of the time series. Again, 

𝐼𝑥 = 0 throughout the univariate estimation. 

 

 

Table 16 Univariate SNP estimation: Optimized Likelihood and Model Selection Criteria 

(Gallant and Tauchen 1990) 

 

 

 

5.4.2.1 Dow Jones Industrial Average (DJIA) 

The specification tests for the optimal SNP GARCH model are reported in Table 17. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

4.8. There is no volatility clustering, having P-values of 0.79 and 0.76 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). There is still some 

dependency in the data. The null hypothesis of the BDS test is rejected, suggesting that the 

model is misspecified (Brock, Dechert et al. 1996). There is some structure in the data, 

Time series Lu Lp Lr Lg Lv Lw Kz Kx Ix Sn AIC HQ BIC

DJI 2 1 1 1 1 0 8 0 0 1.17087 1.17279 1.17506 1.17940

FTSE 2 1 1 1 1 0 8 0 0 1.21589 1.21775 1.21995 1.22417

OEX 2 1 1 1 1 0 8 0 0 1.16065 1.16257 1.16484 1.16917

GSPC 2 1 1 1 1 0 8 0 0 1.15782 1.59730 1.16200 1.66340

OSEBX 2 1 1 1 1 0 8 0 0 1.19359 1.19552 1.19780 1.20215

OBX 1 1 1 1 0 0 4 0 0 1.19541 1.19741 1.19966 1.20380

OSEAX 2 1 1 1 1 0 4 0 0 1.20806 1.21027 1.21278 1.21738

MSFT 1 1 1 1 1 1 8 0 0 1.23311 1.23502 1.23729 1.24163

MU 2 1 1 1 1 0 6 0 0 1.25669 1.25934 1.26233 1.26784

NHY 2 1 1 1 1 0 6 0 0 1.23941 1.24207 1.24509 1.25062

TOM 1 1 1 1 1 1 8 0 0 1.23915 1.24223 1.24574 1.25220

Carbon 2 1 1 1 1 0 6 0 0 1.12172 2.12770 1.13385 1.44450

Brentoil 1 1 1 1 1 1 4 0 0 1.19643 1.20128 1.20628 1.21493

Salmon 2 1 1 1 1 0 8 0 0 1.21672 1.22256 1.22859 1.23943
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which can include nonlinearity and nonstationarity. This problem often occurs when 

analyzing American indices, because they usually have very high liquidity. We choose to 

use the semi-nonparametric GARCH model as it is for the impulse response analysis, 

bearing in mind that the model can have sub-optimal performance.  

 

 

Table 17 Characteristics of the statistical SNP Model Residuals for the DJIA Index 

 

 

 

The model selected under the Schwarz Criterion is a semi-nonparametric GARCH with 

eight Hermite polynomials (Kz) for non-normal features of the series. The model is a 

GARCH (1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect 

is significant for the time series, which indicates that the volatility of the stock shows 

greater response to a negative shock than a positive shock. The eigenvalue of variance 

function is 0.9366, and the eigenvalue of the mean function is 0.1626, as shown below. 

  

Residual Statistics for DJI Index

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.00446 0.03016 4.37162 4.80183 0.18453 10.92827 4.23554 23.5224 7.9694

0.99999 -11.37832 -0.64693 -0.02206 {0.0042} {0.0000} {0.0240} {0.7900}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-4.533555 -4.106013 -3.781507 -3.105822 8.268002 -2.1112      -2.8217      

{0.0000} {0.0000} {0.0002} {0.0019} {0.7639} -3.0418      -4.2092      

The figures in braces are P-values for statistical significance
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Table 18 Statistical SNP Model Parameters for the DJIA Index 

 

 

 

Figure 27 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 29 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and 

advocatess only small non-normal elements of the time series. We find that the DJIA Index 

has a distribution that is narrower than the normal distribution. These features are 

commonly seen when analyzing data from a financial market, and confirm the purpose of 

using Hermite polynomials to describe the density in the best possible way. Figure 29 

shows the one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with 

the baseline profile (m=0.032451). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

DJI Index

Statistical Model SNP-11118000 -fit model

Parameters Semiparametric-GARCH.

h Mode Standard error

h 1 a0[1] -0.00278 0.00613

h 2 a0[2] -0.22329 0.01372

h 3 a0[3] -0.00869 0.01117

h 4 a0[4] 0.08242 0.01771

h 5 a0[5] 0.03551 0.02545

h 6 a0[6] -0.06772 0.02798

h 7 a0[7] -0.02134 0.02447

h 8 a0[8] 0.06135 0.01439

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) -0.02409 0.01201

h 11 B(1,2) -0.02644 0.01189

h 12 R0[1] 0.17211 0.00774

h 13 P(1,1) 0.20107 0.02496

h 14 Q(1,1) 0.94667 0.00298

h 15 V(1,1) -0.50759 0.01778

Largest eigen value of mean function companion matrix = 0.162593

Largest eigen value of variance function P & Q companion matrix = 0.936619
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the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 30. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the DJIA Index, we find that the responses from negative shocks are 

much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 27 Projected conditional volatility and residuals AR (1) moving average DJIA 

Index 
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Figure 28 DJIA Index one-step-ahead densities (xt-1 = unconditional mean)  

 

 

 

 

Figure 29 DJIA Index one-step-ahead densities (conditional mean for xt-1 = -40%...40%)  
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Figure 30 DJIA Index: conditional variance functions 

 

5.4.2.2 FTSE 100 Index (FTSE) 

The specification tests for the optimal SNP GARCH model are reported in Table 19. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

4.29. There is still some volatility clustering, having P-values of 0.026 and 0.024 for Q
2
 

(12) and ARCH (12) respectively. However, serial correlation is not present. The mean is 

approximately zero, and the standard deviation is one, referring to the normal distribution 

denoted as N (0, 1). The BDS-test show significant values at correlation dimension two 

and three. We choose to use the semi-nonparametric GARCH model as it is for the 

impulse response analysis, bearing in mind that the model can have sub-optimal 

performance (Brock, Dechert et al. 1996). 

 

Table 19 Characteristics of the statistical SNP Model Residuals for the FTSE Index 

 

Residual Statistics for FTSE 100 Index 

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00132 0.00319 6.06399 4.28767 0.08468 3.35076 2.05688 7.9332 23.223

0.99998 -12.68592 -0.48338 0.02957 {0.1872} {0.0000} {0.7900} {0.0260}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-3.514959 -2.527237 -1604985 -1.17713 23.44199 -2.0777      -2.6775      

{0.0006} {0.0115} {0.1085} {0.2391} {0.0242} -2.9755      -3.7720      

The figures in braces are P-values for statistical significance
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The model selected under the Schwarz Criterion is a semi-nonparametric GARCH with 

eight Hermite polynomials (Kz) for non-normal features of the series. The model is a 

GARCH (1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect 

is significant for the time series, which indicates that the volatility of the stock shows 

greater response to a negative shock than a positive shock. The eigenvalue of variance 

function is 0.9593, and the eigenvalue of the mean function is 0.1105, as shown in the 

table below.  

 

Table 20 Statistical SNP Model Parameters for the FTSE Index 

 

 

 

Figure 31 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 32 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

FTSE 100 Index 

Satistical Model SNP-11118000-fit model

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] -0.01339 0.00631

h 2 a0[2] -0.26162 0.01078

h 3 a0[3] -0.02055 0.00831

h 4 a0[4] 0.10712 0.00971

h 5 a0[5] 0.01947 0.00760

h 6 a0[6] -0.07512 0.01007

h 7 a0[7] -0.01620 0.01040

h 8 a0[8] 0.04507 0.01268

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) 0.00336 0.01213

h 11 B(1,2) -0.01222 0.01173

h 12 R0[1] 0.17194 0.01115

h 13 P(1,1) 0.22421 0.03156

h 14 Q(1,1) 0.95341 0.00316

h 15 V(1,1) -0.50088 0.02003

Largest eigen value of mean function companion matrix = 0.110542

Largest eigen value of variance function P & Q companion matrix = 0.959266
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unconditional mean). The plot shows slightly fatter tails than the normal distribution and 

advocates only small non-normal elements of the time series. We find that the FTSE Index 

has a distribution that is narrower than the normal distribution. These features are 

commonly seen when analyzing data from a financial market, and confirm the purpose of 

using Hermite polynomials to describe the density in the best possible way. Figure 33 

shows the one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with 

the baseline profile (m=0.013947). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 34. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the FTSE Index, we find that the responses from negative shocks 

are much higher than from positive, showing an apparent asymmetry. 
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Figure 31 Projected conditional volatility and residuals AR (1) moving average FTSE 

Index 

 

 

 

 

Figure 32 FTSE Index one-step-ahead densities (xt-1 = unconditional mean) 
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Figure 33 FTSE Index one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 

 

 

 

 

Figure 34 FTSE Index: conditional variance function 
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5.4.2.3 S&P 100 Index (OEX) 

The specification tests for the optimal SNP GARCH model are reported in Table 21. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

3.9. There is no volatility clustering, having P-values of 0.94 and 0.93 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). There is still some 

dependency in the data. The null hypothesis of the BDS test is rejected, suggesting that the 

model is misspecified (Brock, Dechert et al. 1996). There is some structure in the data, 

which can include nonlinearity and nonstationarity. This problem often occurs when 

analyzing American indices, because they are characterized by having very high liquidity. 

We choose to use the semi-nonparametric GARCH model as it is for the impulse response 

analysis, bearing in mind that the model can have sub-optimal performance.  

 

 

Table 21 Characteristics of the statistical SNP Model Residuals for the S&P 100 Index 

 

 

 

The model selected under the Schwarz Criterion is a semi-nonparametric GARCH with 

eight Hermite polynomials (Kz) for non-normal features of the series. The model is a 

GARCH (1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect 

is significant for the time series, which indicates that the volatility of the stock shows 

greater response to a negative shock than a positive shock. The eigenvalue of variance 

function is 0.9236, and the eigenvalue of the mean function is 0.1645, as shown below.  

 

Residual Statistics for S&P 100 Index

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.00011 0.03987 4.79848 3.89974 0.16895 9.67359 4.33546 26.3970 5.5327

0.99995 -10.37470 -0.60000 -0.02859 {0.0079} {0.0000} {0.0090} {0.9380}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-5.195092 -3.972041 -3.62307 -2.793552 5.704204 -2.1304      -2.8089      

{0.0000} {0.0001} {0.0003} {0.0052} {0.9303} -3.0490      -4.1558      

The figures in braces are P-values for statistical significance
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Table 22 Statistical SNP Model Parameters for the S&P 100 Index 

 

 

 

Figure 35 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 36 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows slightly fatter tails than the normal distribution and 

advocates only small non-normal elements of the time series. We find that the S&P 100 

Index has a distribution that is narrower than the normal distribution. These features are 

commonly seen when analyzing data from a financial market, and confirm the purpose of 

using Hermite polynomials to describe the density in the best possible way. Figure 37 

shows the one-step-ahead densities of shocks ranging from         - 40 % to + 40 %, together 

with the baseline profile (m=0.025360). Comparing the different impulse profiles to the 

baseline profile (the mean), we find that the densities are wider after adding an impulse 

(shock) to the series. The largest negative shock of - 40 % shows a much wider density 

S&P 100 Index

Statistical Model SNP-11118000 -fit model 

Parameters Semiparametric-GARCH.

h Mode Standard error

h 1 a0[1] -0.00643 0.00601

h 2 a0[2] -0.13593 0.01041

h 3 a0[3] -0.04775 0.00599

h 4 a0[4] 0.06401 0.00664

h 5 a0[5] -0.00643 0.00751

h 6 a0[6] -0.03814 0.00909

h 7 a0[7] -0.01826 0.00901

h 8 a0[8] 0.05169 0.00845

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) -0.04181 0.01248

h 11 B(1,2) -0.02707 0.01180

h 12 R0[1] 0.13555 0.00720

h 13 P(1,1) -0.13319 0.02974

h 14 Q(1,1) 0.95176 0.00300

h 15 V(1,1) -0.44466 0.01393

Largest eigen value of mean function companion matrix = 0.164542

Largest eigen value of variance function P & Q companion matrix = 0.923583
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compared to the equivalent positive shock. This indicates a higher degree of uncertainty 

after a negative shock and is a confirmation of the observed asymmetry. The relationship 

between the one-step-ahead dynamics of the conditional variance and the percentage 

growth is displayed in Figure 38. The graph represents the reactions to shocks hitting the 

system (asset price). The difference in responses suggests asymmetry due to the “leverage 

-” and “risk premium” effects. For the S&P 100 Index, we find that the responses from 

negative shocks are much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 35 Projected conditional volatility and residuals AR (1) moving average S&P 100 

Index 
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Figure 36 S&P 100 Index one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

Figure 37 S&P Index one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 
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Figure 38 S&P 100 Index: conditional variance functions 

 

 

5.4.2.4 S&P 500 Index (GSPC) 

The specification tests for the optimal SNP GARCH model are reported in Table 23. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

3.7. There is no volatility clustering, having P-values of 0.99 and 0.98 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). There is still some 

dependency in the data. The null hypothesis of the BDS test is rejected, suggesting that the 

model is misspecified (Brock, Dechert et al. 1996). There is some structure in the data, 

which can include nonlinearity and nonstationarity. This problem often occurs when 

analyzing American indices, because they usually have very high liquidity. We choose to 

use the semi-nonparametric GARCH model as it is for the impulse response analysis, 

bearing in mind that the model can have sub-optimal performance.  
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Table 23 Characteristics of the statistical SNP Model Residuals for the S&P 500 Index 

 

The model selected under the Schwarz Criterion is a semi-nonparametric GARCH with 

eight Hermite polynomials (Kz) for non-normal features of the series. The model is a 

GARCH (1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect 

is significant for the time series, which indicates that the volatility of the stock shows 

greater response to a negative shock than a positive shock. The eigenvalue of variance 

function is 0.9125, and the eigenvalue of the mean function is 0.1725, as shown in the 

table below.   

 

Table 24 Statistical SNP Model Parameters for the S&P 500 Index 

 

 

Residual Statistics for S&P 500 Index

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.00006 0.04004 4.80374 3.68508 0.18374 11.00142 4.43498 17.7250 3.9154

1.00000 -10.09384 -0.60934 -0.02459 {0.0041} {0.0000} {0.1240} {0.9850}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-5.759872 -4.589539 -4.148204 -3.372182 4.310437 -2.1351      -2.8112      

{0.0000} {0.0000} {0.0000} {0.0007} {0.9772} -3.1117      -4.1868      

The figures in braces are P-values for statistical significance

S&P 500 Index

Statistical Model SNP-11118000 -fit model

Parameters Semiparametric-GARCH.

h Mode Standard error

h 1 a0[1] -0.00747 0.00607

h 2 a0[2] -0.14977 0.01122

h 3 a0[3] -0.04480 0.00621

h 4 a0[4] 0.07470 0.00708

h 5 a0[5] 0.00083 0.00696

h 6 a0[6] -0.03624 0.00821

h 7 a0[7] -0.02431 0.00847

h 8 a0[8] 0.04459 0.00864

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) -0.01816 0.01270

h 11 B(1,2) -0.02975 0.01193

h 12 R0[1] 0.14266 0.00748

h 13 P(1,1) -0.09635 0.03819

h 14 Q(1,1) 0.95037 0.00314

h 15 V(1,1) -0.48443 0.01449

Largest eigen value of mean function companion matrix = 0.172472

Largest eigen value of variance function P & Q companion matrix = 0.912488
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Figure 39 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 40 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the S&P 500 Index has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 41 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.025313). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 42. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the S&P 500 Index, we find that the responses from negative shocks 

are much higher than from positive, showing an apparent asymmetry. 
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Figure 39 Projected conditional volatility and residuals AR (1) moving average S&P 500 

Index 

 

 

 

Figure 40 S&P 500 Index one-step-ahead densities (xt-1 = unconditional mean) 
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Figure 41 S&P 500 Index one-step-ahead densities (conditional mean for xt-1 = -

40%...40%) 

 

 

 

Figure 42 S&P 500 Index: conditional variance function 
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5.4.2.5 Oslo Stock Exchange Benchmark Index (OSEBX) 

The specification tests for the optimal SNP GARCH model are reported in Table 25. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

4.0. There is no volatility clustering, having P-values of 0.77 and 0.76 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis. 

 

 

Table 25 Characteristics of the statistical SNP Model Residuals for the OSEBX Index 

 

 

 

The model selected under the Schwarz Criterion is a semi-nonparametric GARCH with 

eight Hermite polynomials (Kz) for non-normal features of the series. The model is a 

GARCH (1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect 

is significant for the time series, which indicates that the volatility of the stock shows 

greater response to a negative shock than a positive shock. The eigenvalue of variance 

function is 0.9760, and the eigenvalue of the mean function is 0.1591, as shown in the 

table below.    

 

 

Residual Statistics for OSEBX Index

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.00129 0.02802 5.46626 4.01469 0.06710 1.73512 1.86231 25.9510 8.2287

0.99999 -11.63768 -0.46320 -0.01753 {0.4200} {0.0000} {0.0110} {0.7670}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-0.553981 0.042615 0.256883 0.240129 8.264149 -2.0319      -2.7096      

{0.5796} {0.9660} {0.7973} {0.8102} {0.7642} -2.9826      -3.8825      

The figures in braces are P-values for statistical significance
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Table 26 Statistical SNP Model Parameters for the OSEBX Index 

 

 

 

Figure 43 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 44 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the OSEBX Index has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 45 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.049823). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

OSEBX Index

Satistical Model SNP-11118000-fit model 

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] -0.00079 0.00626

h 2 a0[2] -0.23476 0.01177

h 3 a0[3] -0.01878 0.00658

h 4 a0[4] 0.09616 0.00810

h 5 a0[5] 0.01419 0.00774

h 6 a0[6] -0.06356 0.00901

h 7 a0[7] -0.02146 0.00940

h 8 a0[8] 0.05424 0.00966

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) 0.08596 0.01235

h 11 B(1,2) 0.01164 0.01224

h 12 R0[1] 0.21904 0.01127

h 13 P(1,1) 0.35046 0.02792

h 14 Q(1,1) 0.92370 0.00499

h 15 V(1,1) -0.51624 0.02753

Largest eigen value of mean function companion matrix = 0.159096

Largest eigen value of variance function P & Q companion matrix = 0.976037
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the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 46. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the OSEBX Index, we find that the responses from negative shocks 

are much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 43 Projected conditional volatility and residuals AR (1) moving average OSEBX 

Index 
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Figure 44 OSEBX one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

Figure 45 OSEBX Index one-step-ahead densities (conditional mean for xt-1 = -

40%...40%) 
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Figure 46 OSEBX Index: conditional variance functions 

 

5.4.2.6 Oslo Stock Exchange Index (OBX) 

The specification tests for the optimal SNP GARCH model are reported in Table 27. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

0.6. There is no volatility clustering, having P-values of 0.40 and 0.43 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis. 

 

Table 27 Characteristics of the statistical SNP Model residuals for the OBX Index 

 

Residual Statistics for OBX-index

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00208 0.04809 4.53259 0.60579 0.04259 0.95732 1.02467 8.6257 12.584

1.00001 -4.12109 -0.23199 -0.02869 {0.6196} {0.0000} {0.7350} {0.4000}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-0.372445 0.206405 0.740186 0.950046 12.22452 -2.1379 -2.6230

{0.7096} {0.8365} {0.4592} {0.3421} {0.4278} -2.8972 -3.3131

The figures in braces are P-values for statistical significance 
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The model selected under the Schwarz Criterion is a semi-nonparametric GARCH with 

four Hermite polynomials (Kz) for non-normal features of the series. The model is a 

GARCH (1,1) (Lg, Lr) model with one lag in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The eigenvalue of variance function is 

0.9252, and the eigenvalue of the mean function is 0.0057, as shown in the table below.     

 

 

Table 28 Statistical SNP Model Parameters for the OBX Index 

 

 

 

Figure 47 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 48 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the OBX Index has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

OBX Index share

Satistical Model SNP-11114000-fit model 

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] 0.01216 0.00796

h 2 a0[2] 0.05511 0.02710

h 3 a0[3] -0.04603 0.00776

h 4 a0[4] 0.05279 0.00863

h 5 A(1,1) 1.00000 0.00000

h 6 B(1,1) -0.00574 0.01575

h 7 R0[1] 0.10766 0.00934

h 8 P(1,1) 0.16295 0.02619

h 9 Q(1,1) 0.94797 0.00489

h 10 V(1,1) -0.29195 0.02202

Largest eigen value of mean function companion matrix = 0.00574204

Largest eigen value of variance function P & Q companion matrix = 0.925195
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Hermite polynomials to describe the density in the best possible way. Figure 49 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.039154). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 50. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the OBX Index, we find that the responses from negative shocks are 

much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 47 Projected conditional volatility and residuals AR (1) moving average OBX 

Index 
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Figure 48 OBX Index one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

Figure 49 OBX Index one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 
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Figure 50 OBX Index: conditional variance functions 

 

5.4.2.7 Oslo Stock Exchange All Share Index (OSEAX) 

The specification tests for the optimal SNP GARCH model are reported in Table 29. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

0.7. There is no volatility clustering, having P-values of 0.49 and 0.49 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis. 

 

Table 29 Characteristics of the statistics SNP Model Residuals for the OSEAX Index 

 

Residual Statistics for OSEAX Index 

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00117 0.05397 4.57874 0.64512 0.07587 2.28607 1.18426 20.0680 11.407

0.99998 -4.23449 -0.27302 -0.04010 {0.3188} {0.0000} {0.0660} {0.4940}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-0.438671 -0.2186 0.042301 0.241671 11.36966 -2.1418 -2.6431

{0.6609} {0.8270} {0.9663} {0.8090} {0.4975} -3.0029 -3.4243

The figures in braces are P-values for statistical significance
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The model selected under the Schwarz Criterion is a semiparametric GARCH with four 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The eigenvalue of variance function is 

0.9148, and the eigenvalue of the mean function is 0.0874, as shown in the table below.    

 

 

Table 30 Statistical SNP Model Parameters for the OSEAX Index 

 

 

 

Figure 51 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 52 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the OSEAX Index has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

OSEAX index

Satistical Model SNP-11114000-fit model 

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] 0.01345 0.00799

h 2 a0[2] 0.04282 0.02672

h 3 a0[3] -0.04877 0.00782

h 4 a0[4] 0.05054 0.00841

h 5 A(1,1) 1.00000 0.00000

h 6 B(1,1) 0.01211 0.01589

h 7 B(1,2) -0.00765 0.01550

h 8 R0[1] 0.13063 0.01067

h 9 P(1,1) 0.19710 0.02459

h 10 Q(1,1) 0.93593 0.00593

h 11 V(1,1) -0.30578 0.02289

Largest eigen value of mean function companion matrix = 0.0874471

Largest eigen value of variance function P & Q companion matrix = 0.914819
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Hermite polynomials to describe the density in the best possible way. Figure 53 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.041896). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 54. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the OSEAX Index, we find that the responses from negative shocks 

are much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 51 Projected conditional volatility and residuals AR (1) moving average OSEAX 

Index 
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Figure 52 OSEAX Index one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

 

Figure 53 OSEAX Index one-step-ahead densities (conditional mean for xt-1 = -

40%...40%) 
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Figure 54 OSEAX Index: conditional variance functions 

 

5.4.2.8 Microsoft Corporation (MSFT) 

The specification tests for the optimal SNP GARCH model are reported in Table 31. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

8.5. There is no volatility clustering, having P-values of 1.00 and 0.99 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test show 

significant values at correlation dimension two and three. We choose to use the semi-

nonparametric GARCH model as it is for the impulse response analysis, bearing in mind 

that the model can have sub-optimal performance (Brock, Dechert et al. 1996). 

 

 

Table 31 Characteristics of the statistical SNP Model Residuals for MSFT 

 

Residual Statistics for MSFT Share

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.01056 -0.03771 6.95276 8.47190 0.08500 4.63579 4.84764 12.2930 1.6368

1.00006 -13.00836 -0.35572 0.04478 {0.0985} {0.0000} {0.4220} {1.0000}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

0.695635 1.93145 2.44825 2.997429 1.70808 -1.8955 -2.7041

{0.4867} {0.0534} {0.0248} {0.0027} {0.9997} -3.0107 -4.3773

The figures in braces are P-values for statistical significance
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The model selected under the Schwarz Criterion is a semiparametric GARCH with eight 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with one lag in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The lags in additive level effect are 

also significant indicating additive outliers in the series. The eigenvalue of variance 

function is 1.0319, and the eigenvalue of the mean function is 0.01030, as shown in the 

table below.     

 

 

Table 32 Statistical SNP Model Parameters for the MSFT Share 

 

 

 

Figure 55 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 56 displays the volatility at the mean of the time series, being the one-

Microsoft share

Satistical Model SNP-11118000-fit model 

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] 0.00314 0.00607

h 2 a0[2] -0.22891 0.01063

h 3 a0[3] 0.00689 0.00608

h 4 a0[4] 0.15807 0.00717

h 5 a0[5] 0.00355 0.00643

h 6 a0[6] -0.06338 0.00811

h 7 a0[7] 0.00806 0.00696

h 8 a0[8] 0.06209 0.00768

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) -0.01030 0.01206

h 11 R0[1] 0.09393 0.00802

h 12 P(1,1) 0.30210 0.02167

h 13 Q(1,1) 0.96987 0.00247

h 14 V(1,1) -0.23296 0.03448

h 15 W(1,1) -0.29261 0.05941

Largest eigen value of mean function companion matrix = 0.0103047

Largest eigen value of variance function P & Q companion matrix = 1.03192
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step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the MSFT series has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 57 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.046846). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The densities given by a shock of +/- 3% are narrower than the baseline profile. 

The largest negative shock of - 40 % shows a slightly wider density compared to the 

equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 58. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests a asymmetry due to the “leverage -” and “risk 

premium” effects. For the MSFT series, we find that the responses from negative shocks 

are little higher than from positive, showing a tendency of asymmetry. 
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Figure 55 Projected conditional volatility and residuals AR (1) moving average MSFT 

 

 

 

 

Figure 56 MSFT one-step-ahead densities (xt-1 = unconditional mean) 
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Figure 57 MSFT one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 

 

 

 

 

Figure 58 MSFT: conditional variance functions 
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5.4.2.9 Micron Technology Inc. (MU) 

The specification tests for the optimal SNP GARCH model are reported in Table 33. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

3.7. There is no volatility clustering, having P-values of 0.87 and 0.86 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis 

 

 

Table 33 Characteristics of the statistical SNP Model Residuals for MU 

 

 

 

The model selected under the Schwarz Criterion is a semiparametric GARCH with six 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The eigenvalue of variance function is 

1.0011, and the eigenvalue of the mean function is 0.1183, as shown in the table below.     

 

 

Residual Statistics for MU Share 

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.00664 -0.00766 5.07055 3.72390 0.03533 0.24239 0.97640 9.6795 6.8857

1.00006 -9.87175 -0.32024 0.00317 {0.8859} {0.0000} {0.6440} {0.8650}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

0.173401 0.612795 0.671377 0.681438 6.93662 -1.8980 -2.6833

{0.8623} {0.5400} {0.5020} {0.6956} {0.8618} -3.0085 -4.1253

The figures in braces are P-values for statistical significance
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Table 34 Statistical SNP Model Parameters for the MU Share 

 

 

 

Figure 59 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 60 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the MU series has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 61 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.010148). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

MU share

Statistical Model SNP-11116000 -fit model

Parameters Semiparametric-GARCH.

h Mode Standard error

h 1 a0[1] 0.00063 0.00768

h 2 a0[2] -0.22074 0.01447

h 3 a0[3] -0.00691 0.00829

h 4 a0[4] 0.12450 0.00888

h 5 a0[5] -0.00247 0.00897

h 6 a0[6] -0.07037 0.01246

h 7 A(1,1) 1.00000 0.00000

h 8 B(1,1) 0.02619 0.01488

h 9 B(1,2) -0.01400 0.01489

h 10 R0[1] 0.06228 0.01182

h 11 P(1,1) 0.19499 0.02703

h 12 Q(1,1) 0.98137 0.00206

h 13 V(1,1) -0.26777 0.02522

Largest eigen value of mean function companion matrix = 0.118338

Largest eigen value of variance function P & Q companion matrix = 1.00111
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shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 62. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the MU series, we find that the responses from negative shocks are 

much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 59 Projected conditional volatility and residuals AR (1) moving average MU 
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Figure 60 MU one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

Figure 61 MU one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 
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Figure 62 MU: conditional variance functions 

 

5.4.2.10 Norsk Hydro ASA (NHY) 

The specification tests for the optimal SNP GARCH model are reported in Table 35. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

4.1. There is no volatility clustering, having P-values of 0.82 and 0.84 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis 

 

Table 35 Characteristics of the statistical SNP Model Residuals for NHY 

 

Residual Statistics for NHY Share

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00127 0.00402 10.36203 4.05481 0.03485 0.22702 1.06591 11.0070 7.5982

1.00004 -7.33716 0.12180 -0.00006 {0.8927} {0.0000} {0.5280} {0.8160}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

0.258477 0.981165 1.043539 0.7869 7.228142 -1.9702 -2.5566

{0.7960} {0.3265} {0.2967} {0.4313} {0.8422} -2.8678 -3.6242

The figures in braces are P-values for statistical significance
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The model selected under the Schwarz Criterion is a semiparametric GARCH with six 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The eigenvalue of variance function is 

0.9986, and the eigenvalue of the mean function is 0.0689, as shown in the table below.      

 

 

Table 36 Statistical SNP Model Parameters for the NHY Share 

 

 

 

Figure 63 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 64 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the NHY series has a 

Norsk Hydro share

Satistical Model SNP-11116000-fit model 

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] 0.00175 0.00773

h 2 a0[2] -0.22311 0.01269

h 3 a0[3] -0.00427 0.00838

h 4 a0[4] 0.11526 0.00969

h 5 a0[5] 0.00806 0.00880

h 6 a0[6] -0.06868 0.01075

h 7 A(1,1) 1.00000 0.00000

h 8 B(1,1) 0.02070 0.01550

h 9 B(1,2) 0.00332 0.01477

h 10 R0[1] -0.11839 0.01422

h 11 P(1,1) 0.24728 0.02915

h 12 Q(1,1) 0.96821 0.00323

h 13 V(1,1) -0.33332 0.03357

Largest eigen value of mean function companion matrix = 0.0689271

Largest eigen value of variance function P & Q companion matrix = 0.99857
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distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 65 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.023007). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 66. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the NHY series, we find that the responses from negative shocks are 

much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 63 Projected conditional volatility and residuals AR (1) moving average NHY 
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Figure 64 NHY one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

Figure 65 NHY one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 
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Figure 66 NHY: conditional variance functions 

 

5.4.2.11 Tomra Systems ASA (TOM) 

The specification tests for the optimal SNP GARCH model are reported in Table 37. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

13.89, but we still observe leptokurtosis features of the series. There is no volatility 

clustering, having P-values of 0.99 and 0.99 for Q
2
 (12) and ARCH (12) respectively. The 

mean is approximately zero, and the standard deviation is one, referring to the normal 

distribution denoted as N (0, 1). There is still some dependency in the data. The null 

hypothesis of the BDS test is rejected, suggesting that the model is misspecified (Brock, 

Dechert et al. 1996). There is some structure in the data, which can include nonlinearity 

and nonstationarity. We choose to use the semi-nonparametric GARCH model as it is for 

the impulse response analysis, bearing in mind that the model can have sub-optimal 

performance. This might be related to the low trading volume for this stock, making it 

difficult to describe.  
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Table 37 Characteristics of the statistical SNP Model Residuals for TOM 

 

 

The model selected under the Schwarz Criterion is a semiparametric GARCH with eight 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The eigenvalue of variance function is 

1.007, and the eigenvalue of the mean function is 0.046, as shown in the table below.     

 

Table 38 Statistical SNP Model Parameters for TOM 

 

Residual Statistics for TOM Share

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.00951 -0.02562 6.12387 13.88975 0.17665 5.94640 6.10353 14.0970 3.1915

1.00001 -12.99357 -0.69910 -0.01231 {0.0511} {0.0000} {0.2950} {0.9940}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

2.398546 3.8049 4.221029 4.388699 3.268925 -1.7734 -2.7280

{0.0165} {0.0001} {0.0000} {0.0000} {0.9933} -2.9290 -4.9024

The figures in braces are P-values for statistical significance

Tomra share

Satistical Model SNP-11118000-fit model 

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] 0.00358 0.00786

h 2 a0[2] -0.25043 0.01063

h 3 a0[3] -0.01797 0.00913

h 4 a0[4] 0.10482 0.00979

h 5 a0[5] -0.05328 0.01027

h 6 a0[6] -0.09158 0.00933

h 7 a0[7] -0.00145 0.00986

h 8 a0[8] 0.09670 0.01090

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) -0.04597 0.01438

h 11 R0[1] 0.07525 0.01040

h 12 P(1,1) 0.19310 0.01547

h 13 Q(1,1) 0.98467 0.00140

h 14 V(1,1) -0.18644 0.02700

h 15 W(1,1) 0.28733 0.05820

Largest eigen value of mean function companion matrix = 0.0459711

Largest eigen value of variance function P & Q companion matrix = 1.00685
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Figure 67 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 68 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the TOM series has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 69 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.042934). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a slightly wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 70. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the TOM series, we find that the responses from negative shocks are 

slightly higher than from positive, showing a tendency of asymmetry. 
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Figure 67 Projected conditional volatility and residuals AR (1) moving average TOM 

 

 

 

 

Figure 68 TOM one-step-ahead densities (xt-1 = unconditional mean) 
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Figure 69 TOM one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 

 

 

 

 

Figure 70 TOM: conditional variance functions 
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5.4.2.12 The ICE Carbon one month Forward Contracts 

The specification tests for the optimal SNP GARCH model are reported in Table 39. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

4.4. There is no volatility clustering, having P-values of 0.98 and 0.95 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis 

 

 

Table 39 Characteristics of the statistical SNP Model Residuals for Carbon 

 

 

 

The model selected under the Schwarz Criterion is a semiparametric GARCH with six 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The eigenvalue of variance function is 

0.9995, and the eigenvalue of the mean function is 0.2430, as shown in the table below.     

 

Residual Statistics for Front December Forward Contracts Carbon

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

-0.01049 0.01416 5.08209 4.38445 0.10929 1.05649 1.73651 12.8440 4.2798

0.99995 -7.59808 -0.46072 -0.01388 {0.5896} {0.0000} {0.3800} {0.9780}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

-1.300481 -0.994773 -1.034807 -1.111832 5.109644 -2.0687 -2.9601

{0.1934} {0.3198} {0.3008} {0.2662} {0.9542} -3.2412 -4.6219

The figures in braces are P-values for statistical significance
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Table 40 Statistical SNP Model Parameters for Carbon 

 

 

 

Figure 71 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 72 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the carbon series has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 73 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.026486). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a wider density compared to the 

equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

Carbon Forward Contract 

Satistical Model SNP-11116000-fit model 

Parameters Semiparametric-GARCH

h Mode Standard error 

h 1 a0[1] 0.00377 0.01152

h 2 a0[2] -0.12600 0.01912

h 3 a0[3] -0.04476 0.01178

h 4 a0[4] 0.03912 0.01168

h 5 a0[5] -0.00364 0.01140

h 6 a0[6] -0.11370 0.01213

h 7 A(1,1) 1.00000 0.00000

h 8 B(1,1) -0.02322 0.02289

h 9 B(1,2) -0.05903 0.02233

h 10 R0[1] 0.08129 0.01333

h 11 P(1,1) 0.30900 0.02988

h 12 Q(1,1) 0.95079 0.00537

h 13 V(1,1) -0.24761 0.04026

Largest eigen value of mean function companion matrix = 0.242951

Largest eigen value of variance function P & Q companion matrix = 0.999487
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shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 74. The graph represent the reactions to shocks hitting the system (asset price). The 

difference in responses suggests asymmetry due to the “leverage -” and “risk premium” 

effects. For the carbon series, we find that the responses from negative shocks are much 

higher than from positive, showing an apparent asymmetry. 

 

 

 

 

Figure 71 Projected conditional volatility and residuals AR (1) moving average Carbon 
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Figure 72 Carbon one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

Figure 73 Carbon one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 
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Figure 74 Carbon: conditional variance functions 

 

5.4.2.13 Brent oil front month Future Contracts 

The specification tests for the optimal SNP GARCH model are reported in Table 41. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

1.5. There is no volatility clustering, having P-values of 0.19 and 0.18 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis 

 

Table 41 Characteristics of the statistical SNP Model Residuals for Brent oil 

 

Residual Statistics for Brent Oil Derivatives

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00432 0.01628 4.14855 1.53487 0.12467 1.32753 0.70963 8.1122 16.087

0.99995 -6.26755 -0.24563 -0.00006 {0.5149} {0.0000} {0.7760} {0.1870}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

0.136521 0.44962 0.145858 0.16214 16.31221 -2.1032 -2.6731

{0.8914} {0.6530} {0.8840} {0.8712} {0.1774} -3.0171 -3.6311

The figures in braces are P-values for statistical significance
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The model selected under the Schwarz Criterion is a semiparametric GARCH with four 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with one lag in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. Lags in additive level (Lw) is also 

significant indicating additive outliers in the series. The eigenvalue of variance function is 

0.9752, and the eigenvalue of the mean function is 0.0537, as shown in the table below.     

 

Table 42 Statistical SNP Model Parameters for Brent oil 

 

 

 

Figure 75 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 76 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the Brent oil series has a 

distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Brent Oil Derivative

Statistical Model SNP-11114000 -fit model

Parameters Semiparametric-GARCH.

h Mode Standard error

h 1 a0[1] 0.00759 0.01126

h 2 a0[2] -0.05462 0.02399

h 3 a0[3] -0.03231 0.01164

h 4 a0[4] 0.07174 0.01137

h 5 A(1,1) 1.00000 0.00000

h 6 B(1,1) -0.05371 0.02352

h 7 R0[1] 0.05024 0.01327

h 8 P(1,1) 0.16656 0.03201

h 9 Q(1,1) 0.97336 0.00446

h 10 V(1,1) -0.24875 0.03408

h 11 W(1,1) -0.24868 0.07772

Largest eigen value of mean function companion matrix = 0.053706

Largest eigen value of variance function P & Q companion matrix = 0.975178
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Hermite polynomials to describe the density in the best possible way. Figure 77 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.033740). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 78. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the Brent oil series, we find that the responses from negative shocks 

are much higher than from positive, showing an apparent asymmetry. 

 

 

 

Figure 75 Projected conditional volatility and residuals AR (1) moving average for Brent 

oil 
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Figure 76 Brent oil one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

Figure 77 Brent oil one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 
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Figure 78 Brent oil: conditional variance functions 

 

5.4.2.14 Salmon Forward Contracts 

The specification tests for the optimal SNP GARCH model are reported in Table 43. The 

residual statistics show that the data is closer to the normal distribution, with a kurtosis of 

5.8. There is no volatility clustering, having P-values of 0.50 and 0.51 for Q
2
 (12) and 

ARCH (12) respectively. The mean is approximately zero, and the standard deviation is 

one, referring to the normal distribution denoted as N (0, 1). The BDS-test states that the 

residuals are IID, meaning data dependence is no longer present. By this, the model 

misspecification seems minimized, and the semi-nonparametric GARCH model is selected 

for the impulse response analysis 

 

Table 43 Characteristics of the statistical SNP Model Residuals for Salmon 

 

Residual Statistics for Salmon one month Future Contract 

Mean Median / Maximum / Moment Quantile Quantile Cramer- Serial dependence

Std.dev. Minimum Kurt/Skew Kurt/Skew Normal von-Mises Q(12) Q
2
(12)

0.00641 -0.02809 7.27835 5.81767 0.50109 24.97514 9.63621 27.6580 11.325

0.99996 -5.51650 0.54979 0.00210 {0.0000} {0.0000} {0.0060} {0.5010}

BDS-statistic (e=1) ARCH VaR CVaR

m=2 m=3 m=4 m=5 (12) 2.5%/0.5% 2.5%/0.5%

0.898695 1.202263 0.891151 0.809836 11.21925 -2.0348 -2.7965

{0.3688} {0.2293} {0.3728} {0.4180} {0.5102} -3.1792 -4.0040

The figures in braces are P-values for statistical significance
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The model selected under the Schwarz Criterion is a semiparametric GARCH with eight 

Hermite polynomials (Kz) for non-normal features of the series. The model is a GARCH 

(1,1) (Lg, Lr) model with two lags in VAR (Lu). The asymmetric volatility effect is 

significant for the time series, which indicates that the volatility of the stock shows greater 

response to a negative shock than a positive shock. The eigenvalue of variance function is 

0.8884, and the eigenvalue of the mean function is 0.2922, as shown in the table below.     

 

Table 44 Statistical SNP Model Parameters for Salmon 

 

 

 

Figure 79 displays the characteristics of the projected time series. The plots show the 

projected conditional volatility, together with a moving average (m=number of lags) of the 

squared residuals of an AR (1) regression model of the returns. It seems like the volatility 

change randomly, and the projected volatility tends to be relatively compact between m=4 

and m=15. Figure 80 displays the volatility at the mean of the time series, being the one-

step-ahead densities 𝑓𝑘(𝑦𝑡|𝑥𝑡−1. 𝜃), conditional on the values for xt-1 (where xt-1 = 

unconditional mean). The plot shows fatter tails than the normal distribution and advocates 

only small non-normal elements of the time series. We find that the salmon series has a 

Salmon one month Forward 

Statistical Model SNP-11118000 -fit model 

Parameters Semiparametric-GARCH

h Mode Standard error

h 1 a0[1] -0.00270 0.01050

h 2 a0[2] -0.06211 0.01306

h 3 a0[3] 0.02814 0.01078

h 4 a0[4] 0.18940 0.01033

h 5 a0[5] -0.01039 0.01111

h 6 a0[6] -0.05948 0.01214

h 7 a0[7] 0.00953 0.01134

h 8 a0[8] 0.09125 0.01122

h 9 A(1,1) 1.00000 0.00000

h 10 B(1,1) 0.09888 0.01760

h 11 B(1,2) 0.05648 0.01737

h 12 R0[1] 0.26398 0.01995

h 13 P(1,1) 0.21582 0.02677

h 14 Q(1,1) 0.91750 0.01056

h 15 V(1,1) -0.30768 0.03780

Largest eigen value of mean function companion matrix = 0.29219

Largest eigen value of variance function P & Q companion matrix = 0.888383
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distribution that is narrower than the normal distribution. These features are commonly 

seen when analyzing data from a financial market, and confirm the purpose of using 

Hermite polynomials to describe the density in the best possible way. Figure 81 shows the 

one-step-ahead densities of shocks ranging from - 40 % to + 40 %, together with the 

baseline profile (m=0.030207). Comparing the different impulse profiles to the baseline 

profile (the mean), we find that the densities are wider after adding an impulse (shock) to 

the series. The largest negative shock of - 40 % shows a much wider density compared to 

the equivalent positive shock. This indicates a higher degree of uncertainty after a negative 

shock and is a confirmation of the observed asymmetry. The relationship between the one-

step-ahead dynamics of the conditional variance and the percentage growth is displayed in 

Figure 82. The graph represents the reactions to shocks hitting the system (asset price). 

The difference in responses suggests asymmetry due to the “leverage -” and “risk 

premium” effects. For the salmon series, we find that the responses from negative shocks 

are much higher than from positive, showing an apparent asymmetry. 

 

 

 

 

Figure 79 Projected conditional volatility and residuals AR (1) moving average Salmon 
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Figure 80 Salmon one-step-ahead densities (xt-1 = unconditional mean) 

 

 

 

 

 

Figure 81 Salmon one-step-ahead densities (conditional mean for xt-1 = -40%...40%) 
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Figure 82 Salmon: conditional variance functions 
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6.0 Empirical Results 

 

Several figures lay out the results of our analysis. We have compiled the impulse-response 

dynamics for mean return and variance in the first section. Discussion of aspects 

concerning impulse response characteristics that stand out compared to others follows at 

the end of the sections.  

6.1 Impulse-Response Dynamics for Mean and Variance  

This section contains the dynamic impulse responses of future mean return and volatility to 

price shocks. Figure 83 (a – n) shows the Mean Impulse Response Dynamics for the time 

series. One interesting feature is that the impulse responses are symmetric about the 

baseline, and we observe virtually no serial dependence beyond lag one. The return is 

clearly mean reverting, returning to its mean within one day, as shown in the figure below. 

Our results suggest that a positive (negative) price change is met by a slightly negative 

(positive) expected return in the following days. OSEBX, NHY, and MU stand out in this 

context in that they show a negative (positive) response to negative (positive) price 

changes. The results also indicate that both a positive and negative price change for 

OSEAX is met by a positive subsequent expected return.  

 

a. Dow Jones Industrial Average 
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b. FTSE 100 Index 

 

 

 

 

c. S&P 100 Index  
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d. S&P 500 Index  

 

 

 

 

e. Oslo Stock Exchange Benchmark Index  
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f. Oslo Stock Exchange Index  

 

 

 

 

g. Oslo Stock Exchange All Share Index 
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h. Microsoft Corporation  

 

 

 

 

i. Micron Technology Inc. 
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j. Norsk Hydro ASA 

 

 

 

 

k. Tomra Systems ASA 
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l. The ICE Carbon one month Forward Contracts  

 

 

 

 

m. Brent oil front month Future Contracts  
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n. Salmon Forward Contracts  

 

Figure 83 Mean Impulse-Response Dynamics 

 

 

The Variance Impulse-Response Dynamics plots Figure 84 (a – n) show the change in 

variance after adding an impulse (a price shock). The expected variance is shown on the 

second axis. As noted in 5.4.2.1, the one-step-ahead density plots gave information that the 

time series had (much) wider densities when hit by negative shocks, compared to positive 

shocks. It is reasonable to think that the one-step-ahead variance is higher when the density 

is wider.  

The indices show the highest degree of asymmetry among the time series studied. The 

ratio between the variance impulse-response (at lag one) coming from negative and 

positive shocks of 5% and 20% are displayed in Table 45. The American stock indices 

stand out, where the variance after a negative shock is about 7 to 26 times higher than for 

the corresponding positive shock. The impact of a negative shock to the FTSE Index and 

the Norwegian indices are 3 to 6 times as high, compared to the corresponding positive 

shocks. The individual shares and commodity indices are showing lower ratios (ranging 

from 1.5 to 3) for negative and positive impulses, meaning that we observe less asymmetry 

for these financial assets. The Salmon future contracts are an exception among the 

-40.0

-36.0

-32.0

-28.0

-24.0

-20.0

-16.0

-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

16.0

20.0

24.0

28.0

32.0

36.0

40.0

M
e

a
n

 E
[m

(y
k

,j
|x

-1
]

DAYS Ahead

Salmon one month Forward Contract Mean Impulse-Response Dynamics (mj)

dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0 (steps)

dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)



 

115 

 

commodity indices, showing a variance impulse-response that is about seven times higher 

for the negative shock, than the corresponding positive shock. Our results suggest that the 

variance makes a jump the next day and stays almost constant at this level for the coming 

50 days that are simulated. The SNP model has detected a high degree of volatility 

persistence, and it has confirmed the asymmetrical features are present for all the financial 

time series.   
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b. FTSE 100 Index 

 

 

 

 

c. S&P 100 Index  
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d. S&P 500 Index  

 

 

 

 

e. Oslo Stock Exchange Benchmark Index  
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f. Oslo Stock Exchange Index  

 

 

 

 

g. Oslo Stock Exchange All Share Index 
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h. Microsoft Corporation  

 

 

 

 

i. Micron Technology Inc. 
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j. Norsk Hydro ASA 

 

 

 

 

k. Tomra Systems ASA 
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l. The ICE Carbon one month Forward Contracts  

 

 

 

 

m. Brent oil front month Future Contracts  
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n. Salmon Forward Contracts  

 

Figure 84 Variance Impulse-Response Dynamics 
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Table 45 Variance Impulse-Response Dynamics showing the leverage effect 

 
 

 

Series "-/+" "-/+"

Volatility x days ahead 20 % 5 %

OEX

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 77.92775209 24.34604553 9.156696362 4.253056923 2.559996507 1.14106296 1.245727865 1.385625504 1.787279792 3.033614278 7.446023599

1 915.7400656 273.5888727 93.05772405 35.80779361 16.56939801 0.194586593 1.497940685 3.081609997 7.778765016 22.60404202 75.40379241 12.10 11.62

DJI

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 80.22631062 24.83120925 9.212810744 4.226628373 2.535293221 1.086996517 1.267057183 1.496957978 2.169266274 4.279195597 11.78547607

1 830.8910826 247.3139949 83.74280413 32.17855722 15.0457549 0.197269478 2.140390016 4.463551352 11.43011556 33.55225712 112.5842765 7.37 7.21

GSPC

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 82.77446826 25.6747752 9.530489178 4.344307484 2.565317289 1.073774016 1.126586583 1.194934458 1.3930294 2.010675179 4.2007844

1 915.8185447 273.6596495 93.12352803 35.8407215 16.56822095 0.19117772 0.793108695 1.526612534 3.699643089 10.55523352 34.97311587 25.93 23.48

FTSE

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 68.37491645 21.10288907 7.831813074 3.629220456 2.219004491 1.019810589 1.214949753 1.450828281 2.152077319 4.368270576 12.27027872

1 751.5005295 223.8912889 75.91137868 29.14942749 13.51577325 0.179821709 2.360546695 4.969948943 12.75890725 37.42160362 125.4222513 5.98 5.87

OBX

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 75.81429764 25.03525784 10.11958647 4.813795909 2.858371424 1.607516983 1.893568319 2.355976871 3.617196444 7.1601004 19.23431215

1 739.2420855 233.4377523 84.96790974 32.26825192 12.83207716 0.34977755 3.195765303 7.784452902 20.2824817 55.46004501 175.4280839 4.21 4.15

OSEAX

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 83.67454999 26.73584488 10.31650106 4.735237587 2.690674781 1.272910377 1.677877054 2.27742726 3.915425043 8.734157272 25.45934135

1 659.2996172 204.1893865 72.83906368 28.11240991 11.71088553 0.322983605 3.535794427 8.335501686 21.43393123 59.88828435 193.2765544 3.41 3.37

OSEBX

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 101.5553598 32.25393967 12.24921424 5.505505128 3.05 1.259918221 1.782781421 2.554780862 4.672896974 10.95482821 32.76578808

1 570.752086 179.4935772 65.00949425 24.91828321 10.1 0.302740771 3.245147752 7.892385301 20.51142215 56.51345281 179.7107407 3.18 3.16

NHY

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 56.11203378 21.85974357 11.06040833 6.560143209 5.179223346 4.395789446 4.668888518 5.156171587 6.755648661 10.59414302 22.77431921

1 793.5654953 269.629925 103.4052148 33.4278012 12.42567636 0.554146051 4.717948938 12.14089328 36.9747012 95.95183596 281.8724433 2.81 2.75

TOM

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 100.70 30.09 10.85 4.93 3.58 2.83 3.41 4.45 9.13 25.56 88.05

1 989.77 343.81 129.71 37.45 14.10 0.87 7.74 20.05 69.32 186.51 546.49 1.84 1.87

MU

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 50.01722882 24.0485057 13.88868783 9.82378401 8.938553435 8.437593601 8.609032117 8.914443389 10.32137119 13.85151621 22.86970197

1 1106.008433 416.3414932 144.7883423 37.24109842 13.92211949 0.794590048 5.331882103 13.40470906 50.65644883 144.7558043 383.7320786 2.88 2.78

MSFT

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 113.8164589 33.95782187 12.06352897 5.069948 3.191571657 2.091470649 2.834622704 4.208940073 9.720816428 28.0621902 96.87831769

1 810.06264 268.4015365 100.8766483 33.54883516 12.60853065 0.36769961 7.360045537 20.22851397 63.4857099 172.6381422 529.8083426 1.55 1.66

Brentoil

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 140.9343222 44.27518162 18.21467239 10.14013983 7.999295795 6.768637502 7.48265628 8.743812118 14.10368813 33.4941446 108.5255969

1 1067.97825 345.2519489 127.1102415 41.78847462 14.98590428 0.203646823 5.529049284 14.66837653 43.97261517 123.1123425 392.6385257 2.80 2.85

Salmon

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 80.22631062 24.83120925 9.212810744 4.226628373 2.535293221 1.086996517 1.267057183 1.496957978 2.169266274 4.279195597 11.78547607

1 830.8910826 247.3139949 83.74280413 32.17855722 15.0457549 0.197269478 2.140390016 4.463551352 11.43011556 33.55225712 112.5842765 7.37 7.21

Carbon

Volatility dy-40 (steps) dy-20 (steps) dy-10 (steps) dy-5 (steps) dy-3 (steps) dy0(steps) dy+3 (steps) dy+5 (steps) dy+10 (steps) dy+20 (steps) dy+40 (steps)

0 89.84731996 33.4239169 13.34462744 4.652963749 2.658446656 1.570165318 2.299000474 3.557877737 8.90987397 21.16559743 55.65008797

1 1040.270214 370.7774325 140.0005193 38.46610124 14.02339461 0.579176587 9.36265941 24.64592325 86.87769006 227.6858061 636.4070393 1.63 1.56
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6.2 Persistence  

As described in section 3.1, we use the half-life measure to describe the persistence of 

volatility. A program in EViews is used to feed coefficients from a GARCH model into a 

loop, going from 0-992, 1-993, and 2-994 to the end of the time series. Figure 85 (a – n) 

display the output, being the persistence of volatility for each time series. The half-life of 

the studied time series varies between 17 and 113 days, as summarized in Table 46. 

The stock market indices show relatively low persistence after a shock, with a half-life of 

17-23 days. The three Norwegian indices OSEAX, OBX and OSEBX show the lowest 

degree of persistence while the British FTSE Index shows the highest degree of 

persistence. 

Among the individual shares, we observe different results for the half-life measure. The 

volatility of the two Norwegian shares TOM and NHY uses less than half as many days to 

return halfway back to its unconditional mean, compared to the American company shares 

(MSFT and MU). The standard deviation of TOM is very high, suggesting that the stated 

value of persistence comes with a great amount of uncertainty. MSFT has the highest 

degree of persistence with a half-life of 113 days. This suggests that the volatility of MSFT 

has a long memory. The sum of the alpha and beta is lower than one, indicating that it is 

mean reverting (Engle and Patton 2001). The average half-life time is higher for all the 

individual shares, compared to the stock indices. 

The three commodity derivatives also show different outputs regarding the half-life 

measure for volatility persistence.  
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Table 46 Measures of Persistence 

 

 

 

 

a. Dow Jones Industrial Average 

 

 

 

 

Average half-life Standard Deviation

DJI 21.72 1.99

FTSE 22.86 2.8

OEX 21.81 2.63

GSPC 20.73 2.08

OSEBX 20.42 0.94

OBX 18.19 1.44

OSEAX 16.97 1.58

MSFT 113.19 15.06

MU 75.4 15.22

NHY 34.97 4.29

TOM 35.87 35.54

CARBON 46.02 15.14

BRENTOIL 33.86 23.31

SALMON 17.81 4.3
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b. FTSE 100 Index 

 

 

 

c. S&P 100 Index  
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d. S&P 500 Index  

 

 

 

e. Oslo Stock Exchange Benchmark Index  
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f. Oslo Stock Exchange Index  

 

 

 

g. Oslo Stock Exchange All Share Index  
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h. Microsoft Corporation  

 

 

 

i. Micron Technology Inc. 
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j. Norsk Hydro ASA 

 

 

 

k. Tomra Systems ASA 

 

 

0

0.5

1

1.5
Profile Bundles for Persistence for the NHY Share

Average Half life (days):
Standard deviation:

34.9819

4.27553

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4
Profile Bundles for Persistence for the TOM Share

Average Half life (days):
Standard deviation:

36.9269

35.69044



 

131 

 

l. The ICE Carbon one month Forward Contracts  

 

 

m. Brent oil front month Future Contracts  
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n. Salmon Forward Contracts  

 

 

Figure 85 Profile Bundles for Persistence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0

0.25

0.5

0.75
Profile Bundles for Persistence for Salmon one month Future Contract 

Average Half life (days):
Standard deviation:

17.8347

4.29452



 

133 

 

7.0 Conclusion  

7.1 Summary of main results  

This thesis features a study of the dynamics of return and volatility, in response to a shock 

hitting the financial assets. Using a semi-nonparametric GARCH model, we have been 

able to examine profile bundles for evidence of damping or persistence, generating 

empirical evidence on the multi-step-ahead price dynamics. We have studied the extent to 

which the impulse responses indicate a leverage effect, where price decrease has a greater 

effect on subsequent volatility than the price increase. The thesis is relevant for the 

understanding of risk aspects that apply to the pricing of hedging instruments and fund 

management. The approach is similar to the univariate part of a study done by Gallant, 

Rossi et al. (1993), though this thesis conducts several different financial assets.  

 

Our results reveal that the mean impulse responses are symmetric about the baseline, and 

we observe almost no serial dependence beyond lag one. Our results suggest that a positive 

(negative) price change is met by a slightly negative (positive) expected return in the 

following days. OSEBX, NHY, and MU stand out in this context in that they show a 

negative (positive) response to negative (positive) price changes. The results also indicate 

that both a positive and negative price change for OSEAX is met by a positive subsequent 

expected return.  

 

The results reveal that an increase in volatility after a shock does not lead to a permanent 

change in the volatility. This is consistent with the results of Engle and Patton (2001).  

However, the results suggest that the “leverage effect” is quite persistent and not only a 

heavily damped transient phenomenon as claimed by Gallant, Rossi et al. (1993). The high 

persistence of the leverage effect is different from the results of Gallant, Rossi et al. (1993) 

and Tauchen, Zhang et al. (1996). Both papers suggest that the leverage effect is heavily 

damped after about 15 (S&P composite price index) and 4 days (IBM) accordingly. Our 

results deviate from earlier studies, suggesting that it remains constant for many days. 

Although we cannot argue that the results are significant, it can be a feature of interest for 

further studies. 

    

Our results show that the degree of asymmetry in variance differs between the financial 

assets. We find the highest degree of asymmetry for stock indices and the asymmetry 
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seems to be quite persistent. This is consistent with (Figlewski and Wang (2000)), who 

studied the individual stocks in the S&P 100 Index and the index itself. They found larger 

effects for negative returns compared to positive and a higher degree of asymmetry for the 

index itself.  

 

The persistence of volatility, measured by its half-life, explains how many days the 

volatility uses to return halfway back to its unconditional mean after a shock. The half-life 

of the volatility of the 14 financial assets ranges from 17 to 113 days. Using a data set 

consisting of daily returns from 1988-2000, Engle and Patton (2001) found the volatility 

half-life for the DJIA to be around 73 days. Our results give a half-life of 22 days for this 

asset, which is substantially lower. An important difference between the two studies is the 

selection of data. Engle and Patton (2001) did not include the great crash of 1987 and the 

financial crisis of 2007/2008. The average half-life of volatility is higher for all the 

individual shares, compared to the stock indices. 

 

The plots displaying the variance impulse-response dynamics (Figure 84 a - n) and the 

persistence of volatility (Figure 85 a - n) reveal a pattern between different types of assets. 

The results suggest that the stock indices have the highest degree of asymmetry in variance 

and at the same time, the lowest degree of persistence. The stock indices are portfolios 

consisting of several shares; hence, they offer a value of diversification. They are 

characterized by having lower standard deviations, CVaR and a low degree of persistence 

compared to the individual shares. When a shock occurs, the correlation between the assets 

in a portfolio approaches one, which indicates diminishing portfolio effects. This may be 

explained by the nature of such assets.  

The individual stocks and commodity indices have the lowest degree of asymmetry in 

variance and the highest persistence (except the salmon derivative, which is more similar 

to the stock indices).  

 

We have found that the financial assets with the highest degree of asymmetry in variance 

also have the lowest degree of persistence. Furthermore, the volatility dynamics of 

commodity indices seem to be quite similar to individual stocks. We believe that our thesis 

reveals some interesting features that motivate for further studies.  
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7.2 Further studies 

For further studies, sup-norm bands can be constructed by bootstrapping as described in 

Gallant, Rossi et al. (1993). This method uses simulation to make confidence bands at a 

95% level. It is done by comparing the sup-norm confidence bands of the profile with a 

null profile. Here, the null profile shows the profile of a null response, usually a horizontal 

line. If the null profile is inside the bands, the effect of the impulse profile is insignificant. 

By using this method, we can state the statistical significance of our findings.  
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