

Master’s degree thesis

LOG950 Logistics

An Adaptive Large Neighborhood Search Heuristic for

Periodic Supply Vessel Planning Problem

Almiashev Rushan

Number of pages including this page: 70

Molde, 24.05.2016

Mandatory statement

Each student is responsible for complying with rules and regulations that relate to

examinations and to academic work in general. The purpose of the mandatory statement is

to make students aware of their responsibility and the consequences of cheating. Failure to

complete the statement does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6 below.

1. I/we hereby declare that my/our paper/assignment is my/our own

work, and that I/we have not used other sources or received other

help than mentioned in the paper/assignment.

2. I/we hereby declare that this paper

1. Has not been used in any other exam at another

department/university/university college

2. Is not referring to the work of others without

acknowledgement

3. Is not referring to my/our previous work without

acknowledgement

4. Has acknowledged all sources of literature in the text and in

the list of references

5. Is not a copy, duplicate or transcript of other work

Mark each

box:

1.

2.

3.

4.

5.

3.

I am/we are aware that any breach of the above will be considered

as cheating, and may result in annulment of the examination and

exclusion from all universities and university colleges in Norway

for up to one year, according to the Act relating to Norwegian

Universities and University Colleges, section 4-7 and 4-8 and

Examination regulations section 14 and 15.

4. I am/we are aware that all papers/assignments may be checked for

plagiarism by a software assisted plagiarism check

5. I am/we are aware that Molde University College will handle all

cases of suspected cheating according to prevailing guidelines.

6. I/we are aware of the University College’s rules and regulation for

using sources

http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://kvalitet.himolde.no/KS_UNL115
http://www.himolde.no/index.cfm/pageID/2298
http://www.himolde.no/index.cfm/pageID/2298

Publication agreement

ECTS credits: 30

Supervisor: Irina Gribkovskaia

Agreement on electronic publication of master thesis

Author(s) have copyright to the thesis, including the exclusive right to publish the document (The

Copyright Act §2).

All theses fulfilling the requirements will be registered and published in Brage HiM, with the approval

of the author(s).

Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of

charge, make the thesis available for electronic publication: yes no

Is there an agreement of confidentiality? yes no

(A supplementary confidentiality agreement must be filled in)

- If yes: Can the thesis be online published when the

period of confidentiality is expired? yes no

Date: 24.05.2016

Abstract

In the upstream offshore petroleum logistics supply vessels play the most important

role, being the largest cost contributor. For this reason careful supply vessel planning is of

vital importance for this industry. In the literature this problem is known as Periodic Supply

Vessel Planning Problem (PSVPP). The problem involves determination of the fleet

composition, vessels schedules and voyages. For large size instances optimal solutions are

unachievable and for this reason we developed meta-heuristic algorithm. For heuristic

validation we developed a two-phase approach which provides optimal solutions for small

and medium size instances. Experiments show that developed metaheuristic algorithm

provides optimal and near optimal solutions within short times.

Keywords: offshore logistics; periodic routing; adaptive large neighborhood search;

fleet composition; routing and scheduling; adaptiveness.

Acknowledgment

First of all, I’d like to express gratitude to my supervisor Irina Gribkovskaia for the

provided problem that was studied in this thesis and for the data that was used in the

experiments. As well I want to thank PhD student Yauheni Kisialiou who taught me

combinatorial optimization methods used in this thesis and supplied with ideas during the

development phase.

I am also thankful to Norwegian government which provide me with financial

support under the quota scheme.

I want also thank the Norwegian government for providing me financial support

under the Quota Scheme so that it became possible to study in Norway. In addition I would

like to express special gratitude to my teacher from Moscow Dmitriev M. G. and who

provided good recommendations to Molde University College authorities.

My special thanks to my classmate Lena Marder, who encouraged me on hard

working during the whole study process.

Finally, I am very grateful to my family and my friends for their moral support and

believing in me.

Contents

1.0 Introduction .. 1

2.0 Project description .. 3

2.1 Periodic Supply Vessel Planning ... 3

2.1.1 Supply Base ... 4

2.1.2 Voyages ... 4

2.1.3 Offshore installations .. 4

2.1.4 Supply vessel ... 5

2.1.5 Weekly sailing plan ... 6

2.2 Objective .. 7

3.0 Literature review .. 9

4.0 Methodology .. 11

5.0 Research Task .. 15

6.0 Solution approach... 16

6.1 Two-phase method ... 16

6.1.1 Voyage generation algorithm .. 16

6.1.2 Voyage-based model ... 18

6.2 ALNS heuristic. .. 20

6.2.1 Heuristic overview. ... 20

6.2.2 Initial solution ... 23

6.2.3 Destroy operators .. 25

6.2.4 Repair operators .. 27

6.2.5 Selection of destroy and repair operators. ... 30

6.2.6 Improvement operators ... 31

6.2.7 Route optimization operator and evaluations. ... 36

6.2.8 Acceptance criteria .. 39

7.0 Computational Experiments ... 41

7.1 Tuning instances ... 41

7.1.1 Parameters tuning .. 41

7.1.2 ALNS parameters tuning results ... 41

7.2 Results .. 42

7.2.1 Test instances .. 42

7.2.2 Input data ... 43

7.2.3 Comparative analysis and results .. 44

8.0 Conclusions and further research ... 50

References ... 52

Appendix A. .. 54

Appendix B ... 60

List of figure

Figure 1 An example of Weekly sailing plan.. 6

Figure 2 An example of weekly schedule with coupled vessels ... 7

Figure 3 “Swap” improvement procedure (Bräysy and Gendreau 2005) 34

Figure 4 Relocate insertion procedure (Bräysy and Gendreau 2005) 34

Figure 5 Location of offshore installations and Mongstad supply base.............................. 43

Figure 6 Input data example for offshore installations ... 44

Figure 7 Input data example for supply vessels. ... 44

Figure 8 Input data example for visit day’s combinations. ... 44

Figure 9 Example of tight schedule .. 48

Figure 10 Trade-off analyse for the instance with 26 installations 49

file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831384
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831386
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831387
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831388
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831389
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451831393

 List of table

Table 1 – Types of parameters that increase the score of a heuristic 31

Table 2 - Experimental value for each parameter ... 42

Table 3 - Best founded parameters setting .. 42

Table 4 – Comparative analisis between two-phase approach and ALNS heuristic........... 45

Table 5 - A heat map of the gap from best-found solution with respect to the instance size

and number of iterations.. 47

Table 6-Comparison results of the Shushou LNS heuristic and represented ALNS heuristic

for large size instances. ... 49

Table 7 Experiments results for param tuning ALNS heuristic .. 59

Table 8 Results for 14-26 instances with 100 – 300 iterations ... 60

Table 9 Results for 14 – 26 instances with 400 - 600 iterations ... 60

Table 10 Results for 14-26 instances with 700 – 900 iterations ... 61

Table 11 Results for 14-26 instances with 1000 iterations ... 61

file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451837445
file:///C:/Users/landj/Dropbox/Rushan/Rushan/Master%20thesis/Master/Fianl%20Master.docx%23_Toc451837445

 1

1.0 Introduction

Many oil and gas producers operate offshore installations which require regular

supplies of commodities from land. For this purpose, oil companies hire special supply

vessels, which deliver cargo to and collect from installations. However, this resource is

rather costly both in terms of hiring cost and in terms of operating costs (fuel costs).

Therefore, it is of vital importance to define the fleet required to provide regular supply of

offshore installations and achieve efficient utilization of all platform supply vessels (PSVs).

In offshore petroleum logistics, supply vessel planning represents an actual problem.

The problem considered in this thesis comes from a real-world problem faced by Norwegian

oil and gas company Statoil ASA. The oil field located in the North Sea and serviced from

the onshore supply base located in Mongstad, is selected as the one for which delivery

problem is studied. The planning of deliveries is performed on the tactical level with one

week planning horizon. Each installation has a requirement for the number of visits during

the week. A weekly sailing plan is used repetitively over several months and then subject to

revision. Construction of the sailing plan requires consideration of the following problems:

allocation of voyages (a voyage represents a certain sequence of platforms served by a

vessel) to vessels, sequencing of voyages (routing problem) and definition of departure times

(scheduling problem) for each vessel on its voyages during the week. All these sub-problems

should be solved so that the total sailing cost and vessels charter cost are minimized. The

problem relates to the class of Vehicle Routing Problems and in the context of its practical

aspects, in the literature, is referred to as Periodic Supply Vessel Planning Problem (PSVPP).

The term “periodic” means that the problem is solved for a certain planning horizon. Each

of the above mentioned sub-problems (packing, routing and scheduling) represents NP-hard

combinatorial problem. Problems of a large size cannot be solved by exact methods within

a reasonable time. The problem we consider involves planning deliveries for 26 installations

during one week, where each installation requires from 1 to 5 visits. Therefore, development

of some efficient heuristic approach is required to obtain a good solution within a reasonable

time.

In this master thesis we develop an Adaptive Large Neighbourhood Search Heuristic

for PSVPP that might be used as a decision support tool by delivery planers at Statoil ASA

for organizing of an efficient supply of offshore installations. For validation of the heuristic,

we develop two-phase exact approach providing optimal solutions for small and medium

size instances within reasonable time.

 2

In chapter 2, we provide description of the studied problem, its main characteristics,

constraints and the objective. In chapter 3 we provide the review of the literature relevant to

the problem and compare the studied problem to those similar found in the literature. In

chapter 4 we review solution methods which are used for similar problems and analyse

methodology which could help to solve our problem. In chapter 5 we state the objective of

this master thesis which relates to development of the algorithm, its validation and results

analysis. In chapter 6 we present developed solution approaches with detailed description of

theirs logic. In chapter 7 we perform fine tuning of the developed heuristic approach,

described test instances and provide analysis of the conducted experiments. In chapter 8 we

summarize the work conducted in this thesis and provide some directions for the futures

research. Finally, list of references and tables with complete results of the experiments

accomplish the master thesis.

 3

2.0 Project description

Research that we conduct in this thesis is dedicated to real-life problem faced by Statoil

ASA. Statoil ASA employs more than 22000 employees, and it’s total revenue is more than

600 billions, being the largest oil and gas operator in Norway. Furthermore, Statoil ASA

operates in more than 30 countries around the world and is number one in offshore oil and

gas extraction in terms of technologies, effectiveness and efficiency (Statoil 2016).

In this master thesis, we study the problem of suppling offshore oil and gas installations,

encountered by Statoil on the Norwegian continental shelf. We focus our research on a single

supply base located in Mongstad, from which installations, assigned to this base, receive all

the necessary materials and equipment. Supply of offshore installations is provided by a

special fleet of supply vessels. However, hiring cost of a supply vessel is very expensive and

therefore care should be taken when defining the fleet size. In addition to vessels’ charter

cost, the cost of supply includes vessels fuel costs. As follows, optimal sequences of visiting

installations are required to minimize such costs. Furthermore, downtime cost of an offshore

installation is enormous and should be avoided. Hence, Statoil strives to construct efficient

schedule for suppling offshore installations with minimal costs, while not allowing for the

downtime.

The problem of supplying offshore installation, which we study in this thesis, is known

as Periodic Supply Vessels Planning Problem (PSVPP). Efficient solution to this problem

can reduce the logistical costs drastically and in the same time ensure high service level.

Further, in this section we provide the main elements, characteristics and constraints

inherent to this problem. In addition, in the end of the section we provide an example of a

vessels schedule.

2.1 Periodic Supply Vessel Planning

The supply vessel planning problem involves identification of the optimal fleet

composition, necessary to serve a given set of offshore installations from a single onshore

supply depot, and at the same time development of schedules and routes for vessels, so that

vessels charter and fuel costs are minimized. In this problem, under routes are understood

the voyages, starting and ending at the depot, and sailed by a particular vessel during the

planning horizon. Each voyage, in turn, is defined by a set of installations in a certain

sequence of visiting them. Each voyage has a specific departure time from the depot. A

vessel’s schedule is than defined as collection of voyages departing from a supply base at

 4

specific times. The objective of PSVPP is to construct a least cost schedule for a fleet of

supply vessels, for a given planning horizon.

The studied problem is of a tactical level, where the planning horizon is considered

to be one week. Such schedule is repeated for several months and revised with the aim of

adaptation to some changes. Such changes involve changes: in demand of installations,

incorporation of a new installation into a schedule, changes in the required number of visits

for some installations during the week, time windows, etc.

More properly, description of the main problem’s elements and constraints is

provided as follows.

2.1.1 Supply Base

The onshore supply base has opening hours from (8:00–18:30), during which loading

and unloading operations are performed. In addition, personal availability and limited

number of berths set a limit on the number of vessels that can be served during a day. The

turnaround of a vessel on the base i.e. the time required for loading and unloading operations

is assumed to be 8 hours. There is a specific set of possible departure times for vessels on

their voyages. The reason for haven this such departure time options is twofold. On the one

hand adjustment of departure time for a voyage may lead to cost reduction in case of

installation(s) with time windows on this voyage. The waiting time in this case may be

reduced and as follows the cost of a voyage. On the other hand such “flexible departures”

allow to exploit more efficiently work force by avoiding performance of the same operations

for different vessels in parallel. In our case, the set of possible departure times is 16:00,

17:00 and 18:30.

2.1.2 Voyages

Voyages are defined as a sequence of installations to be visited by a particular vessel.

Each voyage starts and ends at the depot and has specific departure time The maximum

voyage duration is set to three days or 72 hours (counting the time for loading/unloading in

the base), which is explained by maximum lead time requirements. In addition, there is a

requirement to the minimum and maximum number of installations per voyage, 1 and 7

respectively. A vessel’s schedule should be constructed so that the voyages it sails are not

overlapped in time.

2.1.3 Offshore installations

Offshore installations play the main role for oil and gas production. Each installation

has specific visit frequency during the week i.e. the number of visits it should receive from

 5

supply base. There are two types of offshore installations. The first type performs drilling

operations and is characterized by larger and more variable demand, and higher visits

frequency. The second type is represented by platforms performing oil and gas extraction.

This type is characterize by relatively stable demand and low visits frequency. The weekly

demand of a platform is assumed to be evenly distributed between visits. Furthermore, those

installations having more than one visit per week require even spread of departures to them.

For example, installations with three visits per week should be assigned to voyages in such

a way that departure to these installations is performed at least 1 time during 3 days. Such

requirements are set to each visit frequency. Therefore, it’s not an easy task to assign

installations with different visit frequencies to voyages while maintaining even spread of

departures. Commonly in periodic routing problem planners are concerned by even spread

of visits to customers rather than spread of departures. In PSVPP requirement to even spread

of departures is explained by the fact that installations know when it is the latest to submit

demand request before a vessel starts a voyage. Taking is to account that the maximum lead

time is assumed to be three days, such system proves to be quite convenient.

Furthermore, all offshore installations are divided in to two categories: with

possibility for night service and without it (with time window and without it). For

installations without time window, a vessel may come for service at any time during the day.

However, for offshore installations, which cannot be serviced at night time (19:00 – 7:00),

there are several situations are possible. If a vessel arrives to offshore installation after

closing time (and of course before its opening time), then it must wait till the opening time.

As well, there may be a situation when a vessel arrives within the time window, but the time

required to perform service before installation is closed, is not enough. In this case, the vessel

should wait till the next opening time.

2.1.4 Supply vessel

A fleet of supply vessels is performs delivery of equipment and materials to

installations and collection of used. Each platform supply vessel (PSV) may have its own

sailing speed and different deck capacity. This means that some PSV are unable to sail some

voyages. The cost of PSV is composed of two types of costs: vessel weekly charter cost and

fuel cost. Fuel cost is a variable cost and depends on the vessel’s speed and type of operation

performed. There are different fuel consumption rates for loading/unloading operations at

the base, during sailing and during loading/unloading at an installation.

 6

2.1.5 Weekly sailing plan

The weekly sailing plan is composed of weekly sailing plan of all vessels. On the

example below PSV1, PSV2 and PSV3 (Error! Not a valid bookmark self-reference.).

Weekly sailing plan of a vessel is defined by a set of voyages, consequently assigned to

specific departure times and not overlapping in time. Each voyage starts and ends at the

supply base (FMO). If a vessel, for example, is supposed to start its voyage at 17:00 then,

taking into account turnaround time, it is assumed start loading operations at 9:00. Therefore,

it should have come back from previous voyage (if any) before 9:00. From the perspective

of each PSV collection of voyages of a vessel represents vessel’s route. For example, the

route for PSV2 involve 3 voyages, starting on Tuesday, Thursday and Saturday. Each

voyage in turn represents a consecutive collection of installations, starting from depot. For

example first voyage of PSV 1 starts at 16:00 on Monday from FMO and visits installations

TRO, COI, OSE in the given sequence. On the schedule below the service at supply base is

marked green, sailing times are marked yellow and service it installations mark dark blue.

There are situations called “end-of-week” effect when a voyage starts at the end of the week

and finishes on the next week. For example the third voyage of PSV2 starts on Saturday,

serve installation COI on Sunday, and installations OSE, KVB on Monday.

There is one thing, on which we have to stress our attention. As it was mentioned above,

the planning horizon for installations is assumed to be one week. Nevertheless, the planning

horizon for vessels is extended up to two weeks. Such planning is explained by dealing with

a specific situation that may happen, called “end-of-week” effect. On the Figure 2 is

described the situation when the last voyage of PSV2 starts on Saturday and ends on

Monday, while its first voyage starts on Monday. As we see, voyages of the same vessel are

overlapped in time, which is not allowed. To circumvent such situation vessels PSV2 and

PSV3 may swap voyages on the second week. The only condition for possibility of swapping

is that the first voyage of PSV3 should start later than the end of the last voyage of PSV2.

In this case, PSV2 and PSV3 exchange by voyages on each week. Such approach may be

PSV 1

PSV2

PSV3

16 24

Monday Tuesday Wendsday Thursday Friday Saturday Sunday

24

8 16 24 32 40 48 56

8 16 24 8 16 248 16 24 8 16 248 16 24 8

160 168

FMO TRO COI OSE

112 120 128 136 144 15264 72 80 88 96 104

8 16

STA STCFMO STB

OSE KVB FMO OSE COIFMO OSE KVB

FMO TRO

FMO

FMO STB STA STC KVBCOI FMO TRO

COI

Figure 1 An example of Weekly sailing plan.

 7

viewed as the relaxation of the voyage overlap constraint for each vessel in case of the “end-

of-week” effect, that may lead to the cost and even fleet size reduction.

Figure 2 An example of weekly schedule with coupled vessels

2.2 Objective

The objective of the PSVPP is to construct a weekly sailing plan with minimal total

vessels charter and sailing cost taking into account base capacity constraint, requirements

for the even spread of departures, visit frequencies, vessels capacities, maximum voyage

duration and maximum number of installations per voyage, and voyage overlap constraint.

Taking into account problem dimensions and the size we may conclude that some

optimization-based design support tool is required which is able to provide the solution of a

good quality in a short time. The output of this tool should be weekly vessels schedule.

Below are summarized the main characteristics of the problem:

 The planning horizon of 7 working days (one week).

 Set of installations to be served and supply base, and theirs coordinates.

 Number of visits for each installation per week.

 Weekly demand for each installation.

 Average service time of each installation, required for loading/unloading

operation.

 Fuel consumption rate of a vessel when sailing, servicing at installation and

servicing at supply base.

 Fuel cost per ton.

 Set of available departure times during a day.

The objective of the problem is to:

 Construct weekly delivery schedule for the given set of installations.

 Find the fleet size and build voyages for each PSV.

 Find departure time of each voyage.

PSV 1

PSV2

PSV3

Monday Tuesday Wendsday Thursday Friday

24 8 16 24

Saturday Sunday

8 16 24 8 16 24 8 16 8 16 24

8 16 24 32 40 48 56

8 16 24 8 16 24

112 120 128 136 144 15264 72 80 88 96 104

FMO COI

32 40 48 56

SLOFMO

136

OSESOD SLOSLO

8 16 24 32

8 16 24 160 168

FMO

160 168

136 144 15264 72 80 88 96 104

120 12840 48 56 64 72 80

112 120 128

STB OSECOI

144 152 160 168

STBFMO

FMO STO

STOBID TROTRO OSE FMO

88 96 104 112

FMO COI OSEFMO TRO BID

BID STB STO SLO FMO SODSOD STO STO SLO

 8

 Minimize total vessel charter and fuel cost.

Constraints on solution:

Supply base constraints

 Maximum number of vessel that can departure during a day.

 Supply base working hours.

 A vessel turnaround time.

Voyage constraints

 Maximum number of installations on a voyage.

 Maximum voyage duration.

Vessel constraints

 Capacity of a vessel.

Offshore installations constraints

 Departures to each installation should be evenly spread during the week.

 Working hours of each installation during a day.

 9

3.0 Literature review

The literature dedicated to PSVPP is relatively scarce. Bellow we provide some papers

on the PSVPP topic, which appear in the literature for the last several decades. PSVPP relates

to vehicle routing problem (VRP) type and namely to periodic VRP, where routes should be

constructed for a planning horizon. The main different PSVPP from periodic VRP is that

PSVPP routes (or voyages) last more than one day. The literature on the PSVPP topic is as

follows.

Fagerholt and Lindstad (2000) presented a paper dedicated to “Optimal policies for

maintaining a supply service in the Norwegian Sea”. The authors develop two-phase exact

method to solve the problem. On the first stage, a feasible set of candidate voyage is

generated for each vessel. On the second stage, the set generated of voyages is used as an

input to the integer optimization model. In the literature, the model is known as set partition

model. However, the authors formulated a simplified version of PSVPP, ignoring constraint

on the spread of departures. Their approach does not provide vessel schedule and just

handles the problem of assignment voyages to vessel.

Gribkovskaia, Laporte, and Shlopak (2008) represented “A tabu search heuristic for a

routing problem arising in servicing of offshore oil and gas platforms.” The authors study

pickup and delivery problem encounters upstream offshore supply in the Norwegian Sea.

The problem is operational planning. A single vessel should provide pickup and deliveries

of cargo from several offshore installations. The authors develop tabu search for a single

base.

Halvorsen-Weare et al. (2012) considered “Optimal fleet composition and periodic

routing of offshore supply vessels”, where the authors took into consideration the aspects

omitted by the Fagerholt and Lindstad (2000). In this article, the authors as well use the same

two-phase exact method to obtain optimal solution accounting spread of departures

constraints. In addition, authors deal of the weather uncertain that may result in delays of

vessel on theirs voyages. Authors handle uncertainty by adding a slack in the end of a

voyage. Developed approach may be applied to medium and large size instances.

Korsvik and Fagerholt (2010) considered a problem in a shipping trade dealing with

transportation of bulk products. Shipping companies derive some additional income for

optional spot contracts. The authors developed an efficient tabu-search algorithm as a

decision support tool, ensuring quick decisions for the planners. The output of their tool

represents a schedule with a minimal fleet of vessels required to perform a certain task.

 10

Shyshou et al. (2012) proposed a Large Neighbourhood Search (LNS) heuristic with

the aim to solve large instances of PSVPP, taking into account all the constraints handled

Halvorsen-Weare et al. (2012). Heuristics is able to define optimal or near-optimal solutions

for small-medium size problem and as well is able to construct schedule for large size

problem within a reasonable time.

As well, there are several papers dealing with weather uncertainty in PSVPP and as

well, those taking into account environmental issues. Halvorsen-Weare and Fagerholt (2011)

developed three-phase approach able to define optimal solution of the problem by

introducing robust measure to voyages. Norlund and Gribkovskaia (2013) considered the

problem of minimization of supply vessel emissions by optimizing using the same,

mentioned above, two-phase approach.

As we see, there is only one approach to PSVPP that deals with the problem similar to

ours in terms of the problem type and instance size. Namely the approach by Shyshou et al.

(2012). This solution approach turned out to be quit efficient for small and medium problem

sizes, although the running time for large instances is relatively high. As well, there are

several differences between the problem formulated in our thesis and the problem

formulated by Shyshou et al. (2012). In Shyshou et al. (2012) vessels departures on voyages

are single and fix during a day, while in our problem a vessel have a set of departure options

manually defined by a planner. In addition, planning horizon for vessel in our problem is

extended to two weeks, with the aim of handling “end-of-week” effect issue.

As we see the LNS heuristic by Shyshou et al. (2012) was quite successful for the

PSVPP. Therefore, we may use this heuristic, as a starting point for the development of ours

own algorithm. In the next section, we consider methodology related to LNS and some

known approaches for improvement of its efficiency.

 11

4.0 Methodology

In this section we cover solution approaches developed for PSVPP and study some

methodology that maybe useful for our future metaheuristic.

Halvorsen-Weare et al. (2012) presented two-phase mathematical modelling based

approach. On first stage, the authors generate all possible sets of installations satisfied

minimum and maximum requirements for the voyage size and capacity. These sets are

generated out of the set 𝐼 of all installations. Then for each set TSP with time windows is

solved. The output of the algorithm is the set 𝑅 of all candidate voyages a vessel may sail,

where each voyage represent the optimal permutation for the corresponding set of

installations. As well, based on the generated voyages binary parameter 𝑎𝑖,𝑟 is created. 𝑎𝑖,𝑟

is equal 1 if installation 𝑖 is on the voyage 𝑟, 𝑖 ∈ 𝐼, 𝑟 ∈ 𝑅. On the second stage the output of

the voyage generation algorithm is used as the set-covering voyage-based model. The model

selects a set of voyages out of the whole set 𝑅 of available voyages taking into account

spread of departures, overlap constraints and based capacity constraint. Each voyage is

assigned specific departure day. The output of the model is a weekly vessel schedule.

Advantage of this approach compared to the full enumeration is that mathematical

model uses only feasible and shortest voyages (provided by the voyage generation

algorithm) and thus reducing computational time of the second phase. The solution achieved

on the second stage is optimal.

Since we agreed above to develop an algorithm using the Large Neighbourhood Search

methodology, we first consider its main principles.

LNS heuristic was first presented by Shaw in (Shaw 1997) and (Shaw 1998). Heuristic

was applied to VRPTW (Vehicle Routing Problem with Time Window) and showed very

good results. Below we briefly consider the main idea of the LNS. The pseudocode for LNS

is as follows (Procedure 3.1).

 12

The algorithm starts with the generation of a random initial solution, which is supposed

to be further improved. Then, “destroy” operator removes 𝑞 number of visits (requests) from

solution 𝑠’. Further, repair operator inserts removed visits (requests) back into solution. If

the new solution 𝑠’ is the better than the best found solution 𝑠𝑏𝑒𝑠𝑡, then the solution 𝑠’ is set

as the best 𝑠𝑏𝑒𝑠𝑡. Otherwise, if the solution 𝑠’ is worse than solution 𝑠, then solution 𝑠’ is

accepted subject to some accepted criteria (user defined), the algorithm proceeds to the next

iteration and so on until stop-criteria is met.

As it was mentioned in the previous section, Shyshou et al. (2012) developed Large

Neighbourhood Search heuristic for PSVPP. The algorithm is run for a given number of

restarts and iterations. At each restart an initial (feasible) solution is randomly generated.

Then, for the given number of iterations an attempt is made to improve this initial solution.

At the beginning of each iteration, we make a move from the current solution (at the first

iteration the current solution is the initial solution) to one of in its neighbourhood. This is

done with the use of destroy and repair operators. Destroy operator randomly selects a

certain number of voyages (user defined) and then in each voyage a random number of visits

is removed and placed into pool 𝑆 of uninserted visits. After that, repair operator tries to

insert visits, contained in the pool S, back into the schedule. If the attempt is successful i.e.

all visits are inserted back and all constraints are satisfied, then the algorithm proceeds to

the improvement phase. On the improvement phase, the solution obtained after a move is

tried to be improved by subsequently applying several improvement procedures. The first

procedure tries to reduce number of voyages in the schedule and thus making the idle time

of vessels larger. The second procedure tries to reduce total duration of all voyages by

Procedure 3.1 Basic LNS heuristic

1: Function LNS (𝑠 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠}, 𝑞 ∈ ℕ)
2: solution 𝑠𝑏𝑒𝑠𝑡 = 𝑠;
3: do
4: 𝑠′ = 𝑠;
5: remove 𝑞 request from 𝑠′
6: reinsert removed requests into 𝑠′

7: if (𝑓(𝑠′) < 𝑓(𝑠𝑏𝑒𝑠𝑡)) then

8: 𝑠𝑏𝑒𝑠𝑡 = 𝑠′ ;
9: end if
10: if 𝑎𝑐𝑐𝑒𝑝𝑡(𝑠′, 𝑠) then
11: 𝑠 = 𝑠′;
12: end if
13: while stop-criterion met
14: return 𝑠𝑏𝑒𝑠𝑡 ;

 13

relocation visits between them. The relocation of visit from one voyage to another is

accepted if the net duration of both voyages is reduced by at least one day. The third

procedure represent a deep greedy algorithm, which tries to relocate visits in the schedule

while the cost of the schedule reduces. As well, after each of the described above procedures

an attempt is made to reduce the fleet size by relocation of voyages between vessels

including those ones, which are not in the schedule. The set of improvement procedures is

applied in the loop in the predetermined sequence while the cost of the schedule reduces.

After the improvement phase the algorithm attempts to reduce the fleet size again. If

the number of vessels in the solution is above the predefined lower bound (the lower bound

is defined before the initial solution is created) than the algorithm defines the vessel out of

which it is possible to relocate the largest number of visits to other vessels. Those visits,

which were not relocated from this vessel, are placed into pool 𝑆 of uninserted visits. If the

number of voyages turns out to be lesser than the predefined lower bound then the flag

indicating the state of the schedule in terms of the number of voyages relative the lower

bound on the number of voyages, is set to “true”. The algorithm proceeds to the next

iteration. At the beginning of each iteration, after application of destroy operator, the

algorithm cheeks whether the flag was set to “true” at the previous iteration. If the flag is set

to “true” then the algorithm creates empty voyages to ensure feasibility of the schedule after

the repair operator is applied. And the algorithm proceeds to the improvement phase as

described above.

The algorithm proved to be quite efficient on small and medium size instances showing

optimal and near optimal results. As regards larger instances, efficiency of the algorithm is

not proved due to the absence of the optimal solutions. Solutions for large instances were

obtained within high computational times.

 Ropke and Pisinger (2006) presented “An Adaptive Large Neighbourhood Search

Heuristic for the Pickup and Delivery Problem with Time Windows”. In this article, the

authors supplemented the LNS by a new approach to search neighbourhood solutions.

Developed heuristic was called adaptive LNS. This approach implies several destroy and

repair operators which paschal destroy and then repair the solution that is called “a move”.

The main idea of “adaptiveness” is to keep track on the performance on destroy and repair

operators. Since there are several destroy and repair operators and only one of each type

should be selected at the beginning of an iteration, destroy and repair operators are assigned

corresponding probabilities according to which they are supposed to be selected are equal

and updated after certain number of iterations (segment). At each iteration selected destroy

 14

and repair operators receive certain rates based on their performance. These weight are

accumulated within a segment. And in the end of each segment each operator receive the

total score and probabilities are updated. Those operators, with good performance and, of

course, with higher score are assigned higher probabilities for the next segment of iterations.

Thus, the algorithm tries to adapt to better search of neighbourhoods based on the

performance of destroy and repair operators within last segment of iterations.

Furthermore, the authors propose an approach to avoid trapping into local minimum.

To do this, the authors take the idea from simulated annealing. The idea is to accept solution

s’ with some probability, if it is worse than the solution s with some probability. Probability

is define by 𝑒−
𝑓(𝑠′)−𝑓(𝑠)

𝑇 , where the temperature 𝑇 > 0 and 0 < 𝑐 < 1 is the cooling rate.

In each iteration temperature decreases by multiplication by 𝑐 .So the lower the value of 𝑐,

the higher the cooling rate and probability of acceptance of worse solution reduces faster as

the algorithm proceeds for one iteration to another.

 15

5.0 Research Task

The primary goal of this thesis is to develop an Adaptive Large Neighbourhoods

heuristic (ALNS) for the described above PSVPP taking into account all the problem’s

specific constraints, which is able to solve large size problem instances within a relatively

short time. Since we need to validate the algorithm and test its efficiency, we need to

compare it to some exact approach. For this purpose we develop two-phase exact solution

approach based on the approach by Halvorsen-Weare et al. (2012) and adapted to the

specifics of our problem (flexible departures and coupled vessels).

 16

6.0 Solution approach

In this section, we provide the description of our modification of two-phase exact

approach and detailed description of developed ALNS heuristic.

6.1 Two-phase method

6.1.1 Voyage generation algorithm

The main idea of the voyage-generation algorithm is based on dynamic programing

or the concept of recursive call. The input information involves sets of offshore installations

and supply vessels, coordinates of offshore installations, vessels capacities and maximum

voyage duration. The algorithm starts from generation of all sets (combinations) of

installations. The number of sets is denoted by 𝐾 and set 𝑁(𝑘) represents the collection of

installations in a set 𝑘, 𝑘 ∈ 1. . 𝐾. The size of the sets is limited by minimum and maximum

number of installations in a voyage and vessel capacity (Procedure 6.1.1 Line 5). Then, for

each combination 𝑁(𝑘) the Travel Salesman Problem with Time Window (TSPTW) is

solved by dynamic programming (Procedure 6.1.2) i.e. for each set 𝑁(𝑘) the shortest

permutation is defined.

Procedure 6.1.2 takes one by one all sets of installations from the set 𝑁(𝑘) as an

input. Each installation in a set 𝑁(𝑘) is removed and sent into recursive procedure. In this

procedure this installation is added into a voyage which is defined globally in the procedure

(initially this voyage is empty and contains only the depot). After the installation is added to

the voyage, duration and sailing of this partial voyage (since it does not contain all

installation) are calculated. And then, for this partial voyage procedure 6.1.2 is called again

(recursively). After the partial voyage is sent into recursive procedure, installation is

removed from this partial voyage and is placed back into set 𝑁(𝑘). For the partial voyage

which was send into recursive procedure (and which contains this installation) all this steps

are repeated again starting from line 5. When at some recursive call into it turns out that all

installations from the set N(k) present in the voyage then duration of the voyage with this

sequence is compared to the previously found voyage with the shortest duration. If the

duration of the voyage with the new sequence is shorter than the previously best found, then

this voyage is stored and set as the best. So, this recursive procedure dynamically enumerates

 17

all possible permutations of installations for each set 𝑁(𝑘) and returns the shortest. The

output of the algorithm is the set of shortest voyages for each vessel.

Procedure 6.1.1 Voyage-generation algorithm. Main code

1:Function VoygeGeneration(Vessels 𝑉, Departure Time 𝑇, Installations 𝐼W)
2: Array 𝑅 = ∅: array, which containing all feasible routes;
3: for each 𝑗 in 𝑉
4: for each 𝑡 in 𝑇
5: do
6: Construct unique combination of installations,

which satisfy constraints for vessel capacity and
maximum and minimum number of visits during one
voyage. And it places on set 𝑁(𝑘);

7: Solve TSPTW for set 𝑁(𝑘) by Procedure 6.1.2;
8: if solution founded
9: place solution on set 𝑅;
10: end if
11: while(!all combination of Installations not created)
12: end for
13: end for
14:return 𝑅;

Procedure 6.1.2. Recursive solve TSPTW.

1: Route: 𝑅(𝑘) = Globally defined route;
2: Route 𝐵𝑅(𝑘) = Globally defined best route;
3: 𝐵𝑐𝑜𝑠𝑡 = Globally define Best cost;
4: Function SolveTSPTW (PoolOfInstallations 𝑁(𝑘), MaximumDuration 𝑚𝑎𝑥𝐷𝑢𝑟)
5: for 𝑖 = 0 to 𝑁(𝑘)
6: Installation: 𝐶 = 𝑁(𝑘)𝑖;
7: set 𝑅 = 𝑅 ∪ 𝐶;
8: set 𝑁(𝑘) = 𝑁(𝑘)\𝐶;
9: 𝑐𝑜𝑠𝑡 = Compute sailing cost for route 𝑅;
10 𝑑𝑢𝑟 = compute route 𝑅 duration;
11: if(𝑐𝑜𝑠𝑡 < 𝐵𝑐𝑜𝑠𝑡 and 𝑑𝑢𝑟 < 𝑚𝑎𝑥𝐷𝑢𝑟)
12: if(|𝑁| == 0)
13: 𝐵𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡;
14: 𝐵𝑅 = R;
15: end if
16: else
17: Recursively run SolveTSPTW (𝑁(𝑘), 𝑚𝑎𝑥𝐷𝑢𝑟);
18: end If
19: end if
20: set 𝑅 = 𝑅\𝐶;
21: set 𝑁(𝑘) = 𝑁(𝑘) ∪ 𝐶;
22: end for
23: End Function;

 18

6.1.2 Voyage-based model

 In this section, we provide mathematical formulation of the PSVPP. We use as the

input the set of voyages from the voyage generation algorithm, which was described above,

and their corresponding costs. As well based on the set of generated voyages we define

binary parameters 𝐸𝑣,𝑟,𝑢,𝑡 and 𝐴𝑣,𝑖,𝑟 which are described below. The notations for the sets,

parameters and variables are as follows.

Sets: Notations:

𝑵 Set of installations

𝑵𝒇 Set of installations, which require 𝑓 visits during the week, 𝒇 ∈ {𝟐. . 𝟓}, 𝑵𝒇 ⊆

𝑵 .

𝑽 Set of PSV types

𝑾 Set of potential departure days, during the week (Working days in Supply

base)

𝑻 Set of possible departure times during the week

𝑻𝒘 Set of possible departure times during the day 𝑤, 𝒘 ∈ 𝑾, 𝑻𝒘 ∈ 𝑻.

𝑻𝒕 Set which involve possible departure times, after departure time 𝑡, when PSV

may not have returned to the supply base from voyages, which have started

in time t, 𝒕 ∈ 𝑻, 𝑻𝒕 ⊂ 𝑻.

𝑹 Set of all possible voyages

𝑹𝒗,𝒕 Set of voyages, which may be assigned by a PSV type 𝑣, at departure time 𝑡,

𝒗 ∈ 𝑽, 𝒕 ∈ 𝑻, 𝑹𝒗,𝒕 ⊆ 𝑹 .

𝑻𝒅𝒕,𝒇 Set of departure times after 𝑡, which represented time horizon, when PSV

may not start or oblige to start from supply base, depended from spread of

departure required for visit frequency 𝑓,𝒕 ∈ 𝑻, 𝒇 ∈ {𝟐. . 𝟓}, 𝑻𝒕,𝒇 ⊂ 𝑻.

Parameters Notations:

𝒒𝒗 Available quantity of PSVs of type, 𝒗 ∈ 𝑽.

𝑪𝒗
𝑻𝑪 Weekly charter cost for PSV of type, 𝑣 𝒗 ∈ 𝑽.

𝑪𝒗𝒓
𝑺 Precalculated sailing, service and base costs for voyage 𝑟, which associated

on PSV of type 𝑣,𝒗 ∈ 𝑽, 𝒓 ∈ 𝑹.

𝑩𝒘 Maximum number of departure from the supply base during the day w, 𝒘 ∈

𝑾

𝑭𝒊 Required number of visits during the week for installation 𝑖, 𝒊 ∈ 𝑰 .

 19

𝑨𝒊,𝒓 Binary parameter equal 1, if and only if installation i have visits by voyage

r, ∈ 𝑵, 𝒓 ∈ 𝑹 .

𝑬𝒗,𝒓,𝒖,𝒕 Binary parameter equal 1 if voyage 𝑟, which sailing by PSV of type 𝑣, start

in time 𝑢 and will not have returned from voyage to the supply base in

possible departure time 𝑡, and 0 otherwise, 𝒗 ∈ 𝑽, 𝒓 ∈ 𝑹, 𝒖 ∈ 𝑻, 𝒕 ∈ 𝑻𝒕.

Variables: Notations:

𝒙𝒗,𝒓,𝒕 Binary variable equal 1, if and only if PSV type v start voyage r in departure

time t, and 0 otherwise, 𝒗 ∈ 𝑽, 𝒓 ∈ 𝑹, 𝒕 ∈ 𝑻 .

𝒚𝒗 Integer variable which represent quantity PSV of types 𝒗, 𝒗 ∈ 𝑽 .

Mathematical model:

(12) }1,0{

(11)

 (10) ,

)9(,,1

)8(,,2

)7(,,1

)6(,,1

(5) , ,1

 (4) ,

 (3) ,,

(2) ,

subject to

(1) min

5,,,,

4,,,,

3,,,,

2,,,,

, 5,

, 4,

, 3,

, 2,

vrt

v

vv

Vv Rr Tu

urvirv

Vv Rr Tu

urvirv

Vv Rr Tu

urvirv

Vv Rr Tu

urvirv

Vv Tt Rr

vrtvri

w

Vv Tt Rr

vrt

v

Tt

vru

Rr

vrut

i

Vv Tt Rt

vrtvri

Vv Rr Tt

vrt

S

r

Vv

v

TC

v

x

y

Vvqy

TtNixA

TtNixA

TtNixA

TtNixA

WwNixA

W wBx

TtVvyxE

Ni FxA

xcyc

tv t

tv t

tv t

tv t

w w

w vt

t vu

vt

Constraints description:

 20

The objective function (1) expresses minimization of total vessels charter and sailing

costs.

Constraints (2) state that each installation receives the required number of visits

during the week. Inequalities (3) ensure that at each time interval 𝑡, the number of voyages

sailed by vessels of type 𝑣 is less or equal than the number of PSVs of type 𝑣 used in the

schedule. If, for example, integer variable 𝑦𝑣 equals to 2 for vessel type 𝑣, then there are two

vessels of the same type are used in the schedule, which means that these vessels are coupled

and may sail each other voyages. If for each type 𝑣 of vessels, 𝑦𝑣 is equal to one then there

are no coupled vessels in the schedule and inequality states that voyages of the same vessel

are not overlapped in time. Constraints (4) sets the limit on the number departures from

supply base during the day. Constraints (5) grantee, there is possible only 1 departure to each

installation, from the supply base during the day. Constraints (6)-(9) grantee, evenly spread

of departures for installations with visits frequency 𝑓. For example group of constraints (7)

ensure even spread of departures for installations with visits frequency 3, stating that there

should be at least 1 departure within 3 days is required for each installation in set 𝑁3.

Constraints (10) state that number of vessels of type 𝑣 is can not be more maximum available

number of vessels of type 𝑞𝑣.Finally, constraints (11) and (12) set the integer and binary

requirements for the 𝑦𝑣 and 𝑥𝑣𝑟𝑡 variables respectively.

6.2 ALNS heuristic.

In this section we provide detailed description of the ALNS heuristic. Heuristic is

developed with the use of C# programming language with Microsoft visual studio 2013.

Below are provided the pseudo-code of the main algorithm and pseudocodes of the main

procedures, and theirs descriptions.

6.2.1 Heuristic overview.

The algorithm is applied for a given number of iterations which are defined by a user.

The first phase in the algorithm is generation of initial solution 𝑧0 which is purely randomly.

Then, this solution is supposed to be improved over the given number of iterations. At the

beginning of the each iteration for the current solution 𝑧 (at the first iteration 𝑧 = 𝑧0) its

neighbourhood 𝑁(𝑧) is defended. Under the current solution z is understood the solution

with which the algorithm is currently working or tries to improve. As well 𝑧∗ is defined as

the best found solution up to current iteration. Since the aim of the algorithm is to improve

the current solution, at the beginning of each iteration transition from the solution 𝑧 to

solution 𝑧’ in neighbourhood 𝑁(𝑧) is performed with the use of destroy and repair operators.

 21

Transition to the neighbourhood solution 𝑧’ is called a 𝑚𝑜𝑣𝑒. The move is performed by the

means of removing of some number of visits with the use of some destroy operator and then

reinserting these visits back into the schedule with one of the repair operators. The number

of visits to be removed is defined randomly between minimal and maximum values defined

by a user (average 15% - 20% of the total number of visits). Selection of destroy and repair

operators is performed according by assigned to them probabilities, which are initially equal.

There are three destroy and three repair operators in the algorithm. The destroy operators

are: worst removal (Ropke and Pisinger 2006), Shaw removal (Ropke and Pisinger 2006)

and random voyage removal. The repair operators are: deep greed insertion, 2-regret

insertion and 3-regret insertion (Ropke and Pisinger 2006).As it was mentioned above, each

destroy and repair operator has its own probability of being selected. The sum of

probabilities of destroy operators equal to 1.The same is for the repair operators. These

probabilities are recalculated after each (user defined) number of iterations based on their

previous performance. Proper description of the adaptiveness mechanism is provided below.

For detailed description of the mechanism of adaptiveness see Ropke and Pisinger (2006),

Pisinger and Ropke (2010). If the move to the neighbourhood solution 𝑧’ is performed

successfully (Pseudocode 6.2.1 line 12) i.e. all the removed visits are inserted back into the

schedule, the algorithm proceeds to the improvement phase. At the improvement phase, the

solution 𝑧’ is tried to be improved by the set of improvement operators: reduce number of

voyages, reduce number of vessels, swap visits between voyages and relocate visits between

voyages (Pseudocode 6.2.1 lines 13-20). These procedures are located in certain sequence

of the algorithm, and applied cyclically while the solution can be improved. The first

procedure reduce number of voyages aims to decrease number of voyages in the schedule

by relocating visits from some voyage to other voyages in the schedule. This is done with

the aim to reduce the sailing cost and the fleet size, since the idle time of some vessels

reduced (if some voyages were eliminated). The fleet size reduction is provided by the

procedure reduce number of vessels, which attempts to reassign all voyages from some

vessel to other vessels. If such vessel is found, and voyages are reassigned, then this vessel

is marked as unused. Procedure swap visits between voyages analyses all combinations of

swapping two visits between all voyages. The aim of this procedure is to reduce the cost of

the schedule, which is, of course, dependent on the duration of the voyages. Therefore, if the

cost is reduced and as follows, durations of voyages, then vessels’ idle time is increased.

Moreover, there is a possibility to decrease the fleet size again, which is done by the

mentioned above procedure reduce number of vessels. And, the last procedure – relocate

 22

visits tries to find best relocation of visits between voyages. After this procedure as well

applied the procedure reduce number of vessels. Detailed pseudocodes of these improvement

procedures are provided bellow in section 6.2.6.

After the improvement phase solution 𝑧’ is compared to solution 𝑧 (solution which

was before the move at the beginning of the current iteration) and 𝑧∗ (the best found solution

which was found over the all iterations). If 𝑧’ < 𝑧∗ then, we have found the new best

solution, 𝑧∗ = 𝑧’. And 𝑧 = 𝑧’ i.e. the current solution is made equal to this new solution 𝑧’

and is supposed to be improved further on the next iteration. If 𝑧’ > 𝑧∗ and 𝑧’ < 𝑧 then

𝑧 = 𝑧′ and 𝑧∗ remains the same (since it was not improved). If 𝑧’ > 𝑧∗ and 𝑧’ > 𝑧 then 𝑧’

is accepted (𝑧 = 𝑧’) with some probability (acceptance criteria), (see Pseudocode 6.2.1 line

25). If 𝑧’ is not accepted then the algorithm proceeds to the next iteration with the solution

that was at the beginning of the current i.e. current solution 𝑧 remains unchanged. The logic

of the acceptance criteria is explained further (see Section 6.2.7). If a certain number of

iterations (𝛿) passed after the last update of weights, than the weights are updated again (see

Pseudocode 6.2.1 lines 30-31 and section 6.2.5). The algorithm proceeds to the next

iteration. After the last iteration, the algorithm returns the best found solution.

 23

6.2.2 Initial solution

Here we described the procedure for generate randomly feasible initial solution

(schedule). The initial solution contains a set of voyages with a certain departure time during

the week and sailing by the specific vessels. Represented schedule satisfy spread of

departure constraint and contain required number of visits for each installation. The

procedure for generation of the feasible initial solution is described below (Procedure 6.2.2).

Procedure 6.2.1 Main ALNS heuristic for PSVPP

1:𝑧 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (Procedure 6.2.2.);
2:Initialize the weight 𝜋;
3:set the temperature 𝑇;
4:set 𝑧∗ ← 𝑧;
5:for 𝑖 = 0 to 𝑁
6: 𝑧′ ← 𝑧;
7: 𝑞𝑖𝑡𝑒𝑟 ←Select number of visits to be removed;
8: 𝑂𝑝𝑟𝑟𝑒𝑚 ←Select removal operator;
9: 𝑧′ ← 𝑂𝑝𝑟𝑟𝑒𝑚(𝑧′, 𝑞𝑖𝑡𝑒𝑟,𝑆) (Procedures in section 6.2.3);

10: 𝑂𝑝𝑟𝑖𝑛𝑠 ← Select insert operator;
11: 𝑧′ ← 𝑂𝑝𝑟𝑖𝑛𝑠(𝑧′, 𝑆) (Procedures in section 6.2.4);
12: if 𝑆 == ∅ and 𝑧′ is feasible then
13: do
14: Reduce number of routes (Procedure 6.2.6.1);
15: Reduce number of vessels (Procedure 6.2.6.2);
16: Swap visits between voyages (Procedure 6.2.6.3);
17: Reduce number of vessels (Procedure 6.2.6.2);
18: Relocate visits between voyages (Procedure 6.2.6.4);
19: Reduce number of vessels (Procedure 6.2.6.2);
20: while z improves;
21: if 𝑐(𝑧′) ≤ 𝑐(𝑧∗) then
22: 𝑧∗ ← 𝑧′;
23: 𝑧 ← 𝑧′;
24: end if
25: if 𝐴𝑐𝑐𝑒𝑝𝑡(𝑧, 𝑧′) then (Described in section 6.2.7)
26: 𝑧 ← 𝑧′;
27: end if
28: end if
29: if 𝑖/𝛿 == 0 then
30: Update weights 𝜋 (Described in section 6.2.5);
31: end If
32: 𝑇 ← 𝑇 ∗ 𝑐;
33:Next 𝑖;
34:return 𝑠∗;

 24

Procedure 6.2.2. Construct initial solution for ALNS.

1: Function ConstructInitialSolution(installations 𝐼, Vessels 𝑉, maximum
number of departure per day 𝜇𝑑𝑒𝑝,maximum installations per route 𝜇𝑖𝑛𝑠𝑡)
2: Array: R = an array containing all routes;
3: do
4: 𝑅 = ∅;
5: Bool Flag: f = true;
6: for each 𝑖 ∈ 𝐼
7: Randomly generate departure day pattern with respect to visit
frequency;
8: 𝑉𝑖𝑠𝐶𝑜𝑚𝑏𝑡,𝑖 = 1 if installation 𝑖 is assigned on departure day

t,0 otherwise;
9: end for
10: for each 𝑡 ∈ 𝑇
11: Define number of visits per departure day t: 𝑞 = ∑ 𝑉𝑖𝑠𝐶𝑜𝑚𝑏𝑡,𝑖𝑖∈𝐼

12: if 𝑞 > 𝜇𝑑𝑒𝑝 ∗ 𝜇𝑖𝑛𝑠𝑡 then
13: 𝑓 = 𝑓𝑎𝑙𝑠𝑒;
14: end if
15: Define number of voyages per day: 𝜌 = ⌈𝑞/𝜇𝑖𝑛𝑠𝑡 ⌉
16: Define number of visits per route: 𝜏 = ⌈𝑞/𝜌⌉;
17: for k = 0 to 𝜌
18: Create empty voyages r;
19: Counter: v = 0
20: do
21: Installation: 𝑖 = 𝐼𝑣;
22: if 𝑉𝑖𝑠𝐶𝑜𝑚𝑏𝑡,𝑖 == 1 then
23: Assign visit to installation i on route r;
24: end if
25: set 𝑣 = 𝑣 + 1;
26: while 𝑣 < |𝐼| and |𝑟| < 𝜏;
27: Call procedure 6.2.7.1 for route r;
28: 𝑅 = 𝑅 ∪ 𝑟;
29: end for
30: end for
31: for each 𝑟 ∈ 𝑅
32: Bool flag: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝑓𝑎𝑙𝑠𝑒;
33: for each 𝑣 ∈ 𝑉
34: if voyage r is possible to assign on vessel v then
35: voyage r is assigned to vessel v;
36: 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒;
37: exit for;
38: end if
39: end for
40: if 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 == 𝑓𝑎𝑙𝑠𝑒 then
41: 𝑓 = 𝑓𝑎𝑙𝑠𝑒;
42: end if
43: end for
44: while 𝑓 == 𝑓𝑎𝑙𝑠𝑒
45: 𝑧0 ← 𝑅;
46: return 𝑧0;

 25

6.2.3 Destroy operators

This section describes three destroy operators. All three removal operators return the

solution 𝑧 and pool of uninserted visits 𝑆 as an output. More detailed description of all

removal operators is provided below.

6.2.3.1 Shaw removal

Shaw removal heuristic was first presented by in Shaw (1997),Shaw (1998).The

main objective of the Shaw removal operator is to remove visits which are similar i.e. close

in servicing time, location etc. For more detail description, see Ropke and Pisinger (2006).

This approach provides easier possibility to insert all visits back into the schedule and

perhaps better neighbor solution. For determining somewhat similar visits we define a

related measure R(i, j). This measure expresses a relatedness between two visits 𝑖 and 𝑗 and

is computed by a given formula:

)13()()(),(, jiji TTdjiR

This formula contains two terms:𝑑𝑖,𝑗 which denotes the travel distance between

installations visits and 𝑇𝑖 indicates departure time to installation 𝑖. Both terms are weighted

by the weights 𝛼 and 𝛽. The procedure for removing visits from schedule by shaw removal

is presented below in Pseudocode 6.2.3.1.

Pseudocode 6.2.3.1. Shaw Removal.

1:Function ShawRemoval(solution 𝑧, number of visits 𝑞)
2: visit : 𝑣 = a randomly selected visit from 𝑧;
3: pool of visits: 𝑆 = {𝑣};

4: remove visit 𝑣 from the soltution 𝑧;
5: while |𝑆| < 𝑞 do
6: 𝑟 = a randomly selected request from 𝑆;
7: Array : 𝑉 = an array containing all visits from 𝑧 not in 𝑆;
8: Array : 𝑅 = an array containing rank for each visit in 𝑧;
9: Counter: 𝑖 = 0;
10: while 𝑖 < |𝑉| do

11: 𝑅𝑖 = 𝛼(𝑑𝑉𝑖,𝑟) + 𝛽(𝑇𝑉𝑖
− 𝑇𝑟);

12: 𝑖 = 𝑖 + 1;
13: end while
14: sort 𝑅 such that 𝑖 < 𝑗 ⇒ 𝑅𝑖 < 𝑅𝑗;

15: Insert in Pool 𝑆 first visit in array 𝑅;
16: end while
16:return 𝑧, 𝑆;

 26

6.2.3.2 Random Voyage removal

The random voyage removal operator simply selects 𝑞 random voyages from the

solution 𝑧, and then place all visits from voyages into pool 𝑆 and remove voyages from the

solution. Pseudocode of this procedure is shown below (Pseudocode 6.2.3.1).

6.2.3.3 Worst Removal

The general idea of the worst removal operator is to remove visits with the maximum

cost reduction values, i.e. remove visits with high cost. In presented pseudocode 6.2.3.3. for

each visit one by one cost 𝑐′ (schedule cost without visit) is computed. Visit with lowest cost

𝑐’ is removed from the solution 𝑧. Algorithm repeats while number of visits in pool 𝑆 less

than 𝑞.

Pseudocode 6.2.3.2. Random Voyage removal.

1:Function VoyageRemoval(solution 𝑧, number of voyages remove 𝑞)
2:pool of visits: 𝑆 = ∅;
3:Counter: 𝑖 = 0;
4:while 𝑖 < 𝑞 do
5: 𝑟 = a randomly selected voyage from 𝑧;
6: Array : 𝑉 = an array containing all visits from 𝑟;
7: 𝑆 = 𝑆 ∪ 𝑉;
8: remove r from solution z;
9: 𝑖 = 𝑖 + 1;
10:end while
11:return 𝑧, 𝑆;

Pseudocode 6.2.3.3. Worst removal.

1: Function Worst Removal (solution 𝑧, number of visits 𝑞)
2: Pool of visits :𝑆 = ∅;
3: while |𝑆| < 𝑞 do
4: Array : 𝑉 = contains all visits from solution 𝑧;
5: Cost: = 𝑐(𝑧) ;
6: 𝜗 = ∅;
7: for each 𝑣 ∈ 𝑉
8: remove visit 𝑣 from solution z;
9: Cost: 𝑐′ = 𝑐(𝑧);
10: if 𝑐′ < 𝑐 then
11: 𝜗 = 𝑣;
12 𝑐 = 𝑐′;
13: end if
14: insert visit 𝑣 back into the solution 𝑧;
15: end for
16: 𝑆 = 𝑆 ∪ {𝜗};
17: remove visit 𝜗 from solution 𝑧;
18: end while
19: return 𝑆 , 𝑧;

 27

6.2.4 Repair operators

General idea of repair operators is insertion back into schedule all visits from the

pool of uninserted visits 𝑆. We provide below descriptions for 2 repair operators with their

pseudocodes: 𝑑𝑒𝑒𝑝 𝑔𝑟𝑒𝑒𝑑𝑦 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 and k-regret insertion (which represent the class of

regret operators, depending of the value of the parameter 𝑘).

6.2.4.1 Deep Greedy insertion

The deep greedy insertion is a simple construction heuristic. Heuristic contains

several number of iterations. An Heuristic contains several number of iterations. At each

iteration algorithm tries to insert each visit from pool S into the schedule and if insertion is

possible, then procedure computes schedule cost with this insertion. In the end of iteration,

an algorithm inserts visit into the schedule with the minimal cost increase and removes visit

from S. Pseudocode of the algorithm is showed below (Procedure 6.2.4.1).

Procedure 6.2.4.1 Deep greedy insertion

1:Function DeepGreedyInsertion(solution 𝑧, Visits Pool 𝑆)
2:Best evaluation: 휀 = ∅;
3:Array : 𝑅 = an array containing all voyages from z;
3:do
4: 휀 = ∅;
5: Counter: 𝑖 = 0;
6: while 𝑖 < |𝑆| do
7: Counter 𝑗 = 0;
8: while 𝑗 < |𝑅|
9: Evaluation: 𝑒 ← get evaluation by calling

procedure 6.2.7.2 for 𝑅𝑗, 𝑆𝑖;

10: if 𝑒 ≠ ∅ and 𝑐(𝑒) < 𝑐(휀) then
11: 휀 = 𝑒;
12: end if
13: 𝑗 = 𝑗 + 1;
14: end while
15: 𝑖 = 𝑖 + 1;
16: end while
17: if 휀 ≠ ∅ then
18: 𝑟 ← target route in evaluation 휀;
19: 𝑣 ← insertion visit in evaluation 휀;
20: Insert visit 𝑣 in voyage 𝑟;
21: Call procedure 6.2.7.1. for route 𝑟;
22: Remove visit 𝑣 from pool 𝑆;
23: end if
24: while 휀 ≠ ∅ and |𝑆| > 0;
25: return 𝑧, 𝑆;

 28

6.2.4.2 Regret-k insertion heuristic

The regret heuristic represents an evolution of the deep greedy heuristic by making a

kind of look ahead when selecting a visit for insertion. Let Δfi,k the change in the objective

function resulted after the insertion of a visit i into voyage k. We define xik {1,..,n} as a

variable indicating the route for which insertion of a visit i has the k’th lowest insertion cost

(variables are sorted in increasing order of the value of the objective function). If k < k’ then

∆𝑓𝑖,𝑥𝑖𝑘
≤ ∆𝑓𝑖,𝑥

𝑖𝑘′
. So, we can we define 𝑐𝑖

∗ = ∆𝑓𝑖,𝑥𝑖2
− ∆𝑓𝑖,𝑥𝑖1

 as the difference between

the best and the second to the best insertion options for visit i or in other words we define

𝑐𝑖
∗ as a regret value.

During the search for better visit for insertion, the regret heuristic, at each iteration,

selects the visit so that:

max
𝑖∈𝐼

𝑐𝑖
∗

 (14)

In other words, we strive to insert a visit which we would regret if we do not insert it

now. When inserting a visit i into route k, the visit is inserted into the minimum cost position.

Perusing this logic the heuristic can be extended by defining a class of regret heuristics. The

k-regret heuristic aims to insert a visit such that:

 max
𝑖∈𝐼

{∑ (∆𝑓𝑖,𝑥𝑖𝑗
− ∆𝑓𝑖,𝑥𝑖1

𝑘
𝑗=1)} (15)

this means that we take into account insertion options of visit i for the first best k

insertions. If, applying k-regert, some visits cannot be inserted into n-k+1 number of routes

then the request with the fewest number of routes for insertion. For this heurist, at least two

insertions options required to perform the assessment. Formulation (15) represents regret-2

heuristic, since it consider the two best routes for insertion of a visit. The k-regret heuristic

considerers for each visit i the best k routes for insertion and selects the one with maximal

cost difference of insertion into k-1. Pseudocode (6.2.4.2) presents the logic of k-regret

insertion procedure, adopted for our heuristic.

 29

Procedure 6.2.4.2. Regret-k insertion

1: Function RegretInsertion(solution 𝑧, number of visits 𝑞, regret 𝑘)
2: do
3: Highest regret value: 𝜎 = 0;
4: Best evaluation: 휀 = ∅;
5: Counter: 𝑖 = 0;
6: while 𝑖 < |𝑆| do
7: Counter: 𝑗 = 0;
8: Array : 𝐸 = possible evaluation for visit 𝑖;
9: Array: := containing all voyages in solution 𝑧;
10: while 𝑗 < |𝑅| do
11: evaluation: 𝑒 ←get evaluation by calling

procedure 6.2.7.2 for 𝑅𝑗, 𝑆𝑖;

12: if 𝑒 ≠ ∅ then
13: 𝐸 = 𝐸 ∪ {𝑒};
14: end if
15: 𝑗 = 𝑗 + 1;
16: end while
17: sort 𝐸 such that 𝑎 < 𝑏 ⇒ 𝑓(𝐸𝑎) > 𝑓(𝐸𝑏);
18: if |𝐸| ≥ 𝑘 then
19: Counter: 𝑗 = 0;
20: Accumulated regret value: 𝜃 = 0;
21: while 𝑗 < 𝑘 do

22: 𝜃 = 𝜃 + (𝑐(𝐸𝑗) − 𝑐(𝑧)) ;

23: 𝑗 = 𝑗 + 1;
24: end while
25: if (𝜃 > 𝜎) then
26: 𝜎 = 𝜃;
27: 휀 = 𝐸0;
28: end If
29: else if |𝐸| > 0
30: 휀 = 𝐸0;
31: break while;
32: end If
33: 𝑖 = 𝑖 + 1;
34: end while
35: if 휀 ≠ ∅ then
36: 𝑟 ← target route in evaluation 휀;
37: 𝑣 ← insertion visit in evaluation 휀;
38: Insert visit 𝑣 in voyage 𝑟;
39: Call procedure 6.2.7.1. for route 𝑟;
40 Remove visit 𝑣 from pool 𝑆;
41: end if
42: while 휀 ≠ 0;
43: return 𝑧, 𝑆;

 30

6.2.5 Selection of destroy and repair operators.

In section 6.2.3. we described three destroy operators (Shaw, random voyage and

worst removal) and in section 6.2.4. we provide three repair operators (deep greedy, regret-

2 insertion and regret-3). In this section, we provide selection mechanism that is used for

both groups of operators. We remind that selection of destroy and repair operator take place

at the beginning of each iteration.

6.2.5.1 Probability recalculation.

All operators are selected according to probabilities which depends on their

performance during the run of the algorithm. Probabilities are equal at the first iteration. Let

K be the set of operators (either destroy or repair), j K. Pj – probability of selection of

operator j. In order to select an operator we assign a weight to each of the operators wi. The

probability of selection of an operator j is then calculated according to the following

formulation (see Ropke and Pisinger (2006)):

 𝑝𝑗 =
𝑤𝑗

∑ 𝑤𝑖
𝑘
𝑖=1

 (16)

N.B! Probabilities are defined separately for destroy and repair operators.

6.2.5.2 Weights adjustment.

In the above section we described weights and probability calculation for destroy

and repair operator. In this section we describe how these weights are adjusted for each

operator during the algorithm run. The main idea of weight adjustment is to record

performance of each operator and assign different score depending on the performance

efficiency. The search is divided into a number of segments. Each segment corresponds 50

or 100 iterations (user defined). Since the initial probabilities are equal for each operator,

the score for each operator is set to zero. The score of an operator increases by σ1, σ2, or σ3

depending on the following conditions:

Parameter Description

𝜎1 After applying the last remove-insert operators the algorithm found new

global best solution.

𝜎2 After applying the last remove-insert operators the algorithm found new

solution that has not acceptance before, worse than global best solution, but

better than current.

 31

𝜎3 After applying the last remove-insert operators the algorithm found new

solution that has not acceptance before, worse than current solution, but

solution was accepted.

Table 1 – Types of parameters that increase the score of a heuristic

At the end of each segment the weight of an operator i is recalculated based on its

score. Let wij be the weight of operator i and the js segment. The weight is used in formulation

(17) for probability calculation. When the segment j is over, the weight of operator i within

the next segment j+1is defined as follows:

 𝑤𝑖,𝑗+1 = 𝑤𝑖,𝑗(1 − 𝑟) + 𝑟
𝜋𝑖

𝜃𝑖
 (17)

Where πi corresponds to the total score of the an operator i for the last segment j. 𝜃𝑖

represents the number of times the operator i was used during the last segment. As well,

there is reaction factor r which defines the degree of reaction of weights adjustment. For

example if we set r to 0, the scores are not used at all and the algorithm uses those initial

weights. For more information see (Ropke and Pisinger 2006).

6.2.6 Improvement operators

This section describes following set of improvement operators: reduce number of

voyages, reduce number of vessels, swap visits between voyages and relocate visits between

voyages. The general idea of represented operators is schedule cost decrease after made

move to the neighborhood by efficient application improvement procedures. Swap visits

and relocate visits are aimed to reduce voyages durations and sailing costs. Reduce number

of vessels tries to reduce charter cost of the schedule by minimizing fleet size composition.

While reduce number of voyages simultaneously reduce sailing and charter costs by

minimizing number of routes. More detail descriptions and pseudocodes for each

improvement operator are provided below.

 32

6.2.6.1 Reduce number of Voyages.

Procedure 6.2.6.1. tries to reduce number of voyages in the schedule by a relocation

all visits from each voyage into another voyages. This procedure allows increasing an idle

time between voyages and decrease total schedule cost.

6.2.6.2 Reduce number of Vessels

This procedure tries to reduce fleet size by reassigning each voyage from one vessel

to other vessels. If it is performed then the total schedule cost are sufficiently reduced.

Pseudocode of this procedure are provided below. (Procedure 6.2.6.2.)

Procedure 6.2.6.1. Reduce number of voyages
1: Function ReduceNuberOfvoyages (solution 𝑧)
2: Array : 𝐾 = set containing all voyages from the solution;
3: Index of voyage: 휀 = −1;
4: do
5: 휀 = −1;
6: Schedule Cost Change: 𝜆 = 0;
7: Counter 𝑖 = 0;
8: while 𝑖 < |𝐾| do
9: Solution: 𝑧′ = Copy of the solution 𝑧;
10: Array: 𝑆 = an array containing all visits from voyage 𝐾𝑖;
11: Remove voyage 𝐾𝑖 from the solution 𝑧′;;
12: Try insert visits from 𝑆 into solution 𝑧′ (Procedure 6.2.4.1);
13: if 𝑆 == ∅ and 𝜆 < 𝑐(𝑧) − 𝑐(𝑧′)then
14: 𝜆 = 𝑐(𝑧) − 𝑐(𝑧′);
15: 휀 = 𝑖;
16: end if
17: 𝑖 = 𝑖 + 1;
18: end while
19: if 휀 > 0 then
20: Array: 𝑆 = an array containing all visits from voyage 𝐾𝜀;
21: Remove voyage 𝐾𝜀 from the solution 𝑧;
22: Insert visits from 𝑆 into solution 𝑧 (Procedure 6.2.4.1);
23: end if
24: while 휀 ≥ 0
25: return z;

 33

Procedure 6.2.6.2. Reduce number of vessels

1: Function ReduceNumberOfVessels(solution 𝑧)
2: 𝑧′ = copy of the solution 𝑧;
3: Set: 𝑉 = a set containing all vessels from solution 𝑧′;
4: 𝜃 = 𝑀;
5: Counter: 𝑘 = 0;
6: while 𝑘 < |𝑅|
7: 𝜇 ← Insert value which is containing overlap in time if all

voyages from vessels 𝑉𝑖 will be reassigned to another vessels
in schedule 𝑧′;

8: if 𝜇 < 𝜃 then
9: 𝜗 = 𝑖;
10: 𝜇 = 𝜃;
11: end if
12: 𝑘 = 𝑘 + 1;
13: end while
14: Array 𝑅 = an array containing all voyages from vessel 𝑉𝜗;
15: Pool of visits 𝑆 = ∅;
16: 𝑘 = 0;
17: while 𝑘 < |𝑅|
18: Remove voyage 𝑅𝑘 from vessel 𝑉𝜗;
19: Insert voyage 𝑅𝑘 into the vessel 𝑉𝜀;
20 Move each voyage during a day in vessel 𝑉𝜀 for reducing overlap

in time;
21: Array: 𝑃 an array containing all voyages from vessel 𝑉𝜀;
22: Counter m = 0;
23: while m < |𝑃|
24: if voyage 𝑃𝑚 is overlapped in time then
25: Visit: 𝜈 = worst visit in voyage 𝑃𝑚;
26: Remove visit 𝜈 from voyage 𝑃𝑚;
27: Insert visit 𝜈 in Pool of visits 𝑆;
28: else
29: 𝑚 = 𝑚 + 1;
30: end if
31: end while
32: k = k + 1;
33: end while;
34: remove vessel 𝑉𝜗 from the solution 𝑧′;
35: Call regret-2 insertion for Pool of visits 𝑆 and solution 𝑧’

(Procedure 6.2.4.2)
36: if 𝑆 = ∅ then
37: 𝑧 = 𝑧’;
38: end if
39: return 𝑧

 34

6.2.6.3 Swap visits between voyages

Swap procedure is based on the one presented by Bräysy and Gendreau (2005). The

main idea of the procedure is in the swap of customers between two any routes. Which

customers should be selected for swapping is decided either heuristically (randomly) or by

enumerating all possible combination and the selecting the most cost efficient. Figure 3

presents the example of swap procedures by (Bräysy and Gendreau 2005) which is executed

under 6 edges. It consist of two figures, the left one demonstrates two routes before the

application of the procedure, the right figure shows how routes were modified after “Swap”.

The edges (𝑖 − 1, 𝑖), (𝑖, 𝑖 + 1), (𝑗 − 1, 𝑗) and (𝑗, 𝑗 + 1) are replaced (𝑖 − 1, 𝑗), (𝑗, 𝑖 + 1), (𝑗 −

1, 𝑖) and (𝑖, 𝑗 + 1), i.e., two visits from different voyages are simultaneously inserted into the

other voyages. Proposed in this master thesis procedure (Procedure 6.2.6.3) tries to swap

two visits between voyages while cost decreasing is possible it possible.

6.2.6.4 Relocate visits between voyages

This procedure tries to reduce cost by insertion each visit from each voyage into

another voyage. For example, in Figure 4 the right side shows the picture after execution of

the procedure, the edges (𝑖 − 1, 𝑖), (𝑖, 𝑖 + 1) and (𝑗, 𝑗 + 1) are replaced by (𝑖 − 1, 𝑖 + 1), (𝑗, 𝑖)

and (𝑖, 𝑗 + 1), i.e., visit 𝑖 from the origin voyage is inserted into the destination voyage.

Procedure repeats while the total schedule cost decreases. Pseudocode of this porcedure is

described in Procedure (6.2.6.4).

Figure 3 “Swap” improvement procedure (Bräysy and Gendreau 2005)

Figure 4 Relocate insertion procedure (Bräysy and Gendreau 2005)

 35

Procedure 6.2.6.3. Swap visits between voyages

1: Function SwapVisits (𝑧 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛})
2: 휀 = ∅;
3: Array : 𝑅 = an array containing all voyages from z;
4: do
5: ∆ = 0;
6: 휀 = ∅;
7: 𝑖 = 0;
8: while 𝑖 < |𝑅| do
9: Array : 𝑉 = an array containing all visits from voyage
𝑅𝑖;
10: 𝑗 = 0;
11: while 𝑗 < |𝑉| do
12: 𝑘 = 𝑖 + 1;
13: while 𝑘 < |𝑅| do
14: 𝑙 = 0;
15: Array : Υ = all visits from voyage 𝑅𝑘;
16: while 𝑙 < |𝛶| do
17: if 𝑉𝑗 ≠ Υ𝑙 then

18: evaluation 𝑒 ← get evaluation
by calling procedure 6.2.7.3
for 𝑅𝑖, 𝑉𝑗, 𝑅𝑘 , Υ𝑙;

19: If 𝑒 ≠ ∅ and 𝑐(𝑧) − 𝑐(𝑒) > ∆ then
20: ∆ = 𝑐(𝑧) − 𝑐(𝑒);
21: 휀 = 𝑒;
22: end if
23: end if
24: 𝑙 = 𝑙 + 1;
25: end while
26: 𝑘 = 𝑘 + 1;
27: end while
28: 𝑗 = 𝑗 + 1;
29: end while
30: 𝑖 = 𝑖 + 1;
31: end while
32: if 휀 ≠ ∅ then
33: 𝑟1 ← route 𝑟1 in evaluation 휀;
34: 𝑟2 ← route 𝑟2 in evaluation 휀;
35: 𝑣1 ←visit 𝑣1 from route 𝑟1 in evaluation 휀;
36: 𝑣2 ←visit 𝑣2, from route 𝑟2 in evaluation 휀;
37: remove visit 𝑣1 from route 𝑟1;
38 remove visit 𝑣2 from route 𝑟2;
39: insert visit 𝑣1 in route 𝑟2;
40 insert visit 𝑣2 in route 𝑟2;
41: Call procedure 6.2.7.1. for route 𝑟1;
42: Call procedure 6.2.7.1. for route 𝑟2;
43: end if
44: while 휀 ≠ ∅
45: return 𝑧;

 36

6.2.7 Route optimization operator and evaluations.

In this section are detailed described route optimization procedure and “Insert visit

Evaluation” and “Swap Visits Evaluation”.

Procedure 6.2.6.4. Relocate visits between voyages

1: Function RelocateVisits(𝑧 ∈ {𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛})
2: Evaluation: 휀 = ∅;
3: Array : 𝑅 = an array containing all voyages from z;
4: do
5: Cost decrease value ∆ = 0;
6: 휀 = ∅;
7: Counter: 𝑖 = 0;
8: while 𝑖 < |𝑅| do
9: Array: 𝑉 = an array containing all visits from voyage 𝑅𝑖;
10: Counter: 𝑗 = 0;
11: while 𝑗 < |𝑉| do
12: Counter: 𝑘 = 0;
13: while 𝑘 < |𝑅| do
14: if 𝑘 ≠ 𝑖 then
15: Evaluation: 𝑒= Get evaluation for

insertion visit 𝑉𝑗 from route 𝑅𝑖 into

route 𝑅𝑘 (Procedure 6.2.7.2.);
16: if 𝑒 ≠ ∅ and 𝑐(𝑧) − 𝑐(𝑒) > ∆ then
17: ∆ = 𝑐(𝑧) − 𝑐(𝑒);
18: 휀 = 𝑒;
19: end if
20: end if
21: 𝑘 = 𝑘 + 1;
22: end while
23: 𝑗 = 𝑗 + 1;
24: end while
25: 𝑖 = 𝑖 + 1;
26: end while
27: if 휀 ≠ ∅ then
28: 𝑠𝑟 ← source route in evaluation 휀;
29: 𝑡𝑟 ← target route in evaluation 휀;
30: 𝜗 ← visit in evaluation 휀 from route 𝑠𝑟;
31: remove visit 𝜗 from route 𝑠𝑟;
32: insert visit 𝜗 in route 𝑡𝑟;
33: Call procedure 6.2.7.1. for route 𝑠𝑟;
34: Call procedure 6.2.7.1. for route 𝑡𝑟;
35: end if
36: while 휀 ≠ ∅
37: return 𝑧;

 37

6.2.7.1 Intra-voyage optimization procedure

 The general idea of intra-voyage optimization procedure (Procedure 6.2.7.1) is

determination an optimal sequence of installations in voyage 𝑟 by solving TSPTW. This

algorithm is frequently called from other procedures. In this regard, we made this procedure

more simply with the aim to decrease computational time. The algorithm uses first-accept

strategy while constructs an optimal visits sequence, i.e. procedure places each visit in first

possible position in sequence if voyage duration is reduced.

Procedure(6.2.7.1) Intra-voyage optimization.

1:Function VoyageOptimization(voyage 𝑟)
2:do
3: flag: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑓𝑎𝑙𝑠𝑒;
4: 𝑉 ← set of visits in voyage 𝑟;
5: Counter: 𝑖 = 0;
6: do
7: flag: 𝑠𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑓𝑎𝑙𝑠𝑒;
8: 𝑑 ← voyage duration;
9: set 𝑣 = 𝑉𝑖;
10: Counter: 𝑗 = 0;
11: do
12: visit 𝑣 removed from position 𝑖;
13: visit 𝑣 is placed on position 𝑗;
14: 𝑛𝑑 ← voyage duration;
15: if 𝑛𝑑 < 𝑑 then
16: 𝑠𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒;
17: if 𝑗 > 𝑖 then
18: 𝑖 = 𝑖 – 1;
19: end if
20: else
21: visit 𝑣 removed from position 𝑗;
22: visit 𝑣 is placed on position 𝑖;
23: end if
24: 𝑗 = 𝑗 + 1;
25: while 𝑗 < |𝑉| and s𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 == 𝑓𝑎𝑙𝑠𝑒 ;
26: if 𝑠𝑡𝑒𝑝𝑖𝑚𝑝𝑟𝑜𝑣𝑒 == 𝑡𝑟𝑢𝑒 then
27: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒;
28: end if
29: 𝑖 = 𝑖 + 1;
30: while 𝑖 < |𝑉|;
31: while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 == 𝑡𝑟𝑢𝑒;
32: return r;

 38

6.2.7.2 Insert evaluation procedure.

This procedure (procedure 6.2.7.2.) is called from procedures 6.2.4.1 and 6.2.4.2.

The aim of this procedure is compute the evaluation of insertion visit 𝜗 into the voyage 𝑡𝑝.

If it possible under several restrictions (which are described in pseudocode) a procedure

inserts visit into the voyage, computes schedule cost, and removes visit from the voyage. In

the end procedure returns evaluation 휀 of insertion, which is empty if insertion is impossible.

Pseudocode of the procedure is provided below (Procedure 6.2.7.2).

6.2.7.3 Swap evaluation procedure.

This procedure (procedure 6.2.7.2.) is called from procedure 6.2.6.3. The aim of this

procedure is compute the evaluation of insertion visit 𝜗1 into the voyage 𝑟2 and 𝜗2 into the

voyage 𝑟1. If it possible under several restrictions (which are described in pseudocode) a

procedure Swaps visits between voyages, computes schedule cost, and returnt visit back into

Procedure(6.2.7.2) Inert visit evaluation

1: Function GetInsertEvaluation(solution 𝑧, voyage 𝑡𝜌, visit 𝜗, voyage 𝑠𝜌
(optionally))
2: Evaluation: 휀 = ∅;
3: Bool : 𝜔 = 𝑡𝑟𝑢𝑒 if insert visit is possible under vessels capacity

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
4: Bool : 𝛾 = 𝑡𝑟𝑢𝑒 if insert visit is possible under maximum number of

visits per voyage constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
5: Bool : 𝜃 = 𝑡𝑟𝑢𝑒 if visit 𝜗 is not already on voyage 𝑡𝜌, 𝑓𝑎𝑙𝑠𝑒
otherwise;
6: Bool :𝜆 = 𝑡𝑟𝑢𝑒 if insert visit is possible under spread of departures

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
7: if 𝜔 == 𝑡𝑟𝑢𝑒 and 𝛾 == 𝑡𝑟𝑢𝑒 and 𝜃 == 𝑡𝑟𝑢𝑒 and 𝜆 == 𝑡𝑟𝑢𝑒 then
8: if 𝑠𝜌 ! = ∅ then
9: Remove visit 𝜗 from voyage 𝑠𝜌;
10: Call procedure 6.2.7.1. for voyage 𝑠𝜌;
11: end if
12: Insert visit 𝜗 in voyage 𝑡𝜌;
13: Call procedure 6.2.7.1. for voyage 𝑡𝜌;
14 Bool : 𝜎 = 𝑡𝑟𝑢𝑒 if voyage 𝑡𝜌 is possible under maximum route

duration constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
15: Bool :𝜇 = 𝑡𝑟𝑢𝑒 if voyage 𝑡𝜌 is not overlapped in schedule during

the planning horizon, 𝑓𝑎𝑙𝑠𝑒 otherwise;
16: if 𝜇 == 𝑡𝑟𝑢𝑒 and 𝜎 == 𝑡𝑟𝑢𝑒 then
17: 휀 ← voyages 𝑡𝜌 and 𝑠𝜌 ,visit 𝜗 , and 𝑐(𝑧);
18: end if
19: Remove visit 𝜗 from voyage 𝑡𝜌;
20: Insert visit 𝜗 in voyage 𝑠𝜌;
21: Call procedure 6.2.7.1. for voyage 𝑡𝜌;
22: Call procedure 6.2.7.1. for voyage 𝑠𝜌;
23: end if
24: return 휀;

 39

original voyages. In the end procedure returns evaluation 휀 of swap visits, which is empty if

swap is impossible. Pseudocode of the procedure is provided below (Procedure 6.2.7.3).

6.2.8 Acceptance criteria

Since we need to diversify the search and strive to avoid local optimum, we need

some mechanism enabling us to do so. The simplest way is to accept at the end of each

iteration only those solutions, which are better than the current solution. This (as we

convinced) leads to trapping into some local optimum neighbourhood. Therefore, we take

the idea of solution acceptance from simulated annealing. Let s’ be the solution obtained at

the end of an iteration and s is the current solution. We assume to accept the solution s’ with

probability:

Procedure(6.2.7.3) Swap visits evaluation

1: Function GetSwapEvaluation(solution 𝑧, voyage1 𝑟1, visit1 𝑣1, voyage2
𝑟2, visit2 𝑣2)
2: 휀 = ∅;
3: Bool : 𝜔 = 𝑡𝑟𝑢𝑒 if swap visits is possible under vessels capacity

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
4: Bool : 𝛾 = 𝑡𝑟𝑢𝑒 if swap visits is possible under maximum number of

visits per voyage constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
5: Bool : 𝜃 = 𝑡𝑟𝑢𝑒 if visit 𝑣1 is not already on voyage 𝑟2 and visit 𝑣2

is not on voyage 𝑟1, 𝑓𝑎𝑙𝑠𝑒 otherwise;
6: Bool :𝜆 = 𝑡𝑟𝑢𝑒 if swap visits is possible under spread of departures

constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
7: if 𝜔 == 𝑡𝑟𝑢𝑒 and 𝛾 == 𝑡𝑟𝑢𝑒 and 𝜃 == 𝑡𝑟𝑢𝑒 and 𝜆 == 𝑡𝑟𝑢𝑒 then
8: Remove visit 𝑣1 from voyage 𝑟1;
9: Remove visit 𝑣2 from voyage 𝑟2;
10: Insert visit 𝑣2 in voyage 𝑟1;
11: Insert visit 𝑣1 in voyage 𝑟2;
12: Call procedure 6.2.7.1. for voyage (𝑟1);
13: Call procedure 6.2.7.1. for voyage (𝑟2);
14: Bool : 𝜎 = 𝑡𝑟𝑢𝑒 if voyages 𝑟1 and 𝑟2 are possible under maximum

route duration constraint, 𝑓𝑎𝑙𝑠𝑒 otherwise;
15: Bool :𝜇 = 𝑡𝑟𝑢𝑒 if voyages 𝑟1 and 𝑟2 is not overlapped in

schedule during the planning horizon, 𝑓𝑎𝑙𝑠𝑒 otherwise;
16: if 𝜇 == 𝑡𝑟𝑢𝑒 and 𝜎 == 𝑡𝑟𝑢𝑒 then
17: 휀 ← voyages 𝑟1 and 𝑟2, visit1 𝑣1 and 𝑣2, and 𝑐(𝑧);
18: end if
19: Remove visit 𝑣2 from voyage 𝑟1;
20: Remove visit 𝑣1 from voyage 𝑟2;
21: Insert visit 𝑣1 in voyage 𝑟1;
22: Insert visit 𝑣2 in voyage 𝑟2;
23: Call procedure 6.2.7.1. for voyage (𝑟1);
24: Call procedure 6.2.7.1. for voyage (𝑟2);
25: end if
26 return 휀;

 40

𝑒−
𝑓(𝑠′)−𝑓(𝑠)

𝑇 (18)

Where T is the temperature and always positive (T>0). The temperature starts from Tstart

and decreases with each iteration according to the formula 𝑇 = 𝑇 ∗ 𝑐, where 0 < c < 1 is

the cooling rate of the temperature. In our case, we set Tstart equal to the cost of the initial

solution. The values of c is made depended on the total number of iterations (ƞ) the

algorithm is to be run:

 𝑐 = 1 −
1

ƞ ∗
1
7

 (19)

the term
1

7
 is defined empirically so that the probability of accepting the solution s,’ when

c(s’) > c(s), is almost 0 by the last iteration.

 41

7.0 Computational Experiments

In this section, we describe our computational experiments. In section 7.1 we start

with finding of some tuning instances and proceed with the description of parameters tuning.

In section 7.2 we present the results obtained by the algorithm. We compare heuristic

performance to the two-phase exact approach and provide heuristic results for large

instances.

7.1 Tuning instances

The set of tuning instances is represented by instances of medium size. The total

number of installations supply from the base located in Mongstad. So we randomly deleted

some number of installations and created 10 different instances. There are 3 instances with

8 installations, 3 instances with 10 installations, 3 instances with 12 installations and 1

instance with 13 installations. Those instances of the same size have different combinations

of installation. The number of visits in this instances are varies from 27 to 48.

7.1.1 Parameters tuning

In this section we present user defined parameters which are subject to tuning and

results.

All our parameters are subdivided in to three categories: parameters of destroy

operators, parameters of repair operators and those used in acceptance criteria. We first

review parameters of destroy operators. First we have do define which portion of the solution

we have to destroy when making a move. As it was mentioned above, we remove random

number of visits, which is limited by some minimum and maximum values (𝐿𝑉 and 𝑀𝑉).

So, we have to define these minimum and maximum values experimentally. As regards

destroy operators, only Shaw removal heuristic contains controlled parameters: 𝛼 and 𝛽.

Since we have already defined which regret heuristics to apply (regret-2, regret-3), there is

no need in parameters tuning for insertion heuristics. As well we do not conduct experiments

with the size of the segment for which weights and probabilities of repair and destroy

operators are updated.

 As regards the acceptance criteria we use parameter 𝑐 defining cooling rate and we

use 4 parameters for weight adjustment of destroy and repair operators: 𝜎1, 𝜎2, 𝜎3 and 𝑟 see

section 6.2.5

7.1.2 ALNS parameters tuning results

 We developed some experimental values for each parameter (see Table 2). Fine-

tuning of parameters is conducted on the second phase by allowing one of parameters to take

 42

predefine values, while keeping the rest of parameters fixed. Since we know the number of

values each parameter can take, we can calculate the total number of combinations with

different parameters values. This is done by multiplication of all the numbers of values of

all parameters. In total we have 864 different combinations. We have 10 tuning instances

for parameters tuning experiments. Each instance is supposed to be run 5 times for each

combination of parameters values. In total we have to run the algorithm 4 320 times. For

each combination of parameters values we define the average deviation from the best found

solution for each instance and then the average for all instances (within a combination).Each

instance is run for 2000 iterations that takes in average 7 minutes. The total time taken to

conduct the whole experiment for all instances and parameters setting is 84 hours. The best

setting of parameters is provided in Table 3. The procedure of parameters tuning was

automated.

Parameters Possible values

𝒓 0.2 0.4 0.6

𝝈𝟏 20 25

𝝈𝟐 15 20

𝝈𝟑 10 15

𝜶 0.25 0.5 0.75

𝜷 0.25 0.5 0.25

𝑽𝒊𝒔𝒊𝒕𝒔 (%) 10-15 12-17 15-20 17-20

Table 2 - Experimental value for each parameter

N 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 𝐿𝑉 𝑀𝑉 Gap(%)

(%) 468 0.5 0.5 25 20 10 0.6 17 20 0.02

Table 3 - Best founded parameters setting

 The results of all experiments of all parameters settings a provided in Appendix A

7.2 Results

 This section provides results of the computational experiments, which were

conducted, with the aim of testing the performance of the heuristic. For this purpose, we

developed a set of test instances.

7.2.1 Test instances

All the test instances were generated based on the instance provided by the Statoil

ASA, which contains 26 installations (the main instance). All these instances are divided in

to two groups. The first group involves instances of the small and medium size (3 – 13

installations per instance). The second group involves instances with 14-26 installations per

 43

instance. All these instances were generated by gradually deleting installations from the

main instance (one by one). In total, we have 10 small and medium size instances and 13

large size instances.

Location of all installations supplied from the supply base located in Mongstad is

provided in the Error! Reference source not found. below.

7.2.2 Input data

 In this section, we describe the input data to the algorithm on the example of the

main instance (instance with 26 installations).

There are three input files used for the input data. The first file contains names of

installations and supply base, open and closing times, demands, visits frequencies, service

times (lay times) and as well coordinates of installations (LatDec and LonDec). In addition

this file contains the values of minimum and maximum installations per voyage, coordinate

of offshore point. There are three possible departures from the supply base within a day.

Example of the input file is provided on the Figure 6.

The second file contains information about the supply vessels fleet. For the list of

supply vessels there is indicated its capacity, speed, fuel cost (NOK/ton), fuel consumption

rates for sailing (ton/h), servicing and waiting at an installation (ton/h), at the supply base

(ton/h). Example of this input file see on the Figure 7.

Figure 5 Location of offshore installations and Mongstad supply base.

 44

And the last input file contains feasible patterns of departures spread combinations

for each visit frequency. See on the Figure 8.

Figure 7 Input data example for supply vessels.

Figure 8 Input data example for visit day’s combinations.

7.2.3 Comparative analysis and results

In this section we provide the results of the conducted experiments and comments to

them. All the tests were conducted with the use of the computer with following

characteristics: 3.5. GHz Intel core i5 and 8 GB RAM. Mathematical model of the two phase

approach was developed in AMPL (A Mathematical Programming Language) and run using

solver CPLEX 12.6.0.0. Both route generation algorithm (for the two-phase approach) and

Figure 6 Input data example for offshore installations

 45

ALNS metaheuristic algorithm were programmed using C# programming language and .net

4.5 framework.

First we cover experiments for the small and medium size instances. In the Error!

Reference source not found. provided results of the two phase approach and ALNS

heuristic.

The first column contains the names of all instances. Each name is compounded of

several numbers. The first number defines the instance size interns of the number of

installations. The second number define the number of installations with time windows, and

the third number defines instance size interns of the total number of visits. The second

column shows the gap in % between two phase method and ALNS heuristics objectives

functions i.e. costs. As we see heuristic is able to provide optimal and near optimal solutions

for small and medium size problems. There is no gap for instances with 3-9 and 11-13

installations, the heuristic manged to find optimal solutions. There is a minor gap for

instance with 10 installations. The gap for this instance can be explained by a very narrow

scope (neighbourhood) of solutions with two vessels. Such instances are so called “heavy

instances”. The schedule for this instance is relatively tight and adding on more installation

into schedule or increasing visit frequency of some existing installation in the schedule may

lead to the fleet size increase. As we see from the results, the instance with 11 installations

(and the rest larger instances) requires 3 vessels. Columns there and four (CPU sec) reflect

Instance Gap (%) CPU (sec) Number of Vessels

 Two phase

method vs

ALNS

Two phase

method

ALNS Two phase

method

ALNS

3-0-9 0 1 1 1 1

4-0-12 0 1 2 1 1

5-0-15 0 1 3 1 1

6-0-19 0 2 8 2 2

7-1-23 0 3 15 2 2

8-1-27 0 8 25 2 2

9-1-32 0 10 27 2 2

10-1-37 0.23 176 76 2 2

11-1-42 0.00 252 117 3 3

12-4-45 0.00 178 58 3 3

13-4-48 0.00 57 63 3 3

Average 0.03 50.44 30.44 1.78 1.78

Table 4 – Comparative analisis between two-phase approach and ALNS heuristic

 46

the running time in seconds of the two-phase approach and ALNS heuristic. Two- phase

approach performs faster (and this is obvious) on small size instances (3-9). Nevertheless,

the situation changes for the medium size instances. As we see, the running time of the

ALNS heuristic for medium size instances (10-13) is shorter compared to two-phase

approach (in average twice). The last two columns provide the number of vessels used in the

schedule provided by the two approaches. The number of vessels is equal for the same

instance size. We may conclude that developed algorithm is able to provide optimal or near

optimal solution for small and medium size instance within just a minute.

Now we discuss results of the experiments for large size instances. Unfortunately

optimal solutions for large instances are unavailable since the problem complexity and as

follows computational time grows exponentially with the problem size. Therefore, for the

instances with 14-26 installations we conduct experiments for different number of iterations.

The aim of such experiment is to define how the number of iterations influences the cost of

the solution. And as well we find out the preferable number of iterations required to obtain

the solution of a relatively good quality within a short time. For this we have to conduct

trade-off analysis between objective values of solutions and running time of the algorithm.

We conducted experiments for 13 instances (14 -26 installations). For each instance

the algorithm was run for different number of iterations, from 100 to 1000 with 100 interval.

As well, we aimed to assess the stability of the results and for this purpose we run the

algorithm 10 times for each instance and number of iterations setup. The results of the

experiments are summarized in the Appendix B. For each instance and for each setup of the

number of iterations we defined the average cost, the average running time (for 10 runs) and

the gap between the average cost and the cost of the best found solution for all setups of the

number of iterations. In the table below (Table 5) we provide the excerpt from the Appendix

B where for each instance showed only the cost of the best found solution, the number of

vessels in the best found solution and the gap from this solution for each setup of the number

of iterations. The table is performed in the form of the heat map. Small gaps are marked

green and the colour gradually changes to bright red as the gap increases. As we see, the

algorithm performs rather efficiently. In most cases (except instances with 17, 18 and 23

installations) the algorithm managed to find solutions which in average deviate from the best

found less than 1%. Results with the gap less than 1% mean that for all 10 runs (for certain

instance and number of iterations) the algorithm managed to find solutions with the same

number of vessels as in the best found solution. A gap of 2.6-2.8 % means that in 1 of 10

runs the algorithm did not manage to drop the number of vessels to the minimum (under

 47

minimum we mean the number of vessels in the best found solution) and the number of

vessels is by one vessel more than in the best found schedule. There were no solutions where

the number of vessels is more by 2 than in the best found. Each gap increase by 2.6-2.8 %

means reduction of the number of successful solutions (with minimal number of vessels) by

one. Results with 26% gap mean that out of 10 runs there were not found any solutions with

minimal number of vessels. As we see, the average gap reduces with increase of the number

of iterations and the minimum gap is mostly achieved for 1000 iterations.

 Special interest represent results for the instances with 17, 18 and 23 installations.

The worst results are for the instance with 18 installations where the gap varies from 18 to

26 % that means that 7-10 runs out of 10 are unsuccessful. Those schedules where the

algorithm managed to find solutions with minimal number of vessels turned out to be very

tight (see example Figure 9) and very difficult for the algorithm to find. We refer the instances

for which it is quite difficult to find a schedule with minimal number of vessels – «heavy

instances». In most cases, a vessel should start loading/unloading operations just 10-15

minutes after it arrives to the base. The neighbourhood area of solutions with minimal

number of vessels, for such instances, is very small and of course requires additional efforts

for the algorithm to find a good solution. The gap reduction is achieved by increasing the

number of iterations (as we see from the table). For instances with 17 and 23 installations,

the gap reduced almost up to minimal when the number of iterations was set to 1000.

Although for the instance with 18 installations such gap reduction is quite unclear (5%) that

means we deal with a very tight schedule. One more interesting aspect, related to heavy

instances, is that the solution for the next instance following the heavy instance (in terms of

the number of installations) requires one vessel more. This fact further supports ours

Iterations

Instance Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%) Gap (%)

14-4-51 0,26 0,15 0,28 0,08 0,10 0,03 0,08 0,07 0,02 0,02 5106776,97 3

15-4-54 0,55 0,64 0,32 0,35 0,29 0,19 0,21 0,29 0,21 0,18 5155404,36 3

16-4-58 11,29 2,98 0,44 2,86 0,19 0,15 0,10 0,16 0,08 0,14 5218878,34 3

17-5-61 21,84 24,39 8,54 3,44 11,09 5,67 0,62 3,18 0,37 3,06 5245374,24 3

18-5-64 26,40 26,36 26,31 18,46 23,67 18,44 21,02 26,24 23,57 20,95 5292785,34 3

19-6-66 0,52 0,37 0,31 0,29 0,33 0,33 0,25 0,32 0,27 0,22 6723965,22 4

20-6-72 0,38 0,30 0,21 0,15 0,17 0,16 0,15 0,15 0,14 0,10 6830353,28 4

21-6-77 0,55 0,41 0,43 0,37 0,34 0,36 0,30 0,30 0,27 0,29 6895713,99 4

22-6-81 2,75 0,63 4,56 2,41 0,48 0,32 0,34 0,34 0,26 0,29 6954724,85 4

23-7-84 14,64 8,64 8,52 8,52 6,50 6,51 6,50 2,41 2,48 0,41 6996699,15 4

24-7-87 0,59 0,51 0,38 0,34 0,36 0,35 0,31 0,26 0,24 0,27 8560334,23 5

25-8-88 0,41 0,32 0,26 0,27 0,21 0,21 0,22 0,15 0,19 0,16 8581096,14 5

26-8-91 0,59 0,51 0,48 0,44 0,33 0,34 0,36 0,29 0,26 0,31 8630445,26 5

Average 6,213276 5,092913 3,926709 2,922644 3,388671 2,544064 2,342772 2,627937 2,18184 2,031012

700 800 900 1000

Optimal Costs

Optimal number

of vessels

100 200 300 400 500 600

Table 5 - A heat map of the gap from best-found solution with respect to the instance size and number

of iterations

 48

assumptions concerning so-called “heavy instances”. For heavy instance, increase of the

number of installations at least by one (sometimes by two) or increase of the visit frequency

leads to the increase of the fleet size. This is supported by experiments. For instances with

19 and 24 installation (which follow heavy instances with 18 and installations), the required

fleet size 4 and 5 vessels respectively (that is one vessel more than for the instances with 18

and 23 installations).

Figure 9 Example of tight schedule

As well we need to assess the running time of the algorithm. For this purpose, we

analyse the larges instance (26 installations) and assess how changes the cost and

computational time with increase of the number of iterations. On the Figure 10 Trade-off

analyse for the instance with 26 installationsFigure 9 we see the results of the experiments

conducted for different number of iterations. The x-axis corresponds to the number of

iterations. The left y-axis correspond to the cost of the solution and the right y-axis

corresponds to the running time of the algorithm. As we see, the highest cost (8837328)

corresponds to the minimal number of iterations (30) and minimal computation time (32

sec). The lowest cost (8656772) is achieved for the maximal number of iterations (1000).

However, such low cost is achieved at the expense of the computational time, which is 1048

sec. Both for minimal and maximal number of iteration the algorithm managed to find

solution with minimal number of vessels. Therefore, selection of the number of iterations

will affect only operational costs (sailing and servicing). We may observe a serious cost

reduction from 30 to 40 iterations (by 129364 NOK). The difference between the cost of the

solutions for 100 and 1000 is 36599. The dependence between the time and cost is linear

and we state that at least 100 iterations (just 130sec) is preferably required to get a relatively

good solution. Therefore, we assume that it is up to a researcher how many iteration to set.

Taking into account the provided above analysis of the large size instances and presence of

so-called “heavy instances”, requires running more iterations to insure sufficient fleet size

reduction (since we do not know in advance which instance is “heavy”). From our point of

view, taking into account quite high speed of the algorithm which is able to run 1000

 49

iterations within 1000 sec (17 min), we recommend to run the algorithm for at least 1000

iterations to ensure good quality of a solution in case of heavy instance.

In addition, Shyshou et al. (2012) kindly provided large size test instances (26-31

installations) which were used in their paper. We run ours algorithm for these instances and

compared results. The results are summarized in the table 6. As we see, our algorithm

provided better solutions for theses instance with the average gap 4.07 %. For instances with

27 and 28 installations the ALNS managed to find the solutions with fewer number of vessels

(6 vessels compared to Shyshou et al. (2012) solutions which contain 7 vessels). The gaps

in the objective function for these solutions are 11.38% and 10.07 % respectively. And as

we see ours heuristic performs extremely faster compared to Shyshou et al. (2012). The

average running time for these large instances is 427 seconds, while Shyshou et al. (2012)

heuristic requires in average 13 795 sec, that is in average 32.3 times slower.

Instance Costs Gap (%) CPU (sec) Number of Vessels

LNS by

Shyshou
ALNS

LNS by vs

ALNS

LNS by

Shyshou
ALNS

LNS by

Shyshou
ALNS

26-94-5 5 603 570 5 553 327 0.9 12 712 95 6 6

27-98-5 6 458 500 5 723 607 11.38 10 403 263 7 6

28-102-5 6 553 680 5 953 712 10.07 22 584 1019 7 6

29-108-5 6 617 220 6 605 827 0.17 10 366 408 7 7

30-114-5 6 715 540 6 631 356 1.39 12 148 456 7 7

31-115-6 6 735 720 6 626 829 1.62 14 557 307 7 7

Average 6 447 371 6 183 524 4.07 13 795 427 6.83 6.5

Table 6-Comparison results of the Shushou LNS heuristic and represented ALNS heuristic for large

size instances.

Figure 10 Trade-off analyse for the instance with 26 installations

 50

We may conclude that ours algorithm is able to find solutions of a better quality 30

times faster than that one developed by Shyshou et al. (2012).

 51

8.0 Conclusions and further research

In the upstream offshore petroleum logistics, platform supply vessels (PSVs) are the

main cost contributor. PSVs are used to deliver all the necessary material and equipment to

offshore installations. Steady and uninterrupted supply is crucial for oil operators since the

down time of an installation, in case some delay or disrupt, is enormous. The fleet of supply

vessel sis associated with vessels charter and fuel costs. Therefore, there is trade-off between

the service level and the cost of supply. To ensure high service level, sufficient number of

vessels and theirs careful planning is required.

In this thesis, we to try to solve the problem of supply of the oil filed located in the

North Sea and belonging to Statoil ASA, the largest oil operator in Norway. The oil field is

supplied from the onshore supply based located in Mongstad and accounts for 26

installations. In the literature the problem is known as Periodic supply Vessel Planning

Problem (PSVPP). The objective of PSVPP is to construct a weekly vessels schedule so that

vessels charter cost and fuel cost is minimized. The problem is of a tactical level with

planning horizon of one week. The problem involves three combinatorial optimization

problem: packing (fleet size reduction), sequencing (routing) and scheduling (departures of

vessels on voyages). Therefore, problems of large size is impossible to solve optimally

within a reasonable time.

The objective of this thesis is to develop a decision support tool able to provide

solutions of a good quality within a relatively short time. We studied existing literature

dedicated to PSVPP and as well, some heuristic approaches to combinatorial problems. We

selected Large Neighbourhood Heuristic (LNS) as a framework for ours algorithms and

considered several known approaches to enhance its efficiency. As a starting point, we

selected the LNS developed by Shyshou et al. (2012) for the PSVPP. We revised the

heuristic, added several new procedures, improved existing and incorporated simulated

annealing and adaptiveness framework. The resulted algorithm is referred to as Adaptive

Large Neighbourhood Search (ALNS) heuristic.

Since we need to validate the resulted algorithm and check its performance, we

developed two-phase exact approach based on set partitioning formulation of the PSVPP.

The two-phase approach The ALNS was tested by comparing solutions obtained for small

and medium size instances to those obtained by using the two-phase exact approach. The

ALNS proved to be quite efficient both in terms of costs and computational times compared

to exact approach. For most instances the heuristic managed to find optimal or near optimal

solutions within rather short time and thus outperforming the exact approach. Since it is

 52

hardly possible to compare Heuristic and exact approach for large size instances, we

compared ours ALNS to the LNS developed by (Shyshou et al. 2012)The results of the

experiments state that ours algorithm is able to find better solutions 30 times faster than the

LNS by Shyshou et al. Furthermore, for several instances ours algorithm manged to find

solution with fewer number of vessels.

As well, we outline several directions for the future research. First, there is need to

improve the efficiency of the heuristic to provide good solution for heavy instances i.e.

instances for which resulted schedules are very tight. As experiment showed, the algorithm

does not always mange to reduce the fleet size to the minimum for some instances (large

size). Especial feature of such instances is that increase of the instance just by one

installation (adding of a new one) or increase of the visit frequency of some existing

inevitably lead to the fleet size increase. The resulting schedule with minimal number of

vessels for such instances is very tight and as follows is very difficult to find. Therefore,

some work should be conducted to improve the algorithm to search for good solution for

such types of instances. (see (Ahuja et al. 2002))

As well, there is a need to incorporate some instrument allowing for generation of a

robust solution to cope with weather uncertainty. Too tight schedules are inapplicable in

practice and therefore some approach is needed to cope with uncertainty (see (Maisiuk and

Gribkovskaia 2014); (Vlachos 2004))

Furthermore, in practice there are often cooperation between supply bases i.e. when

a vessel starts a voyage at one bases and finishes at another. As well, there is a problem of

distribution of installations between bases i.e. from which supply base it more efficient to

serve some installations (especially those equally in between bases). For this reason, the

algorithm should involve the possibility to construct schedules for several bases

simultaneously. The problem then becomes multi base (see (Crevier, Cordeau, and Laporte

2007); (Cordeau, Gendreau, and Laporte 1997))

 53

References

Ahuja, Ravindra K, Özlem Ergun, James B Orlin, and Abraham P Punnen. 2002. "A

survey of very large-scale neighborhood search techniques." Discrete Applied

Mathematics 123 (1):75-102.

Bräysy, Olli, and Michel Gendreau. 2005. "Vehicle routing problem with time windows,

Part I: Route construction and local search algorithms." Transportation science 39

(1):104-118.

Cordeau, Jean-François, Michel Gendreau, and Gilbert Laporte. 1997. "A tabu search

heuristic for periodic and multi-depot vehicle routing problems." Networks 30

(2):105-119.

Crevier, Benoit, Jean-François Cordeau, and Gilbert Laporte. 2007. "The multi-depot

vehicle routing problem with inter-depot routes." European Journal of

Operational Research 176 (2):756-773.

Fagerholt, K., and H. Lindstad. 2000. "Optimal policies for maintaining a supply service in

the Norwegian Sea." Omega-International Journal of Management Science 28

(3):269-275. doi: Doi 10.1016/S0305-0483(99)00054-7.

Gribkovskaia, I., G. Laporte, and A. Shlopak. 2008. "A tabu search heuristic for a routing

problem arising in servicing of offshore oil and gas platforms." Journal of the

Operational Research Society 59 (11):1449-1459. doi:

10.1057/palgrave.jors.2602469.

Halvorsen-Weare, Elin E, and Kjetil Fagerholt. 2011. "Robust supply vessel planning." In

Network optimization, 559-573. Springer.

Halvorsen-Weare, Elin E, Kjetil Fagerholt, Lars Magne Nonås, and Bjørn Egil

Asbjørnslett. 2012. "Optimal fleet composition and periodic routing of offshore

supply vessels." European Journal of Operational Research 223 (2):508-517.

Korsvik, J. E., and K. Fagerholt. 2010. "A tabu search heuristic for ship routing and

scheduling with flexible cargo quantities." Journal of Heuristics 16 (2):117-137.

Maisiuk, Yauhen, and Irina Gribkovskaia. 2014. "Fleet Sizing for Offshore Supply Vessels

with Stochastic Sailing and Service Times." Procedia Computer Science 31:939-

948.

Norlund, E. K., and I. Gribkovskaia. 2013. "Reducing emissions through speed

optimization in supply vessel operations (vol 23, pg 105, 2013)." Transportation

Research Part D-Transport and Environment 24:135-135. doi:

10.1016/j.trd.2013.09.001.

Pisinger, David, and Stefan Ropke. 2010. "Large neighborhood search." In Handbook of

metaheuristics, 399-419. Springer.

 54

Ropke, S., and D. Pisinger. 2006. "An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows." Transportation Science 40

(4):455-472. doi: 10.1287/trsc.1050.0135.

Shaw, P. 1998. "Using constraint programming and local search methods to solve vehicle

routing problems." Principles and Practice of Constraint Programming - Cp98

1520:417-431.

Shaw, Paul. 1997. "A new local search algorithm providing high quality solutions to

vehicle routing problems." APES Group, Dept of Computer Science, University of

Strathclyde, Glasgow, Scotland, UK.

Shyshou, A., I. Gribkovskaia, G. Laporte, and K. Fagerholt. 2012. "A Large

Neighbourhood Search Heuristic for a Periodic Supply Vessel Planning Problem

Arising in Offshore Oil and Gas Operations." Infor 50 (4):195-204. doi:

10.3138/infor.50.4.195.

Statoil, ASA. 2016. Statoil Annual Report on Form 20-F

Vlachos, DS. 2004. "Optimal ship routing based on wind and wave forecasts." Applied

Numerical Analysis & Computational Mathematics 1 (2):547-551.

 55

Appendix A.

Results obtained by ALNS heuristic for parameters tuning.

N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV
1 3.34 0.25 0.25 20 15 10 0.2 10 15 433 0.18 0.5 0.5 25 15 10 0.2 10 15
2 0.19 0.25 0.25 20 15 10 0.2 12 17 434 8.01 0.5 0.5 25 15 10 0.2 12 17
3 3.33 0.25 0.25 20 15 10 0.2 15 20 435 0.15 0.5 0.5 25 15 10 0.2 15 20
4 0.13 0.25 0.25 20 15 10 0.2 17 20 436 0.13 0.5 0.5 25 15 10 0.2 17 20
5 4.83 0.25 0.25 20 15 10 0.4 10 15 437 4.98 0.5 0.5 25 15 10 0.4 10 15
6 6.42 0.25 0.25 20 15 10 0.4 12 17 438 1.71 0.5 0.5 25 15 10 0.4 12 17
7 0.18 0.25 0.25 20 15 10 0.4 15 20 439 0.18 0.5 0.5 25 15 10 0.4 15 20
8 1.70 0.25 0.25 20 15 10 0.4 17 20 440 9.67 0.5 0.5 25 15 10 0.4 17 20
9 1.77 0.25 0.25 20 15 10 0.6 10 15 441 9.70 0.5 0.5 25 15 10 0.6 10 15
10 0.18 0.25 0.25 20 15 10 0.6 12 17 442 8.06 0.5 0.5 25 15 10 0.6 12 17
11 1.77 0.25 0.25 20 15 10 0.6 15 20 443 7.96 0.5 0.5 25 15 10 0.6 15 20
12 1.69 0.25 0.25 20 15 10 0.6 17 20 444 4.88 0.5 0.5 25 15 10 0.6 17 20
13 6.51 0.25 0.25 20 15 15 0.2 10 15 445 14.4

9

0.5 0.5 25 15 15 0.2 10 15
14 4.95 0.25 0.25 20 15 15 0.2 12 17 446 0.23 0.5 0.5 25 15 15 0.2 12 17
15 7.97 0.25 0.25 20 15 15 0.2 15 20 447 1.81 0.5 0.5 25 15 15 0.2 15 20
16 6.39 0.25 0.25 20 15 15 0.2 17 20 448 4.86 0.5 0.5 25 15 15 0.2 17 20
17 4.93 0.25 0.25 20 15 15 0.4 10 15 449 0.29 0.5 0.5 25 15 15 0.4 10 15
18 4.98 0.25 0.25 20 15 15 0.4 12 17 450 3.34 0.5 0.5 25 15 15 0.4 12 17
19 6.44 0.25 0.25 20 15 15 0.4 15 20 451 0.32 0.5 0.5 25 15 15 0.4 15 20
20 6.51 0.25 0.25 20 15 15 0.4 17 20 452 7.96 0.5 0.5 25 15 15 0.4 17 20
21 0.15 0.25 0.25 20 15 15 0.6 10 15 453 0.22 0.5 0.5 25 15 15 0.6 10 15
22 6.40 0.25 0.25 20 15 15 0.6 12 17 454 9.74 0.5 0.5 25 15 15 0.6 12 17
23 3.36 0.25 0.25 20 15 15 0.6 15 20 455 0.14 0.5 0.5 25 15 15 0.6 15 20
24 6.49 0.25 0.25 20 15 15 0.6 17 20 456 6.43 0.5 0.5 25 15 15 0.6 17 20
25 8.09 0.25 0.25 20 20 10 0.2 10 15 457 9.62 0.5 0.5 25 20 10 0.2 10 15
26 11.1

8

0.25 0.25 20 20 10 0.2 12 17 458 4.91 0.5 0.5 25 20 10 0.2 12 17
27 0.31 0.25 0.25 20 20 10 0.2 15 20 459 4.89 0.5 0.5 25 20 10 0.2 15 20
28 1.77 0.25 0.25 20 20 10 0.2 17 20 460 0.19 0.5 0.5 25 20 10 0.2 17 20
29 8.12 0.25 0.25 20 20 10 0.4 10 15 461 4.80 0.5 0.5 25 20 10 0.4 10 15
30 1.70 0.25 0.25 20 20 10 0.4 12 17 462 3.40 0.5 0.5 25 20 10 0.4 12 17
31 6.41 0.25 0.25 20 20 10 0.4 15 20 463 1.70 0.5 0.5 25 20 10 0.4 15 20
32 3.32 0.25 0.25 20 20 10 0.4 17 20 464 6.49 0.5 0.5 25 20 10 0.4 17 20
33 1.69 0.25 0.25 20 20 10 0.6 10 15 465 0.11 0.5 0.5 25 20 10 0.6 10 15
34 8.03 0.25 0.25 20 20 10 0.6 12 17 466 6.48 0.5 0.5 25 20 10 0.6 12 17
35 0.26 0.25 0.25 20 20 10 0.6 15 20 467 0.22 0.5 0.5 25 20 10 0.6 15 20
36 4.89 0.25 0.25 20 20 10 0.6 17 20 468 0.02 0.5 0.5 25 20 10 0.6 17 20
37 4.86 0.25 0.25 20 20 15 0.2 10 15 469 1.79 0.5 0.5 25 20 15 0.2 10 15
38 9.69 0.25 0.25 20 20 15 0.2 12 17 470 4.95 0.5 0.5 25 20 15 0.2 12 17
39 4.87 0.25 0.25 20 20 15 0.2 15 20 471 6.43 0.5 0.5 25 20 15 0.2 15 20
40 6.45 0.25 0.25 20 20 15 0.2 17 20 472 8.01 0.5 0.5 25 20 15 0.2 17 20
41 6.46 0.25 0.25 20 20 15 0.4 10 15 473 1.67 0.5 0.5 25 20 15 0.4 10 15
42 0.16 0.25 0.25 20 20 15 0.4 12 17 474 3.35 0.5 0.5 25 20 15 0.4 12 17
43 1.70 0.25 0.25 20 20 15 0.4 15 20 475 0.15 0.5 0.5 25 20 15 0.4 15 20
44 1.74 0.25 0.25 20 20 15 0.4 17 20 476 6.49 0.5 0.5 25 20 15 0.4 17 20
45 1.86 0.25 0.25 20 20 15 0.6 10 15 477 3.31 0.5 0.5 25 20 15 0.6 10 15
46 1.85 0.25 0.25 20 20 15 0.6 12 17 478 8.19 0.5 0.5 25 20 15 0.6 12 17
47 1.66 0.25 0.25 20 20 15 0.6 15 20 479 1.68 0.5 0.5 25 20 15 0.6 15 20
48 0.26 0.25 0.25 20 20 15 0.6 17 20 480 1.78 0.5 0.5 25 20 15 0.6 17 20
49 8.02 0.25 0.25 25 15 10 0.2 10 15 481 6.44 0.5 0.75 20 15 10 0.2 10 15
50 9.57 0.25 0.25 25 15 10 0.2 12 17 482 4.87 0.5 0.75 20 15 10 0.2 12 17
51 8.07 0.25 0.25 25 15 10 0.2 15 20 483 1.78 0.5 0.75 20 15 10 0.2 15 20
52 4.85 0.25 0.25 25 15 10 0.2 17 20 484 0.09 0.5 0.75 20 15 10 0.2 17 20
53 6.47 0.25 0.25 25 15 10 0.4 10 15 485 3.39 0.5 0.75 20 15 10 0.4 10 15
54 1.74 0.25 0.25 25 15 10 0.4 12 17 486 8.07 0.5 0.75 20 15 10 0.4 12 17
55 1.68 0.25 0.25 25 15 10 0.4 15 20 487 6.41 0.5 0.75 20 15 10 0.4 15 20
56 4.87 0.25 0.25 25 15 10 0.4 17 20 488 6.45 0.5 0.75 20 15 10 0.4 17 20
57 3.35 0.25 0.25 25 15 10 0.6 10 15 489 6.48 0.5 0.75 20 15 10 0.6 10 15
58 0.10 0.25 0.25 25 15 10 0.6 12 17 490 1.67 0.5 0.75 20 15 10 0.6 12 17
59 6.42 0.25 0.25 25 15 10 0.6 15 20 491 4.93 0.5 0.75 20 15 10 0.6 15 20
60 6.39 0.25 0.25 25 15 10 0.6 17 20 492 6.40 0.5 0.75 20 15 10 0.6 17 20
61 11.2

4

0.25 0.25 25 15 15 0.2 10 15 493 11.2

8

0.5 0.75 20 15 15 0.2 10 15
62 6.52 0.25 0.25 25 15 15 0.2 12 17 494 6.40 0.5 0.75 20 15 15 0.2 12 17
63 3.33 0.25 0.25 25 15 15 0.2 15 20 495 8.04 0.5 0.75 20 15 15 0.2 15 20
64 3.27 0.25 0.25 25 15 15 0.2 17 20 496 8.02 0.5 0.75 20 15 15 0.2 17 20
65 9.61 0.25 0.25 25 15 15 0.4 10 15 497 4.86 0.5 0.75 20 15 15 0.4 10 15
66 6.49 0.25 0.25 25 15 15 0.4 12 17 498 0.14 0.5 0.75 20 15 15 0.4 12 17
67 0.07 0.25 0.25 25 15 15 0.4 15 20 499 4.89 0.5 0.75 20 15 15 0.4 15 20
68 4.79 0.25 0.25 25 15 15 0.4 17 20 500 0.12 0.5 0.75 20 15 15 0.4 17 20
69 0.12 0.25 0.25 25 15 15 0.6 10 15 501 1.88 0.5 0.75 20 15 15 0.6 10 15
70 14.4

8

0.25 0.25 25 15 15 0.6 12 17 502 0.23 0.5 0.75 20 15 15 0.6 12 17
71 8.03 0.25 0.25 25 15 15 0.6 15 20 503 4.85 0.5 0.75 20 15 15 0.6 15 20
72 0.11 0.25 0.25 25 15 15 0.6 17 20 504 8.05 0.5 0.75 20 15 15 0.6 17 20
73 0.08 0.25 0.25 25 20 10 0.2 10 15 505 0.21 0.5 0.75 20 20 10 0.2 10 15
74 3.20 0.25 0.25 25 20 10 0.2 12 17 506 6.50 0.5 0.75 20 20 10 0.2 12 17
75 6.53 0.25 0.25 25 20 10 0.2 15 20 507 3.39 0.5 0.75 20 20 10 0.2 15 20
76 3.30 0.25 0.25 25 20 10 0.2 17 20 508 4.81 0.5 0.75 20 20 10 0.2 17 20

 56

N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV
77 3.41 0.25 0.25 25 20 10 0.4 10 15 509 0.31 0.5 0.75 20 20 10 0.4 10 15
78 1.75 0.25 0.25 25 20 10 0.4 12 17 510 0.10 0.5 0.75 20 20 10 0.4 12 17
79 0.25 0.25 0.25 25 20 10 0.4 15 20 511 8.08 0.5 0.75 20 20 10 0.4 15 20
80 4.86 0.25 0.25 25 20 10 0.4 17 20 512 1.79 0.5 0.75 20 20 10 0.4 17 20
81 3.31 0.25 0.25 25 20 10 0.6 10 15 513 6.49 0.5 0.75 20 20 10 0.6 10 15
82 1.64 0.25 0.25 25 20 10 0.6 12 17 514 0.18 0.5 0.75 20 20 10 0.6 12 17
83 8.03 0.25 0.25 25 20 10 0.6 15 20 515 0.12 0.5 0.75 20 20 10 0.6 15 20
84 3.26 0.25 0.25 25 20 10 0.6 17 20 516 3.35 0.5 0.75 20 20 10 0.6 17 20
85 0.34 0.25 0.25 25 20 15 0.2 10 15 517 6.48 0.5 0.75 20 20 15 0.2 10 15
86 0.22 0.25 0.25 25 20 15 0.2 12 17 518 1.73 0.5 0.75 20 20 15 0.2 12 17
87 0.24 0.25 0.25 25 20 15 0.2 15 20 519 6.39 0.5 0.75 20 20 15 0.2 15 20
88 11.2

8

0.25 0.25 25 20 15 0.2 17 20 520 0.27 0.5 0.75 20 20 15 0.2 17 20
89 8.12 0.25 0.25 25 20 15 0.4 10 15 521 3.42 0.5 0.75 20 20 15 0.4 10 15
90 0.14 0.25 0.25 25 20 15 0.4 12 17 522 1.80 0.5 0.75 20 20 15 0.4 12 17
91 0.22 0.25 0.25 25 20 15 0.4 15 20 523 0.11 0.5 0.75 20 20 15 0.4 15 20
92 6.48 0.25 0.25 25 20 15 0.4 17 20 524 8.00 0.5 0.75 20 20 15 0.4 17 20
93 0.25 0.25 0.25 25 20 15 0.6 10 15 525 15.9

9

0.5 0.75 20 20 15 0.6 10 15
94 6.46 0.25 0.25 25 20 15 0.6 12 17 526 4.92 0.5 0.75 20 20 15 0.6 12 17
95 0.19 0.25 0.25 25 20 15 0.6 15 20 527 0.16 0.5 0.75 20 20 15 0.6 15 20
96 0.14 0.25 0.25 25 20 15 0.6 17 20 528 6.46 0.5 0.75 20 20 15 0.6 17 20
97 4.88 0.25 0.5 20 15 10 0.2 10 15 529 6.43 0.5 0.75 25 15 10 0.2 10 15
98 6.46 0.25 0.5 20 15 10 0.2 12 17 530 0.18 0.5 0.75 25 15 10 0.2 12 17
99 1.66 0.25 0.5 20 15 10 0.2 15 20 531 0.18 0.5 0.75 25 15 10 0.2 15 20
100 6.38 0.25 0.5 20 15 10 0.2 17 20 532 3.31 0.5 0.75 25 15 10 0.2 17 20
101 8.08 0.25 0.5 20 15 10 0.4 10 15 533 11.3

2

0.5 0.75 25 15 10 0.4 10 15
102 3.32 0.25 0.5 20 15 10 0.4 12 17 534 0.20 0.5 0.75 25 15 10 0.4 12 17
103 0.21 0.25 0.5 20 15 10 0.4 15 20 535 1.62 0.5 0.75 25 15 10 0.4 15 20
104 1.74 0.25 0.5 20 15 10 0.4 17 20 536 6.39 0.5 0.75 25 15 10 0.4 17 20
105 11.3

3

0.25 0.5 20 15 10 0.6 10 15 537 0.26 0.5 0.75 25 15 10 0.6 10 15
106 9.72 0.25 0.5 20 15 10 0.6 12 17 538 0.20 0.5 0.75 25 15 10 0.6 12 17
107 6.52 0.25 0.5 20 15 10 0.6 15 20 539 3.25 0.5 0.75 25 15 10 0.6 15 20
108 1.71 0.25 0.5 20 15 10 0.6 17 20 540 3.30 0.5 0.75 25 15 10 0.6 17 20
109 0.11 0.25 0.5 20 15 15 0.2 10 15 541 3.47 0.5 0.75 25 15 15 0.2 10 15
110 6.44 0.25 0.5 20 15 15 0.2 12 17 542 0.19 0.5 0.75 25 15 15 0.2 12 17
111 3.25 0.25 0.5 20 15 15 0.2 15 20 543 3.34 0.5 0.75 25 15 15 0.2 15 20
112 4.93 0.25 0.5 20 15 15 0.2 17 20 544 0.12 0.5 0.75 25 15 15 0.2 17 20
113 6.39 0.25 0.5 20 15 15 0.4 10 15 545 3.36 0.5 0.75 25 15 15 0.4 10 15
114 4.92 0.25 0.5 20 15 15 0.4 12 17 546 0.21 0.5 0.75 25 15 15 0.4 12 17
115 1.80 0.25 0.5 20 15 15 0.4 15 20 547 0.21 0.5 0.75 25 15 15 0.4 15 20
116 0.11 0.25 0.5 20 15 15 0.4 17 20 548 4.90 0.5 0.75 25 15 15 0.4 17 20
117 8.03 0.25 0.5 20 15 15 0.6 10 15 549 8.02 0.5 0.75 25 15 15 0.6 10 15
118 0.32 0.25 0.5 20 15 15 0.6 12 17 550 6.41 0.5 0.75 25 15 15 0.6 12 17
119 4.78 0.25 0.5 20 15 15 0.6 15 20 551 1.80 0.5 0.75 25 15 15 0.6 15 20
120 0.18 0.25 0.5 20 15 15 0.6 17 20 552 1.75 0.5 0.75 25 15 15 0.6 17 20
121 6.52 0.25 0.5 20 20 10 0.2 10 15 553 11.2

9

0.5 0.75 25 20 10 0.2 10 15
122 1.93 0.25 0.5 20 20 10 0.2 12 17 554 9.64 0.5 0.75 25 20 10 0.2 12 17
123 8.00 0.25 0.5 20 20 10 0.2 15 20 555 9.68 0.5 0.75 25 20 10 0.2 15 20
124 0.17 0.25 0.5 20 20 10 0.2 17 20 556 4.85 0.5 0.75 25 20 10 0.2 17 20
125 1.77 0.25 0.5 20 20 10 0.4 10 15 557 3.33 0.5 0.75 25 20 10 0.4 10 15
126 1.70 0.25 0.5 20 20 10 0.4 12 17 558 0.18 0.5 0.75 25 20 10 0.4 12 17
127 1.70 0.25 0.5 20 20 10 0.4 15 20 559 6.46 0.5 0.75 25 20 10 0.4 15 20
128 1.73 0.25 0.5 20 20 10 0.4 17 20

560 9.61 0.5 0.75 25 20 10 0.4 17 20
129 4.88 0.25 0.5 20 20 10 0.6 10 15 561 3.37 0.5 0.75 25 20 10 0.6 10 15
130 4.88 0.25 0.5 20 20 10 0.6 12 17 562 3.35 0.5 0.75 25 20 10 0.6 12 17
131 6.41 0.25 0.5 20 20 10 0.6 15 20 563 0.08 0.5 0.75 25 20 10 0.6 15 20
132 4.93 0.25 0.5 20 20 10 0.6 17 20 564 0.13 0.5 0.75 25 20 10 0.6 17 20
133 9.57 0.25 0.5 20 20 15 0.2 10 15 565 1.75 0.5 0.75 25 20 15 0.2 10 15
134 4.77 0.25 0.5 20 20 15 0.2 12 17 566 4.76 0.5 0.75 25 20 15 0.2 12 17
135 3.26 0.25 0.5 20 20 15 0.2 15 20 567 0.20 0.5 0.75 25 20 15 0.2 15 20
136 0.14 0.25 0.5 20 20 15 0.2 17 20 568 0.19 0.5 0.75 25 20 15 0.2 17 20
137 4.93 0.25 0.5 20 20 15 0.4 10 15 569 3.31 0.5 0.75 25 20 15 0.4 10 15
138 9.63 0.25 0.5 20 20 15 0.4 12 17 570 3.35 0.5 0.75 25 20 15 0.4 12 17
139 6.46 0.25 0.5 20 20 15 0.4 15 20 571 1.76 0.5 0.75 25 20 15 0.4 15 20
140 6.46 0.25 0.5 20 20 15 0.4 17 20 572 8.09 0.5 0.75 25 20 15 0.4 17 20
141 3.45 0.25 0.5 20 20 15 0.6 10 15 573 6.48 0.5 0.75 25 20 15 0.6 10 15
142 6.53 0.25 0.5 20 20 15 0.6 12 17 574 0.27 0.5 0.75 25 20 15 0.6 12 17
143 1.68 0.25 0.5 20 20 15 0.6 15 20 575 1.69 0.5 0.75 25 20 15 0.6 15 20
144 1.64 0.25 0.5 20 20 15 0.6 17 20 576 3.29 0.5 0.75 25 20 15 0.6 17 20
145 1.75 0.25 0.5 25 15 10 0.2 10 15 513 6.49 0.5 0.75 20 20 10 0.6 10 15
146 8.02 0.25 0.5 25 15 10 0.2 12 17 577 1.70 0.75 0.25 20 15 10 0.2 10 15
147 0.22 0.25 0.5 25 15 10 0.2 15 20 578 1.77 0.75 0.25 20 15 10 0.2 12 17
148 1.73 0.25 0.5 25 15 10 0.2 17 20 579 0.15 0.75 0.25 20 15 10 0.2 15 20
149 1.72 0.25 0.5 25 15 10 0.4 10 15 580 1.75 0.75 0.25 20 15 10 0.2 17 20
150 8.05 0.25 0.5 25 15 10 0.4 12 17 581 9.61 0.75 0.25 20 15 10 0.4 10 15
151 6.37 0.25 0.5 25 15 10 0.4 15 20 582 6.45 0.75 0.25 20 15 10 0.4 12 17
152 0.11 0.25 0.5 25 15 10 0.4 17 20 583 3.37 0.75 0.25 20 15 10 0.4 15 20
153 8.02 0.25 0.5 25 15 10 0.6 10 15 584 6.39 0.75 0.25 20 15 10 0.4 17 20
154 1.68 0.25 0.5 25 15 10 0.6 12 17 585 8.13 0.75 0.25 20 15 10 0.6 10 15
155 6.40 0.25 0.5 25 15 10 0.6 15 20 586 3.41 0.75 0.25 20 15 10 0.6 12 17
156 6.47 0.25 0.5 25 15 10 0.6 17 20 587 1.75 0.75 0.25 20 15 10 0.6 15 20
157 0.12 0.25 0.5 25 15 15 0.2 10 15 588 1.66 0.75 0.25 20 15 10 0.6 17 20

 57

N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV
158 1.75 0.25 0.5 25 15 15 0.2 12 17 589 1.86 0.75 0.25 20 15 15 0.2 10 15
159 11.3

2

0.25 0.5 25 15 15 0.2 15 20 590 4.92 0.75 0.25 20 15 15 0.2 12 17
160 3.33 0.25 0.5 25 15 15 0.2 17 20 591 6.47 0.75 0.25 20 15 15 0.2 15 20
161 8.13 0.25 0.5 25 15 15 0.4 10 15 592 8.08 0.75 0.25 20 15 15 0.2 17 20
162 0.12 0.25 0.5 25 15 15 0.4 12 17 593 5.04 0.75 0.25 20 15 15 0.4 10 15
163 1.78 0.25 0.5 25 15 15 0.4 15 20 594 8.07 0.75 0.25 20 15 15 0.4 12 17
164 4.91 0.25 0.5 25 15 15 0.4 17 20 595 0.11 0.75 0.25 20 15 15 0.4 15 20
165 4.96 0.25 0.5 25 15 15 0.6 10 15 596 1.68 0.75 0.25 20 15 15 0.4 17 20
166 6.52 0.25 0.5 25 15 15 0.6 12 17 597 4.97 0.75 0.25 20 15 15 0.6 10 15
167 1.74 0.25 0.5 25 15 15 0.6 15 20 598 6.40 0.75 0.25 20 15 15 0.6 12 17
168 1.77 0.25 0.5 25 15 15 0.6 17 20 599 6.44 0.75 0.25 20 15 15 0.6 15 20
169 4.96 0.25 0.5 25 20 10 0.2 10 15 600 6.49 0.75 0.25 20 15 15 0.6 17 20
170 4.93 0.25 0.5 25 20 10 0.2 12 17 601 4.88 0.75 0.25 20 20 10 0.2 10 15
171 8.00 0.25 0.5 25 20 10 0.2 15 20 602 6.41 0.75 0.25 20 20 10 0.2 12 17
172 0.20 0.25 0.5 25 20 10 0.2 17 20 603 0.08 0.75 0.25 20 20 10 0.2 15 20
173 8.05 0.25 0.5 25 20 10 0.4 10 15 604 0.10 0.75 0.25 20 20 10 0.2 17 20
174 6.42 0.25 0.5 25 20 10 0.4 12 17 605 8.06 0.75 0.25 20 20 10 0.4 10 15
175 8.09 0.25 0.5 25 20 10 0.4 15 20 606 1.68 0.75 0.25 20 20 10 0.4 12 17
176 1.71 0.25 0.5 25 20 10 0.4 17 20 607 0.08 0.75 0.25 20 20 10 0.4 15 20
177 4.97 0.25 0.5 25 20 10 0.6 10 15 608 1.79 0.75 0.25 20 20 10 0.4 17 20
178 1.69 0.25 0.5 25 20 10 0.6 12 17 609 3.43 0.75 0.25 20 20 10 0.6 10 15
179 0.20 0.25 0.5 25 20 10 0.6 15 20 610 4.80 0.75 0.25 20 20 10 0.6 12 17
180 6.40 0.25 0.5 25 20 10 0.6 17 20 611 1.69 0.75 0.25 20 20 10 0.6 15 20
181 11.1

4

0.25 0.5 25 20 15 0.2 10 15 612 6.43 0.75 0.25 20 20 10 0.6 17 20
182 0.14 0.25 0.5 25 20 15 0.2 12 17 613 8.03 0.75 0.25 20 20 15 0.2 10 15
183 0.16 0.25 0.5 25 20 15 0.2 15 20 614 1.68 0.75 0.25 20 20 15 0.2 12 17
184 3.24 0.25 0.5 25 20 15 0.2 17 20 615 1.78 0.75 0.25 20 20 15 0.2 15 20
185 3.31 0.25 0.5 25 20 15 0.4 10 15 616 1.77 0.75 0.25 20 20 15 0.2 17 20
186 3.16 0.25 0.5 25 20 15 0.4 12 17 617 0.20 0.75 0.25 20 20 15 0.4 10 15
187 0.11 0.25 0.5 25 20 15 0.4 15 20 618 0.19 0.75 0.25 20 20 15 0.4 12 17
188 1.85 0.25 0.5 25 20 15 0.4 17 20 619 0.06 0.75 0.25 20 20 15 0.4 15 20
189 1.69 0.25 0.5 25 20 15 0.6 10 15 620 4.97 0.75 0.25 20 20 15 0.4 17 20
190 4.95 0.25 0.5 25 20 15 0.6 12 17 621 7.99 0.75 0.25 20 20 15 0.6 10 15
191 0.15 0.25 0.5 25 20 15 0.6 15 20 622 4.84 0.75 0.25 20 20 15 0.6 12 17
192 9.60 0.25 0.5 25 20 15 0.6 17 20 623 0.11 0.75 0.25 20 20 15 0.6 15 20
193 6.57 0.25 0.75 20 15 10 0.2 10 15 624 6.41 0.75 0.25 20 20 15 0.6 17 20
194 5.00 0.25 0.75 20 15 10 0.2 12 17 625 1.65 0.75 0.25 25 15 10 0.2 10 15
195 8.04 0.25 0.75 20 15 10 0.2 15 20 626 3.32 0.75 0.25 25 15 10 0.2 12 17
196 0.08 0.25 0.75 20 15 10 0.2 17 20 627 0.16 0.75 0.25 25 15 10 0.2 15 20
197 4.90 0.25 0.75 20 15 10 0.4 10 15 628 0.35 0.75 0.25 25 15 10 0.2 17 20
198 0.19 0.25 0.75 20 15 10 0.4 12 17 629 0.20 0.75 0.25 25 15 10 0.4 10 15
199 0.09 0.25 0.75 20 15 10 0.4 15 20 630 0.15 0.75 0.25 25 15 10 0.4 12 17
200 3.29 0.25 0.75 20 15 10 0.4 17 20 631 8.16 0.75 0.25 25 15 10 0.4 15 20
201 3.26 0.25 0.75 20 15 10 0.6 10 15 632 3.36 0.75 0.25 25 15 10 0.4 17 20
202 1.81 0.25 0.75 20 15 10 0.6 12 17 633 0.12 0.75 0.25 25 15 10 0.6 10 15
203 6.46 0.25 0.75 20 15 10 0.6 15 20 634 1.78 0.75 0.25 25 15 10 0.6 12 17
204 8.02 0.25 0.75 20 15 10 0.6 17 20 635 4.88 0.75 0.25 25 15 10 0.6 15 20
205 1.66 0.25 0.75 20 15 15 0.2 10 15 636 7.98 0.75 0.25 25 15 10 0.6 17 20
206 6.48 0.25 0.75 20 15 15 0.2 12 17 637 6.48 0.75 0.25 25 15 15 0.2 10 15
207 1.72 0.25 0.75 20 15 15 0.2 15 20 638 0.13 0.75 0.25 25 15 15 0.2 12 17
208 3.29 0.25 0.75 20 15 15 0.2 17 20 639 1.71 0.75 0.25 25 15 15 0.2 15 20
209 8.01 0.25 0.75 20 15 15 0.4 10 15 640 1.72 0.75 0.25 25 15 15 0.2 17 20
210 6.47 0.25 0.75 20 15 15 0.4 12 17 641 0.13 0.75 0.25 25 15 15 0.4 10 15
211 1.78 0.25 0.75 20 15 15 0.4 15 20 642 0.16 0.75 0.25 25 15 15 0.4 12 17
212 8.04 0.25 0.75 20 15 15 0.4 17 20 643 0.08 0.75 0.25 25 15 15 0.4 15 20
213 8.02 0.25 0.75 20 15 15 0.6 10 15 644 1.73 0.75 0.25 25 15 15 0.4 17 20
214 0.24 0.25 0.75 20 15 15 0.6 12 17 645 0.21 0.75 0.25 25 15 15 0.6 10 15
215 6.49 0.25 0.75 20 15 15 0.6 15 20 646 0.26 0.75 0.25 25 15 15 0.6 12 17
216 1.76 0.25 0.75 20 15 15 0.6 17 20 647 0.12 0.75 0.25 25 15 15 0.6 15 20
217 3.29 0.25 0.75 20 20 10 0.2 10 15 648 8.05 0.75 0.25 25 15 15 0.6 17 20
218 6.42 0.25 0.75 20 20 10 0.2 12 17 649 0.21 0.75 0.25 25 20 10 0.2 10 15
219 3.31 0.25 0.75 20 20 10 0.2 15 20 650 8.03 0.75 0.25 25 20 10 0.2 12 17
220 0.32 0.25 0.75 20 20 10 0.2 17 20 651 9.69 0.75 0.25 25 20 10 0.2 15 20
221 6.45 0.25 0.75 20 20 10 0.4 10 15 652 4.82 0.75 0.25 25 20 10 0.2 17 20
222 8.03 0.25 0.75 20 20 10 0.4 12 17 653 4.88 0.75 0.25 25 20 10 0.4 10 15
223 1.69 0.25 0.75 20 20 10 0.4 15 20 654 0.12 0.75 0.25 25 20 10 0.4 12 17
224 8.00 0.25 0.75 20 20 10 0.4 17 20 655 3.29 0.75 0.25 25 20 10 0.4 15 20
225 1.71 0.25 0.75 20 20 10 0.6 10 15 656 6.42 0.75 0.25 25 20 10 0.4 17 20
226 0.20 0.25 0.75 20 20 10 0.6 12 17 657 6.47 0.75 0.25 25 20 10 0.6 10 15
227 0.13 0.25 0.75 20 20 10 0.6 15 20 658 0.33 0.75 0.25 25 20 10 0.6 12 17
228 4.85 0.25 0.75 20 20 10 0.6 17 20 659 15.9

8

0.75 0.25 25 20 10 0.6 15 20
229 8.00 0.25 0.75 20 20 15 0.2 10 15 660 8.01 0.75 0.25 25 20 10 0.6 17 20
230 3.34 0.25 0.75 20 20 15 0.2 12 17 661 3.54 0.75 0.25 25 20 15 0.2 10 15
231 6.49 0.25 0.75 20 20 15 0.2 15 20 662 1.65 0.75 0.25 25 20 15 0.2 12 17
232 3.32 0.25 0.75 20 20 15 0.2 17 20 663 7.95 0.75 0.25 25 20 15 0.2 15 20
233 3.49 0.25 0.75 20 20 15 0.4 10 15 664 0.18 0.75 0.25 25 20 15 0.2 17 20
234 8.04 0.25 0.75 20 20 15 0.4 12 17 665 6.52 0.75 0.25 25 20 15 0.4 10 15
235 0.23 0.25 0.75 20 20 15 0.4 15 20 666 8.09 0.75 0.25 25 20 15 0.4 12 17
236 1.72 0.25 0.75 20 20 15 0.4 17 20 667 0.07 0.75 0.25 25 20 15 0.4 15 20
237 1.82 0.25 0.75 20 20 15 0.6 10 15 668 0.09 0.75 0.25 25 20 15 0.4 17 20
238 1.82 0.25 0.75 20 20 15 0.6 12 17 669 1.80 0.75 0.25 25 20 15 0.6 10 15

 58

N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV
239 1.75 0.25 0.75 20 20 15 0.6 15 20 670 0.09 0.75 0.25 25 20 15 0.6 12 17
240 0.09 0.25 0.75 20 20 15 0.6 17 20 671 0.19 0.75 0.25 25 20 15 0.6 15 20
241 3.37 0.25 0.75 25 15 10 0.2 10 15 672 0.14 0.75 0.25 25 20 15 0.6 17 20
242 8.03 0.25 0.75 25 15 10 0.2 12 17 673 1.67 0.75 0.5 20 15 10 0.2 10 15
243 1.71 0.25 0.75 25 15 10 0.2 15 20 674 1.78 0.75 0.5 20 15 10 0.2 12 17
244 0.17 0.25 0.75 25 15 10 0.2 17 20 675 0.24 0.75 0.5 20 15 10 0.2 15 20
245 1.85 0.25 0.75 25 15 10 0.4 10 15 676 0.11 0.75 0.5 20 15 10 0.2 17 20
246 0.14 0.25 0.75 25 15 10 0.4 12 17 677 6.46 0.75 0.5 20 15 10 0.4 10 15
247 0.21 0.25 0.75 25 15 10 0.4 15 20 678 7.98 0.75 0.5 20 15 10 0.4 12 17
248 6.64 0.25 0.75 25 15 10 0.4 17 20 679 8.08 0.75 0.5 20 15 10 0.4 15 20
249 9.64 0.25 0.75 25 15 10 0.6 10 15 680 0.09 0.75 0.5 20 15 10 0.4 17 20
250 0.18 0.25 0.75 25 15 10 0.6 12 17 681 6.45 0.75 0.5 20 15 10 0.6 10 15
251 3.35 0.25 0.75 25 15 10 0.6 15 20 682 1.86 0.75 0.5 20 15 10 0.6 12 17
252 3.37 0.25 0.75 25 15 10 0.6 17 20 683 1.71 0.75 0.5 20 15 10 0.6 15 20
253 8.11 0.25 0.75 25 15 15 0.2 10 15 684 0.18 0.75 0.5 20 15 10 0.6 17 20
254 0.21 0.25 0.75 25 15 15 0.2 12 17 685 8.10 0.75 0.5 20 15 15 0.2 10 15
255 1.79 0.25 0.75 25 15 15 0.2 15 20 686 1.78 0.75 0.5 20 15 15 0.2 12 17
256 0.15 0.25 0.75 25 15 15 0.2 17 20 687 11.2

5

0.75 0.5 20 15 15 0.2 15 20
257 0.13 0.25 0.75 25 15 15 0.4 10 15 688 0.09 0.75 0.5 20 15 15 0.2 17 20
258 3.36 0.25 0.75 25 15 15 0.4 12 17 689 4.87 0.75 0.5 20 15 15 0.4 10 15
259 0.23 0.25 0.75 25 15 15 0.4 15 20 690 1.73 0.75 0.5 20 15 15 0.4 12 17
260 6.40 0.25 0.75 25 15 15 0.4 17 20 691 0.16 0.75 0.5 20 15 15 0.4 15 20
261 4.88 0.25 0.75 25 15 15 0.6 10 15 692 6.46 0.75 0.5 20 15 15 0.4 17 20
262 0.12 0.25 0.75 25 15 15 0.6 12 17 693 1.82 0.75 0.5 20 15 15 0.6 10 15
263 1.76 0.25 0.75 25 15 15 0.6 15 20 694 0.17 0.75 0.5 20 15 15 0.6 12 17
264 4.84 0.25 0.75 25 15 15 0.6 17 20 695 11.2

9

0.75 0.5 20 15 15 0.6 15 20
265 1.77 0.25 0.75 25 20 10 0.2 10 15 696 0.07 0.75 0.5 20 15 15 0.6 17 20
266 6.45 0.25 0.75 25 20 10 0.2 12 17 697 6.47 0.75 0.5 20 20 10 0.2 10 15
267 1.84 0.25 0.75 25 20 10 0.2 15 20 698 1.72 0.75 0.5 20 20 10 0.2 12 17
268 1.75 0.25 0.75 25 20 10 0.2 17 20 699 3.21 0.75 0.5 20 20 10 0.2 15 20
269 8.02 0.25 0.75 25 20 10 0.4 10 15 700 8.36 0.75 0.5 20 20 10 0.2 17 20
270 6.47 0.25 0.75 25 20 10 0.4 12 17 701 3.27 0.75 0.5 20 20 10 0.4 10 15
271 4.84 0.25 0.75 25 20 10 0.4 15 20 702 6.53 0.75 0.5 20 20 10 0.4 12 17
272 6.40 0.25 0.75 25 20 10 0.4 17 20 703 0.25 0.75 0.5 20 20 10 0.4 15 20
273 9.66 0.25 0.75 25 20 10 0.6 10 15 704 0.14 0.75 0.5 20 20 10 0.4 17 20
274 7.99 0.25 0.75 25 20 10 0.6 12 17 705 6.46 0.75 0.5 20 20 10 0.6 10 15
275 4.85 0.25 0.75 25 20 10 0.6 15 20 706 0.16 0.75 0.5 20 20 10 0.6 12 17
276 4.84 0.25 0.75 25 20 10 0.6 17 20 707 1.76 0.75 0.5 20 20 10 0.6 15 20
277 6.47 0.25 0.75 25 20 15 0.2 10 15 708 1.74 0.75 0.5 20 20 10 0.6 17 20
278 3.29 0.25 0.75 25 20 15 0.2 12 17 709 7.97 0.75 0.5 20 20 15 0.2 10 15
279 0.19 0.25 0.75 25 20 15 0.2 15 20 710 1.78 0.75 0.5 20 20 15 0.2 12 17
280 3.33 0.25 0.75 25 20 15 0.2 17 20 711 1.76 0.75 0.5 20 20 15 0.2 15 20
281 6.55 0.25 0.75 25 20 15 0.4 10 15 712 1.67 0.75 0.5 20 20 15 0.2 17 20
282 0.26 0.25 0.75 25 20 15 0.4 12 17 713 0.22 0.75 0.5 20 20 15 0.4 10 15
283 9.54 0.25 0.75 25 20 15 0.4 15 20 714 6.54 0.75 0.5 20 20 15 0.4 12 17
284 4.91 0.25 0.75 25 20 15 0.4 17 20 715 3.33 0.75 0.5 20 20 15 0.4 15 20
285 0.21 0.25 0.75 25 20 15 0.6 10 15 716 0.22 0.75 0.5 20 20 15 0.4 17 20
286 6.43 0.25 0.75 25 20 15 0.6 12 17 717 1.76 0.75 0.5 20 20 15 0.6 10 15
287 15.9

8

0.25 0.75 25 20 15 0.6 15 20 718 4.92 0.75 0.5 20 20 15 0.6 12 17
288 6.47 0.25 0.75 25 20 15 0.6 17 20 719 3.31 0.75 0.5 20 20 15 0.6 15 20
289 8.06 0.5 0.25 20 15 10 0.2 10 15 720 8.10 0.75 0.5 20 20 15 0.6 17 20
290 4.93 0.5 0.25 20 15 10 0.2 12 17 721 4.88 0.75 0.5 25 15 10 0.2 10 15
291 1.73 0.5 0.25 20 15 10 0.2 15 20 722 0.12 0.75 0.5 25 15 10 0.2 12 17
292 8.00 0.5 0.25 20 15 10 0.2 17 20 723 4.91 0.75 0.5 25 15 10 0.2 15 20
293 5.00 0.5 0.25 20 15 10 0.4 10 15 724 6.45 0.75 0.5 25 15 10 0.2 17 20
294 0.18 0.5 0.25 20 15 10 0.4 12 17 725 1.85 0.75 0.5 25 15 10 0.4 10 15
295 6.40 0.5 0.25 20 15 10 0.4 15 20 726 1.85 0.75 0.5 25 15 10 0.4 12 17
296 1.68 0.5 0.25 20 15 10 0.4 17 20 727 1.71 0.75 0.5 25 15 10 0.4 15 20
297 0.18 0.5 0.25 20 15 10 0.6 10 15 728 0.27 0.75 0.5 25 15 10 0.4 17 20
298 6.32 0.5 0.25 20 15 10 0.6 12 17 729 6.42 0.75 0.5 25 15 10 0.6 10 15
299 6.43 0.5 0.25 20 15 10 0.6 15 20 730 9.59 0.75 0.5 25 15 10 0.6 12 17
300 0.29 0.5 0.25 20 15 10 0.6 17 20 731 8.00 0.75 0.5 25 15 10 0.6 15 20
301 7.97 0.5 0.25 20 15 15 0.2 10 15 732 3.30 0.75 0.5 25 15 10 0.6 17 20
302 0.10 0.5 0.25 20 15 15 0.2 12 17 733 0.14 0.75 0.5 25 15 15 0.2 10 15
303 4.88 0.5 0.25 20 15 15 0.2 15 20 734 1.73 0.75 0.5 25 15 15 0.2 12 17
304 4.77 0.5 0.25 20 15 15 0.2 17 20 735 1.76 0.75 0.5 25 15 15 0.2 15 20
305 3.34 0.5 0.25 20 15 15 0.4 10 15 736 3.30 0.75 0.5 25 15 15 0.2 17 20
306 4.95 0.5 0.25 20 15 15 0.4 12 17 737 0.08 0.75 0.5 25 15 15 0.4 10 15
307 0.05 0.5 0.25 20 15 15 0.4 15 20 738 0.36 0.75 0.5 25 15 15 0.4 12 17
308 1.64 0.5 0.25 20 15 15 0.4 17 20 739 3.31 0.75 0.5 25 15 15 0.4 15 20
309 9.60 0.5 0.25 20 15 15 0.6 10 15 740 1.71 0.75 0.5 25 15 15 0.4 17 20
310 8.00 0.5 0.25 20 15 15 0.6 12 17 741 1.77 0.75 0.5 25 15 15 0.6 10 15
311 1.87 0.5 0.25 20 15 15 0.6 15 20 742 6.43 0.75 0.5 25 15 15 0.6 12 17
312 3.32 0.5 0.25 20 15 15 0.6 17 20 743 6.42 0.75 0.5 25 15 15 0.6 15 20
313 1.81 0.5 0.25 20 20 10 0.2 10 15 744 3.24 0.75 0.5 25 15 15 0.6 17 20
314 4.89 0.5 0.25 20 20 10 0.2 12 17 745 6.46 0.75 0.5 25 20 10 0.2 10 15
315 6.55 0.5 0.25 20 20 10 0.2 15 20 746 4.88 0.75 0.5 25 20 10 0.2 12 17
316 12.8

6

0.5 0.25 20 20 10 0.2 17 20 747 3.33 0.75 0.5 25 20 10 0.2 15 20
317 6.60 0.5 0.25 20 20 10 0.4 10 15 748 1.71 0.75 0.5 25 20 10 0.2 17 20
318 1.76 0.5 0.25 20 20 10 0.4 12 17 749 4.91 0.75 0.5 25 20 10 0.4 10 15
319 0.22 0.5 0.25 20 20 10 0.4 15 20 750 3.20 0.75 0.5 25 20 10 0.4 12 17

 59

N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV
320 0.10 0.5 0.25 20 20 10 0.4 17 20 751 0.16 0.75 0.5 25 20 10 0.4 15 20
321 0.38 0.5 0.25 20 20 10 0.6 10 15 752 1.72 0.75 0.5 25 20 10 0.4 17 20
322 3.33 0.5 0.25 20 20 10 0.6 12 17 753 1.99 0.75 0.5 25 20 10 0.6 10 15
323 1.79 0.5 0.25 20 20 10 0.6 15 20 754 6.42 0.75 0.5 25 20 10 0.6 12 17
324 0.19 0.5 0.25 20 20 10 0.6 17 20 755 3.28 0.75 0.5 25 20 10 0.6 15 20
325 0.19 0.5 0.25 20 20 15 0.2 10 15 756 3.30 0.75 0.5 25 20 10 0.6 17 20
326 6.45 0.5 0.25 20 20 15 0.2 12 17 757 6.45 0.75 0.5 25 20 15 0.2 10 15
327 4.85 0.5 0.25 20 20 15 0.2 15 20 758 1.72 0.75 0.5 25 20 15 0.2 12 17
328 1.76 0.5 0.25 20 20 15 0.2 17 20 759 1.72 0.75 0.5 25 20 15 0.2 15 20
329 4.88 0.5 0.25 20 20 15 0.4 10 15 760 12.8

4

0.75 0.5 25 20 15 0.2 17 20
330 9.57 0.5 0.25 20 20 15 0.4 12 17 761 3.39 0.75 0.5 25 20 15 0.4 10 15
331 6.50 0.5 0.25 20 20 15 0.4 15 20 762 0.29 0.75 0.5 25 20 15 0.4 12 17
332 0.19 0.5 0.25 20 20 15 0.4 17 20 763 7.99 0.75 0.5 25 20 15 0.4 15 20
333 1.78 0.5 0.25 20 20 15 0.6 10 15 764 6.43 0.75 0.5 25 20 15 0.4 17 20
334 8.07 0.5 0.25 20 20 15 0.6 12 17 765 9.74 0.75 0.5 25 20 15 0.6 10 15
335 9.65 0.5 0.25 20 20 15 0.6 15 20 766 4.89 0.75 0.5 25 20 15 0.6 12 17
336 0.09 0.5 0.25 20 20 15 0.6 17 20 767 1.74 0.75 0.5 25 20 15 0.6 15 20
337 8.05 0.5 0.25 25 15 10 0.2 10 15 768 3.26 0.75 0.5 25 20 15 0.6 17 20
338 1.73 0.5 0.25 25 15 10 0.2 12 17 769 4.86 0.75 0.75 20 15 10 0.2 10 15
339 6.46 0.5 0.25 25 15 10 0.2 15 20 770 0.24 0.75 0.75 20 15 10 0.2 12 17
340 6.52 0.5 0.25 25 15 10 0.2 17 20 771 1.76 0.75 0.75 20 15 10 0.2 15 20
341 4.84 0.5 0.25 25 15 10 0.4 10 15 772 4.86 0.75 0.75 20 15 10 0.2 17 20
342 0.17 0.5 0.25 25 15 10 0.4 12 17 773 12.8

5

0.75 0.75 20 15 10 0.4 10 15
343 1.79 0.5 0.25 25 15 10 0.4 15 20 774 0.23 0.75 0.75 20 15 10 0.4 12 17
344 1.66 0.5 0.25 25 15 10 0.4 17 20 775 1.75 0.75 0.75 20 15 10 0.4 15 20
345 1.72 0.5 0.25 25 15 10 0.6 10 15 776 0.11 0.75 0.75 20 15 10 0.4 17 20
346 4.82 0.5 0.25 25 15 10 0.6 12 17 777 1.73 0.75 0.75 20 15 10 0.6 10 15
347 4.85 0.5 0.25 25 15 10 0.6 15 20 778 0.15 0.75 0.75 20 15 10 0.6 12 17
348 7.96 0.5 0.25 25 15 10 0.6 17 20 779 3.36 0.75 0.75 20 15 10 0.6 15 20
349 1.71 0.5 0.25 25 15 15 0.2 10 15 780 0.19 0.75 0.75 20 15 10 0.6 17 20
350 0.25 0.5 0.25 25 15 15 0.2 12 17 781 0.24 0.75 0.75 20 15 15 0.2 10 15
351 1.81 0.5 0.25 25 15 15 0.2 15 20 782 0.25 0.75 0.75 20 15 15 0.2 12 17
352 3.31 0.5 0.25 25 15 15 0.2 17 20 783 0.33 0.75 0.75 20 15 15 0.2 15 20
353 3.45 0.5 0.25 25 15 15 0.4 10 15 784 0.11 0.75 0.75 20 15 15 0.2 17 20
354 0.13 0.5 0.25 25 15 15 0.4 12 17 785 8.09 0.75 0.75 20 15 15 0.4 10 15
355 1.75 0.5 0.25 25 15 15 0.4 15 20 786 7.97 0.75 0.75 20 15 15 0.4 12 17
356 1.65 0.5 0.25 25 15 15 0.4 17 20 787 6.34 0.75 0.75 20 15 15 0.4 15 20
357 0.08 0.5 0.25 25 15 15 0.6 10 15 788 1.73 0.75 0.75 20 15 15 0.4 17 20
358 7.98 0.5 0.25 25 15 15 0.6 12 17 789 4.81 0.75 0.75 20 15 15 0.6 10 15
359 0.12 0.5 0.25 25 15 15 0.6 15 20 790 8.00 0.75 0.75 20 15 15 0.6 12 17
360 6.47 0.5 0.25 25 15 15 0.6 17 20 791 0.14 0.75 0.75 20 15 15 0.6 15 20
361 0.12 0.5 0.25 25 20 10 0.2 10 15 792 3.30 0.75 0.75 20 15 15 0.6 17 20
362 1.82 0.5 0.25 25 20 10 0.2 12 17 793 7.97 0.75 0.75 20 20 10 0.2 10 15
363 0.10 0.5 0.25 25 20 10 0.2 15 20 794 0.20 0.75 0.75 20 20 10 0.2 12 17
364 0.10 0.5 0.25 25 20 10 0.2 17 20 795 3.24 0.75 0.75 20 20 10 0.2 15 20
365 3.33 0.5 0.25 25 20 10 0.4 10 15 796 8.04 0.75 0.75 20 20 10 0.2 17 20
366 7.95 0.5 0.25 25 20 10 0.4 12 17 797 6.57 0.75 0.75 20 20 10 0.4 10 15
367 1.72 0.5 0.25 25 20 10 0.4 15 20 798 0.18 0.75 0.75 20 20 10 0.4 12 17
368 9.61 0.5 0.25 25 20 10 0.4 17 20 799 1.80 0.75 0.75 20 20 10 0.4 15 20
369 3.24 0.5 0.25 25 20 10 0.6 10 15 800 0.22 0.75 0.75 20 20 10 0.4 17 20
370 3.33 0.5 0.25 25 20 10 0.6 12 17 801 8.11 0.75 0.75 20 20 10 0.6 10 15
371 8.01 0.5 0.25 25 20 10 0.6 15 20 802 6.51 0.75 0.75 20 20 10 0.6 12 17
372 8.14 0.5 0.25 25 20 10 0.6 17 20 803 1.71 0.75 0.75 20 20 10 0.6 15 20
373 3.49 0.5 0.25 25 20 15 0.2 10 15 804 0.23 0.75 0.75 20 20 10 0.6 17 20
374 0.23 0.5 0.25 25 20 15 0.2 12 17 805 12.8

8

0.75 0.75 20 20 15 0.2 10 15
375 0.26 0.5 0.25 25 20 15 0.2 15 20 806 7.98 0.75 0.75 20 20 15 0.2 12 17
376 3.43 0.5 0.25 25 20 15 0.2 17 20 807 0.23 0.75 0.75 20 20 15 0.2 15 20
377 0.14 0.5 0.25 25 20 15 0.4 10 15 808 4.89 0.75 0.75 20 20 15 0.2 17 20
378 0.30 0.5 0.25 25 20 15 0.4 12 17 809 0.27 0.75 0.75 20 20 15 0.4 10 15
379 1.76 0.5 0.25 25 20 15 0.4 15 20 810 0.19 0.75 0.75 20 20 15 0.4 12 17
380 1.72 0.5 0.25 25 20 15 0.4 17 20 811 6.39 0.75 0.75 20 20 15 0.4 15 20
381 0.14 0.5 0.25 25 20 15 0.6 10 15 812 4.97 0.75 0.75 20 20 15 0.4 17 20
382 6.56 0.5 0.25 25 20 15 0.6 12 17 813 9.63 0.75 0.75 20 20 15 0.6 10 15
383 0.24 0.5 0.25 25 20 15 0.6 15 20 814 6.38 0.75 0.75 20 20 15 0.6 12 17
384 0.18 0.5 0.25 25 20 15 0.6 17 20 815 1.79 0.75 0.75 20 20 15 0.6 15 20
385 3.45 0.5 0.5 20 15 10 0.2 10 15 816 1.73 0.75 0.75 20 20 15 0.6 17 20
386 3.27 0.5 0.5 20 15 10 0.2 12 17 817 1.78 0.75 0.75 25 15 10 0.2 10 15
387 8.06 0.5 0.5 20 15 10 0.2 15 20 818 3.28 0.75 0.75 25 15 10 0.2 12 17
388 0.08 0.5 0.5 20 15 10 0.2 17 20 819 1.65 0.75 0.75 25 15 10 0.2 15 20
389 4.92 0.5 0.5 20 15 10 0.4 10 15 820 3.34 0.75 0.75 25 15 10 0.2 17 20
390 4.93 0.5 0.5 20 15 10 0.4 12 17 821 6.54 0.75 0.75 25 15 10 0.4 10 15
391 0.18 0.5 0.5 20 15 10 0.4 15 20 822 4.86 0.75 0.75 25 15 10 0.4 12 17
392 1.85 0.5 0.5 20 15 10 0.4 17 20 823 0.22 0.75 0.75 25 15 10 0.4 15 20
393 0.24 0.5 0.5 20 15 10 0.6 10 15 824 0.10 0.75 0.75 25 15 10 0.4 17 20
394 1.68 0.5 0.5 20 15 10 0.6 12 17 825 1.77 0.75 0.75 25 15 10 0.6 10 15
395 0.13 0.5 0.5 20 15 10 0.6 15 20 826 4.83 0.75 0.75 25 15 10 0.6 12 17
396 1.67 0.5 0.5 20 15 10 0.6 17 20 827 0.15 0.75 0.75 25 15 10 0.6 15 20
397 1.83 0.5 0.5 20 15 15 0.2 10 15 828 3.25 0.75 0.75 25 15 10 0.6 17 20
398 1.78 0.5 0.5 20 15 15 0.2 12 17 829 1.78 0.75 0.75 25 15 15 0.2 10 15
399 0.22 0.5 0.5 20 15 15 0.2 15 20 830 8.01 0.75 0.75 25 15 15 0.2 12 17
400 7.97 0.5 0.5 20 15 15 0.2 17 20 831 6.39 0.75 0.75 25 15 15 0.2 15 20

 60

N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV N Gap 𝛼 𝛽 𝜎1 𝜎2 𝜎3 𝑟 LV MV
401 3.33 0.5 0.5 20 15 15 0.4 10 15 832 1.74 0.75 0.75 25 15 15 0.2 17 20
402 1.71 0.5 0.5 20 15 15 0.4 12 17 833 3.45 0.75 0.75 25 15 15 0.4 10 15
403 1.71 0.5 0.5 20 15 15 0.4 15 20 834 6.46 0.75 0.75 25 15 15 0.4 12 17
404 1.70 0.5 0.5 20 15 15 0.4 17 20 835 0.09 0.75 0.75 25 15 15 0.4 15 20
405 1.72 0.5 0.5 20 15 15 0.6 10 15 836 3.36 0.75 0.75 25 15 15 0.4 17 20
406 8.05 0.5 0.5 20 15 15 0.6 12 17 837 11.1

6

0.75 0.75 25 15 15 0.6 10 15
407 4.89 0.5 0.5 20 15 15 0.6 15 20 838 6.49 0.75 0.75 25 15 15 0.6 12 17
408 0.15 0.5 0.5 20 15 15 0.6 17 20 839 0.16 0.75 0.75 25 15 15 0.6 15 20
409 8.10 0.5 0.5 20 20 10 0.2 10 15 840 0.16 0.75 0.75 25 15 15 0.6 17 20
410 8.02 0.5 0.5 20 20 10 0.2 12 17 841 6.49 0.75 0.75 25 20 10 0.2 10 15
411 6.59 0.5 0.5 20 20 10 0.2 15 20 842 1.79 0.75 0.75 25 20 10 0.2 12 17
412 1.73 0.5 0.5 20 20 10 0.2 17 20 843 0.08 0.75 0.75 25 20 10 0.2 15 20
413 6.51 0.5 0.5 20 20 10 0.4 10 15 844 6.49 0.75 0.75 25 20 10 0.2 17 20
414 0.14 0.5 0.5 20 20 10 0.4 12 17 845 0.24 0.75 0.75 25 20 10 0.4 10 15
415 3.28 0.5 0.5 20 20 10 0.4 15 20 846 6.41 0.75 0.75 25 20 10 0.4 12 17
416 0.13 0.5 0.5 20 20 10 0.4 17 20 847 7.94 0.75 0.75 25 20 10 0.4 15 20
417 6.50 0.5 0.5 20 20 10 0.6 10 15 848 1.65 0.75 0.75 25 20 10 0.4 17 20
418 3.29 0.5 0.5 20 20 10 0.6 12 17 849 0.06 0.75 0.75 25 20 10 0.6 10 15
419 1.68 0.5 0.5 20 20 10 0.6 15 20 850 8.02 0.75 0.75 25 20 10 0.6 12 17
420 0.15 0.5 0.5 20 20 10 0.6 17 20 851 6.48 0.75 0.75 25 20 10 0.6 15 20
421 3.29 0.5 0.5 20 20 15 0.2 10 15 852 1.83 0.75 0.75 25 20 10 0.6 17 20
422 0.19 0.5 0.5 20 20 15 0.2 12 17 853 8.11 0.75 0.75 25 20 15 0.2 10 15
423 6.38 0.5 0.5 20 20 15 0.2 15 20 854 0.14 0.75 0.75 25 20 15 0.2 12 17
424 3.27 0.5 0.5 20 20 15 0.2 17 20 855 4.87 0.75 0.75 25 20 15 0.2 15 20
425 4.84 0.5 0.5 20 20 15 0.4 10 15 856 0.22 0.75 0.75 25 20 15 0.2 17 20
426 4.93 0.5 0.5 20 20 15 0.4 12 17 857 6.43 0.75 0.75 25 20 15 0.4 10 15
427 4.91 0.5 0.5 20 20 15 0.4 15 20 858 8.04 0.75 0.75 25 20 15 0.4 12 17
428 0.15 0.5 0.5 20 20 15 0.4 17 20 859 7.96 0.75 0.75 25 20 15 0.4 15 20
429 1.85 0.5 0.5 20 20 15 0.6 10 15 860 1.79 0.75 0.75 25 20 15 0.4 17 20
430 3.37 0.5 0.5 20 20 15 0.6 12 17 861 4.99 0.75 0.75 25 20 15 0.6 10 15
431 9.61 0.5 0.5 20 20 15 0.6 15 20 862 11.3

6

0.75 0.75 25 20 15 0.6 12 17
432 0.23 0.5 0.5 20 20 15 0.6 17 20 863 6.38 0.75 0.75 25 20 15 0.6 15 20

Table 7 Experiments results for param tuning ALNS heuristic

 61

Appendix B

Experiments resultы for 14-26 instances with different number of iterations.

Iterations 100 200 300

Instances Objective
Time

(sec)

Gap

(%)
Objective

Time

(sec)

Gap

(%)
Objective

Time

(sec)

Gap

(%)

14-4-51 5120045,70 20,10 0,26 5114275,66 48,14 0,15 5120888,20 68,49 0,28

15-4-54 5183711,90 27,14 0,55 5188312,92 52,38 0,64 5171981,32 71,42 0,32

16-4-58 5808079,19 28,83 11,29 5374565,78 62,02 2,98 5242023,75 87,49 0,44

17-5-61 6390910,44 34,04 21,84 6524785,79 67,44 24,39 5693463,52 97,61 8,54

18-5-64 6706411,05 34,14 26,40 6703979,57 69,41 26,36 6701520,58 104,11 26,31

19-6-66 6758649,82 41,19 0,52 6749164,66 88,70 0,37 6744809,29 127,41 0,31

20-6-72 6856607,12 53,22 0,38 6850643,64 95,74 0,30 6844471,32 151,03 0,21

21-6-77 6933699,66 61,12 0,55 6924068,60 127,87 0,41 6925405,46 191,06 0,43

22-6-81 7145779,42 72,85 2,75 6998202,81 142,89 0,63 7272093,82 324,74 4,56

23-7-84 8021064,67 69,41 14,64 7601507,23 134,77 8,64 7592628,92 200,37 8,52

24-7-87 8610735,01 75,18 0,59 8603847,58 147,45 0,51 8593260,29 335,11 0,38

25-8-88 8616684,28 89,76 0,41 8608975,97 195,90 0,32 8603167,21 269,92 0,26

26-8-91 8681364,59 113,45 0,59 8674147,44 215,60 0,51 8672120,89 344,01 0,48

Average 55,42 6,21 111,41 5,09 182,52 3,93

Table 8 Results for 14-26 instances with 100 – 300 iterations

Iterations 400 500 600

Instances Objective
Time

(sec)

Gap

(%)
Objective

Time

(sec)

Gap

(%)
Objective

Time

(sec)

Gap

(%)

14-4-51 5111061,19 85,71 0,08 5111986,05 114,37 0,10 5108317,91 138,86 0,03

15-4-54 5173647,48 97,33 0,35 5170304,50 121,42 0,29 5165258,30 158,47 0,19

16-4-58 5368316,28 116,00 2,86 5228608,48 152,56 0,19 5226722,86 166,67 0,15

17-5-61 5425634,29 125,44 3,44 5826886,88 159,85 11,09 5542871,29 176,53 5,67

18-5-64 6284991,83 139,60 18,46 6561463,30 170,12 23,67 6284024,53 217,77 18,44

19-6-66 6743266,85 173,51 0,29 6746366,06 213,80 0,33 6746049,23 262,93 0,33

20-6-72 6840364,42 211,97 0,15 6841720,04 233,82 0,17 6841079,89 308,52 0,16

21-6-77 6921331,50 254,31 0,37 6919380,53 319,02 0,34 6920275,52 378,46 0,36

22-6-81 7122582,72 266,83 2,41 6987914,55 335,45 0,48 6977291,86 414,08 0,32

23-7-84 7592994,62 258,61 8,52 7451395,00 312,04 6,50 7452245,15 388,72 6,51

24-7-87 8589650,41 275,35 0,34 8591389,44 346,17 0,36 8590316,95 427,31 0,35

25-8-88 8604433,28 375,63 0,27 8598830,52 444,88 0,21 8599322,49 541,06 0,21

26-8-91 8668598,88 451,90 0,44 8659159,62 529,56 0,33 8660128,94 642,01 0,34

Average 217,86 2,92 265,62 3,39 324,72 2,54

Table 9 Results for 14 – 26 instances with 400 - 600 iterations

 62

Iterations 700 800 900

Instances Objective Time
Gap

(%)
Objective Time

Gap

(%)
Objective Time

Gap

(%)

14-4-51 5110778,66 157,13 0,08 5110174,53 174,68 0,07 5107761,19 210,08 0,02

15-4-54 5166278,29 169,42 0,21 5170159,41 197,29 0,29 5166012,80 214,98 0,21

16-4-58 5224024,51 196,65 0,10 5227304,36 234,04 0,16 5223226,20 262,86 0,08

17-5-61 5278032,73 229,54 0,62 5412024,79 265,59 3,18 5264862,58 290,77 0,37

18-5-64 6420629,24 251,80 21,02 6697754,55 266,98 26,24 6556189,14 387,34 23,57

19-6-66 6740552,52 296,47 0,25 6745441,16 324,75 0,32 6742276,49 377,22 0,27

20-6-72 6840895,64 338,43 0,15 6840504,59 395,97 0,15 6839892,79 426,69 0,14

21-6-77 6916667,10 434,65 0,30 6916586,31 518,65 0,30 6914560,12 583,15 0,27

22-6-81 6978388,58 454,28 0,34 6978568,37 552,16 0,34 6972994,07 578,53 0,26

23-7-84 7451225,10 482,23 6,50 7165405,24 523,13 2,41 7170114,22 689,71 2,48

24-7-87 8586662,51 468,79 0,31 8582785,70 569,79 0,26 8580845,18 597,02 0,24

25-8-88 8600078,04 594,93 0,22 8594321,01 733,81 0,15 8597167,67 821,67 0,19

26-8-91 8661710,23 735,60 0,36 8655750,36 838,40 0,29 8653054,32 976,77 0,26

Average 369,99 2,34 430,40 2,63 493,60 2,18

Table 10 Results for 14-26 instances with 700 – 900 iterations

Iterations 1000

Instances Objective Time
Gap

(%)

14-4-51 5107670,54 236,30 0,02

15-4-54 5164885,08 250,38 0,18

16-4-58 5225937,11 286,61 0,14

17-5-61 5406131,95 334,48 3,06

18-5-64 6417286,32 361,27 20,95

19-6-66 6738833,94 420,36 0,22

20-6-72 6837138,95 494,35 0,10

21-6-77 6915522,13 622,09 0,29

22-6-81 6974638,86 672,21 0,29

23-7-84 7025614,49 587,68 0,41

24-7-87 8583470,44 693,69 0,27

25-8-88 8595034,23 875,18 0,16

26-8-91 8656771,75 1048,74 0,31

Average 529,49 2,03

Table 11 Results for 14-26 instances with 1000 iterations

