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Abstract 

 

This paper builds and implements a multifactor stochastic volatility model for the latent (and 

observable) volatility of the carbon front December forward contracts at the European Carbon 

Exchanges, applying Bayesian Markov chain Monte Carlo simulation methodologies for 

estimation, inference, and model adequacy assessment. Stochastic volatility is the main way time-

varying volatility is modelled in financial markets. Our main objective is therefore to structure a 

scientific model specifying volatility as having its own stochastic process. Appropriate model 

descriptions broaden the applications into derivative pricing purposes, risk assessment and asset 

allocation and portfolio management. From an estimated optimal and appropriate stochastic 

volatility model, the paper reports risk and portfolio measures, extracts conditional one-step-ahead 

moments (smoothing), forecast one-step-ahead conditional volatility (filtering), evaluates shocks 

from conditional variance functions, analyses multi-step-ahead dynamics, and calculates 

conditional persistence measures. The analysis adds insight and enables forecasts to be made, 

building up the methodology for developing valid scientific commodity market models. 
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1   Introduction 

This paper builds and assesses scientific stochastic volatility (SV) models for the European 

Carbon markets and traded among others at NASDAQ OMX Commodities Exchange, European 

Energy Exchange (EEX) and Intercontinental Commodity Exchange
1
(ICE)

2
. The European 

Commission established in 2005 the European Emission Trading Scheme (EU-ETS), a cap-and-

trade scheme for emission allowances (EUA). In Europe, each country defines their total amount 

of emission allowance in National Allowance plans (NAP). Active trading in organized markets 

(tradable commodities) occurs when firms abate emissions and sell their allowances, while other 

firms require more allowances than allocated initially. Three phases has been announced; phase I 

running from 2005 to 2007, phase II running from 2008 to 2012, and phase III designed to run 

from 2013 to 2020. The price dynamics of EUAs in the new and immature Phase I market have 

been studied extensively (e.g. Hinterman (2010), Conrad et al. (2010). Understanding the price 

dynamics in the more mature markets of Phase II and Phase III of EU-ETS is therefore more 

relevant for an efficient market design and carbon abatement costs learning. An actively traded 

global annual carbon market volume of € 92 billion (2010) is highly relevant for carbon traders, 

risk management and asset allocation
3
. In 2012 the Intercontinental Exchange had 91.6% of the 

total traded market and in January 2013 the exchange surpassed 40.000 (4000) EUA Futures ADV 

– 1.000 tCO2e (EUA Options ADV – 1.000 tCO2e) average daily volume. The ICE reported 115 

ICE market Emissions members in January 2013. Knowledge of the empirical properties of the 

forward December carbon prices is important when constructing risk-assessment and management 

strategies.  Market participants who understand the dynamic behaviour of carbon prices are more 

likely to have realistic expectations about future prices and the risks to which they are exposed. 

 

Time-varying volatility is endemic in financial markets. Such risks may change through time in 

complicated ways, and it is natural to build stochastic models for the temporal evolution in 

volatility. The main objective of the paper is therefore to structure a scientific model specifying 
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volatility as having its own stochastic process, appropriately describing the evolution of the 

carbon market volatility. The implementation adapts the MCMC estimator proposed by 

Chernozhukov and Hong (2003), substantially superior to conventional derivative based hill 

climbing optimizers for this stochastic class of problems. Moreover, under correct specification of 

the structural model the normalized value of the objective function is asymptotically 
2
 distributed 

(and the degrees of freedom is well specified). An appropriate and well-specified SV model for 

the European carbon markets broaden applications into derivative pricing purposes, risk 

assessment and management, asset allocation and portfolio management. 

 

Stochastic volatility models have an intuitive and simple structure and can explain the major 

stylized facts of asset, currency and commodity returns. The carbon price volatility investigation 

is important for several reasons. First, carbon price volatility could hinder investments in new and 

advanced technology and equipment. Second, if carbon prices and other energy and commodity 

prices are co-integrated, a volatile market might make it harder for consumers and businesses to 

predict their raw-material costs
4
. In a booming economy, an increase in prices may make it harder 

for economic growth to occur. Carbon prices move relatively slowly when conditions are calm, 

while they move faster when there is more news, uncertainty, and trading. One of the most 

prominent stylized facts of returns on financial assets is that their volatility changes over time. As 

the most important determinant of the price of an option is the uncertainty associated with the 

price of the underlying asset, volatility is of paramount importance in financial analysis. Risk 

managers are particularly interested in measuring and predicting volatility, as higher levels imply 

a higher chance of large adverse price changes. For commodity markets like other markets, the 

motivation for stochastic volatility is the observed non-constant and frequently changing 

volatility.  The SV implementation is an attempt to specify how the volatility changes over time. 

Bearing in mind that volatility is a non-traded instrument, which suggests imperfect estimates, the 

volatility can be interpreted as a latent variable that can be modelled and predicted through its 

direct influence on the magnitude of returns. Besides, as the European market writes options on 
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the carbon December future contracts, SV models are also motivated by the natural pricing of 

these options, when over time volatility change. Finally, for the carbon markets observed returns 

and volatility changes seem so frequent that it is appropriate to model both returns and volatility 

by random variables.  

 

The paper focuses on the Bayesian Markov Chain Monte Carlo (MCMC) modelling strategy used 

by Gallant and McCulloch (2011) and Gallant and Tauchen (2010a, 2010b)
5
 implementing uni- 

and multivariate statistical models derived from scientific considerations. The method is a 

systematic approach to generate moment conditions for the generalized method of moments 

(GMM) estimator (Hansen, 1982) of the parameters of a structural model. Moreover, the 

implemented Chernozhukov and Hong (2003) estimator keeps model parameters in the region 

where predicted shares are positive for every observed price/expenditure vector. For conventional 

derivative based hill climbing algorithms this is nearly impossible to achieve. Moreover, the 

methodology supports restrictions, inequality restrictions, and informative prior information (on 

model parameters and functionals of the model). Asset pricing models as the habit persistence 

model of Campbell and Cochrane (1999), the long run risk model of Bansal and Yaron (2004) and 

the prospect theory model of Barberis, Huang, and Santos (2001) are all implemented. For the SV 

model implementation, the enhanced statistical and scientific stochastic model calibration 

methodologies can greatly enhance portfolio management, elaborate and extend the 

decomposition and aggregation of overall corporate and institutional risk assessment and 

management. In fact, appropriate MCMC estimated SV model simulations can generate 

probability distributions for the calculation of value at risk (VaR/CVaR) and Greek letters for 

portfolio rebalancing and model parameters can be the basis for forecasting the mean and 

volatility for forward assessment of risk, portfolio management, and other derivative pricing 

purposes. However, on the downside, as volatility is latent (and unobservable) coinciding with the 

fact that the conditional variances are complex functions complicating the maximum likelihood, 

estimations will be imperfect and a single optimal estimation technique is probably not available.  
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It is simple to make forecasts using the MCMC framework. Hence, both the mean and volatility 

are able to be forecasted adding content to future contract prices. Moreover, the re-projection 

method (Gallant and Tauchen, 1998) based on long simulated data series can extend projections. 

The post-estimation analysis can be used as a general-purpose technique for characterizing the 

dynamic response of the partially observed system to its observable history. Forecasting the 

conditional moments and the use of filtered volatility (with a purely ARCH-type meaning) and 

multistep-ahead dynamics are some features that really add strength to the methodology building 

of scientifically valid models. Ultimately, the analysis may therefore contribute to more realistic 

risk methodologies for energy markets and for market participants an improved understanding of 

the general stochastic behaviour inducing more realistic expectations about future prices and the 

risks to which they are exposed. The relatively new research called carbon finance, analyse the 

differences in EUA price dynamics between periods by considering jumps and spikes as well as 

phases of high volatility, volatility clustering and heteroscedasticity. The research confirms the 

presence of the stylized facts like skewness, excess kurtosis and different phases of volatility 

behaviour (e.g., Paolella and Taschini (2008), Benz and Trück (2009), and Conrad et al. (2010). 

All articles suggest the use of (G)ARCH-type models for the volatility equation (obtain 

heteroscedasticity consistent co-variances). They also show that the influence of fundamentals can 

be included in the mean equation. This paper is the first paper to use random variables and 

therefore stochastic volatility for the carbon prices. Moreover, previous research on other energy 

market prices is voluminous. Studies adopting the Heath-Jarrow-Morton (HJM) assuming a 

dynamics for the forward and swap price evolution have been suggested. In particular, Bjerksund 

et al. (2000), Keppo et al. (2004), Benth and Koekebakker (2008) and Kiesel et al. (2009) have 

used contracts for the NASDAQ OMX and EEX electricity markets. The same approach for 

energy markets in general can be found in Clewlow and Strickland (2000). However, modelling 

the price dynamics, where the contracts delivers over a period, creates challenges that are not 

present in the fixed income market theory (see Musiela and Rutkowski, 1998). To resolve this 
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problem the LIBOR models in interest rate theory (see Brigo and Mercurio, 2001) exclusively 

model contracts that are traded in the market and do not have delivery periods, which cannot be 

decomposed into other traded contracts. The result is a much more freedom to state reasonable 

stochastic dynamical models
6
 (Benth et al., 2008). Kiesel et al. (2009) proposes a two-factor 

model for electricity prices. Even though the research on the energy market is voluminous the 

LIBOR approach and modelling different parts of the term structure individually make the SV 

modelling interesting for derivative purposes, risk management and asset allocation. The 

contribution of our carbon study is therefore threefold. 

 

First, this paper is one of the first scientific model investigation of the behaviour of the front 

December forward contracts traded at the European carbon emission exchanges. In particular, it 

provides the first study to our knowledge that examines modelling the return volatility using 

scientific stochastic volatility models together with the Bayesian estimation and inference 

methodology (MCMC). Second, it improves assessment methodology for the evaluation of model 

fit and empirical scientific content. Plotting suitable measures of location and scale of the 

posterior distributions assesses the scientific model. That is, plots showing small location changes 

and increasing scale is favourable for scientific well-defined models. Third, to our knowledge this 

paper is quite unique analysing conditional moment forecasts for the carbon market contracts 

(point estimates and densities). In particular, it investigates the possibility that lagged returns 

contribute little if any additional information about future returns and variances. Fourth, risk 

management (VaR/CVaR) and asset allocation (Greeks) measures are available for both 

conditional and unconditional moments. Finally, particle filtering, multistep-ahead forecast and 

persistence is reported for the contracts. The rest of the paper is therefore as follows. Section 2 

presents background research and defines the data set. Section 3 describes the SV methodology. 

Section 4 conducts the GSM stochastic volatility specifications and assesses model validity. 

Section 5 interprets the model result. Section 6 uses the estimated model results for mean and 

volatility prediction, volatility filtering and describes how to extend the model assessment features 
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of the methodology for option pricing and implied volatilities calculations. Section 7 summarizes 

and concludes. 

 

2  Background and Data set 

The EU legal framework constitutes the basis for trading in EUAs. The EU Emission Trading 

Scheme is the main policy being introduced across Europe to handle emissions of carbon dioxide 

and other greenhouse gases, in order to counter the threat of climate change. The carbon trading is 

related to the fact that electricity generators fuelled by coal or natural gas emit substantial 

volumes of carbon dioxide. The emitters must now pay for these emissions and carbon contracts 

allow management of allowance price risks. To accomplish the needs a marketplace for European 

Union Allowances (EUAs) was established. All participants on the exchange can trade via open 

and cost-effective electronic access on equal terms. 

 

The derivatives markets was first started in 2005 (February). The market is an electronic order 

book where participants can see the system orders (anonymously) and the best ask and bid prices 

with corresponding volumes. Pricing is established at the end of the opening phase and during 

continuous trading. The main carbon products traded are forward/futures and options. Similar to 

other international commodity markets, the majority of members on the derivative market use the 

market for risk management purposes. The major difference between the financial electricity 

market and the emissions market is the physical delivery of EUAs and CERs to the buyer and a 

financial settlement to the seller, while the financial electricity market has only financial 

settlement.  Hence, the front year December future contract comprises physical delivery where the 

seller transfers EUAs to the buyer and the buyer makes financial settlement with the seller. In 

January 2013, the ICE market listed 22 EUA futures contracts with immediate physical delivery 

ranging from March 2013 to December 2020. For options, up to 16 contract months are listed on a 

quarterly expiry (March, Jun, September, and December), with 3 new contract months listed on 

expiry of the December contract. For all options the underlying contract is the December Future 
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of the relevant year. Quotations are all in euro, with a minimum contract size of 1 k tonne CO2. 

Trading is available on a continuous trading platform as well as by voice execution by the 

marketplace desk using the euro. The daily closing prices are set at the end of each day. The 

prices are primarily influenced by fundamental factors known from the electricity market like 

weather, coal, natural gas and oil prices. The total amount of allocated allowances (the EU cap) is 

also important for the prices. The market facilitates an efficient, transparent and confidence-

inspiring development of the emission market similar to the one for power. This is administered 

by strict requirements for information management in a regulated marketplace with standardized 

products. 

 

The daily analyses cover the period from the end of 2007 until the start of 2013 (March 1
st
), a 

total of five consecutive years and approximately 1302 price change observations. Any signs of 

successful SV-model implementations for the forward market will indicate non-predictive market 

features and a minimum of weak-form market efficiency. Consequently, the carbon markets are 

applicable for enhanced risk management activities including pricing of hedging instruments as 

well as conventional portfolio/fund management procedures. For all market participants an 

efficient market suggests pricing mechanisms reflecting all relevant historical information 

indicating a foundation of non-predictive and efficient market pricing, which are important 

ingredients for successful market implementation. In the long run, only an effective market can 

give guarantees for market prices close to the marginal cost of expanding capacity. It is important 

that participants can infer that all hedging instruments both for short and long run are fairly priced 

at all times. 

{Insert Table 1 about here} 

{Insert Figure 1 about here} 

The daily percentage change (logarithmic) of the data sets from the end of 2007 to the start of 

2013 is                Characteristics of this (commodity) markets financially traded 

contracts are reported in Table 1. The mean is negative and the standard deviation, the maximum 
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value and the kurtosis are relatively high. Serial correlation in the mean equation is not strong and 

the Ljung-Box Q-statistic (1978) is only marginally significant.. Volatility clustering using the 

Ljung-Box test statistic (1978) for squared returns (Q
2
) and ARCH statistics is significantly 

present. The KPSS (Kwiatowski et al., 1992) statistic cannot reject neither level nor trend (12) 

stationary price change series. The Dickey-Fuller test adds support to stationary series. The BDS 

(Brock et al., 1999) test statistics report highly significant data dependence. The price level (a) 

and price change (log returns) (b) data series are shown in the upper part of Figure 1. From the 

return plots the series show some large returns at lower price levels towards the end of the series 

and the level of volatility seems to change randomly. The plots together with the ARCH- and 

Ljung-Box test statistics (Q
2
) in Table 1 manifest volatility clustering. Moreover, the 

distributional and QQ-plots in parts (c) – (e) of Figure 1 show that the series distribution is more 

peaked and have fatter tails than a corresponding normal distribution. For the left and the right 

tails of the distribution, the number of large negative price changes seems to occur more often 

than large positive. However, the size of the returns is much higher for positive price changes. 

That is – the series will most likely have a negative drift with larger positive than negative price 

jumps. These facts together with a third moment different from zero and a fourth moment higher 

than three, indicates a non-normal distribution and leptokurtosis. Finally for later comparisons, the 

Value at Risk (VaR) and expected shortfall (CVaR) numbers report percentile and expected 

shortfall numbers for long positions at less than 2.5%. For our scientific model calibrations, these 

features found in the commodity series suggests nonlinear models, simply because linear models 

would not be able to generate these data. 

 

 

3 Theoretical SV model Background and Motivation 

Stochastic Volatility models provide alternative models and methodologies to (G)ARCH models
7
.  

The time-varying volatility is endemic in global financial markets. The SV approach specifies the 

predictive distribution of returns indirectly, via the structure of the model, rather than directly 

(ARCH). The main advantage of direct volatility modelling is convenience and perhaps more 
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natural. Relative to ARCH the SV model therefore has its own stochastic process without worries 

about the implied one-step-ahead distribution of returns recorded over an arbitrary time interval 

convenient for the econometrician. Moreover, simulation strategies developed to efficiently 

estimate SV models, have given access to a broad range of fully parametric models. This enriched 

literature has brought us closer to the empirical realities of the global markets
8
. However, SV and 

ARCH models explain the same stylized facts and have many similarities.  

 

The starting point is the application of Andersen et al. (2002) considering the familiar stochastic 

volatility diffusion for an observed stock price St given by  t

t t t

t

dS
cV dt V dW

S
   , where the 

unobserved volatility process Vt is either log linear or square root (affine) (W2t). The W1t and W2t 

are standard Brownian motions that are possibly correlated with corr(dW1t, dW2t) = . Andersen et 

al. (2002) estimate both versions of the stochastic volatility model with daily S&P500 stock index 

data, 1953-December 31, 1996. Both SV model versions are sharply rejected. However, adding a 

jump component to a basic SV model improves the fit sharply, reflecting two familiar 

characteristics: thick non-Gaussian tails and persistent time-varying volatility. A SV model with 

two stochastic volatility factors show encouraging results in Chernov et al. (2003). The authors 

consider two broad classes of setups for the volatility index functions and factor dynamics: an 

affine setup and a logarithmic setup. The models are estimated using daily data on the DOW 

Index, January 2, 1953 – July 16, 1999. They find that models with two volatility factors do much 

better than do models with only a single volatility factor. They also find that the logarithmic two-

volatility factor models outperform affine jump diffusion models and basically provide acceptable 

fit to the data. One of the volatility factors is extremely persistent and the other strongly mean-

reverting. The SV model for the European energy market applies the logarithmic model with two 

stochastic volatility factors (Chernov et al., 2003). Moreover, the SV model is extended to 

facilitate correlation between the mean (W1t) and the two stochastic volatility factors (W2t, W3t). 

The main argument for the correlation modelling is to introduce asymmetry effects (correlation 
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between return innovations and volatility innovations). This paper formulation of a SV model for 

the European energy market's price change process (yt) therefore becomes  
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where                 are standard Brownian motions (random variables). The parameter 

vector is 
0 1 0 1 1 0 1 2 1 2 3

( , , , , , , , , , , )a a b b s c c s r r r  . The r’s are correlation coefficients from a Cholesky 

decomposition; enforcing an internally consistent variance/covariance matrix. Early references are 

Rosenberg (1972), Clark (1973) and Taylor (1982) and Tauchen and Pitts (1983). More recent 

references are Gallant et al. (1991, 1997), Andersen (1994), Durham (2003), Shephard (2004), 

and Chernov et al. (2003). The model above has three stochastic factors. Extensions to four and 

more factors can be easily implemented through this model setup. Even jumps with the use of 

Poisson distributions for jump intensity are applicable (complicates estimations considerably). As 

shown by Chernov et al. (2003) liquid financial markets make a much better model fit introducing 

two stochastic volatility factors. One of the volatility factors that is strongly mean reverting to 

fatten tails, a second factor that is extremely persistent, to capture volatility clustering. 

 

The paper implements a computational methodology proposed by Gallant and McCulloch (2011) 

and Gallant and Tauchen (2010a, 2010b) for statistical analysis of a stochastic volatility model 

derived from a scientific process
9
. The scientific stochastic volatility model cannot generate 

likelihoods but it can be easily simulated. SV models contain prior information but are only 

expressed in terms of model functionality that is not easily converted into an analytic prior on the 
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parameters but can be computed from a simulation. Intuitively, the approach may be explained as 

follows. First, a reduced-form auxiliary model is estimated to have a tractable likelihood function 

(generous parameterization). The estimated set of score moment functions encodes important 

information regarding the probabilistic structure of the raw data sample. Second, a long sample is 

simulated from the continuous time SV model. Using the Metropolis-Hastings algorithm and 

parallel computing, parameters are varied in order to produce the best possible fit to the quasi-

score moment functions evaluated on the simulated data. In fact, if the underlying SV model is 

correctly specified, it should be able to reproduce the main features of the auxiliary score 

functions. An extensive set of model diagnostics and an explicit metric for measuring the extent 

of SV model failure are useful side-products. Finally, the third step is the re-projection method. 

The task of forecasting volatility conditional on the past observed data (akin to filtering in 

MCMC) or extracting volatility given the full data series (akin to smoothing in MCMC) may now 

be undertaken. Moreover, the post estimation analysis make an assessment of model adequacy 

possible by inferring how the marginal posterior distributions of a parameter or functional of the 

statistical model changes. The parameter maps of both models should correspond to the same data 

generating process and the statistical model should therefore also be identified by simulation from 

the scientific model.  

 

4   The General Scientific Model methodology 

The               is the percentage change (logarithmic) over a short time interval (day) of 

the price of a financial asset traded on an active speculative market. The methodology is used to 

estimate stochastic volatility models for the front December series. The first step for 

implementing the methodology is the moment generator. The projection method, described in 

Gallant and Tauchen (1992), provides an appropriate and detailed statistical description of the 

series. Starting from a VAR model, the methodology if necessary, elaborates the description of 

the data set from VAR, to Normal (G)ARCH, to Semi-parametric GARCH, and to Non-linear 

Nonparametric. Applying the BIC (Schwarz, 1976) values for model selection, the preferred 
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model for the data set is a semi-parametric GARCH model with 4 hermite polynomials for non-

normal features of the series. The model is an AR(1) model for {yt} with a GARCH(1,1) 

conditional scale function and time homogeneous nonparametric innovation density inducing 

tails. Note that the dependence on the past is through the linear location function and the GARCH 

scale functions. Also note, that our statistical methodology describes the GARCH process using a 

BEKK (Engle and Kroner, 1995) formulation for the conditional variance allowing for BIC-

efficient volatility asymmetry and level effects. For the contracts the level effects are insignificant 

and excluded from the statistical model. However, asymmetric volatility is included. Finally, the 

eigenvalue of variance function P & Q companion matrix is 0.959 and the eigenvalue of mean 

function companion matrix is 0.033. Finally, for evaluation purposes, the intermediate model 

residuals are exposed to elaborate statistical specification tests. The specification tests are shown 

in Table 2 for the optimal semi-parametric GARCH models. The test statistics suggest no data 

dependence, normal distributions and no volatility clustering. Hence, model misspecifications 

seem minimized and the series can be used for descriptive purposes of the future contracts.  Some 

characteristics of the projected time series from the BIC calibration are reported in Figure 2. The 

conditional volatility together with a moving average (m-lags) of the squared residuals of an 

AR(1) regression model of the returns are reported in plot (a). The projected volatility seems not 

to be a reasonable compromise between m=4 and m=15. The volatility seems to change randomly. 

The one-step-ahead density f y x
K t t

( ~ | . ),
1
  conditional on the values for 

x y y y
t t L t t   

       
1 2 1

( ~ , , ~ , ~ ) , is plotted in (b).  All lags are set at the unconditional mean of the data. 

The plots, peaked with fatter tails than the normal with some asymmetry, suggest only small non-

normal features, typically shaped for data from a financial market. The features suggest well-

behaved time series for the contracts. Moreover, the information contained in the plots for the 

mean and the volatility will be very useful for the implementation of the scientific SV models. 

{Insert Table 2 about here} 

{Insert Figure 2 about here} 
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The SV model implementation established a mapping between the statistical model and scientific 

model. The adjustment for actual number of observations and number of simulation must be 

carefully logged for final model assessment. Procedures applying an optimization routine together 

with an associated iterative run for model assessments, establish the reporting foundation and 

empirical findings from the Bayesian MCMC estimation that are given below. The optimal SV 

model from the parallel run model is reported in Table 3. The mode, mean and standard deviation 

are reported. The accompanying statistical model parameters are reported to the right (rescaled). 

The optimal Bayesian log posterior values are -1397.8 for the future carbon contracts. The 

statistical models in Table 3 seem to give roughly the same results as for the originally 

statistically estimated semi-parametric GARCH model. The statistical models suggest non-normal 

return distributions, positive drift, and serial-correlation in the mean and volatility equations. The 

presumption of an appropriate Geometric Brownian Motion (GBM) description for the carbon 

market therefore seems unrealistic. 

{Insert Table 3 about here} 

4. 1  Model Evaluation and Parameter/Functional Assessments 

The starting point is imposing the belief that the scientific model holds exactly. The idea is 

captured by recasting the problem so that the estimated parameters () of the statistical model are 

viewed as the parameter space of interest and constructs a prior that expresses a preference. We 

impose a single parameter () to control prior beliefs about how close the parameters of the 

statistical model () should be to the manifold. The smaller  is, the more weight is placed on  

close to the manifold. The scientific model is therefore assessed using the marginal posterior 

distribution of interpretable features of the statistical model, by changing . If changing our prior 

beliefs so as to support  farther from the manifold results in location shifts of the posteriors that 

are appreciable from a practical point of view, we then conclude that the evidence in the 

likelihood is against the restriction corresponding to the scientific model. For the SV model we 

examine the low dimensional marginals of interest (). The assessment report uses the - and -
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parameter frequency distributions for  = 1, 10, 20 and 100 distance from the manifold ( ). For 

two -parameters and the carbon contracts the results are reported in Figure 3. As can be observed 

from the plots, the distributions become wider when  is increased but the mean (the location 

measure) does not seem to move significantly; suggesting a well-fitting scientific model. The 

figures report location and scale measures of the posterior distributions of    and   . All the 

parameters show close to negligible effects for the series
10

. The main effect of imposing the 

stochastic volatility model on the statistical model is to force symmetry on the conditional 

density. The ’s posterior densities show small changes by imposing priors with = 1, 10, 20, 

and 100. The chi-square statistics with 2 (ltheta-1-lrho) degrees of freedom are -3.403 with 

associated p-values of 0.182 (see Table 3). The p-values indicate a successful model fit. Finally, 

the normalized mean score vectors along with unadjusted standard errors, report the quasi t-

statistics (not reported). All the quasi t-statistics are well below 1.0 indicating a successful fit for 

all mean score moments. 

{Insert Figure 3 about here} 

5  Empirical Findings and Portfolio and Risk Measures (post-estimation analysis) 

Table 3 reports the -parameters mode and mean with associated standard deviations for the 

Carbon SV estimation applying the GSM procedure. Confidence intervals for the seven 

coefficients are calculated by inverting the criterion difference test based on the asymptotic chi-

square (
2
) distribution of the optimized objective function (Gallant et al., 1997). These criterion 

difference intervals reflect asymmetries in the objective function and are also preferred from a 

numerical analysis point of view. The results for the -parameter are summarized in Table 4. The 

confidence intervals are narrower and asymmetric relative to classical (i.e. Hessian) standard 

errors
11

. Figure 4 reports a sub-sample of the scientific model kernel distributions for the 3 and 6 

coefficients (a)-(b), respectively. Figure 4 (c) also reports the sci-mod-posterior log-likelihood 

graphically (the optimal sci-mod-posterior value in Table 3 should be found along this path). It 

appears that all parameter chains, distributions and the log-likelihood have found their mode and 
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look satisfactory (no large and persistent deviations away from the mean value). The SV model 

parameters show a negative drift and a positive serial correlation in the mean equations.  

{Insert Table 4 about here} 

{Insert Figure 4 about here} 

For our period the contracts report an insignificant drift parameter of -0.034 (mode). Daily serial 

correlation is 0.033 with a standard error of 0.0196.. The contract does not show a high positive 

daily serial correlation in the mean and suggest non-predictability from serial correlation 

(significant serial correlation at several lags is needed to make the contract inefficiently priced). 

The conditional volatility parameters report a high and positive constant parameters (b0), inducing 

relatively high unconditional volatility for the contracts. Specifically, the volatility equations have 

a constant clearly above one for the carbon contracts (e
0.792

).  The volatility shows a quite high 

persistence coefficient (b1), with a mode of 0.985 (persistence). Importantly, the model 

implementation suggests a specification need for two instantaneous volatility factors. The 

contracts report a mean instantaneous volatility for s1 of 0.076 and s2 of 0.232. For the carbon 

markets we therefore find a daily mean volatility of 2.51% (39.66% per annum). For general 

financial markets these volatility figures can be considered relatively high. A mean daily drift of   

-0.034% (-8.5% per year) may signal a clearly negative trend in the market. The trend may follow 

the current negative trend in European economy in general. The asymmetric volatility coefficient 

(r1) is significant and negative for the contracts (-0.52). The negative asymmetric coefficient 

suggests that the contracts show higher volatility from large price decreases. 

 

The three-equation SV model can now be easily simulated at any length. The series features of the 

mean and volatility equations from a functional simulation (250 k) of the market are reported in 

Figure 5. The plots report a full- (250 k) and sub-sample (0.5 k) of the mean (a) and exponential 

volatility (b) equations. The plots (c) and (d) report features for the two instantaneous volatility 

factors (full-/sub-samples). The volatility factors seem to model two different flows of 

information to the market. One factor moves slowly while the second factor moves clearly 
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narrower but faster; that is – one slowly mean reverting factor provide volatility persistence and 

one rapidly mean reverting factor provides for the tails (see Chernov et al. (2003)). The plots in 

(e) and (f) report the mean and volatility densities and QQ-plots. The density distributions and the 

QQ-plots from a long run SV simulation give some extra insight to both the mean and volatility of 

the systems under consideration. The volatility density is close to normal and the exponential 

version is close to log-normally distributed. In contrast, the mean shows a negative skew of -0.43 

and the kurtosis is 5.08. Hence, the contracts show existence of leptokurtosis in the mean data 

generating process, with too many observations around the mean and in the both tails and too few 

observations around one standard deviation from the mean, seem present. These results are 

consistent with the SV model coefficients results.  

{Insert Figure 5 about here} 

The SV-model estimation and inference give us also immediate access to Value at Risk 

(VaR/CVaR), and Greek Letters (with a quoted exercise price). As all measures are accessible for 

every stochastic run they will be available for reporting in distributional forms. A first run 

estimate of 99% VaR (CVaR) is 8.6% (11.4%). VaR and CVaR are normally best applied using 

extreme value theory (EVT) for smoothing out the tail results. Applying the estimated SV model 

for 10 k iterations and 1 million euro invested in the European carbon contracts, a maximum 

likelihood optimization of 99.9%, 99.5%, 99% and 97.5% VaR (a) and CVaR (b) calculations are 

reported in Figure 6. The tails of these distributions are of interest for risk managers engaged in 

this commodity market. The value of the one-day 99.9% VaR (CVaR) for a €1 million portfolio in 

the carbon markets is €1 million x 0.14763 = €147.630 (€1 million x 0.18187 = €181.870). More 

generally, our estimate of the one-day 99.9% VaR (CVaR) for a portfolio invested in the 

European carbon market is 14.8% (18.2%) of the portfolio value. For portfolio and asset 

allocation purposes the Greek letters delta, rho and theta are reported in Figure 7 (only deltas are 

reported). The distribution for an at-the-money (ATM) call (a) (put (b)) delta measure shows a 

mean of 0.497 (0.492) with an associated standard deviation of 0.0022 (0.0021). A credible ATM 

call option measure for the contracts seems therefore to have a 95% confidence interval ranging 
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from 0.493 to 0.502. However, we can do better than this simple unconditional forecasting 

procedure. We will now apply the third and final step in Gallant and Tauchen (1998), the re-

projection step for post-estimation analysis and forecasting, which brings the real strengths to the 

methodology in building scientific valid models. 

{Insert Figure 6 about here} 

{Insert Figure 7 about here} 

6 Forecasting and Extracting Volatility for the Carbon Markets 

The re-projection methodology gets a representation of the observed process in terms of 

observables that incorporate the dynamics implied by the non-linear system under consideration. 

This post estimation analysis of the simulations entails mean and volatility predictions, filtering 

and model assessment. Scientific valid models cannot be built without enhanced assessment of 

model adequacy. Having the SV estimates of system parameters for our models, we simulate a 

very long realization of the state vector (250 k). Working within this simulation, we can calibrate 

the functional form of the conditional distributions. To approximate the SV model result using the 

score generator (fK) values, it is natural to reuse the values of the original raw data calibration. The 

dynamics of the first two one-step-ahead conditional moments may contain important information 

for all market participants. Figure 8 shows the first moment E[y0|x-1] paths, densities and QQ-

plots in plots (a), (b) and (c); the second moment Var[y0|x-1] paths, densities and QQ-plots in plots 

(d), (e) and (f). The first moment information conditional on all historical available data shows a 

one-day-ahead density (approximately from -1.25% to +1.0%). This is informative for daily risk 

assessment and management. Thus, using the whole history of observed data series implies a 

much narrower mean density indicating some relevant information from the history of the time 

series. One-step-ahead VaR and CVaR can be calculated using density percentiles from this 

conditional mean distribution. For the conditional mean the VaR (CVaR) is 0.33% (0.413%) and 

0.461% (0.558%) for 2.5% and 0.5% percentiles, respectively. Moreover, repeating this procedure 

(tedious and time-consuming) calculating VaR/CVaR and Greeks for every run, we will also be 

able to report both the VaR/CVaR and the Greeks using credible density forecasts (not reported). 
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{Insert Figure 8 about here}  

The explicit variance and standard deviation distributions are interesting for several applications 

with a special emphasis on derivative computations. However, the volatility does not change 

much from the original simulated SV model. The volatility is assumed latent and stochastic. The 

filtered volatility, which is the one-step-ahead conditional standard deviation evaluated at data 

values (xt-1), may give us some extra information. The filtered volatility is a result of the score 

generator (fK) and therefore volatility with a purely ARCH-type meaning. Alternatively, a Gauss-

Hermite quadrature rule can be used. Figure 9 report a representation of the filtered volatility at 

the mean of the data series for the contracts (a). The densities display the typical shape for data 

from a financial market: peaked with fatter tails than the normal with some asymmetry. In Figure 

9 and plot (b), we have plotted the distributions for several data values (x-1) from -10% to +10%.  

Interestingly, the largest values of x-1 have the widest densities. The one-step-ahead filtered 

volatility seems therefore to contain more information than the SV-model, giving us conditional 

one-step-ahead densities. Based on the observation at day t it is therefore of interest to use the 

one-step-ahead standard deviation for several applications. This filtered volatility and the Gauss-

Hermite quadrature shown in plot (c) can be used for one-step-ahead price calculations of any 

derivative. Figure 9 plot (d) reports the conditional variance function. The function reports the 

one-step-ahead dynamics of the conditional variance plotted against percentage growth (). Here 

we can interpret the graph as representing the consequences of a shock to the system that comes 

as a surprise to the economic agents involved. Asymmetry (“leverage effect”) can be evaluated 

from this function. From the (shock ()) plots for the contracts we see that the responses from 

negative (positive) shocks are higher than from positive (negative). The SV model negative 

parameter with a mode of -0.52 and a standard error of 0.122 signals quite a high negative 

mean and volatility correlation producing negative asymmetry. The sign of the parameter suggest 

larger volatility from negative returns. 

{Insert Figure 9 about here} 
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Figure 9 plot (e) reports multistep ahead dynamics. The conditional volatility plots reveal the 

future dynamic response of system forecasts to contemporaneous shocks to the system. These 

generally nonlinear profiles can differ markedly when the sign of  changes. However, the 

dynamics seems symmetric (+/-) and higher shocks are mean reverting, while periods of low 

volatility induce higher volatility to come. Finally, Figure 9 plot (f) reports profile bundles for the 

volatility to assess persistence (similar plot for the mean is not reported). The profile bundles are 

over plots conditional to each observed datum
12

. If the thickness of the profiles bundle tends to 

collapse to zero rapidly, the process reverts to its mean. If the thickness tends to retain its width, 

then the process is persistent. For the carbon volatility, the calculation of half-life (regression on 

margins) reveals approximately 24.53 with associated standard error of 0.27 days. All these 

findings from the post estimation analysis add more insight to building scientifically valid models. 

Based on these findings the post estimation analysis seems to add insight to building scientifically 

valid models for European carbon markets. 

 

Finally, the most predominant applications for the SV model and re-projection is option pricing 

and implied volatility calculations for market risk premiums and pricing errors. From the previous 

section we can obtain asset prices Si,T at time T from simulations labelled by i = 1, 2, …, N. The 

fair price for a call is generally    m ax , 0 ( )
rT Q rT

T Q
X

c e E S X e x X f x dx


     

    and would be 

estimated by    ,

1

/ m ax , 0

N

rT
N i T

i

c e N S X




  , where X is the strike price. Using the long simulation of 

 * *
,

t t
y x from our optimal SV structural model and performing a projection to get 

* * * *ˆ ( | )
K

y f y x dy , where y* is unobserved (volatility) and x* observed (returns) variables, 

establishes the needed and highly valuable re-projected volatility. Now, using the optimal SV 

model from the estimation date and risk neutral valuation (martingales), we can calculate 

derivative prices at any maturity and complexity. The methodology for pricing options and 
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implied volatility calculations using re-projected volatility is available for the European carbon 

market
13

. 

 

7  Summary and Conclusions 

This paper has used the Bayesian M-H estimator and GSM for a stochastic volatility 

representation for the European financial energy market contracts. The methodology is based on 

the simple rule: compute the conditional distribution of unobserved variables given observed data. 

The observables are the asset prices and the un-observables are a parameter vector, and latent 

variables. The inference problem is solved by the posterior distribution. Based on the Clifford-

Hammersley (1970) theorem, p(,x|y) is completely characterized by p(|x,y) and p(x|,y). The 

distribution p(|x,y) is the posterior distribution of the parameters, conditional on the observed 

data and the latent variables. Similarly, the distribution p(x|,y)is the smoothing distribution of the 

latent variables given the parameters. The MCMC approach therefore extends model findings 

relative to non-linear optimizers by breaking “curse of dimensionality” by transforming a higher 

dimensional problem, sampling from p(1,2), into easier problems, sampling from p(1|2) and 

p(|1) (using the Besag (1974) formula). 

 

The successful use of this version of the SV model for the carbon markets, suggests positive serial 

correlation in the mean, volatility tends to cluster and negative correlation between the mean and 

volatility induces asymmetry (the leverage effect). Although price processes are hardly 

predictable, the variance of the forecast error is time dependent and can be estimated by means of 

observed past variations. The result suggests that volatility can be forecasted. Moreover, observed 

volatility clustering induce an unconditional distribution of returns at odds with the hypothesis of 

normally distributed price changes. The stochastic volatility models are therefore an area in 

empirical financial data modelling that is fruitful as a practical descriptive and forecasting device 

for all participants/managers in the financial services sector together with a special emphasis on 
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risk management (forecasting/ re-projections and VaR/Expected shortfall) and portfolio 

management (option contract prices and Greek letters). 

 

Irrespective of markets and contracts, Monte Carlo Simulations should lead us to more insight of 

the nature of the price processes describable from stochastic volatility models. Our findings 

suggest that the European carbon markets are well described using two-factor scientific SV 

models. The Bayesian MCMC methodology, the parallel CPU processing and the M-H algorithm 

are computationally intensive for estimation, inference and assessment of model adequacy. Based 

on the simulated series the methodology extends information to the market participants (density 

forecasts); the conditional mean and volatility (conditional moments), forecasting conditional 

volatility (filtering), conditional variance functions for asymmetry (smoothing) and multiple-

ahead dynamics (mean reversion/persistence analysis). 
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NOTES 

 
1
 The Intercontinental Commodity Exchange report 91,5% of the total European Carbon trading volume (2013). 

2
 NASDAQ OMX: www.nasdaq.com; European Energy Exchange: www.eeg.de; Intercontinental Exchange: 

      www.theice.com. 
3
 Source: Point Carbon. In 2010, trading volumes across the entire carbon market transacted 7 billion tonnes of 

carbon dioxide equivalent (CO2e) with a value of € 92 billion. Total transaction volume in the global carbon market 

went down 12% in 2009. However, the total value of the market in 2010 went up by 1% year-on-year.  
4
 The co-integration argument is analysed in several international studies. The most comprehensive studies are 

Westgaard et al. (2010), Jong and Schneider (2009), Veka et al. (2011) and references therein. 
5
 The methodology is designed for estimation and inference for models where (1) the likelihood is not available, (2) 

some variables are latent (unobservable), (3) the variables can be simulated and (4) there exist a well-specified and 

adequate statistical model for the simulations. The methodologies (General Scientific Models (GSM) and Efficient 

Method of Moments (EMM)) are general-purpose implementation of the Chernozhukov and Hong estimator (2003). 

That is, the applications for methodologies are not restricted to simulation estimators.  
6
 Using only market traded products avoid the continuous-time no-arbitrage condition. 

http://www.nasdaq.com/
http://www.eeg.de/
http://www.theice.com/


     Page: 25 

                                                                                                                                                                                             
7
 See for example Benz & Trück (2009) and Paolella and Taschini (2006) for applications in energy markets. ARCH 

studies of energy markets are numerous and are often described as SV, but we do not follow that nomenclature. In the 

SV approach the predictive distribution of returns is specified indirectly, via the structure of the model, rather than 

directly as for ARCH. However, the accompanying statistical model for the MCMC estimation in this paper is a 

nonparametric-ARCH model. 
8
 High frequency data based on the concept realized volatility is tied to continuous-time processes and SV models. 

9
 See www.econ.duke.edu/webfiles/arg for software and applications of the MCMC Bayesian methodology. All 

models are coded in C++ and executable in both serial and parallel versions (OpenMPI). 
10

 The original statistical fit-model and the re-tuned assessment model with  = 20, give roughly the same parameter 

() results.  
11

 A quadratic fit is used and solved for the point where the quadratic equals the chi-square 1 df. critical value 3.841. 
12

 To avoid too dense plots only every 1000 (steps=1000) datum are plotted (250k/1000 =250 plots). 
13

 When up-to-date re-projected volatility is calculated and available the pricing can easily be implemented in for 

example the Excel spreadsheet for any derivative function. 

http://www.econ.duke.edu/webfiles/arg


Table 1. Characteristics of the Carbon Future Market 

Mean / Median Maximum / Moment Quantile Quantile Anderson Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Darling Q(12) Q
2
(12)

-0.12863 0.00000 22.8378 6.58824 0.27955 4.2953 4.59075 23.9950 365.857

0.00000 2.98187 -16.6157 0.11760 -0.01605 {0.1168} {0.0000} {0.0204} {0.0000}

BDS-statistic (e=1) KPSS (Stationary) Augmented ARCH VaR 2.5% /

m=2 m=3 m=4 m=5 Level Trend DF-test (12) CVaR 2.5%

16.6788 23.5820 30.1427 38.4401 0.14330 0.14340 -56.0675 594.675 -6.704

{0.0000} {0.0000} {0.0000} {0.0000} {0.4121} {0.0568} {0.0000} {0.0000} -8.984

 
The numbers in braces denote p-values for statistical significance. 
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Table 2.  Carbon characteristics of the Statistical Semi-parametric Model Residuals 

Mean / Median / Maximum / Moment Quantile Quantile Anderson Serial dependence

Mode Std.dev. Minimum Kurt/Skew Kurt/Skew Normal Darling Q(12) Q
2
(12)

0.00540 0.04768 4.34449 2.53610 0.07015 0.56074 0.6158701 22.8050 7.7449

0.43520 1.00066 -5.63364 -0.31283 -0.03709 {0.7555} {1.1366} {0.0423} {0.8047}

BDS-statistic (e=1) ARCH RESET Joint VaR CVaR

m=2 m=3 m=4 m=5 (12) (12;6) Bias 2.5%/0.5% 2.5%/0.5%

0.056986 0.192762 -0.072207 0.032576 0.5461 7.46051 2.909234 -2.000087 -2.779752

{0.3983} {0.3916} {0.3979} {0.3987} {0.4599} {0.8257} {0.4058} -3.219097 -4.207360

 
The numbers in braces denote p-values for statistical significance.  
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Table 3. Scientific Stochastic Volatility Characteristics: Carbon  -parameters* 

 

Carbon Front December General Scientific Model. Parallell. Statistical Model SNP-1111A000 - fit model

Parameter values Scientific Model. Standard Parameters Semiparametric-GARCH.

 Mode Mean error h Mode Standard error

 1 , a0 -0.0344470 -0.0311740 0.0428120 h 1   a0[1] 0.0071800 0.0142900

 2 , a1 0.0326050 0.0324780 0.0195720 h 2   a0[2] -0.0315000 0.0296300

 3 , b0 0.7923400 0.7812700 0.0976260 h 3   a0[3] -0.0353700 0.0148600

 4 , b1 0.9847500 0.9815600 0.0095960 h 4   a0[4] 0.0864600 0.0179400

 5 , s1 0.0755390 0.0754390 0.0131280

 6 , s2 0.2323200 0.2258900 0.0529770 h 6   B(1,1) 0.0338300 0.0296000

 7 , r1 -0.5196300 -0.5070600 0.1217300 h 7   R0[1] 0.0932200 0.0170800

h 8   P(1,1) 0.2149000 0.0492200

log sci_mod_prior 0.0327854 h 9   Q(1,1) 0.9549700 0.0089300

log stat_mod_prior 0 c
2
(2) = h 10   V(1,1) -0.2884900 0.0497200

log stat_mod_likelihood -1397.78670 -3.4027

log sci_mod_posterior -1397.75392 {0.182437}

 
*The parameter c0 from the original model (page10) is fixed equal to zero (0). The constant part of volatility is 

therefore all in the b0 parameter. The parameters r2 and r3 are initially free parameters but from the estimation they are 

very close to zero (0). In the final parallel estimation the r2 and r3 parameters are both fixed and equal to zero (0). The 

c
2
(2) reports a satisfactory fit of the optimal 7 parameter SV model. The number in braces denotes p-values for 

statistical significance. 
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Table 4. Carbon Confidence intervals using criterion differences 

 
SV Model 95% Lower 95% Upper SV Model 95% Lower 95% Upper

Critical Point Critical Point CriticalPoint Critical Point

 1 -0.0344470 -0.0857 0.02126  5 0.0755390 0.04984 0.11435

 2 0.0326050 -0.01938 0.06483  6 0.2323200 0.16315 0.35343

 3 0.7923400 0.64539 0.91252  7 -0.5196300 -0.73486 -0.40349

 4 0.9847500 0.87345 0.99545

Coefficients  Optimum Coefficients Optimum

 



 
 

a. Carbon Contract Prices Level Plot 2008-2013 
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b. Carbon Contracts Returns Plot 2008-2013 
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c. Carbon Contracts Returns Distribution Plot 
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d. Carbon Contracts Returns Tails-distribution plots 
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e. Carbon Contracts Returns QQ-plot 

 

Figure 1. Carbon Contract Characteristics for the period 2008-2013 

  



     Page: 6 

 

 
 

a. Carbon Projected Conditional Volatility & Moving Average (m= 4 and 15) 

  



     Page: 7 

 

 

b. One-step-ahead Carbon Density 

 

Figure 2. Carbon contract characteristics of the Statistical GSM Score 
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a. - parameter model assessment 
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b. parameter model assessment  

 

 

Figure 3. Carbon contract - parameter distributions for model assessment:  = 1, 10, 20 and 100. Every 

   25
th

 observation is used from a sample of 250000 (10000 observations are used for each plot). 
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a. Carbon SV model parameter: 3 
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b. Carbon SV model parameter: 6 

  



     Page: 12 

 

 
c. sci-mod posterior 

  

 

Figure 4. Carbon contract - parameter paths and distributions for a 25 CPU parallel-run. Every 25
th

  

 observation is used implying a total sample of 250 k (10 k observations are used in each plot). 
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a. Carbon simulated return series (250 k and 0.5k) 
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b. Carbon simulated Exp(Volatility) series (250 k and 0.5k) 
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c. Carbon simulated Volatility Factor 1 series (250 k and 0.5k) 
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d. Carbon simulated Volatility Factor 2 series (250 k and 0.5k) 
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e. Carbon distribution Mean and Volatility 
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f. QQ-plots for Carbon Mean and Volatility 

 

 

Figure 5. Carbon contract SV model characteristics: Full and sub sample mean (a) and volatility (b).  

 Full and sub sample volatility factors(c and d). Mean and volatility densities (e) and QQ plots (f)  
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a. Value-at-risk (VaR) for 99.9%, 99.5%, 99% and 97.5%  densities 
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b. Conditional value-at-risk (CVaR) for 99.9%, 99.5%, 99% and 97.5% densities 

  
Figure 6 Carbon Contracts 10 k iterations:  VaR (a) and Expected Shortfall (CVaR) (b) 
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a. Delta for an ATM Call Carbon option 
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b. Delta for an ATM Carbon Put option 

 

 

Figure 7. Carbon Contracts: Delta densities for Call (a) and Put (b) ATM options. 10 k iterated forecasts 
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a. One-step-ahead Carbon Conditional Mean (250 k and 0.5k) 
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b. One-step-ahead Carbon Conditional Mean Density 
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c. One-step-ahead Carbon Conditional Mean QQ-plot 
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d. One-step-ahead Carbon Conditional Volatility (250 k and 0.5k) 
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e. One-step-ahead Carbon Conditional Volatility Density 
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f. One-step-ahead Carbon Conditional Volatility QQ-plot 

 

Figure 8 Carbon Contracts: Conditional mean and volatility from Optimal SV model coefficients 

  



     Page: 29 

 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C

o

n

d

i

t

o

n

a

l

M

e

a

n

D

e

n

s

i

t

y

One-step-ahead density fK(yt|xt-1,); unconditional mean of data m = -0.1271

Frequency xt-1= "Mean (-0.1271)" Normal Distribution

 
a. One-step-ahead Carbon density (unconditional mean) 

  



     Page: 30 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

C

o

n

d

i

t

o

n

a

l

M

e

a

n

D

e

n

s

i

t

y

One-step-ahead density fK(yt|xt-1,) xt-1=-10,-5,-3,-2,-1,0,m,+1,+2,+3,+5,+10%

Frequency xt-1=-10% Frequency xt-1=-5% Frequency xt-1=-3% Frequency xt-1=-1%

Frequency xt-1= "Mean (-0.1271)" Frequency xt-1=0% Frequency xt-1=+1% Frequency x-1=+3%

Frequency x-1=+5% Frequency x-1=+10%
 

 

b. One-step-ahead Carbon density (mean: x-1 = -10% …10%) 
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c. Gauss-Hermite Carbon Quadrature 
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d. The Carbon Conditional Variance Functon 
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e. Carbon Multistep-ahead Dynamics 
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f. Profile Bundles for Carbon Volatility persistence 

 

 

Figure 9 Carbon Contracts: One-Step-Ahead Unconditional (a) and Conditional (b) Mean;   

 Gauss-Hermite Quadrature (c); Conditional Variance Function (d); Multi-Step Ahead Dynamics (e) 

 and Profile Bundles Volatility Persistence (f) 

 

 

 

 


