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Abstract

This paper presents a parallel tabu search algorithm that utilizes several different
neighborhood structures for solving the capacitated vehicle routing problem. Single
neighborhood or neighborhood combinations are encapsulated in tabu search threads
and they cooperate through a solution pool for the purpose of exploiting their joint
power. The computational experiments on 32 large scale benchmark instances show
that the proposed method is highly effective and competitive, providing new best
solutions to four instances while the average deviation of all best solutions found
from the collective best results reported in the literature is about 0.22%. We are
also able to associate the beneficial use of special neighborhoods with some test
instance characteristics and uncover some sources of the collective power of multi-
neighborhood cooperation.

Keywords: Routing, Parallel metaheuristics, Multi-neighborhood, Cooperative search,
Solution pool.

1 Introduction
The vehicle routing problem (VRP) describes the allocation of transportation tasks to a
fleet of vehicles, and the simultaneous routing of each vehicle. The VRP was first de-
scribed by Dantzig and Ramser (1959), and has been proved NP-hard by Lenstra and Kan
(1981). Due to its high industrial applicability and complexity, the VRP has been the
object of numerous studies and a great number of papers have proposed solution meth-
ods. These methods comprise both exact and heuristic algorithms. Since the VRP is
NP-hard, it is not always possible to solve instances to optimality within limited comput-
ing time. Exact algorithms have been used to solve the VRP instances with up to about
100 customers (Laporte, 2007). For larger problems, heuristics and metaheuristics are



more appropriate, especially tabu search (TS)(Glover and Laguna, 1997), which has of-
ten been used successfully. For more information on the VRP, its solution methods and
the recent work, we refer to the books of Toth and Vigo (2002), Golden et al. (2008) and
the survey paper of Laporte (2007).

Among the solution methods for solving the VRP, one trend is to adopt parallel al-
gorithms. For instance, parallel algorithms are increasingly applied in real time vehicle
routing contexts where solutions have to be timely generated (Ghiani et al., 2003). Un-
like sequential algorithms which run on a single processor and are executed sequentially,
parallel algorithms run multiple processes simultaneously on available processors with
the common goal of solving a given problem instance. Crainic (2008) describes the main
strategies used on this group of algorithms and also provides an up-to-date survey of con-
tributions to this rapidly evolving field. The author also points out that parallel algorithms
can both speed up the search and improve the robustness and the quality of the solutions
attained. Thus it would be advantageous to make use of parallelism.

Another feature of the latest metaheuristics for the VRP is to use multiple neighbor-
hoods (e.g., Li et al., 2005; Kytöjoki et al., 2007; Mester and Bräysy, 2007; Groër et al.,
2011). From the outcome of these algorithms, one may perceive that it is beneficial to
employ multiple neighborhoods. Indeed, each neighborhood can be used to improve or
modify a solution in its particular way such as reinserting a node, swapping two nodes and
so forth. For a particular instance, at a certain stage, a specific neighborhood may be more
effective than the others by leading the search through its own distinct search trajectory
and producing better solutions. We term such a capability of a neighborhood as its ef-
fectiveness. Moreover, it is also noticeable that in these methods multiple neighborhoods
are used in serial manner, in that each neighborhood is used one after another following
a fixed or randomized sequence. One may wonder whether it can be more effective to
use multiple neighborhoods in a parallel way instead. The objective of this paper is to
explore the strategy of utilizing multiple neighborhoods in a parallel setting and analyze
their effectiveness for solving the capacitated vehicle routing problem (CVRP).

The CVRP, as the classical version of the VRP, is defined on a graph G = (N,A)
where N = {0, . . . , n} is a vertex set and A = {(i, j) : i, j ∈ N} is an arc set. Vertex
0 is the depot where the vehicles depart from and return to. The other vertices are the
customers which have a certain demand d to be delivered (or picked up). The travel cost
between customer i and j is defined by cij > 0. The vehicles are identical. Each vehicle
has a capacity of Q. The objective is to design a least cost set of routes, all starting
and ending at the depot. Each customer is visited exactly once. The total demand of all
customers on a route must be within the vehicle capacity Q. Some CVRP instances may
have an additional route duration limit constraint, restricting the duration (or length) of
any route not to exceed a preset bound D. The method presented in this paper is able to
solve problems both without and with route duration limit constraint.

The main contribution of this paper is the development of an effective parallel multi-
neighborhood tabu search (PMNTS) method which contains several cooperative TS threads,
each using a single neighborhood or a neighborhood combination. The experiments on
32 large scale CVRP benchmarks demonstrate that the proposed algorithm is effective
and competitive. It finds new best solutions for four instances while the rest of the results
are highly comparable to the best solutions reported in the literature. In addition, we are



also able to associate the beneficial use of special neighborhoods with some test instance
characteristics and uncover some origins of the collective power of multi-neighborhood
cooperation.

The remainder of this paper is organized as follows. In the next section our problem
solving methodology is introduced. After that, Section 3 describes several variants devel-
oped for analyzing the performance of the proposed method. Then Section 4 presents the
algorithm configurations and the computational results. Finally, conclusions are presented
in Section 5.

2 Description of the parallel algorithm

In this section, the proposed parallel multi-neighborhood cooperative tabu search meta-
heuristic is introduced. We start with a general description of the algorithm, and then
the description of the main search phase is provided in Section 2.1. After that, Section
2.2 introduces the cooperating TS threads. Then the initial solution phase is described in
Section 2.3.

The general scheme of the proposed algorithm is displayed in Algorithm 1. The
method consists of two phases. The goal of the first phase is to create a feasible start-
ing solution (Line 1 of Algorithm 1). In the second phase (Line 2-8 of Algorithm 1),
the starting solution is gradually improved by the joint effort of four different TS threads
working in parallel (Line 4). Each TS thread utilizes a distinct neighborhood or neighbor-
hood combination for inter-route moves and thus follows a different search strategy. These
threads exchange the best solutions found periodically through a solution pool (Line 5-6).
This phase is the core component and main search phase of the proposed method.

Algorithm 1: PMNTS
1: Create a feasible starting solution
2: Initialize the solution pool and the parallel tabu search threads
3: while termination conditions not met do
4: TS threads attempt to improve the starting solution independently
5: TS threads pause and export best solutions found to the solution pool
6: The solution pool selects new starting solution and send it to TS threads
7: end while
8: Return the best solution in the solution pool

2.1 The main search phase

In the main search phase, the four TS threads cooperate through a solution pool, focusing
on improving the starting solution.

For a multi-thread metaheuristic, generally there are three types of parallelization
strategy. The first type is independent multi-search in which multiple threads run simulta-
neously without any information exchange. The second type is allowing search threads to



exchange information directly between each other. The third strategy is to exchange infor-
mation between threads through a solution pool. The reason we select the last strategy is
twofold. First, it has been stated that the third strategy is more effective and parsimonious
than the other two (Crainic, 2008). Second, some TS threads included in the proposed
algorithm are not designed for independent use. Their individual performances are quite
poor. Information exchange seems to be a necessity for them to work well in this context.
The collaboration between the TS threads and the solution pool is depicted in Figure 1.
The arrows in the figure represent the solution exchange between the TS threads and the
solution pool.

Figure 1: Collaboration diagram

The solution pool, which can be called a solution warehouse as well, keeps the best
solutions sent by each search thread and sorts these solutions according to their qual-
ity, eliminating duplicate solutions and providing new starting solutions for each search
thread. Each search thread only communicates with the solution pool.

To create moments for communications with each search thread, the second phase is
partitioned into a certain number of segments (or search periods). During each segment
these four search threads operate a certain amount of time, then they stop to export their
best solutions found to the solution pool and attain a new solution from where to start the
next segment. If there is a new best solution in the pool, this new best will be the starting
solution for the next segment. Though a best solution may not always lead to another best
one, we prefer to explore it first rather than a solution randomly selected. When there
are no new best solutions in the pool, the new starting solution is selected by considering
two criteria, namely the solution quality (the total travel distance) and the difference from
the current best solution. The solution difference is measured by the number of different
edges. Here, solutions with a certain amount (a parameter) of different edges are accepted
so as to resume the search from sufficiently distinct solutions compared to where the
search stopped. The solutions in the pool are sorted from the best to the worst according
to the total travel distance, and each solution also has a flag that indicates whether it has
been previously improved upon. This flag is used to avoid repeatedly selecting the same
solution to resume the search. The solutions are checked from the best to the worst, and
the first solution which has not been used before and satisfies the difference requirement
will be selected for the next segment. The rationale behind starting from the same solution
in all threads are threefold. First, each search thread can start from the best solution found
so that all threads can reach a promising part of the search space quickly. Second, the
search threads are kept in the same area of the search space to intensively search that
area. Third, for a given starting solution, the neighborhood that is the most appropriate
for generating improvement will have the opportunity to work on the solution.



In terms of the taxonomy introduced by Crainic and Nourredine (2005) for parallel
metaheuristics, our algorithm fits into the pC/KS/SPDS classification. The first dimension
pC indicates the global search is controlled by multiple cooperative threads. The second
dimension KS stands for knowledge synchronization and refers to the fact that multiple
threads share information synchronously. The last dimension SPDS indicates multiple
search threads make use of different search strategies from the same initial solution during
each period.

2.2 The tabu search threads

In this sub-section, the common features and the differences between the TS threads in-
cluded in the proposed algorithm are provided.

2.2.1 The common features of the tabu search threads

The TS threads included in the proposed method are developed on the basis of the granular
tabu search that was first introduced by Toth and Vigo (2003). Granular TS is a mecha-
nism which is able to reduce the computational effort, especially for large instances by not
considering some of the unpromising solution components (in their case, the long edges).
In this paper, a similar, but somewhat different granular neighborhood is implemented. It
is to select a set of the nearest neighbors (plus the depot) for each customer, and then only
moves involving one member of this nearest neighbors set will be considered. The size of
the nearest neighbors set (denoted as SNNS) can be selected by considering the instance
characteristics and the requirements of the solution quality (or the time available for com-
putation) as suggested by Branchini et al. (2009). The other aspects of TS framework are
described below.

Inter-route neighborhood structure
Three basic neighborhood structures for inter-route operations, which are commonly used
in the previously published metaheuristics for the VRP, are selected and implemented in
the TS threads. The basic idea of each neighborhood structure is described as follows.

• Reinsertion (Savelsbergh, 1992) refers to relocating a customer node from one route
to another route.

• Exchange (Osman, 1993) swaps two customer nodes from two routes.

• 2-opt* (Potvin and Rousseau, 1995) combines two routes so that the last customers
of a given route are introduced after the first customers of another route, i.e. ex-
changing the head or tail part of two routes.

Each TS thread included in the proposed algorithm utilizes one or a distinct subset
of these neighborhoods. Thus each thread follows a different search strategy. When a
TS thread incorporates more than one neighborhoods for inter-route moves, one of the
included neighborhoods is randomly selected according to a certain probability at each
iteration.



Neighborhood generation and evaluation
For each inter-route neighborhood structure, at each iteration, all customer nodes are used
to generate neighboring solutions. For each customer node u, assuming in route R1 in the
current solution s, find the nodes which are in its nearest neighbors set but not in route
R1. The set of these nodes is denoted as Ω. For each node v in Ω in route R2,

• Reinsertion: move u to route R2 after node v.

• Exchange: swap the positions of u and v.

• 2-opt*: denote the node after u in route R1 as u′, denote the node before v in route
R2 as v′, replace edge (u, u′) and (v, v′) with edge (u, v) and (u′, v′).

To explore the solution space more thoroughly, infeasible intermediate solutions are
allowed. For this purpose, capacity and route length constraints are relaxed and their
violations are penalized in the objective function. This augmented objective function is
computed as F (s) = C(s)+αQ(s)+βD(s), where C(s) is the total travel distance, Q(s)
and D(s) denote the total violations of capacity and route length constraints respectively,
α and β are penalty multipliers. The values of the penalty multipliers are self-adjusted
during the course of the search as described by Toth and Vigo (2003). The neighbor-
ing solutions (either feasible or infeasible) generated by each neighborhood operator are
evaluated in terms of the augmented objective function.

In addition, to speed up the search, the neighborhood exploration and evaluation for
inter-route moves are parallelized by decomposing the computational tasks to different
threads.

Solution acceptance and tabu mechanism
Among the neighboring solutions, the best move in terms of the augmented objective
function that is non-tabu or satisfies the aspiration criterion is accepted. The aspiration
criterion overrides the tabu status of a move if this move leads to a new best solution.

The tabu list is neighborhood dependent. The tabu list tenure tt of each neighborhood
is set to be proportional to the number of customer nodes in the instance. For reinsertion,
if u is relocated, u is declared tabu for tt iterations and any moves relocating u cannot
be performed unless it satisfies the aspiration criterion. For exchange move swapping
u and v, the two nodes are declared tabu and any moves swapping u and v cannot be
performed unless it satisfies the aspiration criterion. For 2-opt* moves adding edge (u, v)
and (u′, v′), node u, v and v′ are declared tabu, any moves adding edge (u, u′) and (v, v′)
are forbidden unless it satisfies the aspiration criterion.

Route refinement
In the TS threads, at each iteration, after an inter-route move, the two modified routes
are refined separately by an intra-route optimization procedure. The procedure consists
of two simple heuristics developed by implementing 2-opt (Flood, 1956) and reinsertion
(Savelsbergh, 1992) neighborhood structures in local search setting. The two heuristics
are applied to a route alternately. The heuristic using 2-opt repeatedly eliminates two
edges and adds two new edges, improving moves are accepted until no improvement can
be found. The heuristic using reinsertion seeks improvement by relocating a node to



another position, if a move reduces the route length, then it is accepted. The procedure
terminates when no improvement can be found.

Solution exchange
The TS threads pause and exchange solutions with the solution pool after running for
a certain amount of time. Each TS thread exports its best solution and receives a new
solution to resume the search from.

Search process
Each tabu search thread starts off with the starting solution si created in the first phase. At
each iteration, a neighborhood is selected to generate a set of neighbors and the least cost
non-tabu solution s̄ is selected to replace the current solution s. Then the reverse moves
are declared tabu and the routes just modified are refined by the intra-route optimization
procedure. In addition, if the current solution s is feasible and better than the best solution
s∗, replace s∗ with s. Moreover, periodically each tabu search thread stops to exchange
solutions with the solution pool and uses the received solution to replace its current solu-
tion and the best solution, the tabu lists are re-initialized. This process is summarized in
Algorithm 2.

Algorithm 2: Tabu search
1: Set s∗ = si, s = si, C(s∗) = C(si)
2: Initialize tabu lists and penalty multipliers
3: while termination conditions not met do
4: Select a neighborhood and SNNS for inter-route moves
5: Generate and evaluate neighboring solutions
6: Select a neighboring solution s̄ that minimize F (s̄) and is non-tabu or

satisfies the aspiration criterion, set s = s̄
7: Set the reverse moves tabu for tt iterations
8: Refine the routes modified
9: If s is feasible and C(s) < C(s∗), set s∗ = s; C(s∗) = C(s)
10: Update penalty multipliers
11: If reaching the time limit, pause and exchange solutions with the

solution pool, reset s∗, s, C(s∗) and tabu lists
12: end while

2.2.2 The differences between the tabu search threads

As summarized in Table 1, each TS thread utilizes a distinct neighborhood or neighbor-
hood combination for inter-route moves and thus each thread plays a different role in the
cooperative search.

Thread 1 utilizes two neighborhoods (reinsertion and 2-opt*) for inter-route moves in
serial fashion. In each iteration a neighborhood is randomly selected according to a certain
probability. The probability of using reinsertion neighborhood is much higher than using
2-opt*. Preliminary computational experiments show that using such a combination is
more effective than using only reinsertion neighborhood, especially for the instances with



Table 1: The features of each TS thread

TS thread Neighborhood used Role
for inter-route

Thread 1 Reinsertion, 2-opt*. Main improving thread.
Thread 2 2-opt*. Assistant improving thread.
Thread 3 Exchange Assistant improving thread.
Thread 4 Solution perturbation

+ Reinsertion, 2-opt*,
Exchange

Diversifying the search.

tight constraints. For the actual probability values used, see Section 4.3. One advantage of
such serial neighborhood cooperation can be that this mechanism allows different neigh-
borhoods to work one after another on intermediate infeasible solutions which may lead
to good feasible solutions.

Thread 2 and Thread 3 are similar. They utilize one single neighborhood for inter-
route moves trying to improve the given solution. These two neighborhoods can be quite
effective for some instances at various search stages. Thus, with these two threads, the
proposed method is able to identify good solutions for a broad variety of instances.

Thread 4 is different from the other three. Its main task is to diversify the search pro-
cess. This thread consists of an extra solution perturbation procedure. Before the normal
TS procedure starts, the starting solution is perturbed first. The perturbation procedure
consists of two steps. Firstly, a certain percentage of nodes of a solution are removed
from the solution. The term perturbation strength is used to refer to this percentage. Half
of those nodes are selected from the nodes which are connected to their distant neighbors
while the other half are selected randomly. During the second step, reinsert the nodes
removed one by one to a different route, next to one of its nearest neighbors so as to cause
the least deterioration in terms of the augmented objective function value. The thread
utilizes three neighborhoods (reinsertion, 2-opt* and exchange) for inter-route moves in
serial fashion. The neighborhood selection rule is similar as in Thread 1.

2.3 The initial solution phase
As displayed in Algorithm 1, the goal of the first phase is to create a feasible starting solu-
tion. There are three steps in the phase. Step one creates an initial solution in which each
customer is served individually by a separate route, i.e., the number of routes equals the
number of customers. In step two, the routes are merged by a route reduction procedure
so that the number of routes is reduced to a preselected level. In the route reduction pro-
cedure, there are two sub-steps. The first sub-step is to select the route with the smallest
load, denote the route as R1. The second sub-step is to reinsert each customer node in R1
to another route. To this end, for each customer node in R1, use reinsertion neighborhood
operator to generate and evaluate possible moves as described in Section 2.2.1, and then
the best move in terms of the augmented objective function value is executed. Repeat the
two sub-steps until the number of routes reaches the preselected level. The solutions gen-
erated in step two are often infeasible regarding either the capacity constraint or the route



length constraint. Thus, in step three, an attempt is made to restore the feasibility by a re-
pair procedure. The repair procedure is a variant of the tabu search procedure described in
Section 2.2.1, in which three neighborhoods (reinsertion, exchange and 2-opt*) are used.
To focus restoring the feasibility, a special move evaluation and acceptance criterion is
used for reinsertion and exchange neighborhoods. For the two neighborhoods, the neigh-
bors are generated as described in Section 2.2.1, but they are evaluated in terms of three
separate metrics, i.e., the total travel distance, the capacity constraint violations and the
route length constraint violations. Among the available moves, only moves which result
in the positive decrease in the total travel distance will be considered. If such moves exist,
then the repair procedure checks whether there exist route length constraint violations. If
there are route length constraint violations, the move leading to the neighboring solution
with the lowest route length constraint violations is executed, otherwise, the move lead-
ing to the neighboring solution with the lowest capacity constraint violations is executed.
The rationale behind this decision is that the capacity is relatively easier to restore. If such
improving moves are not found, no moves will be executed. At each iteration, reinsertion
neighborhood is applied first to search for improving moves. If no such moves can be
found, then exchange neighborhood is applied. When neither reinsertion nor exchange
neighborhood can find improving moves, 2-opt* neighborhood is applied. For this neigh-
borhood operator, the moves are evaluated in terms of the augmented objective function
value and the best non-tabu move will be accepted even though it may increase the total
constraint violations. The first phase terminates when solution feasibility is attained.

In the proposed algorithm, the number of routes in the solutions is fixed during the
subsequent search course after the route reduction procedure. The rationale behind this
decision is twofold. First, the number of vehicles is often known beforehand in some VRP
contexts. Second, to fix the number of tours facilitates the method to focus on minimizing
the total travel distance. For situations where the number of vehicles is unknown, the
proposed algorithm is also able to find solutions with the minimum number of routes by
enclosing it in a binary search in the number of routes. For the CVRP benchmarks tested
during computational experiments, the minimum route number of each problem reported
in the literature is adopted for the sake of simplicity.

3 Several other variants
To evaluate the role of cooperation and to compare the effectiveness of using multiple
neighborhoods in serial and parallel manner, we have also developed six other variants,
i.e. four sequential variants (denoted as SV1, SV2, SV3 and SV4), two parallel variants
(denoted as PV1 and PV2).

The four sequential variants are developed by removing the solution pool and 3 threads
from the second phase of PMNTS. For instance, SV1 is developed by removing the so-
lution pool, Thread 2, Thread 3 and Thread 4, thus only keeping Thread 1 at the second
phase. SV2, SV3 and SV4 are developed analogously by only keeping Thread 2, Thread
3 and Thread 4 at the second phase respectively. Thus, in particular, SV4 corresponds to a
sequential TS using all the neighborhoods used by the parallel version. These sequential
variants have only one thread, run on a single processor and correspond to each of the four
TS threads included in PMNTS respectively. The objective of generating these variants is



to evaluate the performance of each simple TS thread included in the proposed algorithm.
The first parallel variant PV1 is developed by removing Thread 4 and 2-opt* neigh-

borhood at Thread 1 from PMNTS. It consists of only three threads in the second phase
and each search thread utilizes a single neighborhood (reinsertion, exchange or 2-opt*)
for inter-route moves respectively. The three TS threads cooperate through the solution
pool. The solution pool functions exactly the same way as discussed above for PMNTS.
The goal of generating this variant is to evaluate the effectiveness of using only one neigh-
borhood for inter-route moves in each TS thread and explore the association between the
beneficial use of special neighborhoods with test instance characteristics.

The second parallel variant PV2 is developed by replacing the original Thread 2 and
Thread 3 at the second phase of PMNTS with clones of Thread 1. In the resulting parallel
variant, three copies of Thread 1 cooperate with Thread 4 through the solution pool. The
objective of developing this variant is to evaluate the performance of PMNTS without
Thread 2 and Thread 3 in which single neighborhoods are used in a parallel manner.

These variants are tested with a subset of CVRP benchmark instances to compare their
effectiveness. The results are discussed in Section 4.

4 Computational results
In this section we describe the experimental platform, the test data sets, the algorithm
configurations, the experimental results and give some observations.

4.1 Experimental platform and implementation issues
The proposed algorithm is implemented in C++ and Intel Threading Building Blocks
(TBB) libraries are used for parallelization. TBB is a C++ template library developed by
Intel Corporation for writing software programs that take advantage of multi-core proces-
sors. More information about TBB can be found at http://www.threadingbuildingblocks.org/.
The computational experiments are carried out on a computer with 2 Intel R⃝ Xeon R⃝
E5450 3.00GHZ CPUs(quad-core) and 8 GB of RAM. A master thread is used to control
the global search process, launch the four search threads in phase 2 and manage the solu-
tion pool. Each search thread is run on one core. The rest of the available cores are used
by the parallel neighborhood generation and evaluation procedures.

4.2 The test data sets
The computational tests were carried out using the CVRP benchmarks of Golden et al.
(1998) and Li et al. (2005). The 20 benchmark instances of Golden et al. (1998) have
200 to 483 customers. The first eight instances also have route length restrictions. Each
instance is based on a simple geometric structure: eight instances have customers located
in concentric circles around the depot, four instances have customers located in concentric
squares with the depot located in one corner, four instances have customers located in
concentric squares around the depot, and four instances have customers located in a six-
pointed star around the depot. The benchmark instances of Li et al. (2005) have 560 to
1200 customers and route length restrictions, and their geometric structure is based on



concentric circles around the depot. For each instance, the algorithm was executed 10
times with different random seeds and both the best and average results are reported.

4.3 The algorithm configurations
The configurations of PMNTS and the other variants are introduced below.

4.3.1 The configurations of PMNTS

The parameters of the proposed parallel multi-neighborhood cooperative tabu search al-
gorithm are shown in Table 2.

Table 2: The parameters of the proposed algorithm

Parameters First Second Phase
phase Thread1 Thread2 Thread3 Thread4

Tabu tenure R: 0.07N R: 0.05N O: 0.135N E: 0.07N R: 0.07N
E: 0.07N O: 0.1N E: 0.07N
O: 0.135N O: 0.1N

Neighborhood R: 6/7 O: 1 E: 1 R: 5/7
probability O: 1/7 E: 1/7

O: 1/7

Nearest neighbors 24 10 + random [0, 10]
set size
Perturbation strength Thread4 : 0.2
Solution difference at least 10% different edges
Time for a segment the time Thread 1 runs 250

√
N iterations

Segment number 60
R represents reinsertion, E stands for exchange and O represents 2-opt*.

Here, N represents the number of customer nodes in the instance. Tabu tenure is set to
be proportional to N. For example, in Thread 1, tabu tenure of reinsertion neighborhood
is 0.05N while 2-opt* neighborhood uses 0.1N. In Thread 1, the probability of selecting
reinsertion neighborhood is 6/7 while the probability of selecting 2-opt* neighborhood
is 1/7 . The size of the nearest neighbors set is calculated as 10 plus a uniform random
number from the interval [0, 10] at each iteration in the second phase. In Thread 4, 20%
of nodes are relocated in the perturbation procedure. As for solution difference, the re-
quirement is that a solution has at least 10% percent different edges from the current best
solution. In each segment, the running time is controlled by Thread 1. After running
250

√
N iterations, the thread stops, and the other three threads are also terminated. The

whole search terminates after 60 segments or when there is no improvement for 15 con-
secutive segments. The values of these parameters are tuned through extensive testing on
the problems 1,4,5,8,9,12,13,16,17 and 20 of Golden et al. (1998) based on preliminary
computational experiments. These instances are selected since they differ in both instance
size and customer location structure. As an example, Figure 2 shows the impact of the size



of nearest neighbors set on the solution quality and time. The solution quality is measured
with the average deviation of all instances tested from the best known solutions while the
time is the average running time of all instances tested in minutes. It is noticeable that
larger values cause longer running times but not necessarily better solution quality. The
results also show that the solution quality is not so sensitive to the parameter. Among
the values tested, 10+random [0,10] is chosen. The other parameters are calibrated in a
similar way.

(a) Quality (b) Time

Figure 2: Impact of the size of nearest neighbors set

4.3.2 The configurations of the variants

For the four sequential variants, the parameters of the first phase remain identical as in
PMNTS. At the second phase, the parameters are set to the same as for the corresponding
TS thread, i.e., the parameters of the second phase of SV1, SV2, SV3 and SV4 are set
to the same as for Thread 1, Thread 2, Thread 3 and Thread 4 in PMNTS respectively.
However, each sequential variant is set to be executed for 4× 60× 250

√
N iterations so

that it utilizes approximately the same amount of computing resource as PMNTS.
As for the first parallel variant PV1, the parameter setting is the same with PMNTS

except that there is no Thread 4 and only reinsertion neighborhood in Thread 1 (the prob-
ability of using reinsertion is 1).

With regard to the second parallel variant PV2, the configurations are the same as
PMNTS except that Thread 2 and Thread 3 in PV2 are clones of Thread 1. The parameters
for these three threads are set to the same as for Thread 1 in PMNTS.

4.4 Results for the benchmarks of Golden et al. (1998)
In Table 3 we compare the results for the 20 benchmark instances of Golden et al. (1998)
against previously published work. In this table, the first column describes the problem
instance (problem number and number of nodes). The second column lists the best known
solutions previously reported in the literature. The third to ninth columns provide the best
results reported in each paper. The remaining columns give the average results, average
time and best results of PMNTS. The third last row presents the average deviation of
all instances from the best known solutions. The second last row provides running time
measures. For the methods providing the best results of multiple runs (Li et al., 2005;



Table 3: Comparison of results for the benchmarks of Golden et al. (1998)

Problem Previous Li et al. Psinger Mester Kytöjoki Nagata Groër Groër PMNTS PMNTS PMNTS
best and and et al. and et al. et al. aver. aver. best

known Ropke Bräysy Bräysy (2011) (2011) time
(2005) (2007) (2007) (2007) (2009) 4pc 129pc (min)

1(240) 5623.47 5666.42 5650.91 5627.54 5867.84 5626.81 5644.44 5623.47 5627.54 16.54 5623.47
2(320) 8431.66 8469.32 8469.32 8447.92 8476.26 8431.66 8447.92 8435.00 8447.15 29.72 8419.50
3(400) 11036.22 11145.80 11047.01 11036.22 11043.41 11036.22 11036.22 11036.22 11080.60 58.44 11030.80
4(480) 13592.88 13758.08 13635.31 13624.52 13631.72 13592.88 13624.52 13624.52 13666.84 87.03 13615.20
5(200) 6460.98 6478.09 6466.68 6460.98 6460.98 6460.98 6460.98 6460.98 6464.40 10.47 6460.98
6(280) 8404.26 8539.61 8416.13 8412.88 8415.67 8404.26 8412.90 8412.90 8468.10 23.96 8403.25
7(360) 10156.58 10289.72 10181.75 10195.56 10297.66 10156.58 10195.59 10195.59 10209.24 62.16 10184.40
8(440) 11643.90 11920.52 11713.62 11663.55 11872.64 11691.06 11680.31 11649.89 11725.82 86.68 11671.00
9(255) 579.71 588.25 585.14 583.39 620.67 580.42 583.37 579.71 583.15 18.70 581.73
10(323) 737.28 749.49 748.89 741.56 784.77 738.49 742.43 737.28 739.97 38.65 738.50
11(399) 913.35 925.91 922.70 918.45 986.80 914.72 917.91 913.35 917.50 58.96 914.98
12(483) 1102.76 1128.03 1119.06 1107.19 1209.02 1106.76 1117.05 1102.76 1112.44 72.84 1109.93
13(252) 857.19 865.20 864.68 859.11 925.81 857.19 858.89 857.19 864.45 18.82 861.92
14(320) 1080.55 1097.78 1095.40 1081.31 1155.19 1080.55 1081.24 1080.55 1084.59 27.94 1082.52
15(396) 1338.00 1361.41 1359.94 1345.23 1461.49 1342.53 1346.45 1338.00 1353.07 38.07 1351.13
16(480) 1613.66 1635.58 1639.11 1622.69 1742.86 1620.85 1624.42 1613.66 1632.88 55.78 1629.78
17(240) 707.76 711.74 708.90 707.79 726.01 707.76 707.79 707.76 708.46 15.83 707.83
18(300) 995.13 1010.32 1002.42 998.73 1077.53 995.13 998.66 995.13 1002.53 30.81 1000.27
19(360) 1365.60 1382.59 1374.24 1366.86 1444.51 1365.97 1369.34 1365.60 1368.22 36.39 1367.31
20(420) 1818.25 1850.92 1830.80 1820.09 1938.12 1820.02 1824.98 1818.25 1830.10 49.62 1827.39
Aver. deviation % 1.33 0.47 0.26 4.76 0.11 0.36 0.04 0.53 0.28
Time min 3.39 108.00 24.40 0.02 355.90 25.00 25.00 41.87 418.70
Runs per instances 3 10 1 1 10 5 5 10

Pisinger and Ropke, 2007; Nagata and Bräysy, 2009; Groër et al., 2011) and the best
results of PMNTS, the table displays the total time of multiple runs, while the average
time for a single run is provided for Mester and Bräysy (2007), Kytöjoki et al. (2007) and
the average results of PMNTS. The last row shows the number of runs performed for each
instance in each algorithm.

From the table, we see PMNTS found new best solutions to 3 problems (numbers in
bold font) while the average deviation of the best solutions of PMNTS from the previous
collective best known solutions is 0.28%. In terms of this metric, our results are better
than Li et al. (2005), Pisinger and Ropke (2007), Kytöjoki et al. (2007) and Groër et al.
(2011) using 4 processors, but slightly worse than Mester and Bräysy (2007), Nagata and
Bräysy (2009) and Groër et al. (2011) using 129 processors.

4.5 Results for the benchmarks of Li et al. (2005)

The results for the 12 benchmark instances of Li et al. (2005) are presented in Table 4. The
format of this table is the same as for Table 3. As in Table 3, the best results reported in six
recently published papers are also displayed in Table 4 for comparison. In particular, the
total time of multiple runs is provided in the table for the method proposed in Dorronsoro
et al. (2007) similar to the other methods also providing the best results of multiple runs.

For this set of instances, the proposed algorithm found a new best solution to one
problem (numbers in bold font). The average deviation of our best solutions found from
the previous best known is 0.12%. According to this measurement, our results are better
than most previous works except Groër et al. (2011) using 129 processors.



Table 4: Comparison of results for the benchmarks of Li et al. (2005)

Problem Previous Li et al. Psinger Mester Kytöjoki Dorronsoro Groër Groër PMNTS PMNTS PMNTS
best and and et al. et al. et al. et al. aver. aver. best

known Ropke Bräysy (2011) (2011) time
(2005) (2007) (2007) (2007) (2007) 4pc 129pc (min)

21(560) 16212.74 16602.99 16224.81 16212.74 16221.22 16212.83 16212.83 16212.83 16247.82 98.63 16220.00
22(600) 14584.42 14651.27 14631.08 14597.18 14654.87 14652.28 14631.73 14584.42 14618.83 121.69 14598.70
23(640) 18801.12 18838.62 18837.49 18801.12 18810.72 18801.13 18801.13 18801.13 18883.80 139.82 18829.80
24(720) 21389.33 21616.25 21522.48 21389.33 21401.41 21389.43 21390.63 21389.43 21427.93 88.08 21399.00
25(760) 16763.72 17146.41 16902.16 17095.27 17358.18 17340.41 17089.62 16763.72 16826.62 176.35 16781.70
26(800) 23971.74 24009.74 24014.09 23971.74 23996.86 23977.73 23977.73 23977.73 24127.10 103.54 23986.10
27(840) 17433.69 17823.40 17613.22 17488.74 18233.93 18326.92 17589.05 17433.69 17522.93 101.37 17432.30
28(880) 26565.92 26606.11 26791.72 26565.92 26592.05 26566.04 26567.23 26566.03 26609.50 136.17 26574.40
29(960) 29154.34 29181.21 29405.60 29160.33 29166.32 29154.34 29155.54 29154.34 29190.08 188.64 29162.70
30(1040) 31742.51 31976.73 31968.33 31742.51 31805.28 31743.84 31743.84 31742.64 31772.95 252.06 31753.40
31(1120) 34330.84 35369.17 34770.34 34330.84 34352.48 34330.94 34333.37 34330.94 34384.17 246.23 34340.50
32(1200) 36919.24 37421.44 37377.35 36928.70 37025.37 37423.94 37285.90 37185.85 37305.33 272.59 37204.80
Aver. deviation % 1.18 0.68 0.20 0.80 0.87 0.35 0.06 0.35 0.12
Time min 9.60 498.00 104.30 0.10 3660.00 25.00 25.00 160.43 1604.30
Runs per instances 3 10 1 1 2 5 5 10

4.6 Algorithm performance analysis

In Table 5, the average results of the six variants for a subset of test instances are com-
pared together with PMNTS. First, by comparing the outcome of the four sequential vari-
ants with PMNTS, it is evident that PMNTS outperforms its component TS threads both
in the solution quality and wall-clock time. In particular, although SV4 uses all neighbor-
hood structures implemented in PMNTS, its performance appears worse than PMNTS.
In addition, when comparing the performance of SV1, SV4 with PV1, we can see that
PV1 has identified better solutions to four instances (problem 9, 12, 13 and 16) than the
two sequential variants even though the outcome of PV1 overall seems to be inferior.
This observation indicates that it is advantageous to utilize multiple neighborhoods both
in serial manner (in SV1 and SV4) and in parallel manner (in PV1). Moreover, although
SV1(Thread 1) individually outperforms both SV2(Thread 2) and SV3(Thread 3), the
performance of PV2, in which Thread 2 and Thread 3 are clones of Thread 1, turns out
worse than PMNTS. This fact also demonstrates that it is beneficial for PMNTS to include
Thread 2 and 3 in which 2-opt* and exchange neighborhood are used in parallel manner.

4.7 Observations on neighborhood effectiveness

From the computational experiments, a few patterns regarding neighborhood effectiveness
have been observed. In this subsection, these observations are presented.

4.7.1 An example where 2-opt* neighborhood is effective

In Table 6, an example is provided in which the steps that the single-neighborhood parallel
variant PV1 took to identify a high quality solution for instance Golden benchmark 5 are
listed. In the table, the values of the initial solutions of each step are given in the column
marked IniSolObj. The values of the best solutions each thread finds at each step are given
in the columns marked with the thread name. The second last column gives the value of
the current overall best solution found so far while the improvement of each step is given



Table 5: Comparison of results of the six variants with PMNTS

Problem Previous SV1 SV2 SV3 SV4 PV1 PV2 PMNTS
best

known
1(240) 5623.47 5631.25 5695.42 5724.42 5632.70 5667.90 5627.05 5627.54
4(480) 13592.88 13784.47 13701.02 14425.23 13778.33 13894.88 13686.55 13666.84
5(200) 6460.98 6465.73 6468.92 6677.05 6462.83 6473.53 6466.68 6464.40
8(440) 11643.90 11730.05 11759.83 11933.42 11728.33 11774.16 11744.30 11725.82
9(255) 579.71 587.26 600.55 650.05 585.80 585.27 584.45 583.15
12(483) 1102.76 1121.88 1159.71 1269.29 1118.68 1114.21 1117.28 1112.44
13(252) 857.19 874.44 888.62 932.00 871.22 869.95 869.71 864.45
16(480) 1613.66 1650.05 1696.27 1803.57 1642.33 1638.92 1638.97 1632.88
17(240) 707.76 709.26 718.09 731.25 708.87 714.68 708.36 708.46
20(420) 1818.25 1837.88 1886.57 1886.32 1833.94 1871.28 1834.69 1830.10
Aver. deviation % 1.10 2.60 6.85 0.92 1.33 0.79 0.56
Aver. time min 189.31 337.61 330.16 213.04 31.23 42.63 43.20

in the last column, which is the difference between the current overall best solutions of
two steps. The numbers in bold indicate the best solutions among the three threads at each
step. The numbers underlined represent the solutions that are not the best ones in terms
of the value at each step but lead to a good solution later.

Table 6: An example search path for Golden benchmark 5

Step IniSolObj Thread1 Thread2 Thread3 BestObj Improve
1 7239.91 6934.63 6860.00 7126.31 6860.00 379,91
2 6860.00 6854.39 6606.15 6860.00 6606.15 253.85
3 6606.15 6590.60 6547.60 6601.92 6547.60 58.55
4 6547.60 6508.26 6496.77 6536.05 6496.77 50.83
5 6496.77 6491.16 6496.77 6496.77 6491.16 5.61
6 6536.05 6508.26 6516.23 6532.27 6491.16 0.00
7 6516.23 6483.79 6508.35 6492.21 6483.79 7.37
8 6508.35 6472.38 6475.19 6484.28 6472.38 11.41
9 6484.28 6466.68 6466.68 6484.28 6466.68 5.7
10 6532.27 6508.26 6498.79 6507.20 6466.68 0.00
11 6498.79 6483.79 6486.60 6489.40 6466.68 0.00
12 6489.40 6483.79 6486.59 6489.40 6466.68 0.00
13 6486.59 6483.79 6486.59 6484.89 6466.68 0.00
14 6484.99 6460.98 6479.38 6484.99 6460.98 5.8
Improvement 35.79 743.14 0 .00 778.93

(4.6%) (95.4%)

From Table 6, we can see that Thread 2 that uses 2-opt* neighborhood has played
an important role in identifying the best solution. In the first four steps, it always finds
the best solutions among the three threads while Thread 1 using reinsertion neighborhood
often provides the best during the late steps. Thread 2 has contributed 95.4% of the



total improvement directly. The underlying reason for this fact can be attributed to the
characteristics of this instance. From its data, we can notice this instance has loose route
length and capacity constraints and the location of its customers has a special geometric
structure. For this instance, high quality solutions should have routes with balanced load
and route length. However, due to its loose constraints, it is vulnerable to form unbalanced
routes that result in low quality solutions. Since it is more effective in changing the
structures of the routes, 2-opt* neighborhood can improve the solutions to this instance
significantly. Figure 3 visualizes the features of two different solutions to this instance.

(a) A high quality solution (b) A low quality solution

Figure 3: Solution features of Golden benchmark 5

4.7.2 An example where exchange neighborhood is effective

From the computational experiments, some cases show that exchange neighborhood can
also find better solutions than other neighborhoods. A search path of PV1 for the instance
Golden benchmark 9 is instantiated in Table 7 to demonstrate such cases.

From Table 7, we can see exchange neighborhood has found the best solutions among
the three threads at several steps. It makes the second largest contribution to the total
improvement (4.7%). An early stage solution to this instance is showed in Figure 4, from
which it is noticeable that the solution has routes overlapping each other. Such a feature
facilitates exchange neighborhood to find good moves.

4.7.3 General trend of neighborhood effectiveness

To find the general trend of neighborhood effectiveness, the search steps that PV1 took to
identify the best solution for ten instances are summarized in Table 8. In the table, the term
Solution path refers to the sequence of neighborhoods used to find the best solution step
by step from the beginning of the second phase. The header Frequency of neighborhood
used represents how many times a neighborhood is used in a solution path.

From the two examples and Table 8, one may notice the following trends.

• The reinsertion neighborhood, given a certain amount of time, is often able to find
better solutions than exchange and 2-opt* for most of the instances tested. Its per-
formance is less related to the instance attributes.



Table 7: An example search path for Golden benchmark 9

Step IniSolObj Thread1 Thread2 Thread3 BestObj Improve
1 717.08 594.08 618.94 688.38 594.08 123.00
2 594.08 591.89 594.08 590.84 590.84 3.24
3 590.84 589.46 589.66 589.97 589.46 1.38
4 589.46 588.94 589.46 588.48 588.48 0.98
5 588.48 588.07 588.23 588.48 588.07 0.41
6 588.07 586.90 588.07 588.07 586.90 1.17
7 589.66 589.48 589.66 589.29 586.90 0.00
8 589.29 589.20 589.29 589.19 586.90 0.00
9 589.19 587.02 589.19 589.19 586.90 0.00
10 587.02 585.96 587.02 585.79 585.79 1.11
11 589.97 589.15 589.29 589.87 585.79 0.00
12 589.15 588.53 587.91 588.85 585.79 0.00
13 588.53 587.71 587.36 588.53 585.79 0.00
14 587.71 587.71 585.36 586.78 585.36 0.43
15 585.36 585.36 585.36 584.44 584.44 0.92
Improvement 125.96 0.43 6.25 132.64

(95.0%) (0.3%) (4.7%)

Figure 4: Solution features of Golden benchmark 9



Table 8: The search paths of ten instances

Instance Solution Solution Frequency of neighborhood used
value path Reinsertion 2-opt* Exchange

Golden1 5646.89 R/O/R/R/R/E 4 1 1
Golden4 13839.10 R/R/O/E/E/O/R/R 4 2 2
Golden5 6460.98 O/O/O/E/E/O/E/O 1 5 4

/E/R
Golden8 11768.4 R/E/O/R/R/R/R 5 1 1
Golden9 584.44 R/E/E/R/R/R/O/E 4 1 3

Golden12 1116.48 R/R/R/E/R/E/R/E 7 1 5
/R/R/E/O/E

Golden13 868.23 O/R/O/R/R/O/R/E 5 3 3
/E/R/E

Golden16 1629.38 R/E/E/O/R/O/R/E 6 4 6
/R/O/E/E/O/R/R/E

Golden17 708.81 R/R/R/E/R/R/R/O/E 6 1 2
Golden20 1867.58 R/E/E/R/R/E/O/R 9 2 5

/E/R/R/O/R/R/R/E
R represents reinsertion, E stands for exchange and O represents 2-opt*.

• The exchange neighborhood helps when solutions have overlapping routes like in-
stances Golden benchmark 9,12,13,16 and 20.

• The 2-opt* neighborhood fits when instances have loose constraints like instance
Golden benchmark 5.

4.7.4 Collective power of multiple neighborhoods

From Table 6, 7 and 8, it is observable that there are two ways in which a neighbor-
hood makes its contribution. First, at a certain stage a neighborhood may be more ef-
fective than the others when addressing a certain instance, such as 2-opt* for instance
Golden benchmark 5 and exchange for Golden benchmark 9. By using them together,
an algorithm can be more effective for instances with various attributes.

In addition, multiple neighborhoods can cooperate in another way. In the example
for the instance Golden benchmark 5, Thread 3 using exchange neighborhood does not
improve the solutions as much as others, but five solutions (underlined numbers in Ta-
ble 6) improved or modified by Thread 3 enable other threads to find a good solution
later. For example, the solution with a value of 6532.27 is found at step 6 by Thread 3
and used as the starting solution at step 10. Subsequently, step by step it goes through
2-opt*, exchange, 2-opt*, exchange and reinsertion neighborhood, leading the search
to the best solution with the value of 6460.98 at step 14. Similarly, for the instance
Golden benchmark 9, a solution with the value of 589.97 found by exchange neighbor-
hood at step 3 is used as the starting solution at step 11. Afterwards, it is improved
by reinsertion neighborhood 3 times, 2-opt* neighborhood once, exchange neighborhood
once and finally reaches a good solution with the value of 584.44. This phenomenon is



also confirmed by the solution paths shown in Table 8, in which all of the solution paths
contain all the three neighborhoods.

Thus, all the neighborhoods help finding the best solutions, either improving the so-
lutions more effectively than others or generating intermediate solutions that enable other
neighborhoods to find good solutions later. These two aspects may be the main sources of
the power of multiple neighborhoods cooperation, which is also one of the major reasons
that the proposed method is able to identify high quality solutions.

5 Conclusions

In this paper, we have presented a parallel multi-neighborhood cooperative tabu search
algorithm for the capacitated vehicle routing problem. The proposed method exploits the
cooperative power of several different tabu search threads and has been tested on the two
groups of large scale CVRP benchmarks from the literature. The computational results
show that the suggested metaheuristic is effective and competitive in comparison to the
best heuristic solution methods from the literature.

In addition, the computational experiments we have performed also reveal some in-
teresting connections. First, the effectiveness of a certain neighborhood is associated
with some characteristics of instances it tackles. For example, 2-opt* neighborhood
may be more effective for instances loosely constrained while exchange neighborhood is
more productive for instances with overlapping routes. Second, in the setting of parallel
multiple-neighborhood cooperation, one neighborhood can either contribute by improv-
ing the solutions more efficiently than the others or by generating intermediate solutions
that enable other neighborhoods find good solutions later. Moreover, the parallel use
of multiple neighborhoods facilitates the dynamic adaption of the search to the charac-
teristics of the various instances dynamically. It can thus strengthen the power of the
multiple-neighborhood cooperation. Such knowledge can be beneficial for future algo-
rithm design.

The proposed method is simple to implement and can be adapted to address other VRP
variants. The modifications required are to adopt problem specific neighborhood opera-
tors, the move evaluation criterion and initial solution construction heuristic in order to
cater for the different constraints.
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