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Preface

This document is submitted as partial fulfillment of the requirements for the degree of Philosophiae
Doctor (PhD) in Logistics at Molde University College - Specialized University in Logistics, Molde,
Norway.

This work was conducted from September 2010 until February 2016. Late Professor Arne
Løkketangen from Molde University College was the main supervisor until June 2013. Associate
Professor Halvard Arntzen from Molde University College was co-supervisor during this period. In
June 2013 Professor Arntzen was appointed as main supervisor and Professor David L. Woodruff
from University of California, Davis was appointed as co-supervisor.

The main subject of this thesis is multi-objective vehicle routing problems. Both deterministic and
stochastic versions of such problems have been studied. Routing planning is considered to be
a multi-criteria process, therefore optimizing several meaningful objectives simultaneously may
provide decision makers with better evidence to support their choices.

The work presented in this PhD thesis has been evaluated by a committee consisting of
Professor Rafael Martı́ from University of Valencia, Spain, Associate Professor Sin C. Ho from
Aarhus University, Denmark, and Associate Professor Arild Hoff from Molde University College -
Specialized University in Logistics, Norway.
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Introduction

The vehicle routing problem (VRP) is one of the most studied subjects in Operations Research
(Braekers et al., 2016). Such interest may be due to its wide range of applications in solving
real-life problems. Examples of such applications are: milk collection, milk delivery, distribution
of ready-made concrete, furniture distribution, city logistics, retail distribution, green logistics (Koç
et al., 2016); cash transportation, garbage collection, social legislation for drivers’ working hours,
school bus routing, shipment of hazardous material (Braekers et al., 2016); allocation of work-
force, vendor-managed distribution systems, courier service, emergency service, taxi cab service,
after-sales service, e-commerce (Lin et al., 2014); livestock collection (Oppen and Løkketangen,
2008); beer, wine, and spirits distribution (Erera et al., 2009); road network monitoring (Chen et al.,
2014).

The vehicle routing problem (VRP) was proposed in 1959 by Dantzig and Ramser (1959) as a
generalization of the traveling salesman problem, though the name used back then was “the truck
dispatching problem”. Due to the shape of a solution to the problem, the name “clover leaf problem”
was also suggested. The term “vehicle routing” did not appear in the literature until the early 1970s
(Eksioglu et al., 2009).

The theme of this thesis is the development of solution methods for different versions of stochastic
and multi-objective VRPs. The following parts of this introduction define the general concepts used
in the thesis, the scientific contribution of this research, the summary of papers that compose it
and suggest avenues for further research.

The Vehicle Routing Problem

Different versions of the vehicle routing problem have been proposed, such as the basic version
of the capacitated vehicle routing problem (CVRP) (Toth and Vigo, 2002a). Various authors have
defined this version of the problem, e.g. Toth and Vigo (1998) and Cordeau et al. (2002), who
begin with an undirected graph G = {V,E}, where V = {v0, v1, . . . , vn} is the vertex set, and
E = {(vi, vj) : vi, vj ∈ V, i < j} is the edge set. v0 represents the depot, and the other vertices
represent the customers, each having a non-negative demand, qi. The set E has an associated
cost matrix cij , representing the cost of traveling from vertex i to vertex j and cij = cji, in the
symmetric case. A fleet of m vehicles with equal capacity Q is based at the depot. The optimal
solution to the problem is the one that minimizes the total routing cost, the total demand of the
customers in one route is not greater than Q, every customer is visited once by just one vehicle,
and each tour includes the depot.

Several other versions can be found, depending on considerations and/or constraints included in
the problem, e.g. the vehicle routing problem with time windows (VRPTW), vehicle routing problem
with pickups and deliveries (VRPPD), vehicle routing problem with backhauling (VRPB) and vehicle
routing problem with distance constraints (DCVRP) (Toth and Vigo, 2002a).
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Multi-objective optimization

More than two thousands years ago Sun Tzu considered planning to be a multi-criteria process, at
least in the context of war (Sawyer and Sawyer, 1994). Such philosophy initially applied to warfare
has been applied to other areas, such as business and politics, for several decades (Dimovski et al.,
2012). In particular, it is considered that transportation planning is intrinsically a multi-objective
decision process (Current and Min, 1986). Therefore considering several meaningful objectives
simultaneously may lead to better plans.

In a multi-objective optimization problem several functions are optimized (minimized or maximized)
subject to the same set of constraints. Without loss of generality, it can be assumed that all objec-
tive function are minimized. This problem then can be stated as

min F (x) = (f1(x), f2(x), . . . , fn(x)), s.t. x ∈ D, (1)

with the number of objective functions being n ≥ 2; the decision variable vector x = (x1, x2, . . . , xr);
the feasible solution space D; and F (x) is the objective vector (Jozefowiez et al., 2007).

The development of mathematical programming by Kantorovich and Dantzig, in the 1930s and
1940s respectively, provided the right environment for the establishment of multi-objective math-
ematical programming. Even though mathematical programming does not directly solve multi-
objective optimization problems, it was proposed to use weights to combine the objective functions
into a weighted single objective function (Köksalan et al., 2011). The multi-objective vehicle routing
problem started to gain popularity in the 1980s (Jozefowiez et al., 2008).

The different objective functions in a multi-objective problem are usually conflicting. Because of
this, it is common that no single optimal solution is able to minimize all the objectives of the problem.
Therefore instead of a single solution, a whole set is found. The objective function values of such
set of solutions represent a gradual priority shifting from one of the objectives to the other(s),
these solutions are called tradeoff solutions (Collette and Siarry, 2003) or Pareto optimal solutions
(Jozefowiez et al., 2007).

The Pareto optimal solutions are defined using the concept of domination. A solution y
evaluated in the objective as F (y) = (f1(y), f2(y), . . . , fn(y)), dominates a solution F (z) =
(f1(z), f2(z), . . . , fn(z)), if and only if ∀ i {1, 2, . . . , n} fi(y) ≤ fi(z), and ∃ j {1, 2, . . . , n}, such
that fj(y) < fj(z). Which means that the solution z has not a better performance than y in any
objective functions, but it has a worse performance in at least one. The set of non-dominated so-
lutions, Pareto set or Pareto optimal solutions define the solution of a multi-objective optimization
problem (Jozefowiez et al., 2007).

When the method used for solving the optimization problem does not guarantee an optimum solu-
tion, one more concept should be included, the potentially Pareto optimal (PPS). A solution y found
by a particular algorithm A is considered potentially Pareto optimal, relative to A, if that algorithm
does not find a different solution z that dominates y (Jozefowiez et al., 2007).

A non-dominated solution y is also called efficient (Raith and Ehrgott, 2009). There are two types
of efficient solutions:

- Supported efficient solutions, which can be obtained as the optimum of the single objective
optimization problem

min
x∈D

λ1f1(x) + λ2f2(x) + . . .+ λnfn(x) (2)
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Where λ1, λ2, . . . , λn > 0. The supported efficient solutions are located in the convex hull of
the feasible set in objective space.

- Non-supported efficient solutions are located in the interior of the convex hull of the feasible
set in objective space. Because of that they can not be obtained as a solution of Equation (2)

A large number of methods have been proposed and used by different authors in order to solve
multi-objective optimization problems (Collette and Siarry, 2003). These methods have been clas-
sified using different criteria or approaches (Collette and Siarry, 2003; Jozefowiez et al., 2008).
According to Jozefowiez et al. (2008), the multi-objective optimization methods are classified as
scalar, Pareto and non-scalar and non-Pareto methods. Scalar methods use a mathematical trans-
formation in the process of solving the optimization problem. The Pareto methods use the concept
of Pareto dominance to evaluate the quality of the solutions. Methods that consider each objective
separately are classified as non-scalar and non-Pareto.

The Stochastic Vehicle Routing Problem

In some cases not all parameters are known when planning the routes. If some of the parameters
are unknown and their values are revealed after the planning decisions are taken, then a different
problem arises, the stochastic VRP (SVRP) (Gendreau et al., 1996a; Cordeau et al., 2007). Differ-
ent stochastic parameters have been studied in the literature, including the presence of customers,
the travel times, service times and the demands. The most common version of the SVRP is the
one with stochastic demands (Gendreau et al., 1996a).

Stochastic problems can be modeled in two different ways: as a stochastic program with recourse
(SPR) or as a chance constrained program (CCP) (Gendreau et al., 1996a). When the stochastic
problem is modeled as CCP, it is ensured that the probability of failure (violation of stochastic
constraint) is below a certain level. The cost of such failures is typically ignored (Gendreau et al.,
1996a; Tan et al., 2007).

For the case of problems modeled as SPR, route failures are allowed, but the decision maker (DM)
must define a recourse policy, describing the actions to take in order to repair the solution once a
failure has occurred. The cost of the failure, measured as the expected cost of the recourse action,
is included into the objective function. Compared to CCP, problems modeled as SPR are more
difficult to solve, but objectives are more meaningful (Gendreau et al., 1996a).

The VRP is considered to be a difficult problem to solve (Laporte, 2009). Including stochastic
parameters will make it even more difficult. Treating the problem in a multi-objective approach
increases the complexity. This creates the need for meta-heuristic methods. It may also, at least
partially, explain why the multi-objective approach of the SVRP has received little attention in the
literature. A multi-objective approach CVRP with stochastic demands (CVRPSD) was presented
in Tan et al. (2007), with stochastic travel times in Russell and Urban (2008), a location, allocation
and routing under the risk of disruption in Ahmadi-Javid and Seddighi (2013). Even though the
CVRPSD is not explicitly modeled as a multi-objective problem in Juan et al. (2011), the solutions
are presented as a tradeoff between the total expected cost and the reliability.

Solution methods for VRPs

Different methods have been used to deal with the many variants of VRP. Some of these methods
are listed below, for a more thorough description the reader is referred to Gendreau et al. (1996a);
Toth and Vigo (1998, 2002b); Cordeau et al. (2002, 2007); Jozefowiez et al. (2008); Potvin (2009);
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Laporte (2009); Gendreau et al. (2014); Oyola et al. (2015); Braekers et al. (2016) and Koç et al.
(2016).

Branch-and-cut

A VRP with stochastic travel times is described in (Kenyon and Morton, 2003) and it is solved by
using branch-and-cut. A similar approach is used in Adulyasak and Jaillet (2014) to solve the robust
and the stochastic approach of the The CVRP with deadlines under travel time uncertainty. Reiter
and Gutjahr (2012) uses branch-and-cut for solving the ε-constraint formulation of a bi-objective
CVRP.

Branch-and-price

A branch-and-price algorithm was used in Christiansen and Lysgaard (2007) for the CVRPSD.
The same problem was solved in Gauvin et al. (2014) using a a branch-cut-and-price algorithm.
In Taş et al. (2014) a similar approach is used for solving the CVRP with soft time windows and
stochastic travel times. A branch-and-price algorithm was also used for solving the robust CVRP
with deadlines and travel time/demand uncertainty (Lee et al., 2012).

Integer L-Shaped method

In Hjorring and Holt (1999) and Rei et al. (2007) the L-shaped method was used to solve the single
vehicle CVRPSD. It was also used in Laporte et al. (2002) to solve the CVRPSD. It was extended
in Jabali et al. (2014) for solving the CVRPSD exactly.

Dynamic programming

A dynamic programming algorithm was used to solve the stochastic CVRP with optimal restocking
in Yang et al. (2000). The single vehicle CVRPSD with reoptimization was also solved by using
dynamic programming in Secomandi and Margot (2009)

Local search

Several versions of tabu search (Glover, 1989) were proposed in order to deal with VRPs e.g.
Potvin et al. (1996); Gendreau et al. (1996b); Badeau et al. (1997); Taillard et al. (1997) and
Cordeau et al. (1997). In Cordeau et al. (2001) a unified tabu search (UTS) heuristic was proposed
for the CVRP with time windows. A tabu search heuristic for the CVRP with soft time windows and
split deliveries was developed in Ho and Haugland (2004). A similar heuristic was used in Brandão
(2006) for the CVRP with pickups and deliveries. Ho and Gendreau (2006) used a tabu search with
path relinking for the CVRP with duration constraints. A multi-compartment CVRP was described
in Oppen and Løkketangen (2008) where a heuristic based on UTS was applied. Hoff et al. (2009)
used a tabu search heuristic to find solutions for the CVRP with pickups and deliveries, allowing a
subset of costumers to be visited twice.

In Russell and Urban (2008) a tabu search is used to optimize the resulting weighted sum of the
different objective functions in a multi-objective VRP with stochastic travel times. Another example
of using tabu search in a multi-objective routing problem is found in Pacheco and Martı́ (2006),
where it is used to find solutions to an ε-constraint formulation of a bi-objective school bus routing
problem.

A tabu search heuristic was used to design delivery districts for the CVRPSD in Haugland et al.
(2007). A tabu search procedure is included as part of the methodology used in Sungur et al.
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(2010) to create the master plan to the VRP with soft time windows, stochastic service times and
probabilistic customers. The CVRP with stochastic travel times, soft time windows and service
costs, proposed in Taş et al. (2013), was also solved using a tabu search heuristic. In Li et al.
(2010) was used to solve the CVRP with time windows and stochastic travel and service times. In
Ak and Erera (2007) the VRPSD with Pair Locally coordinated (PLC) recourse was solved using the
same heuristic. In Erera et al. (2010) it was used to find solutions for the vehicle routing problem
with stochastic demands and duration constraints (VRPSD-DC).

An adaptive large neighborhood search heuristic was used to solve the CVRP with stochastic
demand and time windows in Lei et al. (2011). Lei et al. (2012) proposed a generalized variable
neighborhood search to solve the CVRP with stochastic service times.

A location-routing problem with disruption risk was solved using simulated annealing in (Ahmadi-
Javid and Seddighi, 2013). The same technique was also used in Goodson et al. (2012) to find
solutions to the CVRPSD and in Goodson (2015) to solve the multi-compartment vehicle routing
problem with stochastic demands.

Evolutionary algorithms

Evolutionary algorithms have been extensively used for different variant of VRPs. A genetic algo-
rithm was used in Potvin and Bengio (1996) for the CVRP with time windows. A genetic algorithm
with new crossover operator was described in Prins (2004) for the CVRP. Tan et al. (2006) used
an evolutionary algorithm combined with a local search which is performed at each generation to
solve a bi-objective truck and trailer CVRP. In Jozefowiez et al. (2002, 2007, 2008) and Jozefowiez
et al. (2009) evolutionary algorithms together with a local search are proposed for the CVRP with
route balancing. In Gupta et al. (2010) genetic algorithm is used to deal with a multi-objective VRP
with time windows. Four objectives are optimized, the fleet size, total length, average grade of
customer satisfaction and total waiting time over the vehicles.

A multi-objective CVRPSD was solved using a evolutionary algorithm in Tan et al. (2007). Sörensen
(2006) describes a vehicle routing problem where the objectives are to find a solution close to a
given initial solution and minimize the total length. An evolutionary algorithm combined with a tabu
search is used to solve this problem.

The multi-compartment CVRPSD was solved using an evolutionary algorithm combined with a
local search (memetic algorithm) in Mendoza et al. (2010). A genetic algorithm is used in Ando
and Taniguchi (2006) to solve the CVRP with soft time windows and stochastic travel times. In
Zhang et al. (2012) a scatter search heuristic was used to solve the stochastic travel-time CVRP
with simultaneous pick-ups and deliveries.

A memetic algorithm with population management was used in Sörensen and Sevaux (2009)
to deal the CVRP with stochastic demands and travel cost, and the VRP with stochastic cus-
tomers.

Other nature inspired heuristics

Szeto et al. (2011) uses an artificial bee colony algorithm (swarm-based) for the CVRP. Gam-
bardella et al. (1999) deals with a bi-objective vehicle routing problem with time windows. The
number of vehicles and the total travel time are minimized. An ant algorithm is used to solve it.
The same type of algorithm is used in Bará and Schaerer (2003) for a vehicle routing problem with
time windows, where three objectives are optimized: the number of vehicles, the total travel time
(no including waiting time) and the total delivery time (including waiting time).

5
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In Marinakis et al. (2013), The CVRPSD was solved by particle swarm optimization. The single
vehicle CVRPSD was solved in Chepuri and Homem-de Mello (2005) using Cross Entropy (CE)
method (Rubinstein, 1999).

Constructive heuristics

The multi-compartment CVRPSD was solved using three different constructive heuristics in Men-
doza et al. (2011): A stochastic variant of the Clarke-Wright (Clarke and Wright, 1964) heuristic
and two versions of a look-ahead heuristic (Voß et al., 2005).

In Juan et al. (2011), the CVRPSD was solved by a multi-start search procedure, combined with
the Clarke-Wright heuristic. A multispace sampling heuristic is proposed by Mendoza and Villegas
(2013) to find solutions to the CVRPSD. The same problem is solved in Mendoza et al. (2015) using
a combination of GRASP (M.G.C. Resende, 2010) and a heuristic concentration (HC). A GRASP
heuristic is also used in Villegas et al. (2011) for the truck and trailer routing problem.

Scientific contribution

The thesis consists of this introduction text and five scientific papers, which represent the con-
tribution of this work. The problems considered in this thesis correspond to different versions of
VRPs. In all cases where a VRP is studied, it is modeled using several objectives, becoming a
multi-objective optimization problem (MOP).

In paper 1 a deterministic multi-objective VRP is used to illustrate the application of a function that
measures the structural differences between two solutions. A scalar method is used to transform
the multi-objective problem into several single-objectives. A tabu search heuristic is applied to
every single-objective problem.

A multi-objective algorithm is presented in paper 2 to find solutions to a multi-objective VRP. A
Pareto approach is used to deal with the MOP. Results are compared to others obtained from both
scalar and Pareto approaches to solve the same problem.

Paper 3 outlines the main contributions done in the last 20 years in the field of SVRP. It describes
the different types of problems and the solution methods used to solve them.

The problem from paper 1 is extended in paper 4, modeling the VRP as multi-objective and
stochastic. A Pareto approach is proposed to solve the problem and it is compared to a Pareto
method initially proposed to deal with a similar problem.

Finally in paper 5 a known multi-objective stochastic VRP (Russell and Urban, 2008) is further
studied. A Pareto approach is used to deal with the problem and it is compared to the scalar
approach applied when the problem was introduced.

Summary of the papers

The five papers that constitute this thesis are listed below. The contributions of all co-authors and/or
supervisors is stated. If the paper has been published or presented in conferences or workshops,
such event is also stated.
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Summary of the papers

Paper 1 – An attribute based similarity function for VRP decision support

Paper 1 is a revised version of a paper included by Associate Professor Johan Oppen in his PhD
thesis. Part of the work by the PhD candidate was done in 2010 in connection with a Master
degree in logistics. The candidate was responsible for the extension of an existing code and
implementing a multi-objective decision support for VRP. The computational experiments were also
conducted by the candidate. In this paper, the structural differences of solutions to a bi-objective
VRP are suggested to be used as decision criteria. The paper is published in Decision Making
in Manufacturing and Services, Vol. 6(2), pages 6583, 2012. The paper was presented by the
candidate at MIC 2011 (9th Metaheuristics International Conference), Udine, Italy, 2011.

Paper 2 – GRASP-ASP: An algorithm for the CVRP with route balancing

The basic idea of the algorithm in paper 2 was a contribution of late Professor Arne Løkketangen.
The implementation of the algorithm, the computational experiments as well as the writing was
done by the PhD candidate. Associate Professor Halvard Arntzen together with Professor Dave
L. Woodruff contributed to improve the writing as well as two anonymous referees. In this paper
a novel multi-objective heuristic is proposed. The paper was published in Journal of Heuristics,
Volume 20 (4), pages 361-382, 2014. Preliminary results of this research were presented by the
candidate at EURO XXV (25th European Conference on Operational Research), Vilnius, Lithuania,
2012 and by Professor Arne Løkketangen at Optimization Days, Montreal, Canada, 2013.

Paper 3 – The stochastic vehicle routing problem, a literature review

Most of the reviewing of papers included in paper 3 was done by the PhD candidate. Professor
Dave L. Woodruff contributed with valuable suggestions on which papers should be included in the
survey together with Associate Professor Halvard Arntzen. The three authors contributed with the
writing process. An overview of the SVRP advances in the last 20 years is presented in the paper.
It was submitted to EURO Journal on Transportation and Logistics and a revision has been recom-
mended. It is currently available at Optimization Online, http://www.optimization-online.org/
DB_FILE/2016/01/5299.pdf, 2015.

Paper 4 – The capacitated vehicle routing problem with route balancing and stochastic de-
mand

The implementation of the algorithm used in paper 4, the computational experiments and most
of the writing was done by the PhD candidate. Professor Dave L. Woodruff suggested topics that
should be covered in the paper. Associate Professor Halvard Arntzen contributed with suggestions
about the experiment design. Both Halvard Arntzen and Dave L. Woodruff contributed to improve
the writing. In this paper a new version of a multi-objective stochastic VRP is described. Journal
submission pending.

Paper 5 – The CVRP with soft time windows and stochastic travel times

The algorithm used in paper 5 was implemented by the PhD candidate. The computational exper-
iments and the writing was also a contribution of the PhD candidate. Associate Professor Halvard
Arntzen contributed with suggestions about the usage of lookup tables and improving the con-
struction of initial solutions and Professor Dave L. Woodruff suggested some characteristics of the
algorithm. The final text was improved thanks to Halvard Arntzen as well as Dave L. Woodruff.
A new solution approach to a multi-objective stochastic problem is used in this paper. Journal
submission pending.
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Further research

Given the scant literature that exists on multi-objective stochastic VRP, such a topic becomes an
obvious choice for further scientific work. This is especially true because real-life problems are
considered to be both stochastic and multi-criteria. The complexity of such problems calls for
the use of algorithms able to find good solutions within reasonable computation time. Parallel
algorithms warrant testing as an alternative for achieving that goal.
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Abstract

When solving problems in the real world using optimization tools, the model solved by the
tools is often only an approximation of the underlying, real, problem. In these circumstances,
a decision maker (DM) should consider a diverse set of good solutions, not just an optimal
solution as produced using the model. On the other hand, the same DM will only be interested
in seeing a few of the alternative solutions, and not the plethora of solutions often produced
by modern search techniques. There is thus a need to distinguish between good solutions
using the attributes of solutions. We develop a distance function of the type proposed in the
Psychology literature by Tversky (1977) for the class of VRP problems. We base our difference
on the underlying structure of solutions.

A DM is often interested in focusing on a set of solutions fulfilling certain conditions that are
of specific importance that day, or in general, like avoiding a certain road due to construction that
day. This distance measure can also be used to generate solutions containing these specific
classes of attributes, as the normal search process might not supply enough of these interesting
solutions. We illustrate the use of the functions in a Multi-objective Decision Support System
(DSS) setting, where the DM might want to see the presence (or absence) of certain attributes,
and show the importance of identifying solutions not on the Pareto front. Our distance measure
can use any attributes of the solutions, not just those defined in the optimization model.

Keywords: Solution Variety, Solution Similarity, Vehicle Routing Problem (VRP), DSS

1 Introduction

The family of Vehicle Routing Problems (VRP), constitute a diverse and at the same time practically
important family of problems. Many organizations solve VRPs daily or even more often. Instances
of many of the different forms of the VRP are commonly solved manually, or by some tool that is
often optimization-based and embedded in a DSS. Common features of the VRP are usually that
each instance is defined by a series of n stops that must be served by some number of vehicles
using a shared depot where all routes start and end, and that there are resource constraints, the
most common being a limited capacity on each vehicle. The goal of the VRP is then to find routes
so as to minimize some function that depends on things such as the cost of making deliveries
using the chosen routes, the number of vehicles needed, etc. In Toth and Vigo (2002) a variety
of extensions to the classical VRP are described, some of which are usually required in order to
make the VRP rich enough, and thus suitable for modeling the real world problem at hand. For
more information about rich VRPs see, e.g., Hartl et al. (2006); Oppen et al. (2010).

Our goal in this paper is the specification of similarity measures between solutions to a VRP in-
stance. These functions should be based on some measure apart from the objective function value
of the solutions. Our function is based on the structural difference between the solutions, because
this is what a human dispatcher bases her valuations of difference on. We produce measures
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of difference of the type proposed in the Psychology literature by Tversky (1977). We also show
how these measures can be extended by including solution attributes not explicitly modeled in the
underlying optimization tool.

For convenience, we will define the output of the similarity functions on the range zero to one.
This means that they can be subtracted from 1 to yield a distance function. We emphasize that
we have no interest in describing optimization methods in this paper, we simply provide means to
measure the similarity between two VRP solutions. It should also be stated that because we base
our measure on the attributes of stops, arcs and tours of VRP solutions, our measure can handle
most extensions to the classical VRP model, thus making it suitable for embedding in a real-world
DSS.

Such distance measures can have many applications. The focus of this paper is their use in
a DSS to help a decision maker (DM). The DM might want to see multiple good solutions that
are different. We presume that an objective function and the problem constraints determine the
meaning of “good.” We give methods here for quantifying the notion of “different,” based on the
solution structures. Such a measure, based on the difference between the solution attributes is
also of high value in Multi Criteria Optimization, MSO, as shown in Løkketangen and Woodruff
(2005).

The opposite use is in plan recovery, where the original plan has to be abandoned due to some
unforeseen event, e.g., a breakdown or accident. Here, the DM wants a new plan that deviates as
little as possible from the original. There is a similar concern when trying to make robust plans,
where small changes in the input should give as little disruption as possible to the original plan,
see e.g. Sörensen (2007). If one observes that similarity is complimentary to difference, the same
measure can of course be used for this purpose also.

There are other uses for diversity measures. For example, in search algorithms such as scatter
search (Laguna and Martı́, 2003) or genetic algorithms (Reeves, 2003) it is assumed that a variety
of solutions are available. In some cases, random construction can reasonably be assumed to
create variety, but in highly constrained settings it might be important to verify that solutions are in
fact mutually distant (see Sörensen and Seveaux (2006)).

In local search based meta-heuristics such as tabu search (Glover and Laguna, 1997), there are
several uses. The most obvious is as a diversity measure, to make sure that the search has moved
to a significantly different part of the search space. A distance function can also be used in a
constructive heuristic, to make sure that the newly constructed solutions are sufficiently different
from earlier solutions to justify launching a local search from the new solution.

A DM is often interested to focus on a set of solutions fulfilling certain conditions that are of specific
importance that day, or in general, like avoiding a certain road due to road-works that day, or, mak-
ing sure that the routes are sufficiently similar (for fairness reasons). The normal search process
might not supply enough of these interesting solutions. Our distance measure can also be used
in a multi-criteria optimization setting, to generate more of solutions containing “sufficient” levels of
certain attributes.

Since the words “similarity” and “distance” are complimentary, the literature for computing values
for them is intertwined. We will use the terms similarity and distance function in their broad, intuitive
sense.

This introduction is followed by Section 2, which gives examples of other distance measures in the
literature. Section 3 gives an introduction to Tversky’s similarity measure that we use as a basis
for our distance measures, and in Section 4 our distance measures are defined. We then show
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examples in Section 5. A description of computational experiments illustrating our methods is in
Sections 7 and 6. The final section offers conclusions.

2 Other Distance Measures

The need for measuring distances between solutions is not new, and many metrics have been
suggested. The Euclidean distance is, of course, not directly applicable to permutation vectors
representing routing order. Our discussion here will be restricted to functions that measure the
distance between solutions represented as permutation, as this is the common way to represent
solutions to routing problems like the VRP and TSP. We highlight here a few distance measures
from the literature, even though they all were designed for other purposes so that differences in the
tour structure and other attributes are not addressed properly for use in a DSS. They are typically
applied within an algorithm that is searching for good solutions.

Exact Match Distance. This can also be called the hamming distance (Hamming, 1950) for per-
mutations (see Ronald (1998)); the distance is the number of positions that are different in the two
solutions. If S and T are the two solutions, then the distance between them is given by the following
formula

dem(S, T ) =
N∑

i=1

xi where xi =

{
0 if S(i) = T(i)
1 otherwise

(1)

The Deviation Distance. This is also called “Spearman’s footrule”. The measure here is based
on the sum of the total deviation of all items between the two strings. (See Ronald (1998)).

ddev(S, T ) =
N∑

k=1

|i− j| where T (j) = S(i) = k (2)

Bontoux-Feillet Distance. This measure is defined in Bountoux and Feillet (2005) for a Traveling
Purchaser Problem. Here the distance between two solutions is defined to be the quotient of the
number of markets (i.e. nodes) in the symmetric difference between the two solutions, divided by
the number of markets in the union of the two solutions.

The Edit Distance. Given three edit operations (add, delete and substitute). The edit distance
(also called the Levenshtein distance) is then the minimum number of operations to transform
string S into string T. (See Seveaux and Sörensen (2005), Wagner and Fisher (1974) and Sörensen
(2006)) This measure is more a search space distance than a solution space distance, as the edit
operations can be considered neighborhood operations.

The Reversal Distance. This is the number of substring reversals required to transform string S
into string T. (See Caprara (1999)). This measure is important in molecular biology.

Apart from the Bontoux-Feillet distance, these functions are designed to operate on permutations
without regard to their perception by a DM as a VRP. An important objective for our distance
function is to be able to produce an explanation of the differences that is understandable to a DM
using attributes of a VRP solution. We also go beyond the attributes of solutions that are used
in the optimization process. The Bontoux-Feillet Distance is for a single tour, and is similar to
the Tversky ratio that we now describe. That distance is specialized for the traveling purchaser
problem, while we will introduce a distance function specialized for VRPs.

An Attribute Based Similarity Function for VRP Decision Support
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3 Tversky’s similarity measure

We begin our investigation with a ratio version of Tversky’s similarity measure (Tversky, 1977).
This ratio has been widely used to measure similarity and there is extensive discussion of its
properties in the psychology literature (Goertzel, 1997; Medin et al., 1993). It has been used in
diverse contexts such as spam detection (Dimmock and Maddison, 2004) and clustering (Ryu and
Eick, 2005). For two non-empty sets A andB, define

J(A,B) ≡ |A ∩B|
|A ∩B|+ |A−B|+ |B −A|

where |A| denotes the cardinality of set A. It is well known that 1 − J(·) is a semi-metric; i.e., it
satisfies the definition of a metric apart from, perhaps, the triangle inequality.

We will base our similarity measures on generalizations of the ratio given by J(·). Insights into
creation of a generalization can be gleaned by considering the literature on two related problems:
comparing vectors of categorical data and comparing sets of categorical data. This work has been
extended to consider comparisons of vectors of sets of data, which is not our current problem but
it is close enough so that solutions to it are instructive. A unifying proposal for vectors of sets and
a nice summary of related work is provided by Ruy and Eick (1998).

4 Methods for comparing vectors, sets of vectors and vectors of sets
of vectors

Our interest here is strictly in the similarity and difference between solution, not optimization, per
se. We can assume that all the solutions we look at are good enough, that is, the objective function
value is within some fraction of the best found, or some other threshold. Additionally, it should
also be stressed that similarity is not the same as visual pattern matching. This is exemplified in
Figure 1, where the two solutions may look very similar, but in fact may be very different in terms
of the attributes of interest to the DM.

Figure 1: Two Distinct VRP Solutions.

A solution to a VRP instance consists of a collection of vehicle routes that traverse some of the arcs
to serve all the stops included in the instance. Each stop, each potential arc, (whether included in
the solution or not), and each tour has associated with it a vector of attributes. Given the attribute
vectors of two stops, two arcs or two routes, we want to compute the similarity between them.
The elements of an attribute vector might be categorical, binary, measured, or might even be sets.
A unique identifier of the stop, the arc or the tour needs to be included in the attribute vector and
treated as categorical data. This is to avoid a situation where, e.g., two different stops with identical
sets of attributes are compared and their similarity is computed to be 1.
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Our similarity functions are based on the attributes of the solutions. Before getting into the for-
malisms, we can get intuition by thinking of VRP solutions from the point of view of each stop.
Each stop is on a tour, hence for each stop there is a set of other stops that are on the same tour,
a set of arcs that are in the tour and a vector of attributes for the tour itself. Given sets of stops,
sets of arcs and attributes of tours for a given stop, we want to compute the similarity between the
tour this stop is on in one solution and another. Once we have the similarity for each stop we can
compute the similarity between solutions by summing the similarity over the stops.

In order to build up the similarity function, we need functions to find the similarity between vectors,
sets of vectors, and vectors of sets of vectors. The vectors correspond to single stops, arcs or tours,
the sets of vectors correspond to sets of stops or arcs that share the same tour. Finally, the vector
of sets of vectors correspond to a complete solution for a VRP instance, viewed from the point of
view of each stop. Løkketangen and Woodruff (2005) developed a method for finding the distance
between sets of vectors, where each vector in the set gives the attributes of that member of the
set. We use their method as a basis for our similarity function. In order to generalize Tversky’s
function, Løkketangen and Woodruff generalized the intersection using a function h(·) and the
difference using a function g(·); these functions are described in Subsection 4.2. The functions, in
turn, require functions to compare attribute vectors which we obtained based on the work of Ryu
and Eick; this is described in the next subsection. In Section 5 we give a method of representing
VRP solutions so that differences between them can be computed. Subsequent sections give and
example and some computational experience.

4.1 Comparing attribute vectors

For two particular values of vector element j, let the function ηj(·) take values on [0, 1] correspond-
ing to the dissimilarity between the two attribute values. For a measured attribute, ηj(·) should
provide a continuous measure of dissimilarity scaled by the variability as measured across all po-
tential measurements or some other set of interest. For example the distance between vectors x
and y attributed to element j is,

ηj(x, y) ≡ min

(
1,
|xj − yj |

sj

)

where sj is a measure of the dispersion of the values for attribute j; we have in mind the standard
deviation, but other measures of dispersion could be used. We assume that 0/0 is zero. Scaling by
the dispersion puts the difference on the same scale in terms of deviation regardless of the original
scale of the values. For categorical attributes, including binary attributes, difference is replaced by
an indicator of inequality so it will take the value zero or one. If any of the vector elements are sets,
then a function such as Tverskys can be used. We then define

δ(x, y;w) ≡ (

p∑

j=1

ηj(x, y)wj)/(

p∑

j=1

wj)

to be a measure of dissimilarity between vectors x and y. Here, p is the number of vector elements
(attributes) and w is an optional vector of user-specified weights giving the relative importance of
the different attributes.
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4.2 Comparing sets of vectors

In Løkketangen and Woodruff (2005) functions are developed that allow for a generalization of
Tversky difference function given in Section 3 to compare two sets of vectors. Given two sets A
and B,

g(A,B;w) ≡
∑

k∈(A−B)

∑

k′∈B
δ(k, k′, w)/|B|

provides a generalization of |A−B|. Observe that if the vector size is one and all vector elements
are treated as categorical variables (i.e., A and B are sets), then g(A,B;w) = |A − B| as shown
in Løkketangen and Woodruff (2005). This extends to binary set elements if the range is used to
scale δ.

The numerator in Tversky’s ratio as given in Section 3 is the cardinality of A ∩ B. One can make
use of the fact that for simple sets, |A ∩ B| = |A| − |A − B| = |B| − |B − A|. Since, in general,
|A|−g(A,B;w) 6= |B|−g(B,A;w), to obtain symmetry we use both in our bounding approximation
to |A ∩B|, namely

h(A,B;w) ≡ (|A| − g(A,B;w) + |B| − g(B,A;w))/2

As with g(·), h(A,B;w) = |A ∩B| if A and B are simple sets and w is a vector of ones.

This enables extension of Tversky’s similarity ratio to compute dissimilarity between sets of vectors.
Define

d(A,B;w) ≡ 1− h(A,B;w)

h(A,B;w) + g(A,B;w) + g(B,A;w)
(3)

The function d(·) that we have given offers the advantage over the Tversky ratio that instead of
simply using the number of elements in the difference sets, the δ(·) function is used to find out
how different they are. In the next section we show how these functions, originally developed for
portfolio optimization problems, can be extended to rich VRP solutions.

5 An attribute based measures for similarity between VRP solutions

In a VRP setting, several different attributes for stops, arcs and tours might be of interest for doing
comparisons:

• For stops, attributes of interest could be related to accessibility (parking, maneuvering, load-
ing/unloading facilities etc.), time windows, type and amount of load picked up or delivered.

• For arcs, attributes could include length, road quality (number of lanes, type of pavement,
average altitude, slope, curves etc.), average travel time, travel time variations (rush hours,
ferry routes etc.).

• Tours could be characterized by day/time for the tour, vehicle and driver. In some applications,
it might also be of interest to measure the importance of the tour. If e.g. production and/or
inventory constraints are involved, a tour would be important if the goods picked up on the
tour is critical to keep the production process from stopping and less important if the load
from the tour is put into inventory for use the next day.

The attributes listed here are meant only as examples; the actual attributes used could be fewer or
more and have to be decided based on the application at hand. Note also that a unique identifier
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is always included as an attribute, and that many of these attributes might not be used in the
optimization model.

Consider the following solution representation that leads to a fairly compact expression of our
similarity function. Order the stops (arbitrarily) and index them from 1 to n; we will then use vectors
of length n referred to as n-vectors. Given a solution X, we can represent it in a way that is useful
for our purpose. Represent X by X̂, X̃ and X̄, where X̂ and X̃ are n-vectors of sets and X̄ is an
n-vector.

In X̂, each vector element i corresponds to a particular stop and gives the attributes of the stops
that share the route with i, omitting stop i and the depot.

The arc representation of a solution we will use is analogous: X̃ gives the attributes of the arcs
that are on the route of each stop.

The third representation, X̄i, gives the attribute vector of the tour that stop i is on.

We can now give an abstract definition of distance for two VRP solutions represented as X and Y
that generalizes the Tversky function:

t(X,Y ) ≡ α 1

n

n∑

i=1

d(X̂i, Ŷi; ŵ) + β
1

n

n∑

i=1

d(X̃i, Ỹi; w̃) + γ
1

n

n∑

i=1

X̄i, Ȳi; δ(w̄).

where the parameters α, β and γ control the relative importance of stops, arcs and tours, respec-
tively. The sum of these three parameters should equal one to have the function take values on
[0, 1]. The vector ŵ gives the weights for the different attributes of stops, while w̃ and w̄ give the
weights for attributes of arcs and tours, respectively.

6 Example

To illustrate the computations, we will make use of a very small example with five stops and three
vehicles. For this example, we associate with each stop three attributes: the stop number, the
number of pallets to pick up and a binary variable indicating whether the vehicle has to park in
the street or not while loading. With each arc we associate its (origin, destination) pair of nodes,
the arc length and number of lanes, and with each route we associate the number of the vehicle
performing the route.

We will make use of two solutions:

• E: stops one, four and five are the route for vehicle one; stops two and three are the route
for vehicle two.

• F : stops five and three are the route for vehicle one; stops two, one and four are the route for
vehicle three.

Table 1 gives the attributes for the stops and the arcs in our small example. Even though some of
the arcs are not used in any of the two solutions listed here, their attributes are given because they
may be used in some solution. Note also that vehicle one is the only vehicle used in both solutions.
The actual tours can be visualized as in Figure 2.
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Table 1: Attributes for VRP example

Stop attributes:
Stop Pallets Street parking

1 3 No
2 3 Yes
3 4 No
4 1 Yes
5 5 No

Arc attributes:
Arc Length Lanes
0-1 20 km 2
0-2 10 km 2
0-3 20 km 2
0-4 5 km 1
0-5 10 km 2
1-2 25 km 4
1-3 40 km 2
1-4 15 km 4
1-5 25 km 4
2-3 15 km 4
2-4 15 km 1
2-5 20 km 2
3-4 25 km 1
3-5 20 km 2
4-5 10 km 4

So for the small example given, Ê1 gives the attributes of the stops that share a route with stop
one in this solution so it is {(4, 1, Y es), (5, 5, No)} because in solution E, stop one shares the route
with stops four and five. The other elements of Ê can be constructed in the same way, so Ê2 =
{(3, 4, No)}, Ê3 = {(2, 3, Y es)}, Ê4 = {(1, 3, No), (5, 5, No)}, and Ê5 = {(1, 3, No), (4, 1, Y es)}.
This is repeated for F̂ , so F̂1 = {(2, 3, Y es), (4, 1, Y es)}, F̂2 = {(1, 3, No), (4, 1, Y es)}, F̂3 =
{(5, 5, No)}, F̂4 = {(1, 3, No), (2, 3, Y es)}, and F̂5 = {(3, 4, No)}.

The arc representation of a solution we use is analogous, X̃ gives the attributes of the arcs that are
on the route of each stop. If X represents solution E, X̃1 = {((0 − 1), 20, 2), ((1 − 4), 15, 4), ((4 −
5), 10, 4), ((5− 0), 10, 2)} and X̃2 = {((0− 2), 10, 2), ((2− 3), 15, 4), ((3− 0), 20, 2)}.

The third representation, X̄i, gives the attribute vector of the tour that stop i is on. Following our
example, it means that, e.g., X̄1 = 1 because we have defined so few attributes for this simple,
small example.

Writing down the representations is tedious and doing the calculations by hand is treacherous, but
the representations and calculations are easily programmed. To help the reader verify any such
programming, we illustrate some of the calculations to complete the example by working backwards
down one thread. We start with the distance between the stop attributes for the first stop:

d(Ê1, F̂1; ŵ)

that creates a need for generalized set differences for stops attributes, e.g.:

g(Ê1, F̂1; ŵ) ≡
∑

k∈(Ê1−F̂1)

∑

k′∈F̂1

δ(k, k′, w)/|F̂1|
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Figure 2: Solutions E and F.

The set Ê1 − F̂1 has only one member; the set difference is {(5, 5, No)} so

g(Ê1, F̂1; ŵ) = δ((5, 5, No), (2, 3, Y es); ŵ) + δ((5, 5, No), (4, 1, Y es); ŵ)

To compute this, we need to compute δ function values. For example, with an importance weight
vector of ŵ given by the user:

δ((5, 5, No), (2, 3, Y es); ŵ) = η1(5, 2)ŵ1 + η2(5, 3)ŵ3 + η3(No, Y es)ŵ3

The η function requires some value for the expected spread of each vector element. The first and
third vector elements are categorical so since we do not have a full data set to use estimate a value,
we will assume 1/2 rather than estimating it from the limited data we have. This results in,

η3(No, Y es) =
1

1/2

Since “No” differs from “Yes.” The value of η1(5, 2) is also 2 because stop 5 is not the same as stop
2. The number of pallets for stops that we have (namely: 3,3,4,1, and 5) has a sample standard
deviation of 1.48 so we use that for illustration purposes. This yields

η2(5, 3) =
5− 3

1.48
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We note that it actually takes less time to write computer code for the distances in general than it
takes to work through one full example by hand, even when the example is small.

7 Computational Experiments

This section reports on computational experiments using the distance measure. Our example
instance is from http://branchandcut.org/VRP/data (as are all of our examples). It has 5 vehicles
and 32 customers. This is a simple example to illustrate calculations has the following attributes.
A stop has the customer ID given as a number and the customer demand, normalized by dividing
with the capacity of the vehicle. The arcs are represented by the pair of end-point nodes, and the
arc length. The tour attributes are just the number of the tour and the set of customers on the tour,
as all vehicles are the same, and there are no operational costs associated with a vehicle.

Table 2 shows 4 different, good solutions to the instance A-n32-k5. In Table 3 shows the distances
between them assuming equal weights on solution attributes. The 4 solutions are shown graphi-
cally in Figures 3 ,4 ,5 and 6. It is evident that solutions A and B are similar. On the other hand,
solutions C and D are very different. This is reflected in the pair-wise distances shown in Table
3.

Table 2: Different solutions to the instance A-n32-k5

Solution Tour Customers
1 30,26,28,18,22,15,29,27
2 21,31,19,17,14,24,20

A 3 8,13,7,16,12
4 6,3,2,23,4,11,9
5 5,25,10,1
1 30,26,23,28,18,22,15,29,27
2 21,31,19,17,14,24,20

B 3 8,11,13,16,12
4 7,6,3,2,4,9
5 5,25,10,1
1 30,26,31,19,23,28,18,29,27
2 12,1,21,14,24,10,20

C 3 15,22,8,11,13,16
4 7,6,3,2,4,9,5
5 25,17
1 29,15,10,25,5,20
2 7,21,31,19,17,13

D 3 23,3,2,6,30
4 14,28,4,11,8,18,9,22,27
5 12,1,16,26,24

Table 3: Solution Distances

A B C D
A 0.18 0.54 0.66
B 0.18 0.42 0.68
C 0.54 0.42 0.76
D 0.66 0.68 0.76
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Figure 3: Solution A to instance A-n32-k5 Figure 4: Solution B to instance A-n32-k5

Figure 5: Solution C to instance A-n32-k5 Figure 6: Solution D to instance A-n32-k5

In order to illustrate the usefulness of our distance function t(X,Y ) for the VRP, we will look at
this in a multi-criteria DSS setting. (For an overview of multi-criteria optimization and VRP, see
Jozefowiez et al. (2008). This will show the usefulness of having a distance measure both for
selecting between solutions to consider, and for generating solutions containing specific attributes.
We show our results on a set of benchmark instances from the literature, modified for our multi-
objective setting.

A user might also want to ask: what makes two solutions different? and what are the important
stops for determining the distance?. Because our distance function is decomposable by stop, it is
easy to answer these questions. In other words, since t(X,Y ) is computed by summing over the
stops, the contribution of each stop can be directly determined.

7.1 Solution Distances and λ Distances

Our specific example will be in a DSS where the DM wants to be presented a small set of routes
that are good w.r.t. the overall cost, and within the specified route difference threshold. We have
implemented this in a solver based on Oppen and Løkketangen (2006) and Cordeau et al. (2001).
This solver uses tabu search with an insert neighborhood and infeasibility penalties in the move se-
lection function. The optimization algorithm design has been modified to work in a multi-objective
setting, where the final objective is a linear combination of the individual objectives. This means
that there is a control parameter λ (between 0 and 1) that gives the blend between the two objec-
tives.

Objtot = λ ∗Obj1 + (1− λ) ∗Obj2
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This blend may also be regarded as a policy. The goal in a multi-objective optimization setting
is often to find the set of solutions that define the Pareto Front, PF (i.e. the set of undominated
solutions). In practice there is a limit to both computational time and resources, so every point on
the PF cannot be mapped. Also, with the weighted sum of the two objectives, concave regions of
the PF may be undetected (Corne et al., 2000). A DM is also in general interested in implementing
a policy, and not balance the different criteria dynamically.

A typical result is shown in Figure 7, which was generated from 11 runs of our solver with λ ranging
from 0 to 1 in 0.1 increments. We will call this λ-space.

Figure 7: Pareto Front for instance A-n32-k5

It is very easy to imagine that a large distance between solutions in λ-space (measured in λ)
corresponds to a large differences between solutions, and vice-versa. This is not necessarily the
case. In Table 4 are shown the distances between the solutions E, F and G for instance A-n32-k5.
The λ-values used were E = 0.0, F = 0.1 and G = 1.0. The solutions are shown graphically in
Figures 8, 9 and 10. The distance between solutions E and F in λ-space is much smaller than
the distance between solutions E and G. (0.1 compared to 1.0). Even so, the difference in solution
space is larger between solutions E and F, than between solutions F and G. This illustrates the
importance of having the difference measure in solution space.

Table 4: Solution Distances – Multi Objective – A-n32-k5

E F G
E 0.76 0.70
F 0.76 0.64
G 0.70 0.64

Figure 8: Solution E to instance A-n32-k5
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Figure 9: Solution F to instance A-n32-k5

Figure 10: Solution G to instance A-n32-k5

Table 5 shows the correlation between the solution distances for a set of quite different instances
from http://branchandcut.org/VRP/data. Both linear (Pearson) and rank (Spearman) correlations
are shown. All the numbers are below 0.5, which can be understood as small or medium.

Table 5: correlation between distances in solution space and λ space

Instance Pearson Spearman
A-n36-k5 0.37 0.37
A-n37-k6 0.29 0.26
A-n45-k7 0.31 0.29
A-n60-k9 0.41 0.40

A-n80-k10 0.46 0.42
B-n41-k6 0.32 0.30
B-n57-k9 0.42 0.39

P-n70-k10 0.22 0.19
P-n101-k4 0.18 0.16
E-n76-k10 0.37 0.34

G-n262-k25 0.44 0.37
M-n200-k17 0-49 0.44

7.2 Using a Threshold

As stated above, a given value for λ (in our two-objective setting) corresponds to a given policy,
or balance between the criteria. Such a policy is often implemented as a threshold value for a
given objective. In our example, a threshold on the route balance would correspond to a statement
like: “The maximum difference in duration between two routes is 30 minutes.” This corresponds
to saying that solutions fulfilling this policy are of interest, and the most desirable are the solutions
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on, or near, the PF that fulfill the criteria, and therefore have a “good enough” solution value w.r.t.
the overall route length. This thus corresponds to a section of the PF graph. In Figure 11 this is
indicated as follows. The overall Pareto Front is indicated by the curved line. The DM indicates
preferences using lines on the PF graph. The route balance policy is indicated by the vertical
dotted line. The horizontal dotted line indicates the minimum desired solution quality. The set of
optimal solutions will then be on the PF between A and B. (If the route balancing objective had
been implemented as a constraint, then only the point A will be produced). As we are interested
in a portfolio of different, but good, solutions, we will find these between A and B. These solutions
are not necessarily positioned only on the PF, but can also be a dominated solution that is close,
as indicated by X. We call the set of solutions containing such dominated solutions for the set of
good solutions.

Figure 11: Threshold and the Pareto Front

Table 6 shows the 95% confidence interval for the difference between the average distance ob-
tained from the set of good solutions and similarly from the non-dominated solution set, for a set of
the benchmark problems. As can be seen, there is no evidence to say that the average distances
between the solutions in the good solutions set are not greater than those in the non-dominated
solutions set. The solution having Best length corresponds to the point A in figure 11.

Table 6: Solution difference test

2 Most Different Best length
Instance Lower Upper Lower Upper
A-n36-k5 0.03 0.04 0.02 0.04
A-n37-k6 0.01 0.03 0.01 0.03
A-n45-k7 0.01 0.03 0.00 0.03
A-n60-k9 0.01 0.02 0.00 0.02
A-n80-k10 0.01 0.02 0.01 0.02
B-n41-k6 0.01 0.03 0.01 0.03
B-n57-k9 0.02 0.03 0.01 0.02
P-n70-k10 0.01 0.03 0.01 0.03
P-n101-k4 0.02 0.05 0.02 0.05
E-n76-k10 0.01 0.04 0.00 0.03

G-n262-k25 0.02 0.03 0.02 0.03
M-n200-k17 0.03 0.05 0.03 0.04

We can say that including dominated solutions in the set to give to the DM, will increase the diversity
of the presented solutions. This is, according to previous considerations, something that could be
of interest for the DM.
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The results presented here are intended only as illustrative examples. If attribute weights or the
objective function value limit are changed, the results will be different. In practice, attribute weights
and other parameters have to be set by the DM based on their preferences for the application at
hand.

8 Conclusions

A decision maker (DM) is often more interested in a set of different, good solutions to his problem,
rather than just the (optimal) solution produced by a tool, using a simplified model of the underlying
real world problem. On the other hand, the same DM will only be interested in seeing a few of the
alternative solutions, and not the plethora of solutions often produced by modern search techniques
(see Danna and Woodruff (2009)).

We have developed an attribute based distance function for use in a DSS for rich, real world,
VRP problems. Based on Tversky’s well-known similarity ratio, the function makes use of the
tour structure and other attributes of the solution. Of particular importance is that the suggested
difference measure also can use solution attributes that are not explicitly modeled in the underlying
optimization tool.

We have used this function in a multi-objective setting to produce diverse sets of solutions having
specific attributes that are of interest for the DM in a particular planning situation. The examples
shown illustrate that using a solution difference measure for screening based on the structure and
attributes of the solutions gives more varied solutions for the DM to choose from.
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Abstract

An extension of the capacitated vehicle routing problem (CVRP) is studied in this paper.
In this version the difference between the individual route lengths is minimized simultaneously
with the total length. The drivers’ workload and perhaps, income, may be affected by the route
lengths; so adding this objective makes the problem closer to real-life than the original, single-
objective problem. A heuristic based on GRASP is used to obtain an approximation of the
Pareto set. The proposed heuristic is tested on instances from the literature, obtaining good
approximations of the Pareto set.

Keywords: CVRP, Multi-objective optimization, GRASP

1 Introduction

In the capacitated vehicle routing problem (CVRP) the total travel cost is minimized, given a set of
customers with non-negative demand, a homogenous fleet of vehicles with limited capacity and a
travel cost from node to node (customers and depot). A solution to the CRVP is a set of routes,
each one starting and ending at the depot, where each customer is visited exactly once by one
vehicle. In an optimal solution, the total cost (length) is minimized (Toth and Vigo, 2002).

Taking into account just the total length may produce substantial differences among the route
lengths. In some industries the income of the driver may be affected by the traveled distance.
This could be seen as unfair by the drivers, since not all are having the same workload, affecting
their welfare. In some settings, drivers are considered to be an arena of competition among the
transportation companies, making their welfare a significant issue (Lee and Ueng, 1999).

Including the route balance in the CVRP may describe a problem closer to real-life. This paper
deals with a bi-objective vehicle routing problem, where the balance of the route lengths is included
as an objective in addition to the traditional minimization of the total length. This approach is
relevant since due to drivers agreements, legal restrictions or fairness, the drivers’ workload might
become an important aspect to be considered by the decision maker when doing the transportation
planning. The problem will be considered as a multi-objective problem. The additional objective
included in the problem is measured as the difference between the longest and the shortest route.
This problem is known as the vehicle routing problem with route balancing (VRPRB) (Jozefowiez
et al., 2009, 2007b).

Several approaches have been used to deal with the VRPRB. These approaches involve evolution-
ary algorithms, either combined with tabu search (Jozefowiez et al., 2002, 2007b) or with additional
diversification strategies (Jozefowiez et al., 2009). In this paper, a new algorithm is proposed to
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find solutions to the VRPRB, it combines local search and a variant of a greedy randomized adap-
tive search procedure (GRASP) (Resende and Ribeiro, 2003, 2010). The GRASP metaheuristic
has been previously used in solving multi-objective problems, e.g. knapsack and rule selection
(Reynolds et al., 2009; Vianna and Arroyo, 2004). However a different approach is used here,
where no weights are assigned to the objective functions in the problem during the enumeration of
the Pareto set.

Following the spirit of the ruin and recreate heuristic (Schrimpf et al., 2000), the constructive phase
of the GRASP procedure starts from a partially built solution. This initial partial solution is obtained
using the common parts of two previously found solutions (ruin). A GRASP procedure is then
applied to complete the solution (recreate). This process we call the greedy randomized adaptive
search procedure with advanced starting point (GRASP-ASP). To the best of the authors’ knowl-
edge, the approach used in GRASP-ASP, with no weights and partially built starting solutions has
not been used before for solving multi-objective problems.

Heuristics with a similar approach are iterated greedy algorithm (IG) (Jacobs and Brusco, 1995)
and tabu search with strategic oscillation (TSSO) (Lozano et al., 2003), for the case of single ob-
jective optimization problems. In a multi-objective framework, the restarted iterated Pareto greedy
(RIPG) algorithm (Minella et al., 2011) has been used and includes a destructive phase and a
constructive one. In IG and TSSO one single solution is obtained starting from a partially built
solution. In GRASP-ASP, as well as in RIPG, a set of solutions is obtained starting from a partially
built solution. In all these algorithms, the constructive phase starts with a partial solution. In IG,
TSSO and RIPG, the partial solution starts after randomly removing elements from a complete
solution. In GRASP-ASP, the partial solution is not obtained in a random way, but from the com-
mon elements in two complete solutions. In these four algorithms, the construction phase is done
using a greedy algorithm. In IG the elements are inserted in the solution having as criteria the
best impact on the objective function. TSSO uses a similar approach, but it also has a memory
structure to prevent some elements to be part of the new solution. RIPG inserts the elements in
a specific order. The first is inserted in every possible position in the partial solution, creating a
set of partial solutions, one per each different position. The second element is inserted in every
possible position of every partial solution. The process continues until all the elements have been
inserted. In GRASP-ASP the construction phase is performed by a GRASP procedure and takes
into consideration the impact on both objective functions.

The rest of the paper is organized as follows: in Section 2 the multi-objective optimization problem
is introduced; the algorithm used to solve the VRPRB is presented in Section 3; the computational
results and the conclusions are presented in Sections 4 and 5 respectively.

2 Multi-objective optimization

In a multi-objective optimization problem (MOP) several functions are optimized (minimized or max-
imized) subject to the same set of constraints. Without loss of generality the MOP can be treated
as a minimization problem, in such case, it can be stated as

min {F (x) = (f1(x), f2(x), . . . , fn(x))} (1)

subject to

x ∈ D (2)
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with the number of objective functions being n ≥ 2; the decision variable vector x = (x1, x2, . . . , xr);
the feasible solution space D; and F (x) the objective vector (Jozefowiez et al., 2007b).

Real-life problems often involve more than one single objective. In fact, it is considered that trans-
portation planning is inherently multi-objective in nature (Current and Min, 1986). This becomes a
motivation to include several relevant objectives into the optimization problem, since it is expected
that it will become more realistic.

2.1 Pareto optimal solutions

For an optimization problem to be considered multi-objective, the different objectives should be in
conflict. Otherwise, the problem may be solved by single objective techniques, since optimizing one
of the objectives will improve the other. But because of the conflict among the different objectives,
no single solution is able to minimize all the objectives of the problem simultaneously. Instead of
that, a solution to a MOP is given by a set of solutions, each of which are not expected to be optimal
for all the objectives. These solutions are called tradeoff solutions (Collette and Siarry, 2003).
When dealing with a real problem, not all the solutions in the solution set can be implemented, the
decision maker should select just one solution, usually after examining the tradeoff solutions.

A solution y with objective function values (f1(y), f2(y), . . . , fn(y)), dominates a solution z, y ≺ z,
if and only if ∀ i {1, 2, . . . , n} fi(y) ≤ fi(z), and ∃ j {1, 2, . . . , n}, such that fj(y) < fj(z). That is,
the solution z does not perform better than y in any objective functions, but it performs worse in at
least one. The set of non-dominated solutions is called the Pareto set (PS) or the Pareto optimal
solutions and it defines the solution set of a multi-objective optimization problem (Jozefowiez et al.,
2007b). If the last condition is not fulfilled, solution z does not perform worse than y in any of the
objectives, then it is said that y weakly dominates solution z, y � z (Knowles, 2002).

The method or algorithm used for solving the MOP may not guarantee a set of non-dominated
solutions as result. Then the obtained solutions are not Pareto optimal solutions. If this is the case
and the algorithm used to solve the MOP does not find a solution z that dominates a solution y, then
the latter is considered a potentially Pareto optimal solution, relative to the particular algorithm or
method that was used to solve the problem (Jozefowiez et al., 2007b). The set of potentially Pareto
optimal solutions, relative to GRASP-ASP, is an approximation to the Pareto set (PSapr).

2.2 Mathematical model for the VRPRB

A model for the VRPRB is constructed based on the standard model for the VRP (Laporte, 1992),
including some different constraints to prevent subtours (Desrochers et al., 1988). The notation
used in the model is described here:

Variables
Xijk Indicates if vehicle k traverses arc (i, j)
Vik Cargo that vehicle k carries after departing from customer i
L Length of the longest tour
S Length of the shortest tour

Parameters
A Set of arcs
K Set of vehicles
N Set of customers plus the depot
n Number of customers
cij Distance between customers i and j
di Demand of customer i
Q Vehicle’s capacity
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min




∑

(i,j)∈A

∑

k∈K
cijXijk, L− S



 (3)

subject to

∑

j∈N
X0jk ≤ 1, ∀k ∈ K (4)

∑

j∈N

∑

k∈K
Xijk = 1, ∀i ∈ N\0 (5)

∑

j∈N
Xijk =

∑

j∈N
Xjik, ∀i ∈ N , k ∈ K (6)

V0k =
∑

(i,j)∈A
diXijk, ∀k ∈ K (7)

Vjk ≤ Vik − dj +Q(1−Xijk), ∀i ∈ N , j ∈ N , k ∈ K (8)

V0k ≤ Q, ∀k ∈ K (9)

∑

(i,j)∈A
cijXijk ≤ L, ∀k ∈ K (10)

∑

(i,j)∈A
cijXijk ≥ S, ∀k ∈ K (11)

Xijk ∈ {0, 1}, ∀i ∈ N , j ∈ N , k ∈ K (12)

Vik ≥ 0, ∀i ∈ N , k ∈ K (13)

L, S ≥ 0 (14)

Equation (3) shows the two objectives to minimize, total length and route balance. Constraints (4)
- (6) ensure that at most k vehicles are used and every customer is visited exactly one time. Con-
straints (7) computes the initial load on every vehicle. Constraints (8) acts as sub-tour elimination
constraints. Constraints (9) impose the capacity limit to each vehicle. Constraints (10) and (11)
establish the bounds for the value of the longest and the shortest tour, respectively.

3 The GRASP-ASP algorithm for solving the VRPRB

The proposed algorithm is divided into two phases. The first phase finds the initial set of extremal
solutions in the approximation of the Pareto set (best found solutions for each objective when con-
sidered individually). In the second phase more solutions are generated starting from the solutions
obtained in phase I. It is expected that the approximation of the Pareto set is located between the
best solutions found for each of the objectives individually. Solutions in the approximation of the
Pareto set represent a tradeoff between two objective functions. Then it could be expected that
these solutions share attributes with the two solutions optimizing the different objectives, in a higher
or lower degree depending on which objective the tradeoff is favoring. In Phase II, more solutions
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are generated from some of the solutions in the prospects to become part of the approximation of
the Pareto set (PSpro), this set is defined in Section (3.2.1). It starts with the two solutions obtained
in Phase I and through an iterative process, the algorithm attempts to improve PSpro, as described
in Section 3.2.

A solver was implemented in C++ using an existing code for the CVRP (Oppen and Løkketangen,
2006), which was based on the unified tabu search heuristic for vehicle routing problems with time
windows (Cordeau et al., 2001; Glover and Laguna, 1997; Glover, 1989).

3.1 Phase I

Tabu search (Glover and Laguna, 1997; Glover, 1989) has shown to be effective when dealing with
VRP (Zachariadis et al., 2009). For Phase I a tabu search algorithm, based on the unified tabu
search heuristic for vehicle routing problems with time windows (Cordeau et al., 2001; Oppen and
Løkketangen, 2006) is performed for each of the objectives separately in the VRPRB. As a result
two solutions are obtained, the one that optimizes the total length (xl) and the route balance (xr).
These solutions become the initial members of the reference set, which later will include all the
non-dominated solutions found during the search in Phase II. A description is shown in Algorithm
3.1.

Algorithm 3.1: PHASE I(f1, f2, . . . , fm : objective functions)

Let s be an initial solution
PS ← ∅
for i← 0 to m

do PS ← PS ∪ TABU SEARCH(fi, s)
return (PS)
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Algorithm 3.2: TABU SEARCH(f : objective, s : solution)

Let s∗ be the best found solution
Let γ be the diversification function
Let α be the penalization for infeasibility
Let c be the cost function of f
Let N(s) be the neighborhood of solution s
if feasible(s)

then
{
s∗ ← s
c(s∗)← c(s)

else c(s∗)← +∞
while stopping criterion

do





c(s′)← +∞
for i← 0 to |N(s)|

do





s̄← si ∈ N(s)
c(s̄)← c(s̄) + γ(s̄) + α(s̄)
if (s̄ not tabu and c(s̄) < c(s′)) or (c(s̄) < c(s∗) and feasible(s))

then
{
s′ ← s̄
c(s′)← c(c̄)

twoOptProcedure(s′)
update(γ, α)
update(tabulist)
update(s∗, c(s∗), s)

return (s∗)

3.2 Phase II for the GRASP-ASP algorithm

The greedy randomized adaptive search procedure (GRASP) is an iterative metaheuristic (Re-
sende and Ribeiro, 2003, 2010) consisting of two phases: construction and local search.

At every GRASP iteration a solution is built (a repair procedure can be applied in case of infeasi-
bility) and finally a local search is performed, until a local optimum is found. In the single objective
approach, the solution is built by including, one at the time, elements to be part of it. At every stage
of the construction process, all the candidate attributes that could be included in the solution at
the current step are evaluated using a greedy approach. A list, known as the restricted candidate
list (RCL), is created with the elements that have a higher performance according to the previous
evaluation. The element to be added to the current solution is randomly selected from the RCL
(Resende and Ribeiro, 2010). The process is repeated until the solution is completed, updating at
every step the evaluation, list of candidates and RCL.

3.2.1 Approximation of the Pareto set

The prospects to become part of the approximation of the Pareto set (PSpro), correspond to the
set of solutions found by the algorithm that are not dominated by any other solution found during
the current search. The cardinality of this set is kept less than or equal to a parameter LP .

When the cardinality of PSpro exceeds LP , the additional solutions are removed by using the
following simple procedure. Every solution y, except the two extremal solutions, has two neighbors
z and w such that for a particular objective i, fi(w) < fi(y) < fi(z). The summation of the
Manhattan distance, in the objective space, to both neighbors is computed for every solution in
the set of prospects to become part of the approximation of the Pareto set, except by the extremal
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solutions. The solution with the smaller total manhattan distance to both neighbors is removed
from the set. The procedure is repeated until the number of solutions reaches LP . The extremal
solutions are kept as long as they remain prospects to become part of the approximation to the
Pareto set.

The GRASP-ASP procedure builds a set of solutions starting from a half-built solution, instead of
an empty solution. The starting solution consists of the common elements of two previously found
solutions. These two solutions should not have more than LA percent of common attributes. At the
beginning of phase II, there are just two solutions to be considered, i.e. the extremal solutions found
in Phase I. These are the initial set PSpro. Once the procedure is applied to these two solutions,
the set is updated with the solutions that have just been built. This process is repeated at most LN

times. If after one of these repetitions, the time consumed by the GRASP-ASP procedure is longer
than LT seconds, the algorithm stops.

At every repetition of the process, every pair of solutions from a subset of PSpro is used in the fol-
lowing way. The set PSpro is updated with the solutions built in the process that are not dominated
by any other solution in the set. The cardinality of the subset of solutions used in the GRASP-ASP
procedure is defined as no greater than LG. The solutions to include in such subset are the two
extremal plus LG − 2 randomly selected solutions. In case that PSpro has a cardinality less than
LG, every pair of solutions with the percentage of common attributes no greater than LA, will be
subjected to the GRASP-ASP procedure.

Algorithm 3.3 summarizes the procedure. Once the algorithm stops, PSpro becomes the ac-
tual PSapr. Figure 1 shows how PSpro improves with the repetitions of the GRASP-ASP proce-
dure.

Algorithm 3.3: PHASE II. GRASP-ASP(sL, sB, α)

Let sL be the best found solution that minimizes the total length
Let sB be the best found solution that minimizes the route balance
Let α be the algorithm parameter
Let R be PSpro
Let G be a subset of PSpro
Let S be the solutions obtained by GRASP-ASP algorithm
R ← sL ∪ sB
while stopping criterion

do





S ← ∅
for each (si, sj) ∈ G

do
{

while stopping criterion
do

{
S ← GRASPPROCEDURE(si, sj , α)

S ← LOCALSEARCH(S,R)
R ← updateProspectSolutions(R,S)

return (R)
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Figure 1: Improvement of the approximation of the Pareto solution with the repetitions of the
GRASP-ASP for instance E021-04m

Algorithm 3.4: GRASPPROCEDURE(s1, s2, α)

Let c(ai) be the fitness of attribute ai
Let Cl be the list of attributes including customers not assigned yet
Let Nr be the number of GRASP-ASP iterations
Let U be the set of solutions built from 2 starting solutions
A1 ← {(i, k)|(i, k) ∈ s1}
A2 ← {(i, k)|(i, k) ∈ s2}
U ← ∅
j ← 0
while j < Nr

do





s← A1 ∩A2

initialize(Cl)
paretoRanking(Cl)
while Cl 6= ∅

do





cmin ← min{c(a)|a ∈ Cl}
cmax ← max{c(a)|a ∈ Cl}
RCL← {a ∈ Cl|c(a) ≤ cmin + α(cmax − cmin)}
ā← random(a)|a ∈ RCL
s← s ∪ {ā}
update(Cl)
paretoRanking(Cl)

if infeasible(s)
then

{
repair(s)

if feasible(s)
then

{
U ← U ∪ s

j ← j + 1
return (U)
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3.2.2 Pareto rank of partial solutions

GRASP-ASP constructs a solution starting from a partially built solution, by adding attributes, one
at the time. Every candidate Aj represents the insertion of customer i in a tour k. The selection of
the attributes to be added to the partial solution requires an evaluation of all attribute candidates.
This evaluation is performed using a Pareto rank (Mateo and Alberto, 2012; Zitzler et al., 2001),
which takes into consideration the Pareto dominance concept.

For every candidate or possible insertion Aj , its impact on both objective functions is evaluated.
Each candidate Aj is compared with all the others to compute how many of them are dominated by
Aj . This corresponds to the strength value, S(j) ∀j ∈ {1, 2, . . . , T}, where T is equal to the actual
number of attribute candidates.

The raw fitness is computed for every candidate:

R(j) =
∑

t:At≺Aj

S(t) ∀t ∈ {1, 2, . . . , T} (15)

Non-dominated candidates will have a raw fitness equal to zero. It may happen that several candi-
dates have the same raw fitness. To be able to rank these candidates a density D(j) is computed.
D(j) is computed as a decreasing function of the Euclidean distance of the candidate Aj to the
k-nearest neighbor. The density will always lie in the interval (0, 1) and it is defined as

D(j) = 1/(dk + 2), (16)

where dk is the distance to the k-nearest neighbor.

The performance of each candidate will be measured by the fitness F (j) = R(j) + D(j). The
RCL is built with the α fraction of the candidate attributes that show a higher performance (lower
fitness).

For every pair of solutions selected for GRASP-ASP a maximum of Gmax solutions is built. If the
initial number of customers to be inserted into the partial built solution is lower than Cmin, then the
number of built solutions will be equal to the factorial of the initial number of customers.

3.2.3 Local search procedure

At the end of each repetition of the GRASP-ASP procedure, a local search is performed to every
newly found solution. The objective is to improve the quality of the solution, if possible. This
local search is based on the dominance concept. Starting from the initial solution, just moves that
lead to a solution that dominates the current solution are accepted. Algorithm 3.5 describes the
procedure.
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Algorithm 3.5: LOCALPSEARCH(S : solutions,R : PSpro)

P ← ∅
for each s ∈ S

do





localOptimum← false
while localOptimum = false

do





j ← 0
moveFound← false
while moveFound = false and j < |N(s)|

do





if sj ≺ s
then

{
s← sj
moveFound← true

j ← j + 1
if moveFound = false

then
{
localOptimum← true

P ← P ∪ s
return (P)

4 Computational results

4.1 Test environment

Tests have been conducted using 20 standard instances: 7 by Christofides, Mingozzi and
Toth, E016-03m, E016-05m, E021-04m, E021-06m, E022-06m, E026-08m and E101-10c; 2 by
Christofides and Eilon, E051-05e and E101-08e; 6 by Gillett and Miller, E023-05s, E030-04s, E033-
05s, E076-07s, E076-08s and E101-14s; 3 by Hadjiconstantinou, Christofides and Mingozzi E031-
09h, E036-11h, E041-14h; 1 by Russell E076-14u; and 1 by Rinaldi, Yarrow and Araque E048-04y.
These instances are available online (Operations Research Group - Library of Instances, 2012).
The instances were selected in a way that different sizes (number of nodes and vehicles) would
be included. The size of the instances can be seen in the name: the first number in it shows the
number of nodes and the second one represents the number of vehicles in the instance.

The mathematical model presented in Section 2.2 was implemented in GUROBI 5.1, using the
weighted sum of objective function method (WSO) to solve it. Eleven sets of weights (λ, 1 − λ)
were used, from 0 to 1, with 0.1 step, i.e. a weight λ was assigned to the total length and 1− λ to
the balance. A maximum of eleven solutions per instance are obtained by WSO solved by GUROBI
(WSO-G), one per each set of weights, however it may occur that the same solution is obtained
when using two different sets of weights.

In three instances WSO-G was able to find solutions within a 0.01% MIP gap (default for GUROBI),
for some of the set of weights. In the instances E016-03m and E016-05m, for all sets of weights
a solution was found within the default MIP gap, except the set (0, 1), for which after 3 hours the
best feasible found solution was not within such MIP gap. For the case of the instance E023-05s
a solution within the default MIP gap was reported for the sets (0.8, 0.2), (0.9, 0.1) and (1, 0). For
these instances, approximation to the Pareto set found by GRASP-ASP (PSapr(GRASP-ASP)) is
compared with a a very close approximation of the PS, since optimal solutions of the WSO are
part of the PS(Collette and Siarry, 2003). This provides a good reference set for evaluating the
performance of GRASP-ASP.
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For the other instances a maximum time of three hours was given to each set of weights, for a total
time of 33 hours. A maximum of eleven solutions will be obtained by GUROBI (PSapr(WSO-G)),
one per each set of weights. To make a fair comparison if PSapr(GRASP-ASP) has a cardinality
bigger than eleven, it is reduced to eleven, using a similar process to the one described in Section
3.2.1 to reduce the cardinality of the PSpro set. Ten different runs of the GRASP-ASP algorithm
per instance were performed.

The parameters of the algorithm were tuned by means of preliminary testing. For sensitivity anal-
ysis, a selection of instances were run with changes around ± 10% from the base parameter
values. The results were reassuring in terms of stability of the method. The values given to these
parameters are:

• Maximum cardinality of the set of prospects to become part of the approximation to the Pareto
set. LP = 100

• Maximum percentage of common attributes in two solutions for performing GRASP-ASP on
them. LA = 90%

• Maximum number of times than GRASP-ASP is performed on the set of prospects to become
part of the approximation to the Pareto set. LN = 20

• Maximum number of elapsed seconds for starting a new repetition of the GRASP-ASP. LT =
1800

• Maximum cardinality of the subset of prospects to become part of the approximation to the
Pareto set used at every GRASP-ASP repetition. LG = 15

• Fraction of the best candidate attributes included in the RCL. α = 0.2

• Maximum number of solutions built by GRASP-ASP from a starting solution. Gmax = 150

• Minimum initial number of customers be be inserted in a half built solution, in order to build
Gmax solutions by GRASP-ASP. Cmin = 6

All computational experiments were conducted on a computer with processor Intel (R) Xeon (R)
CPU E31270 @ 3.40 GHz and 16.0 GB of RAM.

4.2 Evaluation criteria

Measuring the quality of the set of (potentially) Pareto optimal solutions to a multi-objective problem
is not straightforward. Several performance metrics have been proposed in the literature. However,
no single metric is able to fairly compare two sets of solutions, since all of them present some draw-
backs. Consequently more than one metric is required to make a better comparison. Some metrics
are: the S metric , C metric (Jozefowiez et al., 2009, 2007b; Knowles, 2002; Mateo and Alberto,
2012), the ratio of non-dominated individuals in a set X , RNI(X ) (Tan et al., 2006), the total num-
ber of solutions (when dealing with exact methods) (Visée et al., 1998), the generational distance
(Jozefowiez et al., 2007a; Knowles, 2002; Mateo and Alberto, 2012), the D2 metric (Ulungu et al.,
1999) and hyperarea metric (Collette and Siarry, 2003).
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Figure 2: Example of the S metric

Two of these metrics have been used to evaluate algorithms that attempt to solve the VRPRB
(Jozefowiez et al., 2009, 2007b), C metric and S metric. For that reason they seem to be a good
choice to evaluate the performance of the proposed algorithm. However straight comparison with
the results obtained in previous research was not possible since computing S metric requires
knowing the reference points, and the C metric requires the whole approximation of the Pareto
set. This information was not available. The S metric measures the area dominated by a set of
solutions, given a reference point, as Figure 2 shows. The reference points used for computing
the metric will be reported, to allow further comparison with other results. For every instance, the
worst value found for each objective function was the one selected to be used as reference point.
A set R has a better performance than a set X , if the S metric of the former one is greater.

Given two sets of solutions (R,X ), the C metric (Jozefowiez et al., 2009, 2007b; Knowles, 2002;
Mateo and Alberto, 2012) measures the ratio of solutions in X weakly dominated by solutions in
R. The metric is not symmetric, so both C(R,X ) and C(X ,R) should be computed. This metric
is not reliable if the cardinality of the sets is different. In addition it is not able to measure by how
much a set outperforms another one (Knowles, 2002). A set R has a better performance than a
set X , if C(R,X ) is closer to 1 and C(X ,R) is closer to 0.

4.3 Results

Results comparing GRASP-ASP and WSO-G are presented in Tables 1 and 2. In both cases,
the average, minimum and maximum values were computed from the results obtained in the ten
different runs. In Table 1, numbers are rounded to the nearest integer. Considering the S metric,
GRASP-ASP algorithm is able to find a better approximation of the Pareto set in 19 out of 20
instances. This is just if the average value is considered; if the maximum value is taken into
account, then GRASP-ASP manages to find in every instance at least one approximation of the
Pareto set with a better performance.

A comparison using the C metric is found in Table 2. In average, GRASP-ASP performs better
in all instances, however in the case of instance E021-04m, at least one of the sets found by
GRASP-ASP is not better than the one found by GUROBI.
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Table 1: S metric performance indicator

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E016-03m (476.26, 114.56) WSO-G 22 302 22 302 22 302
GRASP-ASP 22 314 21 771 22 418

E016-05m (499.29, 17.20) WSO-G 1 951 1 951 1 951
GRASP-ASP 1 885 1 147 1 977

E021-04m (743.59, 119.00) WSO-G 44 518 44 518 44 518
GRASP-ASP 44 712 44 558 44 852

E021-06m (737.50, 104.00) WSO-G 28 467 28 467 28 467
GRASP-ASP 28 900 28 494 29 148

E022-06m (1 004.30, 133.00) WSO-G 59 406 59 406 59 406
GRASP-ASP 62 736 60 512 63 483

E023-05S (1 469.51, 290.11) WSO-G 206 324 206 324 206 324
GRASP-ASP 218 625 217 432 219 412

E026-08m (935.02, 102.00) WSO-G 23 856 23 856 23 856
GRASP-ASP 27 884 26 005 28 528

E030-04S (1 716.44, 137.76) WSO-G 152 771 152 771 152 771
GRASP-ASP 157 430 157 128 157 690

E031-09h (1 102.78, 56.70) WSO-G 5 219 5 219 5 219
GRASP-ASP 21 292 19 740 22 617

E033-05s (1 766.32, 267.88) WSO-G 180 801 180 801 180 801
GRASP-ASP 206 117 196 722 207 823

E036-11h (1 181.39, 122.00) WSO-G 27 724 27 724 27 724
GRASP-ASP 51 198 48 311 52 361

E041-14h (1 404.02, 116.00) WSO-G 22 390 22 390 22 390
GRASP-ASP 47 957 42 612 51 911

E048-04y (167 771.00, 15 705.00) WSO-G 19.01×108 19.01×108 19.01×108

GRASP-ASP 19.83×108 19.78×108 19.87×108
E051-05e (1 495.14, 38.38) WSO-G 14 450 14 450 14 450

GRASP-ASP 36 581 36 444 36 788
E076-07s (3 318.56, 125.97) WSO-G 187 882 187 882 187 882

GRASP-ASP 325 757 324 379 327 001
E076-08s (2 365.50, 100.64) WSO-G 39 166 39 166 39 166

GRASP-ASP 154 780 151 516 157 341
E076-14u (2 156.79, 113.85) WSO-G 26 848 26 848 26 848

GRASP-ASP 66 179 54 537 69 366
E101-08e (1 698.22, 156.97) WSO-G 20 492 20 492 20 492

GRASP-ASP 123 763 120 693 126 331
E101-10c (1 539.17, 134.05) WSO-G 0 0 0

GRASP-ASP 75 345 72 143 79 956
E101-14s (2 518.35, 139.58) WSO-G 1 591 1 591 1 591

GRASP-ASP 151 681 144 664 155 792
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Table 2: C metric performance indicator

Instance Metric Average Min Max

E016-03m C(WSO-G, GRASP-ASP) 0.24 0.00 0.57
C(GRASP-ASP, WSO-G) 0.50 0.20 0.60

E016-05m C(WSO-G, GRASP-ASP) 0.10 0.00 0.33
C(GRASP-ASP, WSO-G) 0.34 0.20 0.40

E021-04m C(WSO-G, GRASP-ASP) 0.27 0.11 0.40
C(GRASP-ASP, WSO-G) 0.32 0.17 0.33

E021-06m C(WSO-G, GRASP-ASP) 0.15 0.10 0.26
C(GRASP-ASP, WSO-G) 0.27 0.14 0.43

E022-06m C(WSO-G, GRASP-ASP) 0.06 0.00 0.55
C(GRASP-ASP, WSO-G) 0.50 0.29 0.57

E023-05S C(WSO-G, GRASP-ASP) 0.08 0.00 0.09
C(GRASP-ASP, WSO-G) 0.11 0.00 0.25

E026-08m C(WSO-G, GRASP-ASP) 0.02 0.00 0.18
C(GRASP-ASP, WSO-G) 0.90 0.60 1.00

E030-04S C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 0.59 0.50 0.75

E031-09h C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E033-05s C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 0.89 0.86 1.00

E036-11h C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E041-14h C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E048-04y C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E051-05e C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E076-07s C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E076-08s C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E076-14u C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 0.95 0.50 1.00

E101-08e C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E101-10c C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00

E101-14s C(WSO-G, GRASP-ASP) 0.00 0.00 0.00
C(GRASP-ASP, WSO-G) 1.00 1.00 1.00
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Table 3: Summary of performance indicators

Instance S(GRASP-ASP) - S(WSO-G) C(GRASP-ASP, WSO-G) - C(WSO-G, GRASP-ASP)

E016-03m 12 0.26
E016-05m -66 0.24
E021-04m 193 0.05
E021-06m 433 0.12
E022-06m 3 329 0.44
E023-05S 12 301 0.03
E026-08m 4 028 0.88
E030-04S 4 659 0.59
E031-09h 16 073 1.00
E033-05S 25 316 0.89
E036-11h 23 474 1.00
E041-14h 25 567 1.00
E048-04y 82 730 000 1.00
E051-05e 22 131 1.00
E076-07s 137 875 1.00
E076-08s 115 615 1.00
E076-14u 39 331 0.95
E101-08e 103 271 1.00
E101-10c 75 345 1.00
E101-14s 150 090 1.00

As an illustration, a summary of the performance indicators is presented in Table 3. The difference
between the average S(GRASP-ASP) and the average S(WSO-G) corresponds to column 2, where
a positive value shows and average better performance of GRASP-ASP in the tests. Column
3 shows the difference between C(GRASP-ASP, WSO-G) and C(WSO-G, GRASP-ASP). Positive
values, specially values closer to one indicates an average better performance of GRASP-ASP in
the tests.

Figure 3 shows a comparison between PSapr(WSO-G) and PSapr(GRASP-ASP). Solutions gen-
erated by GRASP-ASP can be located in the concavities of the approximation of the Pareto set.
On the other hand the WSO cannot find solutions in concavities (Collette and Siarry, 2003), which
gives an advantage to GRASP-ASP.

For the instance E101-10c, WSO-G was able to find just two solutions with a very low performance.
That explain why the S metric is equal to zero, as it can be seen in Table 1.

4.4 Comparison with an evolutionary algorithm

An additional comparison is done. An evolutionary algorithm (EA) proposed for the VRPRB (Joze-
fowiez et al., 2009) was implemented in C++. The original algorithm is presented as parallel,
however the implementation done for this testing is serial. The performance should not be af-
fected, since all the features and solutions exchange were included. In principle the only aspect
that should be affected by this change is the running time. 8 threads are used in the original ver-
sion of the algorithm, so the serial version should run 8 times slower. The parameters used for the
testings were the same as in the original version of the algorithm.

GRASP-ASP: An algorithm for the CVRP with route balancing

53



Figure 3: Example of results obtained by GRASP-ASP and WSO-G for instance E016-05m

Ten different runs of the evolutionary algorithm per instance were started. However limited time did
not admit all tests to complete. All obtained results are reported, Table 4 shows the comparison
between GRASP-ASP and EA. Table 5 shows the comparison regarding the the C metric. To make
a fair comparison, the final approximation of the Pareto set was reduced to 11 solutions. The
method used to do that was the average linking method (Morse, 1980), which is used in EA to
cluster sets of solutions.

A summary of the performance indicators is presented in Table 6. In three instances every indica-
tor shows in average a different result, but even though in average the S metric indicates that EA
performs better, it also shows that GRASP-ASP is able to find the set of solutions with the best per-
formance, as reported in Table 4. In four of the instances GRASP-ASP has a better performance,
in average. In eleven instances, EA has a better performance in average, but GRASP-ASP is able
to find a set of solutions with the best performance for one them.

The average total running time, as well as the number of tests completed by instance (in parenthe-
sis), are reported in Table 7. There is a clear difference in the running time of GRASP-ASP and
EA. For example, average running times for instance E016-03m were 251 and 101 756 seconds
for GRASP-ASP and EA respectively. The difference becomes bigger with the instance size, for
the instance E076-14u the running times are 5 381 and 1 041 506 seconds.
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Table 4: S metric performance indicator for GRASP-ASP and EA

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E016-03m ( 395,36 , 46,53 ) EA 5 224 5 224 5 228
GRASP-ASP 5 127 4 589 5 229

E016-05m ( 421,72 , 17,20 ) EA 776 776 776
GRASP-ASP 747 277 835

E021-04m ( 590,07 , 68,62 ) EA 14 964 14 937 15 002
GRASP-ASP 14 886 14 754 14 987

E021-06m ( 655,09 , 70,22 ) EA 13 337 13 337 13 337
GRASP-ASP 13 148 13 059 13 240

E022-06m ( 785,06 , 92,66 ) EA 22 417 22 274 22 495
GRASP-ASP 22 493 20 421 23 031

E023-05S ( 1270,71 , 290,11 ) EA 157 295 154 102 158 728
GRASP-ASP 161 419 160 383 161 908

E026-08m ( 935,02 , 72,22 ) EA 18 563 18 453 18 608
GRASP-ASP 18 134 16 255 18 778

E030-04S ( 1080,00 , 137,76 ) EA 68 077 67 912 68 242
GRASP-ASP 69 771 69 462 70 042

E031-09h ( 993,74 , 56,70 ) EA 17 938 17 702 18 287
GRASP-ASP 15 878 14 325 16 743

E033-05S ( 1337,07 , 266,66 ) EA 89 401 88 660 89 936
GRASP-ASP 90 549 81 166 92 236

E036-11h ( 1181,37 , 66,52 ) EA 27 730 27 583 27 826
GRASP-ASP 24 656 21 871 25 681

E041-14h ( 1404,02 , 75,70 ) EA 35 067 34 639 35 431
GRASP-ASP 27 079 21 774 30 401

E048-04y ( 90826,00 , 15672,10 ) EA 7.77×108 7.76×108 7.77×108
GRASP-ASP 7.74×108 7.68×108 7.77×108

E051-05e ( 1033,23 , 21,52 ) EA 10 379 10 344 10 417
GRASP-ASP 10 334 10 218 10 552

E076-07s ( 1594,61 , 123,96 ) EA 109 963 109 153 110 772
GRASP-ASP 107 004 105 546 108 217

E076-08s ( 1526,72 , 100,64 ) EA 77 401 77 051 77 852
GRASP-ASP 70 484 67 221 73 059

E076-14u ( 2156,79 , 113,85 ) EA 121 713 121 288 122 138
GRASP-ASP 66 179 54 537 69 366

E101-08e ( 1698,22 , 104,47 ) EA 88 710 88 710 88 710
GRASP-ASP 78 383 75 712 81 023
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Table 5: C metric performance indicator for GRASP-ASP and EA

Instance Metric Average Min Max

E016-03m C(EA, GRASP-ASP) 0.52 0.14 0.86
C(GRASP-ASP, EA) 0.60 0.14 0.71

E016-05m C(EA, GRASP-ASP) 0.76 0.67 1.00
C(GRASP-ASP, EA) 0.80 0.13 1.00

E021-04m C(EA, GRASP-ASP) 0.64 0.44 1.00
C(GRASP-ASP, EA) 0.47 0.27 0.82

E021-06m C(EA, GRASP-ASP) 0.86 0.70 1.00
C(GRASP-ASP, EA) 0.58 0.45 0.64

E022-06m C(EA, GRASP-ASP) 0.21 0.09 0.64
C(GRASP-ASP, EA) 0.42 0.09 0.73

E023-05S C(EA, GRASP-ASP) 0.05 0.00 0.27
C(GRASP-ASP, EA) 0.20 0.09 0.40

E026-08m C(EA, GRASP-ASP) 0.36 0.18 0.82
C(GRASP-ASP, EA) 0.73 0.36 0.91

E030-04S C(EA, GRASP-ASP) 0.11 0.09 0.18
C(GRASP-ASP, EA) 0.49 0.27 0.73

E031-09h C(EA, GRASP-ASP) 0.54 0.18 1.00
C(GRASP-ASP, EA) 0.03 0.00 0.09

E033-05S C(EA, GRASP-ASP) 0.15 0.09 0.36
C(GRASP-ASP, EA) 0.22 0.09 0.36

E036-11h C(EA, GRASP-ASP) 0.53 0.18 0.73
C(GRASP-ASP, EA) 0.02 0.00 0.09

E041-14h C(EA, GRASP-ASP) 0.92 0.73 1.00
C(GRASP-ASP, EA) 0.00 0.00 0.00

E048-04y C(EA, GRASP-ASP) 0.38 0.09 0.64
C(GRASP-ASP, EA) 0.19 0.00 0.45

E051-05e C(EA, GRASP-ASP) 0.29 0.09 0.55
C(GRASP-ASP, EA) 0.28 0.00 0.55

E076-07s C(EA, GRASP-ASP) 0.74 0.45 1.00
C(GRASP-ASP, EA) 0.07 0.00 0.18

E076-08s C(EA, GRASP-ASP) 0.93 0.89 1.00
C(GRASP-ASP, EA) 0.02 0.00 0.09

E076-14u C(EA, GRASP-ASP) 0.99 0.89 1.00
C(GRASP-ASP, EA) 0.00 0.00 0.00

E101-08e C(EA, GRASP-ASP) 0.84 0.64 0.91
C(GRASP-ASP, EA) 0.00 0.00 0.00
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Table 6: Summary of performance indicators for GRASP-ASP and EA

Instance S(GRASP-ASP) - S(EA) C(GRASP-ASP, EA) - C(EA, GRASP-ASP)

E016-03m -97 0.08
E016-05m -29 0.05
E021-04m -78 -0.17
E021-06m -189 -0.27
E022-06m 76 0.21
E023-05S 4 124 0.15
E026-08m -429 0.37
E030-04S 1 694 0.38
E031-09h -2 060 -0.50
E033-05S 1 148 0.07
E036-11h -3 074 -0.52
E041-14h -7 988 -0.92
E048-04y -7 322 000 -0.19
E051-05e -45 -0.01
E076-07s -2 959 -0.66
E076-08s -6 917 -0.91
E076-14u -55 534 -0.99
E101-08e -10 327 -0.84

Table 7: Average running time (in seconds)

Instance WSO-G GRASP-ASP EA (average time and number of tests)

E016-03m 11 729 251 101 756 (10)
E016-05m 14 373 295 112 648 (8)
E021-04m 118 800 381 152 411 (10)
E021-06m 118 801 391 162 731 (2)
E022-06m 118 801 855 235 828 (6)
E023-05S 89 360 546 411 502 (7)
E026-08m 118 801 1 569 217 385 (7)
E030-04S 118 801 653 744 485 (2)
E031-09h 118 801 2 420 369 201 (4)
E033-05s 118 802 2 121 842 680 (4)
E036-11h 118 803 2 638 428 237 (3)
E041-14h 118 802 2 999 500 168 (5)
E048-04y 118 802 1 987 896 509 (4)
E051-05e 118 802 2 335 570 281 (5)
E076-07s 119 008 4 026 1 142 078 (2)
E076-08s 118 813 4 201 909 250 (3)
E076-14u 10 800 5 381 1 041 506 (2)
E101-08e 119 002 5 043 1 859 921 (1)
E101-10c 118 908 7 081 -
E101-14s 118 908 3 283 -
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5 Conclusions and further research

A new bi-objective optimization algorithm was proposed and tested. Compared to a fairly simple,
but reasonable solution method (WSO-G), the GRASP-ASP results are clearly superior, measured
by S and C metrics. In general, GRASP-ASP is able to find a set PSapr that performs better than
the set PSapr(WSO-G) found by WSO-G, even for instances where WSO-G finds solutions within
0.01% MIP gap. The running time, in Table 7, is much lower than the time used by WSO-G.

The weighted sum of objective function method does not find non-supported efficient solutions i.e.
solutions located in concavities of the Pareto set (Visée et al., 1998). In GRASP-ASP no weights
are assigned to the objective functions in the MOP, which means that solutions in concavities (non
supported) may be eventually found. This can partially explain the fact that the set PSapr(GRASP-
ASP) has a better performance than the set PSapr(WSO-G). An additional aspect to consider is
that the mixed integer programming (MIP) optimality gap is set equal to 0.01%, which may also
explain how GRASP-ASP is able to find a better set of solutions then WSO-G. With a tighter MIP
gap, GUROBI often does not terminate.

The fact that the GRASP-ASP procedure is repeated using the updated PSpro, seems to have a
positive impact in the quality of the final potentially Pareto set. Here it might have some similarities
with evolutionary algorithms, but GRASP-ASP involves less randomness in the process of building
the new solutions. Perhaps this can have some connection with the fact that GRASP-ASP is
able to find better/similar solutions for some instances using a much shorter running time than an
evolutionary algorithm for the VRPRB.

Given the promising results in this paper, a possible direction for further research could be to apply
GRASP-ASP to other bi-objective problems, perhaps general multi-objective problems. Another
option could be to apply it in an stochastic extension of VRPRB. Even more elaborated methods of
clustering could be implemented for reducing/selecting the set of solutions, since the quality of the
resulting potentially Pareto solutions may be affected.
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Abstract

Building on the work of Gendreau, Laporte, and Seguin (1996), we review the past 20 years
of scientific literature on stochastic vehicle routing problems (SVRP). The numerous variants
of the problem that have been studied in the literature are described and categorized. Also a
thorough review of solution methods applied to the SVRP is included as an Appendix.

Keywords: Stochastic Vehicle Routing Problem (SVRP), Survey, Solution methods for SVRPs

1 Introduction

Vehicle routing problems concern the challenge of selecting a set of routes for a fleet of vehicles
to serve the demands of a set of customers. Almost invariably, the vehicles have limitations on
the amount of goods they can carry, and the primary goal of the decision maker (DM) is most
often to minimize the total transportation cost. It thus makes sense to use the formulation of the
(deterministic) capacitated vehicle routing problem (CVRP) as a point of departure for this review
of the literature for stochastic variants.

The CVRP is defined over an undirected graph G(V,E), where V = v0, . . . , vN is a set of vertices
and E = (vi, vj) : vi, vj ∈ V, i < j is a set of edges. There is a symmetric matrix C = [cij ] that
correspond to the travel costs along edge (vi, vj). Vertex v0 represents the depot where there
is a homogeneous fleet of m vehicles with capacity Q. A set of customers V \ v0 with a non-
negative known demand di must be served. A solution to the CVRP consists of m delivery routes
starting and ending at the depot. Each customer must be visited once by exactly one vehicle. The
summation of the demands of the customers in the same route, must be less than or equal to
the vehicle’s capacity. A different approach where the demand corresponds to items that must be
collected from the customers leads to an equivalent problem. The classic objective is minimization
of total route cost (see, e.g., Toth and Vigo, 2002) but some formulations minimize total route
length, total travel time or total cost.

In the real world one or more of the elements of the CVRP are uncertain. In order to model this,
one typically allows some parameters in the general formulation to be represented as stochastic.
When stochastic data are included into the problem, we have a stochastic (capacitated) vehicle
routing problem (SVRP or SCVRP). Gendreau et al. (2014) provide a tutorial with a synthesis of
some recent literature. A thorough review of the early literature on the SVRP, including a concise
description of relevant solution concepts is found in Gendreau et al. (1996a). We provide a brief
recap of some details here before launching into a thorough review of papers since then.
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Although demand, the presence of customers, travel times, and service times are sometimes mod-
eled as stochastic (Gendreau et al., 1996a; Tan et al., 2007), the most studied version of SVRP is
the capacitated vehicle routing problem with stochastic demand (CVRPSD) Cordeau et al. (2007).
This is a feature of many real life problems (see, e.g., Yang et al., 2000).

There is a striking difference between deterministic and stochastic VRP formulations: For all SVRP
variants, the DM must decide the solution (at least partially) before the exact values of all param-
eters are completely known. In some situations, constraints may be violated when the actual pa-
rameter values are realized, e.g. the total realized demand of a planned route may actually exceed
the vehicle’s capacity. One can say that the solution (or the route) “fails” when it is exercised with
the realized data. In a deterministic problem the DM has complete information when making the
plans, so there is no similar concept of a solution “failing”. There are two common ways of model-
ing stochastic problems: as a chance constrained program (CCP) or as a stochastic program with
recourse (SPR).

In the case of CCP, the problem is solved ensuring that the probability of route failure is below a
certain level and the cost of failures is typically ignored (Gendreau et al., 1996a; Tan et al., 2007).
Although chance constrained problems can be formulated with an expected value objective, in the
SVRP literature, the objective is typically deterministic. Consider a very abstract formulation where
the objective function is f(x) for a decision vector x and constraints are summarized by a set X .
We can then write a chance constrained program as:

min
x

f(x) subject to Prob(x ∈ X ) ≥ 1− α

where the DM provides a parameter value α giving the acceptable probability of failing to meet the
constraints. Of course, in less abstract formulations, the specific constraints that are subject to
failure are specified.

On the other hand, in SPR, one allows route failures, but the DM must define a recourse policy,
describing what actions to take in order to repair the solution after a failure. The expected trans-
portation cost (travel cost + recourse policies cost) is optimized. SPR is more difficult to solve, but
objectives are more meaningful (Gendreau et al., 1996a).

The recourse policy is a modeling choice leading to different variants of an SVRP formulation.
For the CVRPSD, three common recourse policies are (Tan et al., 2007; Secomandi and Margot,
2009):

• The vehicle returns to depot to restock when capacity is attained or exceeded. Service
resumes at the customer where route failure occurred. This is known as detour to depot
(DTD).

• A preventive restocking can be done before a route failure occurs. Obviously, it may be less
costly to travel to the depot to restock from the actual location than waiting for a route failure
at a location further from the depot.

• After failure or after each customer is served and its demand becomes known, the portion of a
route that has not been served is re-optimized. A decision is taken regarding which customer
must be visited next, either as part of the regular routing or on the way to replenishment at
the depot.
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In other SVRP formulations the recourse policy does not involve routing decisions (as above), but
a penalty for late/early arrivals or the extra time cost of the driver can be part of the expected cost
when time windows and/or stochastic service time are taken into consideration (see, e.g., Li et al.,
2010; Taş et al., 2013).

In the presence of stochastic data, any function of the data, such as a classic total cost objective
function, will be a random variable, so some choice must be made to form a well-posed objective
function. Most of the problems found in the SVRP literature can be cast as two-stage stochastic
programming problems that minimize expected value. An abstract formulation (Birge and Lou-
veaux, 1997) is as follows:

min
x

f(x) + E[Q(x, ξ)] subject to x ∈ X

where Q(x, ξ) is the optimal value of the second-stage problem

min
y

q(y;x, ξ) subject to y ∈ Y(x, ξ)

Here x represents the first stage decisions that must be taken initially, before all information is avail-
able. In most formulations these are routing decisions. The function f(·) evaluates the objective
function for the first stage portion of the decisions. The random variables that make the problem
stochastic are represented by ξ. These may be pickup quantities or travel times, etc. In general,
ξ and its realizations ξ are vector-valued. The second stage, or recourse, decisions are repre-
sented by y, which is evaluated using the function q(·) that can be parameterized by x and ξ. For
some problems, this is simply a calculation of cost but in other cases a significant minimization is
required. In most of the literature ξ is discrete, so the expectation is computed using a sum.

In this abstract formulation we have summarized constraints using the sets X and Y. Most of the
formulations in the literature are constructed so that there is relatively complete recourse (Kall and
Wallace, 1994), which in this formulation means that Y(x, ξ) is non-empty for every x ∈ X and
every ξ with non-zero probability.

A focus of two-stage formulations is the need to compute the first stage decisions, x, with the
second stage decisions y used to compute, or estimate, an appropriate second stage expected
cost. However, we note that a few papers in the literature seek methods for finding a good policy
(dynamic programming approaches) or to provide an algorithm for routing vehicles dynamically
(rollout algorithms) in addition to a good first stage decision.

One should note that SVRP papers usually come in one of two standard forms. On one hand
there are researchers who are mainly interested in the modeling of SVRPs. They will need to for-
mulate precise mathematical models describing what is understood by a solution x, and algebraic
expressions for objective functions and constraints. On the other hand, we see researchers who
are most interested in algorithmic issues. In an “algorithmic” paper, the model formulation is often
not given algebraically. While input parameters are usually defined, there is often no mathematical
formulations of either objectives or constraints, and a “solution” can be defined as “a set of routes”
without further precision.

Evaluating the quality (i.e. the objective value) of a solution to a SVRP is not straight forward.
Several approaches have been used to tackle this issue. In some cases a simulation is per-
formed to generate a large number of possible realizations (scenarios), and then the solution is
evaluated on each realization, getting an estimation of the quality (see, e.g., Juan et al., 2011).

The stochastic vehicle routing problem, a literature review

65



The quality of the solution is sometimes possible to calculate analytically, given certain character-
istics of the problem (see, e.g., Laporte et al., 2010). A dynamic programming recursion can be
also used for evaluating solutions (see, e.g., Yang et al., 2000).

This survey proceeds in Section 2 with an overview of problem types found in the SVRP literature.
In Appendix A we summarize the various solution methods applied for solving SVRP variants.
Tables summarizing the literature are presented in Section 3. The paper closes with some conclu-
sions and connections with related literature.

2 Types of problems

The stochasticity can be incorporated in the problem through different aspects and, typically, one
or two elements are considered as stochastic. This limitation is likely due to the difficulty of solving
a problem where many different parameters are stochastic. A summary of the different problems
that have been studied is presented here.

2.1 The CVRP with stochastic demand - CVRPSD

In this version of the SVRP, the customer demands are stochastic and become known only after
the routes have been established. The problem is usually modeled as a two-stage SPR.

A study of the basic CVRPSD is found in Laporte et al. (2002) where an SPR formulation is used
with recourse action DTD. Two types of demand distributions are considered theoretically, Poisson
and normal. Computational tests are done for both cases. The same problem is found in Jabali
et al. (2014) where theoretically the demands are treated as independent and identically distributed
(IID), however, tests are done using a normal distribution truncated at zero.

In the multi-compartment VRP with stochastic demands (Mendoza et al., 2010, 2011), each cus-
tomer has a stochastic demand for different products, which follows a known probability distribu-
tion. Such products need to be transported in independent compartments in the vehicles. The
recourse action is to travel to the depot once the capacity of any of the compartments in the ve-
hicle is reached. Although the problem does not assume a particular probability distribution for
the demand, computational tests were performed on instances with demands following a normal
probability distribution.

A more recent paper by Goodson (2015) deals with a similar problem, where each route is subject
to a route duration limit L. A method for computing the expected cost of the solutions is proposed,
however it works only with discrete distributions. Due to this restriction a different method was used
in (Mendoza et al., 2010, 2011), since results available for comparison were obtained assuming
demands with normal distribution.

The stochastic CVRP with restocking (Yang et al., 2000; Marinakis et al., 2013) gives the option
after each visit to choose between visiting the next customer in the route or traveling back to the de-
pot to restock, even if the vehicle capacity has not been reached. This problem was formulated as
a SPR in Yang et al. (2000) where the recourse action was to travel to the depot and restock, con-
tinuing with the planned route afterwards. The demand was assumed to be discrete, test instances
were generated using a discrete triangular distribution. In Secomandi (2003) the single vehicle
CVRPSD is studied in two versions, allowing restocking and with no restocking. In both cases the
demand is assumed to be discrete, having instances with uniform discrete distribution.
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A policy-based solution approach was taken in Marinakis et al. (2013). In this work, route failures
are not permitted, assuming that these can be avoided by selecting a threshold value, such that
when the residual load in a vehicle is less than or equal to the threshold, the vehicle should go to
the depot for preventive restocking. This will only work under bounding conditions on the probability
distributions. The only additional assumption regarding the probability distribution of the demands
is that they are known and independent. For the computational tests, the demands follow discrete
uniform probability distributions.

A different approach to handling the dynamics uses re-optimization; after visiting a customer the
driver decides which customer to visit next, either directly or after replenishing at the depot. The
decision is taken on basis of the available capacity and the expected demand of the unvisited cus-
tomers. This problem was studied for the particular case of a single vehicle (Secomandi, 2000,
2001; Secomandi and Margot, 2009), where the probability distributions of the demands are dis-
crete and independent (discrete uniform in one of the cases Secomandi (2000)). The problem
was modeled as SPR, the recourse action is DTD. The computational tests are performed over
instances with demands following discrete uniform probability distributions.

The single vehicle case of the CVRPSD has also been studied using a regular recourse action DTD,
involving two different types of stockout Hjorring and Holt (1999). A normal stockout, means the
vehicle does not have enough goods to serve a customer. After restocking at the depot, the route
is resumed starting with the customer where the failure occurred. An exact stockout means the
vehicle have just enough goods to satisfy the demand of a particular customer. After restocking it
will resume the trip at the next customer in the route. The proposed approach may apply for several
probability distributions, but tests are performed using a discrete distribution. The same problem
was studied following a different approach Rei et al. (2010), where the demands are considered to
have a known probability distribution. The testing was performed on instances with demands that
follow normal probability distributions. Another version of the single vehicle case, where demands
are a normal random variable truncated at zero, was also studied Rei et al. (2007). In the latter
case, if a failure occurs, then partial delivery is performed and the vehicle returns to the depot to
restore capacity. In the cases where demands follow a continuous probability distribution, exact
stockouts are not considered.

An interesting variant of the single vehicle CVRPSD allows preventive restocking (Bianchi et al.,
2005). In this case, the vehicle can travel to depot before the next customer in the route to restock,
even if a route failure has not occurred. The demands are modeled as random variables with inte-
ger uniform distribution. Two ways of evaluating the objective function are considered, a dynamic
programming recursion (Yang et al., 2000) and an approximation with the length of the a priori tour,
without considering the stockout cost and the preventive restocking cost.

Another variant of the single vehicle CVRPSD was modeled considering that after a failure, no ac-
tion is taken, and unserved customers will not be serviced (Chepuri and Homem-de Mello, 2005).
A penalty must be paid to the customer where the failure occurs and to the other unserved cus-
tomers in the route, since the vehicle will not resume the route. The authors claim that this is the
situation in several industries, where failures may result in lost revenue or emergency deliveries.
They were motivated by a liquid air distributor. Demands are considered to follow a gamma dis-
tribution. The methods can exploit the special situation where the parameters of the probability
distribution are the same for all customers.

Another problem that has been studied is the combination of routing plus clustering (designing
delivery districts) (Haugland et al., 2007). In this case the solution to the problem will have m
contiguous districts, where all customers in the same district are assigned to the same route. The
clustering process is in the first stage; i.e., it is done before the demands are realized. Tests
were conducted using data where it was assumed that each customer will order a known minimum
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demand di plus a stochastic amount which follows a binomial probability distribution. The decision
regarding the order in which the customers must be visited in each cluster are taken after the
demands become known. However, during the construction of the districts, a restriction for the
expected tour length within each district is imposed, otherwise the solution will be a single district.
The problem is modeled as SPR. The recourse action is to plan the routing in each district with as
many subtours as needed so as to ensure that the total demand on every subtour is less than or
equal to the vehicle capacity and the routing cost is minimized.

The basic CVRPSD was extended to include time windows in (Lei et al., 2011). The problem is
modeled as an SPR, and two types of failure are considered, the vehicle capacity and the time
windows. When there is a violation of the time window for a particular customer, it must be served
by an additional single trip, which generates an extra cost. In addition, the vehicle must travel to
the depot for restoring capacity whenever it is exceeded. No specific assumption regarding the
demand distribution is made and the analysis of the expected cost of the solutions is done for
both continuous and discrete cases. For computational testing, demands are generated following
Poisson distributions.

Another extension of the CVRPSD can be found in Erera et al. (2010), where each tour duration
must be feasible for all demand realizations. The problem, named the vehicle routing problem
with stochastic demands and duration constraints (VRPSD-DC), it is modeled as an SPR. The
non-splittable detour-to-depot recourse is used i.e. if the demand of customer i is greater than
the remaining capacity, the vehicle must travel first to the depot to restock capacity before serving
customer i. The demands are assumed to follow a discrete uniform probability distribution. Two
alternatives are consider to handle the exact stockouts, either to travel back to the depot and
restock capacity or to identify the stockout just after arriving to the next customer. The objective
function of the VRPSD-DC is to minimize the sum of the a priori total travel time, the expected
additional travel time due to recourse actions and a penalty term for using more than m vehicles
(in case they are required).

A new recourse strategy for the CVRPSD was proposed in Ak and Erera (2007) called the “pair
locally coordinated” (PLC) operating scheme and it is presented as extension of the DTD. The
demands are assumed to follow discrete, independent and identical probability distributions. The
idea behind PLC is that some (not necessarily all) routes are matched together to create a route
pair and routes are in at most one route pair. If a vehicle exceeds its capacity, its partner adds
any unserved customer to the end of its route, which operates using the DTD scheme. One of
the routes in the pair is labeled “type I route” and the other is “type II”. Routes not in pairs, are
also type II. A failure will occur when visiting a customer, if adding its demand, the capacity of the
vehicle would be exceeded. Demand cannot be split, so if the capacity is exceeded, the demand is
collected after the recourse action: If a vehicle is serving a type I route, once a failure occurs, the
vehicle returns to depot and the unserved customers are added to end of the planned route of the
vehicle serving its type II route pair. If the vehicle serving a type II route experiences a failure, then
it returns to the depot to unload, and then resumes the the route in the first unserved customer of
its route. Paired vehicles serving type II routes should wait at the final customer of their route, until
the vehicle serving their paired type I route is traveling to the depot. The testing was performed
on instances with demands that follows a discrete probability distribution that is the same for all
customers.

The concept of PLC (Ak and Erera, 2007) was also used in Zhu et al. (2014) as part of a paired
cooperative reoptimization (PCR) for the CVRPSD. This strategy is proposed to be used for a pair of
vehicles. The demand is assumed to follow a uniform discrete probability distribution. The problem
is modeled as a SPR with DTD as recourse action, in addition partial reoptimization of routes is
applied as described in Secomandi and Margot (2009). The two vehicles can communicate and
dynamically modify their routes. The information about locations, residual capacities and unvisited
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customers is available to both vehicles. The model considers three assumptions: the service time
is ignored, vehicles travel at the same speed and do not have idle time. Even though the strategy
is proposed for a pair of vehicles, the authors briefly mention that the multivehicle case is solved
by clustering the customers into groups and serving every group by a pair of vehicles.

The CVRPSD was formulated as a set partitioning problem and the associated column generation
subproblem is solved using a dynamic programming scheme in Christiansen and Lysgaard (2007).
In principle the demands can follow any probability distribution with accumulative property (the
sum of two or more independent variables follows the same distribution). However, the tests were
performed on instances with Poisson demands. The recourse action for the vehicle is to return
to depot when a customer’s demand is greater than the residual capacity. If the vehicle becomes
exactly depleted, it will not go to depot. It continues the route until a customer with positive demand
is found, then it goes to the depot to restock.

The same problem was later studied in Goodson et al. (2012), where after generating a set of
routes, a set partitioning problem is solved. In that way the best solution that can be constructed
using a subset of the routes is found. The problem is also modeled as an SPR and uses DTD as
recourse action.

Mendoza and Villegas (2013) worked with the same type of problem with an unlimited fleet of
vehicles with capacity Q. The demand follows a known probability distribution, in the tests Poisson
is used. The problem is formulated as an SPR and the recourse action is DTD.

The same problem and formulation as in Christiansen and Lysgaard (2007) was recently consid-
ered in Gauvin et al. (2014), where the CVRPSD was also formulated as an SPR. The recourse
action is DTD, with the particular feature that in case of exact stockout, the vehicle returns to the
customer where the failure occurred, after restoring capacity at the depot. The demand is assumed
to follow a Poisson distribution.

A different approach that includes a limit on the duration of the routes in the CVRPSD was pre-
sented in Mendoza et al. (2015). The problem is modeled as a CCP and as an SPR. In the first
case, the probability of the total duration of a route being greater than the maximum duration must
be lower than a given threshold. In the second case, the violations to the maximum duration are
included as a penalty in the objective function (expected cost of overtime). The objective is to
minimize the total expected duration of routes.

The CVRPSD was studied using a different approach in Sungur et al. (2008), as the robust vehi-
cle routing problem (RVRP). A solution that is feasible for all demands that belong to a bounded
uncertainty set is said to be robust. Constraints that depend on the uncertainty set replace the
connectivity and capacity constraints in the original model. The solution for the RVRP is a route
that optimizes the objective function when all uncertain parameters are assumed to have the worst
case value. The resulting problem is reported to be not significantly more difficult than solving
the deterministic counterpart. It is assumed that the bounded uncertainty set captures all uncer-
tainty of interest and the a priori route is feasible for every demand realization within the bounded
uncertainty set, so no recourse actions or costs are considered.

Another robust approach can be found in Lee et al. (2012), where the robust CVRP with deadlines
and travel time/demand uncertainty is studied. In this version of the problem, there is a deadline
assigned to to every customer i. This can be seen as a specific case of time windows, where the
earliest starting time is equal to zero. The objective is to minimize the total distance, which is deter-
ministic since there is no uncertainty associated to the distances. The stochastic parameters are
the travel time (which may include the service time) and the demand. There are no recourse action
in case of failures, since the robustness of a solution is evaluated as the percentage of scenarios
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(from a set) in which the solution is feasible. This has some similarity with a CCP. Scenarios are
generated assuming that demands follow a normal distribution and travel times follow a distribu-
tion based on truncated normal. Such scenarios are used just to evaluate and compare the the
robustness of found solutions. During the search a uniform distribution is assumed.

A more recent version of the robust CVRPSD can be found in Gounaris et al. (2013). The proba-
bility distribution of the demands is unknown. However, it is assumed that all possible realizations
of the demands are known (support). Several deterministic formulations of the CVRP are reformu-
lated into robust CVRP: Two-index vehicle flow (Laporte et al., 1985), Miller-Tucker-Zemlin (MTZ)
(Kulkarni and Bhave, 1985), precedence formulation obtained from MTZ (Gounaris et al., 2013),
commodity flow (Gouveia, 1995) and vehicle assignment formulation (Golden et al., 1977). Two
demand supports are considered, budget and factor support. In the budget support, the customers
are partitioned in four geographic areas. Customers demands can deviate from their nominal val-
ues at most α%, but the cumulative demand in each area can not exceed the nominal value by
more than β%. In the factor model support, the demand of a customer depends on the nominal
value and an additive disturbance that depend on several independent factors, for the tests, it is
a measure of the relative proximity of the customer to the geographical areas. As in the budget
support, the cumulative demand in each area can not exceed the nominal value by more than
β%.

2.2 The capacitated arc routing problem with stochastic demand - CARPSD

The CARPSD was introduced by Fleury et al. (2002), the problem was presented as the stochastic
capacitated arc routing problem (SCARP). The problem is defined on an undirected graph, where
a set of edges (not necessarily all the edges in the graph) have a nonnegative stochastic demand
of items that must be collected and a set of vehicles with identical limited capacity is based at
the depot. The problem is modeled as SPR, if total demand of a route is greater than the vehicle
capacity, a trip to the depot has to be performed. The objective of SCARP is to find a solution
for which the variations due to the random event realizations in the number of trips (and the cost)
are minimum. The problem is not solved directly, instead a deterministic model is used to find
solutions that are subjected to a sensitivity study by computing estimators of the average total
cost and the standard deviation of the total cost. These computations are done by generating
different scenarios. Demands of edges that require service are assumed to follow a truncated
normal distribution, in a way that demands are greater than zero and less than or equal to the
vehicle capacity. A similar problem and models are presented in Fleury et al. (2005b). The SCARP
was also studied in Fleury et al. (2004), where a few additional assumptions are considered: the
average demand of an edge is small, compared to the vehicle capacity. A trip can not be interrupted
more than once. In a robust solution, route failures are not common, if they occur it is more likely
to happen just before the last edge to be served. Demands are also assumed to follow a truncated
normal distribution.

The same problem was studied in Fleury et al. (2005a). Some theoretical analysis is done on the
problem and five variants are considered: the minimization of the average cost, C, of solution to
the stochastic problem, minimization of C with bounds on the number of vehicles, minimizing C
plus a fixed constant multiplied by the standard deviation of C, minimizing C plus a fixed constant
multiplied by the standard deviation of C, minimizing C under the condition that its standard devia-
tion be less than a fixed value,and minimizing C under the conditions that the probability of having
a route failure is less than a fixed value, for every route.

In the capacitated arc routing problem with stochastic demands (Laporte et al., 2010) there is a
subset of edges with a non-negative demand of items that must be collected, a depot with a set
of trucks and a vertex (dump site) that may or may not be different from the depot. The edge
demands follow a known probability distribution, it can be either discrete or continuous and it is
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distributed uniformly along the edge. The edges can be traversed any number of times, but must
be served just once. The recourse action is to travel to the dump site when the capacity of any
vehicle is reached and resume its route at the point of failure. Just one failure is allowed per route.
Test instances are generated using demands that follow Poisson distributions.

A similar problem was studied in Christiansen et al. (2009), but in this case the demands on the
edges are assumed to have a Poisson probability distribution. This implies that if the edge is divided
in a number of segments, the demand on each segment will also have a Poisson distribution. The
computation of an approximate expected number of failures, consider a range of segments from
one to a sufficiently large integer number. The routes start and end at the depot. A failure occurs
when the actual accumulated demand exceeds the capacity of the vehicle. It is assumed that the
total demand is revealed gradually along the edge and in case of failure the vehicle returns to depot
using the end point of the edge that gives it a shorter distance to the depot. Several failures are
allowed per route.

2.3 The CVRP with stochastic customers (and demand) - CVRPSCD

The customers’ presence has also been modeled as stochastic in several variants. The most
interesting formulations are as SPR, where the routing is done for a given set of possible customers
(stage 1), and then the presence is revealed, meaning that some customers in the original set have
demand 0, and do not need a visit. The recourse action is to modify routes (stage 2). The demand
at the present customers can be deterministic, but even more interesting are the formulations
where demands are also stochastic, giving the CVRPSCD problem class. Pioneering work on such
problems is discussed in Gendreau et al. (1996a), where the CVRPSCD problem is described as
“exceedingly difficult”.

A further extension of the problem based on a case study, was solved as a dynamic and stochastic
problem in Hvattum et al. (2006). It is the case of a distribution company, where the customers can
call at any time of the day, in addition there is a stochastic demand associated with the customers.
Some of the calls are received before the vehicles are dispatched. The problem was modeled as
an SPR, where the recourse action is using new vehicles and/or rearranging the customers already
planned in a route. This problem does not have relatively complete recourse since feasibility in the
first stage, does not imply feasibility on the second stage due to the customers’ time windows. The
number of customers that appear at each time interval follows a Poisson probability distribution.
Every demand already registered in the historical database is assigned an equal probability of
reappearing as the demand associated with a new customer.

Another problem dealing with package delivery was presented in Zhong et al. (2007) where strate-
gic and operational (daily) routes are created. Customer requests and locations are not known
with certainty when designing the strategic routes. However this information is revealed before
vehicles are routed for every operational route. The learning curve (and forgetting curve) of the
drivers regarding the different areas is taken into consideration and the time used to serve a set of
customers varies from driver to driver. Because of that, the operational routes are designed so that
day-to-day variations are minimized. Even though there are no constraints regarding the capacity,
there is a time constraint: the vehicle must return to depot within the driver’s work shift. Customers
are grouped into cells, which are each served by a single driver. Some cells are grouped into
core areas that are assigned to the same driver every day. The rest of the cells are not assigned
during strategic routing and can be served by any driver in the operational routes. The number
of customers in each cell is assumed to follow a normal distribution. The problem of designing
the strategic routes is modeled as CCP and the result of it is a nonlinear generalized assignment
problem.
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A vehicle routing problem with stochastic customers was studied in Sörensen and Sevaux (2009)
as an example of a stochastic version of the CVRP. In this case customers need to book the service
ahead, and cancellations at a short notice are allowed. This problem is used to test the flexibility
of solutions, measured as the possibility of being adapted/repaired after cancellations are realized
and still having a high performance. An option to deal with this problem is to include all customers
in the route, and remove the customers that do not require service, once this information becomes
known. Customers need service with 0.5 probability. Customers not requiring service are not
visited.

A different version of the CVRPSD with time windows was proposed in Erera et al. (2009). Each
day the customers to be visited is a subset of all the customers because the demand quantity, which
is uncertain, can be zero. Customers may have one or two time windows. Each day, customers
are assigned to two routes: primary and backup. The recourse action is to move customers to a
backup route. Customers are visited in the order that they appear in the route and those that do
not require a service that day are skipped. The research was motivated by a collaboration with a
beer, wine, and spirits distributor. Here are the key ideas of the approach: customers are divided
into two sets, regular (with a high probability of placing an order for that day) and irregular, the
former are included into the planned routes and the latter are added dynamically to operational
routes. Regular customers are assigned to two routes, for each weekday: primary and backup.
Customers can be moved to a backup route to regain feasibility or improve costs, this is done
every day after demand realizations and the result is the operational routes. Each customer i
places an order a given day with probability pi. The discrete random variable, that represents the
quantity that must be delivered to customer i, if an order is placed is qi. The probability mass
function of qi is known. For each customer the service must start within its time window(s).

2.4 Probabilistic multi-vehicle pickup and delivery problem - MPDP

This problem is described as a fleet of vehicles that must serve a set of customers’ requests
(Beraldi et al., 2010), where each request specifies an origin and a destination and the origin must
be visited before the destination. At the depot there may be cargo transfer between vehicles, so a
request can be served by two routes, one for pickup and one for delivery. A fixed number of routes
is designed. For each customer a companion is specified that is the customer where the delivery
must be sent. There are no restrictions on the capacity and the vehicles perform two routes per
day.

In a solution to the deterministic problem, each vertex V \0 is part of a single route, the pickup visit
is done before delivery optimizing a given performance indicator. Randomness comes from the
fact that a customer may or may not require a service. A Bernoulli random variable is associated
to every customer i, it takes value one with probability pi, if i requires a service, and zero with
probability 1− pi otherwise.

The problem is modeled as a two-stage SPR. In the first stage, m routes are designed, with m
equal to twice the number of vehicles, since they perform two routes per day, satisfying that each
vertex is visited once and precedence constraints (delivery performed after pickup). In the second
stage, after information about the requests is available, the customers are served in the same order
as in the a priori route. Customers with no service requirement are skipped, which is considered
to be the recourse action.

2.5 The CVRP with stochastic travel times (and service times)

Travel time has also been considered as the element that brings stochasticity to the CVRP. A
version of the CVRP with soft time windows and stochastic travel times is found in Ando and
Taniguchi (2006). In this model a vehicle is allowed to make several routes per day and all goods
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from each customer must be loaded at the vehicle at the same time. Total weight of the goods in
one route must not exceed the capacity of the vehicle. In addition there is a hard time window for
the depot. A triangular distribution is estimated for the travel time using real data. The objective
of the problem is to minimize the total cost, which is given by the fixed cost of using vehicles, the
operational costs and penalties for arriving outside time windows. The penalty for late/early arrivals
can be seen as a recourse. The service time is assumed to be deterministic. Tests are performed
for the single vehicle case.

A multi-objective approach to the CVRP with soft time windows and stochastic travel times
(SCVRPSTW) is found in Russell and Urban (2008). In SCVRPSTW the demand is known in
advance, and there is a deterministic service time and a time windows associated to each cus-
tomer. Servicing outside the time window is allowed at a cost, either for earliness or lateness.
Three objectives are taken into consideration, the minimization of the number of vehicles, the total
traveled distance and the total expected penalties for earliness and lateness in the service. Travel
times are assumed to follow a shifted gamma, but the analysis and the tests are performed using a
special case of gamma, the Erlang distribution. Due to the additive property of gamma distribution,
minimizing the total traveled distance is equivalent to minimize the expected travel time. The prob-
lem is modeled as a SPR, the recourse being the cost for servicing outside the time windows. The
authors indicate that the problem could be modeled as a CCP, however no tests were conducted
for that case.

Another version of CVRP with stochastic travel times includes simultaneous pick-ups and deliveries
(Zhang et al., 2012), where each customer can have both pick-ups and delivery demands. The
vehicle has a maximum travel time B. The problem is modeled as CCP, so in a feasible solution
the probability that the vehicle travel time be less than or equal to B must be greater than or
equal to a given parameter. Testing is performed on instances with travel time following a normal
distribution.

A variant of the problem including soft time windows was modeled as SPR (Taş et al., 2013) with
is an extra cost for servicing the customers outside the time windows. In addition there is an
overtime cost when the route time is longer than certain value. The recourse cost is given by these
penalties. In this formulation the demand is deterministic and the travel time is assumed to follow
a Gamma probability distribution. The objective is to minimize the sum of transportation costs and
service costs. Transportation costs are the total distance, the fixed cost of using the vehicles and
the total expected cost of overtime. Service costs are incurred for early or late arrivals at customers
locations. The same problem can be found in a more recent paper by Taş et al. (2014).

A CVRP with time windows and stochastic travel and service times is studied in Li et al. (2010).
Here the problem is modeled using both a CCP and an SPR model. In the CCP approach two
aspects are considered, the probability of arriving to each customer within the time windows and
the probability of finishing a route within certain given time. In the second approach, the expected
value of some extra costs is computed: the penalty for arriving after the deadline of the time
windows and the cost of the driver overtime. The travel times and service times are assumed to
follow a normal probability distribution.

In Kenyon and Morton (2003) an uncapacitated VRP with stochastic travel and service time is de-
scribed and two different problems are studied. The minimization of the completion time, which
is the duration of the longest route, is one of the problems. The second problem is the max-
imization of the probability of completing the operation within a predefined target time. In the
second stage, no route reoptimizations or recourse actions are allowed after the times are realized.
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The two models are analyzed theoretically, including the computation of bounds and how is the
connection to the deterministic model that uses the expected value of the parameters. In the
tests reported, the travel times is assumed to follow a discrete distribution as well as a uniform
distribution. Tests with stochastic service times were not reported.

An interesting queueing approach is used by Woensel et al. (2007) to model routing problems with
time-dependent travel time. The travel time is assumed to depend on traffic congestion. There is
a limit for the maximum length of every route L and a deterministic service time. The expected
travel time is calculated analytically together with the variance. The variance allow the evaluation
of the risk involved. Time-dependent speeds are obtained using queueing models. Assuming that
traffic conditions are stationary, there is a relationship between flow (number of vehicles), density
(number of cars on a road segment) and speed. The time horizon is divided into a certain number
of discrete periods. A different travel speed is associated to each period. Each segment of the
route is considered as a service station where the vehicles arrive at one rate λ and get served
at a rate µ. The objective function is to minimize total travel time, subject to capacity and length
constraints. A modification of the objective function is also considered by adding the variance of
the travel times, multiplied by a factor.

The CVRP with deadlines under travel time uncertainty was modeled by Adulyasak and Jaillet
(2014) using two different approaches: as a robust problem and as a stochastic problem. In the
stochastic approach the probability distribution of travel time is assumed to be known (Normal in
the tests). The objective is to minimize the sum of probability of deadline violations. In the robust
approach, on the other hand, the exact probability distribution is unknown but it is described by an
interval and a mean. The objective is to optimize a performance measure, the lateness index, which
takes the value of zero if the travel time meets the deadline. Both approaches are extended using
fixed service times, random service time and by replacing deadline for a soft time windows.

The distance-constrained CVRP with stochastic travel and service times (DCVRPSTT), which was
originally introduced by Laporte et al. (1992), is modeled using a different approach in a recent
paper by Gómez et al. (2015). This new approach is interesting since no assumptions are made
on the probability distribution. The stochastic travel and service times are modeled with Phase-type
(PH) distributions (Neuts, 1981), where a random time interval is modeled as being composed of
a number of exponentially distributed segments. There exists a PH distribution arbitrarily close to
any positive distribution. The objective function is to minimize the total expected duration, subject
to a service level condition, where every route must finish before a threshold T with a probability
greater than β.

The CVRP with stochastic travel times was studied using a different approach in Solano-Charris
et al. (2015), as a robust CVRP. The travel times are modeled by discrete scenarios, which are not
associated with probability distributions. The objective of this problem is to minimize the worst cost
(total cost of the routes) over all scenarios. A lexicographic approach is used to break ties, ranking
the other scenarios from worst to best.

2.6 The VRP with stochastic service times

In some types of services, the variability of the travel time is considered small, compared to the
service time. Because of that, the travel time might be considered as a deterministic parameter
and the stochasticity of the problem is given by the service time. In Lei et al. (2012) the number
of vehicles and their capacity is considered unlimited and a stochastic service time is associated
with each customer. There is an overtime cost if the route time exceeds a given value. The sum
of travel cost, expected service and overtime cost is minimized. The service time is assumed to
follow a continuous probability distribution. During the testing, service times in the instances are
assumed to be normally distributed.
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2.7 The CARP with stochastic service times

The routing problem in daily road maintenance operations is formulated as a variation of the arc
routing problem, where the travel and service times are considered stochastic Chen et al. (2014).
Each day some segments of the road network need to be monitored, which is an operation per-
formed using a fleet of vehicles. Each monitoring service is associated with an estimated service
time and each segment of the road is associated with a stochastic travel time. The objective is to
determine a set of monitoring routes of minimum cost and the total service duration of each vehicle
must not exceed a given threshold L. The problem is modeled using both CCP and SPR. In the
CCP formulation, the objective is to minimize the total service cost, while the probability of the total
service duration being greater than L must be kept below a given value for each route. The total
service cost includes the the total fixed cost of using the vehicles and the total deadheading cost
(traveling over a segment of road without servicing it). Travel and service times are considered to
follow a normal distribution.

In the SPR approach, the objective is to minimize the total service cost and the expected recourse
cost. Weights can be assigned to prioritize any of the costs. Two recourse alternatives are con-
sidered: when a failure is expected to occur in a particular arc aij different than the last one, then
once the service before the arc aij is finished, the vehicle travels back to the depot and the rest
of the services are reschedule for the next day, at a cost. The other alternative is that the vehicle
serves all the arcs that belong to the original route and are located in the shortest path between
arc aij and the depot. In this case the recourse cost includes the penalty for rescheduling some
services for the next day, but also the excess duration of the work.

2.8 The VRPSTW with stochastic service times and probabilistic customers

The courier delivery problem (CDP) is presented in Sungur et al. (2010) as a variant of the
VRPSTW. In the CDP the customers appear probabilistically and service times are stochastic.
The objective is to create regular routes which are later adapted to the demand realizations ev-
ery day. Delivery requests arrive daily from potential customers. Location and time windows are
known, but not the service time. There is a limited number of couriers and a hard time window at
the depot. The first goal when solving the problem is to construct the master plan. The second
goal is to modify the master plan to construct daily schedules, in a way that number of customers
served is maximized, route similarity (with respect to the master plan) is maintained, penalties for
earliness and lateness are minimized, as well as the total time (travel, waiting and service time).
The objective function is modeled as weighted sum of all these goals. Similarity is measured as
the number of customers in a daily route that are within certain distance from any customer in
the same master plan route. The recourse action is partial rescheduling. In computational tests,
the service times are assumed to follow a lognormal probability distribution, and real-world data is
used to introduce uncertainty.

2.9 The CVRP with stochastic demands and travel costs

A robust CVRP is defined by Sörensen and Sevaux (2009) as the problem of finding a solution
with a high performance, across most possible outcomes. In such a framework, the CVRP with
stochastic demands and travel cost is studied. Demands and travel costs are uniformly distributed.
There is a maximum travel cost per route. Some penalties are associated with unsatisfied demand
and travel times greater than the maximum. In this problem the regular objective function is re-
placed by an average cost computed on a set of stochastic parameter realizations. Another way to
measure the robustness is the highest cost evaluated on the same set.
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2.10 Stochastic multi-objective approaches

The SVRP literature includes some work on problems where the decision maker faces several
optimization criteria, with formulations resembling a multi-objective structure.

A CVRP with stochastic demands was formulated assuming a percentage of the vehicle’s capacity
is reserved as a safety stock in the model of Juan et al. (2011). The routing (stage 1) is done
assuming a capacity limit lower than the maximum for the vehicles. Slack capacity can be used
to cope with excess in cumulative demands. Two criteria are optimized, one of them is the total
expected cost and the other is the reliability, measured as the probability of the solution suffering a
route failure. The demands are assumed to follow a known parametric or empirical probability dis-
tribution (discrete or continuous), however the testing is performed on instances with demands that
have a log-normal probability distribution. The decision maker is provided with a set of solutions
that provide a tradeoff between these two criteria. The problem is modeled as SPR: the recourse
action is DTD, whenever there is a failure.

An extension of the CVRP was made to include location, allocation and routing decisions under the
risk of disruption (Ahmadi-Javid and Seddighi, 2013). In this approach a set of potential producer-
distributors is considered. The capacities vary randomly due to disruptions. Because of this, the
actual capacity of the producer-distributor is assumed to follow a discrete probability distribution
(discrete uniform in the tests). The decision regarding which potential producer-distributors should
be opened has to be made. There is a set of customers with known, non-negative demands, each
of which is allocated to one producer-distributor. The customers are served by a set of vehicles
which might suffer disruptions, so the number of times per year that a vehicle can visit the cus-
tomers allocated to it follows a discrete probability distribution (Binomial in the tests). The problem
is modeled as an SPR. In case of disruptions in the producer-distributor location, a risk mitiga-
tion strategy has to be used to satisfy the customers’ demand. In the case of vehicle disruptions,
another vehicle is dispatched. In both cases the recourse action represents an extra cost. The
decision maker is presented with three different solutions, related to three different types of risk
policies (moderate, cautious and pessimistic). For each risk policy, there is a different risk mea-
surement, expected cost for moderate, conditional value-at-risk for cautious and worst case for
pessimistic.

A multi-objective CVRPSD was initially formulated with three objectives: to minimize travel time,
driver remuneration and number of vehicles in Tan et al. (2007). The demands are assumed to
follow a normal probability distribution. It was found that two of the objectives, travel time and
number of vehicles, are not in conflict, i.e. it is possible to minimize them together. This makes
sense since the solution to a CVRPSD with minimum travel distance will have a single vehicle (Yang
et al., 2000), and in the motivating case, the travel time is computed as the Euclidean distance.
The problem is modeled as an SPR, with recourse action DTD. In addition, there is an extra cost if
the route length exceeds a time limit B.

3 Tables

In Table 1 there is a summary of surveyed papers dealing with the CVRPSD, where the demand
is assumed to follow a continuous probability distribution. A list of all abbreviations and acronyms
used in this section can be found in Table 7.
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Table 1: Summary of papers dealing with the CVRPSD with continuous demand distribution

Author Probability distribu-
tion

Recourse action Solution method /
evaluation

Laporte et al. (2002) Normal DTD LSM / AN
Chepuri and Homem-de Mello (2005) Gamma Penalty paid to un-

served customers
CE / SI

Rei et al. (2007) Truncated normal DTD LBD / AN
Sungur et al. (2008) Unknown (bounded) None B&C / SI
Rei et al. (2010) Any. Normal reported DTD MDLB, LSM + B&C /

SI
Mendoza et al. (2010) Any. Normal reported DTD MA / AN
Mendoza et al. (2011) Any. Normal reported DTD SCW, LAH and DP /

AN
Lee et al. (2012) Normal None B&P / AN
Jabali et al. (2014) Truncated normal DTD LSM / AN
Goodson (2015) Any. Normal reported DTD SA + CO / AN

In Table 2 there is a summary of surveyed papers dealing with the CVRPSD where the demand is
assumed to follow a discrete probability distribution.

Table 2: Summary of papers dealing with the CVRPSD with discrete demand distribution

Author Probability distribu-
tion

Recourse action Solution method /
evaluation

Hjorring and Holt (1999) Several. Discrete re-
ported

DTD (no while exact
stockout)

LSM / AN

Yang et al. (2000) Discrete. Discrete tri-
angular reported

DTD. Preventive re-
stocking

DP / AN

Secomandi (2000) Discrete uniform DTD. ROPT NDM / AN
Secomandi (2001) Discrete. Discrete

uniform reported
DTD. ROPT RA / AN

Laporte et al. (2002) Poisson DTD LSM / AN
Secomandi (2003) Discrete. Discrete

uniform reported
DTD. ROPT RA / AN

Bianchi et al. (2005) Discrete uniform DTD. Preventive re-
stocking

SA, TS, ILS, ACO
and EA / AN

Haugland et al. (2007) Binomial. A minimum
amount will be de-
manded

DTD (deterministic) TS, MSH / AN

Ak and Erera (2007) Discrete PLC TS / AN
Christiansen and Lysgaard (2007) Any with accumula-

tive property. Poisson
reported

DTD. (no while exact
stockout)

B&P / AN

Secomandi and Margot (2009) Discrete. Discrete
uniform reported

DTD. ROPT DP / AN

Erera et al. (2010) Discrete Uniform NSDTD TS / AN
Lei et al. (2011) Any. Poisson re-

ported
Violation of TW, addi-
tional single trip. DTD

ALNS / AN

Goodson et al. (2012) Poisson DTD SA + CO / AN
Mendoza and Villegas (2013) Any known. Poisson

reported
DTD MSSH / AN

Marinakis et al. (2013) Any. Discrete uniform
reported

None PSO / AN

Gounaris et al. (2013) Unknown. Realiza-
tions are known

None B&C / SI

Gauvin et al. (2014) Poisson DTD BC&P / AN
Zhu et al. (2014) Discrete uniform DTD. ROPT DP, RA / AN
Mendoza et al. (2015) Poisson DTD / CCP GRASP + HC / AN
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In Table 3 there is a summary of surveyed papers dealing with the CARPSD.

Table 3: Summary of papers dealing with the CARPSD

Author Probability distribu-
tion

Recourse action Solution method /
evaluation

Fleury et al. (2002) Truncated normal DTD GA / SI
Fleury et al. (2004) Truncated normal DTD GA / AN
Fleury et al. (2005b) Truncated normal DTD GA / SI
Fleury et al. (2005a) Truncated normal DTD GA / SI
Christiansen et al. (2009) Poisson DTD B&P / AN
Laporte et al. (2010) Any. Poisson re-

ported
DTD ALNS / AN

In Table 4 there is a summary of surveyed papers dealing with the CVRP with stochastic customers
and demands.

Table 4: Papers dealing with the CVRP with stochastic customers and demands

Author Probability distribu-
tion

Recourse action Solution method /
evaluation

Hvattum et al. (2006) Number of cus-
tomers, Poisson.
Demands, discrete
uniform

New vehicles / Rear-
ranging customers

PHH / SI

Zhong et al. (2007) Normal CCP TS / AN
Sörensen and Sevaux (2009) Discrete Customer not re-

quiring service are
skipped

MA / SI

Erera et al. (2009) Discrete Move customers to a
backup route

LS / SI

Beraldi et al. (2010)a Bernoulli Customer not re-
quiring service are
skipped

LS / AN

a Paper deals with the probabilistic multi-vehicle pickup and delivery problem

In Table 5 there is a summary of surveyed papers dealing with the CVRP with stochastic travel time
(and service time).

Table 5: Summary of papers dealing with the CVRP with stochastic travel time (and service time)

Author Probability distribution Recourse action Solution method /
evaluation

Ando and Taniguchi (2006) Triangular TWVC GA / SI
Woensel et al. (2007) - OC ACO / AN
Zhang et al. (2012) Normal CCP SS / AN
Lee et al. (2012) Truncated normal None B&P / AN
Taş et al. (2013) Gamma TWVC. OC TS / AN
Russell and Urban (2008) Shifted gamma TWVC TS / AN
Taş et al. (2014) Gamma TWVC. OC B&P / AN
Kenyon and Morton (2003) a Discrete, uniform (travel

time)
None B&C / AN

Li et al. (2010) a Normal TWVC. OC. CCP
also considered

TS / SI

Adulyasak and Jaillet (2014) Known. Normal reported DVC B&C / AN
Continued on next page
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Table 5 – Continued from previous page
Author Probability distribution Recourse action Solution method /

evaluation
Chen et al. (2014)b Normal Reschedule / CCP ALNS / SI
Gómez et al. (2015) a Modeled using Phase-type

distribution
CCP MSSH / SI

Solano-Charris et al. (2015) Discrete scenarios Robust CW, GRASP, ILS,
MS-ILS / AN

a Paper deals with the VRP with stochastic travel and service time

b Paper deals with the CARP with stochastic travel and service time

In Table 6 there is a summary of surveyed papers dealing with the VRP with a multi-objective
approach.

Table 6: Summary of papers dealing with a multi-objective approach

Author Probability distribu-
tion

Recourse action Solution method /
evaluation

Tan et al. (2007) Normal DTD. Extra cost for
routes longer than a
limit value

MOEA / SI

Juan et al. (2011) Any. Lognormal re-
ported

DTD MSSP + CW / SI

Ahmadi-Javid and Seddighi (2013) Discrete. Discrete
uniform reported (ca-
pacity). Binomial
reported (number of
visits)

Cost for covering the
lack of capacity or hir-
ing extra vehicles

LS / AN

Table 7: Notation

Abbreviation / Acronym Method
ACO Ant colony optimization
ALNS Adaptive large neighborhood search
AN Analytically
B&C Branch-and-cut
B&P Branch-and-price
BC&P Branch-cut-and-price
CCP Chance constraint programming
CE Cross entropy
CO cyclic-order
CW Clarke-Wright
DP Dynamic programming
DTD Detour to depot
DVC Deadline violation cost
EA Evolutionary algorithm
HC Heuristic concentration
ILS Iterated local search
LAH Look ahead heuristic
LBD Local branching descent
LS Local search
LSM L-shaped method
MA Memetic algorithm
MDLB Multidescent local branching
MOEA Multi-objective evolutionary algorithm
MSH Multi-start heuristic
MS-ILS Multi-start iterated local search
MSSH Multispace sampling heuristics
MSSP Multi-start search procedure
NDM Neuro-dynamic methodology

Continued on next page
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Table 7 – Continued from previous page
Abbreviation / Acronym Method
NSDTD Non-splittable detour to depot
OC Overtime cost
PHH Progressive hedging heuristic
PLC Pair locally coordinated
PSO Particle swarm optimization
RA Rollout algorithm
ROPT Reoptimization
SA Simulated annealing
SCW Stochastic Clarke-Wright
SI Simulation
SS Scatter search
TS Tabu search
TW Time windows
TWVC Time windows violation cost

4 Conclusions

In order to survey the past 20 years of research on stochastic VRPs, we found it necessary to
limit the scope of the survey to what we consider “core” stochastic VRP papers. Needless to say,
there is a vast literature on optimization problems relating to VRPs, which is beyond the scope of
this survey. Related problem types include Traveling Salesman Problems (TSP), Inventory Routing
Problems (IRP), and Fleet Size and Mix VRP (FSMVRP). In all of these classes there are several
papers on stochastic variants of the problems. We refer the reader to general surveys by Coelho
et al. (2014) and Andersson et al. (2010) on IRP, Hoff et al. (2010) on FSMVRP, Pillac et al. (2013)
on dynamic VRP.

An important feature in the stochastic CVRP is the source of stochasticity. This may be the demand,
the travel time, the presence of customers and the service time, among others. The CVRPSD
(capacitated vehicle routing problem with stochastic demand) has been by far the most studied
version of the problem.

Another important distinguishing feature of stochastic vehicle routing problems is the recourse
policy, which describes the actions to take in order to repair the solution after a failure. Three
popular actions are as follows.

• The vehicle returns to depot to restock when capacity is attained or exceeded. Service
resumes at the customer where route failure occurred.

• A preventive restocking can be done before a route failure occurs.

• Re-optimizing the portion of a route that has not been served after failure or after each cus-
tomer is served and its demand becomes known.

In other SVRP formulations the recourse policy does not involve routing decisions (as in the DTD
case), but a penalty for late/early arrivals or the extra time cost of the driver, can be part of the
expected cost when time windows and/or stochastic service time are taken into consideration.
Preventative restocking and partial re-optimization seem to be more realistic but require more
sophistication. With improving solver technology and ongoing research, we see the field moving
more in this direction.
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Looking to the future we expect to see increasing interest in multi-stage SVRP, where there are
multiple recourse actions. We also foresee more interest in multiple-objectives as well as so-called
robust optimization, which guards against a worst-case or bad-case. Of course, it is difficult the
predict the future with certainty, hence the need for stochastic programming.
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Appendices

A Solution methods

Several approaches have been used for solving (or dealing with) different variants of the stochastic
VRP. Here a review of these approaches is presented, trying to cover most of the methods designed
to tackle such problems. The major dichotomy in terms of solution methods is of course between
exact methods on one side versus heuristic methods on the other.

A.1 Exact methods

Although realistic stochastic VRP problems are often hard to solve, exact methods have been
employed with some success. These methods view the problem as special case of an integer, or
mixed-integer program and employ some form of branching so that eventually a probably optimal
solution will be found. Even when employed on instances that are too large for full convergence,
the methods can often find very good solutions.

A.1.1 Integer L-Shaped method

The integer L-shaped method is a branch-and-cut algorithm that can described in seven steps
(Hjorring and Holt, 1999; Laporte et al., 2002; Jabali et al., 2014). It can start using a previously
found feasible solution (by another heuristic) as in Hjorring and Holt (1999) or with no initial feasible
solution as in Laporte et al. (2002) and Jabali et al. (2014). General steps given here are these
described in Laporte et al. (2002). The methods operate at each node of the search tree on a
subproblem called The “current problem” (CP). Initially it is the result of relaxing integrality, subtour
elimination and capacity constraints in the original problem. In addition a lower bound θ replaces
the expected recourse cost in the objective function. CP is modified by adding constraints once
violations are found.

1. The iteration count is set equal to zero. A new constraint is added to the original problem
θ ≥ L, with L a lower bound on the expected recourse cost. The objective value of the best
found solution is set to∞. The only pendent node in the search tree corresponds to the initial
current problem.

2. A pendent node is selected from the tree. If no pendent node exists, stop.

3. The iteration count is increased by one. The CP is solved, finding an optimal solution to it.

4. If there are any capacity or subtour elimination constraint violations, then at least one con-
straint is added. Lower bounding functional (LBF) may also be generated and added and the
algorithm returns to Step 3. Otherwise, if the objective function of CP is greater than or equal
to the objective function of the best solution found so far, the current node is fathomed and
the algorithm returns to Step 2. LBFs are constraints that strengthen the lower bound of the
recourse cost, and are associated with partial routes, which is to say: routes where a subset
of customers are ordered in a particular way.

5. If the solution is not integer, i.e. integrality constraints are violated, branching is done on a
fractional variable. The corresponding subproblems are added to the pendent nodes in the
search tree and algorithm goes to Step 2.
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6. The expected cost of the recourse is computed for the optimal solution of the current problem,
and added to the objective function, instead of θ. The objective function value of the CP is
compared to the objective function value of the best found solution, from that comparison
optimal solution to the CP can become the best found solution.

7. If the lower bound, θ, for the expected recourse cost of the optimal solution to the CP, is
greater than or equal to its actual expected recourse cost, the current node is fathomed and
the algorithm goes to Step 2. Otherwise an optimality cut is imposed and algorithm goes to
Step 3. The optimality cut just forces the algorithm to move to another solution that differs
with the current in at least two edges not incident to the depot. The reason for that is that
better solutions may exist since the lower bound θ is strictly less than the actual expected
recourse cost.

In Hjorring and Holt (1999) the L-shaped method was used to solve the single vehicle CVRPSD.
Just one route is evaluated at the time, since the the model is dealing with just one vehicle. A
general lower bound for the expected value of the recourse action is imposed as optimality cuts.
They use the concept of partial routes, where the same cut will improve the lower bound for all the
solutions that share specific sequences of customers. The lower bound for a partial route is equal
to the contributions from sequenced customers and bounds for exact stockouts (for the case of the
discrete demand distributions) and normal stockouts in the subset of unsequenced customers. In
general the customers in the sequence are those near the depot, at the beginning and the end
of the route. A subset of unsequenced customers is between them. A tighter lower bound was
determined by considering just the customers at the end of the route.

Starting from empty sequences, a greedy strategy is used to determine the partial routes. Two
customers not included yet in the partial route are evaluated for insertion into it: the customer
that according to the sequence in the current solution is closer to the depot at the beginning of
the route and the one closer to the depot and the end of the route. The one that increase the
value of the lower bound for the partial route is selected. The selected customer will have the
same position, with respect to the depot, in the partial route and in the current solution. From all
partial routes contained in the current solution, one is selected for use in the optimality cut to be
added. The selection takes into account the lower bound value and the number of edges, where
the idea is to have a small number of edges, but greater lower bound than the actual solution. Two
versions of the algorithm are compared, one using specific optimality cuts and the other using cuts
obtained from partial routes. The latter version managed to solve more problems to optimality and
in general faster. Instances with up to 90 customers and 105% of mean total demand computed
as percentage of vehicle capacity, were solved to optimality.

The integer L-shaped method was used in Laporte et al. (2002) to solve the CVRPSD. The lower
bounds are computed assuming that at most one stockout will occur per route. The problem of
finding L is presented in a general way, for any probability distribution. It is then solved for demands
that follow Poisson distributions and normal distributions. The LBFs are defined using the concept
of lower bounds of the expected recourse cost of partial routes. In the routes where it exists, it is
computed with a method similar to that used by Hjorring and Holt (1999), in the routes where that
lower bound does not exist, it is computed as L, but using just the customers in such routes and
the number of routes as the number of vehicles. The result is a constraint that establishes another
lower bound for θ. A separation procedure uses a heuristic to define the subsets of customers that
will be treated as consecutive (two; one on each end of the route) and unstructured subsets, for
each partial route. Instances with a number of customer varying from 25 to 100 vertices and a
number of vehicles between 2 and 4 were solved to optimality.
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An extension of the integer L-shaped method in Hjorring and Holt (1999) and Laporte et al. (2002)
was used in Jabali et al. (2014) for solving the CVRPSD exactly. In this version LBFs are used
to eliminate infeasible solutions. Applied to CVRPSD, the LBFs strengthen the lower bound of the
recourse cost associated with partial routes found during the process. The construction of the
LBF exploits the information provided by partial routes and are developed based on the structure
the partial route. An exact separation procedure identifies partial routes and generates the corre-
sponding bounds. A basic LBF implementation is compared with an integer L-shaped algorithm
with no LBF. The version with LBF was able to solve to optimality more instances, and run-times
are less than half the one used by the implementation with no LBF. The exact separation proce-
dure generates better results than the heuristic used in Laporte et al. (2002). The LBF reduces
the number of cuts added to the relaxed problem. The algorithm is able to solve instances with up
to 60 vertices and four vehicles, and 80 vertices and two vehicles. The recourse cost is computed
analytically.

A.1.2 Integer L-shaped method with Local branching descent

Local branching for the 0-1 integer L-shaped method is introduced in Rei et al. (2007). General
principles of the algorithm are presented for solving integer stochastic problems, which are applied
to the single vehicle CVRPSD. The main departure from the regular integer L-shaped method is a
branching process when the optimal solution to a subproblem is not integer. The result is a method
that tackles stochastic optimization problems with binary first stage variables. From a CP two
subproblems are obtained by adding constraints that divide the feasible space. One subproblem
will have as a feasible space the solutions with no more than a given number of elements that
are different from the binary elements in the optimal solution to the CP. The other subproblem
corresponds to a bigger feasible space; the solutions with more than a given number of elements
that are different from the binary elements in the optimal solution to the CP. This larger feasible
space can later be divided by adding more constraints of the same kind. When the smaller problem
is not feasible, the parameter that indicates the maximum number of elements different from the
optimal solution may be increased. Lower bounds are generated for each explored subregion of
the feasible space. The standard L-shaped algorithm with partial route cuts (Hjorring and Holt,
1999) is compared with two implementations of local branching, using cuts either locally or globally
generated. Local branching with cuts generated locally outperforms the other implementations,
solving instances with up to 90 nodes.

A.1.3 Branch-and-cut

A method that solves the deterministic equivalent of the stochastic problem was proposed to solve
the VRP with stochastic travel times (Kenyon and Morton, 2003). This method is applicable when
the cardinality of the sample space is not large and it is proposed to deal with the two versions of
the problem: the minimization of the completion time and the maximization of the probability of be-
ing completed within a target time. However the tests were done just for the first case. A probability
of occurrence is assigned to each of the realizations of the stochastic parameters. The problem
is then modeled as the minimization of the expected value of the objective function. For each
possible realization of the parameters, a deterministic problem is solved. The method is based on
branch-and-cut as follows. The subtour elimination constraints are relaxed. The optimization prob-
lem is solved and if no subtours exist, the solution is optimal. If there are subtours not including the
depot, a new solution is built joining each subtour with the main tour assigned to the same vehicle.
The new solution is evaluated and if it is within a preselected percentage from the optimal solution,
the algorithm stops. The percentage is computed using the objective function of the solution to the
relaxed problem (lower bound) as reference. If the new solution is not within the given percentage
of the optimal solution, subtours elimination constraints are added and the procedure is repeated.
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The method is tested on four instances, each of which is a nine node network and had a fleet
of two vehicles. Travel time follows a discrete distribution. The results are compared with the
optimal solutions to the problem where mean values for the parameters are used. Solutions to the
stochastic models (completion time) were better.

For the VRP with stochastic travel times, where the sample space is large, a method that integrates
a branch-and-cut scheme in a Monte Carlo sampling procedure has been proposed (Kenyon and
Morton, 2003). In general, this method does not find an optimal solution. However, it is possible
to bound the gap between the objective function of the solution found and optimal value, with a
confidence level. To do that, a lower bound and an upper bound are computed. An upper bound
is computed (for the minimization of the completion time), taking a solution and computing the
mean completion time, using a given number of scenarios. A lower bound is computed as the
average of lower bounds estimators. Each of these lower bounds estimators are computed using
a predefined number of scenarios. The total number of estimators (batch size) is also a parameter
of the algorithm. Each lower bound estimator is found by using a modification of the method solves
the deterministic equivalent of the stochastic problem, where subtour elimination constraints are
added immediately after subtours are found. On each batch another upper bound is also used,
the solutions already found in previous batches, are evaluated under the realizations of the actual
batch and the smallest is selected. The method was tested on a 28 node non-completed graph,
with 2 vehicles, and travel times were assumed to follow a uniform distribution. Service times were
deterministic.

A similar approach as in Kenyon and Morton (2003) was used by Adulyasak and Jaillet (2014) to
solve the robust and the stochastic approach of the The CVRP with deadlines under travel time
uncertainty. One of the main differences is how the cuts are added, while in Kenyon and Morton
(2003) constraints are added upfront, in Adulyasak and Jaillet (2014) cuts are added iteratively
when a feasible vector is found. Test results were compared to an iterative algorithm developed
for the robust routing problem, similar to the classical Benders algorithm and to results obtained
by Kenyon and Morton (2003). Performance of the algorithms is measured on different stochastic
problems. Travel times are assumed to follow different probability distributions, Triangular, Normal
and Uniform. Also different number of deadlines are considered, at the last node, two nodes and
all nodes. Depending on the problem, optimal solutions to instances with up to 80 nodes were
found. The robust and the stochastic approach in general outperform the results by Kenyon and
Morton (2003) and the iterative algorithm for the robust routing problem.

A branch-and-cut based VRP solver was used to solve the RVRP in Sungur et al. (2008). The
robust formulation of the CVRP is obtained by replacing the constraint imposing capacity and
connectivity in the original CVRP formulation. As a result the RVRP is more capacity constrained
and may be infeasible even if the original CVRP is feasible, particularly in tight instances, where
total demand is very close to the total capacity. The RVRP is solved as a deterministic problem and
compared to the best solution to the original CVRP, using the cost of the total cost and the ratio
of unmet demands as performance indicators. The comparison is done using randomly generated
scenarios. On tests performed using standard problems, it was found that performance of the
robust approach depends on the structure of the network, but still robust outperformed deterministic
in several cases, particularly when the instances have clustered customers. Tests were also carried
out on randomly generated clustered instances, finding that the robust approach performs better
in instances with dense random zone around the depot. The robust solution was also compared to
a strategy that uniformly distribute the of excess vehicle capacity among all the vehicles. Solutions
found using such strategy can have a lower ratio of unmet demand, but the cost might be higher
than the robust solution.
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A similar approach was used to solve a different version of the RVRP (Gounaris et al., 2013).
The problem is solved using CPLEX 12.1 using cuts – called robust rounded capacity inequalities
(robust RCI) – , which are satisfied by all feasible solutions to the RVRP, are added to the model.
Violated cuts are identified by using a variant of tabu search. In some formulations RCI are already
contained. In these cases, the RCI are removed and dynamically reintroduced. It was found that
the same set of routes is robust in each formulation. But some of the formulations are more efficient
than others, since less computational time is needed to solve them, notably two-index vehicle
flow formulation and the vehicle assignment formulation (with RCI as subtour elimination). Most
instances with less than 50 customers were solved to optimality. Optimality gap of the instances
that were not solve to optimality (with less than 50 customers) is below 5%. The average gap on
the other instances is 6.5%.

A.1.4 Branch-and-price

A new Dantzig-Wolfe solution method for the CVRPSD was proposed in Christiansen and Lysgaard
(2007), based on a partitioning formulation of the problem. The customer sequence for each route
is known even when an integer solution to the problem is not. So the expected failure cost can be
calculated before an integer solution is known.

Starting from a master program (PM ), where the 0-1 integrality constraints are relaxed, partitioning
constraints are changed to covering constraints, allowing more than one visit to the customers.
Non-elementary routes are allowed (so not all elements are different in the route). The coefficient
αir (1 if customer i is visited in route r, 0 otherwise) is replaced by air (number of times customer
i is visited in route r). PM is initialized with n single customer routes. Solving PM , a vector of dual
prices is obtained. The dual prices are used in the search for columns with negative reduced costs.
If the columns are found, they are added to the LP and the problem is re-optimized. The process is
iterated until no more columns with negative reduced costs exist. At this point, the current solution
is optimal for PM . If the LP solution is integer and constraints are satisfied with equality, then it is
also optimal for original problem. If constraints are inequalities, then they are changed to equalities
and the LP is resolved, continuing with the iterative process. If the LP solution is fractional, then
branching is done in order to eventually obtain an integer solution. The branch and price algorithm
is a described as a variant of branch and bound, where column generation is performed at each
node in the branch and bound tree. Instances with up to 60 customers and 16 vehicles are solved
to optimality.

A similar decomposition is used to reformulate the robust CVRP with deadlines and travel
time/demand uncertainty (Lee et al., 2012). The problem is initially formulated as a path based
set covering problem, where the decision variable is either to include or not to include a route into
the solution. Integrality constraints are then relaxed, and the problem is solved with a restricted
set of feasible routes, since the total number of feasible routes can be very large. In this context
a feasible route is the one that meets the deadlines and capacity constraints at each customer,
while most of the uncertain parameters are at their maximum deviations. The column generation
subproblem is solved to find a column with negative reduced cost and when no column is found the
procedure is terminated. A labeling algorithm (dynamic programming) is used to find robustly fea-
sible routes with negative reduced cost. The existence of an optimal integer solution without cycles
is not guaranteed. If the optimal solution has cycles, a branching procedure is applied. Solutions
obtained by the robust model are compared to solutions obtained by a deterministic equivalent
CVRP. A set of scenarios are generated and the tests estimate in which percentage of scenarios
the solution feasibility is retained (robustness). In three different set of instances, the robust model
improves robustness by an average of about 48%, 82% and 64% respectively, compared to the
deterministic approach.
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The same formulation as in Christiansen and Lysgaard (2007) was used in Gauvin et al. (2014)
for solving the CVRPSD using a a branch-cut-and-price algorithm. The bounds are computed by
column generation solving a restricted PM , with only a subset of all feasible routes, initialized by
single routes (one for each customer). New routes are dynamically generated by adding columns
(routes) with negative reduced costs, until no more such routes exist. If the solution is integer, then
it is also optimal for the original problem. If it is not, violations of valid inequalities are identified.
If this is not possible, then branching is used. The generation of routes with negative reduced
costs is done by solving a shortest path problem with resource constraints (SPPRC) as in Lee
et al. (2012), executing a dynamic programming bidirectional labeling algorithm. The concept of
ng-routes is used in combination with 2-cycle elimination. Each customer has an associated set of
customers with specific cardinality. A given route is prohibited from extension to include customers
that belong to some of the sets associated to customers already in the route. A new dominance rule
is included and it is considered to be valid when demands follow a Poisson distribution. This new
rule makes possible to eliminate more labels (partial routes) that can not lead to optimal solutions.
Solving the ng-route problem must be done at various nodes in the branch-and-bound tree. A tabu
search heuristic is used to generate negative reduced cost columns, using moves that respect the
current imposed branching. The search is restarted after reaching a number of iterations. Two
types of cuts are dynamically added to accelerate the derivation of integer solutions. Capacity
cuts imposing a lower bound on the number of vehicles required to serve a subset of customers,
which is identified heuristically. Also subset-row inequalities are used to prohibit the coexistence of
routes that cover at least 2 customers in any triplet of customers. Violations to these inequalities
are identified exactly. If still no violations in these constraints are identified, branching is used. Two
options are available, branching on a sequence of two customers and branching on the number of
arcs adjacent to a subset of customers. Both decisions are evaluated and one of them is selected.
Results from this algorithm are compared to results in Christiansen and Lysgaard (2007). This
algorithm solves 20 additional instances and manages to solve instances up to 86 times faster.
Seventeen new instances are solved with up to 101 customers and 15 vehicles.

A similar approach was used in Taş et al. (2014) for solving the CVRP with soft time windows
and stochastic travel times. The problem is modeled as a set partitioning problem. A restricted
PM with the integer constraints relaxed and solved using the routes of an initial feasible solution
found as in Taş et al. (2013). The pricing subproblem of finding columns (routes) with negative
reduced cost is modeled as the shortest path problem with resource constraints. If a new route
with negative reduced cost is found, it is then added to the PM and re-optimized. The pricing
subproblem is solved using the algorithm proposed in Feillet et al. (2004) that extends a label
correcting reaching algorithm (Desrochers, 1988) including node resources, so the subproblem
can be solved optimally. Initially multiple visits to the customers are allowed, except for those in
a given set S. If the optimal solution for the relaxed subproblem is integer, then is also optimal
for the original. Otherwise, the nodes that appear in the solution more than once are added to
the set S. A new dominance relation is used for selecting the routes. Non-dominated routes with
non-negative reduced costs and the dominated ones are added to a set called the Intermediate
Column Pool (ICP). After re-optimizing the relaxed PM , the reduced costs of columns (route) in the
ICP are recomputed and columns with negative reduced cost are added to the relaxed PM . The
pricing subproblem is solved if no columns are found in the ICP. Routes stay in the ICP for a given
number of iterations and its size is kept below a threshold. Branching is used if the optimal solution
to the relaxed PM is not integer. During the tests, two stopping criteria were used, time and gap
between best lower bound and best upper bound less than 5%. Test are performed using two type
of branching, Depth-First (DF) and Breadth-First (BF). It was found that BF provides better results.
The algorithm is able to solve instances with up to 100 customers.

In Christiansen et al. (2009) a branch-and-price algorithm was proposed to solve the CARPSD
where pricing is done by dynamic programming and an estimator of the total expected cost (lower
bound) is computed analytically. The problem is modeled as a set partitioning problem, where
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the decision variables are the selection of routes to become part of the optimal solution. The
problem is solved initially for a set of columns corresponding to the set of feasible routes, but
the constraints related to the number of times that an edge must be serviced and the integrality
constraints are relaxed. At each iteration the set of columns corresponding to the dual vector of
constraints regarding the number of times the edge are visited, with an expected negative reduced
cost, are added to the initial set of columns. The problem is iteratively re-solved (pricing) until
no more columns with negative expected reduced costs are found. If the solution is integer, then
it is optimal for the modified problem. If the solution is fractional, then branching and pricing is
continued. An optimal integer solution to the modified problem is also optimal to the original one
within some precision level, which depends on the quality of the lower bounds for the expected
cost of the routes. The pricing problem is formulated as a shortest path problem and it is solved
by dynamic programming. The branching rule is applied when an optimal solution to the modified
problem has fractional values. The largest instance that was solved included 40 vertices and 69
service edges.

A.2 Heuristic approaches

There are many stochastic problems with no exact solution method known to work for reasonable
sized problems. This creates the need for heuristics, which, even though do not guarantee to find
an optimal solution to the problems, may be able to find a good solution to them. This is a popular
and growing area in the literature.

A.2.1 Adaptive large neighborhood search (ALNS)

An adaptive large neighborhood search heuristic was used to solve the capacitated arc routing
problem with stochastic demands (Laporte et al., 2010) starting from an initial solution constructed
by an algorithm called stochastic path scanning, which is a modified version of the path scanning
(PS) method. At each iteration, one heuristic is selected randomly to destroy the current solution
(removing q serviced edges), and then one insertion heuristic is selected randomly to repair the
damaged solution, reinserting the removed edges. The selection of q is also random. The accep-
tance of a new best solution is given by the record-to-record travel (RRT) algorithm (Dueck, 1993).
The total expected cost is calculated analytically. The efficiency of the algorithm is evaluated com-
paring the performance of the best found solution with the optimal solution to the deterministic
version of the problem. Both solutions are evaluated and compared in stochastic simulation and
the expected recourse cost is considered in both cases. Solutions found by ALNS show a better
performance.

An ALNS heuristic was also used to solve the CVRP with stochastic demand and time windows
in Lei et al. (2011). A modified version of the push forward insertion (PFI) heuristic is used to
generate the initial solution. At each iteration, q vertices are removed by a removal heuristic, which
is randomly selected. The solution is later repaired by an insertion heuristic. As in the previous
case, the selection of q is random and the acceptance of a new best solution is given by the
RRT algorithm. The objective function is to minimize the total expected cost, which is calculated
analytically. The efficiency of the algorithm is compared against the best-known solution to the
deterministic counterpart plus the expected recourse cost associated to it.

An adaptive large neighborhood search (ALNS) was proposed to deal with the CARP with stochas-
tic service and travel times Chen et al. (2014). A branch-and-cut algorithm for the CCP formulation
of the problem was not able to find optimum for some instances with 10 vertices and 25 arcs, within
one hour. The initial solution is built by constructing one route at the time. Each route is constructed
by adding the arc that is not been serviced yet and is closest to the end vertex of the current route.
The distance is defined by the shortest path problem. During the search, the removal and inser-
tion heuristics are randomly selected under the control of a weight that determines the selection
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probability. The weights are updated periodically during the search and depend on how successful
each heuristic has been. Solutions are evaluated using the objective function for the SPR model.
The algorithm terminates if there is no improvement after a certain number of iterations or the total
number of iterations reaches a predefined value.

Four removal heuristics are used: deterministic worst removal, random removal, reduce-number-
of-vehicle removal and probabilistic worst removal. The four insertion heuristics used in the search
are deterministic greedy insertion, probabilistic insertion, probabilistic insertion with recourse and
probabilistic sorting insertion. The ALNS is used both models, but in the case of SPR, the chance
constraint can be violated. Experiments are conducted on instances with 5 to 25 vertices. For
small instances with up to 10 vertices and 20 required arcs, test were performed using the branch-
and-cut algorithm and the ALNS. The branch and cut algorithm found the optimum in 31 out of 40
instances. ALNS found it in 30. The gap between the two methods for instances where optimum
was not found range between 1.45% and 3.15%. For the instance with 10 vertices and 20 required
arcs, the computer runs out of memory when using branch-and-cut. The ALNS was tested using
both models. It was found that CCP requires the use of more vehicles. The SPR with recourse
including the penalty for rescheduling services for the next day and also the excess duration of the
work, shows better results, and it is suggested for real life application.

A.2.2 Dynamic programming

In contrast to stochastic programming, dynamic programming methods are typically used to find a
policy rather than a one-time solution. By “policy”, we mean a function that maps the state of the
system (e.g., the capacity remaining in a vehicle and the mean demand for stops remaining on a
route) to an action (e.g., return to the depot).

A dynamic programming algorithm was used to solve the stochastic CVRP with optimal restocking
(Yang et al., 2000). The problem posed was to find the optimal restocking policy, i.e. the right
moment for a vehicle to return to the depot and restock before a route failure occurs. At every
customer there are two options, to go back to depot and restock or go on to the next customer in
the route. Even though stockouts might occur, one of these two options is optimal. A solution is built
using two different approaches: 1) Starting with a single route through all the customers, obtained
using a combined method (insertion + Or-opt), it is later partitioned into small subroutes using
dynamic programming. 2) By clustering first and then routing. Both approaches are compared
with a lower bound obtained by solving the LP relaxation of a set partitioning formulation of the
original problem. This was possible for instances with up to 15 vertices, for larger instances the
two algorithms were compared to each other. The approach number 1 (route-first-cluster-next)
shows better results when compared to the lower bounds; it found solutions within 2% of optimal.
The same approach was found to perform better for bigger problems. The results obtained were
also compared against the solutions to the deterministic version of the problem, found by the
Clarke-Wright savings algorithm (Clarke and Wright, 1964). Average improvements up to 25%
were observed.

Dynamic programming was also as part of an algorithm to solve the single vehicle CVRPSD with
reoptimization (Secomandi and Margot, 2009), formulating the problem as a Markov decision pro-
cess (MDP). To overcome the computational challenges involved in solving large problems, just a
subset of the states in the full MDP is considered, this methodology is called partial reoptimiza-
tion. Starting from an initial sequence of customers, the tour is divided into sets/blocks where
each block is reoptimized as a MDP. Two ways of dividing the blocks lead to two different proposed
heuristics. Given a parameter M and an initial sequence of customers, the blocks are formed with
no more than M customers each. In the second approach, every block is formed with no more
than 2M+1 customers, in this case the same customer can be in several blocks. The performance
of the heuristics is compared against the optimal reoptimization policy for instances with 10 to 15
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customers. For bigger problems, it is compared with two rollout policies (Secomandi, 2001, 2003)
and an estimator for the lower bound, which is found solving to optimality the deterministic problem
with unsplit delivery i.e. if the demand of a particular customer is greater than the residual capac-
ity of the vehicle, a trip to the depot for restocking is required before serving the customer. The
proposed algorithms perform better than rollout policies and compared with the lower bound, the
solutions obtained are on average within 10% and 13% for different type of instances.

In Secomandi (2000), after formulating the single CVRPSD as a stochastic shortest path problem,
the size of the resulting dynamic programming problem is found to be computationally prohibitive.
To deal with that, a neuro-dynamic methodology is employed. Instead of computing the optimal
cost-to-go for every stage, an approximation is used. In principle two similar policies are used.
With approximate policy iteration (API), the cost-to-go values and pairs of states (training set) in a
particular policy are found through simulation. Then least-square fitting is used to approximate the
cost-to-go of the policy for all states, which is a vector of parameters. A new policy is found in a
greedy fashion, together with a training set and sample cost-to-go values. The process is repeated,
either until it converges or until a predefined number of iterations is reached. Convergence is
not guaranteed. The other policy is the optimistic approximate policy iteration (OAPI). This is a
variation of the previous policy. The training set is smaller and least-square problems are solved
more frequently. The vector of parameters that define the cost-to-go of the policy for all states is
found as an interpolation between the one used in the previous iteration and the one that would
be used in the API policy. Only the results for OAPI are reported, since it always performs better.
It is compared with a rollout policy, which performs over 7% better, attributed by the author to the
fact that it uses an exact evaluation, and the OAPI uses and approximation in which approximation
errors may lead to poor solutions.

A bilevel Markov decision process (MDP) is used to model the coordination between vehicles in the
paired cooperative reoptimization (PCR) for the two-vehicle CVRPSD (Zhu et al., 2014). In the PCR
strategy multiple customers can be assigned to one vehicle. The vehicles operate independently
until information is shared, this is after any of the vehicles finishes serving its assigned customers.
The process starts dividing the customers into two groups, and assigns a group to each vehicle.
When one vehicle has completed its assignment, the remaining customers (not served yet by
the second vehicle) are divided into two groups and reassigned to each vehicle. This process is
repeated until all customers are served. The sequence of the visits in each group is determined by
partial reoptimization (Secomandi and Margot, 2009). At each stage of the higher level (partitioning
and communication), the remaining customers are divided into two groups. At the lower level the
problem is formulated as MDP as in Secomandi and Margot (2009). The bilevel MPD can be solved
by dynamic-programming backward recursion, and at each stage the expected cost-to-go values
can be calculated. At a higher level all possible partitions are evaluated, using an approximation
approach based on an a priori route that traverse all unassigned customers in a particular stage.
The cost-to-go value is approximated using the DTD recourse action in the a priori route. Such an
priori route is generated by the rollout algorithm in Secomandi (2003). Two versions of PLC (Ak
and Erera, 2007) were implemented to be compared with the PCR: one with two vehicles and one
more that finds the number of vehicle to achieve a given service level. PCR outperforms the other
two approaches, with a cost improvement ranging from 20% to 30%.

A.2.3 Rollout algorithms

The single vehicle CVRPSD with reoptimization as recourse policy was solved using a rollout al-
gorithm in Secomandi (2001). The customer that must be visited first is selected from a sequence
of customers, previously found by the cyclic heuristic (Bertsimas et al., 1995). For each customer
a new sequence is obtained. The customers will keep the order given in the initial sequence, how-
ever, in every new sequence a different customer will be selected as the first. The expected total
length for each arrangement is computed and the first customer in the arrangement with the lowest
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cost is selected as the first customer in the route. Once the first customer is selected and visited
(its demand becomes known) the next customer to visit is selected. Two options are considered,
the customer j that minimizes the expected value of the total length (computed as before) and
the customer k that minimizes the expected total cost when visited after going to the depot for
replenishment. The option with lower expected total cost is selected and the process is repeated
until all customers have been served. The algorithm is described as based on neuro-dynamic pro-
gramming/reinforcement learning methodology. The total expected cost of an a priori solution is
computed analytically. Two experiments are carried out, one with small instances where the value
of an optimal reoptimization policy is known, and a second experiment with large instances. Two
versions of the rollout policy are analyzed in the first experiment: In the first version, in case of
a route failure, the current customer is fully served by performing a trip to the depot and restock
before moving to the next customer. In the second version at a given time, there may be more
than one unserved customer whose demand is known but not served yet, so in case of a route
failure, the customer may not be served immediately. Both versions generate near-optimal solu-
tions. For the second experiment with large instances, just the first version of the rollout policy is
tested, using three different a priori solutions; a nearest neighborhood heuristic together with 2-Int
improvement steps, a cyclic heuristic enhanced by dynamic programming and the static rollout
heuristic initialized by the tour produced by the former one. The best results are generated when
using the solutions generated by the static rollout heuristic.

A rollout approach was proposed to deal with sequencing problems with stochastic routing appli-
cations (Secomandi, 2003). As particular applications, the proposed algorithms are used with the
TSP with stochastic travel times and the CVRPSD. A regular rollout algorithm is compared with it-
erated versions of it. Where the best found solution is later used as initial solution and the process
is repeated. Tests were performed iterating the algorithm two and three times, obtaining better
results in the latter version.

A.2.4 Local search

A tabu search heuristic was used to design delivery districts for the CVRPSD in Haugland et al.
(2007). The districts are designed considering a long term perspective where they will stay fixed, to
be used for various demand realizations. The routing every day is deterministic, since demand is
known before vehicles leave the depot. Districts are constructed so the expected travel cost within
each district never exceeds an upper bound. A multi-start heuristic was also implemented and
compared, but the tabu search heuristics performed better in the instances tested. The expected
cost of the solutions is approximated using an upper bound.

An insertion-based solution heuristic called master and daily scheduler (MADS) (Sungur et al.,
2010) was proposed to create the master plan to the VRPSTW with stochastic service times and
probabilistic customers. A tabu search procedure is used to try to improve the solution. The
solution process has two phases. Given a number of scenarios, in the first phase, a preliminary
master plan and daily routes for each scenario are created. Two routing problems are considered,
one for the master plan that serves high frequency customers using worst case service time and
one for each scenario of daily schedule. The master plan in built using an insertion heuristic which
works in a greedy fashion, inserting the cheapest of all feasible insertions. The cost of an insertion
in the master plan is given by the increment in total time and TW penalty.

The master plan is then used to construct daily schedules with a partial rescheduling recourse,
for every scenario. Customers not present in the scenario are skipped and those not included in
the master plan are inserted. Insertion in the daily routes incurs an additional cost, the reduction
in similarity to the master plan. Daily schedules are improved with a tabu search heuristic. The
second phase is iterative, every scenario reports to the master plan which customers could not be
inserted. Then the master plan prioritizes the unscheduled customers by the number of scenarios
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for which they could not be scheduled. Maximum priority feasible insertions are performed. Sce-
narios construct daily routes based on the updated master plan and the process is iterated until
no improvement is achieved. A buffer capacity is used in the first phase by reducing the latest
time at the depot time window. It is used in the second phase to schedule additional customers.
The solution obtained by the MADS is compared to a solution obtained by a algorithm that treats
each scenario independently, which is called independent daily insertion (IDI). The objective func-
tion is to maximize the number of served customers and to minimize total time and time windows
penalties (weighted sum).

Two real-world instances from UPS were solved by MADS and the solution is compared with IDI
and the current practice. MADS is modifies and results are also compared over consistent VRP
(ConVRP) instances against the algorithm ConRTR proposed in Groër et al. (2009). Compared
to IDI, MADS generates more similar routes at a cost of total time and total number of served
customers, but the objective function shows a general better performance. When real-world data is
used, solutions from MADS (given different levels of buffer capacity) are better than solutions from
IDI and the current practice (obtained by a territory planning based routing algorithm). Compared
with IDI, total time is increased, but similarity is improved. For the comparison over ConVRP
instances, three criteria are used: total time, average arrival time difference and maximum arrival
time difference. In average MADS performs better than ConRTR in all criteria.

The CVRP with stochastic travel times, soft time windows and service costs was solved using a
tabu search heuristic in Taş et al. (2013). An initial solution is constructed by means of an insertion
heuristic, then a tabu search heuristic is applied to the solution. A post-optimization procedure
consisting of delaying the dispatching time of the vehicles in each route is also applied. The
solutions are evaluated through an analytic approximation of the expected cost. Different versions
of the algorithm are tested, where different initial feasible solutions are used: solutions obtained by
the insertion heuristic, with minimum total transportation cost; solutions obtained by the insertion
heuristic, with minimum total weighted cost; and solutions obtained in the literature as optimal/best-
known for the deterministic problem. Better results are obtained by the algorithm when using initial
solutions constructed by the insertion heuristic.

A location-routing problem with disruption risk was solved by a two-step heuristic (Ahmadi-Javid
and Seddighi, 2013). During the first step, a solution is randomly built. In the second step there
are two phases, location and routing, in each of those a simulated annealing heuristic is used. A
2-opt procedure is used to attempt to improve the routing. The quality of the solution is evaluated
analytically. The heuristic was able to find optimal solutions found by CPLEX for small instances.
It is also compared against lower bounds and to a different heuristic based on a solver for location
routing problems. Optimal solutions are found, error bounds are relatively small and the location
routing-based heuristic is outperformed.

Simulated annealing was also used to find solutions to the CVRPSD in Goodson et al. (2012).
The main purpose is to show the potential of the cyclic-order neighborhoods by using a heuristic
with a simple structure. A cycle-order solution encoding is a permutation or ordering of the set of
customers. Given a cyclic-order permutation π of the customers, a setR(π) represents the feasible
candidate routes consisting of contiguous elements of π. These candidate routes are generated
using a sweep algorithm and their cost is computed analytically. The best solution that can be
built using the routes in R(π) is found by solving a set partitioning problem. Several cyclic-order
neighborhoods are used. In the k-shift neighborhood structure the k contiguous elements, starting
from selected index i, are moved to the positions immediately prior to a selected index j. In the
reverse neighborhood, the order of the contiguous elements from index i to index j is reversed.
The exchange neighborhood consists of exchanging the position of two elements. To reduce the
computational effort, an updating procedure is used to obtain the set of feasible routes associated
to one cyclic-order if the routes associated with a neighbor are known. The simulated annealing is
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executed in two phases. In the first phase, the classical deterministic CVRP is solved. The second
phase attempts to improve the best found solution from phase I by taking into account the cost
of recourse actions. Results were compared to Christiansen and Lysgaard (2007) where optimal
solutions were reported for 19 out of 40 instances. The simulated annealing algorithm found 16
optimal solutions out of the 19 reported by Christiansen and Lysgaard (2007). In the 21 instances
where Christiansen and Lysgaard (2007) did not find a provably optimal solution, the two phase
procedure matches or improves the best found solution or the expected value of the best known
deterministic solution.

The cyclic-order simulated annealing procedure was modified to solve the multi-compartment ve-
hicle routing problem with stochastic demands (MCVRPSD) in Goodson (2015). A two-stage sim-
ulated annealing is used. In the first phase, solutions are evaluated by scenarios. While the
second phase attempts to improve the solution by exactly calculating the quality of the solution.
The method is compared with the results reported by Mendoza et al. (2010) and Mendoza et al.
(2011). Out of 180 instances, the cyclic-order simulated annealing procedure is able to improve the
best-known value in 159 instances and it matches the best known solution in 21 instances.

A tabu search algorithm was used to solve the CVRP with time windows and stochastic travel and
service times in Li et al. (2010). No comparison is done with results obtained by other methods but
the evaluation is done by estimating the expected values through Monte Carlo simulation.

A tabu search heuristic is proposed for the VRPSD with Pair Locally coordinated (PLC) recourse
(Ak and Erera, 2007). The neighborhood structure is very similar to TABUSTOCH proposed by
Gendreau et al. (1996b), but moves are evaluated exactly, not approximately. This computation is
done analytically, as the expected value of all the vehicles travel cost. The initial solution is found
by a sweep algorithm. A service level parameter pα is set. pα is used to determine the number of
customers in an a priori type II route. The probability that the vehicle serves all the customers in
its route without a recourse detour before serving any of the customers of its paired vehicle must
be greater than or equal to pα, which restricts the number of customers in the route. The number
of customers in the type I route is also found using pα. The idea is that the probability of serving all
customers in the paired tours, with the combined capacity and without any detours to depot, must
be greater than or equal to pα. More vehicles are assigned to type I routes than to type II routes.
The sweep algorithm assigns in a counterclockwise order, first the customers in a type I route, then
those in the type II route. At the end each type I route will be operated in the counterclockwise
direction and the type II routes are operated in the clockwise direction.

The neighborhood of a solution x, N(p, r, q, x), contains a set of solutions generated by modifying
routes as follows: i) A set A of q customers is randomly chosen. ii) ∀a ∈ A let B(a) be the set of p
randomly chosen customers among the r nearest neighbors of a. iii) ∀a ∈ A, ∀b ∈ B(a): remove a
from its position and reinsert it immediately before or after b in b’s route. all the solutions generated
by removing a customer from its tour and re-inserting it somewhere. Here, each of q randomly
selected customers is removed and reinserted, either immediately after or before one of p randomly
selected customer neighbors from the set of its nearest r neighbors (q ≤ r). New partner tours
can be created for unpaired vehicles and new tour pairs can be also generated. The PLC recourse
strategy is compared with the DTD recourse strategy. Tests were conducted using instances with
uniformly distributed customers and homogeneous demand distributions. In addition a test was
performed with real world customer location data from grocery stores in Istanbul, Turkey, but using
homogeneous demand distributions, as in the previous case. Results show better performance for
the PLC recourse strategy.

Another example of the application of TABUSTOCH (Gendreau et al., 1996b) is found in Erera et al.
(2010), where it is used to find solutions for the vehicle routing problem with stochastic demands
and duration constraints (VRPSD-DC). The solution method relies on solving an adversarial op-
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timization problem, which determines a customer demand realization that maximizes the actual
execution duration of an a priori tour, for checking if the maximum duration of a tour is respected.
The expected additional travel time due to recourse actions is computed analytically. The problem
was tested against the unconstrained version CVRPSD in 54 instances. It was found that the num-
ber of vehicles required for serving the customers increased in 22 of the instances with duration
constrains. An increment in the total expected travel time of more than 7% was observed in the
small constrained instances. In general, however, this increment was relatively small. In some
cases, as the fleet size increased, the total expected travel time decreased. This was more likely
to be observed in large instances (60 or 100 customers) with large vehicle capacity.

A generalized variable neighborhood search (GVNS) was proposed to solve the CVRP with stochas-
tic service times in Lei et al. (2012). A Clarke-Wright algorithm is used to obtain an initial solution.
The local search is driven by a variable neighborhood descent scheme. Six neighborhoods are
used, three inter-route and three intra-route. After sorting the neighborhoods in a non-decreasing
order by their cardinality, starting from the first of them, if a new solution is better than the current
one, then it replaces it. After a better solution is found, the search continues with the first neigh-
borhood, if that is not the case, it proceeds to the next neighborhood. The search stops when no
improving solution is found in the last neighborhood. The selected solution is the one with the best
improvement. The search does not consider infeasible solutions. As part of the local search there
is a granular search mechanism, which discards long edges and focuses on short edges that have
higher probability of appearing in high-quality solutions. The process is repeated following a vari-
able neighborhood search scheme. After the shaking, the local search is applied, and the resulting
local minimum is accepted if it is within a certain threshold of the current best found solution by the
previous search. Solutions are evaluated analytically by means of a closed-form expression. GVNS
was compared with variable neighborhood search and variable neighborhood descent, obtaining
better results at a higher computational cost. Five different metaheuristics were used in Bianchi
et al. (2005) to deal with the single vehicle CVRPSD: simulated annealing (SA), Tabu search (TS),
iterated local search (ILS), ant colony optimization (ACO) and evolutionary algorithm (EA). Tests
are conducted to determine if using the a priori tour distance as an approximation of the objective
function will generate better results than evaluating the solutions by means of dynamic program-
ming recursion. It is found that EA, ILS and ACO perform better with the approximation. The
TS and SA metaheuristics perform better with the evaluation by dynamic programming recursion.
In general, the metaheuristics with better performance are EA, ILS and TS. An additional test is
conducted where ILS and EA are hybridized with the 3-opt local search operator. While the local
search is based on the a priori tour distance approximation, the acceptance and selection criteria
are based on the dynamic programming recursion. Results are compared with the CYCLIC heuris-
tic, and an iterated local search that uses a 3-opt exchange neighborhood, solving the problem
as a TSP. Results show that hybridized versions of ILS and EA perform better. A hybrid heuristic
was proposed to solve the single vehicle CVRPSD in Rei et al. (2010), using exact algorithms
(local branching) and Monte Carlo sampling. This Monte Carlo local branching algorithm follows
a multidescent scheme. Different solutions obtained from the TSP formulation of the problem are
used as starting points, then local branching search phases are performed iteratively. The decision
used for the branching criteria, and in that way limiting the feasible space in a subproblem, is fixing
the maximum hamming distance relative of the solutions in the feasible space to a given reference
solution. At the first branching step, the optimal solution to the TSP, where the feasible region
is limited to the unexplored region in previous descents is used as a reference. In the following
steps it is replaced by the optimum solution to the previous subproblem and a fixed number of local
branching steps is applied.

The recourse function is approximated using scenarios. The original recourse function is replaced
by the approximation in the original problem, and the approximated problem is solved to optimality
or until a specified time limit is reached. Each subproblem is solved applying the L-shaped branch-
and-cut algorithm from Rei et al. (2007). Three types of cuts are generated by the algorithm, one
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of them is valid in all the subproblems, the others depend on the sample. A different sample is
generated for each subproblem. At the end of the complete descent a number of solutions equal
to the number of branching steps are produced. To identify the best one, each of them must be
either evaluated using the routing cost and the actual recourse function, if possible, otherwise more
sampling is required to produce an estimator of the expected total cost for each of the solutions.
The procedure is repeated a certain number of times.

Comparisons were done against results from L-shaped branch-and-cut algorithm (Rei et al., 2007)
and the Or-opt algorithm used to build a initial single route in a Route-First-Cluster-Next algorithm
(Yang et al., 2000). Computational experiments show that the algorithm is able to obtain better
results than the Or-opt algorithm and same results as L-shaped algorithm, but using less computer
time.

The MPDP is solved by a local search algorithm in Beraldi et al. (2010), where an insertion al-
gorithm is used to build the initial solution. The efficient neighborhood search takes advantage of
the previous computation of the expected objective function, which is done analytically. Moves are
evaluated taking a vertex from a tour and moving it a position forward or backwards, up to certain
level. Another option is removing a vertex from a tour and inserting it at the first position of another
tour. At every move not all the neighbors solutions have to be evaluated, just the cost should be
updated (analytically), depending the move that is performed. Equity of workload among vehicles
is computed as percentage deviation of the total cost. This aspect is just calculated and results
presented, but not considered as a constraint or extra objective in the problem. Two ways of evalu-
ating the neighboring solutions are tested. In one the expected cost is computing from the scratch,
in the second, the efficient neighborhood search is used, which is shown to be computationally
more efficient.

For the construction of the planned and operational routes in the CVRPSD with time windows,
different local search heuristics are used in Erera et al. (2009). The planned primary routes are
constructed by an insertion heuristic, which starts with m routes serving m seed customers, and
the rest of the customers are inserted one by one. Local search is used during the process to
improve the partial solution. During the construction the capacity constraints are checked, trying to
keep the probability of the solution being feasible greater than or equal to a given parameter. This is
done analytically. The assessment of the time window constraints is done by random sampling, the
probability of satisfying the time windows constraints is estimated and a solution is considered to
be time windows feasible if the probability is above certain value. During the insertion, two aspects
are considered regarding the quality of a solution, the expected travel time and expected duration
(may be different due to waiting times). A local search improvement procedure is applied. There
is a vehicle reduction procedure that tries to eliminate the routes with the shortest average route
duration. For the construction of the planned backup routes, demand scenarios are generated.
Backup routes are not actual routes, since customers assigned to them are not sequenced. For
each scenario customers not placing orders are skipped. If all routes are feasible, no information is
obtained and the next scenario is generated. If one or more routes are infeasible, then a customer
is selected randomly to be removed from the route and reinserted in the route that minimizes
the change in route quality. The process stops when the solution is feasible or when a given
number of moves have failed to make it feasible. If the solution is infeasible, then no information
is obtained, but if feasible, a local search procedure attempts to improve the solution and then
irregular customers are inserted into the solutions, starting by the ones farther from the depot. For
every scenario the route serving regular customers is recorded. Vehicles with the highest count,
not including the primary vehicle, are selected as backup vehicle.

The construction of the delivery (operational) routes follows the same strategy as selecting the
secondary routes. But for achieving feasibility, customers can be moved from its primary route to
its backup route. Service times are taken into consideration. Several aspects determine the quality
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of a solution if a feasible operational set of routes can be produced: total travel time, duration of
all routes, number of vehicles used, number of customers visited by primary vehicle. The results
of using the methodology are compared with historical data. Two days of the week are compared:
Thursdays, with the highest demand, and Mondays, with the lowest demand. For Thursdays,
the proposed delivery routes are shorter and, in addition, three fourths of historical routes are
infeasible. The proposed delivery schedules reduce the number of miles and the travel time. If the
actual requirement of the customers being visited by just a primary or backup driver is dropped,
and instead of that, any driver is allowed to visit any customer, the average total miles is reduced
by 4%. For Mondays, the improvement are more evident. Fewer routes are used. There is a cost
connected to serving regular customer just with a primary or backup driver since total miles will be
reduced by more than 8% if more drivers are allowed to serve such customers.

The problem of package delivering with driver learning was solved in two steps by Zhong et al.
(2007). In the first step the strategic decision of designing the core areas is taken. In the second
step, the cell routing is done. Here a tabu search heuristic is used to solve an assignment problem
whose objective is to minimize the cost of assigning the cells to core areas. This tabu search is
allowed to visit the infeasible region, and in addition to simple moves, compound moves are also
allowed. The probability of serving a core area within the duration of a work shift is required to be
below a certain threshold. The operational routing is done by first routing the cells within the core
areas and later adding the rest of the cells to the partial routes, at the lowest cost. More routes
are added if needed and the learning curve model is introduced. Cells closest to the depot are not
assigned to any core zone. A fixed number of core areas is used, which is taken from historical data
and is equal to the minimum number of driver used over certain period. When designing the core
zones, the objective is to minimize the expected total time (service and travel time) used to satisfy
the demand of cells in the core areas. Cells not assigned to any particular core area are also taken
into the objective as part of one additional core area with lower learning curve and higher service
time. Expected total time is approximated analytically. The operational routes are built using a
deterministic routing algorithm that incorporates, instead of a single customer, the cell concept and
the drivers’ learning curve. The performance of the tabu search heuristic is compared to a lower
bound found by solving to optimality a problem where the nonlinear constraints have been replace
by linear ones. On average, solutions found by the tabu search are 3% above the lower bound.
The approach using core areas is tested against a policy of deciding a different routing every day.
It is assumed that drivers will not reach maximum learning level on this new policy. On average
the core area model uses 4% fewer drivers and its total duration time is 4% less. If in the non-core
area model drivers are allowed to get the maximum learning level, the solution obtained represents
a lower bound. On average the core area model uses 6% more vehicles, total duration time is 7%
longer and total distance is 5% greater, compared to the lower bound, which is considered to be
good performance by the algorithm.

A local search heuristic was used to solve the CVRP with soft time windows and stochastic travel
times (SCVRPSTW) in Russell and Urban (2008). The solution procedure is a tabu search with
three phases. First, an initial solution is obtained, which is improved in the second phase by a
tabu search. In the last phase a postprocessing procedure is used to optimize the waiting times
before each customer. The initial solution is built using a deterministic tabu search with a mixed
neighborhood search procedure that uses node exchanges and edge exchanges. Waiting time is
allowed at the depot, but not at customer locations. Once the initial solution is obtained, a tabu
search heuristic that evaluate moves analytically is applied to it. This heuristic uses basically two
types of moves. One move is to remove a node from its position in route ri and inserting in route
rj (ri may or may not be different from rj). the second move is to swap the position of two nodes.
Tabu moves can be performed if they fulfill the aspiration criteria. As a diversification strategy, the
the tabu tenure is increased if solutions are found to be repeating too often. In case it happens
extremely often, the search is diversified by making random moves. The post-optimization tries to
find optimal waiting values before each customer.
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The objective function used to guide the search is a weighted sum of the objective functions. Tests
are performed using two different objective functions, 1000V +0.5D+0.5P and 1000V +D+0.2P ,
with V equal to the total number of vehicles, D the total traveled distance and P the penalties
associated to servicing customers outside their time windows. Expected penalties are computed
in closed form. Results are compared with the solution obtained in the first phase. When the first
objective was used, the stochastic travel time approach was able to reduce the number of vehicles
in 10 out of 16 instances. The total distance was reduced in 11 instances and the time windows
penalty was reduced in 12 instances. If more priority was given to the total travel distance than to
the expected penalty, as in the second objective, solutions with fewer vehicles and less distance
traveled are obtained, however the time windows penalty increased. For this case the stochastic
travel time approach was able to reduce the number of vehicles in 12 out of 16 instances, the total
distance was reduced in 14 instances and the time windows penalty increased in 12 cases.

Several local search heuristics are proposed to find solutions to the robust CVRP with uncertain
travel times (RVRP) (Solano-Charris et al., 2015). A Clarke and Wright heuristic for the RVRP,
starting by a trivial solution where each customer is visited by a different vehicle and routes are
merged in a variety of ways. A randomized version is also used where before merging two routes, a
perturbation is randomly computed. A local search procedure that uses intra-route and inter-route
moves: relocate (different versions), interchanges, 2-opt (two versions). Four other metaheuristics
are also used: GRASP, iterated local search (ILS), Multi-Start ILS and Multi-Start ILS alternating
between two search spaces, TSP tours (giant tours) and RVRP solutions. This search works on a
pair (ω, τ), where ω is a RVRP solution and τ is a giant tour obtained concatenating the routes in ω
(no copies of the depot are included). If τ ′ is obtained by perturbing τ , a split process is used and
a solution ω′ is obtained from τ ′. After applying local search to it, it is compared to ω. If better, the
latter is updated and a new giant tour is obtained.

The heuristics were tested on two sets of instances randomly generated. The first set consists of
18 small instances, with 10 to 20 customers and 2 to 3 vehicles. Results from these instances were
compared to solutions to the MILP formulation of the problem, obtained by GLPK. The second set
consists of 24 instances with 50 to 100 customers and 5 to 10 vehicles. Ten out of eighteen in-
stances were solved to optimality by GLPK. The heuristics are very close to GLPK but faster. All 10
proven optima are found and three upper bounds are improved. For the larger instances, the tests
show that the best metaheuristic is MS-ILS with giant tours, followed by MS-ILS, ILS and GRASP.

A.2.5 Constructive algorithms

The multi-compartment CVRPSD was solved by three different constructive heuristics in Mendoza
et al. (2011). One of them is a stochastic Clarke-Wright heuristic, which starting from a solution
with round trips to every customer, merges the routes that will have a better impact in the total
expected cost. The two other heuristics are different approaches of a look-ahead heuristic with
two steps. In the first, the traveling salesman problem is solved and in the second a clustering
procedure is performed. The preferred iterative look-ahead technique (pilot method) (Voß et al.,
2005) is used to avoid suboptimal moves of the greedy heuristics used in the routing step (nearest
neighbor and nearest insertion). The difference between the two different approaches is given by
the heuristic used in the routing step. For the clustering step a dynamic programming algorithm is
used. The total expected cost is calculated analytically. A stochastic 2-Opt procedure is applied as
post-optimization to the three heuristics, it evaluates the moves using the deterministic values, and
just promising moves are evaluated in terms of the stochastic values. Results from the algorithms
are compared with the results obtained by a memetic algorithm (Mendoza et al., 2010), where tests
show that even though the quality of the solution is not necessarily better, the algorithms are much
faster.
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The algorithm is also tested for the CVRPSD and compared with results reported by Christiansen
and Lysgaard (2007). The two approaches of a the look ahead heuristic algorithms were able to
find some new best known solutions, and for instances with a reported optimal solution, the three
algorithms were able to find a good solution in short time.

In Juan et al. (2011), the CVRPSD was solved by a multi-start search procedure, combined with the
Clarke-Wright heuristic, which the authors report to have behavior similar to GRASP (M.G.C. Re-
sende, 2010). However, the methodology used to solve the problem can be applied with any
efficient algorithm for the CVRP. The strategy is to use part of the vehicle capacity as a safety
stock, while the remaining capacity is used during the routing step. The CVRPSD is solved as a
CVRP and the vehicle capacity is set to the actual capacity minus the safety stock. Once the a
solution to the CVRP is obtained, Monte Carlo simulation is used to evaluate it. The reliability of the
solution is also computed as the probability of not having failures. Although no comparison is done
with other methods, the algorithm is tested on different types of instances. The only comparison is
with the best found solution to the deterministic CVRP counterpart of the problem, but measuring
the performance of the solution in the stochastic framework.

A multispace sampling heuristic (MSSH) is proposed by Mendoza and Villegas (2013) to find solu-
tions to the CVRPSD. It follows a two-phase solution strategy. In the first phase, it samples multiple
solutions. In the second phase it uses the sampled elements to build a solution. It combines a set
of randomized heuristics for the TSP, a tour partitioning procedure and a set partitioning model. In
phase one it uses a randomized TSP heuristics to build a sample of giant tours (TSP-like). From
each tour, every feasible route that can be extracted without changing the order of the customers
is added to a set of routes. The objective function value of the best found solution is used in phase
two as an upper bound. In phase two a set partitioning formulation of the problem is solved and a
solution is assembled using the routes built in phase one. The sampling heuristics are randomized
nearest neighbor, randomized nearest insertion, randomized best insertion and randomized far-
thest insertion. Results are compared to Christiansen and Lysgaard (2007), Mendoza et al. (2011)
and Goodson et al. (2012). Instance size ranges from 16 to 60 customers and the demand follows
a Poisson distribution. Goodson et al. (2012) is able to find more best known solutions, but MSSH
is more stable, since it finds solutions close to the best known solution more often.

A combination of GRASP and a heuristic concentration (HC) is proposed to find solutions to the
CVRPSD in Mendoza et al. (2015). The GRASP uses a set of randomized route-first, cluster-
second heuristics to generate starting solutions. A variable neighborhood descent procedure is
used for the local search phase. A starting solution is constructed greedily using a randomized TSP
heuristic that builds a giant tour; then a split procedure is used to get a feasible solution. A VND
procedure is later applied to the solution. Once a local optimum is found, its routes are add to a set
of routes to be used later by the HC. The route-first heuristics are similar to those used in Mendoza
and Villegas (2013). The VND has two neighborhoods, re-locate and 2-opt. The evaluation process
of the moves has three steps. First it checks the affected routes for feasibility. If not feasible, the
the move is discarded and not evaluated. If feasible, the second step evaluates the deterministic
part of the objective function. If the moves leads to a degrading solution (deterministic), then it is
discarded. If the move improves the deterministic evaluation of the objective function, the third step
consists of analytic evaluation of the objective function.

The heuristic (GRASP + HC) was tested on 40 instances of the classical CVRPSD Christiansen
and Lysgaard (2007) where demand follows a Poisson distribution. The heuristic is able to find all
the 40 best known solutions, thus outperforming state-of-art metaheuristics Goodson et al. (2012);
Mendoza and Villegas (2013) that do not succeed in finding all of them. The instances for the
CVRPSD with duration constraints were built by adding duration constraints to 39 of the instances
in Christiansen and Lysgaard (2007). Solutions found using the GRASP + HC were compared
to the solutions to the classical CVRPSD. Using 0.05 as the maximum probability of violating the
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duration constraint, just 3 out of 39 solutions to the classical CVRPSD remain feasible. On the
other hand the solutions that fulfill such constraint found by GRASP+HC increase the cost by
2.10% in average. The penalty formulation was computed in three different ways, linear, piecewise
linear and quadratic. The performance of the best known solutions to the CVRPSD, measured as
total expected overtime and the total expected overtime cost, was compared to the performance
of the solutions found by the penalty formulation of GRASP+HC. The linear penalty reduces the
expected overtime by 52.83%, the piecewise linear by 75.51% and quadratic by 93.52%. There is
an increment on the expected duration of the routes; on average it increases 0.79%, 1.89% and
4.79% respectively.

As a way to illustrate the advantages of modeling stochastic time by Phase-type (PH) distributions,
Gómez et al. (2015) uses a multispace sampling heuristic (MSSH) (Mendoza and Villegas, 2013)
to deal with the distance-constrained CVRP with stochastic travel and service times (DCVRPSTT).
This selection was done for convenience, since MSSH explores the same areas of the solution
space independently of the route evaluator being used. A route evaluator using PH distributions
and one based on normal distributions and Monte Carlo simulation are embedded into an adapta-
tion of MSSH employing a two phase solution strategy. In the first part it samples multiple solutions.
In the second phase it builds the best possible solution using parts from the sample solutions. In-
stances were adapted from the literature and for each instance three scenarios are assumed,
having a different probability distribution for the travel time on each scenario: Erlang, lognormal
and Burr distribution. The service level is the same in all cases. Two alternatives are considered
for service time: deterministic and exponentially distributed. When travel time is modeled with an
Erlang distribution, it was found that the normal route evaluation is the best choice, and the simula-
tion route evaluation, the worst. When travel time is modeled with a lognormal distribution, PH route
evaluator finds better routes, but is more computationally expensive. When travel time is modeled
with a lognormal distribution, the PH route evaluator finds better routes, normal route evaluation is
not able to find feasible solutions. In general it was found that the Normal route evaluator is a good
option when the travel times do not have a large skewness. Monte Carlo simulation lead to overly
optimistic solutions that do not satisfy the chance constraints. The PH route evaluator leads the
algorithm to find solutions with similar quality as Monte Carlo simulation, but more reliable.

A.2.6 Progressive hedging

In Hvattum et al. (2006) a dynamic CVRP with stochastic customers and demands and time win-
dows was solved using a sample scenario hedging heuristic, called dynamic stochastic hedging
heuristic (DSHH), based on progressive hedging (Rockafellar and Wets, 1991) for the CVRP. Sam-
ple scenarios are used to guide the heuristics that build a plan for each time interval. Each scenario
is solved as a deterministic CVRP using a simple insertion heuristic, common parts are used to
build a solution to the dynamic and stochastic problem. The algorithm is compared against two
different methods, a local search heuristic that solves the deterministic problem and a myopic dy-
namic heuristic that solves the problem at each stage ignoring the stochastic information. DSHH
was able to find solutions with a travel distance more than 15% shorter than the myopic dynamic
heuristic.

A.2.7 Evolutionary algorithms

A genetic algorithm is used in Ando and Taniguchi (2006) to solve the CVRP with soft time windows
and stochastic travel times. However, a detailed description of the algorithm is not presented. The
quality of the solutions is evaluated using simulation. The best found solution is compared against
the usual operation, for five days. The solution found by the algorithm performs better. The average
of the total cost was reduced by about 4%, and its standard deviation was reduced by about 75%.
Having as result a more reliable route.
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The multi-compartment CVRPSD was solved using a memetic algorithm in Mendoza et al. (2010),
where the solutions obtained by a genetic algorithm are improved by two local search procedures:
relocate and 2-opt. The reparation and fitness evaluation of the individuals in the population is
performed in an analytic way through stochastic split (s-split), which is an extension of the Prins
algorithm (Prins, 2004). The results obtained by the memetic algorithm were compared with the
stochastic Clarke-Wright, where all possible merges are recalculated at each iteration, and with a
spare capacity strategy, which consists of solving the deterministic version of the problem (using
a memetic algorithm in this particular case), but preserving some free capacity on each compart-
ment. The proposed memetic algorithm is shown to find better solutions; however, it is more time
consuming. The algorithm was also tested on a set of instances for the multi-compartment CVRP,
and the results were compared against a tabu search and a memetic algorithm reported by Fallahi
et al. (2008). Some new best solution were obtained and on average, results show a gap of about
1% with respect to the best known solutions.

A multi-objective CVRPSD was solved using a multi-objective evolutionary algorithm in Tan et al.
(2007). The quality of a solution is computed by means of a route simulation method, where
several sets of demands for all customers are generated. The solution is evaluated on each set
and an average value is obtained for each objective. The obtained averages are used to rank the
solutions based on the Pareto dominance concept, using for this purpose the expected values of
the objectives.

In Zhang et al. (2012), the stochastic travel-time CVRP with simultaneous pick-ups and deliveries is
solved using a scatter search heuristic, with the initial set of solutions created using a variant of the
Clarke-Wright algorithm. In this problem the chance constraints (time limit constraints) are trans-
formed into fixed constraints and the problem can be solved as deterministic problem. The results
are compared against results obtained by a genetic algorithm, the proposed algorithm produce
solutions that are on average up to 13% better than the genetic algorithm.

A memetic algorithm with population management was used to deal with robustness and flexibil-
ity of the CVRP with stochastic demands and travel cost, and the VRP with stochastic customers
(Sörensen and Sevaux, 2009), respectively. The algorithm consists of a genetic algorithm hy-
bridized with two versions of tabu search that are used alternatively. The diversity of the population
is controlled with a distance measure. This allows the population to be small, but keeps it diverse.
The edit distance that measure the number of steps (add character, remove character, substitute
character) that would be performed in one solution to become another, is used to measure the
average distance between a solution and the population. The distance is required to be above a
certain threshold, before the solution is added to the population. The threshold is decreased to
intensify the search and it is increased again when the search is stuck in a local optimum.

The two tabu search heuristics are insert tabu search, and swap tabu search. The former attempts
to insert any customer at any other tour and the latter attempts to swap any pair of customers in
the solution. Robustness evaluation was used in the binary tournament of the genetic algorithm
(by simulation), however it was not used in the tabu search procedures, where the deterministic
objective function is used to select the next move. It was found that robust solutions to the CVRP
with stochastic demands and travel cost will have a good deterministic objective function value, the
reverse is not always true. For the CVRP with stochastic customers, it was found that the robust
approach is not profit maximizing, since the best solution to the deterministic problem, when all
customers require the service, is likely to be also the best solution to the problem with a reduced
set of customers.

The SCARP was solved by a process consisting of two parts (Fleury et al., 2002, 2005b), opti-
mization and robustness evaluation. The optimization is done by a genetic algorithm that uses a
local search as a mutation operator, designed for solving the deterministic CARP (Lacomme et al.,
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2001), but not all solutions are subject to local search. The algorithm stops after a specific number
of iterations, or after a certain number of iterations with no improvement or when reaching a lower
bound. If the lower bound is not reached in the main phase, several short restarts are performed
with a higher probability for the solutions to be subjected to a local search procedure. Such pro-
cedure performs best-improvement moves and stops when no more improvements are available.
Local search moves include removal of one or two consecutive edges (that require service) from
a route, and reinsertion in another position, exchange of two edges, and 2-opt moves. The ro-
bustness evaluation is done to the best solution found by the optimization process. It consists of
a statistic evaluation of performance indicators such as the average cost, average number of trips,
percentage of solutions requiring extra trips to the depot, standard deviation of the total cost and
standard deviation of the total number of trips.

For statistical purposes, the solution is evaluated in several independent scenarios. The optimiza-
tion part is done using three different approaches, tight and slack. In both cases the deterministic
problem is solved using the expected values of the demands as parameters. In the slack ap-
proach, just a percentage of the vehicle’s capacity is utilized when making routing decisions. The
slack approach shows reduction of the variability, if compared with the tight approach.

In addition to the tight and slack approaches, a memetic algorithm where the objective function is
computed analytically was used in Fleury et al. (2004), a similar approach was called law in Fleury
et al. (2005a). In the law approach, two objective functions are considered to be minimized: the
average cost of the solution and the average cost plus a fixed constant multiplied by the standard
deviation of the cost. Even though different instances were used in Fleury et al. (2005a) and Fleury
et al. (2005a), the results are similar. The law approach, when the average cost is minimized, pro-
duces solutions with less variability than the tight approach, but not as good as the slack approach.
However, when it uses as objective function the average cost plus a fixed constant multiplied by
the standard deviation of the cost, it generates solutions with less variability.

A.2.8 Other nature-inspired heuristics

In Marinakis et al. (2013), The CVRPSD was solved by particle swarm optimization, a methodology
based on simulating the social behavior of swarming organisms. The method includes some other
heuristics, since in addition to the particle swarm, it also uses path relinking and local search (2-
opt and 3-opt). Thus, in some sense it can be viewed as a multi-descent algorithm. In the model
of the problem it was assumed that route failures could be avoided by the “optimum choice” of a
threshold value to decide whether to travel to the depot for preventive restocking or not. The fitness
of a solution is deterministic and evaluated analytically. The results are compared against results
obtained by two other evolutionary algorithms, and the particle swarm optimization heuristic was
able to outperform them.

The single vehicle CVRPSD was solved using Cross Entropy (CE) method by Rubinstein (1999) in
Chepuri and Homem-de Mello (2005). This method considers that the actual optimization problem
is connected to a problem of estimating rare-event probabilities. The idea behind CE is to see the
selection of the optimal solution as a rare event. At every iteration a set of routes are generated
according to transition probabilities, the cost of the routes is evaluated and probabilities are updated
depending on that cost. For the CVRPSD the algorithm starts from an initial transition matrix so
any route has the same probability to be generated, and a set of routes is generated. The routes
are then evaluated using a demand sample, which is the same for each route. The best route so
far is kept and compared to the one generated at each iteration. If no improvement are achieved
for a given number of iterations, the algorithm stops.
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Lower bounds and exact solutions are computed and several type of analysis are done for differ-
ent cases: demands are IID and penalties are identical; demands are IID and penalties are not
identical; demands are non-IID and penalties are identical; demands are non-IID and penalties are
non-identical. If demands are IID, the expected cost can be computed analytically. If demands are
non-IID, expected cost of going back to depot is ignored and a lower bound is obtained for the total
cost. Demands are drawn from the same family of distributions, but the parameters depend on the
node. A lower bound is also obtained for the case where demands nor non-IID and the penalties
are non-uniform. For IID demands, the algorithm is compared with results of a branch-and-bound
technique using the ILOG SOLVER 4.4. In most of the cases the algorithm is able to find solu-
tions within 5% of the optimal solution. Solver is not able to find exact solutions for more than 16
nodes. For non-IID demands and uniform penalties, a lower bound of the problem is found by ILOG
SOLVER 4.4. For tighter problems (the total demand is close to total capacity), values are closer
to the lower bound. For non-IID demands and non-uniform penalties, no lower bound is available,
but a similar conclusion is obtained regarding solution quality of tighter problems. In elite sampling,
some randomly generated routes are replaced by the best routes found so far, which improves the
performance of the algorithm.

Ant colony optimization is used in Woensel et al. (2007) to solve the routing problems with time-
dependent travel times. A 2-opt procedure is used together with a mechanism that splits the tours
by adding a depot between two customers. This is done until no improvement is achieved or
the maximum number of trucks is reached. In addition, the starting time may be shifted if that
represents an improvement. The quality of the solutions obtain was compared with the quality of
the solutions when just the total distance is minimized. In addition, explicit enumeration is done
for small instances to validate the approach. Tests are done using both objective functions: with
and without variance of the travel times (except for complete enumeration which does not include
the variance in the objective function.) The algorithm was tested in 28 instances from the literature
with 32 to 100 customers in addition to the depot. On average there is a reduction of 22.2% in the
travel time. For tests of the second objective function, the roads are randomly selected to have
either a high or low coefficient of variation: 50% of roads have high and 50% low. The coefficient of
variation of the travel time decreased on average 54.30% with a weight associated to the variance
in the interval [0, 0.1]. The cost of that reduction is an increment in the average travel time of
27.87%. In the tests, the fleet size is considered unlimited.
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Abstract

This paper introduces a new problem to the VRP literature, a multi-objective stochastic opti-
mization problem labeled the Capacitated VRP with Route Balancing and Stochastic demand.
Extending the VRP with route balancing with random elements leads to modeling choices, that
are discussed in the paper. We develop a solution methodology, the stochastic multi-objective
GRASP (SMGRASP), based on a multi-objective GRASP algorithm. Computational experi-
ments are performed, showing favorable results, compared to a method developed for a similar
problem. Both in-sample and out-of-sample stability tests were conducted.

Keywords: Multi-objective VRP, Stochastic VRP (SVRP), GRASP

1 Introduction

The well known capacitated vehicle routing problem (CVRP) is defined over an undirected graph
G(V,E), where V = v0, . . . , vN is a set of vertices and E = (vi, vj) : vi, vj ∈ V, i < j is a set of
edges. There is a symmetric matrix C = [cij ] that correspond to the travel costs along edge
(vi, vj). Vertex v0 represents the depot where there is a homogeneous fleet of m vehicles with
capacity Q. A set of customers V \ v0 with a non-negative known demand di must be served. A
solution to the CVRP consists of m delivery routes. These routes must be designed to ensure that
each route start and end at the depot. Each customer must be visited once by exactly one vehicle.
The summation of the demands of the customers in the same route, must be less than or equal to
the vehicle’s capacity. A different approach where the demand corresponds to items that must be
collected from the customers leads to an equivalent problem. The classic objective is minimization
of total route cost (Toth and Vigo, 2002).

In the real world one or more of the elements in a routing problem can be uncertain. Different
formulations try to deal with such uncertainty by including stochastic parameters in the model. Ve-
hicle routing problems (VRP) that consider uncertainty including stochastic parameters are called
stochastic VRP (SVRP). In the SVRP literature it is possible to find different examples of param-
eters used to model the uncertainty. These include the demand, customers, travel times, service
time and travel costs. The demand is currently the most studied stochastic parameter in SVRP
(Gendreau et al., 1996, 2014). When the stochastic problem takes into consideration the capacity
constraint of the vehicles is possible to call it stochastic CVRP (SCVRP).

In the SVRP the decision maker (DM) must choose a solution (at least partially) before the exact
values of all parameters are completely known. This solution is called a priori solution. Once
the a priori solution is implemented, some constraints may be violated when (part of) the actual
parameter values are realized, e.g. the total realized demand of a planned route may actually
exceed the vehicle’s capacity. In this case, it is said that the solution (or the route) “fails”. There are
two common ways of modeling stochastic problems: as a chance constrained program (CCP) or
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as a stochastic program with recourse (SPR). In the first case, the problem is solved ensuring that
the probability of route failure is below a certain level and the cost of failures is typically ignored
(Gendreau et al., 1996; Tan et al., 2007). In the latter case, route failures are allowed, but the DM
must define a recourse policy, describing what actions to take in order to repair the solution after
a failure. The expected transportation cost (travel cost of a priori solution + recourse policies cost)
is optimized. SPR is more difficult to solve, but objectives are more meaningful (Gendreau et al.,
1996).

Traditionally, in a SCVRP, the expected total transportation cost is minimized. This may produce
substantial differences between the route lengths. In some industries the income of the driver
may be affected by the traveled distance, this could be seen as unfair by the drivers. In addition,
the fact of all not having the same workload can generate problems among them or between
drivers and DM, affecting their welfare. In some settings, drivers are considered to be an arena
of competition among the transportation companies, making their welfare a significant issue (Lee
and Ueng, 1999). Generally, differences in route length are described by route balance measures,
which may be subject to constraints or may be treated as second objective in addition to total
distance.

Including the route balance in the SCVRP may describe a problem closer to real-life. This paper
deals with a bi-objective vehicle routing problem with stochastic demands, where the balance of
the expected route lengths is included as an objective in addition to the traditional minimization
of the total expected transportation distance. The route balance is measured as the difference
between the longest and the shortest expected route length. If the adopted recourse policy is
to have the vehicle return to depot to reestablish capacity, one realizes that route failures may
also affect route balance. As a consequence, some additional modeling choices must be made
regarding the route balance, once stochastics enter the problem. We discuss this particular issue
in section (2.3).

The deterministic version of this problem (where demands are not stochastic) is known as the
capacitated vehicle routing problem with route balancing (CVRPRB) (Jozefowiez et al., 2007b,
2009; Oyola and Løkketangen, 2014). The extended version of the problem considered here is
the capacitated vehicle problem with route balancing and stochastic demands (CVRPRBSD). In
practice, the consideration of route balance is relevant since due to drivers agreements, legal
restrictions or fairness, the drivers’ workload might become an important aspect to be considered
by the decision maker when doing the transportation planning.

Several approaches have been used to deal with the VRPRB. These approaches involve evolution-
ary algorithms, either combined with tabu search (Jozefowiez et al., 2002, 2007b) or with additional
diversification strategies (Jozefowiez et al., 2009). In Oyola and Løkketangen (2014), an algorithm
based on the GRASP metaheuristic was proposed.

For the case of the CVRPSD a wider range of approaches have been used, e.g exact methods
(Hjorring and Holt, 1999; Laporte et al., 2002; Rei et al., 2007; Christiansen and Lysgaard, 2007;
Gauvin et al., 2014; Jabali et al., 2014), dynamic programming (Yang et al., 2000; Secomandi
and Margot, 2009; Secomandi, 2000; Zhu et al., 2014; Secomandi, 2003), rollout algorithm (Sec-
omandi, 2001), tabu search (Haugland et al., 2007; Ak and Erera, 2007; Bianchi et al., 2005),
simulated annealing (Bianchi et al., 2005), iterated local search (Bianchi et al., 2005), ant colony
optimization (Bianchi et al., 2005), evolutionary algorithm (Bianchi et al., 2005; Mendoza et al.,
2010; Tan et al., 2007), local hybrid heuristics (Rei et al., 2010), local search heuristic (Erera
et al., 2009), constructive heuristics (Mendoza et al., 2011), cross entropy (Chepuri and Homem-
de Mello, 2005).
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The literature on multi-objective stochastic CVRP is on the other hand scarce. A multi-objective
approach to the CVRP with stochastic demands (CVRPSD) was formulated in Tan et al. (2007).
Three main objectives are minimized: the total travel time, the number of vehicles and drivers re-
muneration. An evolutionary algorithm was used to deal with that problem. In Juan et al. (2011)
the CVRPSD is not explicitly presented as a bi-objective problem, but a tradeoff between the total
expected cost and the probability of the solution suffering a route failure (reliability) is taken into
consideration. This problem was solved as a single-objective problem using a multi-start search
procedure, combined with the Clarke-Wright heuristic. An extension of the CVRP including loca-
tion, allocation and routing under the risk of disruption is introduced in Ahmadi-Javid and Seddighi
(2013). Location decisions are connected with potential producer-distributors with random capac-
ity due to disruptions. Customers with known, non-negative demands, must be allocated to a
producer-distributor. The vehicles serving the customers may suffer disruptions. The problem is
not entirely treated as a multi-objective. The decision maker is presented with three different so-
lutions: one obtained by minimizing the expected cost (moderate risk level), the second one by
minimizing the conditional value-at-risk (cautious) and the third solution is obtained by consider-
ing the the worst case value for the stochastic parameters (pessimistic). A local search heuristic
including simulated annealing and a 2-opt procedure was proposed for solving the problem. A
multi-objective CVRP with soft time windows and stochastic travel times (SCVRPSTW) is found in
Russell and Urban (2008). In the SCVRPSTW three objectives are taken into consideration, the
minimization of the number of vehicles, the total traveled distance and the total expected penalties
for earliness and lateness in the service. A tabu search heuristic is used to find solutions to the
problem.

To the best of our knowledge two different versions of multi-objective CVRPSD have been previ-
ously studied. In Tan et al. (2007) the solutions are evaluated through simulation and the objectives
are treated independently. In Juan et al. (2011) the solutions are evaluated in a deterministic way,
since the problem solved is a deterministic transformation of the original, the best found solution
is the one evaluated using simulation. The problem in Tan et al. (2007) is the closest to the CVR-
PRBSD, since the objectives in both problems can be somehow assimilated to one another. The
travel time can be assimilated to the travel distance. In the CVRPSD, the number of vehicles and
the travel distance (travel time) are positively correlated (Yang et al., 2000; Tan et al., 2007), so if
the total distance is optimized, as in the CVRPRBSD, one could say that the number of vehicles
is implicitly optimized. In Tan et al. (2007) the drivers remuneration is increased if the length of
his/her tour is greater than a given value B, which is connected with the route balance, since it is
expected that long routes would be avoided.

In this paper, a new algorithm is proposed to find solutions to the CVRPRBSD, it is a variant of a
greedy randomized adaptive search procedure (GRASP) (Resende and Ribeiro, 2003, 2010) that
includes an new insertion strategy. The GRASP metaheuristic has been previously used in solving
multi-objective problems, e.g. knapsack and rule selection (Reynolds et al., 2009; Vianna and
Arroyo, 2004) and CVRPRB (Oyola and Løkketangen, 2014). Obtained results will be compared
with the results of an implementation of the evolutionary algorithm in Tan et al. (2007), which will
be hereafter referred to as as TAN.

Following the spirit of the ruin and recreate heuristic (Schrimpf et al., 2000), the constructive phase
of the GRASP procedure starts from a partially built solution. This initial partial solution is obtained
using the common parts of two previously found solutions (ruin). A GRASP procedure is then ap-
plied to complete the solution (recreate). This process is called the greedy randomized adaptive
search procedure with advanced starting point (GRASP-ASP) (Oyola and Løkketangen, 2014). A
traditional GRASP procedure, starting from an empty solution, is also applied in an effort to diver-
sify the set of solutions. The effectiveness of an insertion strategy based on the distance from the
depot to the customers and the use of a virtual capacity during the planning process are evaluated.
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The two objectives are treated independently and the quality of the solutions is evaluated by using
sample average approximations. The implemented algorithm is a modification of GRASP-ASP
(Oyola and Løkketangen, 2014) and will be hereafter referred to as the stochastic multi-objective
GRASP (SMGRASP).

The rest of the paper is organized as follows: in Section 2 a discussion on modeling issues is
presented, the algorithm used to deal with the problem studied here is described in Section 3,
tests results and conclusions are presented in sections 4 and 5 respectively.

2 Model discussion

A formal mathematical model of the (deterministic) CVRPRB can be found in e.g. Oyola and
Løkketangen (2014). Introducing stochastic demands means that the demanded quantity of cus-
tomer i is modeled by a random variable ξi, whose value ξi is only revealed after the routes are
planned. In the following we use boldface symbols (e.g. ξ) to denote a random variable, while a
realized value for ξ is denoted by ξ.

The transition from a deterministic to a stochastic problem forces a number of modeling choices to
be made. Let us first of all make sure it is understood that the CVRPRBSD is a bi-objective SVRP
problem, so a solution to the CVRPRBSD is a set X of SVRP solutions x. Each SVRP solution on
the other hand, is a set of planned routes, that may fail on execution, leading to a recourse action.
The set X will normally be an approximation to the Pareto set of the bi-objective problem (or it can
theoretically be the exact Pareto set). However, to make sure these concepts are meaningful, we
need to make several modeling choices. Some choices are related to the individual SVRP problem:
probability distributions, objective functions, recourse policy. One choice is linked to the bi-objective
nature of the problem: the choice of a domination concept for comparing SVRP solutions. Finally
there are choices regarding the computational framework, notably how to approximate objective
function values when the exact computation becomes prohibitive.

2.1 Probability distribution

From a modeling perspective, any probability distribution leading to positive values can be used
for the demand vector ξ. For our computational experiments, we use Binomial distributions, mainly
because it allows us to use integer demands without making any kind of approximation. We also
suppose the random variables representing demand are independent. However, the algorithm can
be used and tested on any other distribution.

2.2 Recourse

An SVRP solution x in this problem suffers a route failure if the accumulated demand of the cus-
tomers on a route turns out to exceed or reach the vehicle capacity. The recourse policy (or action)
is to reroute the vehicle to the depot to refill, and to resume service at the customer where failure
occurred, in case the vehicle capacity has been exceeded. The vehicle resumes the service at
the customer following the one where the failure occurred when the capacity is not exceeded but
reached.

In general there is a desire to consider more sophisticated recourse policies in SVRP. However
the “detour to depot” recourse policy is widely used in the literature, and secondly the topic of this
research (Multi-objective stochastic VRP) is not the first place to start if one wants to experiment
with more complex recourse policies.
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We note however, that the proposed recourse policy does imply that randomness in the demands
directly influences on both objectives (distance and route balance). Moreover, we note that a route
failure will always make the affected route longer. This means on execution, the total distance
of the VRP solution will increase, while the route balance may increase, decrease or remain un-
changed.

2.3 Objectives

The two objectives to be defined are (i): expected total distance (cost) C(x), (ii): expected route
balance, R(x), both including recourse effects. Here, x denotes a single solution, a set of planned
routes for the vehicles. While it is obvious what the total distance means in this problem, it is not so
for the expected route balance. In a deterministic CVRPRB, (see e.g. Jozefowiez et al. (2009)), the
route balance is simply the difference between the longest and the shortest route. However, taking
the expected value of this is not the only option. In fact we shall adopt an alternative definition of
route balance following the discussion below.

There are two fairly natural choices for route balance in an SVRP, with somewhat different mean-
ings. To explain, let ξ represent the random demand vector, and let ξ denote a particular realization
(a demand scenario). Then we have two basic options.

• For a given scenario ξ, let di(x, ξ) denote the distance traveled by vehicle i under that sce-
nario. The inter-scenario route balance RIS(x) is simply the expected value over all scenar-
ios of the maximal difference between di(x, ξ) values:

RIS(x) = E [ max
i,j

(di(x, ξ)− dj(x, ξ)) ] .

This is what one might intuitively think of if we say “make a stochastic CVRPRB model”.

• Alternatively, for each vehicle i, let Di(x) be the expected distance over all scenarios, i.e.
Di(x) = E [ di(x, ξ) ]. Now define the inter-vehicle route balance RIV (x) as the difference
between the maximal and minimal Di(x) value over all vehicles, in short

RIV (x) = max
i,j

(Di(x)−Dj(x)) = max
i,j

(E [ di(x, ξ)− dj(x, ξ) ]

An interpretation: For a given solution x, the RIS(x) measures average maximal day-to-day differ-
ence in workload, while RIV (x) measures the maximal difference in average workload between ve-
hicles (drivers). By considering the order of maximization, is possible to see that in general,

RIV (x) ≤ RIS(x) ,

and that they are equal only if there are two fixed vehicles i, j that have maximum and minimum
distance in all scenarios respectively. For driver fairness issues, one may argue that the RIV

is the better of these two, since it measures the average workload difference between vehicles
(drivers).
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Thus for the remaining part of the paper, we adopt the following two objectives to be minimized in
a bi-objective sense,

expected total distance (cost) C(x),

expected route balance R(x),

where R(x) = RIV (x) is the inter-vehicle route balance as defined above.

2.4 Multi-objective stochastic optimization

In a multi-objective optimization problem (MOP) several functions are optimized (minimized or max-
imized) subject to a common set of constraints. Without loss of generality the MOP can be treated
as a minimization problem. A general formulation of a bi-objective problem is

min
x

(f1(x), f2(x))

subject to gj(x) ≤ bj , j = 1, . . . ,K ,

where x is a vector of decision variables. The minimization problem is interpreted in the sense that
the solution to the problem is the Pareto set (the non-dominated solutions).

A stochastic multi-objective problem (SMOP) arises when some parameters of the problem are
stochastic. A SMOP can be formulated at different levels of generality and abstraction; denoting
the random data by a vector ξ, and assuming that objectives as well as constraints depend on ξ,
we could mimic the above, and write a bi-objective problem as follows.

min
x

(f1(x, ξ), f2(x, ξ)) (1)

subject to gj(x, ξ) ≤ bj(ξ), j = 1, . . . ,K . (2)

In this formulation however, we immediately run into further need for interpretation. In general it is
no longer clear in (1) what “min” means, as different values of ξ may have different minimizing x.
The fundamental concept of a solution x dominating another solution y can accordingly be given
a number of different meanings. In addition, there will typically not be any x satisfying (2) for all
realizations of the random data. Two common ways to deal with this is to either (i) define a recourse
policy telling how to deal with violations of constraints, or (ii) accept solutions x with a small proba-
bility of violating the constraints. Additional technical issues regarding e.g. measurability may call
for restrictions on what probability distributions one uses for ξ. See Abdelaziz (2012), for further
discussion of SMOP in general.

In this paper, we have a SMOP that can be formulated more neatly as

min
x

(C(x), R(x)) (3)

subject to gj(x, ξ) ≤ bj , j = 1, . . . ,K (4)

where (4) are identical to those of the deterministic variant (Oyola and Løkketangen, 2014), with
the exception that capacity constraints now depend on random demand, ξ. The objectives are the
expected cost and the expected inter-vehicle route balance as outlined in section 2.3. The problem
is further specified by the use of a recourse action as described in section 2.2, and the expected
recourse cost is included in the objectives.

Essays on stochastic and multi-objective capacitated vehicle routing problems

116



2.4.1 Dominance and the Pareto set

The form of the problem (3),(4) where the objectives do not explicitly depend on ξ allows a rather
uncomplicated definition of dominance, i.e. we will say a solution x dominates another solution y,
if

C(x) ≤ C(y) and R(x) ≤ R(y) , with at least one strict inequality. (5)

In absence of the strict inequality, we will say that the solution x weakly dominates the solution
y (Knowles, 2002). A solution x is non-dominated if no other solution dominates x. The Pareto
set PS of the problem consists of all non-dominated solutions. The set PS can be considered to
represent the “optimal” solution to the SMOP problem. For realistic problem instances, determining
PS is computationally infeasible, and by a solution to the SMOP, we will mean a set PSappr of VRP
solutions x, which is assumed to represent an approximation to PS. When comparing algorithms A
and B for solving the SMOP, we write PSappr(A), PSappr(B), for the best approximations produced
with the two.

2.5 Computational approach

In the proposed model, customer demands are represented by independent random variables,
with a particular probability distribution. The objective functions are expected values of rather
complicated functions of these variables. We have not found any workable way to obtain exact
expressions for the objective function values C(x), R(x) based on parameters of the random data
ξ. Thus, to evaluate C(x), R(x) approximately, we need to use the method of Sample Average
Approximation (SAA), where objective function values are approximated by the average values
computed on basis of a number n of demand scenarios. Since we then operate with estimates of
objective values, we need to make sure our solution methods in combination with the SAA produces
reliable objective values for the whole set of solutions in a Pareto set approximation PSappr. The
use of the SAA makes it necessary to discuss certain stability issues for the SMOP algorithms and
the chosen computational framework, as well as performing computational tests to establish the
desired stability. This is deferred to section 4.4.

3 An algorithm for solving the CVRPRB with stochastic demands

The greedy randomized adaptive search procedure (GRASP) is an iterative metaheuristic (Re-
sende and Ribeiro, 2003, 2010) consisting of two phases: construction and local search. At every
GRASP iteration a solution is built (a repair procedure can be applied in case of infeasibility), once
a feasible solution is obtained, a local search is performed, until a local optimum is found. In the
single objective approach, the solution is built by including, one at the time, elements to be part of
it. At every stage of the construction process, all the candidate attributes that could be included
in the solution at the current step are evaluated using a greedy approach. A list, known as the
restricted candidate list (RCL), is created with the elements that have a higher performance ac-
cording to the previous evaluation. The element to be added to the current solution is randomly
selected from the RCL (Resende and Ribeiro, 2010). The process is repeated until the solution is
completed, updating at every step the evaluation, list of candidates and RCL.

The proposed algorithm (SMGRASP) is an iterated process based on GRASP. The algorithm first
finds two initial solutions. Each of them is found when optimizing every objective individually.
Given two solutions x and y ∈ PSappr, if there are more solutions in PSappr representing a tradeoff
between x and y, such solutions may share attributes with x and/or y. The level of shared attributes
with one or another solution may depend on which objective the tradeoff is favoring. Based on that
expectation more solutions are generated starting from the shared elements in the initial solutions.
In addition, more solutions are built using SMGRASP, but without considering the shared attributes,
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but taking into account the dominance criteria. This is done as a way to introduce more diversity into
the search. Once a solution is built, it is then subject to a local search procedure using a modified
Or-opt. The building process (construction phase + local search) is iterated for a given number
of times (Gmax). The entire procedure is repeated, until a maximum running time is reached or a
maximum number of repetitions(Grep), using the β most different pairs of solutions. The repetition
of the process attempts to find better solutions and improve the current PSappr.

3.1 Construction phase

Solutions are constructed either using a half built solution as initial solution of the construction
process or using an empty solution. Two types of solutions are built starting from an empty solu-
tion: single objective solutions and bi-objective solutions. Only two single objective solutions are
built, one for each objective and at the beginning of the process, these solutions will be called
initial solutions. The bi-objective solutions, on the other hand, are built considering both objective
functions.

In case the solutions become infeasible during the construction phase a penalty (pinf ) is multiplied
by the excess capacity and added to each of the objective function values. A repair mechanism is
applied to infeasible solutions, which through insertion moves tries to make the solution become
feasible.

3.1.1 The distant customer priority (DCP) insertion strategy

In a CVRPSD is expected that route failures not far from the depot will be less costly than failures
occurring far away. A good route may be characterized by the vehicle visiting some customers
near the depot in its way to visit customers located far away and then returning to the vicinity of the
depot where other customers are visited in the way back to the depot. In case of having a route
failure, this feature increases the probability of having it near to the depot.

The SMGRASP heuristic may tend to build the solutions assigning first the customers located near
the depot and then moving gradually to those farther away. This may lead sometimes to solutions
that do not qualify as good solutions according to the characteristics given previously. A strategy
has been implemented to force the algorithm to first allocate in the routes the customers located far
away from the depot. The rest of the customers, located in the vicinity of the depot, are expected
to be allocated either at the end or at the beginning of the routes.

The strategy applies either if the building process starts from partially built solutions or from an
empty solution. First, all customers to be allocated are sorted by distance to depot. If the number
of such customers is ca and dp ∈ (0, 1] represent a DCP parameter, the number of customers
considered for insertion can be defined as Mp= ca· dp. Then a random number mp between 0 and
Mp is generated. The mp most distant customers are considered by SMGRASP for insertion.

Let be Sp the set of customers considered by SMGRASP for insertion. It initially contains the mp

most distant customers to the depot. SMGRASP selects from Sp a customer i and inserts it into
the solution. Customer i is removed from Sp. As long as there are non-inserted customers not in
Sp, the most distant of these replaces customer i in Sp. The insertion process continues until Sp is
empty.

The DCP insertion strategy is not used every time that SMGRASP builds a new solution. DCP
is used by SMGRASP with probability 0.5, when building a solution. The effect of using DCP is
discussed in Section 4.6.1.
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3.1.2 Construction of initial solutions

The two initial solutions are constructed by SMGRASP using on each case one of the objective
functions of the problem. Algorithm 3.1 describes the procedure.

Algorithm 3.1: CONSTRUCTION INITIAL SOLUTIONS(α, f1, f2, . . . , fm :
objective functions)

Let α be the algorithm parameter
Let S be the set of solutions constructed by the algorithm
S← ∅
for r ← 0 to m

do S←S∪SINGLE OBJECTIVE SGRASP(fr, α)
return (S)

In Algorithm 3.2 the function initialize(Cl) finds all possible insertions for the available customers
and creates a list of pairs or attributes (i, k) consisting of a customer and a tour for possible in-
sertion. The available customers depend on two aspects, the first is that customer must not be
included in the solution yet. The second aspect depend on the DCP strategy explained in Section
4.6.1, since not all customers may be available for insertion, even though they are not part of the
solution. The list of all attributes (i, k) is evaluated by function evaluateInsertions(Cl, fr), for every
attribute it computes how much will the objective function fr increase if customer i is inserted in
tour k. In case fr decreases the value will be negative.

The function random(a) will select randomly an attribute (i, k) from the RCL. All attributes in RCL
have the same probability of being selected. Once the solution is built, the feasibility is checked
and in case of being infeasible a repair mechanism is applied by using function the repair(s). This
mechanism uses simple insertion moves looking to reduce/eliminate the infeasibility. A maximum
of 100 moves are performed, in case no feasible solution, the solution is discharged. Once all
iterations are performed, the best found solution is identified by the function findBestSol(U , fr),
which select from U the solution with the best value for the objective function fr.
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Algorithm 3.2: SINGLE OBJECTIVE SGRASP(fr, α)

Let c(ai) be the fitness of attribute ai
Let Cl be the list of attributes including customers not assigned yet
Let Gmax be the number of SGRASP iterations
Let U be the set of constructed solutions
U ← ∅
j ← 0
while j < Gmax

do





s← ∅
initialize(Cl)
evaluateInsertions(Cl, fr)
while Cl 6= ∅

do





cmin ← min{c(a)|a ∈ Cl}
cmax ← max{c(a)|a ∈ Cl}
RCL← {a ∈ Cl|c(a) ≤ cmin + α(cmax − cmin)}
ā← random(a)|a ∈ RCL
s← s ∪ {ā}
update(Cl)
evaluateInsertions(Cl, fr)

if infeasible(s)
then

{
repair(s)

if feasible(s)

then
{
s← OrOpt(fr, s)
U ← U ∪ s

j ← j + 1
s← findBestSol(U , fr)
return (s)

3.1.3 Construction of bi-objective solutions

At every iteration of the process, the common elements in the β most different pairs of solutions
are used as the partially built solutions. In case the current number of possible pairs is less than
β, all pairs are used. A matching procedure (Ho and Gendreau, 2006) is performed to every
pair and the number of common elements in every pair is recorded. Solutions with less number
of common elements are considered to be more different. New solutions are built starting from
partially built solutions, by adding attributes, one at the time. Every candidate Aj represents the
insertion of customer i in a tour k. The selection of the attributes to be added to the partial solution
requires an evaluation of all attribute candidates. This evaluation is performed using a Pareto
rank (Mateo and Alberto, 2012; Zitzler et al., 2001), which takes into consideration the Pareto
dominance concept.

For every candidate or possible insertion Aj , its impact on both objective functions is evaluated.
Each candidate Aj is compared with all the others to compute how many of them are dominated by
Aj . This corresponds to the strength value, S(j) ∀j ∈ {1, 2, . . . , T}, where T is equal to the actual
number of attribute candidates.

The raw fitness is computed for every candidate:

R(j) =
∑

t:At≺Aj

S(t) ∀t ∈ {1, 2, . . . , T} (6)
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Non-dominated candidates will have a raw fitness equal to zero. It may happen that several candi-
dates have the same raw fitness. To be able to rank these candidates a density D(j) is computed.
D(j) is computed as a decreasing function of the Euclidean distance of the candidate Aj to the
k-nearest neighbor. The density will always lie in the interval (0, 1) and it is defined as

D(j) = 1/(dk + 2), (7)

where dk is the distance to the k-nearest neighbor.

The performance of each candidate will be measured by the fitness F (j) = R(j) + D(j). The
RCL is built with the α fraction of the candidate attributes that show a higher performance (lower
fitness).

For every pair of solutions selected for SMGRASP a maximum of Gmax solutions is built. If the
initial number of customers to be inserted into the partial built solution is lower than Cmin, then the
number of built solutions will be equal to the factorial of the initial number of customers. Algorithm
3.3 describes how the construction is performed.

Algorithm 3.3: BI-OBJECTIVE SMGRASP(s1, s2, α)

Let s1 and s2, be two solutions to the problem
Let c(ai) be the fitness of attribute ai
Let Cl be the list of attributes including customers not assigned yet
Let Gmax be the number of SMGRASP iterations
Let U be the set of solutions built from 2 starting solutions
A1 ← {(i, k)|(i, k) ∈ s1}
A2 ← {(i, k)|(i, k) ∈ s2}
U ← ∅
j ← 0
while j < Gmax

do





s← A1 ∩A2

initialize(Cl)
paretoRanking(Cl)
while Cl 6= ∅

do





cmin ← min{c(a)|a ∈ Cl}
cmax ← max{c(a)|a ∈ Cl}
RCL← {a ∈ Cl|c(a) ≤ cmin + α(cmax − cmin)}
ā← random(a)|a ∈ RCL
s← s ∪ {ā}
update(Cl)
paretoRanking(Cl)

if infeasible(s)
then

{
repair(s)

if feasible(s)

then
{
s← biObjectiveOrOpt(s)
U ← U ∪ s

j ← j + 1
return (U)

Other solutions are constructed in a similar way as described in Algorithm 3.3. With the difference
that the construction begins with an empty solution and no other solutions are received.
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3.2 Local search

The local search phase of SMGRASP is performed by an Or-opt heuristic (Or, 1976). Two types
of versions are used: a single objective (traditional version) and a bi-objective Or-opt (new move
evaluation). In both cases the structure of the algorithm is the same, the difference is in the eval-
uation of the solutions. The single objective Or-opt uses a cost function to evaluate the quality of
a move, measuring the impact in the specific objective function. The bi-objective Or-opt evaluates
the solutions using the Pareto dominance criteria as described in Section 3.1.3. This approach of
the Or-opt, where more than one objective function is evaluated simultaneously, to the best of our
knowledge has not been previously used.

3.3 The “virtual” capacity mechanism

In CVRPSD problems it is common to employ constraints stating that the maximal allowed expected
demand on any planned route is identical to the vehicle capacity Q. Obviously, the actual realized
demand on a route may still exceed Q, resulting in a recourse action on the route. Let Dmax denote
the maximum allowed expected demand to be planned on any route. We call Dmax the virtual
capacity. Clearly, using exactly Dmax = Q is not the only possible choice. If Dmax < Q, it means
the planned routes will have some slack to absorb higher-than-expected demand, leading to less
use of recourse actions. If on the other hand, Dmax > Q a wider choice of routes are allowed to be
planned, where some of these may have very high risk of needing recourse actions. Considering
the SMOP of this paper, Dmax < Q represents a restriction of the search space, whereas using
Dmax > Q represents a relaxation of the problem, with a larger search space.

Considering the fact that our problem involves two objectives that are in different ways affected by
recourse costs, we wanted to see whether using Dmax 6= Q could lead to better solutions. For
instance, we see that it would typically be beneficial for the route balance objective, if the routes
that are relatively short without recourse, have higher probability for failure and recourse.

One should keep in mind the following. We know that the theoretical optimum of a relaxed problem
will be at least as good as that of a restricted problem. On the other hand, for the SMOP we look
at here, we need to resort to approximate solutions, and given limited search time, a restriction of
the search space can improve on the best approximations found.

We then define the “virtual” capacity mechanism (VCM) as taking Dmax 6= Q into the problem
formulation, allowing a tighter or wider problem to be considered. Of course, the actual capacity
on vehicles Q remains the same.

Because we are comparing the SMGRASP method to another method (TAN) which do not utilize
the VCM, we run most of the computational experiments without it. Then certain experiments are
done comparing the versions of SMGRASP with VCM using different levels of Dmax.

4 Computational experiments and results

The proposed algorithm was implemented in C++. All tests were conducted on a computer with
processor Intel (R) Xeon (R) CPU E31270 @ 3.40 GHz and 16.0 GB of RAM.
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4.1 Test environment

There are no standard instances for the CVRPSD in the literature. Some authors construct their
own instances, but these are not given, just a description of how were they built is provided. Some
others are adapted well-known determinist instances to CVRPSD, as in Dror and Trudeau (1986);
Tan et al. (2007); Juan et al. (2011).

The set of instances previously used for the deterministic version of the problem in Oyola and
Løkketangen (2014) is used here. The customer demand (di) in the deterministic problem is used
as the expected demand in the stochastic version. Two different levels of variance (50% and 75%
of the expected demand) were associated to every instance. In this sense each instance turns into
two, where the only difference between the two of them is the variance associated to each customer
i. For each customer i the variance of the demand is equal to vl · di, where vl corresponds to the
given level of variance. This means: if vl = 0.5, we take pi = 1/2 and ni = 2 · di. If vl = 0.75,
we take pi = 1/4 and ni = 4 · di, where pi, ni are parameters of the binomial demand distribution
for customer i. Instances will be identified adding the corresponding variance level at the end of it,
e.g. E016-03m-50 corresponds to the original instance E016-03m where the variance level is set
to 50%.

4.2 Evaluation criteria

Measuring the quality of the set of (potentially) Pareto optimal solutions to a multi-objective problem
is not straightforward. Several performance metrics have been proposed in the literature. However,
no single metric is able to fairly compare two sets of solutions, since all of them present some draw-
backs. Consequently more than one metric is required to make a better comparison. Some metrics
are: the S metric , C metric (Jozefowiez et al., 2009, 2007b; Knowles, 2002; Mateo and Alberto,
2012), the ratio of non-dominated individuals in a set X , RNI(X ) (Tan et al., 2006), the total num-
ber of solutions (when dealing with exact methods) (Visée et al., 1998), the generational distance
(Jozefowiez et al., 2007a; Knowles, 2002; Mateo and Alberto, 2012), the D2 metric (Ulungu et al.,
1999) and hyperarea metric (Collette and Siarry, 2003).

Two of these metrics have been used to evaluate algorithms that attempt to solve the CVRPRB
(Jozefowiez et al., 2009, 2007b; Oyola and Løkketangen, 2014), C metric and S metric. For that
reason they seem to be a good choice to evaluate the performance of the proposed algorithm.
The S metric measures the area in objective space dominated by a set of solutions, given a ref-
erence point. A set R has a better performance than a set X , if the S metric of the former one is
greater.

Given two sets of solutions (R,X ), the C metric (Jozefowiez et al., 2009, 2007b; Knowles, 2002;
Mateo and Alberto, 2012) measures the ratio of solutions in X weakly dominated by solutions in
R. The metric is not symmetric, so both C(R,X ) and C(X ,R) should be computed. This metric
is not reliable if the cardinality of the sets is different. In addition it is not able to measure by how
much a set outperforms another one (Knowles, 2002). A set R has a better performance than a
set X , if C(R,X ) is closer to 1 and C(X ,R) is closer to 0.

4.3 Example of search progress

As an illustration of how the SMGRASP solutions in objective space can evolve over the SMGRASP
repetitions, some figures based on the instance E022-06m-50 were included. The figures illustrate
the evolution over 20 repetitions, in a single run on the instance. Figure 1 shows how the value
of the S metric changed during the different repetitions of SMGRASP. Figure 2, shows the Pareto
set approximations in certain stages of the SMGRASP process. The actual test run here is one
of the 10 runs used to obtain average results in table 8, but using a different reference point for
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Figure 1: Value of the S metric at the different repetitions of SMGRASP for the instance E022-
06m-50

computing the S metric. In producing data for figure 1, the reference point was (784.6, 42.2)
corresponding to the worst value on distance and balance in any of the front approximations. In
figure 1 we see what is a typical behavior, where initial poor results are rapidly improved. After
approximately 5 repetitions, further improvements come in small portions at certain repetitions. All
repetitions up to the 9th improve on the front, while from repetition 10 to 20 there are 6 repetitions
with no improvement in the front. Figure 2 illustrates how Pareto front approximations change
in the objective space. For selected repetitions we plot the front approximation, indicating which
solutions are new from the previously shown front. At repetition one, only four solutions are in the
front. After repetition 3, a number of improvements are found, and only one of the initial solutions
remain non-dominated. By repetition 5, about ten additional solutions are introduced, dominating a
fair part of the previous approximation. Finally, by repetition 20 further non-dominated solutions are
found, again replacing some of the previous solutions. The complete final Pareto set approximation
PSappr at repetition 20 is also shown, and we see that solutions found at various stages (even one
initial solution) are present in the final approximation.

4.4 Stability

An implementation of the SMGRASP algorithm needs to use sample average approximations of
the objective functions, so we make a finite set Ξ of scenarios by random sampling from the given
demand distributions. The number of scenarios must be large enough to approximate the objective
functions with satisfactory precision. This should be tested comparing different scenario sets Ξk,
using some stability tests. Two types of stability tests are performed, in-sample and out-of-sample
stability (Kaut and Wallace, 2007). It is said that there is in-sample stability when the objective
values of the solution set obtained using one scenario set is the same, or at least similar, to the
objective values of the set obtained using a different scenario set. The out-of-sample stability, on
the other hand, indicates that the solution set objective function values are the same, or at least
similar, when the solutions are evaluated in scenario sets different than the one used to find them.
These tests are done using different sizes of the scenario sets: 5, 10, 20, 40 and 80.
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Figure 2: Changes in the PSappr at different repetitions of SMGRASP for the instance E022-06m-50

The tests were performed using six different instances: E016-03m, E022-06m, E030-04s, E051-
05e, E076-07s and E101-10c. Each instance was associated with the two different levels of vari-
ance mentioned before (50% and 75%)

It may be difficult to directly measure the differences or similarities in the objective function values
of two solutions sets. This creates a problem when testing for in-sample stability. The S metric is
one of the criteria used to compare different algorithms, so it is a reasonable choice to measure
stability in that metric. Using 20 different sets of scenarios, an approximation to the Pareto set is
found, for each set. The S metric is computed for every set of solutions, evaluated in the respective
scenario set that was used to find the solutions.

The out of sample stability test is done using the S metric. An additional good choice is given by
the values of the objective functions, since the same solution can be evaluated using different set
of scenarios, and the values can be compared. In this case, the value of the objective functions
and the S metric are evaluated in scenario sets different than the one used to find the solutions.
For every solution in the approximation of the Pareto set, the objective functions are evaluated in
the scenario set used to find them and also in the 19 other scenario sets. The average and the
standard deviation of each objective function is computed over these 19 scenarios and compared
with the first value (in-sample value). The S metric is computed and compared in similar way.

4.4.1 Stability test results

Table 2 in the Appendix shows a summary of the in-sample test. For each given size, 20 different
scenario sets were used. For each solution set (Xk), obtained using scenario set Ξk, S(Xk)
is computed. The second column in Table 2 shows the average of S(Xk) over the 20 different
scenario sets. The third column shows the standard deviation of the metric and the last column
shows the Coefficient of Variation (CV) of the metric. In general, this value gets smaller when the
size of the scenario set increases. A time limit of 3 hours was given to each experiment.

The capacitated vehicle routing problem with route balancing and stochastic demand

125



In some cases the stability may not be improved when the number of scenarios increases. This is
likely due to fact that there is a time limit for the search. Increasing the number of scenarios may
reduce the explored area of the search space.

Table 3 in the Appendix shows a summary of the test for out-of-sample stability. Recall here that a
solution set Xk, is a set of VRP solutions,

Xk = {x1k, x2k, . . . , xmk
k } ,

obtained with a particular scenario set Ξk. For each solution set Xk, the objective function values,
C(xki ) andRIV (xki ), are evaluated using different scenario sets Ξj . For each solution, the difference
between the objective function value when evaluated in Ξk and the average value when evaluated
in the other scenario sets Ξj is computed. Such difference is computed as a percentage of the
objective function value when evaluated in Ξk. The third column in Table 3 shows the average
value of such difference for C(x) and the corresponding value for RIV (x) is found in the fourth
column. It was considered important to test how different are the objective function values, when
evaluated using different scenarios. The fifth and sixth column in Table 3 show the average CV for
C(x) and RIV (x) respectively when evaluated in the scenario sets Ξj . It is possible to see that
for the instances E016-03m-50 and E016-03m-75 RIV (x) does not look very stable, however it is
important to take into consideration that the values of RIV (x) found in the PSappr correspond to
small values compared to the values of C(x). RIV (x) values can range from 0.03% to 6% the best
value of C(x), so small variations can represent a important percentage of RIV (x), but not when
compared to C(x).

Table 4 in the Appendix shows a summary of the test for out-of-sample stability for the TAN al-
gorithm (Tan et al., 2007), since this was not explicitly reported. No time limit is given and the
parameters are the same reported by the authors.

It was decided to use 40 scenarios in the experiments. All results presented hereafter were ob-
tained from experiments using such scenario set size, unless stated otherwise.

4.5 Parameter tuning

Parameters for SMGRASP were set after some preliminary testing. The parameter values that
lead in average to better results were selected:

• Alpha parameter for the SMGRASP heuristic: 0.1

• Number of SMGRASP iterations (Gmax): 150

• Percentage of most distant customers used by DCP insertion strategy (dp): 25%

• Or-opt parameter: 2

• Number of SMGRASP repetitions (Grep): 20

• Penalty for infeasibility (pinf ): 1

• Number of pair of solutions (β) used at every repetition of SMGRASP: 10

Given the running time of TAN algorithm, the running time was set initially to be 3 hours or 20
repetitions of SMGRASP, allowing the smaller instances to finish earlier.
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4.6 Results

Results comparing the SMGRASP heuristic and the implementation of an evolutionary algorithm
(TAN) for the CVRPSD (Tan et al., 2007) using the S metric and the C metric are presented in
the Appendix in Tables 5 and 6, respectively. The average, minimum and maximum values were
computed from the results obtained in the ten different runs, as well as the reference used in the
computation of the S metric. The numbers are rounded to the nearest integer in Table 5, the same
applies for the rest of the tables presenting results for the S metric.

According to the average values of the S metric, the SMGRASP heuristic is able to find a better
approximation to the Pareto set in 38 out of 40 instances. If the C metric is used for the comparison,
SMGRASP is able to find, in average, better approximations in 36 out of 40 instances. When the
two metrics are used simultaneously, SMGRASP finds in average a better approximation to the
Pareto set in 36 out of 40 instances, TAN is able to find a better approximation in two instances.
The metrics give contradictory results in two instances (E016-03m-75 and E016-05m-50). Another
possibility for comparing the two heuristics is using the maximum values of the two metrics. In the
latter case, TAN is able to find a better approximation in 2 out of 40 instances, SMGRASP on the
other hand, is able to do it in 34 instances. There are 4 instances where is not possible to draw a
conclusion (E016-03m-75, E016-05m-75, E021-06m-75 and E022-06m-50).

It was found that given the initial parameters SMGRASP runs for longer time than TAN, as it can
be seen in Table 7 in the Appendix. To make a more fair comparison, new experiments were done
for SMGRASP setting the time limit close to the running time used by TAN algorithm. A summary
of the results are presented in Table 1, where the second column shows the difference between
the average values of the S metric ( S(SMGRASP) - S(TAN) ). The third column contains the the
difference of the average values of the S metric ( C(SMGRASP, TAN) - C(TAN, SMGRASP) ). In
both cases positive values shows a better performance of SMGRASP.

Detailed results of these tests are shown in Tables 8 and 9 in the Appendix. According to the S
metric, in average SMGRASP finds better results in 38 out of 40 instances. This number goes down
to 35 when the comparison is done using the C metric. When both metrics are used simultaneously,
in average, SMGRASP finds a better approximation of the Pareto set in 34 out of 40 instances and
TAN finds a better result in two instances. In four cases is not possible to draw a conclusion,
since the two metrics are contradictory (E016-03m-75 and E016-05m-50, E023-05s-50 and E023-
05s-75). Using the maximum values of the metrics for comparison, TAN finds better results in
two instances, SMGRASP does it in 33 instances, and no conclusion is obtained in 5 out of 40
instances (E016-03m-75, E016-05m-75, E021-06m-50, E022-06m-50 and E023-05s-50).

Table 1: Summary of comparison between TAN and SMGRASP average results

Instance Av. S(SMGRASP) Av. C(SMGRASP, TAN) Av. TAN Av. SMGRASP
- S(Tan) - C(TAN, SMGRASP) running time running time

E016-03m-50 -54 -0,33 1 239 1 230
E016-03m-75 38 -0,20 1 238 1 230
E016-05m-50 94 -0,02 1 172 1 160
E016-05m-75 -235 -0,29 1 143 1 124
E021-04m-50 1 977 0,52 938 930
E021-04m-75 1 730 0,59 826 820
E021-06m-50 1 293 0,36 773 758
E021-06m-75 1 718 0,63 770 760
E022-06m-50 156 0,27 840 830
E022-06m-75 1 0,26 839 830
E023-05s-50 6 343 -0,06 1 162 1 160
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Table 1 Continued: Summary of comparison between TAN and SMGRASP average results

Instance Av. S(SMGRASP) Av. C(SMGRASP, TAN) Av. TAN Av. SMGRASP
- S(TAN) - C(TAN, SMGRASP) running time running time

E023-05s-75 5 660 0,00 1 162 1 160
E026-08m-50 5 789 0,89 766 760
E026-08m-75 5 311 0,66 754 750
E030-04S-50 1 910 0,46 2 359 2 350
E030-04S-75 1 715 0,55 2 351 2 350
E031-09h-50 6 700 0,81 1 735 1 730
E031-09h-75 6 348 0,93 1 728 1 720
E033-05s-50 1 256 0,59 2 729 2 720
E033-05s-75 484 0,60 2 534 2 530
E036-11h-50 4 617 0,53 2 163 2 160
E036-11h-75 6 705 0,69 2 086 2 081
E041-14h-50 5 166 0,49 2 430 2 430
E041-14h-75 5 328 0,56 2 450 2 440
E048-04y-50 73 600 000 0,92 3 673 3 671
E048-04y-75 60 348 000 0,91 2 915 2 910
E051-05e-50 20 720 0,89 3 386 3 381
E051-05e-75 20 985 0,91 2 743 2 740
E076-07s-50 40 310 0,96 4 850 4 844
E076-07s-75 40 379 0,86 3 535 3 538
E076-08s-50 61 898 0,83 4 838 4 832
E076-08s-75 63 220 0,88 3 526 3 538
E076-14u-50 87 263 0,65 3 454 3 461
E076-14u-75 78 352 0,61 2 879 2 874
E101-08e-50 79 976 0,91 5 806 5 807
E101-08e-75 96 386 0,70 3 928 3 929
E101-10c-50 128 054 0,99 5 916 5 916
E101-10c-75 118 132 0,95 4 051 4 051
E101-14s-50 140 817 0,83 6 169 6 179
E101-14s-75 115 215 0,75 4 118 4 154

4.6.1 The DCP insertion strategy

Results obtained by SMGRASP were tested against a similar algorithm without the distance in-
sertion strategy (SMGRASP-NDI). The SMGRASP finds in average better results in 31 out of 40
instances. In four instances is not possible to conclude which one finds a better approximation
in average (E022-06m-75, E026-08m-75, E031-09h-50 and E076-14u-50). The algorithm without
the procedure, on the other hand, finds in average better results in five instances. A comparison
can be found in tables 10 and 11 in the Appendix. Using the maximum values of the metrics to
compare the two versions of SMGRASP, we get different results. SMGRASP is able to perform
better in 17 instances, SMGRASP-NDI find better results just in two of them and there are 21 out
of 40 instances where it is not possible to draw any conclusion. Based on these comparisons,
the usage of the DCP insertion strategy seems to improve the quality of the solutions obtained by
SMGRASP.
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4.6.2 The Virtual Capacity Mechanism

Preliminary tests were done allowing a virtual capacity Dmax equal to a factor times the real capac-
ity Q, e.g. Dmax = cf ·Q. The following values for cf were considered: 0.9, 0.95, 1.00, 1.05, 1.10,
1.20, 1.50, 2.0, 3.0 and 5.0 . These tests indicated that that better results can be obtained with cf
equal to 1.05. Initial results of SMGRASP as presented in tables 5 and 6 were compared against
the results obtained by using the virtual capacity (VCM). The algorithm allowing the VCM finds in
average better results in 27 out of 40 instances. In two of the instances is not possible to conclude
which one finds in average a better approximation (E030-04s-50 and E048-04y-75). A comparison
can be found in tables 12 and 13 in the Appendix. Comparing the maximum values of the metrics,
is possible to see that when SMGRASP allows VCM, better results are obtained in 19 instances. If
VCM is not allowed, SMGRASP finds better results in 8 instances. In 13 out of 40 instances is not
possible to determine which alternative performs better.

5 Conclusions

A stochastic extension of a well known deterministic multi-objective problem was presented. A
GRASP based heuristic was proposed to find an approximation to the Pareto set of the problem.
Obtained results were compared against an evolutionary algorithm used to deal with a similar
problem. Results indicate a high quality of the solutions obtained by the proposed algorithm (SM-
GRASP).

Both in-sample and out-of-sample stability tests were conducted. Results suggesting stability of
the algorithm were obtained and reported.

A distance-based insertion strategy was included in SMGRASP and tests show evidence of its
efficiency.

The option to plan routes with a expected cumulative demand above the vehicle capacity was
tested. Test results indicate that this can be a useful mechanism that may be important for the DM
to take into consideration when planning the routes.

As a possible direction for further research, parallel algorithms could be included as a way to speed
up the process and/or explore more areas of the search space. Another possibility is to increase
the number of objectives in the problem, this could make it even more realistic.

References

Abdelaziz, F. B. (2012). Solution approaches for the multiobjective stochastic programming. European
Journal of Operational Research, 216(1):1–16.

Ahmadi-Javid, A. and Seddighi, A. H. (2013). A location-routing problem with disruption risk. Transportation
Research Part E: Logistics and Transportation Review, 53:63 – 82.

Ak, A. and Erera, A. L. (2007). A paired-vehicle recourse strategy for the vehicle-routing problem with
stochastic demands. Transportation Science, 41(2):222–237.

Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria, O., and
Schiavinotto, T. (2005). Hybryd metaheuristics for the vehicle routing problem with stochastic demands.
Technical report, Dalle Molle Institute for Artificial Intelligence, Manno, Switzerland.

Chepuri, K. and Homem-de Mello, T. (2005). Solving the vehicle routing problem with stochastic demands
using the cross-entropy method. Annals of Operations Research, 134(1):153–181.

Christiansen, C. H. and Lysgaard, J. (2007). A branch-and-price algorithm for the capacitated vehicle routing
problem with stochastic demands. Operations Research Letters, 35(6):773 – 781.

The capacitated vehicle routing problem with route balancing and stochastic demand

129



Collette, Y. and Siarry, P. (2003). Multiobjective optimization: principles and case studies. Springer, Berlin.

Dror, M. and Trudeau, P. (1986). Stochastic vehicle routing with modified savings algorithm. European
Journal of Operational Research, 23(2):228–235.

Erera, A. L., Savelsbergh, M., and Uyar, E. (2009). Fixed routes with backup vehicles for stochastic vehicle
routing problems with time constraints. Networks, 54(4):270–283.

Gauvin, C., Desaulniers, G., and Gendreau, M. (2014). A branch-cut-and-price algorithm for the vehicle
routing problem with stochastic demands. Computers & Operations Research, 50(0):141–153.

Gendreau, M., Jabali, O., and Rei, W. (2014). Stochastic vehicle routing problems. In Toth, P. and Vigo,
D., editors, Vehicle Routing: Problems, Methods, and Applications, Second Edition, pages 213–239.
Society for Industrial and Applied Mathematics.
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Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., and Velasco, N. (2010). A memetic algorithm
for the multi-compartment vehicle routing problem with stochastic demands. Computers & Operations
Research, 37(11):1886–1898.
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Appendix

Table 2: In-sample test summary

Instance Size of Av. S metric Stand. dev. of CV (%)
scenario set S metric

E016-03m-50 5 6538.83 418.88 6.41
10 7475.95 323.22 4.32
20 7719.41 236.14 3.06
40 6755.70 132.50 1.96
80 5800.40 101.96 1.76

E016-03m-75 5 7595.19 463.50 6.10
10 9038.40 381.47 4.22
20 4807.32 202.75 4.22
40 7360.01 169.97 2.31
80 7006.95 103.12 1.47

E022-06m-50 5 13567.70 808.31 5.96
10 9017.68 771.95 8.56
20 10190.5 743.29 7.29
40 10554.8 776.32 7.36
80 9756.95 734.02 7.52

E022-06m-75 5 7914.99 612.12 7.73
10 10284.30 667.93 6.49
20 9905.27 771.67 7.79
40 11486.60 853.46 7.43
80 10193.20 559.34 5.49

E030-04s-50 5 76657.10 561.25 0.73
10 85064.20 549.75 0.65
20 80688.30 570.79 0.71
40 79503.30 596.65 0.75
80 83753.30 730.87 0.87

E030-04s-75 5 82221.7 696.13 0.85
10 84142.00 870.20 1.03
20 81021.60 585.59 0.72
40 80794.20 691.68 0.86
80 82051.70 661.43 0.81

E051-05e-50 5 25507.50 757.13 2.97
10 15014.30 434.53 2.89
20 18155.40 855.28 4.71
40 17085.60 788.77 4.62
80 20223.50 1005.79 4.97

E051-05e-75 5 17950.2 637.74 3.55
10 16168.00 738.88 4.57
20 20785.20 617.11 2.97
40 18713.90 866.30 4.63
80 19859.40 936.46 4.72

E076-07s-50 5 76097.20 1821.63 2.39
10 83220.20 2072.25 2.49
20 97889.40 3045.32 3.11
40 81164.90 2217.39 2.73
80 104932.00 4197.75 4.00
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Table 2 Continued: In-sample test summary

Instance Size of Av. S metric Stand. dev. of CV (%)
scenario set S metric

E076-07s-75 5 85973.60 2092.06 2.43
10 85174.20 3093.32 3.63
20 107409.00 2871.58 2.67
40 89477.80 2885.94 3.23
80 95511.10 5139.37 5.38

E101-10c-50 5 159530.00 4469.54 2.80
10 162766.00 5209.47 3.20
20 222626.00 8136.41 3.65
40 158531.00 9334.68 5.89
80 174615 11309.9 6.48

E101-10c-75 5 171157.00 7823.23 4.57
10 164731.00 7604.69 4.62
20 132795.00 6480.17 4.88
40 156901.00 12288.00 7.83
80 173274.00 14757.30 8.52

Table 3: Out-of-sample test summary (objective function values)

Instance Size of Difference in Difference in Average CV Average CV
scenario set C(x) (%) RIV (x) (%) C(x) (%) RIV (x) (%)

E016-03m-50 5 5.38 67.72 6.19 26.91
10 4.50 51.04 5.21 25.65
20 3.74 38.53 4.76 22.91
40 3.26 26.25 3.80 20.48
80 2.20 17.52 2.61 20.25

E016-03m-75 5 4.95 62.67 6.07 28.96
10 4.56 30.03 5.85 25.66
20 3.25 26.81 4.03 25.40
40 3.37 26.28 3.86 21.44
80 2.11 19.20 2.71 18.96

E022-06m-50 5 2.71 6.76 4.01 10.77
10 2.27 7.04 3.30 8.92
20 1.51 4.29 2.22 6.54
40 0.83 3.32 1.16 4.12
80 0.95 2.82 1.21 3.62

E022-06m-75 5 3.44 12.23 4.82 19.61
10 2.80 8.44 3.93 11.80
20 2.02 7.83 2.86 9.61
40 1.52 5.05 2.01 6.22
80 0.95 3.77 1.33 4.70

E030-04s-50 5 0.32 1.23 0.50 1.62
10 0.34 2.50 0.47 1.75
20 0.15 1.65 0.28 1.28
40 0.14 0.94 0.20 0.97
80 0.22 1.49 0.27 0.80
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Table 3 Continued: Out-of-sample test summary (objective function values)

Instance Size of Difference in Difference in Average CV Average CV
scenario set C(x) (%) RIV (x) (%) C(x) (%) RIV (x) (%)

E030-04s-75 5 0.60 1.59 0.72 2.14
10 0.23 1.17 0.34 1.22
20 0.21 3.05 0.36 1.41
40 0.23 1.56 0.32 1.24
80 0.13 1.10 0.19 0.98

E051-05e-50 5 6.20 32.70 9.89 23.54
10 4.06 17.95 6.25 21.23
20 4.87 13.29 6.69 16.52
40 4.43 12.21 6.74 13.60
80 2.78 14.01 3.71 12.06

E051-05e-75 5 5.59 24.77 8.12 22.59
10 5.44 22.49 7.76 19.88
20 5.15 15.64 7.43 16.25
40 4.40 13.15 6.12 14.38
80 3.55 10.16 4.90 11.47

E076-07s-50 5 7.06 12.81 11.91 12.11
10 6.59 11.56 7.73 10.96
20 5.34 7.89 6.54 8.70
40 2.86 5.14 3.71 6.65
80 2.01 4.13 2.47 5.38

E076-07s-75 5 8.68 14.65 12.47 14.47
10 7.48 16.02 11.73 12.61
20 5.98 8.25 7.99 9.66
40 3.56 6.08 5.01 7.46
80 2.53 7.78 3.60 6.03

E101-10c-50 5 9.57 12.10 15.30 12.16
10 8.76 10.09 11.70 9.91
20 5.86 8.46 7.75 8.35
40 3.72 5.96 4.41 7.02
80 1.98 3.74 2.38 4.84

E101-10c-75 5 11.88 13.07 17.50 12.19
10 9.45 9.03 13.18 9.71
20 6.58 7.65 8.77 8.56
40 2.93 5.43 3.41 6.81
80 0.94 4.13 1.76 5.56

Table 4: Out-of-sample test summary (objective function values for Tan’s algorithm)

Instance Size of Difference in Difference in Average CV Average CV
scenario set C(x) (%) RIV (x) (%) C(x) (%) RIV (x) (%)

E016-03m-50 5 3.41 31.92 4.43 28.91
10 3.39 26.29 3.80 32.57
20 2.74 23.81 3.26 26.75
40 2.63 22.99 2.92 25.27
80 2.77 17.98 3.11 19.63
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Table 4 Continued: Out-of-sample test summary (objective function values for Tan’s algorithm)

Instance Size of Difference in Difference in Average CV Average CV
scenario set C(x) (%) RIV (x) (%) C(x) (%) RIV (x) (%)

E016-03m-75 5 3.44 35.74 4.29 29.68
10 3.18 51.9 3.91 35.02
20 2.63 30.84 3.02 24.37
40 2.61 24.75 3.37 22.91
80 3.91 25.23 4.42 22.78

E022-06m-50 5 1.15 3.19 1.71 3.98
10 1.65 6.48 2.03 8.01
20 1.38 5.52 1.61 6.34
40 1.44 3.95 1.47 4.24
80 1.19 3.39 1.27 3.13

E022-06m-75 5 1.80 6.21 2.85 9.89
10 1.65 7.08 2.53 10.26
20 2.14 5.38 2.41 6.43
40 1.88 4.08 2.02 4.33
80 1.40 3.97 1.51 4.24

E030-04s-50 5 0.01 0.06 0.01 0.09
10 0.09 0.51 0.14 0.53
20 0.11 0.32 0.15 0.46
40 0.62 0.83 0.73 0.73
80 0.55 0.57 0.44 0.61

E030-04s-75 5 0.01 0.06 0.01 0.09
10 0.27 0.31 0.24 0.37
20 0.36 0.42 0.50 0.63
40 0.43 0.94 0.51 0.73
80 0.40 1.27 0.49 1.16

E051-05e-50 5 5.87 20.07 6.96 17.75
10 5.49 13.39 6.45 15.12
20 4.12 9.69 4.71 12.20
40 2.34 7.09 2.94 9.08
80 2.65 7.03 2.57 7.80

E051-05e-75 5 6.22 17.33 7.95 17.54
10 4.28 11.65 5.29 15.05
20 4.10 12.05 4.79 13.26
40 3.04 10.48 3.46 10.42
80 2.54 7.19 2.62 8.41

E076-07s-50 5 2.02 7.22 2.80 8.77
10 1.99 5.05 2.33 6.11
20 1.74 3.87 2.00 4.08
40 1.68 3.06 1.93 3.04
80 0.71 1.91 0.93 2.30

E076-07s-75 5 2.50 9.62 3.48 9.55
10 2.82 6.76 3.19 7.21
20 2.15 3.97 2.58 4.73
40 1.99 3.22 2.21 3.80
80 1.14 2.28 1.30 2.64
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Table 4 Continued: Out-of-sample test summary (objective function values for Tan’s algorithm)

Instance Size of Difference in Difference in Average CV Average CV
scenario set C(x) (%) RIV (x) (%) C(x) (%) RIV (x) (%)

E101-10c-50 5 3.98 8.28 4.20 9.32
10 4.52 5.89 4.67 6.85
20 2.73 3.98 3.37 5.04
40 2.08 3.31 2.30 3.19
80 1.67 2.34 1.51 2.38

E101-10c-75 5 3.55 9.34 4.40 9.47
10 3.71 5.99 5.05 7.73
20 4.57 4.39 4.84 5.28
40 2.27 3.21 2.26 3.60
80 1.34 2.52 1.28 2.58

Table 5: S metric performance indicator

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E016-03m-50 ( 427.13 , 50.69 ) TAN 6 273 6 106 6 432
SMGRASP 6 205 5 919 6 356

E016-03m-75 ( 407.47 , 53.61 ) TAN 5 510 5 089 5 693
SMGRASP 5 524 5 377 5 845

E016-05m-50 ( 547.93 , 44.64 ) TAN 6 669 6 175 6 991
SMGRASP 6 733 6 339 6 985

E016-05m-75 ( 553.88 , 45.57 ) TAN 7 121 6 684 7 444
SMGRASP 6 880 6 523 7 561

E021-04m-50 ( 614.43 , 76.91 ) TAN 13 963 12 941 15 471
SMGRASP 16 013 15 517 16 556

E021-04m-75 ( 604.13 , 89.93 ) TAN 16 011 14 486 17 037
SMGRASP 17 859 17 395 18 499

E021-06m-50 ( 691.02 , 84.31 ) TAN 13 587 12 282 15 783
SMGRASP 15 043 14 363 15 736

E021-06m-75 ( 750.48 , 88.37 ) TAN 18 400 16 940 19 166
SMGRASP 20 356 19 252 21 460

E022-06m-50 ( 895.02 , 45.64 ) TAN 10 699 9 653 12 060
SMGRASP 11 323 10 034 11 810

E022-06m-75 ( 890.88 , 43.73 ) TAN 9 817 8 784 10 699
SMGRASP 10 063 9 031 10 952

E023-05s-50 ( 1 366.34 , 290.11 ) TAN 178 745 175 344 182 660
SMGRASP 187 793 185 727 190 089

E023-05s-75 ( 1 332.98 , 290.11 ) TAN 170 369 165 526 175 035
SMGRASP 178 177 175 684 179 868

E026-08m-50 ( 1 082.93 , 105.09 ) TAN 25 883 23 902 28 644
SMGRASP 33 041 31 433 34 392

E026-08m-75 ( 1 063.27 , 120.00 ) TAN 27 950 24 835 33 018
SMGRASP 34 209 32 263 36 109

E030-04S-50 ( 1 128.63 , 163.40 ) TAN 87 289 84 772 90 104
SMGRASP 90 240 89 229 91 239

E030-04S-75 ( 1 082.70 , 163.40 ) TAN 80 295 78 479 82 798
SMGRASP 82 898 81 589 83 896
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Table 5 Continued: S metric performance indicator

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E031-09h-50 ( 1 038.75 , 83.81 ) TAN 14 733 11 864 18 141
SMGRASP 22 474 20 560 24 605

E031-09h-75 ( 996.66 , 82.26 ) TAN 11 373 8 772 13 205
SMGRASP 18 618 17 150 20 442

E033-05s-50 ( 1 369.92 , 325.45 ) TAN 120 001 116 537 123 358
SMGRASP 123 444 118 293 127 812

E033-05s-75 ( 1 369.92 , 339.93 ) TAN 127 278 123 892 131 415
SMGRASP 131 146 125 028 135 628

E036-11h-50 ( 1 149.47 , 73.85 ) TAN 12 318 10 732 13 889
SMGRASP 19 510 16 147 22 374

E036-11h-75 ( 1 156.97 , 81.58 ) TAN 12 500 10 546 16 608
SMGRASP 22 469 20 373 24 454

E041-14h-50 ( 1 485.43 , 111.92 ) TAN 30 509 27 719 34 647
SMGRASP 42 683 41 370 44 949

E041-14h-75 ( 1 565.33 , 83.07 ) TAN 23 417 18 702 28 470
SMGRASP 32 492 29 099 36 667

E048-04y-50 ( 132 372.00 , 12 620.20 ) TAN 1.03×109 1.00×109 1.06×109

SMGRASP 1.11×109 1.11×109 1.12×109

E048-04y-75 ( 104 464.00 , 10 912.20 ) TAN 5.81×108 5.54×108 6.16×108

SMGRASP 6.48×108 6.41×108 6.57×108

E051-05e-50 ( 1 068.18 , 91.95 ) TAN 23 287 21 373 26 827
SMGRASP 45 267 44 427 46 032

E051-05e-75 ( 1 174.32 , 89.25 ) TAN 30 469 28 481 34 531
SMGRASP 53 106 51 887 54 467

E076-07s-50 ( 1 534.90 , 148.19 ) TAN 69 639 67 428 77 007
SMGRASP 113 322 108 675 116 956

E076-07s-75 ( 1 648.56 , 132.76 ) TAN 69 654 64 862 74 622
SMGRASP 115 172 110 578 118 367

E076-08s-50 ( 1 674.69 , 149.79 ) TAN 57 702 54 182 63 806
SMGRASP 122 053 112 821 125 427

E076-08s-75 ( 1 705.66 , 154.56 ) TAN 60 541 55 827 66 575
SMGRASP 129 794 123 005 137 575

E076-14u-50 ( 2 319.46 , 185.43 ) TAN 59 436 51 827 64 578
SMGRASP 155 392 146 492 166 145

E076-14u-75 ( 2 419.92 , 162.43 ) TAN 58 079 55 033 62 477
SMGRASP 144 919 136 741 150 401

E101-08e-50 ( 1 886.44 , 133.87 ) TAN 47 163 42 648 52 398
SMGRASP 120 610 115 011 128 582

E101-08e-75 ( 2 003.35 , 216.85 ) TAN 117 362 100 962 141 211
SMGRASP 219 331 213 936 226 362

E101-10c-50 ( 2 568.18 , 137.67 ) TAN 71 066 51 689 82 499
SMGRASP 199 713 189 062 208 087

E101-10c-75 ( 2 408.86 , 149.81 ) TAN 67 482 57 852 78 393
SMGRASP 190 182 176 007 201 390

E101-14s-50 ( 2 575.86 , 195.07 ) TAN 75 260 66 496 83 547
SMGRASP 216 395 201 143 221 943
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Table 5 Continued: S metric performance indicator

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E101-14s-75 ( 2 582.34 , 163.40 ) TAN 58 033 45 954 69 995
SMGRASP 178 681 174 986 183 409

Table 6: C metric performance indicator

Instance Metric Average Min Max
E016-03m-50 C ( TAN, SMGRASP) 0.48 0.00 1.00

C ( SMGRASP, TAN) 0.14 0.00 0.56
E016-03m-75 C ( TAN, SMGRASP) 0.39 0.00 1.00

C ( SMGRASP, TAN) 0.19 0.00 0.69
E016-05m-50 C ( TAN, SMGRASP) 0.25 0.00 1.00

C ( SMGRASP, TAN) 0.22 0.00 0.67
E016-05m-75 C ( TAN, SMGRASP) 0.45 0.00 1.00

C ( SMGRASP, TAN) 0.16 0.00 0.55
E021-04m-50 C ( TAN, SMGRASP) 0.04 0.00 0.56

C ( SMGRASP, TAN) 0.59 0.13 1.00
E021-04m-75 C ( TAN, SMGRASP) 0.04 0.00 0.33

C ( SMGRASP, TAN) 0.66 0.00 1.00
E021-06m-50 C ( TAN, SMGRASP) 0.04 0.00 0.60

C ( SMGRASP, TAN) 0.49 0.00 1.00
E021-06m-75 C ( TAN, SMGRASP) 0.02 0.00 0.29

C ( SMGRASP, TAN) 0.72 0.22 1.00
E022-06m-50 C ( TAN, SMGRASP) 0.11 0.00 0.44

C ( SMGRASP, TAN) 0.59 0.08 0.94
E022-06m-75 C ( TAN, SMGRASP) 0.16 0.00 0.48

C ( SMGRASP, TAN) 0.55 0.11 1.00
E023-05s-50 C ( TAN, SMGRASP) 0.27 0.09 0.42

C ( SMGRASP, TAN) 0.45 0.21 0.84
E023-05s-75 C ( TAN, SMGRASP) 0.27 0.07 0.51

C ( SMGRASP, TAN) 0.44 0.14 0.83
E026-08m-50 C ( TAN, SMGRASP) 0.00 0.00 0.27

C ( SMGRASP, TAN) 0.97 0.53 1.00
E026-08m-75 C ( TAN, SMGRASP) 0.02 0.00 0.38

C ( SMGRASP, TAN) 0.81 0.00 1.00
E030-04S-50 C ( TAN, SMGRASP) 0.05 0.00 0.14

C ( SMGRASP, TAN) 0.60 0.27 0.87
E030-04S-75 C ( TAN, SMGRASP) 0.05 0.00 0.16

C ( SMGRASP, TAN) 0.67 0.33 0.90
E031-09h-50 C ( TAN, SMGRASP) 0.01 0.00 0.17

C ( SMGRASP, TAN) 0.93 0.40 1.00
E031-09h-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.97 0.58 1.00
E033-05s-50 C ( TAN, SMGRASP) 0.05 0.00 0.13

C ( SMGRASP, TAN) 0.73 0.43 0.94
E033-05s-75 C ( TAN, SMGRASP) 0.04 0.00 0.17

C ( SMGRASP, TAN) 0.72 0.44 0.98
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Table 6 Continued: C metric performance indicator

Instance Metric Average Min Max
E036-11h-50 C ( TAN, SMGRASP) 0.00 0.00 0.04

C ( SMGRASP, TAN) 0.88 0.07 1.00
E036-11h-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.94 0.29 1.00
E041-14h-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.86 0.29 1.00
E041-14h-75 C ( TAN, SMGRASP) 0.01 0.00 0.18

C ( SMGRASP, TAN) 0.83 0.00 1.00
E048-04y-50 C ( TAN, SMGRASP) 0.00 0.00 0.09

C ( SMGRASP, TAN) 0.96 0.61 1.00
E048-04y-75 C ( TAN, SMGRASP) 0.01 0.00 0.14

C ( SMGRASP, TAN) 0.97 0.63 1.00
E051-05e-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.98 0.73 1.00
E051-05e-75 C ( TAN, SMGRASP) 0.00 0.00 0.09

C ( SMGRASP, TAN) 0.97 0.58 1.00
E076-07s-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.99 0.69 1.00
E076-07s-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.95 0.00 1.00
E076-08s-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.94 0.58 1.00
E076-08s-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 1.00 0.91 1.00
E076-14u-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.81 0.36 1.00
E076-14u-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.80 0.36 1.00
E101-08e-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.95 0.45 1.00
E101-08e-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.91 0.50 1.00
E101-10c-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 1.00 1.00 1.00
E101-10c-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.99 0.91 1.00
E101-14s-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.85 0.29 1.00
E101-14s-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.85 0.29 1.00

Table 7: Average running time (in seconds)

Instance TAN SMGRASP
E016-03m-50 1 239 736
E016-03m-75 1 238 651
E016-05m-50 1 172 398
E016-05m-75 1 143 644
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Table 7 Continued: Average running time (in seconds)

Instance TAN SMGRASP
E021-04m-50 938 1 607
E021-04m-75 826 1 397
E021-06m-50 773 1 379
E021-06m-75 770 1 294
E022-06m-50 840 2 779
E022-06m-75 839 2 105
E023-05s-50 1 162 4 630
E023-05s-75 1 162 4 413
E026-08m-50 766 3 078
E026-08m-75 754 2 539
E030-04S-50 2 359 7 984
E030-04S-75 2 351 7 308
E031-09h-50 1 735 7 614
E031-09h-75 1 728 6 691
E033-05s-50 2 729 9 623
E033-05s-75 2 534 8 396
E036-11h-50 2 163 10 231
E036-11h-75 2 086 10 672
E041-14h-50 2 430 10 801
E041-14h-75 2 450 10 518
E048-04y-50 3 673 10 801
E048-04y-75 2 915 10 801
E051-05e-50 3 386 10 800
E051-05e-75 2 743 10 800
E076-07s-50 4 850 10 805
E076-07s-75 3 535 10 803
E076-08s-50 4 838 10 801
E076-08s-75 3 526 10 803
E076-14u-50 3 454 10 809
E076-14u-75 2 879 10 812
E101-08e-50 5 806 10 821
E101-08e-75 3 928 10 811
E101-10c-50 5 916 10 811
E101-10c-75 4 051 10 808
E101-14s-50 6 169 10 820
E101-14s-75 4 118 10 823

Table 8: S metric performance indicator (tests with similar running time)

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E016-03m-50 ( 427.13 , 50.69 ) TAN 6 273 6 106 6 432
SMGRASP 6 219 5 919 6 356

E016-03m-75 ( 384.27 , 53.61 ) TAN 4 278 3 856 4 452
SMGRASP 4 317 4 154 4 606

E016-05m-50 ( 547.93 , 44.64 ) TAN 6 669 6 175 6 991
SMGRASP 6 763 6 339 6 985

E016-05m-75 ( 553.88 , 45.57 ) TAN 7 121 6 684 7 444
SMGRASP 6 885 6 531 7 571
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Table 8 Continued: S metric performance indicator(tests with similar running time)

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E021-04m-50 ( 614.43 , 78.00 ) TAN 14 190 13 151 15 718
SMGRASP 16 167 15 705 16 614

E021-04m-75 ( 604.13 , 89.93 ) TAN 16 011 14 486 17 037
SMGRASP 17 741 17 342 18 245

E021-06m-50 ( 699.27 , 87.45 ) TAN 14 852 13 511 17 112
SMGRASP 16 145 15 615 16 992

E021-06m-75 ( 750.48 , 88.37 ) TAN 18 400 16 940 19 166
SMGRASP 20 118 18 495 21 460

E022-06m-50 ( 895.02 , 45.64 ) TAN 10 699 9 653 12 060
SMGRASP 10 855 9 606 11 646

E022-06m-75 ( 890.88 , 43.73 ) TAN 9 817 8 784 10 699
SMGRASP 9 819 8 713 10 797

E023-05s-50 ( 1 366.34 , 290.11 ) TAN 178 745 175 344 182 660
SMGRASP 185 088 183 576 188 396

E023-05s-75 ( 1 332.98 , 290.11 ) TAN 170 369 165 526 175 035
SMGRASP 176 029 172 157 178 705

E026-08m-50 ( 1 082.93 , 105.09 ) TAN 25 883 23 902 28 644
SMGRASP 31 672 30 103 34 392

E026-08m-75 ( 1 063.27 , 120.00 ) TAN 27 950 24 835 33 018
SMGRASP 33 261 31 856 34 680

E030-04S-50 ( 1 128.63 , 163.40 ) TAN 87 289 84 772 90 104
SMGRASP 89 199 86 973 91 186

E030-04S-75 ( 1 082.70 , 163.40 ) TAN 80 295 78 479 82 798
SMGRASP 82 011 80 739 83 606

E031-09h-50 ( 1 038.75 , 83.81 ) TAN 14 733 11 864 18 141
SMGRASP 21 432 19 361 23 272

E031-09h-75 ( 996.66 , 81.45 ) TAN 11 204 8 620 13 016
SMGRASP 17 552 15 479 19 444

E033-05s-50 ( 1 369.92 , 325.45 ) TAN 120 001 116 537 123 358
SMGRASP 121 257 113 193 126 808

E033-05s-75 ( 1 369.92 , 339.93 ) TAN 127 278 123 892 131 415
SMGRASP 127 762 120 837 133 448

E036-11h-50 ( 1 149.47 , 80.97 ) TAN 14 189 12 493 16 012
SMGRASP 18 805 17 068 20 828

E036-11h-75 ( 1 156.97 , 81.58 ) TAN 12 500 10 546 16 608
SMGRASP 19 205 14 150 22 570

E041-14h-50 ( 1 485.43 , 94.18 ) TAN 23 916 21 480 27 319
SMGRASP 29 082 25 397 31 550

E041-14h-75 ( 1 565.33 , 89.10 ) TAN 25 973 20 961 31 296
SMGRASP 31 301 29 180 33 877

E048-04y-50 ( 132 372.00 , 12 620.20 ) TAN 1.03×109 1.00×109 1.06×109

SMGRASP 1.11×109 1.10×109 1.12×109

E048-04y-75 ( 104 464.00 , 10 912.20 ) TAN 5.81×108 5.54×108 6.16×108

SMGRASP 6.42×108 6.26×108 6.54×108

E051-05e-50 ( 1 080.07 , 91.95 ) TAN 24 273 22 381 27 809
SMGRASP 44 993 44 071 46 343
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Table 8 Continued: S metric performance indicator(tests with similar running time)

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E051-05e-75 ( 1 174.32 , 89.25 ) TAN 30 469 28 481 34 531
SMGRASP 51 455 50 288 52 920

E076-07s-50 ( 1 498.69 , 148.19 ) TAN 65 039 62 959 72 374
SMGRASP 105 349 101 060 109 417

E076-07s-75 ( 1 648.56 , 132.76 ) TAN 69 654 64 862 74 622
SMGRASP 110 032 104 966 114 153

E076-08s-50 ( 1 651.24 , 149.79 ) TAN 54 767 51 347 60 759
SMGRASP 116 665 110 872 121 901

E076-08s-75 ( 1 705.66 , 154.56 ) TAN 60 541 55 827 66 575
SMGRASP 123 761 115 358 126 979

E076-14u-50 ( 2 319.46 , 185.43 ) TAN 59 436 51 827 64 578
SMGRASP 146 699 135 528 155 282

E076-14u-75 ( 2 419.92 , 162.43 ) TAN 58 079 55 033 62 477
SMGRASP 136 431 125 615 142 993

E101-08e-50 ( 1 962.27 , 155.96 ) TAN 68 286 63 021 73 912
SMGRASP 148 262 140 991 153 171

E101-08e-75 ( 2 003.35 , 216.85 ) TAN 117 362 100 962 141 211
SMGRASP 213 748 207 019 228 417

E101-10c-50 ( 2 568.18 , 137.67 ) TAN 71 066 51 689 82 499
SMGRASP 199 120 187 637 204 590

E101-10c-75 ( 2 408.86 , 149.81 ) TAN 67 482 57 852 78 393
SMGRASP 185 614 175 805 193 256

E101-14s-50 ( 2 607.20 , 195.07 ) TAN 79 920 71 044 88 136
SMGRASP 220 737 202 793 232 297

E101-14s-75 ( 2 582.34 , 163.40 ) TAN 58 033 45 954 69 995
SMGRASP 173 248 163 603 181 775

Table 9: C metric performance indicator (tests with similar running time)

Instance Metric Average Min Max
E016-03m-50 C ( TAN, SMGRASP) 0.47 0.00 1.00

C ( SMGRASP, TAN) 0.14 0.00 0.56
E016-03m-75 C ( TAN, SMGRASP) 0.39 0.00 1.00

C ( SMGRASP, TAN) 0.20 0.00 0.69
E016-05m-50 C ( TAN, SMGRASP) 0.25 0.00 1.00

C ( SMGRASP, TAN) 0.23 0.00 0.67
E016-05m-75 C ( TAN, SMGRASP) 0.46 0.00 1.00

C ( SMGRASP, TAN) 0.17 0.00 0.55
E021-04m-50 C ( TAN, SMGRASP) 0.05 0.00 0.67

C ( SMGRASP, TAN) 0.57 0.13 1.00
E021-04m-75 C ( TAN, SMGRASP) 0.04 0.00 0.33

C ( SMGRASP, TAN) 0.63 0.00 1.00
E021-06m-50 C ( TAN, SMGRASP) 0.07 0.00 0.60

C ( SMGRASP, TAN) 0.44 0.00 1.00
E021-06m-75 C ( TAN, SMGRASP) 0.03 0.00 0.29

C ( SMGRASP, TAN) 0.67 0.11 1.00
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Table 9 Continued: C metric performance indicator (tests with similar running time)

Instance Metric Average Min Max
E022-06m-50 C ( TAN, SMGRASP) 0.21 0.00 0.81

C ( SMGRASP, TAN) 0.49 0.00 0.94
E022-06m-75 C ( TAN, SMGRASP) 0.22 0.00 0.61

C ( SMGRASP, TAN) 0.48 0.11 1.00
E023-05s-50 C ( TAN, SMGRASP) 0.40 0.19 0.59

C ( SMGRASP, TAN) 0.34 0.10 0.59
E023-05s-75 C ( TAN, SMGRASP) 0.35 0.14 0.62

C ( SMGRASP, TAN) 0.35 0.09 0.66
E026-08m-50 C ( TAN, SMGRASP) 0.01 0.00 0.36

C ( SMGRASP, TAN) 0.91 0.46 1.00
E026-08m-75 C ( TAN, SMGRASP) 0.06 0.00 0.55

C ( SMGRASP, TAN) 0.72 0.00 1.00
E030-04S-50 C ( TAN, SMGRASP) 0.09 0.00 0.22

C ( SMGRASP, TAN) 0.54 0.27 0.83
E030-04S-75 C ( TAN, SMGRASP) 0.07 0.00 0.23

C ( SMGRASP, TAN) 0.61 0.27 0.80
E031-09h-50 C ( TAN, SMGRASP) 0.00 0.00 0.08

C ( SMGRASP, TAN) 0.82 0.20 1.00
E031-09h-75 C ( TAN, SMGRASP) 0.00 0.00 0.10

C ( SMGRASP, TAN) 0.94 0.57 1.00
E033-05s-50 C ( TAN, SMGRASP) 0.07 0.00 0.22

C ( SMGRASP, TAN) 0.66 0.30 0.91
E033-05s-75 C ( TAN, SMGRASP) 0.07 0.00 0.19

C ( SMGRASP, TAN) 0.66 0.37 0.97
E036-11h-50 C ( TAN, SMGRASP) 0.01 0.00 0.29

C ( SMGRASP, TAN) 0.54 0.00 1.00
E036-11h-75 C ( TAN, SMGRASP) 0.03 0.00 0.40

C ( SMGRASP, TAN) 0.72 0.25 1.00
E041-14h-50 C ( TAN, SMGRASP) 0.03 0.00 0.40

C ( SMGRASP, TAN) 0.52 0.00 1.00
E041-14h-75 C ( TAN, SMGRASP) 0.03 0.00 0.36

C ( SMGRASP, TAN) 0.59 0.00 1.00
E048-04y-50 C ( TAN, SMGRASP) 0.00 0.00 0.09

C ( SMGRASP, TAN) 0.92 0.43 1.00
E048-04y-75 C ( TAN, SMGRASP) 0.02 0.00 0.27

C ( SMGRASP, TAN) 0.92 0.38 1.00
E051-05e-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.89 0.36 1.00
E051-05e-75 C ( TAN, SMGRASP) 0.00 0.00 0.14

C ( SMGRASP, TAN) 0.91 0.58 1.00
E076-07s-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.96 0.62 1.00
E076-07s-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.86 0.00 1.00
E076-08s-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.83 0.42 1.00
E076-08s-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.88 0.45 1.00
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Table 9 Continued: C metric performance indicator (tests with similar running time)

Instance Metric Average Min Max
E076-14u-50 C ( TAN, SMGRASP) 0.00 0.00 0.17

C ( SMGRASP, TAN) 0.65 0.20 1.00
E076-14u-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.61 0.07 1.00
E101-08e-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.91 0.36 1.00
E101-08e-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.70 0.25 1.00
E101-10c-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.99 0.75 1.00
E101-10c-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.95 0.55 1.00
E101-14s-50 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.83 0.35 1.00
E101-14s-75 C ( TAN, SMGRASP) 0.00 0.00 0.00

C ( SMGRASP, TAN) 0.75 0.36 1.00

Table 10: S metric performance indicator. Comparison between SMGRASP and SMGRASP with
no distance insertion strategy (SMGRASP-NDI)

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E016-03m-50 ( 439.37 , 19.82 ) SMGRASP-NDI 2 393 2 312 2 556
SMGRASP 2 373 2 177 2 556

E016-03m-75 ( 454.25 , 53.61 ) SMGRASP-NDI 7 927 7 705 8 178
SMGRASP 7 982 7 798 8 344

E016-05m-50 ( 486.05 , 42.95 ) SMGRASP-NDI 4 132 3 869 4 319
SMGRASP 4 108 3 818 4 315

E016-05m-75 ( 547.71 , 45.57 ) SMGRASP-NDI 6 588 6 159 7 244
SMGRASP 6 632 6 279 7 294

E021-04m-50 ( 585.94 , 74.49 ) SMGRASP-NDI 13 476 12 963 14 054
SMGRASP 13 442 12 985 13 951

E021-04m-75 ( 604.13 , 75.57 ) SMGRASP-NDI 14 805 14 073 15 451
SMGRASP 14 826 14 402 15 393

E021-06m-50 ( 712.87 , 84.31 ) SMGRASP-NDI 16 536 15 863 17 461
SMGRASP 16 701 15 936 17 461

E021-06m-75 ( 692.97 , 88.37 ) SMGRASP-NDI 15 647 14 733 16 646
SMGRASP 15 699 14 773 16 687

E022-06m-50 ( 901.87 , 41.40 ) SMGRASP-NDI 9 690 8 595 10 590
SMGRASP 9 860 8 548 10 351

E022-06m-75 ( 904.54 , 42.62 ) SMGRASP-NDI 10 121 8 879 12 684
SMGRASP 10 069 8 979 11 048

E023-05s-50 ( 1 366.34 , 290.11 ) SMGRASP-NDI 186 382 183 617 187 955
SMGRASP 187 793 185 727 190 089

E023-05s-75 ( 1 400.45 , 290.11 ) SMGRASP-NDI 195 759 192 837 197 063
SMGRASP 197 639 195 122 199 332

E026-08m-50 ( 855.45 , 100.99 ) SMGRASP-NDI 10 975 9 940 12 501
SMGRASP 11 181 9 965 12 116
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Table 10 Continued: S metric performance indicator. Comparison between SMGRASP and
SMGRASP-NDI

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E026-08m-75 ( 994.64 , 103.51 ) SMGRASP-NDI 22 336 21 372 23 659
SMGRASP 22 271 20 772 23 804

E030-04S-50 ( 1 095.65 , 163.40 ) SMGRASP-NDI 83 925 81 398 85 921
SMGRASP 84 855 83 840 85 855

E030-04S-75 ( 1 082.70 , 249.16 ) SMGRASP-NDI 130 731 125 879 132 180
SMGRASP 132 381 130 793 133 437

E031-09h-50 ( 965.85 , 62.61 ) SMGRASP-NDI 11 553 9 155 13 219
SMGRASP 11 709 10 191 13 284

E031-09h-75 ( 839.41 , 82.26 ) SMGRASP-NDI 7 575 5 738 8 728
SMGRASP 7 915 7 216 9 140

E033-05s-50 ( 1 406.07 , 325.45 ) SMGRASP-NDI 135 373 131 184 137 455
SMGRASP 135 201 130 055 139 563

E033-05s-75 ( 1 418.24 , 339.93 ) SMGRASP-NDI 145 744 140 567 151 347
SMGRASP 147 561 141 439 152 040

E036-11h-50 ( 973.65 , 73.85 ) SMGRASP-NDI 9 192 6 894 11 328
SMGRASP 9 326 6 742 11 609

E036-11h-75 ( 999.21 , 67.94 ) SMGRASP-NDI 9 214 7 799 9 970
SMGRASP 9 245 8 005 10 579

E041-14h-50 ( 1 190.97 , 111.92 ) SMGRASP-NDI 14 855 12 501 19 013
SMGRASP 15 699 14 052 17 571

E041-14h-75 ( 1 244.38 , 102.48 ) SMGRASP-NDI 15 822 12 197 19 062
SMGRASP 16 272 13 670 18 759

E048-04y-50 ( 85 834.40 , 8 947.00 ) SMGRASP-NDI 3.67×108 3.54×108 3.73×108

SMGRASP 3.70×108 3.61×108 3.78×108

E048-04y-75 ( 87 646.20 , 9 524.24 ) SMGRASP-NDI 3.97×108 3.85×108 4.11×108

SMGRASP 4.04×108 3.98×108 4.11×108

E051-05e-50 ( 1 141.26 , 35.81 ) SMGRASP-NDI 18 648 17 790 19 621
SMGRASP 19 078 18 310 19 802

E051-05e-75 ( 1 064.52 , 31.82 ) SMGRASP-NDI 13 826 13 009 14 898
SMGRASP 14 497 13 865 15 330

E076-07s-50 ( 1 584.83 , 125.78 ) SMGRASP-NDI 96 903 94 033 98 957
SMGRASP 101 741 97 257 105 153

E076-07s-75 ( 1 667.90 , 121.88 ) SMGRASP-NDI 102 966 98 245 107 132
SMGRASP 107 619 102 986 110 794

E076-08s-50 ( 1 685.95 , 124.20 ) SMGRASP-NDI 92 275 87 323 98 195
SMGRASP 101 583 93 250 104 750

E076-08s-75 ( 1 676.06 , 102.43 ) SMGRASP-NDI 74 911 71 113 79 549
SMGRASP 81 104 75 885 86 985

E076-14u-50 ( 2 166.30 , 116.68 ) SMGRASP-NDI 71 960 61 477 83 842
SMGRASP 72 815 66 895 81 299

E076-14u-75 ( 2 146.39 , 125.81 ) SMGRASP-NDI 73 626 62 908 84 615
SMGRASP 77 430 71 120 81 924

E101-08e-50 ( 1 940.77 , 141.70 ) SMGRASP-NDI 127 411 118 534 132 802
SMGRASP 135 728 130 142 143 928

E101-08e-75 ( 2 003.35 , 136.31 ) SMGRASP-NDI 127 393 117 717 133 040
SMGRASP 133 698 130 113 137 361
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Table 10 Continued: S metric performance indicator. Comparison between SMGRASP and
SMGRASP-NDI

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E101-10c-50 ( 2 553.31 , 115.81 ) SMGRASP-NDI 152 763 140 687 164 994
SMGRASP 162 827 153 943 170 434

E101-10c-75 ( 2 452.39 , 166.81 ) SMGRASP-NDI 214 243 204 168 229 610
SMGRASP 221 099 206 032 232 638

E101-14s-50 ( 2 584.37 , 145.30 ) SMGRASP-NDI 144 466 134 106 157 375
SMGRASP 154 439 140 500 159 954

E101-14s-75 ( 2 675.23 , 135.80 ) SMGRASP-NDI 142 059 129 079 156 375
SMGRASP 155 084 150 925 159 885

Table 11: C metric performance indicator. Comparison between SMGRASP and SMGRASP-NDI

Instance Metric Average Min Max
E016-03m-50 C ( SMGRASP-NDI , SMGRASP) 0.33 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.30 0.00 1.00
E016-03m-75 C ( SMGRASP-NDI , SMGRASP) 0.31 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.39 0.00 1.00
E016-05m-50 C ( SMGRASP-NDI , SMGRASP) 0.38 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.37 0.00 1.00
E016-05m-75 C ( SMGRASP-NDI , SMGRASP) 0.28 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.31 0.00 1.00
E021-04m-50 C ( SMGRASP-NDI , SMGRASP) 0.37 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.33 0.00 1.00
E021-04m-75 C ( SMGRASP-NDI , SMGRASP) 0.30 0.00 0.88

C ( SMGRASP, SMGRASP-NDI ) 0.34 0.00 1.00
E021-06m-50 C ( SMGRASP-NDI , SMGRASP) 0.21 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.25 0.00 1.00
E021-06m-75 C ( SMGRASP-NDI , SMGRASP) 0.34 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.42 0.00 1.00
E022-06m-50 C ( SMGRASP-NDI , SMGRASP) 0.33 0.00 0.88

C ( SMGRASP, SMGRASP-NDI ) 0.40 0.00 0.82
E022-06m-75 C ( SMGRASP-NDI , SMGRASP) 0.34 0.00 0.90

C ( SMGRASP, SMGRASP-NDI ) 0.40 0.00 0.78
E023-05s-50 C ( SMGRASP-NDI , SMGRASP) 0.30 0.09 0.63

C ( SMGRASP, SMGRASP-NDI ) 0.56 0.26 0.92
E023-05s-75 C ( SMGRASP-NDI , SMGRASP) 0.30 0.05 0.71

C ( SMGRASP, SMGRASP-NDI ) 0.62 0.20 0.88
E026-08m-50 C ( SMGRASP-NDI , SMGRASP) 0.36 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.43 0.00 1.00
E026-08m-75 C ( SMGRASP-NDI , SMGRASP) 0.31 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.37 0.00 1.00
E030-04S-50 C ( SMGRASP-NDI , SMGRASP) 0.37 0.06 0.73

C ( SMGRASP, SMGRASP-NDI ) 0.38 0.12 0.83
E030-04S-75 C ( SMGRASP-NDI , SMGRASP) 0.38 0.04 0.61

C ( SMGRASP, SMGRASP-NDI ) 0.41 0.12 0.81
E031-09h-50 C ( SMGRASP-NDI , SMGRASP) 0.38 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.34 0.00 1.00
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Table 11 Continued: C metric performance indicator. Comparison between SMGRASP and
SMGRASP-NDI

Instance Metric Average Min Max
E031-09h-75 C ( SMGRASP-NDI , SMGRASP) 0.27 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.40 0.00 1.00
E033-05s-50 C ( SMGRASP-NDI , SMGRASP) 0.38 0.04 0.88

C ( SMGRASP, SMGRASP-NDI ) 0.37 0.02 0.92
E033-05s-75 C ( SMGRASP-NDI , SMGRASP) 0.41 0.08 0.81

C ( SMGRASP, SMGRASP-NDI ) 0.34 0.08 0.84
E036-11h-50 C ( SMGRASP-NDI , SMGRASP) 0.30 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.40 0.00 1.00
E036-11h-75 C ( SMGRASP-NDI , SMGRASP) 0.31 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.41 0.00 1.00
E041-14h-50 C ( SMGRASP-NDI , SMGRASP) 0.20 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.46 0.00 1.00
E041-14h-75 C ( SMGRASP-NDI , SMGRASP) 0.32 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.38 0.00 1.00
E048-04y-50 C ( SMGRASP-NDI , SMGRASP) 0.28 0.00 0.88

C ( SMGRASP, SMGRASP-NDI ) 0.39 0.00 0.95
E048-04y-75 C ( SMGRASP-NDI , SMGRASP) 0.26 0.00 0.96

C ( SMGRASP, SMGRASP-NDI ) 0.48 0.00 1.00
E051-05e-50 C ( SMGRASP-NDI , SMGRASP) 0.18 0.00 0.67

C ( SMGRASP, SMGRASP-NDI ) 0.48 0.00 1.00
E051-05e-75 C ( SMGRASP-NDI , SMGRASP) 0.22 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.53 0.00 1.00
E076-07s-50 C ( SMGRASP-NDI , SMGRASP) 0.08 0.00 0.60

C ( SMGRASP, SMGRASP-NDI ) 0.77 0.08 1.00
E076-07s-75 C ( SMGRASP-NDI , SMGRASP) 0.06 0.00 0.47

C ( SMGRASP, SMGRASP-NDI ) 0.68 0.14 1.00
E076-08s-50 C ( SMGRASP-NDI , SMGRASP) 0.04 0.00 0.90

C ( SMGRASP, SMGRASP-NDI ) 0.73 0.00 1.00
E076-08s-75 C ( SMGRASP-NDI , SMGRASP) 0.05 0.00 0.70

C ( SMGRASP, SMGRASP-NDI ) 0.78 0.00 1.00
E076-14u-50 C ( SMGRASP-NDI , SMGRASP) 0.35 0.00 1.00

C ( SMGRASP, SMGRASP-NDI ) 0.29 0.00 1.00
E076-14u-75 C ( SMGRASP-NDI , SMGRASP) 0.17 0.00 0.90

C ( SMGRASP, SMGRASP-NDI ) 0.47 0.00 1.00
E101-08e-50 C ( SMGRASP-NDI , SMGRASP) 0.07 0.00 0.46

C ( SMGRASP, SMGRASP-NDI ) 0.65 0.10 1.00
E101-08e-75 C ( SMGRASP-NDI , SMGRASP) 0.10 0.00 0.64

C ( SMGRASP, SMGRASP-NDI ) 0.68 0.00 1.00
E101-10c-50 C ( SMGRASP-NDI , SMGRASP) 0.15 0.00 0.77

C ( SMGRASP, SMGRASP-NDI ) 0.64 0.05 1.00
E101-10c-75 C ( SMGRASP-NDI , SMGRASP) 0.17 0.00 0.70

C ( SMGRASP, SMGRASP-NDI ) 0.50 0.00 1.00
E101-14s-50 C ( SMGRASP-NDI , SMGRASP) 0.15 0.00 0.56

C ( SMGRASP, SMGRASP-NDI ) 0.52 0.00 1.00
E101-14s-75 C ( SMGRASP-NDI , SMGRASP) 0.13 0.00 0.82

C ( SMGRASP, SMGRASP-NDI ) 0.55 0.00 1.00
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Table 12: S metric performance indicator. Comparison between SMGRASP and SMGRASP with
virtual capacity (VC105)

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E016-03m-50 ( 425.42 , 25.21 ) VC 3 075 2 982 3 183
SMGRASP 2 814 2 608 2 979

E016-03m-75 ( 449.61 , 53.61 ) VC 8 317 8 170 8 568
SMGRASP 7 739 7 560 8 096

E016-05m-50 ( 551.39 , 51.52 ) VC 8 792 8 261 9 233
SMGRASP 8 128 7 708 8 397

E016-05m-75 ( 540.76 , 51.69 ) VC 8 126 7 796 8 516
SMGRASP 7 390 7 051 8 047

E021-04m-50 ( 604.97 , 71.29 ) VC 15 089 14 906 15 605
SMGRASP 14 111 13 641 14 624

E021-04m-75 ( 604.13 , 75.57 ) VC 15 569 15 084 16 166
SMGRASP 14 826 14 402 15 393

E021-06m-50 ( 691.02 , 84.31 ) VC 15 921 15 499 16 326
SMGRASP 15 043 14 363 15 736

E021-06m-75 ( 699.14 , 88.37 ) VC 17 223 16 767 17 881
SMGRASP 16 198 15 253 17 199

E022-06m-50 ( 874.59 , 41.40 ) VC 9 208 8 355 11 167
SMGRASP 8 990 7 772 9 458

E022-06m-75 ( 919.46 , 42.62 ) VC 10 805 9 784 12 059
SMGRASP 10 548 9 396 11 625

E023-05s-50 ( 1 366.34 , 290.11 ) VC 187 374 185 594 188 719
SMGRASP 187 793 185 727 190 089

E023-05s-75 ( 1 332.98 , 290.11 ) VC 177 323 175 130 179 561
SMGRASP 178 177 175 684 179 868

E026-08m-50 ( 836.08 , 100.99 ) VC 10 680 9 563 12 036
SMGRASP 9 456 8 270 10 360

E026-08m-75 ( 987.77 , 103.51 ) VC 23 595 21 915 25 546
SMGRASP 21 658 20 192 23 168

E030-04S-50 ( 1 081.41 , 163.40 ) VC 82 647 81 370 83 407
SMGRASP 82 529 81 514 83 530

E030-04S-75 ( 1 082.70 , 163.40 ) VC 82 815 81 297 83 716
SMGRASP 82 898 81 589 83 896

E031-09h-50 ( 1 023.83 , 64.31 ) VC 17 709 15 525 19 298
SMGRASP 15 042 13 541 16 811

E031-09h-75 ( 852.49 , 82.26 ) VC 11 474 10 669 12 204
SMGRASP 8 805 8 042 10 022

E033-05s-50 ( 1 398.37 , 336.19 ) VC 132 516 124 178 143 074
SMGRASP 138 511 133 390 142 847

E033-05s-75 ( 1 459.33 , 339.93 ) VC 153 836 146 561 160 394
SMGRASP 161 516 155 390 165 993

E036-11h-50 ( 1 082.26 , 73.85 ) VC 16 779 15 139 18 021
SMGRASP 15 617 12 645 18 259

E036-11h-75 ( 1 008.42 , 61.83 ) VC 9 610 8 402 10 537
SMGRASP 8 445 7 196 9 708

E041-14h-50 ( 1 192.42 , 111.92 ) VC 17 603 15 208 19 251
SMGRASP 15 832 14 189 17 696
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Table 12 Continued: S metric performance indicator. Comparison between SMGRASP and VC105

Instance Ref. Point Algorithm Average Min Max
(Length, Balance)

E041-14h-75 ( 1 244.38 , 83.07 ) VC 14 390 11 972 16 195
SMGRASP 12 263 10 085 14 244

E048-04y-50 ( 84 757.10 , 18 536.00 ) VC 7.56×108 7.41×108 7.68×108

SMGRASP 7.62×108 7.52×108 7.73×108

E048-04y-75 ( 87 646.20 , 19 201.00 ) VC 8.26×108 7.97×108 8.46×108

SMGRASP 8.30×108 8.13×108 8.42×108

E051-05e-50 ( 1 041.48 , 38.51 ) VC 17 279 16 624 18 018
SMGRASP 17 032 16 455 17 658

E051-05e-75 ( 1 023.34 , 32.50 ) VC 13 807 13 124 14 330
SMGRASP 13 595 12 992 14 402

E076-07s-50 ( 1 534.90 , 120.09 ) VC 92 296 89 328 96 098
SMGRASP 91 042 86 593 94 376

E076-07s-75 ( 1 648.56 , 122.09 ) VC 106 193 99 103 110 553
SMGRASP 105 492 100 874 108 665

E076-08s-50 ( 1 674.69 , 149.95 ) VC 124 176 118 427 129 011
SMGRASP 122 183 112 946 125 559

E076-08s-75 ( 1 732.22 , 116.60 ) VC 98 771 95 755 103 976
SMGRASP 99 426 93 736 105 872

E076-14u-50 ( 2 017.99 , 112.35 ) VC 72 535 61 802 78 404
SMGRASP 56 386 51 389 64 314

E076-14u-75 ( 2 316.67 , 114.96 ) VC 100 013 95 678 104 499
SMGRASP 83 736 76 865 89 536

E101-08e-50 ( 1 843.34 , 133.87 ) VC 116 649 111 924 122 080
SMGRASP 114 945 109 384 122 900

E101-08e-75 ( 2 012.48 , 161.19 ) VC 163 821 154 500 173 607
SMGRASP 161 602 157 461 166 300

E101-10c-50 ( 2 553.31 , 160.39 ) VC 222 405 214 168 236 775
SMGRASP 234 073 221 627 243 180

E101-10c-75 ( 2 406.01 , 162.33 ) VC 200 064 186 423 214 181
SMGRASP 207 353 192 485 218 693

E101-14s-50 ( 2 641.81 , 161.72 ) VC 183 334 166 600 201 881
SMGRASP 184 108 169 660 189 761

E101-14s-75 ( 2 782.13 , 225.78 ) VC 292 445 273 780 308 174
SMGRASP 301 461 297 310 306 810

Table 13: C metric performance indicator. Comparison between SMGRASP and VC105

Instance Metric Average Min Max
E016-03m-50 C ( VC, SMGRASP) 0.68 0.29 1.00

C ( SMGRASP, VC) 0.09 0.00 0.40
E016-03m-75 C ( VC, SMGRASP) 0.63 0.14 1.00

C ( SMGRASP, VC) 0.12 0.00 0.36
E016-05m-50 C ( VC, SMGRASP) 0.47 0.00 1.00

C ( SMGRASP, VC) 0.02 0.00 0.20
E016-05m-75 C ( VC, SMGRASP) 0.68 0.00 1.00

C ( SMGRASP, VC) 0.03 0.00 0.20
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Table 13 Continued: C metric performance indicator. Comparison between SMGRASP and VC105

Instance Metric Average Min Max
E021-04m-50 C ( VC, SMGRASP) 0.70 0.20 1.00

C ( SMGRASP, VC) 0.06 0.00 0.50
E021-04m-75 C ( VC, SMGRASP) 0.70 0.00 1.00

C ( SMGRASP, VC) 0.09 0.00 0.56
E021-06m-50 C ( VC, SMGRASP) 0.51 0.00 1.00

C ( SMGRASP, VC) 0.06 0.00 0.43
E021-06m-75 C ( VC, SMGRASP) 0.68 0.22 1.00

C ( SMGRASP, VC) 0.09 0.00 0.50
E022-06m-50 C ( VC, SMGRASP) 0.39 0.05 0.83

C ( SMGRASP, VC) 0.33 0.04 0.81
E022-06m-75 C ( VC, SMGRASP) 0.49 0.23 0.89

C ( SMGRASP, VC) 0.24 0.05 0.65
E023-05s-50 C ( VC, SMGRASP) 0.39 0.11 0.72

C ( SMGRASP, VC) 0.48 0.18 0.87
E023-05s-75 C ( VC, SMGRASP) 0.37 0.04 0.73

C ( SMGRASP, VC) 0.50 0.11 0.83
E026-08m-50 C ( VC, SMGRASP) 0.64 0.00 1.00

C ( SMGRASP, VC) 0.11 0.00 0.61
E026-08m-75 C ( VC, SMGRASP) 0.73 0.00 1.00

C ( SMGRASP, VC) 0.08 0.00 0.70
E030-04S-50 C ( VC, SMGRASP) 0.34 0.06 0.75

C ( SMGRASP, VC) 0.45 0.09 0.91
E030-04S-75 C ( VC, SMGRASP) 0.34 0.05 0.63

C ( SMGRASP, VC) 0.45 0.13 0.80
E031-09h-50 C ( VC, SMGRASP) 0.75 0.17 1.00

C ( SMGRASP, VC) 0.05 0.00 0.56
E031-09h-75 C ( VC, SMGRASP) 0.91 0.36 1.00

C ( SMGRASP, VC) 0.01 0.00 0.33
E033-05s-50 C ( VC, SMGRASP) 0.24 0.01 0.75

C ( SMGRASP, VC) 0.54 0.09 0.93
E033-05s-75 C ( VC, SMGRASP) 0.24 0.01 0.66

C ( SMGRASP, VC) 0.51 0.13 0.86
E036-11h-50 C ( VC, SMGRASP) 0.49 0.00 1.00

C ( SMGRASP, VC) 0.26 0.00 1.00
E036-11h-75 C ( VC, SMGRASP) 0.62 0.00 1.00

C ( SMGRASP, VC) 0.16 0.00 1.00
E041-14h-50 C ( VC, SMGRASP) 0.44 0.00 1.00

C ( SMGRASP, VC) 0.18 0.00 0.79
E041-14h-75 C ( VC, SMGRASP) 0.57 0.00 1.00

C ( SMGRASP, VC) 0.14 0.00 0.92
E048-04y-50 C ( VC, SMGRASP) 0.31 0.00 0.93

C ( SMGRASP, VC) 0.44 0.00 1.00
E048-04y-75 C ( VC, SMGRASP) 0.35 0.00 0.96

C ( SMGRASP, VC) 0.35 0.00 1.00
E051-05e-50 C ( VC, SMGRASP) 0.44 0.00 1.00

C ( SMGRASP, VC) 0.27 0.00 1.00
E051-05e-75 C ( VC, SMGRASP) 0.50 0.00 1.00

C ( SMGRASP, VC) 0.26 0.00 0.85
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Table 13 Continued: C metric performance indicator. Comparison between SMGRASP and VC105

Instance Metric Average Min Max
E076-07s-50 C ( VC, SMGRASP) 0.44 0.00 1.00

C ( SMGRASP, VC) 0.35 0.00 1.00
E076-07s-75 C ( VC, SMGRASP) 0.43 0.00 1.00

C ( SMGRASP, VC) 0.31 0.00 1.00
E076-08s-50 C ( VC, SMGRASP) 0.41 0.00 1.00

C ( SMGRASP, VC) 0.33 0.00 1.00
E076-08s-75 C ( VC, SMGRASP) 0.35 0.00 1.00

C ( SMGRASP, VC) 0.44 0.00 1.00
E076-14u-50 C ( VC, SMGRASP) 0.88 0.00 1.00

C ( SMGRASP, VC) 0.00 0.00 0.10
E076-14u-75 C ( VC, SMGRASP) 0.92 0.20 1.00

C ( SMGRASP, VC) 0.00 0.00 0.20
E101-08e-50 C ( VC, SMGRASP) 0.36 0.00 0.92

C ( SMGRASP, VC) 0.21 0.00 0.93
E101-08e-75 C ( VC, SMGRASP) 0.35 0.00 0.90

C ( SMGRASP, VC) 0.32 0.00 1.00
E101-10c-50 C ( VC, SMGRASP) 0.15 0.00 1.00

C ( SMGRASP, VC) 0.64 0.00 1.00
E101-10c-75 C ( VC, SMGRASP) 0.22 0.00 0.91

C ( SMGRASP, VC) 0.54 0.00 1.00
E101-14s-50 C ( VC, SMGRASP) 0.31 0.00 1.00

C ( SMGRASP, VC) 0.35 0.00 0.93
E101-14s-75 C ( VC, SMGRASP) 0.22 0.00 0.83

C ( SMGRASP, VC) 0.37 0.00 1.00
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The CVRP with soft time windows and stochastic travel times

Jorge Oyola

Molde University College, Molde, Norway

Abstract

A full multi-objective approach is employed in this paper to deal with a stochastic multi-
objective CVRP. In this version of the problem, the demand is considered to be deterministic,
but the travel times are assumed to be stochastic. A soft time window is tied to every customer
and there is a penalty for starting the service outside the time window. Two objectives are
minimized, the total length and the time window penalty. Our approach includes a NSGA and
a VNS heuristic. It is tested on instances from the literature, obtaining approximations of the
Pareto set, in contrast to a previous solution approach where even though the problem was
modeled as multi-objective, no attempt was made to approximate the Pareto set. Our method
is able to find solutions that dominate some of the previously known VRP solutions.

Keywords: Multi-objective VRP, Stochastic VRP (SVRP), VNS, NSGA, Stochastic travel time

1 Introduction

The capacitated vehicle routing problem (CVRP) is a well-known problem in transportation pro-
posed in 1959 (Dantzig and Ramser, 1959). It is defined over an undirected graph G(V,E), where
V = v0, . . . , vN is a set of vertices and E = (vi, vj) : vi, vj ∈ V, i < j is a set of edges. There is
a symmetric matrix C = [cij ] that correspond to the travel costs along edge (vi, vj). Vertex v0
represents the depot where there is a homogeneous fleet of m vehicles with capacity Q. A set of
customers V \ v0 with a non-negative known demand di must be served. A solution to the CVRP
consists of m delivery routes with some specific conditions. Each route must start and end at the
depot. Each customer must be visited once by exactly one vehicle. The summation of the demands
of the customers in the same route, must be less than or equal to Q. A different approach where
the demand corresponds to items that must be collected from the customers leads to an equivalent
problem. The classic objective is minimization of total travel costs (Toth and Vigo, 2002).

The previous definition holds for the deterministic CVRP, however it is expected that in the real
world one or more of the elements of the CVRP will be uncertain. Such elements are included in
the models in the form of stochastic parameters. This variant of the problem became known as
stochastic (capacitated) vehicle routing problem (SVRP or SCVRP) (Gendreau et al., 1996; Oyola
et al., 2015).

Several variants of SVRP are modeled using stochastic parameters. The capacitated vehicle rout-
ing problem with stochastic demand (CVRPSD) is the most studied version of SVRP (Cordeau
et al., 2007). Other parameters often modeled as stochastic are the presence of customers, travel
times and service times (Gendreau et al., 1996; Oyola et al., 2015).

Delivery reliability defined as the on-time delivery of products and services, is a major competitive
arena for many companies (Russell and Urban, 2008). The travel time between two customers
may be affected by the congestion in the road and other eventualities, such as accidents. Which
makes the CVRP with stochastic travel time a relevant problem to study. This paper deals with a
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stochastic multi-objective vehicle routing problem with soft time windows (TW). The penalty for ser-
vicing the customers outside the time windows is included as objective, in addition to the traditional
minimization of the total length. The travel times are assumed to be stochastic. This problem is
known as the VRP with soft time windows and stochastic travel times (SVRPSTW).

A model for the SVRPSTW was formulated in Russell and Urban (2008). However, their solution
approach was not entirely multi-objective. A weighted sum of objective functions is used to circum-
vent the existence of more than one objective in the problem. By using this approach the solution
to a multi-objective problem could be partially approximated (Collette and Siarry, 2003), if several
combinations of weights are assigned to the objective functions. Nevertheless only two combina-
tions of weights were used. In this paper, on the other hand, we treat the problem employing a full
multi-objective approach.

The rest of the paper is organized as follows: in Section 2 the SVRPSTW is explained; the algo-
rithm used to find solutions to the problem is presented in Section 3; the computational tests and
results are described in Section 4, with all corresponding tables presenting results summarized in
Apendix A and the conclusions are presented in Section 5.

2 Problem definition

A multi-objective approach to the CVRP with soft time windows and stochastic travel times
(SVRPSTW) is found in Russell and Urban (2008). In SVRPSTW the demand is known in ad-
vance, and there is a deterministic service time and a time window [ei, li] associated with each
customer i. Starting service outside the time window is allowed at a cost, either for earliness or
lateness. Three objectives are taken into consideration: the minimization of the number of vehi-
cles, the total traveled distance and the total expected penalties for earliness and lateness in the
service. The problem is modeled as stochastic programming with recourse (SPR), the recourse
being the cost for servicing outside the time windows. A tabu search heuristic is used to solve the
SVRPSTW. Even though the problem is modeled as a multi-objective problem, just two potentially
Pareto solutions are found. The three objective functions are combined into a weighted single
objective which is later minimized by the tabu search algorithm. Tests were performed using two
different sets of weights, one solution is found in every case.

We will reformulate SVRPSTW as a bi-objective problem, where the expected total distance and
the expected penalty cost (for starting the service outside the time windows) are minimized. The
Number of vehicles is given as parameter, in principle it is possible to use the value found in
Russell and Urban (2008). However it is possible to set different values to the number of vehicles
and solve the bi-objective problem for each value. In such a case the obtained sets of solutions will
approximate the Pareto set to the original SVRPSTW.

In Russell and Urban (2008) the problem is modeled as multi-objective and solved using weighted
sum of objective functions. Two different set of weights are used so just two solutions are obtained
for every instance. In contrast, the objective here is to approximate the Pareto front. The obtained
solution sets are compared against the solutions presented in Russell and Urban (2008). The
fact that the solution to the problem is presented in a form of approximation to the Pareto front,
becomes one main contribution of this work. Since no previous attempts have been made to
approximate its Pareto front, despite the fact that it has been previously formulated as a multi-
objective problem. Another contribution of our approach comes from the fact that we propose an
algorithm that succeeds finding such approximation.
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2.1 Travel time and closed-form expressions for the penalties

The travel times are considered to follow a shifted gamma (α, β, γ) distribution, where α is restricted
to take only integer values. This condition on the travel time allows the exact penalty computation,
at the cost of generality. The arrival time at customer i, τi, is equal to the cumulative travel times
plus the sum of the service times of all preceding customers. The earliness penalty at customer i,
Ξi was expressed in Russell and Urban (2008) as:

Ξi = aβ2

[
[(Ei/β)− α′]2 + α′−

({
α′[(α′ + 1) + (α′ − 1)(Ei/β)] +

α′−1∑

r=2

r(r − 1)(Ei/β)α
′+1−r

(α′ + 1− r)!

}
e−Ei/β

)]
(1)

Where Ei = ei−wi− δ
∑

j∈Pik
djj′ −

∑
j∈Pik

(sj +wj), α′ = α
∑

j∈Pik
djj′ , α ∈ Z+, β ∈ R+, δ ∈ R+

0 ,
a is a weight coefficient, j′ is the customer immediately following j in route k, Pik is the set of
customers served before i in route k.

On the other hand the tardiness penalty at customer i, Λi can be expressed as:

Λi = bβ2

[
α′[(α′ + 1) + (α′ − 1)(Li/β)] +

α′−1∑

r=2

r(r − 1)(Li/β)α
′+1−r

(α′ + 1− r)!

]
e−Li/β (2)

Where Li = li − wi − δ
∑

j∈Pik
djj′ −

∑
j∈Pik

(sj + wj), b is a weight coefficient.

The weight coefficients a in earliness and b in the tardiness penalty are assumed to be equal to
one. The penalty for serving the customers outside the time windows is assumed to be a quadratic
loss function, so larger deviations will cause progressively larger losses. If the service at customer
i starts at time τi and τi < ei, the earliness penalty will be equal to a(ei− τi)2. The lateness penalty
would be equal to b(τi − li)2, in case that τi > li. A discussion on other alternatives for penalty
functions and their mathematical expressions can be found in Russell and Urban (2008).

The waiting time before each customer, including the depot, is a decision variable. So once a
vehicle arrives to a customer, it can immediately serve the customer or it can wait. In Russell
and Urban (2008) this decision is done in a postprocessing procedure, since the main algorithm
assumes zero waiting time. The generalized reduced gradient method was used to deal with such
variables.

2.2 Multi-objective stochastic optimization

Transportation planning is considered to be inherently multi-objective in nature (Current and Min,
1986). It can be expected that including additional relevant objectives into an the optimization
problem will make it more realistic.
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In a multi-objective optimization problem (MOP) several functions are optimized (minimized or max-
imized) subject to the same set of constraints. Without loss of generality the MOP can be treated
as a minimization problem, in such case, it can be stated as

min {F (x) = (f1(x), f2(x), . . . , fn(x))} (3)

subject to

x ∈ D (4)

with the number of objective functions being n ≥ 2; the decision variable vector x = (x1, x2, . . . , xr);
the feasible solution space D; and F (x) the objective vector (Jozefowiez et al., 2007).

In a MOP no single solution is able to minimize all objectives simultaneously, since it is expected to
be a conflict among them. Instead of that, a solution to a MOP is given by a set of solutions, which
are called tradeoff solutions (Collette and Siarry, 2003) or Pareto optimal solutions (Jozefowiez
et al., 2007). A decision maker is not expected to implement all the solutions in the set, instead of
that one of them must be selected according to particular policies or preferences.

The tradeoff solutions consist of the set of non-dominated solutions. A solution y with ob-
jective function values (f1(y), f2(y), . . . , fn(y)), dominates a solution z, y ≺ z, if and only if
∀ i {1, 2, . . . , n} fi(y) ≤ fi(z), and ∃ j {1, 2, . . . , n}, such that fj(y) < fj(z). That is, the solu-
tion z does not perform better than y in any objective functions, but it performs worse in at least
one. The set of non-dominated solutions is called the Pareto set or the Pareto optimal solutions
(Jozefowiez et al., 2007). If the last condition is not fulfilled, solution z does not perform worse
than y in any of the objectives, then it is said that y weakly dominates solution z, y � z (Knowles,
2002).

The method or algorithm used for solving the MOP may not guarantee a set of non-dominated
solutions as result. Then the obtained solutions are not Pareto optimal solutions. If this is the case
and the algorithm used to solve the MOP does not find a solution z that dominates a solution y,
then the latter is considered a potentially Pareto optimal solution, relative to the particular algorithm
or method that was used to solve the problem (Jozefowiez et al., 2007).

When dealing with stochastic MOP the dominance may be evaluated in different ways (Caballero
et al., 2004), here the expected values of the objective functions will be used to compared.

2.3 Literature review

There are several variants of the SVRP. One of such variants is modeled using the times as
stochastic parameters. It can either be the travel times, service times or both. In Li et al. (2010)
a CVRP with soft time windows and stochastic travel and service times was solved by means of
a tabu search algorithm. A variant of the previous problem, without stochastic travel times and
no time windows, was presented in Lei et al. (2012), a generalized variable neighborhood search
(GVNS) was proposed to solve it. In Zhang et al. (2012), the CVRP with stochastic travel time and
simultaneous pick-ups and deliveries was solved using a scatter search heuristic. A variant of the
last problem including soft time windows was presented in Taş et al. (2013), a tabu search heuristic
was used to solve it. The same problem can be found in Taş et al. (2014), but in this case it was
solved by means of a branch-cut-and-price algorithm. In Kenyon and Morton (2003) a VRP with
stochastic travel and service time is described, a method that solves the deterministic equivalent
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of the stochastic problem was proposed to solve the VRP with stochastic travel times. A robust
CVRP with deadlines and travel time/demand uncertainty is studied in Lee et al. (2012) and solved
using a branch-and-price algorithm. For a more detailed summary on different SVRP, the reader is
referred to Gendreau et al. (1996, 2014) and Oyola et al. (2015).

There is scant literature on multi-objective SVRP, to the best of our knowledge examples can be
found in Tan et al. (2007); Juan et al. (2011); Ahmadi-Javid and Seddighi (2013) and Russell and
Urban (2008). A multi-objective approach of the CVRP with stochastic demands (CVRPSD) was
formulated in Tan et al. (2007). Three main objectives are minimized: the total travel time, the
number of vehicles and drivers remuneration. An evolutionary algorithm was used to deal with that
problem. In Juan et al. (2011) the CVRPSD is not explicitly presented as a bi-objective problem, but
a tradeoff between the total expected cost and the probability of the solution suffering a route failure
(reliability) is taken into consideration. This problem was solved as a single-objective problem using
local search. An extension of the CVRP including location, allocation and routing under the risk of
disruption is introduced in Ahmadi-Javid and Seddighi (2013). Although the problem is not entirely
treated as a multi-objective, the decision maker is presented with three different solutions: one
obtained by minimizing the expected cost, the second one by minimizing the conditional value-
at-risk and a third solution is obtained by considering the the worst case value for the stochastic
parameters. A local search heuristic was proposed for solving the problem. A multi-objective
CVRP with soft time windows and stochastic travel times (SCVRPSTW) is found in Russell and
Urban (2008). A tabu search heuristic is used to find solutions to the problem.

3 Algorithm

Evolutionary algorithms (EA) have been used for dealing with different types of VRP. In Jozefowiez
et al. (2009) an EA was used for solving a multi-objective CVRP. Memetic algorithms have been
used to deal with different versions of the stochastic VRP (Sörensen and Sevaux, 2009; Mendoza
et al., 2010). In Tan et al. (2007) an EA was used to approximate the Pareto set of a multi-objective
SVRP. This may be an indication of the potential of the EA for dealing with multi-objective VRPs
and SVRPs.

The target aiming Pareto search (TAPaS) algorithm (Jozefowiez et al., 2007) takes an approxima-
tion PSappr to a Pareto set and improves it by using a tabu search algorithm that looks into solutions
in the areas that dominate PSappr. The algorithm does not search in areas that do not dominate
solutions in PSappr, as such it does not look for new solutions with the best found value for any of
the objectives (extremal solutions). Including such solutions in PSappr would improve the quality of
the set.

We propose an algorithm that follows the same principle as TAPaS where starting from the ap-
proximation obtained from a EA, a local search procedure is applied to improve the quality of the
solution. An implementation of the NSGA-II (Deb et al., 2002), using particular features for the
CVRP (Prins, 2004) will be used as EA. It is described in the Algorithm 3.1.

A local search that uses different neighborhood structures, as in generalized variable neighborhood
search (Lei et al., 2012) is applied after the EA. Different neighborhoods are used to attempt
to optimize the different objectives and will be applied sequentially. Since the evaluation of the
performance of a solution in MOP as in Zitzler et al. (2001) and Mateo and Alberto (2012) can be
computationally expensive, moves leading to solutions that dominate the incumbent solution are
accepted. In Lei et al. (2012) the best improvement rule is applied, in this case the application of
such rule can be complex and expensive, so the first improvement rule is applied here.
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3.1 Construction of initial solutions

A set of initial solutions is required, so it can be later improved by an algorithm (evolutionary or
other). We propose a simple deterministic construction heuristic. Most likely high quality solutions
will not be obtained, but it can be one step ahead of the randomly constructed set. Our construction
heuristic is based on the one used by Chiang and Russell (2004) who used a modified version of
a classical insertion heuristic proposed by Solomon (1987).

An initial diverse set of VRP solutions is constructed with priority shifting from TW penalty to total
length. This is achieved by solving a sequence of deterministic hard time-windows problems, where
the original (soft) time windows are extended by a varying slack parameter while the distance is
minimized as a single objective.

The number of routes m is given as a parameter, so the construction heuristic will not build one
route at a time as in Solomon (1987). Any possible insertion in every possible route is going to be
considered and evaluated as in Chiang and Russell (2004). After ordering the customers, using
one of several available ordering rules, at every iteration one customer will be selected and inserted
in the best possible way.

In Chiang and Russell (2004) the customers are inserted in a predefined order. Three rules are
used for ordering the customers:

• Smallest early TW parameter ei

• Tightness of the TW calculated as 100(li − ei)− d0i

• Largest value for d0i

A very important parameter is the late TW parameter li, which was not considered in Chiang and
Russell (2004), except in the second rule as part of the TW. The second and the third rule use the
distance instead of the time. Two other rules are suggested to be used in addition to the previous
three:

• Smallest late TW parameter li. If the TW length is the same for all customers, this will not be
different from the first rule. But it will lead to a different ordering if such length is different.

• Smallest ratio of late TW parameter to distance from depot li/d̄0i

We use all the five rules already mentioned and they are used independently from each other. If
nothing else is changed, we could obtain at most five different solutions by inserting the customers
in five different orders. The best insertion for a customer was originally given by minimizing a
combination of the route distance and travel time increase in Solomon (1987). Here we do not
prioritize the total schedule time, so that factor is not considered. The increment in the distance
when customer k is inserted in route r between customers i and j is given by the equation

f(i, k, j) = dik + dkj − dij

This value must be evaluated for every feasible route and every pair of customers already in the
routes, where is feasible to insert customer k. If the route is empty the increment in the distance
will be equal to two times d0k. The route r where f(i, k, j) is minimum must be selected together
with i and j. In case no insertion with TW feasibility is found, the insertion must be done in a route

Essays on stochastic and multi-objective capacitated vehicle routing problems

160



with capacity constraint feasibility. If no insertion with capacity constraint feasibility is available, the
customer should be inserted in the route where the capacity constraint violation is minimized. This
indicates that a repair mechanism may be required. Any infeasible solution is subject to simple
moves as an attempt to make it feasible, if after a certain number of iterations there is no success,
the solution is discharged.

A set of initial solutions with different priorities given to two different objective functions, total dis-
tance and TW penalty violations, is desired. If the TW are considered to be hard, then a higher
priority is given the second objective function. On the other hand, if no TW are taken into consid-
eration when building the solutions, the total distance is the one being prioritized. There is a time
window at the depot, however there is no penalty associated to it.

During the construction phase, the set of solutions that represents a tradeoff between the penalty
cost of TW violations and the total distance, is approximated by finding solutions to different ver-
sions of the problem, where for every customer the lower and upper limits in the TW are changed.
A slack s varies from 0 to sm and will change the TW of every customer i from (ei, li) to (ei−s, li+s).
The value of sm could be defined in several ways, here we make it equal to half the time horizon
(u0). It is important to keep the TW within the time horizon, so for every value of s, the TW for
customer i must be (max{ei− s, e0},min{li + s, u0}). Solutions are built using this modified TW as
hard TW.

For each value of s, a different solution is built using each of the five ordering rules, previously
described, for deciding the order in which customers must be inserted into the routes.

As a strategy for increasing the number of built solutions and exploring more areas of the search
space, a randomization is included in the construction phase. In Mendoza et al. (2015) an integer
randomization factor lf is used. We use a similar approach, generating at every iteration a random
number l greater than zero and less than or equal to the minimum value between lf and the number
of customers not inserted yet. The customer located at the lth position of the ordered list must be
the one selected for insertion. The process is repeated until the number of built solutions is equal
to the population size.

3.2 Evolutionary algorithm (EA)

A key element in NSGA-II is the ranking of solutions in the population, used in Algorithm 3.2. The
rank depends on the quality of the solution. Non-dominated solutions will have rank 0. Solutions
dominated only by solutions with rank 0 will have rank 1. In general solutions dominating the
solutions with rank i will have a rank from 0 to i− 1.

The implemented EA will use two crossover operators Split (Prins, 2004) and RBX (Potvin and
Bengio, 1996). In the original implementation of TAPaS, the same operators were used. Both
operators may lead to good solutions in different ways. The Split procedure can lead to good
sequences of customers with respect to the total distance. On the other hand, the RBX keeps
routes from the parent solutions, if such routes have a good performance regarding the objective
functions, the offspring solutions can be benefited.

The mutation operator included in Algorithm 3.4 will be Or-opt as in Jozefowiez et al. (2007) and
Jozefowiez et al. (2009). The move that dominates all the others is accepted. The comparison
is done among the neighbors, without considering the initial solution. If no move dominates all
the others, among the non-dominated moves, the selection will be done comparing the normalized
values of the objective functions.
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A 2-opt procedure is included as local search (ls) in Algorithm 3.4. Such procedure has been
used before (Jozefowiez et al., 2007, 2009) but here, we can keep in mind that we deal with two
objective functions and include the domination criteria. Given two possible moves, the first lead to
solution y and the second to solution x, if they are non dominated, ∃A ⊂ {1, 2, . . . , n} ∀i ∈ Afi(y) <
fi(x), and ∃B ⊂ {1, 2, . . . , n} ∀j ∈ Bfj(y) > fj(x), y will be preferred if

∑
i∈A(1 − fi(y)/fi(x)) >∑

j∈B(fj(y)/fj(x)− 1). If there is no inequality, one solution is selected randomly.

An important feature of the NSGA-II is the crowded-comparison operator (Deb et al., 2002), which
computes the crowding distance see Algorithm 3.3. A solution x is preferred to a solution y, if the
rank of x is lower than the rank of y. In case that both x and y have the same rank, the solution
with the greater crowding distance is preferred.

Algorithm 3.1: MAIN LOOP(f1, f2, . . . , fm : objective functions)

Let N be the size of the population
Let Pt be the population at generation t
t← 0
Pt← constructiveHeuristic()
sortPopulation(Pt)
while t < maxGeneration

do




Pt+1← Pt ∪ recombination(Pt)
Pt+1← sortPopulation(Pt+1)
t← t+ 1

return (Pt)

Algorithm 3.2: SORTPOPULATION(P )

Let Rk be the set of solutions with rank k
Let Q be a set of solutions
Q ← ∅
rankPopulation(P )
i← 0
while |Q|+Ri ≤ N

do




crowdDistance(Ri)
Q← Q ∪Ri
i← i+ 1

if |Q| < N

then
{
sortRank(Ri)
Q← Q ∪ {S ⊆ Ri/|S| = N − |Q|}

return (Q)
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Algorithm 3.3: CROWDDISTANCE(R)

Let di be the distance measure of solution i
Let si be the solution in position i after sorting
n←|Ri|
for i← 0 to n

do
{
di ← 0

for i← 0 to m

do





Ri ← sort(Ri, fm)
d0 ←∞
d|Ri|−1 ←∞
for i← 1 to |Ri| − 2

do
{
di ← di + (fm(s(i+1))− fm(s(i−1))/(fmaxm − fminm )

Algorithm 3.4: RECOMBINATION(P )

for i← 0 to N/2− 1

do





p1 ← randomSolution(P )
p← randomSolution(P )
if p ≺c p1

then
{
p1 ← p

p2 ← randomSolution(P )
p← randomSolution(P )
if p ≺c p2

then
{
p2 ← p

if rand() < probco
then

{
crossover ← RBX

else
{
crossover ← SPLIT

Q← Q ∪ crossover(p1, p2)
Q← Q ∪ crossover(p2, p1)
if rand() < probmt

then
{
mutation(Q[2i])

if rand() < probmt
then

{
mutation(Q[2i+ 1])

ls(Q[2i])
ls(Q[2i+ 1])

3.3 Local search

Once the EA has been executed, every found potentially non-dominated solution is subject to a
local search procedure, following a principle similar to the GVNS in Lei et al. (2012). In the lo-
cal search just moves that lead to a solution that dominates the incumbent solution are accepted.
In Lei et al. (2012) the record-to-record travel (RRT) (Dueck, 1993) is used as accepting criteria.

The CVRP with soft time windows and stochastic travel times

163



It is suggested that otherwise the GVNS yields a local optimum. In our case the search is performed
as an improving mechanism, where is expected that the solutions already have a good quality and
perhaps any extra improvement should be accepted. That is the reason why the RRT is not part of
the local search. The process is described in Algorithm 3.5.

Algorithm 3.5: LOCALSEARCH(sEA : a solution from EA)

Let Q be a set of solutions
s∗ ← sEA
s← sEA
while stoppingCriteria

do





s′ ← shaking(s)
s′′ ← V NS(s′)
if s∗ ⊀ s′′

then
{
Q← Q ∪ s′′

if s′′ ≺ s
then

{
s← s′′

return (Q)

The local search (VNS) performs the search using different neighborhood structures. As in Lei
et al. (2012) there are inter- and intra-route operations. However the number of neighborhood
structures used in the local search is lower, since the computational requirements are higher. For
accepting the moves, the first improvement rule is applied. It assumed that a move will improve
the incumbent solution if it leads to a neighbor solution that dominates it or to a solution that does
not dominate it, but the improvement in one of the objectives is greater than the deterioration in
the other one, as percentage of the current values. A random inter-route swap move is used as a
shaking operator.

The different neighborhoods are:

• Intra-route insertion move.

• Intra-route swap moves.

• Inter-route swap moves.

• An Or-opt procedure.

3.4 Post-optimization

The waiting time at every node, including the depot, is a decision variable. Departure from the
depot can be postponed as well as the beginning of the service at every customer. In Russell
and Urban (2008) this decision is done in a postprocessing procedure, since the main algorithm
assumes zero waiting time at customers, not at the depot. Waiting times at the depot are com-
puted based on the expected travel times to the first customer in the routes. If the expected travel
time from the depot to the next customer is shorter than the early TW parameter associated to
such customer, the waiting time at the depot will be equal to the difference, zero otherwise. The
postprocessing procedure may change that value. The generalized reduced gradient method is
used to deal with such variables in Russell and Urban (2008). In our approach the decisions re-
garding waiting times are also part of a postprocessing procedure. We rely on the quasi-Newton

Essays on stochastic and multi-objective capacitated vehicle routing problems

164



Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Venkataraman, 2009) in Scilab for doing
such procedure, since we find very convenient to access it from C++ and it is an open source
package.

3.5 Solution evaluation

The equations used by Russell and Urban (2008) to compute the exact value of the penalties and
previously described in Section 2.1, require massive computation, since they deal with transcen-
dental functions and operations with large integers. Such operations can eventually lead to an
integer overflow. As an alternative to avoid such condition, natural logarithm transformations are
used, which increases the computational requirements. An evaluation strategy is proposed looking
to overcome such difficulty. Following the spirit of Mendoza et al. (2015), the evaluation of the so-
lutions is done in different ways along the search process. Let us say that the EA has a maximum
number of generations GEN. This total number of generations is divided into three parts from zero
to gen1, from gen1 to gen2 and from gen2 to GEN. During the execution of the algorithm, while
running within the first part of the generations, the solutions and the moves are evaluated using
deterministic values, and the travel time from a customer i to a customer j is given by the expected
value (α · β + δ)dij . In the second part of the generations the solutions and moves are evaluated
using sample scenarios. And only in the third part of the generations, the exact value for the ex-
pected penalties is computed using the closed-form in equations 1 and 2. Lookup tables were
implemented for some of the computations, as a mechanism to reduce the processing time.

Using scenarios for evaluating the solutions could have an additional advantage in a different con-
text. If the expected values of the objective functions are unknown, this could be approximated
with scenario evaluation. In these cases an additional stability analysis must be carried out (Kaut
and Wallace, 2007). The values would not be exact, but the algorithm becomes independent of the
probability distributions of the stochastic parameters. This is out of the scope of this work, however,
it is an aspect worth of comment.

4 Computational experiments

4.1 Test environment

The same instances as in Russell and Urban (2008) are used, these are a modified version of
Solomon instances (Solomon, 1987). Four base test problems are used, R101, R102, R103 and
R109. Four different sets of parameters for the travel time probability distribution (α, β and δ) are
used with each instance, (1.00, 0.25, 0.75), (1.00, 0.50, 0.50), (1.00, 0.75, 0.25) and (1.00, 1.00,
1.00), identified as S1, S2, S3 and S4 respectively. The number of vehicles is also predefined and
is set to be the same as in Russell and Urban (2008), which means that there may be two versions
of the same instance, with a different number of vehicles available. As an illustration, we can say
that the instance R101-S3-18V, corresponds to the instance R101, where the parameters of the
travel time probability distribution are given by the set (1.00, 0.75, 0.25) and there are 18 vehicles
available. In total there are 27 instances for computational experiments. Ten different runs per
instance were performed.

The parameters of the algorithm were tuned by means of preliminary testing. Unless stated other-
wise, the values given to these parameters are:

• Number of generations for NSGA, GEN = 300.

• Population size for NSGA, 150

The CVRP with soft time windows and stochastic travel times

165



• Probability of applying RBX crossover operator, probco = 0.5

• Probability of mutation, probmt = 0.4

• Number of iterations for VNS, 100.

• Randomization factor of construction procedure, lf = 5.

• Number of generations evaluated deterministically, GEN1 = GEN · 0.5.

• Number of generations evaluated by scenarios, GEN2 −GEN1 = GEN · 0.25

• Number of scenarios, 20.

• Maximum number of consecutive customers to move in the Or-opt procedure, 3.

All computational experiments were conducted on a computer with processor Intel (R) Xeon (R)
CPU E31270 @ 3.40 GHz and 16.0 GB of RAM.

4.2 Results

Our approach is able to find solutions that dominate the solutions reported in Russell and Urban
(2008). In 14 out of 27 instances such solutions are found even without applying the postprocessing
procedure, as it is shown in Table 1 in Appendix A. Once the postprocessing procedure is applied,
solutions dominating the ones in Russell and Urban (2008) are found in 18 out of 27 instances,
however in one of the instances, R109-S3-12V, just one of the two solutions is dominated. Results
are presented in Table 2. We emphasize that the NSGA&VNS solutions in tables 1 and 2 do not
correspond to the approximation of the Pareto set, these solutions are only a subset of the solutions
that NSGA&VNS is able to find.

It was observed that, in general, not all the vehicles are used in solutions where a higher priority is
given to minimize the total length (in the Pareto set approximation). Which means that they require
a lower number of vehicles than the solutions reported in Russell and Urban (2008). On the other
hand, the value of the TW penalty objective is higher, therefore the reduction in the number of
vehicles does not lead to Pareto dominance.

The instance R103-S1-14V is an example of the instances where solutions dominating the solution
reported in Russell and Urban (2008) were not found. Figure 1 shows a section of the Pareto set
approximation including both, our approximation and the solution in Russell and Urban (2008). On
the other hand, the Figure 2 shows a section of the Pareto set approximation for the instance R101-
S2-18V, where it is possible to see that the solution in Russell and Urban (2008) is dominated by
solutions in our approximation.

The running time of our approach is much longer than in Russell and Urban (2008), as it can be
seen in Table 3. This can be explained by the fact that while in Russell and Urban (2008) one
solution, at most two, are found per instance, we find an approximation to the Pareto set.
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Figure 1: Our approach finds solutions that do not dominate solution found by Russell and Urban
(2008) in instance R103-S1-14V
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Figure 2: Our approach finds solutions that dominate solution found by Russell and Urban (2008)
in instance R101-S2-18V
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As expected, the quality of the Pareto set approximation is improved by the postprocessing pro-
cedure. Using the average value of the S metric (Jozefowiez et al., 2009, 2007; Knowles, 2002;
Mateo and Alberto, 2012) to compare the two approximations to the Pareto set, before (nPost)
and after (Post) the postprocessing procedure, we found that the average improvement over all
instances is 0.96%. Russell and Urban (2008) reports average improvement above 20%, but such
improvement is measured over the objective function value, in our case we measure the improve-
ment of the Pareto set. This comparison is shown in Table 4. For readability purposes the values
have been standardized, dividing the actual value of the S metric by the area of the rectangle de-
fined by (0,0) and the reference point. The minimum, maximum and average values are calculated
over the ten different runs of the algorithm.

4.3 Impact of NSGA and VNS procedure on the results

A second set of experiments was conducted looking to asses the impact of the NSGA and the
VNS procedure in the quality of the obtained solutions. All instances were used in these experi-
ments and ten runs per instance were performed. Three different configurations of the algorithm
were compared: the original algorithm described in Section 3 (NSGA&VNS) and two algorithms,
each consisting in one of the main components of the previous, NSGA and VNS procedure. The
running time of the NSGA&VNS was reduced by setting the number of generations for the NSGA
component to 30 and the iterations for the VNS to 10. The number of generations of the algorithm
consisting of just the NSGA was set to 140, so its running time becomes not shorter than the one
used by NSGA&VNS. For the case of the tests using the VNS procedure, the number of iterations
was set to 120.

Results were compared using the S and the C metric. It is worth remarking that given two sets of
solutions (R,X ), the C metric measures the ratio of solutions in X weakly dominated by solutions
in R. The comparisons of the three configurations of the algorithm (NSGA&VNS, NSGA and VNS)
are presented in the tables 5, 6 and 7.

NSGA&VNS and NSGA are compared using the data presented in tables 5 and 6. Using the
average value of the metrics, NSGA&VNS performs better in 15 out of 27 cases. In six instances
is not possible to say which configuration has a better performance since the two metrics are
contradictory. NSGA&VNS and VNS, on the other hand, are compared using the data in tables 5
and 7. NSGA&VNS performs better in 17 out of 27 instances. In eight cases the two metrics lead
to contradictory conclusions.

It was observed that VNS is able to find extremal solutions, that do not necessary dominate the
solutions found by the other two configurations, but in some cases are good enough to dominate
the solutions found in Russell and Urban (2008). For example, VNS was able to find a solution to
the instance R101-S3-18V with a total length of 2077.33 and a penalty equal to 1475.20. However,
the number of found solutions is limited, in general. This has a negative impact when the set of
solutions is evaluated, specially when evaluating using the S metric. The NSGA provides a denser
set of solutions, which is reflected positively in the S metric. In the NSGA&VNS the solutions found
by NSGA are used by VNS afterwards. The latter is able to improve the solution set by either
finding dominating solutions or improving the extremal solutions, outperforming the solutions sets
found by NSGA and VNS when executed individually. In conclusion, these experiments indicate
that the combination NSGA&VNS works better than each individual method.
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5 Conclusions and further research

The Pareto solutions to a known multi-objective SVRP were approximated for a first time. Obtained
results were compared to previously reported individual potentially Pareto solutions. In most of
the tested instances, our approach is able to find solutions that dominate the existing solutions, in
addition to a wide range of solutions where priority shifts from one objective to the other.

A relationship between the number of vehicles and the total distance was observed. For the reason
that, in general, the solutions in the Pareto set approximation that minimize the total length do not
use all the available vehicles. So we were able to find solutions that require less vehicles than the
previously reported solutions. However, it is not possible to say that our solutions are better, since
the TW penalties become higher.

Our approach provides good results in most of the tested instances, but still there is room for im-
provement and several directions can be applied for further research. The efficacy of our approach
is decreased when dealing with problems that present a high coefficient of variation. A different
construction of initial solutions or local search operators could be adapted to deal with this particu-
lar type of instances. A different aspect to consider is the running time, the closed-form expressions
for computing the expected value of the TW penalties require a large number of algebraic opera-
tions. Perhaps such expressions could be approximated using a method more efficient than the
scenarios, but less demanding than the closed-form. Taking waiting times into consideration during
the execution of the main algorithm is likely to improve the solutions. This, however, will increase
the complexity of the problem. Further work can be done dealing with such complexity and testing
the impact on results.
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Appendices

A Tables

Table 1: Solutions without postprocessing that dominate solutions reported in Russell and Urban
(2008)

Instance Solutions found in Russell and Urban (2008) Solutions found by NSGA & VNS
Total lenght TW penalty Total lenght TW penalty

R101-S1-17V 1 806.24 667.44 1 772.79 664.12
1 788.67 633.48
1 801.59 545.35

R101-S1-18V 2 104.32 212.90 2 057.34 201.37
R101-S3-16V 1 820.28 2 255.89 1 689.51 2 253.31

1 720.20 2 142.24
1 791.45 1 931.78

R101-S3-18V 2 164.59 1 910.68 1 770.14 1 906.61
1 872.91 1 828.20
2 059.22 1 436.09

R102-S1-16V 1 585.93 225.82 1 578.22 222.33
1 578.93 211.08
1 583.71 159.26

R102-S1-17V 1 792.34 161.54 1 665.60 160.26
1 705.69 110.07
1 788.42 66.27

R102-S2-15V 1 695.51 977.96 1 448.89 976.50
1 614.74 477.07
1 689.35 373.04

R102-S2-17V 1 826.80 308.07 1 733.08 301.01
1 739.26 287.01

R102-S3-16V 1 661.68 1 138.40 1 554.79 1 136.80
1 603.88 992.68
1 649.25 864.60

R102-S3-17V 1 871.34 920.66 1 633.15 919.87
1 676.07 867.07
1 683.94 817.08

R103-S1-12V 1 465.64 375.41 1 190.59 351.56
1 269.30 108.22
1 432.73 63.64

R103-S2-12V 1 398.88 671.46 1 193.47 664.01
1 222.80 576.53
1 389.65 239.10

R103-S3-13V 1 372.24 689.17 1 327.54 544.71
1 462.45 556.55 1 352.48 531.87

1 354.34 493.18
R109-S1-12V 1 215.22 11.54 1 211.98 6.95

1 216.62 6.25 1 213.38 6.02

Table 2: Solutions after postprocessing that dominate solutions reported in Russell and Urban
(2008)

Instance Solutions found in Russell and Urban (2008) Solutions found by NSGA & VNS
Total lenght TW penalty Total lenght TW penalty

R101-S1-17V 1 806.24 667.44 1 598.32 653.79
1 718.13 630.79
1 786.99 354.26

R101-S1-18V 2 104.32 212.90 1 947.11 208.07
1 996.94 190.44
2 046.90 143.67
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Table 2 Continued: Solutions after postprocessing that dominate solutions reported in Russell and
Urban (2008)

Instance Solutions found in Russell and Urban (2008) Solutions found by NSGA & VNS
Total lenght TW penalty Total lenght TW penalty

R101-S2-18V 2 088.24 646.84 1 851.43 639.15
1 874.96 592.95
2 006.97 491.64

R101-S3-16V 1 820.28 2 255.89 1 583.34 2 246.78
1 705.52 1 814.89
1 782.88 1 650.55

R101-S3-18V 2 164.59 1 910.68 1 717.20 1 859.80
1 676.35 1 615.93
1 948.05 1 272.16

R102-S1-16V 1 585.93 225.82 1 520.03 207.48
1 568.09 158.72
1 583.70 131.88

R102-S1-17V 1 792.34 161.54 1 557.97 156.34
1 647.29 108.10
1 788.42 47.33

R102-S2-15V 1 695.51 977.96 1 387.17 955.11
1 544.09 476.55
1 689.35 336.09

R102-S2-17V 1 826.80 308.07 1 690.62 299.84
1 737.33 284.80
1 825.78 250.39

R102-S3-16V 1 661.68 1 138.40 1 484.02 1 129.57
1 522.54 972.05
1 648.77 764.54

R102-S3-17V 1 871.34 920.66 1 573.11 911.66
1 596.70 863.65
1 683.94 743.77

R103-S1-12V 1 465.64 375.41 1 190.59 323.63
1 254.98 104.59
1 406.24 55.15

R103-S2-12V 1 398.88 671.46 1 197.69 617.22
1 208.97 565.55
1 389.65 211.84

R103-S2-14V 1 466.74 142.02 1 385.06 141.56
1 450.25 132.55
1 459.81 122.86

R103-S3-13V 1 372.24 689.17 1 292.44 542.00
1 462.45 556.55 1 296.76 530.46

1 394.20 431.25
R109-S1-12V 1 215.22 11.54 1 195.56 5.51

1 216.62 6.25 1 203.26 4.83
1 213.38 2.29

R109-S2-12V 1 216.82 42.95 1 215.84 42.49
1 224.31 28.36

R109-S3-12V 1 219.31 138.23 1 230.62 93.34
1 230.82 110.43

Table 3: Running time (in minutes)

Instance Running time in Time algorithm Time postprocessing Total time
Russell and Urban (2008) NSGA & VNS (Scilab)

R101-S1-17V 22.16 2 082.59 13.33 2 095.92
R101-S1-18V 32.03 2 151.56 13.74 2 165.31
R101-S2-17V 87.71 2 918.84 17.07 2 935.91
R101-S2-18V 98.17 3 084.58 18.39 3 102.98
R101-S3-16V 226.78 6 812.99 14.94 6 827.92
R101-S3-18V 245.24 6 762.15 14.59 6 776.74
R101-S4-17V 312.11 2 558.41 8.27 2 566.68
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Table 3 Continued: Running time (in minutes)

Instance Running time in Time algorithm Time postprocessing Total time
Russell and Urban (2008) NSGA & VNS (Scilab)

R101-S4-20V 234.79 2 698.06 7.90 2 705.96
R102-S1-16V 34.05 3 251.46 14.43 3 265.88
R102-S1-17V 40.19 3 363.84 13.67 3 377.51
R102-S2-15V 114.19 5 186.12 15.41 5 201.53
R102-S2-17V 127.70 5 676.19 15.18 5 691.37
R102-S3-16V 261.21 7 857.41 14.99 7 872.40
R102-S3-17V 257.76 7 588.28 12.99 7 601.28
R102-S4-16V 351.45 3 275.37 4.77 3 280.14
R102-S4-17V 318.90 3 305.82 5.04 3 310.86
R103-S1-12V 22.43 3 498.03 8.46 3 506.49
R103-S1-14V 48.43 3 913.18 9.41 3 922.59
R103-S2-12V 150.33 4 936.02 9.19 4 945.21
R103-S2-14V 173.30 5 135.72 9.48 5 145.21
R103-S3-13V 657.13a 6 268.29 7.42 6 275.71
R103-S4-12V 398.44 3 012.61 1.88 3 014.48
R103-S4-13V 392.86 3 076.58 2.94 3 079.51
R109-S1-12V 45.43a 2 396.62 6.82 2 403.43
R109-S2-12V 229.06a 3 722.81 7.81 3 730.62
R109-S3-12V 698.97a 4 723.14 8.96 4 732.10
R109-S4-12V 977.02a 2 272.49 1.49 2 273.78
a The algorithm finds two independent solutions. Time computed by adding both running times

Table 4: S metric performance indicator for nPost and Post

Instance Ref. Point Algorithm Average Min Max
(Length, TW penalty)

R101-S1-17V ( 2 098.66 , 23 357.90 ) nPost 0.448 0.445 0.453
Post 0.456 0.452 0.461

R101-S1-18V ( 2 117.43 , 25 003.90 ) nPost 0.460 0.453 0.465
Post 0.467 0.458 0.472

R101-S2-17V ( 2 022.89 , 86 728.50 ) nPost 0.445 0.441 0.453
Post 0.451 0.446 0.458

R101-S2-18V ( 2 116.92 , 90 445.00 ) nPost 0.474 0.470 0.479
Post 0.479 0.474 0.484

R101-S3-16V ( 1 916.46 , 100 812.00 ) nPost 0.354 0.332 0.373
Post 0.360 0.336 0.381

R101-S3-18V ( 2 059.22 , 78 918.00 ) nPost 0.382 0.364 0.393
Post 0.390 0.369 0.401

R101-S4-17V ( 1 523.06 , 335 287.00 ) nPost 0.260 0.255 0.269
Post 0.265 0.260 0.275

R101-S4-20V ( 1 676.17 , 314 186.00 ) nPost 0.311 0.304 0.314
Post 0.316 0.309 0.320

R102-S1-16V ( 1 886.55 , 20 227.90 ) nPost 0.413 0.404 0.423
Post 0.416 0.406 0.426

R102-S1-17V ( 1 992.93 , 23 596.60 ) nPost 0.452 0.446 0.460
Post 0.454 0.448 0.462

R102-S2-15V ( 1 694.51 , 50 885.10 ) nPost 0.323 0.314 0.334
Post 0.326 0.316 0.336

R102-S2-17V ( 1 885.99 , 56 088.30 ) nPost 0.390 0.376 0.398
Post 0.392 0.378 0.401
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Table 4 Continued: S metric performance indicator for nPost and Post

Instance Ref. Point Algorithm Average Min Max
(Length, TW penalty)

R102-S3-16V ( 1 789.06 , 129 380.00 ) nPost 0.350 0.336 0.358
Post 0.351 0.337 0.360

R102-S3-17V ( 1 771.22 , 100 799.00 ) nPost 0.335 0.324 0.356
Post 0.337 0.325 0.360

R102-S4-16V ( 1 486.58 , 323 726.00 ) nPost 0.235 0.226 0.243
Post 0.237 0.228 0.245

R102-S4-17V ( 1 556.20 , 265 788.00 ) nPost 0.243 0.230 0.255
Post 0.245 0.233 0.258

R103-S1-12V ( 1 466.93 , 16 508.20 ) nPost 0.274 0.267 0.291
Post 0.276 0.268 0.292

R103-S1-14V ( 1 647.80 , 15 195.00 ) nPost 0.344 0.332 0.359
Post 0.345 0.333 0.361

R103-S2-12V ( 1 421.61 , 66 221.60 ) nPost 0.258 0.249 0.269
Post 0.259 0.250 0.269

R103-S2-14V ( 1 554.23 , 40 761.40 ) nPost 0.305 0.287 0.321
Post 0.306 0.287 0.322

R103-S3-13V ( 1 419.83 , 125 422.00 ) nPost 0.242 0.224 0.260
Post 0.243 0.225 0.261

R103-S4-12V ( 1 161.62 , 372 838.00 ) nPost 0.126 0.120 0.135
Post 0.127 0.121 0.137

R103-S4-13V ( 1 235.24 , 269 971.00 ) nPost 0.150 0.143 0.158
Post 0.151 0.144 0.160

R109-S1-12V ( 1 410.32 , 21 858.30 ) nPost 0.266 0.257 0.271
Post 0.268 0.259 0.274

R109-S2-12V ( 1 342.50 , 72 944.90 ) nPost 0.203 0.189 0.212
Post 0.205 0.190 0.213

R109-S3-12V ( 1 390.82 , 135 270.00 ) nPost 0.233 0.221 0.248
Post 0.236 0.223 0.251

R109-S4-12V ( 1 198.65 , 353 675.00 ) nPost 0.137 0.129 0.150
Post 0.138 0.130 0.153

Table 5: S metric performance indicator for NSGA&VNS, NSGA and VNS

Instance Ref. Point Algorithm Average Min Max
(Length, TW penalty)

R101-S1-17V ( 2 117.95 , 56 067.60 ) NSGA&VNS 0.377 0.356 0.410
NSGA 0.378 0.358 0.406
VNS 0.305 0.270 0.327

R101-S1-18V ( 2 171.52 , 56 067.60 ) NSGA&VNS 0.395 0.387 0.407
NSGA 0.390 0.366 0.404
VNS 0.309 0.269 0.372

R101-S2-17V ( 2 061.91 , 234 633.00 ) NSGA&VNS 0.360 0.339 0.382
NSGA 0.381 0.361 0.401
VNS 0.264 0.226 0.371

R101-S2-18V ( 2 150.99 , 234 633.00 ) NSGA&VNS 0.391 0.365 0.409
NSGA 0.388 0.373 0.405
VNS 0.283 0.270 0.318
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Table 5 Continued: S metric performance indicator for NSGA&VNS, NSGA and VNS

Instance Ref. Point Algorithm Average Min Max
(Length, TW penalty)

R101-S3-16V ( 1 921.18 , 438 358.00 ) NSGA&VNS 0.255 0.239 0.289
NSGA 0.248 0.219 0.275
VNS 0.191 0.177 0.208

R101-S3-18V ( 2 157.72 , 438 358.00 ) NSGA&VNS 0.351 0.335 0.371
NSGA 0.324 0.308 0.349
VNS 0.282 0.262 0.295

R101-S4-17V ( 1 564.73 , 667 007.00 ) NSGA&VNS 0.158 0.133 0.175
NSGA 0.155 0.126 0.194
VNS 0.077 0.060 0.103

R101-S4-20V ( 1 772.16 , 783 106.00 ) NSGA&VNS 0.236 0.216 0.255
NSGA 0.230 0.213 0.263
VNS 0.159 0.130 0.195

R102-S1-16V ( 2 014.57 , 63 867.80 ) NSGA&VNS 0.347 0.325 0.367
NSGA 0.359 0.339 0.377
VNS 0.304 0.280 0.327

R102-S1-17V ( 2 135.05 , 63 867.80 ) NSGA&VNS 0.394 0.363 0.423
NSGA 0.393 0.375 0.406
VNS 0.343 0.323 0.365

R102-S2-15V ( 1 909.92 , 199 383.00 ) NSGA&VNS 0.291 0.266 0.329
NSGA 0.291 0.277 0.311
VNS 0.273 0.244 0.305

R102-S2-17V ( 2 061.51 , 199 383.00 ) NSGA&VNS 0.345 0.317 0.376
NSGA 0.350 0.326 0.369
VNS 0.326 0.300 0.356

R102-S3-16V ( 1 910.80 , 251 496.00 ) NSGA&VNS 0.292 0.267 0.328
NSGA 0.281 0.258 0.316
VNS 0.273 0.244 0.307

R102-S3-17V ( 2 034.24 , 251 496.00 ) NSGA&VNS 0.330 0.308 0.372
NSGA 0.323 0.306 0.360
VNS 0.317 0.289 0.349

R102-S4-16V ( 1 518.37 , 469 740.00 ) NSGA&VNS 0.115 0.076 0.153
NSGA 0.095 0.067 0.115
VNS 0.081 0.066 0.105

R102-S4-17V ( 1 615.26 , 345 090.00 ) NSGA&VNS 0.173 0.155 0.191
NSGA 0.135 0.094 0.158
VNS 0.109 0.085 0.128

R103-S1-12V ( 1 637.37 , 29 520.30 ) NSGA&VNS 0.211 0.193 0.237
NSGA 0.228 0.198 0.252
VNS 0.208 0.186 0.236

R103-S1-14V ( 1 832.29 , 35 477.60 ) NSGA&VNS 0.298 0.279 0.320
NSGA 0.309 0.299 0.323
VNS 0.292 0.269 0.314

R103-S2-12V ( 1 558.07 , 23 388.90 ) NSGA&VNS 0.167 0.141 0.196
NSGA 0.172 0.142 0.192
VNS 0.164 0.141 0.193
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Table 5 Continued: S metric performance indicator for NSGA&VNS, NSGA and VNS

Instance Ref. Point Algorithm Average Min Max
(Length, TW penalty)

R103-S2-14V ( 1 733.80 , 9 535.90 ) NSGA&VNS 0.241 0.217 0.260
NSGA 0.238 0.221 0.257
VNS 0.237 0.220 0.256

R103-S3-13V ( 1 598.63 , 70 425.30 ) NSGA&VNS 0.190 0.167 0.220
NSGA 0.191 0.168 0.219
VNS 0.190 0.168 0.219

R103-S4-12V ( 1 219.23 , 78 611.60 ) NSGA&VNS 0.022 0.014 0.029
NSGA 0.021 0.013 0.039
VNS 0.031 0.021 0.047

R103-S4-13V ( 1 321.48 , 125 518.00 ) NSGA&VNS 0.062 0.055 0.074
NSGA 0.059 0.041 0.068
VNS 0.056 0.042 0.073

R109-S1-12V ( 1 561.66 , 38 849.00 ) NSGA&VNS 0.159 0.148 0.178
NSGA 0.187 0.172 0.205
VNS 0.141 0.106 0.184

R109-S2-12V ( 1 542.10 , 112 593.00 ) NSGA&VNS 0.119 0.075 0.141
NSGA 0.137 0.119 0.162
VNS 0.115 0.090 0.143

R109-S3-12V ( 1 540.96 , 30 060.10 ) NSGA&VNS 0.120 0.088 0.156
NSGA 0.129 0.106 0.145
VNS 0.121 0.101 0.146

R109-S4-12V ( 1 250.38 , 127 429.00 ) NSGA&VNS 0.039 0.033 0.050
NSGA 0.029 0.024 0.039
VNS 0.038 0.028 0.056

Table 6: C metric performance indicator comparing NSGA&VNS and NSGA

Instance Metric Average Min Max
R101-S1-17V C ( NSGA&VNS, NSGA) 0.387 0.042 0.958

C ( NSGA, NSGA&VNS) 0.254 0.000 0.760
R101-S1-18V C ( NSGA&VNS, NSGA) 0.417 0.158 0.731

C ( NSGA, NSGA&VNS) 0.179 0.000 0.542
R101-S2-17V C ( NSGA&VNS, NSGA) 0.239 0.000 0.737

C ( NSGA, NSGA&VNS) 0.368 0.053 0.944
R101-S2-18V C ( NSGA&VNS, NSGA) 0.519 0.125 0.840

C ( NSGA, NSGA&VNS) 0.189 0.000 0.615
R101-S3-16V C ( NSGA&VNS, NSGA) 0.430 0.000 1.000

C ( NSGA, NSGA&VNS) 0.255 0.000 1.000
R101-S3-18V C ( NSGA&VNS, NSGA) 0.561 0.000 1.000

C ( NSGA, NSGA&VNS) 0.146 0.000 0.706
R101-S4-17V C ( NSGA&VNS, NSGA) 0.318 0.036 0.944

C ( NSGA, NSGA&VNS) 0.152 0.000 0.533
R101-S4-20V C ( NSGA&VNS, NSGA) 0.424 0.160 0.870

C ( NSGA, NSGA&VNS) 0.114 0.000 0.524
R102-S1-16V C ( NSGA&VNS, NSGA) 0.376 0.129 0.767

C ( NSGA, NSGA&VNS) 0.192 0.000 0.583
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Table 6 Continued: C metric performance indicator comparing NSGA&VNS and NSGA

Instance Metric Average Min Max
R102-S1-17V C ( NSGA&VNS, NSGA) 0.435 0.069 1.000

C ( NSGA, NSGA&VNS) 0.164 0.000 0.741
R102-S2-15V C ( NSGA&VNS, NSGA) 0.385 0.000 0.950

C ( NSGA, NSGA&VNS) 0.177 0.000 0.733
R102-S2-17V C ( NSGA&VNS, NSGA) 0.473 0.042 1.000

C ( NSGA, NSGA&VNS) 0.157 0.000 0.778
R102-S3-16V C ( NSGA&VNS, NSGA) 0.519 0.154 1.000

C ( NSGA, NSGA&VNS) 0.114 0.000 0.462
R102-S3-17V C ( NSGA&VNS, NSGA) 0.591 0.000 1.000

C ( NSGA, NSGA&VNS) 0.133 0.000 0.875
R102-S4-16V C ( NSGA&VNS, NSGA) 0.501 0.059 1.000

C ( NSGA, NSGA&VNS) 0.100 0.000 0.800
R102-S4-17V C ( NSGA&VNS, NSGA) 0.593 0.235 1.000

C ( NSGA, NSGA&VNS) 0.096 0.000 0.571
R103-S1-12V C ( NSGA&VNS, NSGA) 0.196 0.000 0.909

C ( NSGA, NSGA&VNS) 0.436 0.000 1.000
R103-S1-14V C ( NSGA&VNS, NSGA) 0.333 0.045 0.867

C ( NSGA, NSGA&VNS) 0.249 0.000 0.833
R103-S2-12V C ( NSGA&VNS, NSGA) 0.203 0.000 0.875

C ( NSGA, NSGA&VNS) 0.489 0.000 1.000
R103-S2-14V C ( NSGA&VNS, NSGA) 0.368 0.000 0.875

C ( NSGA, NSGA&VNS) 0.269 0.000 0.900
R103-S3-13V C ( NSGA&VNS, NSGA) 0.229 0.000 0.875

C ( NSGA, NSGA&VNS) 0.341 0.000 1.000
R103-S4-12V C ( NSGA&VNS, NSGA) 0.259 0.000 1.000

C ( NSGA, NSGA&VNS) 0.152 0.000 1.000
R103-S4-13V C ( NSGA&VNS, NSGA) 0.343 0.000 1.000

C ( NSGA, NSGA&VNS) 0.154 0.000 0.833
R109-S1-12V C ( NSGA&VNS, NSGA) 0.131 0.000 0.500

C ( NSGA, NSGA&VNS) 0.444 0.000 0.846
R109-S2-12V C ( NSGA&VNS, NSGA) 0.193 0.000 0.643

C ( NSGA, NSGA&VNS) 0.144 0.000 0.875
R109-S3-12V C ( NSGA&VNS, NSGA) 0.259 0.000 1.000

C ( NSGA, NSGA&VNS) 0.279 0.000 0.857
R109-S4-12V C ( NSGA&VNS, NSGA) 0.423 0.077 1.000

C ( NSGA, NSGA&VNS) 0.028 0.000 0.667

Table 7: C metric performance indicator comparing NSGA&VNS and VNS

Instance Metric Average Min Max
R101-S1-17V C ( NSGA&VNS, VNS) 0.236 0.000 0.600

C ( VNS, NSGA&VNS) 0.114 0.000 0.375
R101-S1-18V C ( NSGA&VNS, VNS) 0.415 0.083 0.857

C ( VNS, NSGA&VNS) 0.081 0.000 0.263
R101-S2-17V C ( NSGA&VNS, VNS) 0.357 0.000 0.700

C ( VNS, NSGA&VNS) 0.084 0.000 0.350
R101-S2-18V C ( NSGA&VNS, VNS) 0.318 0.000 0.625

C ( VNS, NSGA&VNS) 0.038 0.000 0.125

The CVRP with soft time windows and stochastic travel times

177



Table 7 Continued: C metric performance indicator comparing NSGA&VNS and VNS

Instance Metric Average Min Max
R101-S3-16V C ( NSGA&VNS, VNS) 0.436 0.125 1.000

C ( VNS, NSGA&VNS) 0.070 0.000 0.400
R101-S3-18V C ( NSGA&VNS, VNS) 0.283 0.111 0.667

C ( VNS, NSGA&VNS) 0.130 0.000 0.500
R101-S4-17V C ( NSGA&VNS, VNS) 0.298 0.000 0.857

C ( VNS, NSGA&VNS) 0.046 0.000 0.167
R101-S4-20V C ( NSGA&VNS, VNS) 0.459 0.250 1.000

C ( VNS, NSGA&VNS) 0.048 0.000 0.188
R102-S1-16V C ( NSGA&VNS, VNS) 0.330 0.000 0.750

C ( VNS, NSGA&VNS) 0.066 0.000 0.313
R102-S1-17V C ( NSGA&VNS, VNS) 0.250 0.000 0.625

C ( VNS, NSGA&VNS) 0.097 0.000 0.368
R102-S2-15V C ( NSGA&VNS, VNS) 0.259 0.000 0.700

C ( VNS, NSGA&VNS) 0.148 0.000 0.400
R102-S2-17V C ( NSGA&VNS, VNS) 0.215 0.000 0.750

C ( VNS, NSGA&VNS) 0.141 0.000 0.385
R102-S3-16V C ( NSGA&VNS, VNS) 0.311 0.000 0.700

C ( VNS, NSGA&VNS) 0.165 0.000 0.500
R102-S3-17V C ( NSGA&VNS, VNS) 0.271 0.000 0.714

C ( VNS, NSGA&VNS) 0.140 0.000 0.467
R102-S4-16V C ( NSGA&VNS, VNS) 0.108 0.000 0.500

C ( VNS, NSGA&VNS) 0.270 0.077 1.000
R102-S4-17V C ( NSGA&VNS, VNS) 0.241 0.000 0.625

C ( VNS, NSGA&VNS) 0.143 0.000 0.667
R103-S1-12V C ( NSGA&VNS, VNS) 0.230 0.000 0.833

C ( VNS, NSGA&VNS) 0.277 0.000 0.857
R103-S1-14V C ( NSGA&VNS, VNS) 0.261 0.000 0.846

C ( VNS, NSGA&VNS) 0.169 0.000 0.429
R103-S2-12V C ( NSGA&VNS, VNS) 0.187 0.000 0.833

C ( VNS, NSGA&VNS) 0.251 0.000 0.750
R103-S2-14V C ( NSGA&VNS, VNS) 0.239 0.000 0.875

C ( VNS, NSGA&VNS) 0.195 0.000 0.600
R103-S3-13V C ( NSGA&VNS, VNS) 0.175 0.000 0.667

C ( VNS, NSGA&VNS) 0.250 0.000 1.000
R103-S4-12V C ( NSGA&VNS, VNS) 0.022 0.000 0.500

C ( VNS, NSGA&VNS) 0.411 0.000 1.000
R103-S4-13V C ( NSGA&VNS, VNS) 0.085 0.000 1.000

C ( VNS, NSGA&VNS) 0.170 0.000 1.000
R109-S1-12V C ( NSGA&VNS, VNS) 0.000 0.000 0.000

C ( VNS, NSGA&VNS) 0.165 0.000 0.500
R109-S2-12V C ( NSGA&VNS, VNS) 0.014 0.000 0.500

C ( VNS, NSGA&VNS) 0.376 0.000 1.000
R109-S3-12V C ( NSGA&VNS, VNS) 0.010 0.000 0.250

C ( VNS, NSGA&VNS) 0.375 0.000 1.000
R109-S4-12V C ( NSGA&VNS, VNS) 0.073 0.000 1.000

C ( VNS, NSGA&VNS) 0.215 0.000 1.000
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