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Summary 

This thesis focuses on a maritime inventory routing problem (MIRP) that seeks to 

find optimal routes for seagoing vessels between ports. The problem in this paper considers 

both load and speed as important factors when calculating the fuel consumption and daily 

sailing costs of ships. The speed and load function of the fuel consumption is non-linear. 

The thesis describes how a linear approach can be used to find solutions to the problem. 

Four models are presented, one that finds optimal routes without considering load and speed, 

two models with fixed routes which optimizes the speed and load, and one model that finds 

optimal routes when both speed and load are considered. The models are tested on different 

instances and compared to each other. The solutions show that the speed and load does have 

an impact on the selection of routes in Maritime inventory routing problems (MIRP).  
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1. Introduction 

Maritime transport is important when it comes to trade and development. According to 

the Review of Maritime Transport (2017), seaborn trade stood for over 80 % of global trade 

by volume and over 70 % by value. On specific routes, seaborn trade can compete with rail- 

and road transportation when it comes to accessibility, time, cost, speed, and other constraints. 

In other routes it is the single link between regions and continents.  

As there has been a strong growth in world trade and development, the need for higher 

speeds in shipping grew.  According to Psaraftis and Kontovas (2013), the increase in speed 

was made possible by technological advances in hull design, hydrodynamic performance of 

vessels, engine and propulsion efficiency, to mention a few. However, increasing fuel prices, 

depressed market conditions and the rising focus on environmental issues has shifted the 

attention over on the disadvantages of high speed. Due to the non-linear dependency between 

speed and fuel consumption, high vessel speed leads to an increase in the fuel consumption, 

and hence the total cost of cargo deliveries, and in air emissions (Psaraftis and Kontovas, 

2013). As a result, the usage of “slow steaming” has increased. According to Psaraftis and 

Kontovas (2013), slow steaming is to go slower than the designed speed of a vessel and hence 

lead to a reduction in air emissions. Furthermore, speed reduction affects the total cost of 

transport, which shows that high speed is not always the best solution when it comes to 

optimization of delivery costs.  

Further, maritime transport is characterized by high level of uncertainty. This can be 

uncertain connected to weather conditions, port congestions, mechanical problems at ports, 

among others. In cases of uncertain weather conditions, the vessels might need to reduce the 

speed, which will affect the sailing time. This might lead to deviations in the initial timetable. 

However, this deviation can be retrieved on later stretches by increasing the speed.   

 In addition, companies have individual inventory policies. These policies may differ in 

capacity, type of product, storage time, and several other. As maritime transport is conducted 

on different distances, the uncertainty associated with the sailing time increases the 

importance of inventory routing. In the cases where the sailing time is affected, the inventory 

can be used as a buffer to prevent stockouts. Moreover, the speed of a vessel can be increased 

in the uncertain situations to make the policies more flexible.   

The relationship between speed and fuel consumption is a topic which has been studied 

a lot. However, there is little research on the impacts which the load of the vessels may have 
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on the fuel consumption, and hence the total transport costs. As there are different sized 

vessels, they also differ in weight according to the load they are transporting. It is therefore 

interesting to see if the load in combination with speed has a greater effect on the fuel 

consumption than speed alone.   

In this thesis, Maritime Inventory Routing Problem (MIRP) with speed optimization is 

studied. A MIRP is used to find optimal delivery routes between producers and consumers 

and at the same time maintain a reasonable inventory level. The main objective of this thesis 

is to minimize the total costs, which includes transportation and operation costs for each 

vessel in the routes they conduct. To be able to achieve this, speed and load is introduced as  

key variables into the existing optimization tool. 

  This thesis considers four different models. The first model finds routes for each 

vessel, where each vessel is running at a fixed speed. In the second model, the routes created 

by the first model are taken as fixed and used along a speed choice between minimum and 

maximum for each vessel. The third model builds further on the second model and introduces 

a minimum and maximum level of load. The fourth model provides optimal routes, speeds, 

and loads for each vessel at once. One of the main assumptions in model 2, 3 and 4 is the non-

linear dependency between fuel cost and speed. According to Andersson et al. (2015), the fuel 

consumption, and thus also the sailing cost, has a non-linear dependency of the speed of the 

vessel. This thesis examines how the changes introduced in the models influences the total 

costs.   

  The thesis is structured in the following way: chapter 2 represents literature review 

which is relevant to this research topic and includes different solution methods. Chapter 3 

describes the problem itself. Chapter 4 includes the mathematical models as well as relevant 

definitions. Chapter 5 represent a computational evaluation of the models. Chapter 6 describes 

the conclusion.  
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2. Literature review 

 The problem considered in this thesis can be described as a maritime inventory routing 

problem, where the fuel consumption, and hence the costs, is minimized by optimizing the 

speed and load of the vessels. This chapter contains information about maritime inventory 

routing problems (MIRPs) and speed optimization problems. In addition, information about 

inventory routing problems (IRPs) is added to provide a broader theoretical understanding of 

MIRPs. Hence, articles which describe modeling approaches and various models for IRP and 

MIRP are relevant for this research. Articles which describe different strategies for speed 

optimization are also relevant. Some research papers have been used as a source of primary 

data, and other as a source of fuel consumption functions. 

2.1 Inventory routing problem  

According to Coelho et al. (2014), the inventory routing problem (IRP) integrates 

inventory management, vehicle routing and delivery scheduling decisions. The motivation for 

this integration has to do with the optimization of resources. One must know how much 

capacity both the vehicle and customer has available to be able to optimize the 

delivery schedules. In recent years, exact algorithms, and several powerful metaheuristics 

and matheuristic approached has been developed to solve these problems. Coelho et al. 

(2014) presents a survey within IRP literature, which is based on a new classification of the 

problem, where the comparison of the literature is based on the structure of the problem and 

the solution time.  

When the IRP is solved, a business practice called vendor managed inventory 

replenishment (VMI) can be implemented. According to Kleywegt et al. (2002), VMI refers 

to a situation where a central decision maker (vendor) controls the replenishment of inventory 

at a number of locations. IRPs are hard to solve, especially with many customers involved, 

however, if they are able to solve the IRP they can manage to save costs both in inventory 

and transportation. Kleywegt et al. (2002) formulates the IRP as a Markov decision process 

and uses approximation methods to find good solutions.   

Bertazzi and Speranza (2012) studied the IRPs, where they classify the characteristics 

and presents different models and policies for problems where the crucial decision is when to 

serve customers. This problem involves using capacitated vehicles and direct shipping, to ship 

products from a supplier to a customer, in terms of IRPs. Bertazzi and Speranza (2012) also 

presents an overview of some pioneering papers of IRPs, and literature that concerns direct 
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shipping problems. In addition, they cite surveys that focuses on IRP decisions over time and 

space.  

Zaitseva (2017) worked on introducing profit maximization in IRPs, with an insight 

into how the models formulated can increase possibilities and help companies to make better 

decisions in planning aspects. This problem involves using piecewise linear approximation.  

As mentioned in Coelho et al. (2014), the IRP dates back over 30 years, till 1983 when 

Bell et al (1983) presented a study integrating inventory management, vehicle routing, and 

delivery scheduling decisions. The earlier papers which Coelho et al. (2014) mentioned have 

applied simple heuristics to simplified versions of the IRP and the papers are as follows: 

Blumenfeld et al. (1985) studied trade-offs between transportation, inventory, and production 

set-up costs to be able to determine optimal shipping strategies on freight networks. Burns et 

al. (1985) examined trade-offs between transportation and inventory, based on approximate 

routing costs. Dror et al. (1985) described an assignment heuristic over a short planning 

period. Dror and Levy (1986) examines an interchanging algorithm, where three heuristic 

route improvement schemes are used to improve a given solution to a vehicle routing problem 

(VRP). Anily and Federgruen (1990) studies clustering heuristics to determine feasible 

replenishment strategies minimizing routing- and inventory costs. 

The recent paper which Coelho et al. (2014) mentioned are able to obtain high-quality 

solutions to difficult optimization problems, and they rely on the concept of metaheuristics. 

The papers are as follows: Ribeiro and Lourenço (2003) proposed a heuristic methodology 

based on the iterated local search to solve the multi-period inventory routing problem with 

stochastic and deterministic demand. Campbell and Savelsbergh (2004) introduced a greedy 

randomized adaptive search for large-scale real-life instances. Zhao et al. (2008) used variable 

neighborhood search to solve an integrated inventory and routing problem in a three-echelon 

logistic system. Boudia and Prins (2009) proposed a memetic algorithm to solve an NP-hard 

multi-period production-distribution problem to minimize the sum of costs associated with 

production setups, inventories, and distribution. Archetti et al. (2012) introduced a tabu search 

scheme to solve an IRP in discrete time where a supplier has to serve a set of customers over 

a multiperiod horizon. Coelho et al. (2012) proposed an adaptive large neighborhood search 

heuristic to solve the inventory routing problem with transshipment (IRPT).  

In addition, Coelho et al. (2014) mentions the work of Chien et al. (1989) who proposed 

a construction and improvement heuristic, with a heterogenous fleet; Campbell et al. (1998) 

who proposed a two-phase heuristic based on a linear programming model; Bertazzi et al. 
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(2002) who proposed a fast-local search algorithm for the single-vehicle case in which an 

order-up-to level (OU) inventory policy is applied. 

2.2 Maritime inventory routing problem  

In this part of the thesis, solution methods for maritime inventory routing problems are 

presented. According to Song and Furman (2013) the IRP turns into a maritime inventory 

routing problem (MIRP) when the transportation is carried out by a seagoing vessel. They 

present flexible modeling and algorithmic framework as a solution method to this type of 

problems. Further, the paper includes a case study on a practical MIRP, which shows that the 

mentioned modeling and algorithmic framework is flexible and effective enough to be a 

choice for practical IRP.   

Agra et al. (2015) write about a stochastic short sea shipping problem, where the port 

times and sailing times are considered as stochastic parameters. The company presented is 

responsible for both distribution between the isles and inventory management at the 

ports. Ship routing and scheduling is related with unstable weather conditions and 

unpredictable waiting times at ports. They use a two-stage stochastic programming model 

where the first stage includes decisions related to routing, loading and unloading, and the 

second stage consist of decisions related to scheduling and inventory.    

Agra et al. (2016a) studied a single product MIRP where the production and consumption 

rates were constant over the planning horizon. The problem that is presented contains a 

heterogenous fleet of vessels and several production and consumption ports with limited 

storage capacity. As also mentioned in Agra et al. (2015), the weather conditions are 

uncertain, and this effects the sailing times. Hence, the travel time between the ports is 

assumed to be random and it follows a log-logistic distribution. The authors proposed a two-

stage stochastic programming problem with recourse to be able to deal with the random 

sailing times.  Further, they developed a MIP based local search heuristic to be able to solve 

the problem.  

Agra et al. (2016b) considered a single product robust MIRP with constant production 

and consumption rates, a heterogenous fleet and multiple consumption and production ports 

with capacities regarding storage. The article introduces a robust model to a MIRP and 

presents a two-stage decomposition algorithm. Further, the authors introduce several 

improvement strategies for the decomposition procedure.    

De et al. (2017) also studied a MIRP with demand at different ports during the planning 

horizon. The usage of slow steaming policy within ship routing is explored as a possibility. 
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To consider constraints like various scheduling and routing, loading/unloading and vessel 

capacity, the authors presented a mixed integer non-linear programming model. A non-linear 

equation is used to capture the sustainability aspects between fuel consumption and vessel 

speed. Further, they include several time window constraints to enhance the service level at 

each port, and in addition to this they have penalty costs associated with vessels arriving to 

early or finishes too late according to the time windows. To solve the problems in the paper 

they have used an effective search heuristic named Particle Swarm Optimization for 

Composite Particle (PSO-CP).   

Andersson et al. (2010) writes about industrial aspects of combined inventory 

management and routing problems. They describe the current industrial practice and gives 

examples of when inventory management and routing can be combined. In addition, they 

present a classification and comprehensive literature survey of around 90 papers that focuses 

on IRP and MIRP.  

2.3 Speed optimization problem  

This thesis looks at previous articles on speed optimization problems to provide 

information on different strategies and how speed optimization works. Fuel consumption is a 

non-linear function of the vessel speed, which means that an increase in the speed will lead 

to an even higher increase in fuel consumption. One strategy to lower fuel consumption is to 

slow steam, however, if the demand is high enough this might lead to an increase in the fleet 

size.    

Norstad et al. (2011) state that in traditional ship routing and scheduling problems, the 

speed of the vessels is fixed and that fuel consumption rate for each vessel is given. 

However, in real life the speed of a vessel will vary in different intervals and fuel consumption 

per time unit can be approximated by a cubic function of speed. Further they present the 

tramp ship routing and scheduling problem with speed optimization, where the speed of 

the vessels in different intervals will be characterized as a decision variable. To be able to 

solve this problem a multi-start local search heuristic is applied.   

According to Andersson et al. (2015) it is common to use a sequential approach when 

planning shipping routes, where firstly each vessel sails with a given speed, and then later 

optimize the sailing speeds along the routes based on the execution of the routes. This article 

proposes a new modeling approach for integrating speed optimization in the planning of 

shipping routes and uses a rolling horizon heuristic to solve the combined problem. Further, 
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the article considers a real deployment and routing problem in roll-on roll-off (RoRo)-

shipping.   

Wen et al. (2016) write about simultaneous optimization of routing and sailing speed in 

full-shipload tramp shipping. The article presents a heuristic that can find good solutions in 

short time. The problem consists of different cargos that needs to be transported from load 

ports directly to discharge ports. There is a heterogenous fleet of vessels, which have different 

speed ranges and load-dependent fuel consumption. The authors present solutions that 

determines which cargo to pick up, which route each vessel should follow, and the speed the 

vessels should have on each leg to maximize the profit. To find a solution, the paper presents 

a three-index formulation and a set packing formulation. Then, a branch-and-price algorithm 

is proposed, implemented and tested.     

Psaraftis and Kontovas (2013) present a survey and a taxonomy of models in maritime 

transportation, where speed is one of the decision variables. The article discusses pros and 

cons of reducing the speed of vessels. These pros and cons are related to both costs and 

emissions. Different fuel consumption functions are described. In addition, the authors give 

examples on how the inventory costs can impact the speed. The taxonomy of the different 

models is based on predefined parameters, such as optimization criterion, and whether the 

model can find the optimal speed as a function of payload or not.   

Psaraftis and Kontovas (2014) focus on clarifying issues in general speed 

optimization problems in maritime inventory routing, and then presents models that optimize 

the speed for different routing scenarios, for a single vessel. The article incorporates 

fundamental parameters and considerations, like fuel price, freight rate, inventory cost of the 

cargo and the dependency of fuel consumption on payload in the models. The authors also 

consider the difference between solutions that optimizes the economic performance, and the 

ones that optimize the environmental performance.    

Bialystocki and Konovessis (2016) suggest an approach for constructing an accurate 

fuel consumption and speed curve. In the article, different factors that can affect the fuel 

consumption is presented and taken into consideration. An algorithm is introduced and is 

proven to be both simple and accurate when estimating the fuel consumption.   

Evsikova (2017) worked on speed optimization in maritime inventory routing, with 

an insight into how the speed of the vessel may affect cost savings for different size of 

problems and emissions reduction for problems of a large size. 

This thesis studies a MIRP with speed and load optimization, to see how the introduction 

of load as a decision variable influences the total sailing costs in comparison to only speed 
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optimization and route planning with fixed speed and load. This thesis can be compared to 

the article by Wen et al. (2016), since both considers speed and load optimization, however, 

Wen et al. (2016) only considers full-shipload. To be able to optimize load, this thesis builds 

on a fuel consumption function presented in the article by Psaraftis and Kontovas (2014).  

3. Problem description  

 This thesis describes how load and speed influences the cost function of a maritime 

inventory routing problem. Further, it considers a geographical region where maritime 

transportation of a single product takes place. The transportation is carried out by a 

heterogenous fleet of vessels, which differ in size, capacity, and cost. Travelling distances 

are included into the problem. There are several ports, which are divided between 

consumption and production facilities. None of the ports are able to have both consumption 

and production.  The production facilities have fixed production rates, while the consumption 

facilities have fixed consumption rates.   
  Both the consumption and the production facilities have inventories and hence each 

port has storage facilities with fixed lower and upper limits. The production facilities are not 

allowed to exceed the maximum storage level, while the consumption ports are not allowed 

to have shortages. Further, each port can be visited multiple times by different vessels in the 

planning horizon depending on the size of storage and the number of products to be loaded 

or unloaded. Each vessel is given a starting location and executes its route in the best possible 

way. Throughout the routes, each vessel transports different loads between ports in 

accordance with the demand and can use different operating speeds during the execution of 

the routes.  
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Figure 1: Description of Maritime Inventory Routing Problem. Source: Made by the authors 

  Figure 1 shows how two vessels travel their routes. The blue ports are production 

ports, and the orange ports are consumption ports. The first vessel, which is blue, goes to port 

3 to fill up before it sails to port 4. Here it unloads before sailing to port 5 to fill up 

again. From port 5 it sails to port 6 to unload and ends its journey. The solid blue line shows 

this route. Another vessel, which is red, goes to port 1 to fill up before it sails to port 2 to 

unload. From here it sails to port 3 to partially fill up and continues to port 5. Here it also gets 

partially filled up, before it sails to port 6 to unload and ends its journey. The red dashed line 

shows this route.  

 This thesis focuses on the minimization of the sum of traveling costs between ports 

depending on the chosen speed and load, and operational costs in each port. Each port is 

located with different distances between each other, different demand rates and individual 

operational costs. The vessels can operate with different speeds and loads. In addition, the 

vessels have different sailing costs which will be reviewed in the next chapter.  

The vessels have different properties. They differ in size to better meet the various 

demands. In this thesis, the size of the vessels is categorized by deadweight tonnage (DWT), 

in other words how much the vessels can transport. In addition, the vessels operate with 

different speeds which differs in knots. The operating speed of the vessels depends on the size 

of the vessel, where the larger vessels operate with higher speeds. Furthermore, the vessels 

have different load rates, which also is dependent on the size of the vessels.   
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 The main objective is to minimize the total routing costs, which 

includes transportation and operating costs for each vessel in the routes they conduct. 

According to Andersson et al. (2015), the fuel consumption, and thus also the sailing 

cost, has a non-linear dependency of the speed of the vessel. They approximated the non-

linear fuel consumption function by using three speed alternatives and combines these to find 

linear overestimations of the consumption. Figure 2 shows this overestimation. There is a 

certain minimum speed that the vessel must perform due to safety reasons, and to run 

at a minimum cost. In addition, there is a maximum speed that can be achieved when there 

are perfect weather conditions. This is a theoretical upper limit, and the highest speed 

alternative should be slightly lower.   

Bialystocki and Konovessis (2016) present a regression formula with two constant 

values that shows the non-linear relationship between speed and fuel consumption. The 

function of the fuel consumption is equal to 0.1727𝜇2 − 0.217𝜇, where µ is the speed of the 

vessel. This function is illustrated in figure 3. This function is independent of load; thus, the 

load is a given constant.  As figure 2 shows, the fuel consumption curve is convex. Therefore, 

the linearization of the curve will be an overestimation of the fuel consumption.   

  
Figure 2: The non-linear relationship between speed and fuel consumption. Source: Made by the authors based on 

Bialystocki and Konovessies (2016), and Andersson et al. (2015)). 
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According to Andersson et al. (2015), there is an additional overestimation when it 

comes to the non-linear dependency between time and speed. Hence, there is also an 

overestimation when it comes to the travel time. The approach is illustrated in Figure 3. This 

graph is built on the same speed curve as for Figure 2. As we see in Figure 3, a selected speed 

from the speed options will result in a higher travel time than the actual time being 

used. Higher speed reduces traveling time and vice versa.  

 
Figure 3: The non-linear function of travel time as a function of speed. Source: Made by the authors based on Bialystocki 

and Konovessies (2016), and Andersson, Fagerholt, and Hobbesland (2015)).  

According to Psaraftis and Kontovas (2014), the fuel consumption has a non-linear 

dependency on both the speed and the load of a vessel. The daily fuel consumption is equal 

to 𝐹𝐶 = 𝑘𝜇3(𝑙 + 𝐴)
2

3⁄ , where k is a given constant, µ is the speed of the vessel, l is the 

payload and A is the "lightship weight", or the weight of the vessel when it has no load except 

fuel. The daily sailing costs from this fuel consumption formula is illustrated in the graph in 

Figure 4, for a single vessel with five different load levels. The part of the formula that is 

related to speed generates a convex function, illustrated by the green lines in Figure 4. The 

part of the formula that are dependent on load, generates a concave function, which is 

illustrated by the orange lines in the figure.   

Linear approximation of a convex function will give an overestimate of the costs, while linear 

approximation of a concave function will give an underestimate of the costs.  
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Figure 4: The relationship between speed, load, and daily sailing costs of a vessel. Source: Made by the authors based on 

Psaraftis and Kontovas (2014). 

 

4. Mathematical models 

  The maritime inventory routing problem is modeled in a similar way as in Evsikova 

(2017), and with the same notations. Model 1 is presented first. Model 2 is presented second. 

Model 3 is presented third, and model 4 is presented last.  

4.1 Introduction to models 

  In this section the thesis focuses on how, for each model, different assumptions on 

load and speed are handled. Mathematical formulations are introduced and considered in the 

first model. The maritime inventory routing problem presented is created in the same way as 

in Evsikova (2017) and uses the same notations. Speed optimization is introduced in a similar 

way as in Andersson et al.  (2015). 
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Figure 5: Example of ship routes. Source: Made by the authors based on Agra et al. (2015). 

 

  In the models, V indicates a set of vessels and N indicates a set of ports. Each 

vessel 𝑣 ∈ 𝑉 has its starting point, which can be a point at sea. Each port can have multiple 

visits during the time horizon. Nodes in a network is indicated by a pair (i, m), where i is a 

port and m is the visit number. If there are arcs of direct movement from node (i, m) to 

node (j, n), it is denoted as (i, m, j, n).   

  Figure 5 shows the origins and destinations of two different vessels, and how they 

move from port to port, as also seen in Figure 1. Vessel 1 starts from origin O1 and goes to 

port 3 for the first visit, then sails to port 4 for the first visit, continues to port 5 for the first 

visit, followed by port 6 for the first visit, and ends up in destination D1, as the route is 

completed. The blue line shows this. Vessel 2 starts from origin O2 and sails to port 1 for the 

first visit, continues to port 2 for the first visit, continues to port 3 for the second visit, sails 

further to port 5 for the second visit, followed by port 6 for the second visit, and ends up in 

destination D2, as the route is completed. The red dashed line shows this.   

The first model optimizes routes and has speed of the vessels as a fixed parameter. The 

speed is set to the maximum speed of each vessel. Each of the vessels has a specific daily 

sailing cost. The daily sailing costs of each ship in model 1 is a parameter and is calculated 

using the formula of Psaraftis and Kontovas (2014). As this formula considers load, the costs 

are calculated as if the ships sail with a load level equal to the total capacity.  

In the second model, the routes which are given by model 1 are used as input 

parameters. In addition, the model includes a set of speeds and speed variables. The input data 
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includes 3 different speeds for each vessel, which is the same speed intervals as presented in 

Evsikova (2017). Evsikova (2017) defined two of three speeds according to corresponding 

ranges for vessels with general cargo and different capacities. The lowest speed was 

calculated according to the slow steaming policy.  

In the third model, two speed- and load-variables are introduced. The first one is 𝑔𝑖𝑚𝑣𝑙𝑠
0 , 

which is an auxiliary variable used to determine the speed and load on the route between the 

origin and the port; the second is 𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠, which is an auxiliary variable used to determine 

the speed and load along the route between ports. These variables can be equal to zero, one 

or a fractional value, as presented in figure 6.  If it is zero, the given speed and load is not 

chosen, but if it is one it is chosen. It will be a fractional value if a middle speed and load is 

chosen.  

In the fourth and last model, routes, speed and load are optimized at the same time by 

combining model 1 and model 3.  

 

Figure 6: Explanation of the speed and load variables. Source: Made by the authors 

 

 

Speed and load variables

g0
imvls/gimjnvls

1

If the speed/load is 
choosen

Fractional value

If a middle speed/load is 
choosen

0

If the speed/load is not 
choosen
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4.2 Model 1. Maritime inventory routing problem with fixed 

speed  

  The first model is deterministic and finds routes for each vessel between ports by 

focusing on minimizing the sum of traveling costs between ports and operational costs in each 

port. The model assumes that each vessel is running at a fixed speed. 

 

Notation:  

Set:  

𝑉 : set of vessels  

𝑁 : set of production and consumption ports 

𝑆𝐴 : set of possible nodes (i, m) 

𝑆𝑣
𝐴 : set of nodes that can be visited by vessel v 

𝑆𝑣
𝑋 : set of all movements (i, m, j, n) of vessel v 

 

Variables:  

𝑥𝑖𝑚𝑗𝑛𝑣 : 1 if vessel 𝑣 ∈ 𝑉 moves directly between nodes (𝑖, 𝑚) and (𝑗, 𝑛),  

  0 otherwise,  𝑣 ∈ 𝑉,     (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋  

𝑥𝑖𝑚𝑣
0  : 1 if vessel v departs from its initial position to node (𝑖, 𝑚), 

  0 otherwise,  𝑣 ∈ 𝑉,     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑧𝑖𝑚𝑣 : 1 if vessel v finishes its route at node (𝑖, 𝑚),  

  0 otherwise,  𝑣 ∈ 𝑉,     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑧𝑣
0 : 1 if origin of vessel v is the same as destination,  

  0 otherwise,  𝑣 ∈ 𝑉 

𝑞𝑖𝑚𝑣 : the amount of product loaded/unloaded from vessel v at node (𝑖, 𝑚),  

  𝑣 ∈ 𝑉,     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴  

𝑓𝑖𝑚𝑗𝑛𝑣 : the amount of product that vessel v transports from node (𝑖, 𝑚) to node (𝑗, 𝑛), 

  𝑣 ∈ 𝑉,     (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 

𝑓𝑖𝑚𝑣
0  : the amount of product that vessel v transports from the origin to node (𝑖, 𝑚),  

  𝑣 ∈ 𝑉,     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴  

𝑓𝑖𝑚𝑣
𝑑  : the amount of product that vessel v transports from the origin to destination node 

(𝑖, 𝑚)  𝑣 ∈ 𝑉,     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑡𝑖𝑚 : starting time of the 𝑚𝑡ℎ visit to port i,  
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  (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑜𝑖𝑚𝑣 : 1 if vessel v operates in port (𝑖, 𝑚), 

  0 otherwise,  𝑣 ∈ 𝑉,      (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑦𝑖𝑚 : 1 if there is a visit (𝑖, 𝑚) to port i,  

  0 otherwise,  𝑖 ∈ 𝑁,      (𝑖, 𝑚) ∈ 𝑆𝐴 

𝑠𝑖𝑚 : stock levels at ports at the start of the visit m, to port i,  

  (𝑖, 𝑚) ∈ 𝑆𝐴 

 

Parameters:  

𝑇 : number of time units in the planning horizon  

𝐻𝑖 : minimum number of visits to port 𝑖 ∈ 𝑁 

𝑀𝑖 : maximum number of visits to port 𝑖 ∈ 𝑁 

𝐷𝑖 : consumption or demand at port 𝑖 ∈ 𝑁  

𝐽𝑖 : 1 if production facilities are located in port i, -1 if consumption facilities are located in 

port i, 𝑖 ∈ 𝑁  

𝑃𝑖𝑣 : port cost at port 𝑖 ∈ 𝑁 for vessel 𝑣 ∈ 𝑉  

𝐶𝑣 : capacity of vessel 𝑣 ∈ 𝑉 

𝐿𝑣 : initial load onboard vessel 𝑣 ∈ 𝑉 when leaving port i 

𝑆𝑖 : lower bound on the inventory level at port 𝑖 ∈ 𝑁  

𝑆𝑖 : upper bound on the inventory level at port 𝑖 ∈ 𝑁  

𝑆𝑖
0 : the initial stock level in port 𝑖 ∈ 𝑁 at the beginning of the planning horizon  

𝐴𝑖𝑚 : earliest time for starting visit m to port i, (𝑖, 𝑚) ∈ 𝑆𝐴 

𝐵𝑖𝑚 : latest time for starting visit m to port i, (𝑖, 𝑚) ∈ 𝑆𝐴 

𝐾𝑖 : minimum time between two consecutive visits to port 𝑖 ∈ 𝑁 

𝑄𝑖 : minimum load/unload quantity in port 𝑖 ∈ 𝑁 

𝑈𝑖𝑚 : latest time for finishing visit m to port i, (𝑖, 𝑚) ∈ 𝑆𝐴 

𝑇𝑣
𝑄

 : time for unloading/loading each unit by vessel 𝑣 ∈ 𝑉 

𝐶𝑖𝑗𝑣
𝑃𝑃 : sailing cost from port 𝑖 ∈ 𝑁 to port 𝑗 ∈ 𝑁 with vessel 𝑣 ∈ 𝑉 

𝐶𝑖𝑣
𝑂𝑃 : sailing cost from origin to port 𝑖 ∈ 𝑁 by vessel 𝑣 ∈ 𝑉 

𝑇𝑖𝑗𝑣
𝑃𝑃 : time required by vessel 𝑣 ∈ 𝑉 to sail from port 𝑖 ∈ 𝑁 to port 𝑗 ∈ 𝑁 

𝑇𝑖𝑣
𝑂𝑃 : time required by vessel 𝑣 ∈ 𝑉 to sail from its origin to port 𝑖 ∈ 𝑁 
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Formulation:  

min ∑ ∑ 𝐶𝑖𝑗𝑣
𝑃𝑃𝑥𝑖𝑚𝑗𝑛𝑣 + ∑ ∑ 𝐶𝑖𝑣

𝑂𝑃𝑥𝑖𝑚𝑣
0 +

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣

𝑋𝑣∈𝑉

 ∑ ∑ 𝑃𝑖𝑣𝑜𝑖𝑚𝑣

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

                (1) 

 

subject to  

∑ 𝑥𝑗𝑛𝑣
0 + 𝑧𝑣

𝑜 = 1

(𝑗,𝑛)∈𝑆𝑣
𝐴

 ∀  𝑣 ∈ 𝑉 (2) 

𝑜𝑖𝑚𝑣 − ∑ 𝑥𝑗𝑛𝑖𝑚𝑣 − 𝑥𝑖𝑚𝑣
𝑜 = 0

(𝑗,𝑛,𝑖,𝑚)∈𝑆𝑣
𝑥

 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (3) 

𝑜𝑖𝑚𝑣 − ∑ 𝑥𝑖𝑚𝑗𝑛𝑣 − 𝑧𝑖𝑚𝑣 = 0

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣
𝑥

 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (4) 

∑ 𝑜𝑖𝑚𝑣 = 𝑦𝑖𝑚

𝑣∈𝑉

 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 (5) 

𝑦𝑖(𝑚−1) − 𝑦𝑖𝑚 ≥ 0 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 ∶ 𝐻𝑖 + 1 ≤ 𝑚 ≤ 𝑀𝑖 (6) 

𝑦𝑖𝑚 = 1 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 ∶  𝑚 ∈ {1 … 𝐻𝑖} (7) 

𝑞𝑖𝑚𝑣 ≤ min {𝐶𝑣, 𝑆𝑖}𝑜𝑖𝑚𝑣 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (8) 

𝑄𝑖𝑜𝑖𝑚𝑣 ≤ 𝑞𝑖𝑚𝑣 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (9) 

𝑓𝑖𝑚𝑣
𝑜 = 𝐿𝑣𝑥𝑖𝑚𝑣

𝑜  ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (10) 

𝑓𝑗𝑛𝑣
𝑜 + ∑ 𝑓𝑖𝑚𝑗𝑛𝑣 + 𝐽𝑖𝑞𝑗𝑛𝑣(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣

𝑋  = 

∑ 𝑓𝑗𝑛𝑖𝑚𝑣 + 𝑓𝑗𝑛𝑣
𝑑

(𝑗,𝑛,𝑖,𝑚)∈𝑆𝑣
𝑋

 

∀  𝑣 ∈ 𝑉,   (𝑗, 𝑛) ∈ 𝑆𝑣
𝐴 (11) 

𝑓𝑖𝑚𝑗𝑛𝑣 ≤ 𝐶𝑣𝑥𝑖𝑚𝑗𝑛𝑣 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚), (𝑗, 𝑛) ∈ 𝑆𝑣
𝐴 (12) 

𝑓𝑗𝑛𝑣
𝑑 ≤ 𝐶𝑣𝑧𝑗𝑛𝑣 ∀  𝑣 ∈ 𝑉,   (𝑗, 𝑛) ∈ 𝑆𝑣

𝐴 (13) 

𝑡𝑖𝑚 + ∑ 𝑇𝑣
𝑄𝑞𝑖𝑚𝑣 − 𝑡𝑗𝑛

𝑣∈𝑉

+ 

∑ max{𝑈𝑖𝑚 + 𝑇𝑖𝑗𝑣
𝑃𝑃 − 𝐴𝑗𝑛, 0}

𝑣∈𝑉

 𝑥𝑖𝑚𝑗𝑛𝑣 

≤ 𝑈𝑖𝑚 − 𝐴𝑗𝑛 

(𝑖, 𝑚), (𝑗, 𝑛) ∈ 𝑆𝐴 (14) 

𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1) − ∑ 𝑇𝑣
𝑄𝑞𝑖(𝑚−1)𝑣

𝑣∈𝑉

− 𝐾𝑖𝑦𝑖𝑚 ≥ 0 ∀ (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 ∶ 𝑚 > 1 (15) 

∑ 𝑇𝑖𝑣
𝑂𝑃𝑥𝑖𝑚𝑣

𝑜 ≤ 𝑡𝑖𝑚

𝑣∈𝑉

 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 (16) 

𝑡𝑖𝑚 ≥ 𝐴𝑖𝑚 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 (17) 

𝑡𝑖𝑚 ≤ 𝐵𝑖𝑚 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 (18) 

𝑠𝑖1 = 𝑆𝑖
𝑜 + 𝐽𝑖𝐷𝑖𝑡𝑖1 ∀  𝑖 ∈ 𝑁 (19) 

𝑠𝑖𝑚 = 𝑠𝑖(𝑚−1) − 𝐽𝑖 ∑ 𝑞𝑖(𝑚−1)𝑣

𝑣∈𝑉

+ 

𝐽𝑖𝐷𝑖(𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)) 

∀ (𝑖, 𝑚) ∈ 𝑆𝐴 ∶ 𝑚 > 1 (20) 

𝑠𝑖𝑚 + ∑ 𝑞𝑖𝑚𝑣

𝑣∈𝑉

− 𝐷𝑖 ∑ 𝑇𝑣
𝑄𝑞𝑖𝑚𝑣

𝑣∈𝑉

≤ 𝑆𝑖 
∀ (𝑖, 𝑚) ∈ 𝑆𝐴 ∶ 𝐽𝑖 = −1 (21) 
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𝑠𝑖𝑚 − ∑ 𝑞𝑖𝑚𝑣

𝑣∈𝑉

+ 𝐷𝑖 ∑ 𝑇𝑣
𝑄𝑞𝑖𝑚𝑣

𝑣∈𝑉

≥ 𝑆𝑖 
∀ (𝑖, 𝑚) ∈ 𝑆𝐴 ∶ 𝐽𝑖 = 1 (22) 

𝑠𝑖𝑀𝑖
+ ∑ 𝑞𝑖𝑀𝑖𝑣

𝑣∈𝑉

− 𝐷𝑖(𝑇 − 𝑡𝑖𝑀𝑖) ≥ 𝑆𝑖 
∀  𝑖 ∈ 𝑁 ∶  𝐽𝑖 = −1 (23) 

𝑠𝑖𝑀𝑖
− ∑ 𝑞𝑖𝑀𝑖𝑣

𝑣∈𝑉

+ 𝐷𝑖(𝑇 − 𝑡𝑖𝑀𝑖) ≤ 𝑆𝑖 
∀  𝑖 ∈ 𝑁 ∶  𝐽𝑖 = 1 (24) 

𝑠𝑖𝑚 ≥ 𝑆𝑖 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 ∶ 𝐽𝑖 = −1 (25) 

𝑠𝑖𝑚 ≤ 𝑆𝑖 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 ∶ 𝐽𝑖 = 1 (26) 

𝑥𝑖𝑚𝑗𝑛𝑣 ∈ {0,1} ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 (27) 

𝑥𝑖𝑚𝑣
𝑜 ∈ {0,1} ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 (28) 

𝑜𝑖𝑚𝑣 ∈ {0,1} ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (29) 

𝑧𝑖𝑚𝑣 ∈ {0,1} ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (30) 

𝑧𝑣
𝑜 ∈ {0,1} ∀ 𝑣 ∈ 𝑉 (31) 

𝑦𝑖𝑚 ∈ {0,1} (𝑖, 𝑚) ∈ 𝑆𝐴 (32) 

𝑞𝑖𝑚𝑣 ≥ 0 ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (33) 

𝑓𝑖𝑚𝑗𝑛𝑣 ≥ 0 ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 (34) 

𝑓𝑖𝑚𝑣
𝑜 ≥ 0 ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 (35) 

𝑓𝑖𝑚𝑣
𝑑 ≥ 0 ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 (36) 

𝑠𝑖𝑚 ≥ 0 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 (37) 

𝑡𝑖𝑚 ≥ 0 ∀ (𝑖, 𝑚) ∈ 𝑆𝐴 (38) 

 

The objective function (1) expresses the minimization of the sum of traveling costs 

between ports and the operational costs at each port. Constraints (2) – (7) is routing 

constraints. Constraint (2) shows that a vessel must either depart from the origin to a port or 

from the origin to the destination. Constraint (3) defines that if the port is visited, the vessel 

must either depart from the origin to the node, or from another node to the node. Constraint 

(4) ensures that if a vessel is at node i¸ it must either leave or end the route. Constraint (5) 

shows that a vessel can only visit node (i, m) if Yim is equal to one. Constraint (6) guarantees 

that if a port i is visited mth times, then it must also have been visited m-1 times. Constraint 

(7) defines the mandatory visits for port i.  

Constraints (8) – (9) are loading and unloading constraints. Constraint (8) ensures the 

quantity loaded/unloaded cannot exceed the lowest amount of vessel capacity or port capacity. 

Constraint (9) shows that if a vessel visits the port, then the amount loaded/unloaded should 

be more or equal to the minimum quantity.  

Constraints (10) – (13) are arc flow constraints. Constraint (10) defines that if a vessel 

travels from the initial position, then the transported amount is equal to the initial load of the 

vessel. Constraint (11) guarantees that the amount of incoming product flow and the amount 

loaded/unloaded must be equal to the outgoing product flow. Constraint (12) shows that the 

product flow from port to port should be less or equal to the capacity of the vessel. Constraint 
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(13) ensures that the product flow to the destination is less or equal to the capacity of the 

vessel.  

Constraints (14) – (18) are time constraints. Constraint (14) relates the start time 

associated with node (i, m) to the start time associated with node (j, n) when a vessel travels 

between ports. Constraint (15) impose a minimum interval between two consecutive visits at 

port i. Constraint (16) shows that the travel time for a vessel traveling from origin should not 

exceed the start time of the visit to the port. Constraints (17) – (18) defines time windows for 

the start and end time of the visits.  

Constraints (19) – (26) are inventory constraints. Constraint (19) ensure the stock level at the 

start time of the first visit to a port. Constraint (20) shows that the stock level at the start of 

the mth visit is connected to the stock level at the start of the previous visit.  

 Constraints (21) – (22) guarantees that the inventory is within the limit at the end of 

the visit. Constraints (23) – (24) defines upper- and lower bound on the inventory level at 

time T for production and consumption ports. Constraints (25) – (26) ensures that the stock 

level is within their limits at the start of each visit.  

Constraints (27) – (32) states that the variables are binary. Constraints (33) – (38) 

ensures that variables are nonnegative.   

 

4.3 Model with fuel consumption as a non-linear function of 

speed and load 

  Speed and load has a non-linear influence on the costs. This section shows the 

objective function and constraints of the non-linear model. In this thesis, the non-linear 

problem is solved by using linear approximation. Therefore, this model can be considered as 

an extra model, and is not used in any computational studies in this thesis.  

The non-linear additions to model 1 is as follows: 

 

Variables: 

𝜇𝑖𝑚𝑗𝑛𝑣 :  The speed of vessel v between nodes (𝑖, 𝑚) and (𝑗, 𝑛)  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 

𝜇𝑖𝑚𝑣
0  :  The speed of vessel v from origin (𝑖, 𝑚)              𝑣 ∈ 𝑉,     (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑋 

𝑙𝑖𝑚𝑗𝑛𝑣 :  The load of vessel v between nodes (𝑖, 𝑚) and (𝑗, 𝑛)  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 

𝑙𝑖𝑚𝑣
0

 :  The load of vessel v from origin (𝑖, 𝑚)              𝑣 ∈ 𝑉,     (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 
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Parameters: 

𝐸𝑖𝑗 : Distance from port 𝑖 ∈ 𝑁 to port 𝑗 ∈ 𝑁  

𝐸𝑖𝑣
0  : Distance from port 𝑖 ∈ 𝑁 to port 𝑗 ∈ 𝑁  

𝜇̅𝑣 : Maximum speed of vessel 𝑣 ∈ 𝑉  

𝜇
𝑣
 : Minimum speed of vessel 𝑣 ∈ 𝑉  

𝑙𝑣 : Maximum load of vessel 𝑣 ∈ 𝑉   

𝑙
𝑣
 : Minimum load of vessel 𝑣 ∈ 𝑉 

𝑍 : Fuel cost per ton  

 

Formulation:  

 

min ∑ ∑ 𝑥𝑖𝑚𝑗𝑛𝑣  ℎ𝑣(𝜇𝑖𝑚𝑗𝑛𝑣 , 𝑙𝑖𝑚𝑗𝑛𝑣)
𝐸𝑖𝑗

24𝜇𝑖𝑚𝑗𝑛𝑣
 𝑍 

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣
𝑋𝑣∈𝑉

   

+ ∑ ∑ 𝑥𝑖𝑚𝑣
0  ℎ𝑣(𝜇𝑖𝑚𝑣

0 , 𝑙𝑖𝑚𝑣
0 ) 

(𝑖,𝑚)∈𝑆𝑣
𝐴

𝐸𝑖𝑣
0

24𝜇𝑖𝑚𝑣
0

𝑣∈𝑉

𝑍 + ∑ ∑ 𝑃𝑖𝑣𝑜𝑖𝑚𝑣

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

     

            

(1) 

 

𝑡𝑖𝑚 + ∑ 𝑇𝑣
𝑄𝑞𝑖𝑚𝑣 − 𝑡𝑗𝑛

𝑣∈𝑉

+ 

∑ max {𝑈𝑖𝑚 +
𝐸𝑖𝑗

𝜇𝑖𝑚𝑗𝑛𝑣 
− 𝐴𝑗𝑛 , 0}

𝑣∈𝑉

 𝑥𝑖𝑚𝑗𝑛𝑣 

≤ 𝑈𝑖𝑚 − 𝐴𝑗𝑛 

(𝑖, 𝑚), (𝑗, 𝑛) ∈ 𝑆𝐴 (14) 

∑
𝐸𝑖𝑣

0

𝜇𝑖𝑚𝑣
0 𝑥𝑖𝑚𝑣

𝑜 ≤ 𝑡𝑖𝑚

𝑣∈𝑉

 
∀ (𝑖, 𝑚) ∈ 𝑆𝐴 (16) 

𝜇
𝑣

≤  𝜇𝑖𝑚𝑗𝑛𝑣   ≤  𝜇̅𝑣  ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋  

𝜇
𝑣

≤  𝑠𝑖𝑚𝑣
0  ≤  𝜇̅𝑣    ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑋  

𝑙
𝑣

 ≤  𝑙𝑖𝑚𝑗𝑛𝑣  ≤ 𝑙𝑣  ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋  

𝑙
𝑣

 ≤  𝑙𝑖𝑚𝑣
0  ≤  𝑙𝑣   ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑋  

 

  In the objective function (1), ℎ𝑣(𝜇, 𝑙) is the daily fuel consumption function of the 

speed and load from Psaraftis and Kontovas (2014), where ℎ𝑣(𝜇, 𝑙) = 𝑘𝑣𝜇3(𝑙 + 𝐴𝑣)2/3.  

The last four constraints decide lower and upper bounds for the speed and load. The non-

linear model can be simplified by linear approximation. According to Williams (1999), a 

function is separable if it is a function of a single variable, and non-separable if it is a function 
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of more than one variable. In the non-linear model, both the objective function and constraint 

(14) and (16) are non-separable.  

 

4.4 Model 2. Maritime inventory routing problem with fixed 

routes and fuel consumption as a function of speed 

  This part examines the second model, which is a special variant of model 1. In the 

second model, the routes created by the first model are taken as fixed and used along a speed 

choice between minimum and maximum for each vessel. As the speed is affecting 

the fuel consumption in a non-linear way, the daily sailing costs will become non-linear. To 

linearize the model, each vessel is given a set of speed choices with associated costs, and 

optimization tools will be able to provide which speed each vessel should operate with. 

Because of this linearization, the solution of the model will be an overestimate of the costs. 

The research paper of Andersson et al. (2015) was used to provide a modelling approach for 

speed optimization. 

 

Notation:  

Set: 

𝑆𝑣
𝑆 – set of speeds which can be used by vessel v 

 

Variables:  

𝑔𝑖𝑚𝑗𝑛𝑣𝑠 – auxiliary variables to determine the speed of a vessel when going from (i, m) to  

  (j, n), with s corresponding to a given choice of speed.   

𝑣 ∈ 𝑉  𝑠 ∈ 𝑆𝑣
𝑆  (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑋 

𝑔𝑖𝑚𝑣𝑠
0  – auxiliary variables to determine the speed of a vessel when going from origin to  

  node (i, m), with s corresponding to a given choice of speed.    

   𝑣 ∈ 𝑉  𝑠 ∈ 𝑆𝑣
𝑆  (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 

 

Parameters 

𝑥𝑖𝑚𝑗𝑛𝑣 : 1 if vessel 𝑣 ∈ 𝑉 moves directly between nodes (𝑖, 𝑚) and (𝑗, 𝑛),  

  0 otherwise,  𝑣 ∈ 𝑉,     (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋  

𝑥𝑖𝑚𝑣
0  : 1 if vessel v departs from its initial position to node (𝑖, 𝑚), 

  0 otherwise,  𝑣 ∈ 𝑉,     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 
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𝑧𝑖𝑚𝑣 : 1 if vessel v finishes its route at node (𝑖, 𝑚),  

  0 otherwise,  𝑣 ∈ 𝑉,     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑧𝑣
0 : 1 if origin of vessel v is the same as destination,  

  0 otherwise,  𝑣 ∈ 𝑉 

𝑜𝑖𝑚𝑣 : 1 if vessel v operates in port (𝑖, 𝑚), 

  0 otherwise,  𝑣 ∈ 𝑉,      (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑦𝑖𝑚 : 1 if there is a visit (𝑖, 𝑚) to port i,  

  0 otherwise,  𝑖 ∈ 𝑁,      (𝑖, 𝑚) ∈ 𝑆𝐴 

𝐶𝑖𝑗𝑣𝑠
𝑃𝑃  : sailing cost from port 𝑖 ∈ 𝑁 to port 𝑗 ∈ 𝑁 with vessel 𝑣 ∈ 𝑉 with speed 𝑠 ∈ 𝑆𝑣

𝑆 

𝐶𝑖𝑣𝑠
𝑂𝑃 : sailing cost from origin to port 𝑖 ∈ 𝑁 by vessel 𝑣 ∈ 𝑉 with speed 𝑠 ∈ 𝑆𝑣

𝑆 

𝑇𝑖𝑗𝑣𝑠
𝑃𝑃  : time required by vessel 𝑣 ∈ 𝑉 to sail from port 𝑖 ∈ 𝑁 to port 𝑗 ∈ 𝑁 with  

  speed 𝑠 ∈ 𝑆𝑣
𝑆 

𝑇𝑖𝑣𝑠
𝑂𝑃 : time required by vessel 𝑣 ∈ 𝑉 to sail from its origin to port 𝑖 ∈ 𝑁 with speed 𝑠 ∈ 𝑆𝑣

𝑆 

 

Formulation:  

𝑚𝑖𝑛 ∑ ∑ ∑ 𝐶𝑖𝑗𝑣𝑠
𝑃𝑃 𝑔𝑖𝑚𝑗𝑛𝑣𝑠

𝑠∈𝑆𝑣
𝑆(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣

𝑋𝑣∈𝑉

+ ∑ ∑ ∑ 𝐶𝑖𝑣𝑠
𝑂𝑃𝑔𝑖𝑚𝑣𝑠

𝑜

𝑠∈𝑆𝑣
𝑆(𝑖,𝑚)∈𝑆𝑣

𝐴𝑣∈𝑉

+ 

∑ ∑ 𝑃𝑖𝑣𝑜𝑖𝑚𝑣

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

              

(1) 

 

∑ 𝑔𝑖𝑚𝑗𝑛𝑣𝑠 = 𝑥𝑖𝑚𝑗𝑛𝑣

𝑠∈𝑆𝑣
𝑆

 ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥 

 

(39) 

∑ 𝑔𝑖𝑚𝑣𝑠
𝑜 = 𝑥𝑖𝑚𝑛

𝑜

𝑠∈𝑆𝑣
𝑆

 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

 

(40) 

0 ≤ 𝑔𝑖𝑚𝑗𝑛𝑣𝑠 ≤ 1 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥, 

𝑠 ∈ 𝑆𝑣
𝑆 

(41) 

0 ≤ 𝑔𝑖𝑚𝑣𝑠
𝑜 ≤ 1 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴, 
𝑠 ∈ 𝑆𝑣

𝑆 
(42) 

 

Changes:  

𝑡𝑖𝑚 + ∑ 𝑇𝑣
𝑄

𝑣∈𝑉

𝑞𝑖𝑚𝑣 − 𝑡𝑗𝑛 + 

∑ ∑ 𝑚𝑎𝑥

𝑠∈𝑆𝑣
𝑆𝑣∈𝑉

{𝑈𝑖𝑚 + 𝑇𝑖𝑗𝑣𝑠
𝑃𝑃 − 𝐴𝑗𝑛, 0}𝑔𝑖𝑚𝑗𝑛𝑣𝑠 

≤ 𝑈𝑖𝑚 − 𝐴𝑗𝑛 

∀  (𝑖, 𝑚), (𝑗, 𝑛) ∈ 𝑆𝐴 (43) 
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∑ ∑ 𝑇𝑖𝑣𝑠
𝑂𝑃

𝑠∈𝑆𝑣
𝑆𝑣∈𝑉

𝑔𝑖𝑚𝑣𝑠
𝑜 ≤ 𝑡𝑖𝑚 ∀  (𝑖, 𝑚) ∈ 𝑆𝐴 (44) 

 

The first model generates routes which are used in model 2 to be able to provide the 

given speed for each vessel. Hence, the routing constraints (2) – (7) is removed since the 

routes are now fixed in model 2 as input variables. These input variables are as follows: 

𝑥𝑖𝑚𝑗𝑛𝑣, 𝑥𝑖𝑚𝑣
0 , 𝑧𝑖𝑚𝑣, 𝑧𝑣

0, 𝑜𝑖𝑚𝑣, 𝑦𝑖𝑚. 

Model 2 includes all sets from model 1 and a new set of speeds. The objective function 

(1) is now considering the speed for each vessel and expresses the minimization of the sum 

of traveling costs between ports depending on the chosen speed and operational costs in each 

port. Further, constraints (43) and (44) are extensions of time constraints (14) and (16) 

respectively and is now also considering the speed of each vessel.  

Loading and unloading constraints (8) – (9), arc flow constraints (10) – (13), time 

constraints (15), (17) – (18), inventory constraints (19) – (26), and nonnegative constraints 

on variables (33) – (38) stays the same way as in model 1.   

In addition, model 2 has some new constraints. Constraints (39) – (40) are speed 

constraints. Constraint (39) shows that the speed travelled from one port to anther port can 

only exist if a vessel travels this arc. Constraint (40) states that the speed travelled from origin 

to a port can only exist if a vessel travels this arc. Constraints (41) – (42) ensures that variables 

are between zero and one.  

4.5 Model 3. Maritime inventory routing problem with fixed 

routes and fuel consumption as a function of speed and load 

  This part considers the third model, which builds further on model 2. The third 

model builds further on the second model and introduces a minimum and maximum level of 

load. As in the second model, the routes provided from the first model is fixed parameters. As 

mentioned, the model is looking at cost minimization, and with the choice between minimum 

and maximum load and speed, the optimization tools are able to find the optimal speed and 

load for each vessel. The load of the vessels has a non-linear effect on the daily sailing costs, 

hence, the model will be non-linear. Therefore, we will have to approximate linear results by 

using breakpoints of loads as sets. The fuel consumption has a concave dependency of the 

load. Since it is a minimization problem, it is necessary to use special ordered set of type 2 
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(SOS2) constraints to ensure that two adjacent breakpoints of the load are chosen in the 

solution.  

 

Notation:  

Set: 

𝑆𝑣
𝐿 = {1, 2, … , 𝑅}  

 

Variables:  

𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠 : auxiliary variable to determine the speed and load of vessel v when going from   

  (i, m) to (j, n), with s corresponding to a given choice of speed and l of a level of  

  load,    𝑣 ∈ 𝑉  𝑠 ∈ 𝑆𝑣
𝑆  𝑙 ∈ 𝑆𝑣

𝐿     (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 

𝑔𝑖𝑚𝑣𝑙𝑠
0  : auxiliary variable to determine the speed and load of vessel v when going from   

  origin to (i, m), with s corresponding to a given choice of speed and l of a level of  

  load,    𝑣 ∈ 𝑉  𝑠 ∈ 𝑆𝑣
𝑆  𝑙 ∈ 𝑆𝑣

𝐿     (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

𝑝𝑖𝑚𝑗𝑛𝑣𝑙 : 1 if the interval between two adjacent breakpoints on route (𝑖, 𝑚, 𝑗, 𝑛), is chosen,  

 0 otherwise,  𝑣 ∈ 𝑉  𝑙 ∈ 𝑆𝑣
𝐿−{𝑅}

 (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 

𝑝𝑖𝑚𝑣𝑙
0  : 1 if the interval between two adjacent breakpoints from origin to node (𝑖, 𝑚) is     

  chosen, 0 otherwise,  𝑣 ∈ 𝑉   l ∈ 𝑆𝑣
𝐿−{𝑅}

 (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

 

Parameters:  

𝐿𝑣𝑙 : possible levels of load 𝑙 ∈ 𝐿 that can be transported on vessel 𝑣 ∈ 𝑉 

𝐶𝑖𝑗𝑣𝑙𝑠
𝑃𝑃  : sailing cost from port 𝑖 ∈ 𝑁 to port 𝑗 ∈ 𝑁 with vessel 𝑣 ∈ 𝑉 with load 𝑙 ∈ 𝑆𝑣

𝐿 and 

with speed 𝑠 ∈ 𝑆𝑣
𝑆 

𝐶𝑖𝑣𝑙𝑠
𝑂𝑃  : sailing cost from origin to port 𝑖 ∈ 𝑁 by vessel 𝑣 ∈ 𝑉 with load 𝑙 ∈ 𝑆𝑣

𝐿 and with 

speed 𝑠 ∈ 𝑆𝑣
𝑆 

 

Formulation:  

𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝐶𝑖𝑗𝑣𝑙𝑠
𝑃𝑃 𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣
𝑋𝑣∈𝑉

+ ∑ ∑ ∑ ∑ 𝐶𝑖𝑣𝑙𝑠
𝑂𝑃 𝑔𝑖𝑚𝑣𝑙𝑠

𝑜

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

+ ∑ ∑ 𝑃𝑖𝑣𝑜𝑖𝑚𝑣

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

                                                                                          

 

(1) 
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∑ ∑ 𝐿𝑣𝑙

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿

𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠 = 𝑓𝑖𝑚𝑗𝑛𝑣 ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥 (45) 

∑ ∑ 𝐿𝑣𝑙

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿

𝑔𝑖𝑚𝑣𝑙𝑠
0 = 𝑓𝑖𝑚𝑣

0  ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (46) 

∑ 𝑝𝑖𝑚𝑗𝑛𝑣𝑙

𝑙∈𝑆𝑣
𝐿−{𝑅}

= 𝑥𝑖𝑚𝑗𝑛𝑣  ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥 (47) 

∑ 𝑔𝑖𝑚𝑗𝑛𝑣1𝑠

𝑠∈𝑆𝑣
𝑆

≤ 𝑝𝑖𝑚𝑗𝑛𝑣1 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥 

 

(48) 

∑ 𝑔𝑖𝑚𝑣1𝑠
0

𝑠∈𝑆𝑣
𝑆

≤ 𝑝𝑖𝑚𝑣1
0  ∀  𝑣 ∈ 𝑉,    (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 (49) 

∑ 𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠

𝑠∈𝑆𝑣
𝑆

≤ 𝑝𝑖𝑚𝑗𝑛𝑣(𝑙−1) + 𝑝𝑖𝑚𝑗𝑛𝑣𝑙 
∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑥 

𝑙 ∈ 𝑆𝑣
𝐿−{1,𝑅}

 

(50) 

∑ 𝑔𝑖𝑚𝑣𝑙𝑠
0

𝑠∈𝑆𝑣
𝑆

≤ 𝑝𝑖𝑚𝑣(𝑙−1)
0 + 𝑝𝑖𝑚𝑣𝑙

0  ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴   

𝑙 ∈ 𝑆𝑣
𝐿−{1,𝑅}

 

(51) 

∑ 𝑔𝑖𝑚𝑗𝑛𝑣𝑅𝑠

𝑠∈𝑆𝑣
𝑆

≤ 𝑝𝑖𝑚𝑗𝑛𝑣(𝑅−1) ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥   

 
(52) 

∑ 𝑔𝑖𝑚𝑣𝑅𝑠
0

𝑠∈𝑆𝑣
𝑆

≤ 𝑝𝑖𝑚𝑣(𝑅−1)
0  ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴, 
 

(53) 

𝑝𝑖𝑚𝑗𝑛𝑣𝑙 ∈ {0,1} ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥 (54) 

𝑝𝑖𝑚𝑣𝑙
0 ∈ {0,1} ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 (55) 

 

Changes:  

𝑡𝑖𝑚 + ∑ 𝑇𝑣
𝑄

𝑣∈𝑉

𝑞𝑖𝑚𝑣 − 𝑡𝑗𝑛 + 

∑ ∑ ∑ 𝑚𝑎𝑥

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿𝑣∈𝑉

{𝑈𝑖𝑚 + 𝑇𝑖𝑗𝑣𝑠
𝑃𝑃 − 𝐴𝑗𝑛, 0}𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠 

≤ 𝑈𝑖𝑚 − 𝐴𝑗𝑛 

∀  (𝑖, 𝑚), (𝑗, 𝑛) ∈ 𝑆𝐴 
 

(56) 

∑ ∑ ∑ 𝑇𝑖𝑣𝑠
𝑂𝑃

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿𝑣∈𝑉

𝑔𝑖𝑚𝑣𝑙𝑠
𝑜 ≤ 𝑡𝑖𝑚 ∀  (𝑖, 𝑚) ∈ 𝑆𝐴 

 

(57) 

∑ ∑ 𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠 = 𝑥𝑖𝑚𝑗𝑛𝑣

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿

 ∀ 𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥 

 

(58) 

∑ ∑ 𝑔𝑖𝑚𝑣𝑙𝑠
𝑜 = 𝑥𝑖𝑚𝑛

𝑜

𝑠∈𝑆𝑣
𝑆𝑙∈𝑆𝑣

𝐿

 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 

 

(59) 

0 ≤ 𝑔𝑖𝑚𝑗𝑛𝑣𝑙𝑠 ≤ 1 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑥 , 

𝑠 ∈ 𝑆𝑣
𝑆,   𝑙 ∈ 𝑆𝑣

𝐿 

(60) 

0 ≤ 𝑔𝑖𝑚𝑣𝑙𝑠
𝑜 ≤ 1 ∀  𝑣 ∈ 𝑉,   (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴, 
𝑠 ∈ 𝑆𝑣

𝑆,   𝑙 ∈ 𝑆𝑣
𝐿 

(61) 

 

Model 3 includes all sets from model 2. The objective function (1) is now considering 

both the speed and the load for each vessel and expresses the minimization of the sum of 
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traveling costs between ports depending on the chosen speed and load, and operational costs 

in each port. Further, constraints (56) and (57) are extensions of time constraints (43) and 

(44). Constraints (58) and (59) are extensions of speed constraints (39) and (40). Constraints 

(60) and (61) are extensions of constraints (41) and (42), which indicate that the variables 

must be between zero and one. The extensions of constraints (56) – (61) includes the load of 

each vessel in addition to the speed.  

Loading and unloading constraints (8) – (9), arc flow constraints (10) – (13), time 

constraints (15), (17) – (18), inventory constraints (19) – (26), and nonnegative constraints 

on variables (33) – (38) stays the same way as in model 1.  

 In addition, model 3 has some new constraints. Constraints (45) – (46) are load 

constraints. Constraint (45) shows that the speed travelled from one port to another by a vessel 

when transporting the load must be equal to the product flow. Constraint (46) states that the 

speed travelled from origin to the port by a vessel when transporting the load must be equal 

to the product flow from origin to the port. Constraints (47) – (53) are breakpoint constraints, 

known as special ordered set of type 2 (SOS2). Constraint (47) ensures that if a vessel travels 

this arc then an adjacent breakpoint must be chosen. Constraint (48) shows that the value of 

the speed and the load used by a vessel on route (i, m, j, n) with load L1 can only be more 

than 0 if the first interval is chosen. Constraint (49) shows the same as constraint (48), but 

from origin to port (i, m). Constraint (50) ensures that the value of the speed and the load used 

by a vessel on route (i, m, j, n) can only be more than 0 if one of the intervals connected to 

the breakpoint is chosen. Constraint (51) ensures the same as constraint (50), but from origin 

to port (i, m). Constraint (52) guarantees that the value of the speed and the load used by 

vessel on route (i, m, j, n) can only be more than 0 if the last interval is chosen. Constraint 

(53) guarantees the same as constraint (52), but from origin to (i, m). Constraints (54) – (55) 

states that the variables are binary.  

4.6 Model 4. Maritime inventory routing problem with fuel 

consumption as a function of speed and load 

  This part considers the final model, which is a combination of the first- and third 

model. The fourth model provides optimal routes, speeds, and loads for each vessel at once.

 Model 4 includes all sets from model 1, and the ones presented in model 2 and model 

3. The objective function (1) stays the same as presented in model 3. Further, model 4 uses 

routing constraints (2) – (7), loading and unloading constraints (8) – (9), arc flow constraints 
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(10) – (13), time constraints (15), (17) – (18), inventory constraints (19) – (26), binary 

constraints on variables (27) – (33), and nonnegative constraints on variables (33) – (38) as 

presented in model 1.  

In addition, it uses time constraints (56) and (57), speed constraints (58) – (59), fraction 

between zero and one constraints on variables (60) – (61), load constraints (45) – (46), SOS2 

or breakpoint intervals constraints (47) – (53), and binary constraints on variables (54) – (55) 

as presented in model 3.  

5. Computational study 

  This chapter describes data instances and presents computational results and analysis. 

The computational tests were run via an external connection to a computer with 2.30 GHz 

Intel Xeon CPU E5-2698 v3 processor and 32 GB of RAM under Microsoft Windows Server 

2008 R2 Enterprise 64-bit version. The models are coded in AMPL language and run in 

CPLEX 12.7.1.0. 

5.1 Test instance description  

  The computational study in this thesis is based on data from seven main instances, A, 

B, C, D, E, F and G. These instances and the corresponding data are taken from Agra et al. 

(2016a). The seven instances vary in the number of ports and ships. Each of the instances are 

divided into three sub-instances, with differences in the number of days in the planning 

horizon and initial stock and demand rates at the ports. To separate the instances from each 

other, each instance has a specific name based on the characteristics of the data. The name of 

each instance consists of the instance letter, the number of ports, the number of ships, number 

of days in the planning horizon, and an index number. The index number identifies the sub-

instances. Table 1 shows the main characteristics of the instances.  

 

Table 1: Test instances.  

Source: Made by the authors. 

Name of the 

Instance  

Main 

instance  

Number of 

ports 

Number of 

vessels 

Number of days in the 

planning horizon 

A-4-1-30-1 A 4 1 30 

A-4-1-60-1 A 4 1 60 
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A-4-1-60-2 A 4 1 60 

B-3-2-30-1 B 3 2 30 

B-3-2-60-1 B 3 2 60 

B-3-2-60-2 B 3 2 60 

C-4-2-30-1 C 4 2 30 

C-4-2-60-1 C 4 2 60 

C-4-2-60-2 C 4 2 60 

D-5-2-30-1 D 5 2 30 

D-5-2-60-1 D 5 2 60 

D-5-2-60-2 D 5 2 60 

E-5-2-30-1 E 5 2 30 

E-5-2-60-1 E 5 2 60 

E-5-2-60-2 E 5 2 60 

F-4-3-30-1 F 4 3 30 

F-4-3-60-1 F 4 3 60 

F-4-3-60-2 F 4 3 60 

G-6-5-30-1 G 6 5 30 

G-6-5-60-1 G 6 5 60 

G-6-5-60-2 G 6 5 60 

   

 

  Each vessel has operational characteristics which varies between the instances. These 

characteristics are the capacity of the vessel, the initial load of the vessel, possible speeds of 

the vessels and the daily sailing costs for each speed and load. The ships have different 

operational speeds, which differs from 13.5 to 21 knots. In the computational study, the ships 

have a set of speeds with three options for each vessel. The speed options are based on the 

speed ranges in Evsikova (2017). The speeds of the vessels in each instance are shown in 

Table 2.  

 

Table 2: Speed ranges of the vessels in the instances.  

Source: Made by the authors.  

Instance Speed ranges, knots 

13.5-15-19 14.4-16-20 16.2-18-21 

A-4-1-30-1   Vessel 1 
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A-4-1-60-1   Vessel 1 

A-4-1-60-2   Vessel 1 

B-3-2-30-1 Vessel 1 Vessel 2  

B-3-2-60-1 Vessel 1 Vessel 2  

B-3-2-60-2 Vessel 1 Vessel 2  

C-4-2-30-1 Vessel 1 Vessel 2  

C-4-2-60-1 Vessel 1 Vessel 2  

C-4-2-60-2 Vessel 1 Vessel 2  

D-5-2-30-1 Vessel 1  Vessel 2 

D-5-2-60-1 Vessel 1  Vessel 2 

D-5-2-60-2 Vessel 1  Vessel 2 

E-5-2-30-1 Vessel 1  Vessel 2 

E-5-2-60-1 Vessel 1  Vessel 2 

E-5-2-60-2 Vessel 1  Vessel 2 

F-4-3-30-1 Vessel 1 Vessel 2 Vessel 3 

F-4-3-60-1 Vessel 1 Vessel 2 Vessel 3 

F-4-3-60-2 Vessel 1 Vessel 2 Vessel 3 

G-6-5-30-1 Vessel 1  Vessel 2 

Vessel 4 

Vessel 3 

Vessel 5  

G-6-5-60-1 Vessel 1  Vessel 2 

Vessel 4 

Vessel 3 

Vessel 5  

G-6-5-60-2 Vessel 1  Vessel 2 

Vessel 4 

Vessel 3 

Vessel 5  

 

 

Table 3 shows the maximum capacity of the vessels in each instance. The smallest ships in 

the instances has a total capacity of 100 000 DWT, while the ships with the largest capacity 

has a DWT of 160 000. In the computational study, the ships have a set of loads, with three 

options for each vessel. The largest load option equals to the capacity of the vessel, and the 

smallest load is 0 and represents an empty vessel. In the middle, the load level equals to 

exactly half of the ship capacity. 

 

 

 



 30 

 

Table 3: Capacities of the vessels in the instances.  

Source: Made by the authors 

 

Instance Capacities, DWT 

100 120 130 140 150 160 

A-4-1-30-1      Vessel 1 

A-4-1-60-1      Vessel 1 

A-4-1-60-2      Vessel 1 

B-3-2-30-1 Vessel 1  Vessel 2    

B-3-2-60-1 Vessel 1  Vessel 2    

B-3-2-60-2 Vessel 1  Vessel 2    

C-4-2-30-1 Vessel 1  Vessel 2    

C-4-2-60-1 Vessel 1  Vessel 2    

C-4-2-60-2 Vessel 1  Vessel 2    

D-5-2-30-1 Vessel 1    Vessel 2  

D-5-2-60-1 Vessel 1    Vessel 2  

D-5-2-60-2 Vessel 1    Vessel 2  

E-5-2-30-1 Vessel 1    Vessel 2  

E-5-2-60-1 Vessel 1    Vessel 2  

E-5-2-60-2 Vessel 1    Vessel 2  

F-4-3-30-1  Vessel 1 Vessel 2  Vessel 3  

F-4-3-60-1  Vessel 1 Vessel 2  Vessel 3  

F-4-3-60-2  Vessel 1 Vessel 2  Vessel 3  

G-6-5-30-1  Vessel 1 Vessel 2 Vessel 4 Vessel 3 

Vessel 5 
 

G-6-5-60-1  Vessel 1 Vessel 2 Vessel 4 Vessel 3 

Vessel 5 
 

G-6-5-60-2  Vessel 1 Vessel 2 Vessel 4 Vessel 3 

Vessel 5 
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5.2 Assessment of computational results  

5.2.1 Computational time  

  In this part, the computational time for all four models are compared, and is shown in 

seconds. As seen in Table 4, the computational time is shown for all the models on the 

different instances. Model 1 use fixed load and speed to provide the best routes for the 

problem. As Table 4 shows, the computational time is increasing as the problem is introduced 

to higher numbers of ports and vessels.  

For model 2 and model 3, the computational time is under 1 second, with the exception 

of instance G-6-5-60-1 for model 2, which uses just under 3 seconds. The reason model 2 and 

model 3 is so fast, is because it uses the predetermined routes from model 1 to optimize the 

speed and load used on the different routes, respectively, which reduces the amount of work 

for the model.  

Model 4 provides optimal routes, speed, and load all at once. When comparing model 

1 and model 4, the computational time has increased, especially from instance C-4-2-30-1 

and out. The reason for this is because more variables are introduced in model 4 as compared 

to model 1 and hence the problem is growing in size. 

 

Table 4: Computational time in seconds for every model on the different instances. 

Source: Made by the authors.  

Instance Model 1 Model 2 Model 3 Model 4 

A-4-1-30-1 0.1 0.1 0.1 0.3 

A-4-1-60-1 1.1 0.2 0.1 2.1 

A-4-1-60-2 1.0 0.3 0.1 2.7 

B-3-2-30-1 0.9 0.1 0.2 59.8 

B-3-2-60-1 4.4 0.2 0.3 42.4 

B-3-2-60-2 4.5 0.2 0.3 13.8 

C-4-2-30-1 5.8 0.2 0.1 123.2 

C-4-2-60-1 8.5 0.2 0.1 183.3 

C-4-2-60-2 18.6 0.2 0.1 2459.0 

D-5-2-30-1 5.8 0.1 0.2 6011.5 

D-5-2-60-1 81.5 0.1 0.3 1422.5 

D-5-2-60-2 13.4 0.1 0.1 20.8 



 32 

E-5-2-30-1 23.1 0.1 0.1 38682.9 

E-5-2-60-1 77.3 0.1 0.1 5312.7 

E-5-2-60-2 59.4 0.2 0.1 4132.5 

F-4-3-30-1 151.9 0.1 0.3 2111.6 

F-4-3-60-1 16.0 0.2 0.3 211.0 

F-4-3-60-2 21.8 0.2 0.2 1474.1 

G-6-5-30-1 464.2 0.2 0.1 54009.1 

G-6-5-60-1 398.5 2.8 0.1 50084.5 

G-6-5-60-2 979.1 0.3 0.1 36005.0 

 

  Instance G-6-5-30-1 has the highest computational time, with 54009 seconds. As the 

number of vessels and the length of the planning horizon increase, the models use more time 

to be able to provide the best solution among all possible alternatives. Instance G-6-5-30-1 

uses roughly 54000 seconds while instance G-6-5-60-2 uses roughly 36000 seconds, and the 

reason for this is because there is a time limit in the models, to be able to give solutions within 

reasonable time. Instance G-6-5-30-1 ran for 55 hours before the personal computer which 

was used had troubles and ended the program. Instance G-6-5-60-2 ran for 40 hours, before 

the authors ended it. This time usage justifies the need for a time limit in the models. In 

addition, there is a great need for storage capacity on the computer. As the problem increases 

in size, the size of the node file in Cplex is also increasing. The node file is a temporarily file 

which stores all the data which the model needs to find the best possible solution on every 

available possibility, and at most this reached over 150 gigabytes.   

5.2.2 Sailing costs and savings 

 In this part, a comparison of sailing costs and savings are presented. The 

sailing costs are in 1000 US Dollars. Table 5 shows the average sailing cost of all instances, 

the percentage savings in average, and the maximum- and minimum savings for the different 

models. The average sailing costs are calculated by adding the sailing cost for each instance 

and dividing it by the number of instances. The sailing costs are the actual costs calculated 

from the distances, visits, speeds and loads found by the models, using the following formula,  

𝐹𝐶 = 𝑘𝜇3(𝑙 + 𝐴)
2

3⁄ , which is provided from Psaraftis and Kontovas (2014) and was 

discussed in chapter 3. The percentage savings shows how much the different models are able 
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to save in comparison to model 1. For more detailed information on each instance, please see 

Appendix 1. 

Model 4-2 is the same as model 4 but has the same cost for each load level. Thus, the 

route optimization will only be based on speed and not consider load. Model 3-2 is the same 

as model 3 but uses the predetermined routes from model 4-2. Model 2-2 is not included in 

this comparison since is gives the same sailing costs as model 4-2. The reason for this, is 

because both models optimizes speed on the same routes.     

 

Table 5: Cost comparison of the models. 

Source: Made by the authors 

 

 

Initial 

solution 

Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Average 

total cost 

Model 1 Model 2 Model 3 

1212.762 853.904 630.238 

Average 

savings  

0.0 % 29.59 % 48.03 % 

Max savings 0.0 % 44.75 % 62.90 % 

Min savings 0.0 % 6.58 % 29.20 % 

Route-planning with 

speed (without load) 

Average 

total cost 

 Model 4-2 Model 3-2 

740.416 546.717 

Average 

savings 

38.95 % 54.92 % 

Max savings 62.23 % 69.18 % 

Min savings 6.86 % 41.97 % 

Route-planning with 

speed and load 

Average 

total cost 

 Model 4 

530.537 

Average 

savings 

56.25 % 

Max savings  69.18 % 

Min savings  48.91 % 
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Table 5 shows that every model is able to save costs in comparison to model 1. Model 

2 is the model that gives the lowest savings and has an average saving of 29.59%, closely 

followed by model 4-2, which gives an average saving of 38.95 %. This is because these 

models only consider speed optimization and has a fixed load. Model 3 and model 3-2 

optimizes both speed and load and gives a better result than model 2 and model 4-2. This 

shows that by introducing load as a decision variable it is possible to decrease the sailing cost, 

and hence increase the savings in comparison to model 1.  In total, it is model 4 which is able 

to provide the highest savings. By optimizing routes, speed, and load all at once it is possible 

to reduce the average costs with 56.25% in comparison to route-planning with fixed speed 

and load.  

The minimum saving is 6.58 % and is obtained in model 2, while the maximum saving 

is 69.18% and is obtained by both model 3-2 and model 4. More details on which instances 

these minimum and maximum savings occurs can be seen in Appendix 1. 

As mention, Table 5 shows the average sailing cost for each model, to be able to 

compare the savings provided by the different models. To show how the different models 

perform on the given instances, as shown in Appendix 1, Figure 7 gives a graphical 

comparison of the sailing costs.  

 

Figure 7: Cost comparison of the different instances. Source: Made by the authors.  

 

It is clear to see that model 1 gives the highest sailing costs in every instance, 

especially in the three last instances. However, in instance D-5-2-30-1 and D-5-2-60-1 the 
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sailing costs between model 1 and model 2 is not that different, which indicates that the 

optimal speed found in model 2 is close to the ones which were fixed in model 1. It is model 

4 which gives the best solution in every instance. In some of the instances model 3-2 can give 

the same sailing cost as model 4, which indicates that the routes given by 4-2 is equal to the 

ones found in model 4.  

5.2.3 Speed of vessel 

In this part, the average speed in knots of the vessels is compared. The comparison 

looks at the different models, and all the speeds used in the instances in total. To get more 

details on how the average speed is in the different instances, please see Appendix 3.  

Table 6 shows the average speed from the instances, average reduction in percentage, 

and maximum- and minimum speed. Each vessel uses only one speed between two ports but 

can use different speeds for the different visits on the routes. The average speed for each 

instance is calculated by adding together the speeds used by the models on the given instances 

and divided by the number of visits. In Table 6, all the average speeds from each of the 

instances are summarized and divided by the number of instances. Thus, the table shows the 

average speed from the instances for each model.  

 

Table 6: Average speed of vessels. 

Source: Made by the authors.  

 Model 

1 

Model 2 Model 3 Model  

4-2 

Model  

2-2 

Model  

3-2 

Model 4 

Average 

speed 

19.83 16.05 16.02 14.75 14.87 14.77 14.80 

Average 

reduction of 

speed (in %) 

0.00  19.06 % 19.21 % 25.62 % 25.01 % 25.52 % 25.37 % 

Maximum 

speed 

21 18.82 18.62 16.26 16.26 16.31 16.55 

Minimum 

speed 

19.20 14.34 14.34 13.90 13.89 13.97 13.86 

 

Model 1 has the highest average speed as shown in Table 6. This is because the vessels 

operate at max speed to get the best possible route solutions. Model 2 uses the predetermined 
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routes from model 1 to optimize the speed, hence the average speed is lower in comparison 

to model 1. Model 3 also uses the predetermined routes and optimizes both the speed and the 

load of the vessels. As shown in Table 6, the average speed in model 3 is fairly similar to the 

average speeds provided by model 2. Model 4, which optimize the routes, speed, and load at 

once gives lower average speed compared to model 1, 2 and 3.   

Model 4-2 is the same as model 4, but the cost for each load level is the same, hence 

it does not consider load when it finds the optimal routes and speeds for each vessel. Model 

4-2 gives the lowest average speeds in comparison to model 1. Further, model 2-2 and model 

3-2 is the same as model 2 and model 3, respectively, but uses the predetermined routes from 

model 4-2. The average speeds in model 2-2 and model 3-2 are similar to each other, but 

when compared to model 2 and model 3 they provide lower average speeds. 

5.2.4 Load of vessel   

The load of the vessels on each trip is the same as the flow between the ports. This 

flow must meet the demand requirements of the ports. As the demand and consumption rates 

differs between the instances, comparing the loads between the instances is useless. Thus, 

when looking at the load levels, the best comparison would be to look at the differences in 

the solutions provided from the different models.  

In this part, the average load of the vessels from each model is compared. This 

comparison only looks at the different instances in model 3, model 3-2, and model 4, since 

these models considers load as a decision variable. The average load on each trip is calculated 

by summarizing the loads used by the models and dividing it by the total number of visits.  A 

full table of average load of trips for each instance is given in Appendix 3. Table 7 presents 

the average of the average load levels of each instance provided by the different models.  

 

Table 7: Average load of vessels in 1000 tons. 

Source: Made by the authors.  

 Model 3 Model 3-2 Model 4 

Average load on a trip 52.80 55.61 51.36 

 

When comparing the three models, Table 7 shows that model 3-2 has the highest 

average load level, while model 4 has the lowest average load level. As model 3 and 3-2 

optimizes load on predefined routes, the flexibility is lower when fulfilling the requirement 
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of demand. In model 4, routes and load (and speed) is optimized at the same time. Thus, 

adjustments can be made such that the vessels can carry less load and still meet the demand 

in the ports.  

 

5.2.5 Structural analysis of the solution  

The structure of the solution can be analyzed by looking at the route decisions. In 

model 1, the routes are decided without considering speed and load. In model 4-2, the routes 

are decided by considering speed, and not load. In model 4, both load and speed have an 

impact of the costs, and hence the routes are decided based on both two factors. Thus, the 

solutions from model 4-2 and model 4 can be compared to the solutions from model 1 to see 

if speed and load had an impact on the routes that are chosen.  

Table 8 shows that the routes in model 4-2 changed from the routes in model 1 in 15 

of 21 instances. This means that the speed of the vessels has an impact of the structure in 

71.4% of the solutions. When comparing the routes of model 4 to the routes of model 1, we 

see that the structure changes in 18 out of the 21 instances. Thus, speed and load together 

have an impact of the structure in 85.7% of the cases. When looking at the differences in the 

structure between model 4-2 and model 4, we see that the model that considers load in 

addition to speed changes the optimal routes from the solution of the model that only 

considers speed in 10 out of the 21 instances. This means that load alone has an impact of the 

route decision in 47.6% of the instances. 

 

Table 8: Comparison of the routes generated from the models.  

Source: Made by the authors.  

Instance Model 1  Model 4-2 Model 4 

Distance 

travelled in 

nautical 

miles 

Number 

of visits 

Distance 

travelled in 

nautical 

miles 

Number of 

visits 

Distance 

travelled 

in nautical 

miles 

Number of 

visits 

A-4-1-30-1  6 996 5  4 275 4  4 275 4 

A-4-1-60-1 11 271 8 11 271 8 11 271 8 

A-4-1-60-2 10 105 7   11 271 8 11 271  8 

B-3-2-30-1 13 605 6 15 159 8 14 382 7 
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B-3-2-60-1 20 212 10 20 212 10 21 767 11 

B-3-2-60-2 19 824 9 21 767 11 21 767 11 

C-4-2-30-1 12 438 7  12 049 7  13 604 8 

C-4-2-60-1 16 325  9 17 102 9 17 102  9 

C-4-2-60-2 16 323 10 19 433 12 17 489 10 

D-5-2-30-1 12 825 8 12 825 8 13 601 9 

D-5-2-60-1 15 157 10 17 489 11 17 489 11 

D-5-2-60-2 12 048 8 13 991 9 13 991 9 

E-5-2-30-1 12 047 7 13 990  8 13 990 8 

E-5-2-60-1 10 881  7  10 881 8 11 270  8 

E-5-2-60-1 13 213 9  12 047 9 14 379 10 

F-4-3-30-1 17 491 10 17 491 10 17 491 10 

F-4-3-60-1 12 438 9 14 769 10 14 769 10 

F-4-3-60-2 17 489 11 18 655 11 17 878 11 

G-6-5-30-1 22 931  14  22 931  14  25 654 14 

G-6-5-60-1 24 486  14  24 486  14  24 486  14 

G-6-5-60-2 26 043  13  25 939 13  26 819 13 

   

5.2.6 Computational error 

In the computational test of the models, three breakpoints are used in the sets for both 

load and speed. If a speed and load that are equal to the breakpoints are chosen, the 

approximated cost will be the same as the real cost. If a load that is equal to one of the 

breakpoint is chosen, but the chosen speed lies between two breakpoints, the approximated 

cost will be higher than the real cost. In the opposite way, if the chosen speed is on one of the 

breakpoints, but the chosen load is between two points, the approximated cost will be lower 

than the real cost. Because of this, the deviation from the real cost and the approximated cost 

from the models can vary between negative and positive in the different instances. As there 
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are only three breakpoints in use, the deviation from the real costs can be high. The more 

breakpoints that are used, the more accurate will the approximated costs be.  

This part shows the computational errors of the model. The computational error shows 

how much the approximated cost from the models deviates from the actual costs that are 

calculated from the formula of Psaraftis and Kontovas (2014) based on the variable values 

generated from the models. Expanded tables that shows all computational errors of all the 

instances are presented in Appendix 4, 5 and 6. Table 9 presents the average deviation based 

on all the deviations of the instances. The table also shows how high the highest deviation in 

the instances is and how low the lowest deviation is.  

 

Table 9: Computational errors of the models  

Source: Made by the authors.  

 Model  

1 

Model 

2 

Model 

3 

Model  

4-2 

Model  

2-2 

Model  

3-2 

Model  

4 

Average 

deviation of 

all instances 

0.0098% 0.236% 1.760% 0.236% 0.236% 0.959% 0.732% 

Maximum 

deviation of 

all instances 

0.047% 3.784% 8.230% 4.023% 4.023% 5.106% 3.276% 

Minimum 

deviation of 

all instances 

0.0002% 0.007% 0.045% 0.003% 0.003% 0.148% 0.0007% 

   

 

As Table 9 shows, the deviation between real costs and approximated costs from the 

models are relatively low for all the models.  

Model 1 has an average deviation of 0.0098%, model 2 an average deviation of 

0.236% and the average deviation of model 3 is 1.76%. The average deviations are calculated 

regardless of the deviations being negative or positive. As model 1 considers both speed and 

load as constants, the cost function is linear, and hence, the real costs and the approximated 

costs are close to each other. In model 2, there are linear approximation of the speed. Thus, 

the average deviation from this model is higher than model 1. Model 3 has a higher average 

deviation than model 1 and 2 because model 3 is approximating both the speed and the load. 
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When looking at model 4-2 where speed and routes are optimized, and load is not considered 

as each load level is given the same cost, the average deviation is 0.236%. The average 

deviation of model 2-2 and 3-2 where the fixed routes are taken from the routes generated in 

model 4-2, is 0.0236% and 0.959%. The average deviation of model 4-2 and 2-2 generates 

the exact same solutions. This was expected as model 4-2 finds optimal routes and optimizes 

the speed, and model 2-2 uses the routes from model 4-2 and optimizes the speed.  

As the table shows, the average deviations are highest for the models that considers 

load as a decision variable; model 3, model 3-2 and model 4. The objective function of the 

models is minimizing costs, and the parts of the function that considers load is concave. 

Because of this, the optimization tool that uses the approximately linearized models will try 

to choose a load that generates the lowest costs as possible but is large enough to meet the 

demands at the ports. Thus, a load level that lies between two breakpoints has a high chance 

of being chosen. When a load level between two breakpoints is chosen, the approximated 

costs from the model will be lower than the real costs as the real costs are calculated by using 

a non-linear function. An example of the this can be drawn from model 3, where one of the 

deviations from the real cost is 6.589%. This deviation is from instance C-4-2-30-1, where 

the real cost is $632.271 and the approximated cost from the model is $590.612. In the 

solution of model 3 for this instance, almost all the load levels of the ships lie between two 

breakpoints. This leads to a high deviation between the approximated costs from the model 

and the real costs calculated by the non-linear formula.  

The average deviation of model 4 in the Table 9 is 0.723%. This average deviation is 

relatively small, when taking into consideration that the model considers both load and speed 

when optimizing the routes. Therefore, model 4 will generate an answer that is close to the 

actual costs in many cases and can be useful in real-life situations.    
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6. Conclusion  

Maritime transport plays a huge role in the global trade business. To gain competitive 

advantages, costs reductions can be an important factor for the companies that operates within 

maritime transportation. To minimize the costs, models for MIRP with speed optimization 

can be used to find the routes and speeds that will generate the lowest costs. Like the speed, 

the vessels load level do also have an impact of the fuel consumption, and hence the daily 

sailing costs. This impact is non-linear. In this thesis, a linear approach is used to find 

solutions to the MIRP with speed and load optimization.  

The thesis presents four different MIRP models, all with the objective of minimizing total 

costs. The first one is a deterministic model with speed as a fixed parameter, where load does 

not affect the costs. The second and third model are special variants of model 1, where the 

routes are fixed, and the speed and load of the ships are added as sets. In the fourth model, 

routes are generated, and the speed and load are optimized.  

 The computational tests conducted on the different data instances shows that speed 

optimization alone can generate high savings regarding the total costs. When the load levels 

impact on the fuel consumption function are added, the cost savings becomes even higher. 

The tests also show that the solutions from the linear approximation approach in the models 

has a relatively small deviation from the actual costs of the non-linear problem. Thus, the 

models can be applied in real data and can be used to help real companies make better 

decisions.   

6.1 Limitations of the study 

Although this thesis was able to reach its aim, there are still some limitations.  

First of all, the computational time for instance G-6-5-30-1, G-6-5-60-1 and G-6-5-60-2 in 

model 4 is very high. As mentioned, the longest time used on an instance without a time limit 

was over 55 hours before it was cancelled either by storage capacity or by the authors. Even 

though there were a solution to instance G-6-5-30-1 after 15 hours, there might be a better 

solution available. Secondly, because of restricted time on this thesis, the authors were not 

able to improve the model to decrease the computational time used.  Finally, in the 

computational tests of the thesis, only three breakpoints are used for both speed and load. 

When using so few breakpoint, some computational errors occurs, especially in the models 

that considers load. 
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6.2 Suggestions for future research 

The limitations of this thesis show the need for further research to be able to decrease 

the time usage of the final model. The authors tried to introduce dummy ports into the models 

as a measure to reduce the number of possible alternatives for the models to run, hence reduce 

the time usage, but were unable to get it to work because of the time restriction on the thesis. 

If the limitation with time usage is solved, there might be found better solutions to the 

instances than those presented in this thesis. Furthermore, if it is solved, it makes it possible 

to expand the size of the problem without increasing the required time usage too much.  

Another suggestion for further research is to increase the number of breakpoints for 

load and speed and analyze how this influence the computational errors and the computational 

time.  
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Appendix 1 

This part includes the tables which show the total costs and savings for every model on 

the different instances. Each instance has its own table, where the total costs, based on the 

different models and savings of the models are compared to the solution for model 1. The 

percentage change shown for each model is calculated according to model 1. These savings 

are presented in table 10 till 30. 

 

Table 10: Cost comparison of instance A-4-1-30-1.  
Source: Made by the authors 

 

 

 

 

 

 

 

 

Instance A-4-1-30-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

764.062 465.789 321.276 

Savings  0.0% 39.04 % 57.95 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

288.584 235.462 

Savings 62.23 % 69.18 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

235.462 

Savings 69.18 % 
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Table 11: Cost comparison of instance A-4-1-60-1. Source:  

Made by the authors.  

Instance A-4-1-60-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1228.210 747.673 563.759 

Savings  0.0% 39.12 % 54.10 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

747.673 570.874 

Savings 39.12 % 53.52 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

563.653 

Savings 54.11 % 

 

 

 

 

Table 12: Cost comparison of instance A-4-1-60-2.  

Source: Made by the authors. 

Instance A-4-1-60-2 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1100.433 881.027 657.089 

Savings  0.0% 19.94 % 40.29 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

747.673 535.067 

Savings 32.06 % 51.38 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

522.919 

Savings 52.48 % 
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Table 13: Cost comparison of instance B-3-2-30-1. 

Source: Made by the authors 

Instance B-3-2-30-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

924.795 711.474 492.654 

Savings  0.0% 23.07 % 46.73 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

626.720 454.101 

Savings 32.23 % 50.90 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

436.245 

Savings 52.83 % 

 

 

 

 

Table 14: Cost comparison of instance B-3-2-60-1. 

Source: Made by the authors. 

Instance B-3-2-60-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1328.108 1025.809 778.106 

Savings  0.0% 22.76 % 41.41 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

829.951 605.246 

Savings 37.51 % 54.43 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

582.698 

Savings 56.13 % 
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Table 15: Cost comparison of instance B-3-2-60-2. 

Source: Made by the authors.  

Instance B-3-2-60-2 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1420.735 965.891 747.291 

Savings  0.0% 32.01 % 47.40 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

828.132 601.460 

Savings 41.71 % 57.67 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

601.460 

Savings 57.67 % 

 

 

 

 

Table 16: Cost comparison of instance C-4-2-30-1  

Source: Made by the authors.  

Instance C-4-2-30-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

859.577 624.595 474.532 

Savings  0.0% 27.34 % 44.79 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

474.993 412.129 

Savings 44.74 % 52.05 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

353.070 

Savings 58.93 % 
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Table 17: Cost comparison of instance C-4-2-60-1. 

Source: Made by the authors.   

Instance C-4-2-60-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1197.127 739.500 632.271 

Savings  0.0% 38.23 % 47.18 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

668.456 522.524 

Savings 44.16 % 56.35 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

522.524 

Savings 56.35 % 

 

 

 

 

Table 18: Cost comparison of instance C-4-2-60-2. 

Source: Made by the authors. 

Instance C-4-2-60-2 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1064.085 869.244 691.914 

Savings  0.0% 18.31 % 34.98 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

716.572 558.501 

Savings 32.66 % 47.51 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

543.621 

Savings 48.91 % 
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Table 19: Cost comparison of instance D-5-2-30-1. 
Source: Made by the authors 

Instance D-5-2-30-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1008.713 942.303 681.309 

Savings  0.0% 6.58 % 32.46 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

705.398 585.309 

Savings 30.07% 41.97% 

Route-planning with 

speed and load 
Total cost 

 Model 4 

491.124 

Savings 51.31 % 

 

 

 

 

Table 20: Cost comparison of instance D-5-2-60-1. 

Source: Made by the authors 

Instance D-5-2-60-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1008.713 942.303 681.309 

Savings  0.0% 6.58 % 32.46 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

645.979 451.071 

Savings 35.96 % 55.28 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

451.092 

Savings 55.28 % 

 



 53 

Table 21: Cost comparison of instance D-5-2-60-2. 
Made by the authors 

Instance D-5-2-60-2 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

914.987 626.414 517.930 

Savings  0.0% 31.54 % 43.39 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

536.334 401.965 

Savings 41.38 % 56.07 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

401.117 

Savings 56.16 % 

 

 

 

 

Table 22: Cost comparison of instance E-5-2-30-1. 

Source: Made by the authors.  

Instance E-5-2-30-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

990.605 818.016 526.315 

Savings  0.0% 17.42 % 46.87 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

695.921 505.936 

Savings 29.75 % 48.93 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

489.002 

Savings 50.64 % 
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Table 23: Cost comparison of instance E-5-2-60-1. 

Source: Made by the authors.  

Instance E-5-2-60-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

859.576 674.176 505.721 

Savings  0.0% 21.57 % 41.17 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

500.028 388.869 

Savings 41.83 % 54.76 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

356.716 

Savings 58.50% 

 

 

 

 

Table 24: Cost comparison of instance E-5-2-60-2. 

Source: Made by the authors.  

Instance E-5-2-60-2 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

889.768 611.248 379.119 

Savings  0.0% 31.30 % 57.39 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

828.720 366.047 

Savings 6.86 % 58.86 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

351.768 

Savings 60.47 % 
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Table 25: Cost comparison of instance F-4-3-30-1. 

Source: Made by the authors.  

Instance F-4-3-30-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1397.923 1026.465 733.711 

Savings  0.0% 26.57 % 47.51 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

803.792 565.972 

Savings 42.50 % 59.51 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

565.972 

Savings 59.51 % 

 

 

 

 

Table 26: Cost comparison of instance F-4-3-60-1. 

Source: Made by the authors.  

Instance F-4-3-60-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1098.796 900.146 777.959 

Savings  0.0% 18.08 % 29.20 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

613.379 475.096 

Savings 44.18 % 56.76 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

475.096 

Savings 56.76 % 
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Table 27: Cost comparison of instance F-4-3-60-2. 

Source: Made by the authors.  

Instance F-4-3-60-2 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1256.122 811.145 593.243 

Savings  0.0% 35.42 % 52.77 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

743.435 561.271 

Savings 40.82 % 55.32 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

558.793 

Savings 55.51 % 

 

 

 

  

Table 28: Cost comparison of instance G-6-5-30-1. 

Source: Made by the authors.  

Instance G-6-5-30-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

2093.876 1292.800 960.407 

Savings  0.0% 38.25% 54.13 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

1292.799 1024.376 

Savings 38.26 % 51.08 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

1021.698 

Savings 51.21 % 
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Table 29: Cost comparison of instance G-6-5-60-1. 

Source: Made by the authors.  

Instance G-6-5-60-1 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

1997.086 1115.115 753.117 

Savings  0.0% 44.16 % 62.29 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

1115.114 808.557 

Savings 44.16 % 59.51 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

804.005 

Savings 59.74 % 

 

 

 

 

Table 30: Cost comparison of instance G-6-5-60-2. 

Source: Made by the authors. 

Instance G-6-5-60-2 

Initial solution Optimized 

speed (constant 

load) 

Optimized 

speed and 

load 

Route-planning 

(without speed and 

load) 

Total cost 

Model 1 Model 2 Model 3 

2064.710 1140.853 765.959 

Savings  0.0% 44.75% 62.90 % 

Route-planning with 

speed (without load) 
Total cost 

 Model 4-2 Model 3-2 

1139.077 821.233 

Savings 44.83 % 60.23 % 

Route-planning with 

speed and load 
Total cost 

 Model 4 

813.233 

Savings 60.61 % 
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Appendix 2 

Table 31 presents the average speeds in knots provided by the different models on the 

given instances. The average speed is calculated by adding the speed used on the different 

routes together and dividing it by the number of port visits.  

 

Table 31: Average speed by the vessels. 
Source: Made by the authors. 

Instance Model 

1  

Model 

2 

Model 

3 

Model 

4-2 

Model  

2-2 

Model  

3-2 

Model 

4 

A-4-1-30-1 21.00 16.20 16.20 16.20 16.20 16.20 16.20 

A-4-1-60-1 21.00 16.20 16.20 16.20 16.20 16.20 16.20 

A-4-1-60-2 21.00 18.82 18.62 16.20 16.20 16.20 16.20 

B-3-2-30-1 19.33 16.34 16.38 14.78 14.78 14.72 14.73 

B-3-2-60-1 19.20 16.39 16.53 14.45 14.45 14.49 14.15 

B-3-2-60-2 19.44 15.47 15.54 13.95 13.95 14.01 14.01 

C-4-2-30-1 19.43 15.68 16.13 14.01 14.01 14.01 13.86 

C-4-2-60-1 19.44 14.90 15.03 14.01 14.01 14.01 14.01 

C-4-2-60-2 19.20 16.17 16.00 13.90 13.89 13.97 14.53 

D-5-2-30-1 19.75 16.31 16.31 16.26 16.26 16.31 16.55 

D-5-2-60-1 19.40 17.69 17.91 14.16 14.16 14.16 14.16 

D-5-2-60-2 19.75 15.46 15.46 14.38 14.38 14.43 14.42 

E-5-2-30-1 20.14 17.37 16.45 14.85 15.62 15.19 14.96 

E-5-2-60-1 19.86 15.99 15.99 14.85 15.30 14.85 14.51 

E-5-2-60-2 19.44 15.80 15.05 14.40 15.60 14.40 15.13 

F-4-3-30-1 19.80 16.24 16.30 14.58 14.58 14.58 14.58 

F-4-3-60-1 20.11 16.62 16.62 14.22 14.22 14.22 14.22 

F-4-3-60-2 19.36 14.99 15.04 14.11 14.11 14.11 14.25 
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G-6-5-30-1 20.21 15.48 15.54 15.48 15.48 15.34 15.40 

G-6-5-60-1 19.71 14.34 14.34 14.34 14.34 14.34 14.34 

G-6-5-60-2 19.85 14.67 14.70 14.47 14.47 14.47 14.47 

 

The lowest average speed is 13.86 knots and is given in model 4 on instance C-4-2-

30-1. Further, the highest speed is 21 knots and is observed in model 1 on instances A-4-1-

30-1, A-4-1-60-1 and A-4-1-60-2. On the different instances, it is models 4-2, 2-2, and 3-2 

which gives the lowest average speeds. Model 4-2 has the lowest speed on 15 instances, while 

model 2-2 and model 3-2 has the lowest speed on 14 and 13 instances, respectively. This 

shows that on some of the instances, these models give the same average speed. Model 4 has 

the lowest speed on 13 of the instances. 

Further, table 31 shows that the instances with 60 days planning horizon is able to 

reduce the average speed when compared to the same instances with 30 days planning 

horizon. Hence, longer planning horizons gives an opportunity to reduce the speed along the 

different routes.  
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Appendix 3 

Table 32 presents the average load on each trip between ports provided by the models 

that considers load. The average load is calculated by summing the loads from each instance 

and dividing the total load by the number of visits.   

 

Table 32: Average load of vessels in the different instances in tons  
Source: Made by the authors. 

Instance Model 3 Model 3-2 Model 4 

A-4-1-30-1 50.0 64.5 64.5 

A-4-1-60-1 69.6 63.0 69.6 

A-4-1-60-2 58.9 49.3 51.5 

B-3-2-30-1 52.8 59.4 53.6 

B-3-2-60-1 49.9 52.8 47.7 

B-3-2-60-2 53.5 55.1 55.1 

C-4-2-30-1 33.6 59.6 40.3 

C-4-2-60-1 60.2 57.7 57.7 

C-4-2-60-2 50.3 55.3 52.4 

D-5-2-30-1 58.6 58.6 38.1 

D-5-2-60-1 42.7 37.6 37.6 

D-5-2-60-2 55.1 44.4 41.4 

E-5-2-30-1 49.4 47.2 47.2 

E-5-2-60-1 29.0 62.5 33.0 

E-5-2-60-2 30.8 37.3 32.6 

F-4-3-30-1 60.6 56.8 56.8 

F-4-3-60-1 69.7 58.1 58.1 

F-4-3-60-2 55.6 55.6 55.6 

G-6-5-30-1 63.1 73.5 66.8 

G-6-5-60-1 61.9 62.6 61.9 

G-6-5-60-1 53.5 57.0 57.0 

 

The lowest average load on a trip is 29.0 tons. This load is provided by model 3 for 

instance E-5-2-60-1. The highest average load on a trip is 73.5 tons and is provided by model 

3-2 for instance G-6-5-30-1.  

When comparing model 3 and model 4, Table 32 shows that model 3 has the highest 

average load in 9 instances, while model 4 has the highest average load in 8 instances. In 
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instances A-4-1-60-1, F-4-3-60-2 and G-6-5-60-1 the average loads are identical for model 3 

and model 4.  

Comparisons of model 3 and model 3-2 shows that model 3-2 gives the highest 

average loads on 11 of the instances, while model 3 has the highest average on 8 of the 

instances. Further, there are two instances with identical loads, which is D-5-2-30-1 and F-4-

3-60-2.  

The last comparison is of model 3-2 and model 4. Table 32 shows that model 3-2 is 

the best model to provide the highest average loads, as it does so on 9 of the instances, while 

model 4 only does so on 2 instances. However, on 8 of the instances, they have identical 

loads, which evens out the difference a bit.    
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Appendix 4 

This part includes the computation errors which occurs in the different instances in 

model 1, 2 and 3. Table 33 shows approximated cost, the real cost, and the deviation.  

 

Table 33: Computational errors in model 1, model 2 and model 3.  
Source: Made by the authors. 
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Appendix 5 

This part includes the computation errors which occurs in the different instances in 

model 4-2, 2-2 and 3-2. Table 34 shows approximated cost, the real cost, and the deviation.  

 

Table 34: Computational errors in model 4-2, model 2-2 and model 3-2.  
Source: Made by the authors. 
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Appendix 6 

This part includes the computation errors which occurs in the different instances in 

model 4. Table 35 shows approximated cost, the real cost, and the deviation.  

 

Table 35: Computational errors in model 4  
Source: Made by the authors. 

 

 

  

Instance Model 4  

Approximated cost Real cost Deviation 

From real cost 

A-4-1-30-1 234.286 235.462 - 0.502 % 

A-4-1-60-1 561.324 563.653 - 0.415 % 

A-4-1-60-2 520.502 522.919 - 0.464 % 

B-3-2-30-1 436.242 436.245 - 0.0007% 

B-3-2-60-1 578.299 582.698 - 0.755% 

B-3-2-60-2 598.857 601.460 - 0.433% 

C-4-2-30-1 351.329 353.070 - 0.496 % 

C-4-2-60-1 521.388 522.524 - 0.218 % 

C-4-2-60-2 544.668 543.621 +  0.192 % 

D-5-2-30-1 484.077 491.124 - 1.435% 

D-5-2-60-1 447.854 451.092 - 0.718% 

D-5-2-60-2 396.663 401.117 - 1.110% 

E-5-2-30-1 480.104 489.002 - 1.819 % 

E-5-2-60-1 351.199 356.716 - 1.547 % 

E-5-2-60-2 349.872 351.768 - 0.539 % 

F-4-3-30-1 564.848 565.972 - 0.196% 

F-4-3-60-1 474.395 475.096 - 0.148%    

F-4-3-60-2 557.589 558.793 - 0.216% 

G-6-5-30-1 989.281 1021.698 - 3.276 % 

G-6-5-60-1 802.222 804.00468 - 0.222 % 

G-6-5-60-2 818.65 813.23302 + 0.662 % 
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Appendix 7 

 This part includes the AMPL codes from the .mod-file of model 4. The .mod contains 

sets, parameters, variables, objective function, and constraints. Further, the variables and the 

constraints are further divided into types, to get a better overview of the structure. To be able 

to run the .mod-file, it is required to have files with .dat and .run extensions. The solution is 

transferred into a file with .sol extension.  

 

##########SETS########## 

set PORTS;    

set SHIPS;    

set SPEEDS;   

set LOADS ordered;  

 

##########PARAMETERS########## 

param T>=0;       

param Vmin {i in PORTS} >=0;     

param Vmax {i in PORTS} >=0;    

param PortCost {i in PORTS, v in SHIPS} >=0;       

param DemandRate {i in PORTS} >=0;      

param J {i in PORTS};                 

param ShipCap {v in SHIPS} >=0;   

param InitialLoad {v in SHIPS} >=0;    

param LoadRate {v in SHIPS} >=0;     

param UpperStock {i in PORTS} >=0;   

param LowerStock {i in PORTS} >=0;   

param InitialStock {i in PORTS} >=0;  

param Distance {i in PORTS, j in PORTS} >=0;  

param Speed {v in SHIPS, s in SPEEDS} >=0;    

param load {v in SHIPS, l in LOADS} >= 0;  

param DailySailCost {v in SHIPS, l in LOADS, s in SPEEDS} >=0;        

param Evisit {i in PORTS, m in 1..Vmax[i]}:=0;   

param Qmin {i in PORTS} >=0;   

param TB {i in PORTS}>=0;   
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param Lvisit {i in PORTS, m in 1..Vmax[i]}:=T;    

param Ltime {i in PORTS, m in 1..Vmax[i]}:=min(T, T+Lvisit[i,m]*UpperStock[i]);  

param TL {v in SHIPS}:=1/LoadRate[v];   

param DistOrig {i in PORTS, v in SHIPS} >=0;       

param TravelTime {i in PORTS, j in PORTS, v in SHIPS, s in SPEEDS}:=  

Distance[i,j]/(24*Speed[v,s]);   

param TravelCost {i in PORTS, j in PORTS, v in SHIPS, l in LOADS, s in SPEEDS}:= 

DailySailCost[v,l,s]*TravelTime[i,j,v,s];  

param TravelTimeOrig {i in PORTS, v in SHIPS, s in 

SPEEDS}:=DistOrig[i,v]/(24*Speed[v,s]);    

param TravelCostOrig {i in PORTS, v in SHIPS,l in LOADS, s in SPEEDS}:= 

DailySailCost[v,l,s] * TravelTimeOrig[i,v,s];   

 

##########VARIABLES########## 

 

###ROUTING VARIABLES### 

var X {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j], v in SHIPS: i<>j} 

binary;  

var Xo {i in PORTS, m in 1..Vmax[i], v in SHIPS} binary;  

var Z {i in PORTS, m in 1..Vmax[i], v in SHIPS} binary;  

var Zo {v in SHIPS} binary;          

var O {i in PORTS, m in 1..Vmax[i], v in SHIPS} binary;    

var Y {i in PORTS, m in 1..Vmax[i]} binary;      

 

###SPEED AND LOAD VARIABLES### 

var G {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j], v in SHIPS, l in 

LOADS,  

s in SPEEDS: i<>j} >=0, <=1;  

var Go {i in PORTS, m in 1..Vmax[i], v in SHIPS, l in LOADS, s in SPEEDS} >=0, <=1; 

var P {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j],v in SHIPS, R in 1..card 

(LOADS)-1} binary;  

var Po {i in PORTS,m in 1..Vmax[i],v in SHIPS,R in 1..card(LOADS)-1} binary; 
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###FLOW VARIABLES### 

var Q {i in PORTS, m in 1..Vmax[i], v in SHIPS} >=0;   

var F {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j], v in SHIPS: i<>j} >=0;   

var Fo {i in PORTS, m in 1..Vmax[i], v in SHIPS} >=0;   

var Fd {i in PORTS, m in 1..Vmax[i], v in SHIPS} >=0;   

 

###TIME VARIABLES### 

var t {i in PORTS, m in 1..Vmax[i]} >=0, <=T;     

 

###STOCK VARIABLES### 

var S {i in PORTS, m in 1..Vmax[i]}>=0;   

 

 

##########OBJECTIVEFUNCTION########## 

minimize Total_Cost:  

sum {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j], v in SHIPS, l in LOADS, 

s in SPEEDS: i<>j} TravelCost[i,j,v,l,s] * G[i,m,j,n,v,l,s] +  

sum {v in SHIPS, i in PORTS, m in 1..Vmax[i], l in LOADS, s in SPEEDS} 

TravelCostOrig[i,v,l,s] * Go[i,m,v,l,s] +  

sum {v in SHIPS, i in PORTS, m in 1..Vmax[i]} PortCost[i,v] * O[i,m,v]; 

##########CONSTRAINTS########## 

 

###BREAKPOINTS INTERVAL CONSTRAINTS### 

subject to FIRST{i in PORTS,m in 1..Vmax[i],j in PORTS,n in 1..Vmax[j],v in SHIPS}:  

sum {R in 1..card(LOADS)-1} P[i,m,j,n,v,R] <= 1 ; 

 

subject to SECOND{i in PORTS,m in 1..Vmax[i],j in PORTS,n in 1..Vmax[j],v in SHIPS: 

i<>j}: sum {s in SPEEDS}G[i,m,j,n,v,1,s] <= P[i,m,j,n,v,1];  

 

subject to SECOND2{i in PORTS,m in 1..Vmax[i],j in PORTS,n in 1..Vmax[j],v in SHIPS: 

i<>j}: sum {s in SPEEDS}Go[i,m,v,1,s] <= Po[i,m,v,1]; 
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subject to THIRD{i in PORTS, m in 1..Vmax[i], j in PORTS,n in 1..Vmax[j],v in SHIPS,  

R in 2..card(LOADS)-1: i<>j}:  

sum {s in SPEEDS}G[i,m,j,n,v,R,s] <= P[i,m,j,n,v,R-1] + P[i,m,j,n,v,R] ;   

 

subject to THIRD2{i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j], v in SHIPS,  

R in 2..card(LOADS)-1: i<>j}:  

sum {s in SPEEDS}Go[i,m,v,R,s] <= Po[i,m,v,R-1] + Po[i,m,v,R] ; 

 

subject to FOURTH {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j], v in 

SHIPS, R in 1..card(LOADS)-1: i<>j}:  

sum {s in SPEEDS}G[i,m,j,n,v,card(LOADS),s] <= P[i,m,j,n,v,card(LOADS)-1];  

 

subject to FOURTH2 {i in PORTS, m in 1..Vmax[i], j in PORTS,n in 1..Vmax[j], v in 

SHIPS, R in 1..card(LOADS)-1: i<>j}:  

sum {s in SPEEDS}Go[i,m,v,card(LOADS),s] <= Po[i,m,v,card(LOADS)-1]; 

 

###ROUTING CONSTRAINTS### 

subject to FLOW1 {v in SHIPS}:  

sum {j in PORTS, n in 1..Vmax[j]} Xo[j,n,v] + Zo[v]=1;   

 

subject to FLOW2 {v in SHIPS, i in PORTS, m in 1..Vmax[i]}:  

O[i,m,v] - sum {j in PORTS, n in 1..Vmax[j]: j<>i} X[j,n,i,m,v] - Xo[i,m,v]=0;  

 

subject to FLOW3 {v in SHIPS, i in PORTS, m in 1..Vmax[i]}:  

O[i,m,v] - sum {j in PORTS, n in 1..Vmax[j]: i<>j} X[i,m,j,n,v] - Z[i,m,v]=0;    

 

subject to SHIP_VISIT {i in PORTS, m in 1..Vmax[i]}: sum {v in SHIPS}  

O[i,m,v] = Y[i,m]; 

 

subject to PORT_VISIT {i in PORTS, m in 2..Vmax[i]}:  

Y[i,m-1] - Y[i,m] >= 0; 

 

subject to MANDATORY_VISITS {i in PORTS, m in 1..Vmin[i]}:  

Y[i,m] = 1;         
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###SPEED and LOAD CONSTRAINTS### 

subject to SPEED_CHOICE1 {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 1..Vmax[j], 

v in SHIPS: i<>j}: sum {l in LOADS, s in SPEEDS} G[i,m,j,n,v,l,s] = X[i,m,j,n,v]; 

 

subject to SPEED_CHOICE2 {i in PORTS, m in 1..Vmax[i], v in SHIPS}:  

sum {l in LOADS, s in SPEEDS} Go[i,m,v,l,s] = Xo[i,m,v]; 

 

###LOADING AND UNLOADING CONSTRAINTS### 

subject to CONSTRAINT2 {i in PORTS, m in 1..Vmax[i], v in SHIPS}:  

Q[i,m,v] <= min(ShipCap[v], UpperStock[i]) * O[i,m,v]; 

 

subject to CONSTRAINT3 {i in PORTS, m in 1..Vmax[i], v in SHIPS}:  

Qmin[i] * O[i,m,v] <= Q[i,m,v];    

 

subject to CONSTRAINT4 {v in SHIPS, i in PORTS, m in 1..Vmax[i]}:  

Fo[i,m,v] = InitialLoad[v] * Xo[i,m,v]; 

 

subject to LOADCONSTRAINT {i in PORTS, m in 1..Vmax[i], j in PORTS, n in 

1..Vmax[j], v in SHIPS: i<>j}:  

sum {l in LOADS, s in SPEEDS} load[v,l] * G[i,m,j,n,v,l,s] = F[i,m,j,n,v]; 

subject to LOADCONSTRAINT2 {i in PORTS, m in 1..Vmax[i], v in SHIPS}: 

sum {l in LOADS, s in SPEEDS} load[v,l] * Go[i,m,v,l,s] = Fo[i,m,v]; 

    

###ARC - FLOW MODEL### 

subject to CONSTRAINT5 {v in SHIPS, j in PORTS, n in 1..Vmax[j]}: 

Fo[j,n,v] + sum {i in PORTS, m in 1..Vmax[i]: i<>j}  

F[i,m,j,n,v] + J[j] * Q[j,n,v] =sum {i in PORTS, m in 1..Vmax[i]: j<>i} F[j,n,i,m,v] + 

Fd[j,n,v]; 

 

subject to CONSTRAINT6 {i in PORTS, j in PORTS, m in 1..Vmax[i], n in 1..Vmax[j], v 

in SHIPS: j<>i}: # and J[i]=1}:  

F[i,m,j,n,v] <= ShipCap[v] * X[i,m,j,n,v]; 
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subject to CONSTRAINT7 {j in PORTS, n in 1..Vmax[j], v in SHIPS}:  

Fd[j,n,v] <= ShipCap[v] * Z[j,n,v];    

   

###TIME CONSTRAINTS### 

subject to START_TIME {i in PORTS, j in PORTS, m in 1..Vmax[i], n in 1..Vmax[j]: 

i<>j}: t[i,m] + sum {v in SHIPS} TL[v] * Q[i,m,v] - t[j,n] +  

sum {v in SHIPS, s in SPEEDS, l in LOADS} max(Ltime[i,m] +  

TravelTime[i,j,v,s] -Evisit[j,n],0) * G[i,m,j,n,v,l,s] <= Ltime[i,m]-Evisit[j,n]; 

 

subject to MIN_INTERVAL {i in PORTS, m in 1..Vmax[i]:m>1}:  

t[i,m] - t[i,m-1] - sum {v in SHIPS} TL[v] * Q[i,m-1,v] - TB[i] * Y[i,m] >=0; 

 

subject to CONSTRAINT {i in PORTS, m in 1..Vmax[i]}:  

sum {v in SHIPS, s in SPEEDS, l in LOADS} TravelTimeOrig[i,v,s] * Go[i,m,v,l,s] <= 

t[i,m]; 

 

subject to TIME_WINDOW1 {i in PORTS, m in 1..Vmax[i]}: 

t[i,m] >= Evisit[i,m]; 

 

subject to TIME_WINDOW2 {i in PORTS, m in 1..Vmax[i]}:  

t[i,m] <= Lvisit[i,m]; 

 

###INVENTORY CONSTRAINRS### 

subject to STOCK_START {i in PORTS}: 

S[i,1] = InitialStock[i] + J[i] * DemandRate[i] * t[i,1]; 

 

subject to RELATE_STOCK {i in PORTS, m in 1..Vmax[i]:m>1}:  

S[i,m] = S[i,m-1] - J[i] * sum{v in SHIPS} Q[i,m-1,v] + J[i] * DemandRate[i] * (t[i,m] - 

t[i,m-1]);  

 

subject to STOCK_LIMIT1 {i in PORTS, m in 1..Vmax[i]:J[i]=-1}:  

S[i,m] + sum{v in SHIPS} Q[i,m,v] - DemandRate[i] * sum{v in SHIPS} TL[v] * Q[i,m,v]  

<= UpperStock[i]; 
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subject to STOCK_LIMIT2 {i in PORTS, m in 1..Vmax[i]:J[i]=1}: 

S[i,m] - sum{v in SHIPS} Q[i,m,v] + DemandRate [i] * sum{v in SHIPS} TL[v] * Q[i,m,v]  

>= LowerStock[i]; 

 

subject to LBOUND {i in PORTS:J[i]=-1}: 

S[i, Vmax[i]] + sum{v in SHIPS} Q[i, Vmax[i],v] - DemandRate[i] * (T-t[i, Vmax[i]])  

>= LowerStock[i];    

 

subject to UBOUND {i in PORTS:J[i]=1}: 

S[i, Vmax[i]] - sum{v in SHIPS} Q[i, Vmax[i],v] + DemandRate[i] * (T-t[i, Vmax[i]]) 

<= UpperStock[i];     

 

subject to LIMIT1 {i in PORTS, m in 1..Vmax[i]: J[i]=-1}: 

S[i,m] >= LowerStock[i]; 

 

subject to LIMIT2 {i in PORTS, m in 1..Vmax[i]: J[i]=1}: 

S[i,m] <= UpperStock[i]; 

 


