

Master’s degree thesis

LOG950 Logistics

Testing the betting market efficiency with the use of

heuristics.

Hans Jacob Brun

Number of pages including this page: 68

Molde, 23.05.2019

Mandatory statement
Each student is responsible for complying with rules and regulations that relate to

examinations and to academic work in general. The purpose of the mandatory statement is

to make students aware of their responsibility and the consequences of cheating. Failure to

complete the statement does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6

below.

1. I/we hereby declare that my/our paper/assignment is my/our own

work, and that I/we have not used other sources or received

other help than mentioned in the paper/assignment.

2. I/we hereby declare that this paper

1. Has not been used in any other exam at another

department/university/university college

2. Is not referring to the work of others without

acknowledgement

3. Is not referring to my/our previous work without

acknowledgement

4. Has acknowledged all sources of literature in the text and in

the list of references

5. Is not a copy, duplicate or transcript of other work

Mark each

box:

1.

2.

3.

4.

5.

3.

I am/we are aware that any breach of the above will be

considered as cheating, and may result in annulment of the

examination and exclusion from all universities and university

colleges in Norway for up to one year, according to the Act

relating to Norwegian Universities and University Colleges,

section 4-7 and 4-8 and Examination regulations section 14 and

15.

4. I am/we are aware that all papers/assignments may be checked

for plagiarism by a software assisted plagiarism check

5. I am/we are aware that Molde University College will handle all

cases of suspected cheating according to prevailing guidelines.

6. I/we are aware of the University College’s rules and regulation

for using sources

Personal protection

Personal Data Act
Research projects that processes personal data according to Personal Data Act, should be
notified to Data Protection Services (NSD) for consideration.

Have the research project been considered by NSD? yes no
- If yes:

Reference number:

- If no:

I/we hereby declare that the thesis does not contain personal data according to Personal

Data Act.:

Act on Medical and Health Research
If the research project is effected by the regulations decided in Act on Medical and Health
Research (the Health Research Act), it must be approved in advance by the Regional
Committee for Medical and Health Research Ethic (REK) in your region.

Has the research project been considered by REK? yes no
- If yes:

Reference number:

Publication agreement

ECTS credits: 30

Supervisor: Lars Magnus Hvattum

Agreement on electronic publication of master thesis
Author(s) have copyright to the thesis, including the exclusive right to publish the document
(The Copyright Act §2).
All theses fulfilling the requirements will be registered and published in Brage HiM, with the

approval of the author(s).
Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of

charge, make the thesis available for electronic publication: yes no

Is there an agreement of confidentiality? yes no

(A supplementary confidentiality agreement must be filled in)

- If yes:

Can the thesis be online published when the

period of confidentiality is expired? yes no

Date: 23.05.2019

Abstract
A way of investigating inefficiency in the betting market is to develop a prediction model

and check whether it outperforms the market via simulated betting, for instance by the use

of ordinal regression models. A compass search heuristic has been created to fine tune the

parameter values obtained by the regression model “Ordered Logistic Regression”. This to

check whether it is possible to detect inefficiencies in the betting market and also if there

exist any categorical wrong settings of parameters obtained by the statistical model. Even

though the compass search was able to outperform OLR in accuracy, yielding a higher

average return, no categorical wrong settings in OLR were found.

KEYWORDS: FOOTBALL, BETTING, HEURISTICS, OLR, MARKET EFFICIENCY,

DIRECT SEARCH

Contents
1.0 INTRODUCTION ... 1

2.0 RESEARCH QUESTION .. 2

3.0 THEORY ... 3

3.1 MARKET EFFICIENCY ... 3
3.2 THE BETTING MARKET ... 4
3.3 ODDS AND BOOKMAKERS ... 5
3.4 ELO RATING ... 6
3.5 ORDERED LOGISTIC REGRESSION ... 8
3.6 STANDARD ERROR ... 10

4.0 THE HEURISTIC APPROACH TO OPTIMIZATION .. 10

4.1 SOLUTION SPACE .. 11
4.2 COMPASS SEARCH .. 12
4.3 CONVERGENCE TO A LOCAL OPTIMUM ... 13

5.0 EXPERIMENTAL SETUP ... 14

5.1 DATA .. 14
5.1.1 Dependent Variable .. 14
5.1.2 Independent Variables .. 14

5.2 VALIDATION ... 15
5.3 SIMULATED BETTING ... 17

6.0 THE SEARCH .. 19

6.1 PSEUDO CODES ... 20
6.1.1 Pseudo Code for Determining Lower Bound and Threshold. ... 20
6.1.2 Pseudo Code for Tuning 𝛽, 𝜃. ... 20

6.2 RUNS .. 21
6.2.1 First Simulation with OLR .. 21
6.2.2 First Simulation with Compass Search ... 23
6.2.3 Comparison of OLR and Compass Search .. 24

6.3 IN SEARCH OF LOST INFORMATION .. 25
6.4 INITIAL FINAL RUN ... 30
6.5 MODIFICATION ... 32

6.5.1 Alternative Step Length. .. 32
6.5.2 Alternative Data Set. ... 34

 7

6.5.3 Disregarding Betting on “Favourites” ... 35
6.5.4 Final Final Run ... 35

7.0 CONCLUDING REMARKS .. 36

8.0 ACKNOWLEDGEMENTS .. 37

 1

1.0 Introduction
Optimizations techniques are extensively used in many fields. In operations research (OR)

one usually thinks of optimization as a quantitative approach to solve problems related to

production, inventory or vehicle routing. In this thesis a central technique in OR, namely

heuristics, will be applied in the effort to improve statistical model used when predicting

the outcome of football games. (For the potential American reader(s), it should be

mentioned that football here is understood as soccer). The usage of statistical methods in

sport outcome predictions are quite common and most bookmakers rely on this amongst

other things when setting the odds for different outcomes.

Due to technological improvements everyone is now just a few clicks away from betting

on outcomes of everything from prime minister elections to football matches. The United

Kingdom Gambling Commission reports an online gambling revenue of £5.319 billion

annually (Gambling Commission, 2018) where a considerable share is betting. In addition,

does non-remote betting also contributes a revenue of £3.254 billion annually. Because of

the wide variety of opportunities of what and where one can place bets, and the

combination of amateurs and professional actors in the market one could imagine that the

prices, here understood as the odds, does not correctly reflect all the relevant public

information available. The questions whether this is true or not are related to market

efficiency, which can be read about in Chapter 3. And if an assumption of inefficiency in

the odds market is true, is it possible to develop a trading strategy utilizing the fact that the

odds are not set correctly? That is what to be investigated in this paper. Prediction models

are of interest in OR because many decisions within production and inventory

management are based on forecasting, for instance demand, or how prices on raw materials

changes. At first glance could it look like this thesis do not relate to either of this, but the

techniques applied are universal, in the sense that one uses heuristics to improve an

existing model. The transferability to other data within areas beside from sports is

unquestionable.

A way of investigating inefficiency in the betting market is to develop a prediction model

and check whether it outperforms the market. Typically calculating the probability for the

different outcomes of a football match based on information which might affect the game,

do this for an entire dataset of matches and compare estimated probabilities with

probabilities given by the bookmaker. Through simulation it is possible to conclude that

 2

this is not enough to outperform the market. But by applying a heuristic on top of the

prediction model, it could be possible to find indications that the betting market is

insufficient in some way.

The paper is structured into three main parts. Where the first part contains Chapter 2.

Research Question, Chapter 3. Theory, which is, together with Chapter 4. The Heuristic

Approach to Optimization, a theoretical part to familiarize the reader with the concepts

necessary to understand what is being done in the thesis. The second part contains Chapter

5. Experimental Setup, which includes the choice of data and other technicalities necessary

in the reach for an answer for the research questions. The third part contains Chapter 6.

The Search, where the tests are done, and results are discussed. Chapter 7. Concluding

Remarks where the conclusions are drawn. And the final chapter, Chapter 8.

Acknowledgements. The thesis will provide pseudo codes for simulations and heuristics,

in addition to code attached in the appendix.

2.0 Research Question

This thesis will investigate the betting market and its efficiency. There are two types of

tests that are usually performed based on the whether the market is weak or semi-strong in

its efficiency. The thesis will look into whether the market is consistent with the

hypothesis of semi-strong information efficiency, which for the betting market, or any

market for that matter, can be defined the following way:

«Semi-strong efficiency means that the return on a bet based on public information must

be the same, in terms of cost/risk, as that on a bet that has not been based on public

information» (Bernardo, Ruberti et al. 2018)

When dealing with such issues as investigating the relationship between two, or in this

case, many variables, is it common to use statistical methods and moreover regression

models. Further on, when testing the efficiency in the betting market, and in this particular

case, the football betting market, a model known as ordered logit regression, from now on

OLR, has proven to yield good results, but maybe not perfect.

The research questions the thesis aims to answer is the following:

 3

1: Are there certain kinds of inefficiencies that may be detected using a heuristic approach

that would not be detected when relying on maximum likelihood estimation, which the

OLR is based on?

2: And further on, if the heuristic method does not find categorical “wrong setting” of

odds, is it possible to manipulate the data to show that the model is able to detect these

wrong settings if they existed?

3.0 Theory

3.1 Market Efficiency
The efficient market hypothesis was developed parallel by Eugene Francis Fama and Paul

A. Samuleson around 1965. Fama says the following about his hypothesis:

In an efficient market, competition among the many intelligent participants leads to a

situation where, at any point in time, actual prices of individual securities already reflect

the effects of information based both on events that have already occurred and on events

whitch, as of now, the market expects to take place in the future.

-Speech by Eugene Fama (1965).

The implication of this statement is that it is impossible to make money risk free, due to

the markets ability to incorporate historical and expected future events into the asset’s

prices. The theory can be divided into three variants. Weak, semi-strong, and strong. A

weak form of efficient can be understood as if current prices reflect the information stored

in historical prices (Poshakwale ,1996). Semi-strong takes additionally current public

information into account and in a strong efficiency market the information which is

omitted for the public is also incorporated. Which means that even inside information is

useless to take advantage of because the price already reflects that “cut-off from the

public” information.

The area this thesis will take a more thorough look at is the efficiency in the betting market

concretized by football matches and their odds. Where the odds of a given outcome of a

match can be reviewed as its price. A statistical model known as ordered logit regression

(OLR) will be applied to create a statistical distribution and a heuristic will be used to

 4

improve the parameters obtained by OLR, hoping to outperform the market via simulated

betting.

With the use of public information when estimating the probabilities for the different

outcome, as done in the thesis, the hypothesis of semi-strong market efficiency suggests

that it should not improve the precision of the predictions (Gross, Rebeggiani, 2018) and

therefore the simulation should not yield a return on investment significantly different

from the expected returns on blind betting.

3.2 The Betting Market
The verb bet is defined by the Cambridge Dictionary the following way: “to risk money on

the result of an event or a competition, such as a horse race, in

the hope of winning more money”. The betting market as a market in more fixed terms has

at least been around since ancient Rome (Gross, Rebeggiani 2018). But even if betting

markets existed in unregulated ways since very early are the opportunities we today take as

for granted, a result of a continues war of interest between gambling interest and reformers

(Sauer, 1998). Andreff and Szymanski suggests the betting opportunities we now

experience is a result of secularization (Handbook of the Economics of Sports, 2006).

In the same way that the stock market needs stock exchange as a platform for buying and

selling stocks, the betting market needs the same type of platform. The bookmaker will

typically give odds on several outcomes of certain events and the participants can choose

to place a bet roughly based on either two terms: They believe that the odds is set higher

than the underlying probability, which means that the expected return is positive. Or they

base their bets on loyalty to a team, a player. In other terms; just for fun.

There is, however, one big difference between the stock market and the betting market.

When one trades stocks, the buyer bets against the seller. The stock exchange serves as a

neutral 3rd part, earning their money on a brokerage from the trade. When a gambler places

a bet, on the other hand, the bet is between the bookmaker and the gambler. So, the

bookmaker sets the prices and not solely the market itself as it occurs in a stock trade.

There exists some market dynamics in odds setting as well, which will be discussed in the

next section, but in general one can say that a bookmaker enables the gamblers to place

bets and they also stands on the other side of the bet. This is important for two reasons.

Since each bookmaker can be viewed as its own market, i.e. the odds for a certain event

 5

given at one bookmaker does not have to be the same as at a different bookmaker, and

gamblers stand free to investigate which bookmaker provides the best odds at a given time,

the bookmakers will strive for the best possible odds to attract customers. On the other

hand, since the bookmakers are the ones who is left with the bill if a bet goes against their

interest, are they not interested in giving better odds than they estimate the underlying

probability to be for the event.

3.3 Odds and Bookmakers
Odds are defined as the inverse of the probability and can be expressed the following way:

𝑂(𝑥) =
1

𝑝(𝑥)																												(1)	

Where 𝑝(𝑥) = the	probabilty	of	event	x	occouring. The odds serve two functions, it

gives an impression of how likely an incident is to occur, and the odds are also used as the

factor when calculating the return if a bet goes in the favor of the actor who placed the bet.

Let us say a gambler places a bet of 100 units on a specific outcome of an event with the

odds of 5. This tells us the two things mentioned above. The odds setter considers the

probability of this event to occur to be 1/5 = 	20%. And that if the gambler wins the

return will be 5 ∗ 100 = 500.	

Since this paper deals with odds in football matches, the focus will now move over in that

direction. In a football match there is only have three outcomes, and it is a 100%

probability that one of them will occur. Therefor the sum of the probabilities must be 1.

This is called the true odds. But in a real betting situation a bookmaker will rarely provide

true odds, because the bookmaker needs a margin of protection, known as the overround.

Meaning that the sum of the probabilities implied by the odds for the three different

outcomes in a football match adds up to more than 1. The bookmakers will arrange the

odds in a way that they will pay out the same no matter the odds and collect the overround

(Haigh 1999). An arbitrary game, Fulham-Everton played 13.04.2019 had the odds 4.70,

4.15 and 1.76 for (the outcomes) home, draw and away, respectively. When translated into

probabilities and added together E
F.G
+ E

F.EI
+ E

E.GJ
= 	1.0219, meaning that if 21.28 units is

played on home win, 24.01 on a draw, and 56.82 units on away win, the bookie has to pay

out exactly 100 units, no matter what the outcome will be. And is left with 2.19 units in

profit.

 6

Odds will also change as the demand in placing bets of a certain result increases. One

could maybe review this as standard market dynamics, where the seller understands that

the goods being sold is too cheap and the price increases until demand stabilize. When

talking about odds, it is important to stress the fact that it work opposite of normal pricing.

Where the odds will decrease as the demand increases. We know that high odds imply two

things, low probability and high return. If enough people still want to place a bet on the

outcome with high odds/low probability, signalizes this that actors in the market believes

the probability of the outcome is higher than implied by the odds and is therefore worth

taking the risk given the return. Since the bookmakers are the ones who has to pay out if

the bet goes in favor of the gambler will they lower the odds to guard themselves.

In summary, there are three factors that determine how bookmakers set odds. First and

maybe most important a statistical method, possibly similar to the one presented in this

paper. Second are the football experts. One study suggests that the consensus of subjective

odds setting being less accurate than statistical models, is wrong (Forrest, Goddard,

Simmons, 2005). And the third is the market forces discussed in the previous section.

3.4 Elo Rating

The Elo rating system is originally used to calculate the relative strength for a chess player

and was created by professor Arpad Elo in 1961. (Elo, A. E. 1961). Glickman and Albyn

C. Jones (1999) says the following about Elo and how it is calculated in their paper

“Rating the Chess Rating System”:

“The fundamental assumption of Elo’s rating system is that each player possesses a

current playing strength, which is unknown, and that this strength is estimated by rating.

In a game played between players with (unknown) strengths 𝑅M and 𝑅N, the expected score

of the game for player 𝐴 is assumed to be

𝐸M = 	
1

1 + 10	Q(RSQRT)/FUU
																		(2)

 ”

The expected score for player 𝐵 will then be 1 − 𝐸M. The function does not take the

probability of a draw into account because draws are treated as a half win and a half loss

 7

for each player. When these probabilities are calculated and the games has settled, it is

possible to calculate and update the players rating using the following formula

	𝑟YZ[\ = 	 𝑟Y]^	 + 𝐾	(𝑆 − 𝐸)																									(3)

Where 𝑟Y]^	is the players ranking previous to the game, 𝑆 is the score of the game (1, 0.5 or

0) and K is a factor telling how much the impact the game should have. The value of K is

divided into three categories depending on your current rating. If the existing Elo-rating

for a player is greater than 2400 a K = 16 value is used, for players with the rating interval

of 2100-2400, K = 24 and for those players rated sub 2100, K = 32.

A football match is similar to a chess game in the sense that there are three outcomes, and

that the teams/players will have different strength. Therefore, it would be convenient to

have a similar type of rating system for football teams. Some aspects, however, differ

between the two sports. For instance: in chess a win is a win, it is not taken into

consideration how many pieces are captured by the players or how much time is left on the

clock. Just imagine if a chess game won by a player should be less valuable because of a

queen sacrifice compared to a game won with the queen still intact, or if the player did not

spend the allotted time to find the critical move.

In football, on the other hand, is it more nuanced. Since goals wins games, will a team’s

ability to score goals tell something about their strength at a given state beyond just

winning the match. Even though a game won 1-0 generates the same amount of points as a

game won 4-0, is the second victory clearly more impressive and tells something about this

ability. A game won with four goals should count as a greater achievement than winning

with one goal and should therefor give greater manifestations in the updated rating. Some

attempts have been done to capture this aspect. In the article “Using ELO ratings for match

results predictions in association football” (Hvattum, Arntzen, 2010) this is dealt with by

making 𝐾 = 𝐾U(1 + 𝛿)c, where d is the absolute goal difference and 𝐾U = 10, 𝜆 = 1	as

fixed parameters. This is also known as the goal based Elo rating. And this is the method

used for calculating the Elo ratings in the dataset for this thesis.

It is important to emphasize the fact that the ratings are not perfect from the get-go and

need some initial runs before they become reliable. The bootstrapping procedure is applied

for the purpose. In the beginning will all the teams have the same rating. Then two seasons

of data is used to update the ratings. If the rating obtained in the end of the two seasons are

 8

similar to the rating originally assigned will the process stop. If not, will the rating

obtained in the end of the second season be assigned as the new rating and the procedure is

repeated (Hvattum 2017). When the current Elo ratings become reliable, after the

bootstrapping, it is a very useful and logical way of reviewing the current strength between

two competitive teams.

3.5 Ordered Logistic Regression

Ordered logistic regression (OLR) is a statistical technique for estimating the probabilities

of several outcomes where the outcomes have a clear ranking. The reason why this

“ordered” approach can be applied in football betting markets is because one can order the

outcome of a football match from a home team perspective where a win is better than a

draw, which is again better than a loss.

One has a categorical outcome y which generally can take the values 1,2, … , 𝐾.	When

football is the topic a game can have three outcomes and therefor y can take the values

1	 =		home win, 2	 = draw, and 3	 =	away win. Additionally, there are V independent

variables 𝑥E, 𝑥f, … , 𝑥g which are calculated prior to each match. All of the independent

variables will be described in greater detail later in the paper, but to give some intuition

can one such variable be “how many goals on average does the teams score.” If a team on

average scores many goals, could this increase the probability of this team taking the

victory home in the next incidence also. For each variable 𝑥h there is a corresponding

parameter 𝛽h which can be reviewed as the weight each variable should contribute when

determining the probabilities for the different y values. The parameters to the variables are

what to be estimated by the model.

The estimation also provides cutting points parameters qh for qiQE, which are points

dividing the cumulative probability function into categories along the first axis. To fit the

parameters in the OLR model, the maximum likelihood method is used for minimizing the

information loss. Most statistical software packages will provide this. (Devore, Berk,

2012)

The cumulative probability distribution function for OLR

𝐹(𝑧) = 	
1

1 + 𝑒Qm 																												(4)

 9

The conditional probabilities for the three outcomes in a football match will then be

𝜋E(𝑥) = 𝐹(−𝜃E − 𝛽𝑥),			𝜋f(𝑥) = 𝐹(−𝜃f − 𝛽𝑥) − 𝜋E(𝑥), 	𝜋p(𝑥)

= 1 − 𝜋E(𝑥) − 𝜋f(𝑥)																			(5)

The distribution of the OLR is displayed below, where the cutting point −𝜃E − 𝛽𝑥 along

the first axis will mark the probability of a home win along the second axis, and the cutting

point −𝜃f − 𝛽𝑥 will separate the cumulative probability of a draw and an away win.

Figure 3.1

A weakness in OLR, when predicting outcomes of football matches, could be the ability to

detect risk aversion of the team Hvattum (2017) i.e. the model has no ability to decrease or

increase the distance between qE	and qf only move them parallel along the first axis.

Meaning that if the probability for a draw is skewed to one of the sides, the ratio between

the probability of home team victory and away team victory will changes, even nothing

implies this. For instance, it is possible to imagine a situation where one team need to

obtain a draw or better, and the other team do not care. The relative strength between the

two teams has not changed, they still have the same players and general assets, but the

chances of a draw has dramatically increased. Where the team who must obtain a draw or

 10

better will change into a defensive formation and hope for the best. These circumstances

do the OLR model have a problem with detecting.

Another aspect that could be interesting to investigate is the strategy the bookmakers apply

when a popular team plays. One could have the assumption that the popularity of a club

and the fans belief in the team’s ability to win matches is not solely based on facts. And

further on assume that the bookmakers are interested in taking advantage of this. Let us

use Manchester United which is according to Google-hits is about twice as big as for

example Liverpool FC. If the bookmakers know that a fair number of fans is betting on

Manchester United based on their passion for the club and their belief in their ability to

win, a smart move for the bookmakers is to lower the odds, and thereby increasing the

profit.

3.6 Standard Error
OLR estimates the parameter values which is used to predict the outcome of a match. For

all of these parameters some kind of uncertainty is involved. The uncertainty can be

quantified by the use of standard error, which is defined to be the estimated standard

deviation of the parameter itself. When the estimated parameter is normal distributed,

which is assumed given the large sample size in the data set, one says that the true

parameter value lies within two standard deviations of the estimated parameter value.

(Devore, Berk, 2012). The reason why this value is of interest is its ability to tell how good

the estimation is. If the standard error is big do this mean that the interval where the true

parameter value exists is larger. The standard error for the parameters will differ, meaning

that some estimations are close to the true value and some are a bit further away. This

interval where assumingly the true parameter value lies within will be investigated in the

thesis.

4.0 The Heuristic Approach to Optimization
A heuristic provides solutions for problems that analysis is unable to solve. (Gigerenzer,

2006) Many of the problems one encounter in real life will not be solvable with standard

optimization techniques, simply because of the size of the problem. If, for instance, the

complexity of a scheduling problem increases, it quickly becomes impossible to verify that

the scheduled order is by fact the optimal solution. Chess is mentioned previously in this

 11

thesis, and chess engines are good example of the application of heuristics. A heuristic

does not by definition guarantee more than feasibility for the solution. It is therefore up to

the creator of the heuristic to make the algorithm smart enough to detect good solutions.

As hinted in the previous section is a heuristic an algorithm used to explore the solution

space (see next section). According to a given set of rules will the algorithm search for

solutions better than solutions already obtained. And if the search does not yield any better

solutions are the search completed. A heuristic, however, is usually equipped with some

“smartness” to it. This to avoid the search of getting trapped in a stationary point, or to

allow it to start searching a different region of the solution space if the region previously

visited generated similar solutions. The heuristic applied when tuning the parameters from

the OLR falls under the category of a direct search. A direct search does not use gradient

information and only needs the ordinal data about the function data, which can be

understood as a ranking of the output the simulation gives. This is what makes the direct

search methods appropriate for problems involving optimization based on simulation

(Hvattum, Glover 2009).

4.1 Solution Space
A solution space is an area consisting of all the solutions that can be generated as a

combination of the parameter values of the variables within a problem. The solution space

consists of two parts, the feasible and the infeasible region. Since one solution is a

combination of the different values the variables can take, can the solution space be

reviewed as infinite. And even if the feasible region of the solution space is bounded will

there exist infinite solutions, given that the problem which is to be solved is not an integer

problem. Therefore, the construction of the search algorithm will decide the structure of

the solution space where the feasible solutions are the ones that can be reached according

to the rule of the algorithm. This region is called the neighborhood. In such cases as in this

thesis, where the evaluation is done according to the return on the betting, will there not be

any boundaries on which values the parameters can take. But it is suspected that most of

the parameter values will be close to the estimated parameter values from the OLR, and a

search in areas far from those will most likely lead to a disappointment (Hvattum, Glover

2009).

 12

4.2 Compass Search
The compass search is a type of direct search method (Hvattum, Glover 2009) and the

name of the search is related to the cardinal directions where one searches through the

solution space by moving in a straight direction according to a given step length where the

parameter values are either increased or decreased according to a rule. When dealing with

a multi-dimensional space, a visualization is difficult. But to give an idea of how it works

are the two limit values in the betting simulation (𝛾r, 𝛾s) used, where the lower bound is

located on the first-axis and the threshold on the second-axis. And the solution is a

combination of both of them.

Figure 4.1

Since the probability of something never can be less than zero will the search start with

three directions, increasing the threshold, decreasing the threshold or increase the lower

bound. The highest value, which is understood as the highest return on the betting, occur

when the lower bound is increased, and this solution is stored as best new solution. The

algorithm continues in the same fashion until no further improvements can be done. And

we have reached a local optimum. The rule used in this search is rather unsophisticated, by

just increasing or decreasing the value of the bound and threshold by 0.05 for each

iteration. But for illustrative reasons will it serve its purpose. In a real search will more

sophisticated techniques usually be applied. For instance, the ability of increasing or

decreasing the step length when no further improvements can be done. Also using a

smarter step length. Either a percentage step length of the parameter value itself, or the

standard error of the parameter.

 13

4.3 Convergence to a Local Optimum
A heuristic which search blindfolded trough the solution space after a solution will stop at

a point where no further improvements can be made according to the rule of the heuristic.

We have then encountered a local optimum. An attribute of the compass search is that the

solution will converge towards a local optimum. Other heuristics may allow a worsening

solution in the hope of escaping a less interesting area of the solution space. This is not the

case for the compass search, where each new solution is an improvement and therefore

also closer to the local optima. When no further improvements can be done, according to

the defined step length, can the step length be decreased, creating a new neighborhood,

making it possible for the heuristic to get even closer to a true local optimum.

Figure 4.2

Figure 4.2 shows in total 23 solutions. Imagine that these are all the feasible solutions for a

given problem, i.e. no constraints are violated. Here one sees the behavior of the compass

search, starting in (0,0) and for each new step taken the value of the objective increases

until the point (3,2) where no improvements can be done, and the search is finished. The

search has by definition detected a local optimum, and for each iteration it came closer to

the optima. Which is all nice, showing some smartness in the search of a solution. On the

other hand, the search is not able to reach the global optima located in (5,5) because of the

worsening results in all directions from (3,2).

 14

5.0 Experimental Setup

5.1 Data
The data set used in the study is a set consisting of 33125 matches from four top English

divisions in the time period 11.08.2001-13.05.2018, with corresponding odds for each

outcome. The last season is kept out of the initial testing and will serve as the final test set

when the heuristic has found a local optimum. One thing that should be mentioned is the

fact that the odds for a single match is not necessarily taken from the same bookmaker.

The best odds for each outcome are picked from football-datra.co.uk. Together

with which teams playing against each other, the score of the game, and the odds, are there

independent variables the author considers most likely to affect the result of a football

match based on existing literature and own thoughts.

5.1.1 Dependent Variable

The dependent variable in this research are the result of the matches. The first part of a line

of data form the data set is presented below, with all the independent variables following.

It is structured the following way: Date, home team, away team, result home team, result

away team, odds home win, odds draw, and odds away win.

11.02.2018 SOUTHAMPTON LIVERPOOL 0 2

4,38286 3,79571 1,79286

In this particular example did Liverpool win 0-2 against Southampton. But for the OLR to

understand these results are each outcome translated into the coding system described in

the chapter about OLR. For this example, the match would be assigned the value of 3. If

Southampton had won, the value assigned would be 1, and a draw would have resulted in

the match getting assigned the value 2.

5.1.2 Independent Variables

The independent variables, which is listed and defined below, can be divided into two

categories: variables which is used in previous studies, and additional variables new for

this thesis. If a variable is denoted with a V do this mean that the variable is used before in

previous studies conducted by (Hvattum 2017), (Hvattum, Arntzen, 2010), and (Goddard,

2005), If the notation N is used do this indicate that the variables are first introduced in this

study.

 15

𝑉E					𝐸uv the difference in Elo rating between home team 𝑎	and away team 𝑏 before the

match is played.

𝑉f					𝐸uvMgy the average Elo rating of home team and away team before the match is

played.

𝑉p					𝐸uvMgy^f the square of 𝑉f.

𝑉F				𝐸uvf the square of 𝑉E.						

𝑉I				𝐷uv the natural logarithm of the geographical distance between the home fields for the

home and away team.

𝑉J				𝐷uv|EI a binary indicator which is 1 if the travel distance between the two fields is less

than 15 km, 0 otherwise.

𝑉G				𝐼uv~ a binary indicator for the importance of the match from the home team perspective

and not for the away team. If the match is important 1, 0 otherwise.

𝑉�				𝐼uvM a binary indicator for the importance of the match from the away team perspective

and not for the home team. If the match is important 1, 0 otherwise.

𝑉�				𝐼uv a binary indicator for the importance of the match for both the home and the away

team. If the match is not important to any of them 1, 0 otherwise.

𝑉EU			𝐺u~�, 𝐺u~�, 𝐺vM�, 𝐺vM� average goals scored and conceded for home and away team.

𝑉EE			𝑊uv a binary indicator if the match is played on a week-end. 1 if the match is played

on a Friday, Saturday, or Sunday, 0 otherwise.

𝑁Ef				𝐶u~R, 𝐶u~y, 𝐶vMR, 𝐶vMy average corners received and given for home and away team.

𝑁Ep				𝐹u~R, 𝐹u~y, 𝐹vMR, 𝐹vMy average fouls committed resulting in a free kick. Received and

given for home and away team.

5.2 Validation
When determining whether the obtained parameter values are able to predict events from

other data than from the sample, i.e. to avoid the model being overfitted, some sort for

validation is needed. In this paper a form of k-folding is used. K-folding is a type of cross

validation where the data set is divided into 𝑘	subsets. Each set has the length of 𝑛/𝑘,

where n is the number of instances in the data set. Then one subset 𝑘h is left for validation,

and remaining sets 𝑘� − 𝑘h are used for training. Which 𝑘	that is used for validation and

the remaining that is used for testing will alternate until a the 𝑘s have been used for

validation. The results from all the validations will then be taken the mean of and further

used for statistical investigations. The value of 𝑘 = 10	is used in the thesis, it is a

 16

convenient number and literature has argued that this value yields good results (Yoshua

Bengi, Yves Grandvalet, 2004).

For the first run, the 𝑘Ewill be used for validation and 𝑘f, … , 𝑘EU will be used for training.

The values of the parameters are then stored, and we continue to the next 𝑘, where 𝑘f now

is used for validation and 𝑘E, 𝑘p, … , 𝑘EU is used for training. This procedure continues until

we have obtained the values for 𝑘EU, with 𝑘E, … , 𝑘� as training set. For implementation

reasons is the method applied in the test somehow different: First the entire data set is

shuffled, then the data set is divided into two sub sets. The training set, containing 90 % of

the data, and a validation set containing the remaining 10%. After each run the set gets

shuffled again. Which in theory implies that the same lines of data almost for sure will

occur more than once in the validation set, but from a practical point of view, this does not

have to mean so much for the results. Further, as mentioned previously is the last season

cut out of the original set, to serve the purpose as a final test set. This set is called a

holdout set.

When the whole data set is divided into their respective sub sets will the process of

generating the parameter values of the independent variables begin. The OLR uses the

training set to generate the parameter values, and the obtained values are used on the

validation set with the simulation (see next section). This is then repeated fifty times to get

a good sample size for the evaluation of the results. After this procedure is finished, and

the values are obtained, the heuristic will target the same problem. Starting with the same

parameter values as in the first run with OLR and attempt to tune the parameters in a way

that they will yield a higher return. This is also done fifty times, to make comparison with

the initial solution found when only relying on the OLR. The overall reason for doing so is

to check if the strategy can outperform the OLR and maybe also beat the market. When

this is set and done, will the holdout set, which until now is completely unknown to the

model, serve as a final test. This to give an impression of the robustness.

 17

5.3 Simulated Betting
sWhen to optimize a problem one has two different possibilities to

sevaluate the performance of method applied. One can use the

sobjective function, typical	𝑚𝑖𝑛/𝑚𝑎𝑥		𝑓(𝑥) : 𝑥	 ∈ 𝐹 for linear

sproblems. Even for non-linear problems can the objective function

sbe used as evaluation, as long as the functions are smooth. In such

scases as the one we encounter here; this will not be possible

sbecause we do not know what the objective function looks like. To

sbe able to evaluate we must therefore introduce a pure evaluation

sfunction, typical ℎ(𝑥), which will be the target of maximization.

A betting simulation will be the way to verify if it is possible to detect inefficiency in the

odds market. I.e. check if it is possible to develop a betting strategy where the return

deviates significantly in a positive direction from the expected return from placing bets

blindfolded. The result from the simulation, which is carried out on the validation fold

(10% of the matches), will give a return and this value will serve as the evaluation for the

performance of the model. The logic is the following: A betting strategy is developed, and

it stays consistent throughout the entire process. First when just applying the values of the

parameters obtained by using the OLR method, which will serve as our starting point.

Then tuning the parameters one by one, checking whether the return on investment (ROI)

increases until the function discovers a local optimum. If the betting simulation yields

positive return for enough runs, it will be possible to verify a significant difference

between marked odds and the estimated probabilities and therefor also to draw a

conclusion about the market efficiency.

The betting strategy that will be applied is displayed below. The calculated return is the

measurement of how good the heuristic algorithm works and perform. We take advantage

of the relationship between odds and probabilities, where the odds are the inverse of the

probability. So, if the probability multiplied with the odds are higher than 1 it is

understood as the estimated probabilities are higher than the given odds implies, and

therefore placing a bet here should be taken into consideration. A threshold is introduced

so the positive deviation has to be greater than this before a bet is placed. A lower bound is

also introduced.

	

Validation

Validation

Training

Holdout

 18

𝑃 = 	𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	
𝑂 = 𝑂𝑑𝑑𝑠		
𝐻 = 	𝐻𝑜𝑚𝑒	
𝐷 = 	𝐷𝑟𝑎𝑤	
𝐴 = 	𝐴𝑤𝑎𝑦	
𝑔 = 	𝐺𝑖𝑣𝑒𝑛		
𝑐 = 	𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑	
𝛾r = 𝐿𝑜𝑤𝑒𝑟	𝑏𝑜𝑢𝑛𝑑	

𝛾s = 	𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑	
𝑀 = 𝑚𝑎𝑥 ∶ 	 ¡𝑃~¢ ∗ 𝑂~£, 𝑃¤¢ ∗ 𝑂¤£, 𝑃M¢ ∗ 0M£	¥

𝐼𝑓	𝑀 ≥ 1 + 𝛾s		&		
E
¨©£

> 𝛾r∗	à	Place	bet.		

	
𝐼𝑛𝑣𝑒𝑠𝑡𝑒𝑑:	𝑃𝑙𝑎𝑐𝑒𝑑	𝑏𝑒𝑡𝑠	 ∗ 	𝑈𝑛𝑖𝑡		
	

Pay-outs	:			¯
𝐼𝑓	𝐻	𝑖𝑠	𝑝𝑙𝑎𝑦𝑒𝑑	𝑎𝑛𝑑	𝐻	𝑖𝑠	𝑡𝑟𝑢𝑒 	 	

𝐼𝑓	𝐷	𝑖𝑠	𝑝𝑙𝑎𝑦𝑒𝑑	𝑎𝑛𝑑	𝑑𝑟𝑎𝑤	𝑖𝑠	𝑡𝑟𝑢𝑒	 → 𝑈𝑛𝑖𝑡 ∗ 	𝑂~,¤,M,£
𝐼𝑓	𝐴	𝑖𝑠	𝑝𝑙𝑎𝑦𝑒𝑑	𝑎𝑛𝑑	𝑎𝑤𝑎𝑦	𝑖𝑠	𝑡𝑟𝑢𝑒	 	 	

		

	 	 	
	 	 Zero	otherwise.	
	
Return=	Pay	outs-Invested.	
	
* The reason for a lower bound based on the given odds is to possibly remove the games

where the calculated probabilities are higher than the given odds imply, but the

probability of the given outcome is still (too) low. Let us say a bookmaker estimates the

probability of an outcome to be 0.1. Translated to odds E
U.E
= 10. Let us say the heuristic

estimates a probability 50 % higher than given, a 15 % chance for the outcome. We get the

following calculation. 0.15 ∗ 10 = 1.5	The threshold will most likely be met but placing a

bet on something with a 15% probability could lead to a disappointment. It is therefore, in

addition to the threshold, introduced a lower bound parameter which are both tuned in the

search as the other parameters. For the OLR simulation the parameters are set to 𝛾r =

0	𝑎𝑛𝑑	𝛾s = 1.

 19

6.0 The Search
There are two searches that are done in the heuristic, which interacts. The first is the tuning

of the parameters, second the is the determination of proper threshold and lower bound.

The search works the following way: First the search starts by looking at the parameters,

when a parameter is changed the simulated betting function will run to calculate a new

ROI. Then the bound/threshold search will kick in and find the best bound for the given

parameter values. The best bound/threshold values, which is understood as the one that

yields the best return, is stored and the search continues. All parameters are tuned until no

further improvements can be found. For a given change in parameter value, the

bound/threshold search suggest limits that will maximize the return. Which means that a

search with and without adjustable limit values will find different solutions.

The sizes of the parameters are unknown to begin with, and it is easy to imagine them

having several different values. That is why it could be an idea to increase or decrease the

value of the parameters by a value telling something about the parameter itself. The step-

length is therefore set to be the standard error of the parameters. Since the value of the

thresholds do not have the same attributes as the parameters and cannot be a chosen to a

step length as a fraction of itself (lower bound has initial value 0) a fixed step-length is

chosen. First try was 0.001 for both bounds, but lower bound seemed to have an issue

escaping 0. Second try was 0.05 for lower and 0.001 for upper, where the lower bound was

able to escape. Third try was 0.05 for both bounds, which improved the overall results

even more. The result was satisfactory enough, and by increasing the step length further

one will make the neighborhood to small, and by decreasing one could encounter the

issues of the not escaping initial point.

 20

6.1 Pseudo Codes

6.1.1 Pseudo Code for Determining Lower Bound and Threshold.

6.1.2 Pseudo Code for Tuning 𝛽, 𝜃.

 21

6.2 Runs
To test the model performance and in extension the efficiency of the betting market, a

simulation must be run. A test in this context means running the simulation. To generate

comparable results the shuffling, which is done between the runs, is done by a sequential

seed assigning. 50 runs are executed, for the first run seed 10 is selected, second run will

get assigned seed 11 and so on. This applies for both the run without and with the compass

search. The reason why 50 runs are chosen is to get a decent sample size, and a statistical

rule of thumb says a sample size greater than 40 is to be considered a large sample size

(Devore, Berk, 2012). To determine whether the results are significantly better than the

expected results, a Z-tests is used.

The Z-test is defined the following way:

𝑍 =
𝑥̅ − 𝜇U
𝑠/√𝑛

																																(6)

The Z value obtained is then used to find a p-value. A p-value can be reviewed as the value

the significance level is compared up against, to determine whether the null hypothesis can

be rejected or not. In the tests conducted in this thesis, the relevant investigation will be

whether the obtained results are higher than the expected results. And the p-value for one

tail where 𝑥̅ > 𝜇U is calculated the following way:

𝑃 = 1 − Φ(𝑧)																								(7)

6.2.1 First Simulation with OLR

The initial testing of the betting simulation was applied with probabilities obtained by only

using OLR. This means that the only comparison done is calculated probabilities up

against the odds given in the market. The results are displayed in table 1 in the appendix.

With no expectancy of being able to out-perform the market at this stage i.e. get positive

return, this will only serve as reference point before the compass search is allowed to fine-

tune the parameters later on. For each game where the betting criterion is met one unit is

placed. The validation set consists of 3313 matches, but only the games where the limit-

value criteria (for OLR 𝛾s > 1, 𝛾r = 0) is met are the bet placed. Before each run is the

whole data set shuffled before a new validation fold is created.

 22

As mentioned earlier do the betting companies rely on the overround. For the data set used

in this study will, on average, the overround be 3.4%. This can be understood as if one bets

blindfolded one should expect to, on average, loose 3,4% on the investment.

A hypothesis test will confirm the visual impression one gets from the results, that there is

no basis for claiming that the OLR estimated parameters is able to yield positive return, the

more important question is whether it performs significantly better than one could expect

for placing bets blindly, a one tailed z-test is used to confirm this. The full result of the

simulation can be found in table 1 in the appendix.

In the simulation an average of 2657.34 bets was placed. The rule of the simulation states

that 𝑏𝑒𝑡𝑠	𝑝𝑙𝑎𝑐𝑒𝑑 = 𝑢𝑛𝑖𝑡𝑠. This could be understood as one, on average, should expect to

lose 2657.34	𝑢𝑛𝑖𝑡𝑠 ∗ −0.034 = 	−90.35	𝑢𝑛𝑖𝑡𝑠	if one placed bets blindfolded. This will

be the return the obtained return via simulation will be tested against.

	
The statistics of interest after the simulations are the following

𝑀𝑒𝑎𝑛	𝑟𝑒𝑡𝑢𝑟𝑛	 = 	−52.80	 𝑉𝑎𝑟	 = 	6627.8 𝑆𝐷	 = 	81.411						

The hypotheses are the following:

		𝐻0: 𝑟𝑒𝑡𝑢𝑟𝑛	 = −90.35	 	 𝐻1: 𝑟𝑒𝑡𝑢𝑟𝑛 > 	−90.35	 	 𝛼 = 0.05	
	

𝑍 =
−52.8 + 90.35
81.411/√50

= 3.26	

𝑃 − 𝑣𝑎𝑙𝑢𝑒	 = 1 − 	0.9994 = 0.0006	
	
Conclusion: The OLR alone performs better than the expected return. And since 𝛼 >

	0.0006, the null hypothesis can be discarded. So already when only using the probabilities

obtained in OLR it is possible to detect inefficiency in the betting market, but even though

the odds are not set correctly are the model unable to beat the margin. i.e. get positive

return. The result obtained here is interesting as a reference point for further investigation.

 23

6.2.2 First Simulation with Compass Search

When the compass search is allowed to improve the parameters already generated by OLR,

the return is at first glance improves further. But this would be too quick of a conclusion

that the results are significantly better than results obtained in OLR. First a test is done to

decide whether it performs better than expected return.

The same numbers of runs are conducted with the same seeds as in the simulation done

solely based on the parameters from the OLR. The comparison will therefore be based on

the exact same data material. The runs can be found in the appendix table 2. Once again is

the average expected return of interest, and for the runs done with the guidance of the

search 1096.64 bets was placed on average, resulting in an expected return of

1096.65	𝑢𝑛𝑖𝑡𝑠 ∗ −0.034 = 	−37.2861	𝑢𝑛𝑖𝑡𝑠.

The main statistics in the run was:

𝑀𝑒𝑎𝑛	𝑟𝑒𝑡𝑢𝑟𝑛	 = 	−15.39 𝑉𝑎𝑟	 = 	4590.85 𝑆𝐷	 = 	67.7558	

The hypotheses are the following:

	
𝐻0:		𝑟𝑒𝑡𝑢𝑟𝑛	 = 	−37.29	 𝐻1: 𝑟𝑒𝑡𝑢𝑟𝑛 > −37.29															𝛼 = 0.05	
	

𝑍 =
−15.39 + 37.2861
67.7558/√50

= 2.285	

𝑃 − 𝑣𝑎𝑙𝑢𝑒	 = 1 − 0.9887 = 	0.0113		
	
Conclusion: Once again is the obtained return significantly better than expected return.

The model, on average, places bets on fewer matches, but the accuracy of the bets placed

increases as one can see from the return. Since the number of bets placed has decreased

has also the expected return increased. An upwards trend showing is that it is possible to

perform better than if one placed bets blindfolded, but still not enough to get a positive

average return.

 24

6.2.3 Comparison of OLR and Compass Search

Both OLR and the model with improved parameters found in the compass search are

significantly improvements from theirs expected return. But can we say that the compass

search is better than the OLR. This is what to be determined in the next test. There is an

issue with the different variance between the two different methods. By scaling the

expected return to become equal, one neglect the fact that the compass search is stricter by

nature and forces it to place bets on imaginary matches it usually would not place bets on.

To determine whether the mean obtained in the compass search differs significantly in a

positive direction from the mean obtained in the OLR, an Unequal variance (Welch) t test

is used. Defined the following way:

𝑇 =
𝑋ÀE − 𝑋Àf

Á𝑠E
f

𝑛E
+ 𝑠ff
𝑛f

																																			(8)

And degrees of freedom v:

𝑣 =
(𝑠E

f

𝑛E
+ 𝑠ff
𝑛f
)f

𝑠EF
𝑛Ef ∗ 𝑛E − 1

+ 𝑠fF
𝑛ff ∗ 𝑛f − 1

																	(9)

When substituting for current values, the T-value and v becomes the following.

𝑇 =
−15.39 + 52.8

Â4590.8550 + 6627.850

= 2.50	

𝑣 =
(6627.850 + 4590.8550)f

6627.8f
50f ∗ 49 +

4590.85f
50f ∗ 49

≈ 95

Giving a value of approximately 0.0075, concluding that results in CS is significantly

better than the ones obtained in OLR with 𝛼 = 0.05

 25

6.3 In Search of Lost Information
If one considers the research question is what to be investigated whether it is possible to

improve the OLR by detecting some consistent misjudgment the model does when

determining the parameter values. To get a better understanding of how the parameter

values changes from the initial OLR to after the search, one must also look past the results

of the return. To give an impression of how often the search finds it beneficial to adjust the

parameters a frequency table is provided. Where throughout the 50 runs it is shown how

many times the search makes a change in the parameter value for each variable.

Figure 6.1 *Parameters are changed, but changes are marginal, close to zero, typical less than 0,00001

The frequence table gives us some information: in most of the run, the search finds that tuning

the parameter improves the return. But this is somehow not fruitfull on its own. What does the

search detect other than the OLR is the question worth envestigating. If one should follow the

remarks done in “Ordinal versus nominal regression models and the problem of correctly

predicting draws in soccer” (Hvattum 2017) is the most interesting parameters to further

investigate the relationship between the adjustment of the theta parameters and the variables

regarding the importance of the match for the teams. To investigate the relationship between

importance of the game for the teams and the distance of the two thetas are a closer

investigation done on V7 & V8. V9 also deals with the same issue, but since it describes

whether the match is important for both teams or not, it is assumed that it will cancel out each

other in the understanding of the distance between theta 1 and theta 2. The main findings of

the investigation are the following:

0

5

10

15

20

25

30

35

40

45

Th
et

a
1

Th
et

a
2

Bx
1

Bx
2* Bx

3
Bx

4* Bx
5

Bx
6

Bx
7

Bx
8

Bx
9

Bx
10

Bx
11

Bx
12

Bx
13

Bx
14

Bx
15

Bx
16

Bx
17

Bx
18

Bx
19

Bx
20

Bx
21

Bx
22

Frequency

 26

The distance of Theta 1 and Theta 2 is changed 41 times of the 50 runs. To get an

understanding of what causes the changes in Theta distance will it also be interesting to look

at the changes in V7 and V8. The natural question to ask is which changes are related. If one

study the change in one parameter and how this affects the other parameters and again how

this affects the return, it could be possible to find a pattern to determine where the OLR fails

in greater extent than the compass search, under the assumption that V7 and V8 are the most

decisive variables for a draw prediction.

In total there are 11 scenarios which the comparison resulted in. The three main scenarios,

which holds 32 of the 50 runs, are the scenario (1) where the parameter value for V7 is

decreased more than the parameter value for V8 is increased. The scenario (2) where the

parameter value for V7 remains the same, but the parameter value for V8 is increased, and the

scenario (3) where the parameter value for V7 is decreased less than the parameter value for

V8 increases. For each of the three scenarios the type of change in thetas due to the change in

V7 and V8 that occurs most frequently is looked at. It is, unfortunately, not possible to draw

any conclusions from the scenarios described above due to lack of consistency. But a

comment about the overall trend when comparing the OLR and the CS is that the OLR have a

tendency to underestimate the probability for an away win, and therefor also overestimating

the probabilities of a draw. In 36 on the 50 runs is the theta distance is decreased. For 28 runs

of those 36 runs theta 1 is unchanged. A comparison of returns reveals that CS improved

return about 54% of the times.

It also exists runs where the parameter value of V7 and V8 is unchanged, it could therefor be

interesting to see if there are changes in theta distance for those runs, and how it affects the

return. In total there are 5 runs where the parameters for V7 and V8 are unchanged. The return

is increased in all the instances, due to changes in other parameters, or/and stricter limit

values. But the greatest impact on the result is located in run 8, where the theta distance has

changed significantly.

The full result is displayed in the table below.

 27

Table 6.1

Another interesting aspects to review are the limit values. How much of the improvement is a

result of the tuning of the parameters and how much is due to the limit values. To determine

 28

the divisiveness on the impact a new run is done, setting the lower bound to 0 and threshold to

1. The name of the search is Compass Search without Limit values, from now CSwoLv. With

the same limit values as in the initial run with the OLR. A tendency is that when limit values

are included in the search do the model find it benificial to bet on fewer matches. To give an

impression of the different searches operates are the returns together with number of bets

placed, for initial run, CSwoLv and standard search with limit values, compared. The results

are displayed in the table below.

The main findings in the compairison are that the limits decreases the propensity to place a

bet. Where as CSwoLv, only saying that if the estimated probability should be greater than the

suggested probability implied by the given odds, acutally ends up placing more bets than the

simulation just based on OLR. Since more bets are placed in CSwoLv than in OLR and the

average return is better, a conclution that it also performs better than if one had placed bets

blindfolded is drawn. The full results can be found in the table below.

To investigate whether the full search outperforms CSwoLv is once again the Welch’s t-test

applied. Before conducting the test, the variance and mean of the results obtained by CSwoLv

is needed: 𝑆ÄÅÆÇÈÉ = 8192.1, 𝑥̅ÄÅÆÇÈÉ = −48.08

Recollect formula (8) and (9) from section 6.2.3.

𝑇 =
−15.39 + 48.8

Â4590.8550 + 8192.150

= 2.09

𝑣 =
(8192.150 + 4590.8550)f

8192.1f
50f ∗ 49 +

4590.85f
50f ∗ 49

≈ 91

Giving a value of approximately 0.0195

The conclution is that the full search performs significantly better than CSwoLv, and that the

limit values helps the search finding more accurate parameter values. Resulting in fewer bets

with higher accuracy.

 29

Table 6.3

 30

6.4 Initial Final Run
To test the over all robustness of the model one final test is executed. As stated earlier in the

thesis is a set named hold-out deliberetly been held out of the model. This set contains the

2017-2018 season for the top four divisions in english football leage, the most current season

finished. The final simulation will be tested on this set. Due to the way the training and

validation set is shuffled, it could be convinient to try the model on data which has not been

availible for the model previously. This is to check whether the model developed can be used

as a tool for future predictions. This is usefull for at least two perpouses. Number one is the

transferbility to other problems within prediction modelling, the other is of cource the fact that

one can use the model to empty the bookmakers pockets. This is also interesting because it

revealses the bookmakers development in odds setting accuracy thorughout a season. A theory

could be that most of the profit is obtained in the beginning of the season, where the

uncertainties are bigger, due to changes which has happened between seasons.

The result of the parameter determination search is displayed below.The initial parameter

values obtained by the use of OLR (blue) and the suggested values the compass seacrch thinks

the parameters should be set to (orange).

Figure 6.3 Additional relevant information is that the bound and threshold obtained by the use of the
compass search was 0.2 for lower bound and for the threshold 1.00. The data is provided in table 3.a
in the appendix.

-1,6

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

B1 B2 B3 B4 B5 B6 B7 B8 B9
B10

B11
B12

B13
B14

B15
B16

B17
B18

B19
B20

B21
B22

Th
eta

1

Th
eta

2

Full set (last season exluded)

OLR CS

 31

Before the simulation is completed some remarks should be done. Most of the parameters that

changes (9 in total) changes marginary, but three stands out: The parameter value of V8, if the

match is importaint to the away team but not for home team. The theta 1, which has shifted to

the left, decreasing the probability for a home win. Theta 2 has also shifted to the left

increasing the probability of an away win. As discussed in section 6.3 does it seems like the

OLR has a tendency to over estimate the home ground advantage, neglecting the effect of

importance of the match for the away team. If one shold follow (Hvattum, 2017) conclutions

would the interesting thing here be to observe the distance between theta 1 and theta 2 and

whether it changes. As discussed earlier, a weakness of the OLR model is its disability to

decrease or increase the distance between the two theta’s. The theta values prior to the search

was −1.05919	𝑎𝑛𝑑	0.145891, a distance of 1.205081. After the search the theta had the

values −1.36845	𝑎𝑛𝑑 − 0.16332, a distance of 1.205131. A very small change in width.

The result from the final run is displayed in table 3 b in the appendix. In addition to the

standard data is a graph showing the cumulative return over time provided. To caluclate the

average expected return on a match in the last season, the overround for the last season is

needed. The overround is calculated the same way as before, and for the 2017-2018 season

alone, the average overround is 0.925%. Expected retrun for the last season is therefor

1492		𝑢𝑛𝑖𝑡𝑠 ∗ −0.00925 = 	−13.8	𝑢𝑛𝑖𝑡𝑠. Obtained profit was 5.77 units.

Figure 6.4

-20

-10

0

10

20

30

40

50

60

70

04.08.2017

04.09.2017

04.10.2017

04.11.2017

04.12.2017

04.01.2018

04.02.2018

04.03.2018

04.04.2018

04.05.2018

Cumulative Return for 17-18. Season

 32

Conclution:

The betting stragy seems to out perform the market in the last run. But due to lack of

repetitions is it not possible to conclude that the betting strategy performes significantly better

than expected return suggest. It shows, however, that it could be possible to beat the market

by the use of the strategy created, and that on data which has been unavailable for the model.

Another interesting aspect is the development in return and the upwards trend until

04.11.2018 where it stabilizes before the downwards trend starts from around 04.02.2018 and

stays throughout the rest of the season. This could imply that bookmakers are more accurate

in their odds-setting as the season unfolds, due to the increasment of more current

information, which is more valueble than older information.

6.5 Modification
Given the results already obtained would it be interesting to examine several things. First: is it

possible to obtain even better solutions? As discussed earlier in the thesis is it common to

allow a direct search to change its step length when no further improvements can be done. By

changing the step length, one also creates a new neighborhood with the possibility of

encounter new solutions which earlier has been unavailable. Second: a set like the one used to

conduct the tests is a “best odds” set where the odds for each single outcome for each single

match could be taken from different bookmakers. This means that if one should implement the

betting strategy developed in this thesis in real attempt to beat the betting market, it would

involve a fair amount of time just locating the best odds for each outcome of each match. That

is why a new data set with average odds for the same matches is also reviewed, giving odds

more realistic to what one can expect from a normal bookmaker, and therefore also checking

how the search handles data material where it will be harder to find promising prospects. And

least but not last, what happens if the matches containing a “top team” in the sense of

popularity is removed as an option to bet on. As discussed previous in the thesis, it could be

that bookmakers tend to decrease the odds for those teams, making it impossible for the

search to place a bet on those teams given the treading strategy.

6.5.1 Alternative Step Length.

As discussed earlier in this theisis one can expect the true parameter value lie within two

standard errors from the estimated parameter value. With this in mind could it be interesting

to halfen the step length, 𝑠𝑡𝑑. 𝑒𝑟𝑟/2. When allowning the step length to be halfen two

 33

scenarios are possible. First of all, one will create a new neighborhood of solutions and by

doing so double the chance for hitting the true parameter value. But as shown in figure 4.2, a

too small step length can result in the model not being able to escape a solution even if there

exist better solutions in the solution space. Therefore are two different runs tested. One where

the step length is 𝑠𝑡𝑑. 𝑒𝑟𝑟/2	from start to end, and one where the the step length is decreast

only after the stoping criterion, no further improvements, is met.. The search with fixed step

length “parameter error(i)” is used as a referance.

Table 6.4

When step length is halved thorughout the intire run do the search performe poorer than with

initial step length. This could be due to the weakness of getting stuck in a less fruitfull area of

the soulton space. With dynamic step length is the results almost equal both in number of runs

and return. It is therfore not possible to conclude that dynamic change in step-length will

improve the search, on the other hand it is not possible to conclude that it will not improve the

search.

 34

6.5.2 Alternative Data Set.

To test the model on more realistic data is another sets investigated. The data is now average

odds instead of max odds as used when conducting the initial simulation.

The average overround for the intire set is 8,72%. Since the overround is greater, the expected

return also will be lower per bet, but since the odds now are lower will the search also detect

fewer oportunities to place the bet. By the observations done of the privous tests is the search

with the “decreasing step-length after no improvements can be done” search chosen. Even

though it did not yield a better result than the search without changing step length, it should,

in theory, be able to look at more solutions, and therefore also maybe finding an even better

one.

The full results can be found in table 4 in the appendix. Once again is a Z-test conducted to

investigate wheter the search is able to perform better than expected return. Expected return is

now 106	𝑢𝑛𝑖𝑡𝑠 ∗ −0.0872 = −9.2432

The main statistics in the run was:

𝑀𝑒𝑎𝑛	𝑟𝑒𝑡𝑢𝑟𝑛	 = 	−3.44 𝑉𝑎𝑟	 = 	189.03 SD = 13.749

Giving the following hypotheses:

𝐻0:		𝑟𝑒𝑡𝑢𝑟𝑛	 = 	−9.2432	 𝐻1: 𝑟𝑒𝑡𝑢𝑟𝑛 > −9.2432															𝛼 = 0.05	

𝑍 =
−3.44 + 9.2432
13.749/√50

= 2.98	

	
𝑃 − 𝑣𝑎𝑙𝑢𝑒	 = 1 − 0.9986 = 	0.0014		

Once again is the observed retrun significantly better than the expected return, but fails to beat

the market.

 35

6.5.3 Disregarding Betting on “Favourites”

As discussed in section 3.5 could it be interesting to check what happens if one remove the

possibility to bet on matches where a top team in terms of popularity is attending. In the

simulation for the validation fold a new constrtaint is created, namley not allowed to place

bets on matches where “MAN UNITED” or “LIVERPOOL” plays either as the home or the

away team. The runs shows interesting results and for the first time a positive average return

is descovered. The reason for this could be that if the bookmakers, deliberately, lowers the

odds on the popular teams will this also mean that the bookmaker suggests that the probability

of a win is higher for those teams. The search could therefor detect an opportunity of betting

against the popular team, leading to a loss. The full results can be found in table 5 in the

appendix. Due to the result is it also, for the first time, possible to test the hypothesis whether

the return is significantly better than zero.

𝑀𝑒𝑎𝑛	𝑟𝑒𝑡𝑢𝑟𝑛	 = 	16.13 										𝑉𝑎𝑟	 = 	4240.8 𝑆𝐷	 = 	65.12						

Giving the following hypotheses:

𝐻0:		𝑟𝑒𝑡𝑢𝑟𝑛	 = 0	 															𝐻1:	𝑟𝑒𝑡𝑢𝑟𝑛 > 0	 																	𝛼 = 0.05	

𝑍 =
16.13

65.12/√50
= 1.73	

𝑃 − 𝑣𝑎𝑙𝑢𝑒	 = 1 − 0.9582 = 0.0418	

	
Since P-value < 	𝛼, is the conclution that by removing Liverpool and Manchester United from

the search, the search are able to, on average, obtain a result significantly higher than zero. 	

6.5.4 Final Final Run

When taking all the information obtained during the thesis into consideration a final test is

conducted, first and foremost to check how good of a result it is possible to obtain. We have

seen that we obtained positive results for the run with the hold out set, we have also seen that

when removing the “favorites” the average return was positive. We have seen that dynamic

change in step length is not inferior to constant. The final search will therefore be performed

on the hold out set, with both initial and dynamic step length, and all the matches containing

the most commercial recognized clubs (Manchester United and Liverpool) are tabu to bet on.

 36

Since there is no shuffling involved in the hold out set can one compare the results one on one

with the results obtained in the initial final run from section 6.4.

A comparison of the three runs shows the following:

Table 6.5

The results support the findings in section 6.5.3. It also shows that a change in step length,

when no further improvements can be done, could be helpful when navigating through the

solution space in search for an even better solution.

7.0 Concluding Remarks
In this master thesis, it is shown that both the OLR and the CS in various forms are able to

perform significantly better than expected return suggests in simulated betting. And due to

this fact, it is possible to conclude that the bookmakers are not able to set odds completely

correct i.e. the betting market for football in England is inefficient. Even though an

inefficiency is detected, the search failed to profit from the inefficiency, meaning that the

bookmakers overround is higher than their misjudgment in odds setting. It is also shown

that a direct search such as CS on top of OLR is able to outperform OLR alone. The

research has not succeeded in finding a clear tendency in why this is the case, but it seems

like OLR tends to overestimate the probability of draws.

The only instance where the search was able to obtain an average return higher than zero

was when all the matches containing either Manchester United or Liverpool were removed

as an option to place a bet on. This could confirm that the bookmakers purposely lower the

odds for the top teams due to the common man’s belief in those teams, disregarded the

actual probability. The findings suggest that further investigation with more advanced

search algorithms and with other leagues is worth its while.

 37

8.0 Acknowledgements

The author is grateful for the help provided by supervisor Lars Magnus Hvattum. The

accessibility he has shown throughout the thesis is highly appreciated. The author would

also like to thank Erik Hulleberg for insightful discussions about football related questions.

References

W. Andreff, S. Szymanski, Handbook of the Economics of Sports, (2006) 41–43.

Y. Bengi, Y. Grandvalet, No Unbiased Estimator of the Variance of K-Fold Cross-
Validation, Journal of Machine Learning Research 5 (2004) 1089–1105.

J. L. Devore, K. N. Berk, Modern Mathematical Statistics with Applications (2012)

A. E. Elo, The new U.S.C.F. rating system, Chess Life 16 (1961) 160–161.

D. Forrest, J. Goddard, R. Simmons, Odds-Setters as Forecasters: The Case of English
Football, International Journal of Forecasting 21(3) (2005) 551-564.

Gambling Commission, Industry Statistics (2018) read 01.05.19

https://www.gamblingcommission.gov.uk/PDF/survey-data/Gambling-industry-

statistics.pdf

G. Gigerenzer, C. Engel (Eds.), Heuristics and the law, Cambridge, MA: MIT Press.

(2006) 17–44.

M. E. Glickman, A. C. Jones, Rating the Chess Rating System (1999)

J. Goddard, I. Asimakopoulos. Forecasting football results and the efficiency of fixed-odds

betting. Journal of Forecasting 23 (2004) 51–66.

J. Gross, L. Rebeggiani, Chance or Ability? The Efficiency of the Football Betting Market
Revisited (2018)

J. Haigh, Taking chances chapter 11 (1999)

L.M. Hvattum, H.Arntzen, Using ELO ratings for match results predictions in association

football, International Journal of forecasting 26 (2010) 460–470.

 38

L.M. Hvattum, F. Glover, Finding local optima of high-dimensional functions using direct

search methods, European Journal of Operational Research 195 (2009) 31–45.	

L.M. Hvattum, Ordinal versus nominal regression models and the problem of correctly
predicting draws in soccer, International Journal of Computer Science in Sport Volume 16,
Issue 1 (2017) 50–64.

S. Poshakwale, Evidence on Weak Form Efficiency and Day of the Week Effect in the
Indian Stock Market, FINANCE INDIA Vol. X No. 3, (1996) 605-616.

R. D. Sauer, The Economics of Wagering Markets. Journal of Economic Literature 36(4)

(1998) 2021–2064.

 39

Appendix
Tables
Table 1. (Results from 50 runs with OLR estimated parameters)

 40

Table 2. (Results from 50 runs with compass-search improved parameters)

 41

Table 3.a. (Parameter pre and post initial final run (hold out set excluded))

Table 3.b.

Table 4 (Compass search on data set with mean odds)

 42

Table 5. (Result of simulation when possibility of betting on matches containing popular
teams is removed)

 43

 44

Code

Code for initial run with parameters obtained with OLR:

// BettingAnlalysis.hpp

// Master Thesis

//
// Created by Hans Jacob Brun on 25/01/2019.

// Copyright © 2019 Hans Jacob Brun. All rights reserved.

//

#ifndef BettingAnalysis_hpp

#define BettingAnalysis_hpp

#include <stdio.h>

#include <vector>

#include <iostream>
#include <fstream>

#include <sstream>

#include <cstdlib>
#include <algorithm>

using namespace std;

struct date {

 int day;
 int month;

 int year;

};

struct match {

 int ID;

 date date;
 string home;

 string away;

 int result[2];
 int y;

 vector<double> probs;

 float odds[3];
 float elodif;

 float elodif2;

 float elomean;
 float elomean2;

 float distlog;

 45

 bool lessthan15km;

 bool importance[3];
 float homegoals[2];

 float awaygoals[2];

 bool weekendmatch;
 float cornerhome[2];

 float corneraway[2];

 float freekickhome[2];
 float freekickaway[2];

 match() : probs(3) {}
};

class BettingAnalysis {

 //Variables:
protected:

 int matchnumber;

 string filename;
 match* data;

 int seed;

 int* indices;
 int K;

 int Ksize;

 //Functions:
public:

 match getMatch(int index);

 void extractKsets(match** Ksets);
protected:

 void loadData();

 void calculate_y();
 void shuffleIndices();

 //Constructor:

public:
 BettingAnalysis(string fname,int mnum,int Knum);

 //Destructor:

public:

 ~BettingAnalysis();
};

#endif /* BettingAnlalysis_hpp */

// BettingAnlalysis.cpp
// Master Thesis

 46

//

// Created by Hans Jacob Brun on 25/01/2019.
// Copyright © 2019 Hans Jacob Brun. All rights reserved.

//

#include "BettingAnalysis.hpp"

using namespace std;

match BettingAnalysis::getMatch(int index) {
 if (index < matchnumber) {

 return data[index];

 } else {

 cout << "Could not load match " << index << " from data." << endl;
 match nullmatch;

 return nullmatch;

 }

}

void BettingAnalysis::extractKsets(match** Ksets) {

 shuffleIndices();
 for (int i = Ksize; i < matchnumber; i++) {

 Ksets[0][i-Ksize] = data[indices[i]];

 }
 for (int i = 0; i < Ksize; i++) {

 Ksets[1][i] = data[indices[i]];

 }
}

void BettingAnalysis::loadData() {

 ifstream fin;
 string line;

 fin.open(filename);

 if (fin.fail()) {
 cout << "Could not load data from '" << filename << "'." << endl;

 return;

 47

 }

 for (int i = 0; i < matchnumber; i++) {

 data[i].ID = i;

 getline(fin,line,'/');

 data[i].date.day = stoi(line);

 getline(fin,line,'/');
 data[i].date.month = stoi(line);

 getline(fin,line,',');

 data[i].date.year = stoi(line);

 getline(fin,line,',');

 data[i].home = line;

 getline(fin,line,',');
 data[i].away = line;

 getline(fin,line,',');
 data[i].result[0] = stoi(line);

 getline(fin,line,',');

 data[i].result[1] = stoi(line);

 getline(fin,line,',');

 if (line.empty()) {
 data[i].odds[0] = -1;

 } else {

 data[i].odds[0] = stof(line);
 }

 getline(fin,line,',');

 if (line.empty()) {
 data[i].odds[1] = -1;

 } else {

 data[i].odds[1] = stof(line);
 }

 getline(fin,line,',');

 if (line.empty()) {

 data[i].odds[2] = -1;
 } else {

 data[i].odds[2] = stof(line);

 }

 getline(fin,line,',');

 data[i].elodif = stof(line);
 getline(fin,line,',');

 data[i].elomean = stof(line);

 48

 getline(fin,line,',');

 data[i].elomean2 = stof(line);
 getline(fin,line,',');

 data[i].elodif2 = stof(line);

 getline(fin,line,',');

 data[i].distlog = stof(line);

 getline(fin,line,',');
 data[i].lessthan15km = stoi(line);

 getline(fin,line,',');
 data[i].importance[0] = stoi(line);

 getline(fin,line,',');

 data[i].importance[1] = stoi(line);

 getline(fin,line,',');
 data[i].importance[2] = stoi(line);

 getline(fin,line,',');
 data[i].homegoals[0] = stof(line); //sluppet inn hjemmelag

 getline(fin,line,',');

 data[i].homegoals[1] = stof(line); //scoret hjemmelag
 getline(fin,line,',');

 data[i].awaygoals[0] = stof(line); //sluppet inn bortelag

 getline(fin,line,',');
 data[i].awaygoals[1] = stof(line); //scoret bortelag

 getline(fin,line,',');
 data[i].weekendmatch = stoi(line);

 getline(fin,line,',');
 data[i].cornerhome[0] = stof(line); //corner vunnet av hjemmelag

 getline(fin,line,',');

 data[i].cornerhome[1] = stof(line); //corner avgitt av hjemmelag
 getline(fin,line,',');

 data[i].corneraway[0] = stof(line); //corner vunnet av bortelag

 getline(fin,line,',');

 data[i].corneraway[1] = stof(line); //corner avgitt av bortelag

 getline(fin,line,',');

 data[i].freekickhome[0] = stof(line); //frispark vunnet av hjemmelaget
 getline(fin,line,',');

 data[i].freekickhome[1] = stof(line); //frispark avgitt av hjemmelaget

 getline(fin,line,',');
 data[i].freekickaway[0] = stof(line); //frispark vunnet av bortelaget

 49

 getline(fin,line,'\n');

 data[i].freekickaway[1] = stof(line); //frispark avgitt av bortelaget

 }

 fin.close();
}

void BettingAnalysis::calculate_y(){
 for (int i = 0; i < matchnumber; i++){

 if (data[i].result[0] > data[i].result[1]) {

 data[i].y = 1;
 } else if (data[i].result[0] == data[i].result[1]) {

 data[i].y = 2;

 } else {

 data[i].y = 3;
 }

 }

}

void BettingAnalysis::shuffleIndices() {

 for (int i = 0; i < matchnumber; i++) {
 int j = rand() % matchnumber;

 swap(indices[i],indices[j]);

 }
}

BettingAnalysis::BettingAnalysis(string fname, int mnum, int Knum) {
 filename=fname;

 matchnumber=mnum;

 K = Knum;
 Ksize = matchnumber/K;

 data = new match[matchnumber];

 loadData();
 calculate_y();

 indices = new int[matchnumber];

 for (int i = 0; i < matchnumber; i++) {

 indices[i] = i;
 }

 seed = 55;

 srand(seed);
}

BettingAnalysis::~BettingAnalysis() {
 delete[] data;

 delete[] indices;

 50

}

// main.cpp

// Master Thesis
//

// Created by Hans Jacob Brun on 25/01/2019.

// Copyright © 2019 Hans Jacob Brun. All rights reserved.
//

#include "BettingAnalysis.hpp"

#include <iostream>

#include <vector>
#include "OLR.hpp"

#include <algorithm>

using namespace std;

int main () {

 int datasize = 33124;
 int K = 10;

 int Ksize = datasize/K;

 BettingAnalysis Analysis1("Masterdata.txt",datasize,K);

 match** Ksets = new match*[2];
 //Training sample

 Ksets[0] = new match[datasize-Ksize];

 //Validation sample
 Ksets[1] = new match[Ksize];

 Analysis1.extractKsets(Ksets);

 vector<vector<double>> trainingX(datasize-Ksize,vector<double>(22));

 vector<int> trainingY(datasize-Ksize);

 for (int i = 0; i < datasize-Ksize; i++){
 trainingX[i][0] = Ksets[0][i].elodif;

 trainingX[i][1] = Ksets[0][i].elodif2;

 trainingX[i][2] = Ksets[0][i].elomean;
 trainingX[i][3] = Ksets[0][i].elomean2;

 51

 trainingX[i][4] = Ksets[0][i].distlog;

 trainingX[i][5] = Ksets[0][i].lessthan15km;
 trainingX[i][6] = Ksets[0][i].importance[0];

 trainingX[i][7] = Ksets[0][i].importance[1];

 trainingX[i][8] = Ksets[0][i].importance[2];
 trainingX[i][9] = Ksets[0][i].homegoals[0];

 trainingX[i][10] = Ksets[0][i].homegoals[1];

 trainingX[i][11] = Ksets[0][i].awaygoals[0];
 trainingX[i][12] = Ksets[0][i].awaygoals[1];

 trainingX[i][13] = Ksets[0][i].weekendmatch;

 trainingX[i][14] = Ksets[0][i].cornerhome[0];
 trainingX[i][15] = Ksets[0][i].cornerhome[1];

 trainingX[i][16] = Ksets[0][i].corneraway[0];

 trainingX[i][17] = Ksets[0][i].corneraway[1];

 trainingX[i][18] = Ksets[0][i].freekickhome[0];
 trainingX[i][19] = Ksets[0][i].freekickhome[1];

 trainingX[i][20] = Ksets[0][i].freekickaway[0];

 trainingX[i][21] = Ksets[0][i].freekickaway[1];
 trainingY[i] = Ksets[0][i].y;

 }

 vector<vector<double>> validationX(Ksize,vector<double>(22));

 vector<int> validationY(Ksize);

 for (int i = 0; i < Ksize; i++){
 validationX[i][0] = Ksets[1][i].elodif;

 validationX[i][1] = Ksets[1][i].elodif2;

 validationX[i][2] = Ksets[1][i].elomean;
 validationX[i][3] = Ksets[1][i].elomean2;

 validationX[i][4] = Ksets[1][i].distlog;

 validationX[i][5] = Ksets[1][i].lessthan15km;
 validationX[i][6] = Ksets[1][i].importance[0];

 validationX[i][7] = Ksets[1][i].importance[1];

 validationX[i][8] = Ksets[1][i].importance[2];
 validationX[i][9] = Ksets[1][i].homegoals[0];

 validationX[i][10] = Ksets[1][i].homegoals[1];

 validationX[i][11] = Ksets[1][i].awaygoals[0];

 validationX[i][12] = Ksets[1][i].awaygoals[1];
 validationX[i][13] = Ksets[1][i].weekendmatch;

 validationX[i][14] = Ksets[1][i].cornerhome[0];

 validationX[i][15] = Ksets[1][i].cornerhome[1];
 validationX[i][16] = Ksets[1][i].corneraway[0];

 validationX[i][17] = Ksets[1][i].corneraway[1];

 validationX[i][18] = Ksets[1][i].freekickhome[0];
 validationX[i][19] = Ksets[1][i].freekickhome[1];

 validationX[i][20] = Ksets[1][i].freekickaway[0];

 52

 validationX[i][21] = Ksets[1][i].freekickaway[1];

 validationY[i] = Ksets[1][i].y;
}

 OLR statistics;

 statistics.estimateParameters(trainingX, trainingY);

 vector<double> beta, theta;

 statistics.getParameters(beta, theta);

 for (int i = 0; i < beta.size(); i++) {

 cout << beta[i] << "\t";
 }

 cout << endl;

 for (int i = 0; i < theta.size(); i++) {

 cout << theta[i] << "\t";

 }
 cout << endl;

 for (int i = 0; i < Ksize; i++) {

 statistics.calculateProbabilities(Ksets[1][i].probs, validationX[i], beta, theta);

 }

 float L_threshold = 0.0;

 float threshold = 1.0;

 int bet;
 int bets = 0;

 int unit = 1;

 double income = 0;

 for (int i = 0; i < Ksize; i++) {
 bet = 0;

 for (int j = 1; j < 3; j++) {

 if (Ksets[1][i].odds[j]*Ksets[1][i].probs[j] > Ksets[1][i].odds[bet]*Ksets[1][i].probs[bet]) {
 bet = j;

 }

 }
 if ((1/Ksets[1][i].odds[bet]) > L_threshold && Ksets[1][i].odds[bet]*Ksets[1][i].probs[bet] > threshold) {

 bets += 1;

 53

 if (bet == Ksets[1][i].y-1) {

 income += unit*Ksets[1][i].odds[bet];
 }

 }

 }
 double profit = income-unit*bets;

 cout << "Your profit was " << profit << " units." << endl;

 cout <<"You played on " <<bets<< " games."<< endl;

 return 0;

 }

Code for initial run with parameters obtained in by compass search (simulation and

search):

//	
// main.cpp	
// Master Thesis	
//	
// Created by Hans Jacob Brun on 25/01/2019.	
// Copyright © 2019 Hans Jacob Brun. All rights reserved.	
//

	

//Simulation for training and validation set

float simulating(match** Ksets, bool training, float threshold, float L_threshold){	
 int bet;	
 int bets = 0;	
 int unit = 1;	
 double income = 0;	
 if (training) {	
 for (int i = 0; i < datasize-Ksize; i++) {	
 bet = 0;	
 for (int j = 1; j < 3; j++) {	
 if (Ksets[0][i].odds[j]*Ksets[0][i].probs[j] > Ksets[0][i].odds[bet]*Ksets[0][i].probs[bet]) {	
 bet = j;	
 }	
 }	

 54

 if ((1/Ksets[0][i].odds[bet]) > L_threshold && Ksets[0][i].odds[bet]*Ksets[0][i].probs[bet] > threshold) {	
 bets += 1;	
 if (bet == Ksets[0][i].y-1) {	
 income += unit*Ksets[0][i].odds[bet];	
 }	
 }	
 }	
 } else {	
 for (int i = 0; i < Ksize; i++) {	
 bet = 0;	
 for (int j = 1; j < 3; j++) {	
 if (Ksets[1][i].odds[j]*Ksets[1][i].probs[j] > Ksets[1][i].odds[bet]*Ksets[1][i].probs[bet]) {	
 bet = j;	
 }	
 }	
 if ((1/Ksets[1][i].odds[bet]) > L_threshold && Ksets[1][i].odds[bet]*Ksets[1][i].probs[bet] > threshold) {	
 bets += 1;	
 if (bet == Ksets[1][i].y-1) {	
 income += unit*Ksets[1][i].odds[bet];	
 }	
 }	
 }	
 }	
 double profit = income-unit*bets;	
 BETS = bets;	
 return profit;	
}	
		

//Limit-value search

float* local_opt_for_threshold(match** Ksets){	
 bool flag = true;	
 float best_threshold = 1.0;	
 float best_l_threshold = 0.0;	
 float max_profit = simulating(Ksets, true, best_threshold, best_l_threshold);	
 //cout<<max_profit<<endl;	
 float *thr = new float[4];	
 float *l_thr = new float[4];	
 thr[0] = 0.05;	
 thr[1] = 0.0;	
 thr[2] = -0.05;	
 thr[3] = 0.0;	
 l_thr[0] = 0.0;	
 l_thr[1] = -0.05;	

 55

 l_thr[2] = 0.0;	
 l_thr[3] = 0.05;	
 while(flag){	
 flag = false;	
 for(int i = 0; i < 4; i++){	
 float temp_thr = best_threshold;	
 float temp_l_thr = best_l_threshold;	
 float profit;	
 if(temp_thr+thr[i] >= 0 && temp_l_thr+l_thr[i] >= 0){	
 temp_thr+=thr[i];	
 temp_l_thr+=l_thr[i];	
 profit = simulating(Ksets, true, temp_thr, temp_l_thr);	
 //printf("Threshold : %f, L_threshold : %f, profit : %f\n", temp_thr, temp_l_thr, profit);	
 if(profit>max_profit){	
 flag = true;	
 max_profit = profit;	
 best_l_threshold = temp_l_thr;	
 best_threshold = temp_thr;	
 }	
 }	
 }	
 }	
 printf(" Best threshold : %f, Best L_threshold : %f, Best profit : %f", best_threshold, best_l_threshold,

max_profit);	
 float* answer = new float[3];	
 answer[0] = max_profit;	
 answer[1] = best_threshold;	
 answer[2] = best_l_threshold;	
 return answer;	
}	
		

	

	

	

	
int main () {	
 	
 	
 //Search for tuning parameters
 	
 for (int i = 0; i < datasize-Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[0][i].probs, trainingX[i], beta, theta);	
 }	

 56

 	
 	
 float* best_tripple = local_opt_for_threshold(Ksets);	
 float max_profit = best_tripple[0];	
 float best_threshold = best_tripple[1];	
 float best_l_threshold = best_tripple[2];	
 	
 int best_bets = BETS;	
 	
 bool flag = true;	
 vector<double> beta_temp, theta_temp;	
 	
 theta_temp = theta;	
 beta_temp = beta;	
 	
 int count = 0;	
 while(flag){	
 flag = false;	
 printf("\nNew loop %d\n", ++count);	
 for(int i = 1; i < theta.size()-1; i++){	
 double delta_theta = theta_error[i];	
 for(int j = 0; j < 2; j++){	
 printf("\n %d %d\n",i,j);	
 theta_temp[i] = theta[i] + delta_theta;	
 //simulate	
 for (int i = 0; i < datasize-Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[0][i].probs, trainingX[i], beta_temp, theta_temp);	
 }	
 float* answer = local_opt_for_threshold(Ksets);	
 float temp_profit = answer[0];	
 if(temp_profit > max_profit){	
 theta[i] = theta_temp[i];	
 max_profit = temp_profit;	
 best_bets = BETS;	
 best_threshold = answer[1];	
 best_l_threshold= answer[2];	
 flag = true;	
 break;	
 }	
 delta_theta *= -1;	
 }	
 theta_temp[i] = theta[i];	
 }	
 for(int i = 0; i < beta.size(); i++){	
 double delta_beta = beta_error[i];	

 57

 for(int j = 0; j < 2; j++){	
 printf("\n %d %d\n",i,j);	
 beta_temp[i] = beta[i] + delta_beta;	
 //simulate	
 for (int i = 0; i < datasize-Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[0][i].probs, trainingX[i], beta_temp, theta_temp);	
 }	
 float* answer = local_opt_for_threshold(Ksets);	
 float temp_profit = answer[0];

 //end of simulation	
 if(temp_profit > max_profit){	
 beta[i] = beta_temp[i];	
 max_profit = temp_profit;	
 best_bets = BETS;	
 best_threshold =answer[1];	
 best_l_threshold= answer[2];	
 flag = true;	
 break;	
 }	
 delta_beta*= -1;	
 }	
 beta_temp[i] = beta[i];	
 }	
 }	
 	
 printf("\nBest of the bests is - profit: %f, threshold: %f, l_threshold: %f\n", max_profit, best_threshold,

best_l_threshold);	
 for (int i = 0; i < beta.size(); i++) {	
 cout << beta[i] << "\t";	
 }	
 cout << endl;	
 	
 for (int i = 0; i < theta.size(); i++) {	
 cout << theta[i] << "\t";	
 }	
 cout << endl;	
 	
 	
 for (int i = 0; i < Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[1][i].probs, validationX[i], beta, theta);	
 }	
 	
 float validation_profit = simulating(Ksets, false, best_threshold, best_l_threshold);	
 	
 int validation_bets = BETS;	

 58

 	
		
 printToFile(fout, k, s++, validation_bets, validation_profit, best_threshold, best_l_threshold);	
 }	
		
 	
 fout.close();	
 return 0;	
 }	

//Search for reduction in step-length when no further improvements can de done

 	
 bool flag = true;	
 vector<double> beta_temp, theta_temp;	
 	
 theta_temp = theta;	
 beta_temp = beta;	
 	
 int count = 0;	
 while(flag){	
 flag = false;	
 printf("\nNew loop %d\n", ++count);	
 for(int i = 1; i < theta.size()-1; i++){	
 double delta_theta = theta_error[i];	
 for(int j = 0; j < 2; j++){	
 printf("\n %d %d\n",i,j);	
 theta_temp[i] = theta[i] + delta_theta;	
 //simulate	
 for (int i = 0; i < datasize-Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[0][i].probs, trainingX[i], beta_temp, theta_temp);	
 }	
 float* answer = local_opt_for_threshold(Ksets);	
 float temp_profit = answer[0];	
 //end of simulation	
 if(temp_profit > max_profit){	
 theta[i] = theta_temp[i];	
 max_profit = temp_profit;	
 best_bets = BETS;	
 best_threshold = answer[1];	
 best_l_threshold= answer[2];	
 flag = true;	
 break;	

 59

 }	
 delta_theta *= -1;	
 }	
 theta_temp[i] = theta[i];	
 }	
 for(int i = 0; i < beta.size(); i++){	
 double delta_beta = beta_error[i];	
 for(int j = 0; j < 2; j++){	
 printf("\n %d %d\n",i,j);	
 beta_temp[i] = beta[i] + delta_beta;	
 //simulate	
 for (int i = 0; i < datasize-Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[0][i].probs, trainingX[i], beta_temp, theta_temp);	
 }	
 float* answer = local_opt_for_threshold(Ksets);	
 float temp_profit = answer[0];	
 //end of simulation	
 if(temp_profit > max_profit){	
 beta[i] = beta_temp[i];	
 max_profit = temp_profit;	
 best_bets = BETS;	
 best_threshold =answer[1];	
 best_l_threshold= answer[2];	
 flag = true;	
 break;	
 }	
 delta_beta*= -1;	
 }	
 beta_temp[i] = beta[i];	
 }	
 	
 for(int i = 1; i < theta.size()-1; i++){	
 double delta_theta = theta_error[i] / 2;	
 for(int j = 0; j < 2; j++){	
 printf("\n %d %d\n",i,j);	
 theta_temp[i] = theta[i] + delta_theta;	
 //simulate	
 for (int i = 0; i < datasize-Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[0][i].probs, trainingX[i], beta_temp, theta_temp);	
 }	
 float* answer = local_opt_for_threshold(Ksets);	
 float temp_profit = answer[0];	
 	
 if(temp_profit > max_profit){	
 theta[i] = theta_temp[i];	

 60

 max_profit = temp_profit;	
 best_bets = BETS;	
 best_threshold = answer[1];	
 best_l_threshold= answer[2];	
 flag = true;	
 break;	
 }	
 delta_theta *= -1;	
 }	
 theta_temp[i] = theta[i];	
 }	
 for(int i = 0; i < beta.size(); i++){	
 double delta_beta = beta_error[i] / 2;	
 for(int j = 0; j < 2; j++){	
 printf("\n %d %d\n",i,j);	
 beta_temp[i] = beta[i] + delta_beta;	
 //simulate	
 for (int i = 0; i < datasize-Ksize; i++) {	
 statistics.calculateProbabilities(Ksets[0][i].probs, trainingX[i], beta_temp, theta_temp);	
 }	
 float* answer = local_opt_for_threshold(Ksets);	
 float temp_profit = answer[0];	
 //end of simulation	
 if(temp_profit > max_profit){	
 beta[i] = beta_temp[i];	
 max_profit = temp_profit;	
 best_bets = BETS;	
 best_threshold =answer[1];	
 best_l_threshold= answer[2];	
 flag = true;	
 break;	
 }	
 delta_beta*= -1;	
 }	
 beta_temp[i] = beta[i];	
 }	
		
 }	

//Simulation with removal of matches containing Manchester United or Liverpool from

validation fold.

 61

 } else {	
 for (int i = 0; i < Ksize; i++) {	
 bet = 0;	
 for (int j = 1; j < 3; j++) {	
 if (Ksets[1][i].odds[j]*Ksets[1][i].probs[j] > Ksets[1][i].odds[bet]*Ksets[1][i].probs[bet]) {	
 bet = j;	
 }	
 	
 }	
 if ((1/Ksets[1][i].odds[bet]) > L_threshold && Ksets[1][i].odds[bet]*Ksets[1][i].probs[bet] > threshold) {	
 if (Ksets[1][i].home != "MAN UNITED" && Ksets[1][i].away != "MAN UNITED" && Ksets[1][i].home !=
"LIVERPOOL" && Ksets[1][i].away != "LIVERPOOL")	
 bets += 1;	
 if (bet == Ksets[1][i].y-1) {	
 income += unit*Ksets[1][i].odds[bet];	
 }	
 }	
 }	
 }	

