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Summary 

This thesis has focused on the implementation of heuristics to the three-dimensional 

packing problem with weight constraints to see how the usage of box weight as a decision 

variable influence the packing of pallets. The problem considered has implemented 

heuristic selection procedures to check if the packing based on weight and height can 

compete with the packing conducted by experienced workers. This thesis describes how a 

mixed integer mathematical model, with and without modifications, can be used to find 

possible packing possibilities. Two different heuristic approaches are created and 

presented; the first is an approach that locks each of the coordinates for already packed 

boxes, while, the second is a construction heuristic that uses weight, and later the height, as 

the box selection criteria. The models and heuristics are applied to a real-life packing 

problem and compared to real-life solutions, as well as to each other. The results show that 

the approaches tested do not manage to compete with the experienced workers and are far 

from managing to outperform them.  
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1. Introduction 

This idea behind the research conducted in this thesis and the data used is provided by a 

company situated in Ålesund, Driw. Driw provides companies with systems and solutions 

to get full control and tracking of the flow of goods within the supply chain. In their search 

to improve their product and knowledge of packing, a three-dimensional packing problem 

with weight restriction created by Yang (2016) was discovered. This problem led to the idea 

of a four-dimensional packing problem with weight as the fourth dimension. The question 

Driw wants to figure out is if implementing the weight of the boxes not only regarding the 

total weight of the packed boxes but also independent from each other can create better 

packing solutions than what the workers are capable of at the moment. They will also want 

to know if the introduction of plasticity in the constraints can create better packing solutions.  

  

Combinatorial optimisation has since it achieved foothold, almost 70 years ago, become one 

of the driving forces in the field of discrete mathematics. A lot of the problems considered 

in combinatorial optimisation is concerned with the organisation and use of scarce resources 

to create better efficiency and improve upon productivity (Nemhauser and Wolsey 1988). 

The problem is often formulated using graphs and integer or mixed-integer linear models. 

The field spans such problems as machine scheduling, vehicle routing, facility location and 

bin packing, expressing the field’s relevance towards real-life problems and issues. (Korte 

and Vygen 2006) 

 

One of the most extensive and researched fields within combinatorial optimisation is the 

field concerning bin packing. Not only is bin packing one of the most frequently researched 

fields in combinatorial optimisation, but it is also one of the problems with the most practical 

relevance, with Korte and Vygen (2006) stating, “There are not many combinatorial 

optimization problems whose practical relevance is more obvious” (2006, pp.425).  Bin 

packing problems can be seen used in problems across a vast number of different industries, 

some of which being shipping, air cargo and vehicle routing — helping bin packing become 

one of the most complex and challenging problems in combinatorial optimisation.    

 

Bin packing can be described as a problem where a given number of items, mainly boxes, 

are going to be packed into a finite number of bins. The objective is to pack these boxes in 

the best possible way so that as few as possible bins are used, either by maximising the 
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volume utilised or by minimising the empty space in the bin. Most packing situations 

concerns the packing of items given by their volume, three-dimensional packing, i.e. by the 

dimensions given by the box’s length, height and width. None of the boxes can overlap, so 

not to occupy the same volume. The weight of the boxes can also be considered when 

packing. Most bins and containers have a specific restriction on how much weight that can 

be packed onto it. The restriction makes sure that even though there might be more room for 

another box, this will not be utilised if the weight restriction is met. Another bin must then 

be used to pack the box.    

  

In its raw sense, bin packing can come across as a simple enough concept; pack as many 

boxes as possible into as few as possible bins. Although bin packing may come across as 

straight forward, the repercussions of inadequate packing can have severe consequences, 

much in the same way that good packing can have an opposite effect. First and foremost, 

proper packing is both necessary and essential when concerned with the environment, health 

and safety (EHS). Unstable packing can cause items to fall, and as a result, there might occur 

injuries to the workers taking part in the packing, loading and unloading.  

 

Secondly, good packing can prevent damages done to the goods that are to be packed, as 

well as equipment and the means of transportation. Deformation and damages to the goods 

caused by inadequate packing can cost a company not only money in terms of paying for 

damages and multiple deliveries of the same order, but it can also cost the company the 

entire client. Damage can also be inflicted to the equipment used in the packing and 

transportation of the goods, as well as to the bin or container itself. This is not only regarding 

the boxes packed being too heavy, but also where these boxes are placed inside the bin or 

container, i.e. the weight distribution. Vehicles, mainly larger trucks, used for transporting 

goods can be damaged during the transportation if too much weight is put on top of the front- 

and the rear axle, causing the axles to bend or break (Alonso et al. 2017). Pallets that are 

made of either wood or plastic can break when too much pressure is placed on specific areas. 

Also, cranes and other equipment can be damaged by the bins or the containers being too 

heavy, or by a skew weight distribution.  

 

Thirdly, packing can be time-consuming. Proper packing is essential to better the efficiency 

of both the packing and the unloading procedure (Haessler and Brian Talbot 1990). As cliché 

as it may seem, Benjamin Franklin’s famous quote “Remember that Time is Money” 
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(Founders online, Benjamin Franklin 1748, pp.1) is something that is well documented in 

bin packing- and container loading problems (Monaco, Sammarra, and Sorrentino 2014). 

Time becomes a factor both regarding faster packing as well as regarding stable and non-

damaging packing, excluding the need for several deliveries for the same order. Also, the 

packing patterns and the order the items are loaded play an essential part when discussing 

efficiency, mainly concerning the loading and unloading procedures. These problems are 

often faced in routing problems with loading and unloading constraints, seen in seaborne-, 

rail-, and road transportation. The packing order is key for efficiency in these problems so 

that unnecessary items do not have to be unloaded and then loaded back in.  

 

Finally, stable and well-balanced packing can lower fuel consumption, which further leads 

to less emission. The pursuit of more environmentally friendly ways of transportation is 

more important today than it has ever been before. It is no longer enough for companies to 

complete deliveries; these deliveries should also be done in such a way that emissions are as 

low as possible. Better weight-distribution and loading leads to better cargo stability, which, 

according to Amiouny et al. (1992) lead to fuel savings.  

 

All these distinctive attributes contribute to the vastness and complexity that is bin packing. 

Even though many aspects are taken into consideration in bin packing problems and packing 

problems nowadays are more frequently modelled towards representing real-life problems, 

many of the aspects are tackled separately. Some problems are concerned with stability, 

others with weight distribution and fragility, and so forth. This thesis will consider all the 

different aspects that arise, including total weight, weight distribution, stability and load 

balancing  

 

The main objective of this thesis is to pack a finite number of boxes onto as few as possible 

pallets, by implementing the volume and the weight of the boxes both regarding the weight 

restriction of the pallet as well as independent from each other. The idea stems from the 

problem tackled by Yang (2016). Just as with many packing problems, a finite number of 

boxes where to be packed into a finite number of bins with different dimensions. Instead of 

only focusing on the volume of the boxes, Yang also considered the weights, creating 

something he called a four-dimensional packing problem. Since the weight of the boxes was 

only considered in terms of bin weight and not independent from each other, it did not have 

any effect on the packing patterns or the order the boxes were packed. Causing the problem 
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to be more similar to a three-dimensional packing problem with weight constraint, then a 

four-dimensional problem.  

 

This thesis considers a model created based on Paquay, Schyns, and Limbourg (2016), with 

added modifications. The model considers a packing-problem where a given set of boxes, 

an order of items, are to be packed onto a finite number of same size pallets. The packing is 

based on the length, height, width and weight of the boxes, and constraints concerning 

stability, load balancing, overlapping and size restriction is implemented. This model can 

only solve small problems. A test problem will be implemented to check the validity of the 

model. This problem will be solvable for the model and show that the restrictions and 

constraints implemented have the desired effect.  

 

Another packing possibility that will be considered is to pack the pallet bit by bit, locking 

the coordinates of boxes that have been packed. When the coordinates are locked, the model 

packs a new set of boxes, but the coordinates of the boxes already packed are unavailable 

for the new boxes — creating fewer packing possibilities, the more packs that have been 

packed. If there are no suitable places for a box to be placed, a new pallet is made available. 

 

A construction heuristic is implemented to solve larger problems. The heuristic divides the 

pallets into sections, making for a smaller problem size. A modified model based on Paquay, 

Schyns, and Limbourg (2016) is used with the heuristic. When all the boxes in an order are 

packed, based on the weight of the boxes, each of the packed sections is defined as a box, 

and the model is implemented to pack these sections, ending up with packed pallets. 

Plasticity will be introduced to the solution created by the heuristic to see if minor changes 

to the constraints used can have an impact on the packing.  

 

Changing the heuristic to choose the set of boxes based on height instead of weight will also 

be considered, although in a smaller example than the weight-based heuristic. This approach 

is implemented to see what disregarding weight can do to the packing and the volume 

utilisation.  

 

The thesis has the following structure: Section 2 is devoted to the literature surrounding bin-

packing, describing different applications of models in the vast research field, mostly 

concerned with three-dimensional packing problems and the implementations of stability, 
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weight distribution and load balancing in container loading problems. Section 3 consists of 

a description of the problem itself. Section 4 describes the models used and the constraints 

and parameters used in the modelling procedure. Section 5 is dedicated to the description of 

the construction heuristic created to solve larger instances of the problem. Section 6 creates 

a detailed overview of the computational results that have been found. Packing from both 

the modified and the non-modified models by Paquay, Schyns, and Limbourg (2016) will 

be presented, both regarding the construction heuristic and the maximum fill approach. 

Section 7 includes the concluding remarks to the thesis, the limitations and some ideas of 

what can be done in future research.  
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2. Literature Review 

Since bin packing is one of the largest research fields in combinatorial optimisation and 

includes a vast array of different problems, all having different parameters and dimensions, 

massive amounts of literature are available on the subject. Extending from one- dimensional 

problems to the even more complex three-dimensional problems with weight-, stability- and 

loading constraints, and spanning everything from sheer bin packing problems to vehicle 

routing problems with loading constraints: The literature and research available are 

extensive and complex.  

 

There are primarily four different problems the field of bin packing focuses on one-

dimensional, two-dimensional, three-dimensional and multi-dimensional problems. The 

dimensionality describes the geometry of the items that are to be packed and therefore, has 

a significant impact on the packing patterns of the items.  This thesis considers a three-

dimensional bin packing problem with weight constraints.  

  

Multi-dimensional problems also occur frequently in the literature and research regarding 

combinatorial optimisation. These problems differ from the four-dimensional problems by 

packing items of d-dimensions into a bin or container of d-dimensions and concerns the 

problem of maximising the number of vectors possible to pack into a bin or container of a 

specific fixed size (Chekuri and Khanna 2004). Multi-dimensional problems are often used 

in the field of scheduling and resource allocation (Bansal, Caprara, and Sviridenk, 2006). 

One particular form of the multi-dimensional problem is the vector bin packing problem. 

This problem is described by Chekuri and Khanna (2004) as “The vector bin packing 

problem, on the other hand, seeks to minimize the number of bins needed to schedule all n-

tasks such that the maximum load on any dimension across all bins is bounded by a fixed 

quantity, say,1.” (2004, pp. 1). The research and literature in this thesis explore three-

dimensional problems across the research field, including bin packing, container loading and 

vehicle routing, with the inclusion of load balancing-, stability- and fragility constraints.     

 

2.1 Bin Packing 

In literature, bin packing problems are known under a vast number of different names, 

including knapsack problem, cutting problem, strip packing, vector packing. All of these 
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problems are very similar, with subtle differences in figure shape, quantity measurement, 

packing patterns, bin size and more. (Delorme, Iori, and Martello 2018).   

 

The bin packing problem is categorised as an NP-hard problem in combinatorial 

optimisation. This means that the problem is at least as hard as an NP problem and that the 

existence of an algorithm that can solve it to optimality in a reasonable amount of time is 

unlikely to exist (Tsai, Malstrom, and Kuo 1991). Since methods of optimally solving 

significant bin packing problems in a reasonable amount of time may not exist, a lot of the 

research on solving bin packing problems have been centred on heuristics and approximation 

algorithms. In other words, the research focuses on finding near-optimal solutions. Even 

though approximation algorithms and heuristics may not find the optimal solution, it comes 

up with solutions that guarantee to be in a specific percentage range of the optimal, in the 

fraction of the time.  

 

Given the extensive and complex research and literature, different reviews and typologies 

of bin packing problems have been published. This to better understand and categorise the 

problem itself, as well as creating an overview of the literature on the subject. One of the 

first typologies of cutting and packing problems was issued by Dyckhoff (1990).  The paper 

created one of the first expansive overviews of the research field, by both diving into the 

characteristics that are important to look at in packing and creating small reviews of the 

literature that exists on the different subjects and dimensionalities. Dyckhoff stated that “The 

purpose is to unify the different use of notions in the literature and to concentrate further 

research on special types of problems”. (1990, pp.145).  

 

Wäscher, Haußner, and Schumann (2007) later updated and improved upon Dyckhoff’s 

typology. They stated that the ever-growing literature on the subject, mainly the significant 

increase in the last two decades, had made the previous typology a bit outdated. They 

specified that a new typology would give a fresh and new look on the research field, while 

also keeping the notion that the new typology would help concentrate future research on 

specific varieties of the bin packing problem. Their main task consisted of modifying the 

definitions and characteristics created by Dyckhoff, while also defining basic, intermediate 

and refined problem types, further developing and updating the vast problem library. The 

new typology also showed that problems could be solved across different problem 
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categories, stating that not all cutting and packing problems could be designated to a specific 

problem type, presenting a vaster perspective on the packing and cutting problems. 

 

In later research and since its inception, researchers have emphasised on three-dimensional 

packing problems, mainly given its greater relatability to real-life problems and complex 

nature. In three-dimensional packing problems, an assumption that the boxes are rectangular 

is made. The goal is to pack the items orthogonally into as few as possible identical bins. 

Even though the boxes are assumed to be rectangular, the packing problem can also include 

cuboids and cylinders, although these are less researched and less frequent.  

 

Hifi et al. (2010) introduced a mixed integer linear programming model (MILP1) to tackle 

the three-dimensional packing problem. The objective was to minimise the number of 

identical bins. They gave each of the possible bins a label, number, and minimised the 

highest label of the used bin. The model considered overlapping constraints, guaranteeing 

that no items occupy the same volume in the bin. The model managed to obtain feasible 

solutions in a reasonable amount of time for instances with up to 60 items. They introduced 

lower bounds that were centred on the solving of LP-relaxation of the model, where the 

trivial lower bound was the optimal value of the LP-relaxation of the model. Given the fact 

that the trivial lower bound is weak, the conducting of a branch and bound approach to the 

solving of the model would have included a large number of additional tree nodes — further 

leading to non-feasible solutions in a reasonable time. To obtain feasibly, and time relative, 

solutions to larger problems, they introduced lower bound constraints that were based on 

valid inequalities found in parallel-machine scheduling problems. With the inclusion of 

these inequality constraints, the model managed to yield satisfactory results to the packing 

problem.  

 

2.1.1 Pallet Packing Problem 

Pallet packing problems are less researched than its more known brethren bin- and container 

packing. The pallet packing problem aims to pack as many items as possible into the 

dimensions provided by a pallet. Contrary to bins and containers, pallets do not have solid 

walls. This means that there is less lateral support for the boxes packed then what is seen in 

container loading problems. The lack of solid walls may, however, come with some 

advantages, one of which is the possibility of introducing plasticity to the constraints.  
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Plasticity is a term often used in mathematics and medicine. In mathematics, plasticity is the 

research of how plastically deformed solids, such as metals, can withstand stress and strain 

(Hill 1998). In medicine, plasticity is commonly used in the terminology of neural plasticity. 

Neural plasticity is described by Kaas (2001) as “neural plasticity refers to the ability of 

neurons to change in form and function in response to alterations in their environment” 

(2001, pp.10542). The principals behind these descriptions of plasticity can be used in pallet 

packing. Where containers have solid walls, pallets only have natural base areas. By, ever 

so slightly, increasing the pallet length and/or width, new packing possibilities occur letting 

the edges of the boxes to be put a little outside the pallet walls.  

 

Bischoff, Janetz, and Ratcliff (1995) focused on internal stability in their research of 

packing. They concentrated on what is called the “Distributor’s Pallet Packing Problem”, 

referring it to as “where items of varying sizes – representing an order for a customer – have 

to be loaded onto a pallet” (1995, p.681). The objective is to maximise the volume of the 

boxes packed onto the pallet. In contrast, “Manufacturer’s Pallet Packing Problem” packs 

identical boxes in layers, each box having the same vertical orientation, creating a possibility 

of decreasing the problem from a three-dimensional problem into a two-dimensional. Even 

though the pallet problem, especially the distribution pallet packing problem, have not been 

prioritised in research or literature, a lot of what can be found in other bin packing problems 

and container loading can be implemented and vice versa. With the problems having almost 

all the same variables, parameters and constraints, differing only in aspects such as support, 

size and heterogeneous vs homogenous boxes.  

 

2.1.2 Corner point and robot packing 

Martello, Pisinger, and Vigo (2000) modelled a problem where a given number of three-

dimensional rectangular items was to be packed into an unlimited number of identical three-

dimensional rectangular bins. The problem did not allow for rotation, and the packing was 

conducted orthogonally, meaning that each of the edges of the package is parallel to the bin 

edge it corresponds to, I.e. that the packages are perpendicular to each other. By 

incorporating an original approximation algorithm, an algorithm for filling a single bin was 

developed. This algorithm led to the definition of an exact branch-and-bound algorithm for 
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the three-dimensional bin packing problem. The paper was to the knowledge of the authors 

the first publication of a test instance for the three-dimensional problem. 

 

Den Boef et al. (2005) later showed that the branch-and-bound approach by Martello, 

Pisinger, and Vigo (2000) was not able to obtain all the possible orthogonal packing 

possibilities. Instead of Martello, Pisinger and Vigo’s use of orthogonal packing, den Boef 

et al. (2005)refer to the packing from the branch-and-bound approach as robot packing. Den 

Boef et al. describes robot packing. as “A robot packing is a packing that can be achieved 

by successively placing items starting from the bottom-left-behind corner, and such that 

each item is in front of, right of, or above each of the previously placed items.” (2005, 

pp.735)  

 

Figure 1 shows the differences between the two packing methods. The bins can house the 

same number of packages; the only difference here is that the two bins are packed 

differently. The packing solution computed in the orthogonal packing (b) is not possible for 

a robot to pack. Because this orthogonal packing possibility was not discovered in the initial 

report, Martello et al. (2007) extended the algorithm developed Martello, Pisinger and Vigo 

(2000) so that it can solve general problems as well as robotic. The new algorithm got the 

best results when the boxes were sorted according to non-increasing volume, and later 

branched on the different pair of boxes. This implementation made infeasible solutions to 

be detected quickly, given the fact that the relative positioning of the largest boxes could be 

established early on.  

 

 

Figure 1. Robot packing and orthogonal packing (den Boef et al., 2005, 736) 
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2.1.3 Extreme point-based heuristic 

The solver by Yang (2016) is based on the extreme point-based heuristic. This heuristic was 

developed by Crainic, Perboli, and Tadei (2008) and could be implemented on three-

dimensional as well as two-dimensional bin packing problems. The heuristic is constructed 

in a way that will yield a more efficient and accurate procedure for placing packages. 

Extreme point heuristic extends Martello, Pisinger and Vigo (2000) research on corner 

points described above. The idea of extreme point-based heuristic is that the placement of a 

three-dimensional package k with its left-back-down corner in a particular position in a 

three-dimensional bin will then create a lot of new points where other items can be placed.  

This is showed in Figure 2(a) being three-dimensional, and 2(b) being two-dimensional. 

While Figure 3 depicts the same items only with the corner points highlighted.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Corner Point (Crainic, Perboli and Tadei, 2007, 6) 

Based on Crainic, Perboli, and Tadei (2008), this is the best constructive heuristic for the three-

dimensional bin packing problem. What is also quite interesting is that it is claimed that the 

model is easily transferable to a problem, including package rotation. By merely duplicating 

each item once for each of the possible rotations, while also adding a constraint on what is 

called the mutual exclusion of the duplicates, the model would work without any 

computational effort, by only applying minor alterations. 

2.2 Container Loading 

Together with bin packing, much time and effort have been devoted to the research of 

container loading problems. While there are many similarities between the two fields of 

Figure 2. Extreme point (Crainic, Perboli and Tadei, 2007, 3) 
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packing, container loading problems are more concerned with the load stability and the 

balance of the particular stacking patterns. Given the larger quantity and weight of the 

packages, imbalance and inadequate stability in container loading can have severe 

consequences on material and equipment, as well as life. Container loading problems are 

not limited only to the pure packing of containers to be put either on ships or trucks. The 

problem description also includes the packing of smaller vehicles and plane cargo, further 

adding complexity to the constraints and parameters that occur within each problem. Making 

the models for the container loading problems applicable to a vast arrange of different 

packing situations.  

 

Even though much research in combinatorial optimisation focuses on container loading 

problems, and have done so for many years, Bischoff and Ratcliff (1995) indicated early on 

that a lot of the methodologies, and existing approaches lacked the applicability to real-life 

scenarios. They stated that some scenarios lacked methodologies for solving, thus having 

valid approaches for only a limited number of problems. Their paper was created to highlight 

the limitations existing in the research. By addressing the issues faced, two approaches and 

a broader typology of container loading problems were created.  

 

As with both Dyckhoff (1990) and Wäscher, Haußner, and Schumann (2007), Bischoff and 

Ratcliff created a description of the criteria of the different problem types, i.e. the functional 

requirements they thought to be the most important. These requirements included the well-

known orientation constraint seen in the two bin-packing typologies, but this is also where 

the similarities end. Given the sheer size and weight difference between containers and 

pallets/bins, bad or inadequate packing can have catastrophic consequences. Meaning that 

the importance of stable packing is of a more pressing concern in container loading research 

compared to other bin packing problems.  

 

Based on Bischoff and Ratcliff (1995), Bortfeldt and Wäscher (2013) created a review of 

the constraints that exist and should be included in container loading. They stated that one 

of the problems with the research on container loading problems was its lack of compatibility 

towards problems faced in real-life scenarios, mainly because the constraints did not mimic 

the real-life constraints faced in practice. The creation of an overview of container loading 

constraints that were more targeted toward real-life problems would solve a lot of the issues 

faced in container loading.  
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Although Bischoff and Ratcliff (1995) put a focus on how narrow the researched problem 

types in container loading was and how it should be a goal to expand the research field, 

Bortfeldt and Wäscher (2013), almost two decades later, found that the same issues still 

existed. In their review, they stated that only about 4 out of 14 problems mentioned by 

Bischoff and Ratcliff (1995) are focused on in the research and that the only notable 

extensions in the literature are the joined loading and routing problems. Also, when looking 

at the issues with the lack of applicable real-life constraints, the research is scarce. 

Orientation and stability constraints being the only constraints frequently brought up in the 

research. They further stated that the modelling approaches to the numerous container 

problems are limited, having issues with solving problems with multiple constraints that 

need to be satisfied at the same time.  

 

Models that could solve small container loading problems have existed for a long time. 

These models have mostly disregarded practically-relevant constraints, and have sought out 

to only pack as much as possible. Chen, Lee, and Shen (1995) considered a standard 

container loading problem where the boxes are to be packed orthogonally into a bin, 

minimising the empty volume inside. They focused on a mathematical formulation, creating 

a zero-one mixed integer programming model that came up with a good solution to small 

scale problems with few items. Along with the solution, they considered other applications 

for the model, applications that involved the solving of different sub-problems that exist in 

container loading, with or without modifications to the model. One application being the 

solving of a container loading problem with weight distribution. The modification would 

include the inclusion of a weight parameter on the boxes as well as a weight imbalance limit 

that is tolerable along the x-axis. Two constraints would then be added to regulate this 

imbalance.  

 

A particular case of the container loading problem was considered by Sheng et al. (2016). 

In their paper, they focused on a container loading problem for pallets with infill boxes 

(CLPIB). The main focus of this problem was to load a set of pallets, packed with identical 

rectangular boxes, into a container. When no more pallets could be loaded into the container, 

boxes were taken from other pallets and put in between the gaps that the pallets had created, 

better utilising the volume of the container. Later, when the unloading procedure sets in, 

these boxes need to be repacked onto their initial pallets. While each of the boxes could be 
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placed in any of the six orthogonal orientations, the pallets needed to be packed with their 

bottoms parallel to the container floor while also being fully supported by either the floor of 

the container or another pallet. They applied a heuristic approach in the form of a tree search- 

and greedy sub-algorithms, tree search sub-algorithm conducting the pallet packing and the 

greedy sub-algorithm conducting the filling of the residual space with the individual boxes. 

These heuristic approaches, combined with the guarantee that the infill boxes all can 

adequately pack a pallet, created a solution that is competitive given the conditions 

suggested.   

 

2.2.1 Load balancing and stability constraints 

Bin packing problems have evolved immensely since the start of the 1970s. Since the focus 

on heuristics emerged in this period, many different types of heuristics have been 

implemented in the research of bin packing. Liu et al. (2008) mention next-fit, first-fit, best-

fit and bottom-left-fill as heuristics that have been often used in the solving of bin packing 

problems.  

 

Heuristic approaches are particularly useful for problems with a high complexity, for 

which deterministic methods like the branch and bound approach are often unable to 

find the solution within a reasonable amount of time. Although heuristics are fast in 

generating a solution packing plan, the quality of the solution is highly dependent on 

the input sequence of items (Liu et al. 2008, p.358).  

 

Further, Liu et al. (2008) discuss one big issue of bin packing problems and how such 

problems are solved, the almost total focus on minimising unused space and number of bins. 

The objective of the bin packing problem is to pack the items in as few as possible bins or 

containers. This means that it almost disregards everything else, including load balancing 

and the stability of the packed bins, pallets or containers. The importance of a stable and 

well balanced packed bin has been previously stated by Amiouny et al. (1992) as both a 

safety measure and an implementation to save fuel and cost. They considered a problem 

concerning the loading of either a truck or an aircraft, where the objective was to create a 

heuristic that managed to pack a given set of boxes in such a way that the centre of gravity 

(CG) met a given target point, subsequently allowing for a packed bin that was well-
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balanced. The heuristic either came up with a different packing pattern creating better 

solutions or created no new solutions. 

 

Supplementing Amiouny et al. (1992) research of air cargo packing concerning stability, 

Paquay, Schyns, and Limbourg (2016) developed a mixed integer mathematical model to 

solve the three-dimensional bin packing problem in which strongly heterogeneous boxes are 

to be packed into air cargo containers of different sizes and shapes, minimizing the empty 

volume of the container. Their approach included constraints applicable in real-life 

scenarios, such as orientation/rotation, fragility, load balancing, vertical stability and centre 

of gravity. Contrary to a standard container loading problem, air cargo container loading 

sometimes includes a particular type of container called a ULD. These containers are 

truncated parallelepipeds, i.e. one or two walls of the container are not perpendicular to one 

another. Such containers add to the complexity of the model by having slanted walls, 

requiring the boxes to satisfy certain constraints related to cuts in the bin. No conclusions 

were made based on the computational results the model produced. Paquay, Schyns, and 

Limbourg suggest that further research should concentrate on appropriate techniques and 

methods that combine exact algorithms and heuristics.  

 

Additional research of load-balancing in bin packing has been conducted by Trivella and 

Pisinger (2016) Their paper considered a multi-dimensional version of bin packing with an 

extension of load balancing. The model made it possible to find optimal solutions to smaller 

cases of the problem. The inclusion of the load balancing constraints, the barycentre 

(geometric centre) of the boxes and the whole bin, and the mass/weight of the boxes, further 

extended and complicated the model, making it even more complex. Whereas the models by 

Chen, Lee, and Shen (1995) and Hifi et al. (2010) managed to pack up to 60 items in a 

reasonable amount of time, the extended load balancing multi-dimensional model suggested 

by Trivella and Pisinger (2016) had hardships with problems where more than 20 items were 

to be packed. Because of the complex nature of the extended packing problem, heuristic 

approaches were conducted to solve larger problems. The heuristic approaches included a 

multi-level local search, which then included a graph characteristic of the packing. Some 

straightforward approaches to balancing and local searches on transitive orientation was also 

implemented. Their experiment was able to find an effective load balancing. The heuristic 

ran for about 3-5 minutes for cases with 200 items, which makes the algorithm useful in real 

life logistical instances. 
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Ramos, Silva, and Oliveira (2018) developed a new load balancing methodology for the 

container loading problems concerned with road transportation. The new methodology was 

created based on, what they described as, simplified and soft constraints regarding load 

balancing. As seen in the research by Paquay, Schyns, and Limbourg (2016) and Trivella 

and Pisinger (2016) the barycentre, or centre of gravity, has been stated to be the 

geographical centre of the container or the geographical centre of the boxes. Ramos, Silva, 

and Oliveira (2018) state that this characteristic of the centre of gravity does not meet any 

of the regulations and legislations met in real-life scenarios. To meet these legislations and 

regulations, the load stability constraints are treated as hard constraints, found by defining 

the feasible area of the centre of gravity derived from the specifics of the vehicles. Another 

aspect of the paper is concerned with the weight the front- and rear axle of the vehicle can 

withstand. To tackle both the aspect of centre of gravity, regarding its distance from both 

the sidewalls and the front/back of the container, and axel strength, a load distribution 

diagram (LDD) is created. The LDD is described as;  

 

The LDD is a two-dimensional plot that shows the maximum admissible load of a 

vehicle as a function of the longitudinal or transversal position of its centre of gravity, 

thus defining the area where the location of the cargo CG is acceptable (Ramos, 

Silva, and Oliveira, 2018, p.1141).  

 

Very good results are obtained with the two algorithms proposed by Ramos, Silva, and 

Oliveira (2018).   

 

2.2.2 Fragility and load bearing constraints 

A close relative to the load balancing and stability constraints, fragility and load bearing 

constraints are implemented so that items intended to be packed are not getting damaged or 

deformed, mainly in regards of not putting too much weight on top of certain items. Bischoff 

(2006) created a new heuristic approach for tackling container loading problems where 

several items had limited load bearing strength. The problem considered was a three-

dimensional packing problem with weakly heterogeneous boxes intended to be packed into 

a single container of known dimensions. The focus when dealing with fragility and limited 

load-bearing strength is the rules regarding the placement of the items. To solve the problem, 
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they created a new construction heuristic. The implementation of this construction heuristic 

created better volume utilisation solutions than what could be found in earlier work by 

Bischoff and Ratcliff (1995).  

 

Bortfeldt (2012) considered a capacitated vehicle routing problem with three-dimensional 

loading constraints. The problem description included the dimensions (length, width and 

height) of the items as well as for the vehicle. The loading space in the vehicle and the items 

were all rectangular, with the vehicle having a given weight limit it can carry. Five vital 

packing constraints were added to the model, unloading-, weight-, orientation-, support- and 

stacking constraints. The unloading constraint stated that it must be possible to unload all 

the boxes at a customer 𝑖, as well as stating that a box demanded by a customer that is to be 

visited later than customer 𝑖 cannot be placed above a box demanded by said customer 𝑖. 90 

degree orientations were allowed, and the weight of all the packed boxes could not exceed 

the weight limit for the vehicle. Stability was insured by a constraint stating that if a box is 

not located on the floor, a certain percent of the bottom of the box needed to be supported 

by another box. As for the stacking constraint, which considered the fragility of the boxes, 

a specific fragility flag was given to all of the boxes labelling them either fragile or not. This 

constraint stated that only fragile boxes could be packed on top of other fragile boxes, while 

both fragile and non-fragile boxes could be packed on top of non-fragile boxes. To solve the 

problem, a hybrid algorithm was implemented. A tabu search algorithm created the routes 

for the vehicles, while a tree search algorithm, using the extreme point-based heuristic for 

its placement, was implemented for the packing of the boxes. The hybrid algorithm turned 

out to be superior to other methods used in similar problems, both in solution quality and 

computation time.  

 

Closely related to the work done by Paquay, Schyns, and Limbourg (2016), Junqueira, 

Morabito, and Sato Yamashita (2012) also considered a three-dimensional packing problem 

where practical constraints such as stability and fragility were implemented. Distinguishing 

the two papers was Junqueira, Morabito, and Sato Yamashita (2012) inclusion of horizontal 

stability, which means that not only the bottom face of the boxes needed to be supported but 

the lateral sides as well. To tackle the question concerning fragility, constraints that stated 

that box i can only have a certain number of boxes on top of itself were implemented to 

avoid deformation and damages to the boxes. Even though this constraint is stated in the 

beginning of the paper, it is later reviled that the constraint states that no box can be put on 
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top of a box that is categorized as fragile. 0-1 integer linear programming models were 

created and managed to solve moderate sized problems. The model considered four different 

types of boxes, one type having the ability to rotate around any of the axis and the other 

three having fixed rotations. Cubic containers were used to simplify the problem. They 

stated that the models managed to reflect the practical situations considered, but that further 

research should focus on methods such as heuristics, decomposition methods and relaxation 

methods.  

 

2.2.3 Different applications  

As with the container mentioned above, different applications of the container loading 

problem can be found in the literature. Two of these problems are the container stowing and 

stacking problem, and the vehicle routing problem.  

Container stowing and stacking problems 

While the container loading problems mostly consider the packing of items inside a 

container, the container stowage planning problem considers the stacking of the containers 

onto and off cargo ships. Monaco, Sammarra, and Sorrentino (2014) considered a Terminal-

Oriented Ship Stowage Planning Problem (SSPP) to minimise the port costs, in terms of the 

yard and transport operations. Constraints concerning load balancing and weight distribution 

were considered by stating that containers put on top of each other cannot increase in weight. 

The loading of the vessels considered the dimensions of the boxes and the dimensions of the 

cargo hold, as well as the order the boxes needed to be loaded. A problem that the SSPP 

need to consider, mainly in terms of stacking the containers, is that not all the containers 

essentially are offloaded at the same port, in most cases not. Therefore, the order that the 

containers are loaded into the cargo hold is critical in the minimisation of the costs associated 

with the offloading. To solve the SSPP problem, they created a binary integer model. Given 

the NP-hardness of the problem, the proposed model is supplemented by a two-step 

heuristic. The two-step heuristic was based on tabu search and iterative local search 

algorithm, where the first step found a feasible solution and the second step later tried to 

obtain a better feasible solution. They concluded that the heuristic approach gave 

satisfactory results, although they suggested that simulation-based optimisation tools could 

obtain better estimations.  
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Vehicle Routing with loading constraints 

As mentioned by Bortfeldt and Wäscher (2013), vehicle routing with loading constraints is 

one of only a few extensions of the bin packing and container loading problem. Bartók and 

Imreh (2011) considered one such problem. By combining two of the most researched 

problems in combinatorial optimisation, they state that, even though more complex and 

challenging models occur, problems more closely related to reality are created. Their paper 

focused on a pickup and delivery vehicle routing problem with the extension of weight limits 

and packing- and loading constraints of three-dimensional items. The main goal was to 

transport all items, given each of the vehicle's demands, while satisfying all of the given 

constraints. They considered a three-dimensional packing problem deriving from container 

loading, where several three-dimensional items with a given length, height and width are to 

be packed into a vehicle of known length, width and height. Weight constraints were also 

taken into effect in regards to the vehicles weight limit. Before the packing of the vehicles, 

heuristics regarding route building was implemented. Simple local search heuristics was 

later applied to improve upon these initial routes.  After all the routes were created, heuristics 

such as block algorithm and interval preparation methods were used to pack the given 

vehicles. All yielding satisfactory results, with the local search algorithms improving the 

initial solutions by an average of 15-20%.  

 

2.3 Distinguishing between literature and the problem 

Research on load balancing, stability and fragility in container loading is the closest the 

literature has been to represent real-life scenarios. These problems are amongst the few 

packing problems that include the weight of the boxes not only in the sense of pallet or bin 

weight but also in the packing of the given boxes independent from each other. Papers such 

as Junqueira, Morabito, and Sato Yamashita (2012) and Paquay, Schyns, and Limbourg 

(2016) have considered packing problems with both stability- and fragility constraints. 

While these two papers are some of the literature that mostly resembles practically relevant 

problems, their models only consider small to moderate problems, both stating that further 

research should be conducted in terms of heuristics and approximation algorithms. Even 

though these two papers considered both the stability and the fragility of the boxes, the 

fragility constraints can be seen as too strict. Stating that no fragile boxes can have a box on 

top off itself is a harsh constraint, bearing in mind that a box put on top off a fragile box 
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does not necessarily equal deformation or damaged goods. A better approach could the 

constraint used by Bortfeldt (2012), stating that only fragile boxes can be packed upon other 

fragile boxes. The concept of no box upon a fragile box is implemented to avoid any form 

of damage and deformation totally but can in the same process disregard a lot of viable 

packing patterns. Bin packing problems concerning the volume and the weight of the boxes, 

stability and non-deformation of the boxes as well as the packing of multiple identical bins 

in a reasonable amount of time does not exists, to the knowledge of the authors. All these 

practical, relevant constraints are forming the basis of this thesis and is what separates it 

from the research that has already been conducted in the field of bin packing. The thesis will 

build upon the model suggested by Paquay, Schyns, and Limbourg (2016), together with our 

own added constraints. It will solve a problem taken directly from the packing industry and 

use heuristic approaches to show different and viable packing procedures.  
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3. Problem Description 

The problem considered in this thesis derives from an idea by Driw to check if packing based 

on weight instead of volume can compete with the packing done by experienced workers. A 

client of Driw has allowed Driw to provide data on the orders the different branches within 

the company have placed. These data include the different orders placed by the different 

customers as well as the dimensions of the boxes, i.e. the length, width, height and weight. 

The main objective of this thesis is to minimise the number of pallets that are needed to pack 

a given set of boxes given by their predefined dimensions.   

 

This thesis describes what the inclusion of independent box weight does to the packing of a 

pallet, concerning both minimising the number of pallets needed to pack all the goods and 

concerning packing stable and well-balanced pallets. The thesis considers a bin packing 

problem where a given number of heterogeneous rectangular boxes are to be packed onto a 

finite number of rectangular pallets. The set of boxes are packed based on their length, width, 

height and weight.  

 

The boxes are packed based on which order they belong. Different customers place orders 

which contain a set of items/boxes. Each of the boxes belongs to a specific and distinct order. 

Boxes belonging to different orders cannot be packed on the same pallet, meaning that boxes 

can only be packed on pallets along with boxes from the same order. Within each order, the 

boxes are divided into three different categories or “box-types”, them being (A), (B) and 

(C). These “box-types” are given to the different boxes so that boxes from the same 

categories are packed on the same pallets. A box belonging to category (A) can only be 

packed together with other boxes from the said category, with the same logic applying to 

category (B) and (C) as well. Customers can place more than one order, but even though the 

pallets are going to the same location, boxes from different orders, regardless of customer, 

cannot be packed on the same pallet.  

 

All the different boxes are given by their volume and weight. They need to be packed in 

such a manner that they do not overlap with each other, and all the boxes need to be packed 

within the dimensions of the pallet. The pallets used are homogeneous, all having the same 

dimensions. Its base area gives the length and width of the pallet. There are also restrictions 

on how high the pallet can be when packed. Along with the volume restrictions of the pallet, 
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a weight restriction is also set. Al the packed goods must be placed inside the dimensions of 

the pallet, while not exceeding the height and weight restriction.  

 

The pallets used are standard Euro-pallets with dimensions 80cm x 120cm x 148 cm. The 

pallets cannot be loaded with more than 750kg of goods. They are packed orthogonally, 

meaning that the boxes need to be packed parallel to the pallet “walls” and perpendicular to 

one another. This sort of packing allows for six different orientations, visualised in Figure 

4. In this thesis, only two orientations are allowed, the two being ninety-degree rotations 

along the X and Y axis, so that top and bottom are always the same, as shown in Figure 5. 

By allowing the boxes to rotate along the X- and Y-axis only, the notion of a distinct top 

and bottom of a box is implemented, creating packing solutions that abide by the concept of 

“this side up”.  

 

 

Figure 4. The six rotations allowed in orthogonal packing (made by the 

authors) 
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Cargo stability is implemented to obtain packing that is safe and stable. The cargo stability 

in this thesis is concerned with constraints regarding vertical stability, commonly known as 

static stability. The vertical stability states that the bottom of the boxes needs to be supported 

either by the floor of the pallet or by the top face of another box. As well as creating good 

support for the boxes, vertical stability also excludes the possibility of floating boxes. The 

pallets are also packed in such a manner that the centre of gravity (CG), the middle, of the 

boxes are supported by the top face of another box or by the pallet floor.  

 

  

 

Figure 5.  The two orientations allowed in this problem (made by the 

authors). 
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4. Mathematical Model  

The mathematical model is made by Paquay, Schyns, and Limbourg (2016), and the goal for 

the model is to minimise the unused volume packed in a container. It includes real-life 

applications of bin packing such as stability constraints, the orientation of boxes and weight 

distribution in the container. We have made some alterations to the original model by adding 

three new constraints. We have disregarded the possibility for cuts and not implemented the 

fragility constraints, seeing as we do not know if a box is too fragile to support another box. 

An explanation of all parameters, sets, indexes and variables can be found in the appendix, 

including the code used in AMPL.  

 

4.1 Non-modified model 

 

Indexation, sets and parameters 

𝑛 represents the number of boxes to be packed, and 𝑖 and 𝑗 are arbitrary boxes in the set of 

boxes. The number of pallets available is denoted by 𝑚, where 𝑘 is an arbitrary pallet. 𝑙 

represents an arbitrary vertex where 𝑣 is the total number of vertices for a box. 𝑎 is an 

arbitrary axis in the set 𝑂𝐴. The set 𝑂𝐵 represents the different box sides, where 𝑏 is an 

arbitrary box side. 

 

Objective function:  

𝑈𝑘 is a binary variable which tells if pallet 𝑘 is used or not. The parameters 𝑙′, 𝑤′ and ℎ′are 

the maximum length, width and height of the pallet and multiplied together they give the 

maximum volume of a pallet. Parameters 𝑙𝑖, 𝑤𝑖 and ℎ𝑖 are the length, width and height for 

box 𝑖. The objective function minimises the total unused volume of the pallets.  

 

S.t.:  

Variable 𝑃𝑖𝑘 is a binary variable, which tells if box 𝑖 is on pallet 𝑘 or not. Constraints (2) 

tells us that box 𝑖 is assigned to precisely one pallet.  

 

 min ∑ 𝑙′𝑤′ℎ′𝑈𝑘 − ∑ 𝑙𝑖𝑤𝑖ℎ𝑖𝑖=1,…,𝑛,𝑘=1,…,𝑚  (1) 

 ∑ 𝑃𝑖𝑘 = 1𝑘=1,…,𝑚 , 𝑖 = 1, … , 𝑛 (2) 
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Parameters 𝛾𝑖 and 𝛾′ represents weight for box 𝑖 and maximum weight, which can be packed 

on a pallet, respectively. The weight of all items on pallet 𝑘 cannot exceed pallet 𝑘’s weight 

capacity. It is also defined that 𝑈𝑘 must be one if there is a box on pallet 𝑘.  

 

Cannot exceed pallet size: 

The continuous variables 𝑋𝑖
′, 𝑌𝑖

′ and 𝑍𝑖
′ represents the “right back top corner” coordinate for 

box 𝑖 for X-, Y- and Z-axis, respectively. Constraints (4a) says that the “right back top” X 

coordinate for box 𝑖 cannot exceed the length of pallet 𝑘 if box 𝑖 is on pallet 𝑘.  It is the same 

for two next constraints except that for constraints (4b) it is the Y-coordinate and width and 

for constraints (4c) it is the Z-coordinate and height.  

Orientation:  

Introducing a new binary variable 𝑅𝑖𝑎𝑏, which tells if side b for box 𝑖 is parallel to axis a or 

not. Side b for box 𝑖 can only be parallel to one axis (constraints (5a)), and axis 𝑎 can only 

be parallel to one side of box 𝑖 (constraints (5b)).  

 

 

In constraints (5c), (5d) and (5e) we have three new continuous variables 𝑋𝑖, 𝑌𝑖 and 𝑍𝑖. They 

are the “left front bottom corner” for X, Y and Z coordinate for box 𝑖. The left-hand side of 

the three constraints is the difference between “right back top corner” and the “left front 

bottom corner”, implying that 𝑋𝑖
′ > 𝑋𝑖, 𝑌𝑖

′ > 𝑌𝑖 and 𝑍𝑖
′ > 𝑍𝑖. The right-hand side is the 

 ∑ 𝛾𝑖𝑃𝑖𝑘 ≤ 𝛾′𝑈𝑘, 𝑘 = 1, … , 𝑚𝑖=1,…,𝑛  (3) 

 𝑋𝑖
′ ≤ ∑ 𝑙′𝑃𝑖𝑘 , 𝑖 = 1, … , 𝑛𝑘=1,…,𝑚   (4a) 

 𝑌𝑖
′ ≤ ∑ 𝑤′𝑃𝑖𝑘 , 𝑖 = 1, … , 𝑛𝑘=1,…,𝑚  (4b) 

 𝑍𝑖
′ ≤ ∑ ℎ′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛𝑘=1,…,𝑚  (4c) 

 ∑ 𝑅𝑖𝑎𝑏 = 1, 𝑖 = 1, … , 𝑛, 𝑏 ∈ 𝑂𝐵
𝑎∈𝑂𝐴  (5a) 

 ∑ 𝑅𝑖𝑎𝑏 = 1, 𝑖 = 1, … , 𝑛, 𝑎 ∈ 𝑂𝐴
𝑏∈𝑂𝐵  (5b) 

 𝑋𝑖
′ − 𝑋𝑖 = 𝑙𝑖𝑅𝑖, X, L + 𝑤𝑖𝑅𝑖, X, W + ℎ𝑖𝑅𝑖, X, H, 𝑖 = 1, … , 𝑛 (5c) 

 𝑌𝑖
′ − 𝑌𝑖 = 𝑙𝑖𝑅𝑖, Y, L + 𝑤𝑖𝑅𝑖, Y, W + ℎ𝑖𝑅𝑖, Y, H, 𝑖 = 1, … , 𝑛 (5d) 

 𝑍𝑖
′ − 𝑍𝑖 = 𝑙𝑖𝑅𝑖, Z, L + 𝑤𝑖𝑅𝑖, Z, W + ℎ𝑖𝑅𝑖, Z, H, 𝑖 = 1, … , 𝑛 (5e) 
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length, width and height of box 𝑖 if side 𝑏 for box 𝑖 is parallel to the X-, Y- and Z-axis. As 

said in constraint (5b), we know that one and only one side b for box 𝑖 can be parallel to the 

different axis. Then, only one of the terms on the right-hand side can have a value greater 

than zero. The three constraints then give the length, width or height of box 𝑖 if side 𝑏 is 

parallel to axis a. This is the difference between the “right back top corner” and the “left 

front bottom corner”. These possible orientations are visualised in Figure 4.  

 

For all boxes, the height of the box must be parallel to the Z-axis, visualised in Figure 5.  

 

Overlapping:  

Variables 𝐴𝑖𝑗, 𝐵𝑖𝑗 and 𝐶𝑖𝑗 are binary variables telling if box 𝑖 is on the right side, behind or 

above box 𝑗 or not. If 𝐴𝑖𝑗, 𝐵𝑖𝑗 and/or 𝐶𝑖𝑗 is one, it implies that box 𝑗 is on the left side/in 

front of/under box 𝑖. Overlapping can only happen if box 𝑖 and box 𝑗 are on the same pallet. 

If box 𝑖 and box 𝑗 are not right, left, behind, in front, above or under each other (LHS=0), 

then box 𝑖 and box 𝑗 are not on the same pallet (0 ≥ 𝑃𝑖𝑘 + 𝑃𝑗𝑘 − 1). 

 

Constraints (6b) and (6c) defines the variable 𝐴𝑖𝑗. Note that if the length, width or height of 

box 𝑖 are non-integer, change one to a small number in constraints (6c), (6e) and (6g). Figure 

6 shows an example where 𝐴𝑖𝑗 = 1.  

 

 𝑅𝑖, Z, H = 1, 𝑖 = 1, … , 𝑛 (5f) 

𝐴𝑖𝑗 + 𝐴𝑗𝑖 + 𝐵𝑖𝑗 + 𝐵𝑗𝑖 + 𝐶𝑖𝑗 + 𝐶𝑗𝑖 ≥ 𝑃𝑖𝑘 + 𝑃𝑗𝑘 − 1, 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚: 𝑖 ≠ 𝑗 (6a) 

 𝑋𝑗
′ ≤ 𝑋𝑖 + (1 − 𝐴𝑖𝑗)𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (6b) 

 𝑋𝑖 + 1 ≤ 𝑋𝑗
′ + 𝐴𝑖𝑗𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (6c) 
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Figure 6. Example of A_ij=1. (made by the authors) 

Constraints (6d) and (6e) defines the variable 𝐵𝑖𝑗. It works the same way as constraints (6b) 

and (6c). 

 

Constraints (6f) defines the variable 𝐶𝑖𝑗. It works the same way as constraints (6b). 

Constraints (6g) is not in the original model. We added it because 𝐶𝑖𝑗 did not work correctly. 

Now it works the same way as constraints (6c) and (6e).  

 

Stability:  

 

 ∑ ∑ 𝑉𝑖𝑗𝑙 ≥ 3𝑙=1,…,𝑣𝑗=1,…,𝑛: 𝑖≠𝑗 (1 − 𝐺𝑖), 𝑖 = 1, … , 𝑛 (7) 

Introducing variables 𝐺𝑖 and 𝑉𝑖𝑗𝑙. 𝐺𝑖 is a binary variable saying if box 𝑖 is on the ground or 

not. 𝑉𝑖𝑗𝑙 is a binary variable which tells if vertex 𝑙 for box 𝑖 is supported by box 𝑗 or not. An 

item has eight vertices, but only the four bottom vertices shown in Figure 7 are used. The 

constraint says that if box 𝑖 is not on the ground, box 𝑖 must have at least three vertices that 

are supported and removes the possibility for 𝑖 and 𝑗 to be equal.  

 

 𝑌𝑗
′ ≤ 𝑌𝑖 + (1 − 𝐵𝑖𝑗)𝑤′𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (6d) 

 𝑌𝑖 + 1 ≤ 𝑌𝑗
′ + 𝐵𝑖𝑗𝑤′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (6e) 

 𝑍𝑗
′ ≤ 𝑍𝑖 + (1 − 𝐶𝑖𝑗)ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (6) 

 𝑍𝑖 ≤ 𝑍𝑗
′ + 𝐶𝑖𝑗ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (6g) 
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Figure 7. The four bottom vertices used (made by the authors) 

 

 𝑍𝑖 ≤ (1 − 𝐺𝑖)ℎ′, 𝑖 = 1, … , 𝑛 (8)  

If box 𝑖 is on the ground, the Z-coordinate for box 𝑖 must be zero.  

 

Defining suitable height:  

 

The variables 𝑇𝑖𝑗 and 𝛿𝑖𝑗 define 𝑄𝑖𝑗 in constraints (10a-b). 𝑇𝑖𝑗 represents the absolute value 

of |𝑍𝑗
′ − 𝑍𝑖| and 𝛿𝑖𝑗 is a binary variable which takes value one if 𝑍𝑗

′ ≥ 𝑍𝑖, zero otherwise. 

Constraints (9a), (9b), (9c) and (9d) define the absolute value.  

 

Variable 𝑄𝑖𝑗 is a binary variable taking value zero if box 𝑗 has a suitable height to support 

box 𝑖 (𝑍𝑗
′ = 𝑍𝑖), one otherwise. Constraints (10a-b) says that if 𝑇𝑖𝑗 > 0, then box 𝑗 does not 

have a suitable height to support box 𝑖 (𝑄𝑖𝑗 = 1). If 𝑇𝑖𝑗 = 0, then box 𝑗 has a suitable height 

to support box 𝑖 (𝑄𝑖𝑗 = 0). Note that if the height of a box is non-integer, a small number 

 𝑍𝑗
′ − 𝑍𝑖 ≤ 𝑇𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (9a) 

 𝑍𝑖 − 𝑍𝑗
′ ≤ 𝑇𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (9b) 

 𝑇𝑖𝑗 ≤ 𝑍𝑗
′ − 𝑍𝑖 + 2(1 − 𝛿𝑖𝑗)ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (9c) 

 𝑇𝑖𝑗 ≤ 𝑍𝑖 − 𝑍𝑗
′ + 2𝛿𝑖𝑗ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (9d) 

 𝑄𝑖𝑗 ≤ 𝑇𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (10a) 

 𝑇𝑖𝑗 ≤ 𝑄𝑖𝑗ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (10b) 
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must be multiplied with 𝑄𝑖𝑗 in constraints (10a). This is because 𝑇𝑖𝑗 can have a value greater 

than zero and less than one. For example, if 𝑇𝑖𝑗 = 0,5, then 0 < 𝜖𝑄𝑖𝑗 ≤ 0,5.   

 

Shared projection:  

Variable 𝐼𝑖𝑗 is a binary variable taking value zero if the projection on the XY plane of box 𝑖 

and box 𝑗 have a non-empty intersection. If there is a non-empty projection on the X plane, 

it means that box 𝑖 does not stand on the right or left side of box 𝑗. It is the same for the Y 

plane, but instead of right/left, box 𝑖 does not stand behind or in front of box 𝑗. Constraints 

(11a) and (11b) says that if box 𝑖 and box 𝑗 have a non-zero projection on the XY plane 

(𝐼𝑖𝑗 = 0), box 𝑖 and 𝑗 cannot stand on the right/left side and behind/in front of each other.  

 

Support:  

Introducing variable 𝑆𝑖𝑗, which is a binary variable saying if box 𝑖 is supported by box 𝑗 or 

not. Constraints (12a) and (12b) says that if box 𝑖 is supported box 𝑗, box 𝑗 has the suitable 

height to support box 𝑖 and it is a projection on the XY plane between box 𝑖 and box 𝑗.  

 

Support if they are on the same pallet: 

  

These two constraints say that if box 𝑖 is supported by box 𝑗, box 𝑖 and 𝑗 is on the same 

pallet.   

 

Certified support:  

 𝐼𝑖𝑗 ≤ 𝐴𝑖𝑗 + 𝐴𝑗𝑖 + 𝐵𝑖𝑗 + 𝐵𝑗𝑖 , 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (11a) 

 𝐴𝑖𝑗 + 𝐴𝑗𝑖 + 𝐵𝑖𝑗 + 𝐵𝑗𝑖 ≤ 2𝐼𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (11b) 

 (1 − 𝑆𝑖𝑗) ≤ 𝑄𝑖𝑗 + 𝐼𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (12a) 

 𝑄𝑖𝑗 + 𝐼𝑖𝑗 ≤ 2(1 − 𝑆𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (12a) 

 𝑃𝑖𝑘 − 𝑃𝑘𝑖 ≤ (1 − 𝑆𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚: 𝑖 ≠ 𝑗 (13a) 

 𝑃𝑘𝑖 − 𝑃𝑖𝑘 ≤ (1 − 𝑆𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚: 𝑖 ≠ 𝑗 (13b) 

 𝑉𝑖𝑗𝑙 ≤ 𝑆𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣: 𝑖 ≠ 𝑗 (14)  
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Constraints (14) makes sure that if vertex 𝑙 for box 𝑖 is supported by box 𝑗 (𝑉𝑖𝑗𝑙 = 1), box 𝑖 

is supported by box 𝑗 (𝑆𝑖𝑗 = 1).  

 

Box vertex support:  

Constraints (15a-d) defines the new binary variables 𝛽𝑖𝑗
𝑋, 𝛽𝑖𝑗

𝑌 , 𝛽𝑖𝑗
𝑋′

and 𝛽𝑖𝑗
𝑌′

. The variables 

represent if it is possible for vertex 𝑙 for box 𝑖 to be supported by box 𝑗. The variable 𝛽𝑖𝑗
𝑋 

takes the value one if the “left front bottom” X coordinate for box 𝑗 is larger than the “front 

left bottom” X coordinate for box 𝑖.  It is the same for 𝛽𝑖𝑗
𝑌  except that it is for the Y coordinate 

instead of the X coordinate. The variable 𝛽𝑖𝑗
𝑋′

 takes value one if the “back right top” X 

coordinate for box 𝑖 is larger than the “left front bottom” X coordinate for box 𝑗. It is the 

same for 𝛽𝑖𝑗
𝑌′

, however, instead of the X coordinate, it is the Y coordinate. Note that all the 

new variables can take value zero or one if the left-hand side is less than or equal to the 

right-hand side, but if 𝑉𝑖𝑗𝑙 = 1, then the corresponding binary variables in constraints (16a-

d) must take value zero.  

 

Constraints (16a) says that if vertex number one for box 𝑖 is supported by box 𝑗, then 𝑋𝑗 is 

less than or equal to 𝑋𝑖 and 𝑌𝑗 is less than or equal to 𝑌𝑖. The left-hand side represents the 

“left front bottom vertex”. This is the same for constraints (16b), (16c) and (16d) except that 

the left-hand side represents vertex 2 (“right front bottom vertex”), vertex 3 (“right back 

 𝑋𝑗 ≤ 𝑋𝑖 + 𝛽𝑖𝑗
𝑋𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (15a) 

 𝑌𝑗 ≤ 𝑌𝑖 + 𝛽𝑖𝑗
𝑌 𝑤′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (15b) 

 𝑋𝑖
′ ≤ 𝑋𝑗

′ + 𝛽𝑖𝑗
𝑋′

𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (15c) 

 𝑌𝑖
′ ≤ 𝑌𝑗

′ + 𝛽𝑖𝑗
𝑌′

𝑤′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (15d) 

 𝛽𝑖𝑗
𝑋 + 𝛽𝑖𝑗

𝑌 ≤ 2(1 − 𝑉𝑖𝑗1), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣: 𝑖 ≠ 𝑗 (16a) 

 𝛽𝑖𝑗
𝑌 + 𝛽𝑖𝑗

𝑋′
≤ 2(1 − 𝑉𝑖𝑗2), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣: 𝑖 ≠ 𝑗 (16b) 

 𝛽𝑖𝑗
𝑋′

+ 𝛽𝑖𝑗
𝑌′

≤ 2(1 − 𝑉𝑖𝑗3), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣: 𝑖 ≠ 𝑗 (16c) 

 𝛽𝑖𝑗
𝑋 + 𝛽𝑖𝑗

𝑌′ ≤ 2(1 − 𝑉𝑖𝑗4), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣: 𝑖 ≠ 𝑗 (16d) 
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bottom vertex”) and vertex 4 (“left back bottom vertex”), respectively. In Figure 8, vertex 1 

for box 𝑖 is supported by box 𝑗. That means that 𝑋𝑗 ≤ 𝑋𝑖 and 𝑌𝑗 ≤ 𝑌𝑖.  

 

 

Figure 8. Figure showing vertex support (Paquay, Schyns, and Limbourg (2016), pp.198) 

Weight distribution:  

Coordinate for the mass of box i. 

𝛾𝑖
𝑋, 𝛾𝑖

𝑌 and 𝛾𝑖
𝑍are continuous variables for the mass of box 𝑖. They represent the X, Y and Z 

coordinate for the middle point of box 𝑖, assuming that the weight is uniformly distributed.  

 

 

Variable 𝜎𝑖𝑘
𝑋  is a new variable representing 𝜎𝑖𝑘

𝑋 ≡ 𝑃𝑖𝑘𝛾𝑖
𝑋. It gives the X coordinate for the 

centre of gravity for box 𝑖 if box 𝑖 is on pallet 𝑘. This is not linear since there are two 

variables multiplied together. To make it linear, constraints (18a), (18b) and (18c) are 

needed. 

 

 

 𝛾𝑖
𝑋 =

𝑋𝑖+𝑋𝑖
′

2
, 𝑖 = 1, … , 𝑛 (17a) 

 𝛾𝑖
𝑌 =

𝑌𝑖+𝑌𝑖
′

2
, 𝑖 = 1, … , 𝑛 (17a) 

 𝛾𝑖
𝑍 =

𝑍𝑖+𝑍𝑖
′

2
, 𝑖 = 1, … , 𝑛 (17a) 

 𝜎𝑖𝑘
𝑋 ≤ 𝑙′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  (18a) 

 𝜎𝑖𝑘
𝑋 ≤ 𝛾𝑖

𝑋, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (18b) 

 𝜎𝑖𝑘
𝑋 ≥ 𝛾𝑖

𝑋 − 𝑙′(1 − 𝑃𝑖𝑘), 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (18c) 
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Constraints (18a): Defines if box 𝑖 is on pallet 𝑘.  

Constraints (18b): 𝜎𝑖𝑘
𝑋  must be less than or equal to 𝛾𝑖

𝑋, which is the X coordinate for box 

𝑖’s mass, i.e. the centre of gravity.  

Constraints (18c): 𝜎𝑖𝑘
𝑋must be higher than or equal to 𝛾𝑖

𝑋 if box 𝑖 is on pallet 𝑘. If box 𝑖 is 

not on pallet 𝑘, the centre of gravity does not exist for this box on this pallet. 

 

The interval for the centre of gravity; 

 

Introducing a new parameter αl′
 to give the range in which the centre of gravity can be 

located. Constraints (19a) is the lower bound, and constraints (19b) is the upper bound for 

the centre of gravity X coordinate for all boxes on pallet 𝑘.  

𝜎𝑖𝑘
𝑌  is a new variable representing 𝜎𝑖𝑘

𝑌 ≡ 𝑃𝑖𝑘𝛾𝑖
𝑌. Constraints (20a-c) works the same way as 

constraints (18a-c), but for the Y coordinate.  

 

Introducing a new parameter αw′
 to give the range in which the centre of gravity can be 

located. Constraints (21a) is the lower bound, and Constraints (21b) is the upper bound for 

the centre of gravity Y coordinate for all boxes on pallet 𝑘.  

 

 (
𝑙′

2
αl′

)(∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ) ≤) ∑ 𝜎𝑖𝑘
𝑋 𝛾𝑖, 𝑘 = 1, … , 𝑚𝑖=1,…,𝑛  (19a) 

 ∑ 𝜎𝑖𝑘
𝑋 𝛾𝑖𝑖=1,…,𝑛 ≤ (

𝑙′

2
+ αl′

) (∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ), 𝑘 = 1, … , 𝑚 (19b) 

 𝜎𝑖𝑘
𝑌 ≤ 𝑤′𝑃𝑖𝑘 , 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (20a) 

 𝜎𝑖𝑘
𝑌 ≤ 𝛾𝑖

𝑌, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (20b) 

 𝜎𝑖𝑘
𝑌 ≥ 𝛾𝑖

𝑌 − 𝑤′(1 − 𝑃𝑖𝑘), 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (20c) 

 (
𝑤′

2
− αw′

)(∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ) ≤) ∑ 𝜎𝑖𝑘
𝑌 𝛾𝑖, 𝑘 = 1, … , 𝑚𝑖=1,…,𝑛   (21a) 

 ∑ 𝜎𝑖𝑘
𝑌 𝛾𝑖𝑖=1,…,𝑛 ≤ (

𝑤′

2
+ αw′

) (∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ), 𝑘 = 1, … , 𝑚 (21b) 
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𝜎𝑖𝑘
𝑍  is a new variable representing 𝜎𝑖𝑘

𝑍 ≡ 𝑃𝑖𝑘𝛾𝑖
𝑍. Constraints (20a-c) works the same way as 

Constraints (18a-c), but for the Y coordinate.  

 

Introducing a new parameter αℎ′
 to give the upper bound in which the centre of gravity can 

be located. Constraints (23a) is the lower bound, and constraints (23b) is the upper bound 

for the centre of gravity Z coordinate for all boxes on pallet 𝑘.  

 

Logical support: 

 

This constraint was added to the model. This is because the model said that it was possible 

for box 𝑖 to be supported by box 𝑗 and box 𝑗 to be supported by box 𝑖. This is not possible, 

so we added a constraint stating that if box 𝑖 is supported by box 𝑗, then box 𝑗 cannot be 

supported by box 𝑖, and vice versa.  

 

 

Constraints (25) says that if a pallet is used, the previous pallet must be used as well. This is 

the case for all the pallets from the second one up until 𝑚. This constraint was added to the 

original model.  

 

 𝜎𝑖𝑘
𝑍 ≤ ℎ′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (22a) 

 𝜎𝑖𝑘
𝑍 ≤ 𝛾𝑖

𝑍, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (22b) 

 𝜎𝑖𝑘
𝑍 ≥ 𝛾𝑖

𝑍 − ℎ′(1 − 𝑃𝑖𝑘), 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (22c) 

 0 ≤ ∑ 𝜎𝑖𝑘
𝑍 𝛾𝑖 , 𝑘 = 1, … , 𝑚𝑖=1,…,𝑛  (23a) 

 ∑ 𝜎𝑖𝑘
𝑍 𝛾𝑖𝑖=1,…,𝑛 ≤ αh′

(∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ), 𝑘 = 1, … , 𝑚 (23b) 

 𝑆𝑖𝑗 + 𝑆𝑗𝑖 ≤ 1, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 (24) 

 𝑈𝑘 ≤ 𝑈𝑘−1 , 𝑘 = 2, … , 𝑚 (25) 
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Constraints (26a-f) says that these variables are binary.  

 

 

Constraints (27a-c) ensures that these variables do not take a negative value.   

 

Complexity:  

Number of variables 𝑂(𝑛2)  

Number of constraints 𝑂(𝑛2𝑚) 

 

4.2 Modified model  

The modified model used when implementing the heuristic has the same objective function 

but considers only constraints (2 – 6g).  

 

4.3 Locked position model: 

The model used when implementing the locked position approach has the same objective 

function and constraints. The difference is that it also adds constraints (28a-e), locking the 

coordinates of each of the packed boxes, as well as the pallet and the orientation of the boxes.  

 𝑃𝑖𝑘 ∈ {0, 1}, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  (26a) 

 𝑈𝑘 ∈ {0, 1}, 𝑘 = 1, … , 𝑚 (26b) 

  𝐺𝑖  ∈ {0, 1}, 𝑖 = 1, … , 𝑛 (26c) 

 𝑅𝑖𝑎𝑏 ∈ {0, 1}, 𝑖 = 1, … , 𝑛, 𝑎 ∈ 𝑂𝐴, 𝑏 ∈ 𝑂𝐵 (26d) 

 𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐶𝑖𝑗, 𝑄𝑖𝑗, 𝐼𝑖𝑗 , 𝑆𝑖𝑗, 𝛽𝑖𝑗
𝑋 , 𝛽𝑖𝑗

𝑌 , 𝛽𝑖𝑗
𝑋′

, 𝛽𝑖𝑗
𝑌′

, 𝛿𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, … , 𝑛 (26e) 

 𝑉𝑖𝑗𝑙 ∈ {0, 1}, 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣 (26f) 

 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 , 𝑋𝑖
′, 𝑌𝑖

′, 𝑍𝑖
′, 𝛾𝑖

𝑋, 𝛾𝑖
𝑌, 𝛾𝑖

𝑍 ≥ 0, 𝑖 = 1, … , 𝑛  (27a) 

 𝑇𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1, … , 𝑛 (27b) 

 𝜎𝑖𝑘
𝑋 , 𝜎𝑖𝑘

𝑌 , 𝜎𝑖𝑘
𝑍 ≥ 0, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 (27c) 
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Constraints (28a-c) locks the X, Y and Z coordinate for box 𝑖. Constraint (28d) says that 

box 𝑖 must be on pallet 𝑘. It locks the coordinates for box 𝑖 on pallet 𝑘. Constraint (28e) 

gives the orientation for box 𝑖. It locks this orientation according to if the length is parallel 

to the X- or Y-axis, with the width for box 𝑖 being parallel to the opposite axis.   

  

 𝑋𝑖 = 𝑋 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑓𝑜𝑟 𝑎 𝑝𝑎𝑐𝑘𝑒𝑑 𝑏𝑜𝑥  (28a) 

 Yi = Y coordinate for a packed box (28b) 

 𝑍𝑖 = 𝑍 coordinate for a packed box (28c) 

 𝑃𝑖𝑘 = 1 (28d) 

𝑅𝑖,𝑋,𝐿 = 1, 𝑖𝑓 𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑎 𝑝𝑎𝑐𝑘𝑒𝑑 𝑏𝑜𝑥 𝑖𝑠 𝑝𝑎𝑟𝑎𝑙𝑒𝑙𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑋 − 𝑎𝑥𝑖𝑠, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (28e) 
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5. Heuristic and construction procedure 

This part is dedicated to the development and creation of a heuristic that can help the model 

to solve larger problems. In the creation of the heuristic, inspiration has been taken from 

both Bischoff, Janetz, and Ratcliff (1995) and Bischoff (2006), two heuristic approaches that 

were created to achieve effective and stable packing.  

 

As can be seen in the literature and the NP-hard definition of the problem, solvers for bin 

packing problems can only solve very small problems. Implementing stability, load 

balancing and fragility complicates the problem either further. A recurring conclusion in the 

literature is that heuristics and approximation algorithms need to be implemented to solve 

larger problems with reasonable running time. 

 

These implemented heuristics are often construction heuristics and includes the two well-

known approaches layer- and wall building. Construction heuristics such as the one 

suggested by Chien and Deng (2004) rank the boxes based on five different criteria, rank 1 

being the boxes with the largest base dimensions. Chien and Deng (2004) state that the 

ranking system is created to obtain stable packing. The boxes with the largest base areas are 

packed as near as possible to the bottom of the pallet so that that proper support can be 

achieved. What is not considered in the ranking system, however, is the weight of the boxes. 

Boxes with small base areas can be heavier, even a lot heavier, than boxes with large base 

areas. Therefore, ranking only based on width, height and length can cause deformation and 

damages to the packed goods. To include weight in the packing process, the heuristic created 

and suggested in this thesis is based on the layer building construction heuristic, meaning 

that the boxes are packed layer upon layer. Layer building is chosen because it makes it 

easier to specify that the heaviest boxes are to be packed first and nearest the bottom of the 

pallet. The heuristic is visualized in the detailed flowchart in Figure 9. 
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Figure 9. Flowchart of the construction heuristic (made by the authors) 

Step 1. Create a list of unpacked boxes. Only boxes from the same order can be put onto the 

same pallet, so each order corresponds to a packing list.  Create the list in such a manner 

that the boxes are sorted from heaviest to lightest. The list also includes the volume and area 

of the boxes, given by its length, width and height.  End if no more boxes are left. 

 

Step 2. Choose a set of boxes, starting with the heaviest boxes on the top of the list. Always 

start at the top of the list and follow it top to bottom, to ensure that the heaviest boxes are 

chosen first. Since the base area of the pallet is always the same and non-changing, the set 

of boxes are chosen based on their area. Sum up the area of the boxes, starting from heaviest, 

until it hits the target value that is equal to the base area, 80*120 = 9600, of the pallet. Height 

of the tallest box in the set is the initial height of the section. 

 

Step 2.1. If a set chosen in step 2 have boxes that can be put on top of each other, redo the 

set choosing step, and base the selection on how many boxes that can fit into the given 

volume instead of area. The height of the largest box is given as the initial section height. 

The choosing is still based on weight.  
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Step 3. The pallet is divided into different sections. The base area of the pallet remains the 

same, but the height is considerably lowered. This creates layers within the pallet that allows 

for the problem to be solved in subsequent procedures. The height of the pallet is chosen 

based on the tallest box in the set of boxes that are chosen to be packed in step 2, which 

means that each of the sections created can have different volume and size. 

Check and update the list of unpacked boxes, removing the boxes that are chosen in step 4.  

 

Step 4. The area of the section that is created in the first step is then defined as the possible 

packing surface, which means that the new packing area consists of the pallets base area and 

the new height agreed upon in step 3.   

 

Step 5. Check and update the list of unpacked boxes, removing the boxes that are chosen in 

step 2 or 2.1. The area of the section that is created in the first step is then defined as the 

possible packing surface, which means that the new packing area consists of the pallets base 

area and the new height agreed upon in step 1.   

 

Step 6. Use the modified model to pack the section of the pallet.   

 

Step 7. Evaluate the packing conducted in step 6. If some boxes do not fit inside the packing 

area, go back to step 5 and check if there are any boxes on the list that can be put onto the 

pallet, still choosing the heaviest possible boxes. Update the packing list by adding back the 

boxes that did not fit and remove the boxes that were used. When the section is packed to 

satisfaction, move on to the next step.  

 

Step 8. Update all the parameters. The layer is now packed. 

 

Step 9. Repeat the procedure until no more boxes are left in the order. When all the sets are 

packed, move on to the next step. 

 

Step 10. Each of the packed layers within each order is now considered as a box with its 

length, width, height and weight. These boxes will be completely rectangular, having smooth 

edges. In practice the layers will have an uneven footprint, meaning that some boxes will 

float, and some gaps between the boxes are to be expected, as well as gaps between the 

boxes and the pallet “walls”.   
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Step 11. Pack the pallet with the sections created in the earlier steps, taking the parameters 

of the whole pallet into consideration. When there are no more orders left, and all the 

boxes are packed, the packing is finished. 
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6. Computational study 

The models presented in this thesis have been tested on a real-life packing problem. The 

main goal is to minimise the number of pallets needed to pack all the goods. Windows 10 

on a desktop computer with an Intel Core i5-6500T CPU with 2.5GHz and 16 GB of Ram 

was used in the experiments. The models are coded using AMPL language and solved with 

CPLEX 12.8.0.0.  

 

The tool used to visualise the packing conducted is a CLP spreadsheet solver created and 

developed by Dr Güneş Erdoğan. By implementing the coordinates and the orientations 

gathered by the model, the spreadsheet solver creates a three-dimensional image of how the 

boxes are packed on the pallet.   

6.1 Context 

In the dataset provided by Driw, costumer-, order- and item-number are included, along with 

the section the item is placed in the warehouse and the name of the different items. The 

computational study only considers the length, width, height and the weight of the items, 

and to which of the three types the item belongs. This is the case given that the objective is 

to minimise the number of pallets, making the details mentioned above obsolete and 

unnecessary. Also included in the dataset is the id of the bin the workers have placed the 

boxes. This data is used to compare the packing done by the workers and the packing 

obtained by the approaches conducted in the study.  

 

In the experiments conducted, eight orders are used to compare the different packing 

possibilities. These eight orders contain two orders that the workers have used one pallet 

each to pack, two orders that the workers have used two pallets each to pack, three orders 

that the workers have used three pallets each to pack and two orders that the workers have 

used four pallets each to pack. One of the orders packed on two pallets is an order where 

three pallets were used by the workers, but since one of the pallets was dedicated to a single 

item type and included almost no boxes, the order is being seen as an order packed on two 

pallets. The same logic can also be found on other orders.  

 

When implementing the different procedures to pack the pallets, the model was given a time-

limit of 300 seconds to obtain an answer, either successfully or by declaring the problem 
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infeasible. The time-limit was set so that solutions could be found quickly and that the 

procedures would not take too much time.  

 

To showcase the features of the non-modified model, a problem of our creation will be used. 

This problem will consist of packing eight rectangular boxes into one bin. The bin used in 

the example will have a smaller dimension than what the real pallets have. The problem will 

work as a viability check of the model and show how it performs under facilitated conditions.  

 

The modified model does not include weight distribution, stability or support. The heuristic 

approach implemented is a layer-building heuristic, meaning that the pallet is filled up layer 

by layer. The constraints are not included so that the model used with the heuristic is not too 

complicated and time-consuming. The idea is that the heuristic may create stable and well-

packed pallets on its own.  

6.2 Non-modified model  

This section is dedicated to showing how the full model presented by Paquay, Schyns, and 

Limbourg (2016) works. Firstly, a viability check of the model will be presented. It will then 

be implemented a heuristic, locking the positions of the boxes as they are packed onto the 

entirety of the pallet.  

6.2.1 Viability check 

The non-modified model should create well-balanced and stable packed pallets, that makes 

sure that the centre of gravity of each box is within the range of what is allowed. To see if 

the model works as promised a small packing problem is conducted and visualised in Figure 

10 

 

 

Figure 10. Packing conducted by the non-modified model (made by the authors) 



42 

 

Figure 10 shows that all the boxes are either supported by the floor of the pallet or by another 

box. It is also clear that at least three of the bottom vertices of the boxes are supported by 

another box or boxes. This also means that all the boxes are well supported and that the 

pallet is well-balanced, having uniform weight distribution. The problem visualised in 

Figure 10 shows that the non-modified model behaves and acts the way it should, satisfying 

all the constraints created for it.  

6.2.2 Locked-position approach 

The order packed contained 541 boxes. To begin with, the positions of 17 boxes needed to 

be locked. In total, the model needed to be solved 144 times, with an average of 3,8 boxes 

per solve. The model ended ups packing a total of 13 pallets, which is nine more than the 

workers used to pack the same order. Figure 11 and figure 12 visualise two of the pallets 

packed by the model.  

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

The visualisation of the packed pallets makes it apparent that the volume utilisation varies 

between the different pallets that are packed using this method. It is also clear that the biggest 

issue with the implementation is the constraint concerning the support of the vertices. For 

example, in Figure 11, it is enough space for a box to be placed above box 200 in the right 

bottom corner. However, because three vertices need to be supported, the box must be quite 

small to fit on top of box 200. The problem with the vertex support is also shown by the 

Figure 12. One of the pallets packed 

with the locked-position approach 

(made by the authors) 

Figure 11. One of the pallets packed 

with the locked-position approach 

(made by the authors) 
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continuous stacking along with the height of the pallet, not utilising much of the volume 

around the centre. If the boxes on the top have an area smaller than the area of the next box, 

it cannot support the next box unless there are other boxes as well with the same height. This 

may create a packing solution similar to how a pyramid is shaped.  

 

Locking the coordinates of boxes that have been packed makes for a static packed pallet, 

which means that boxes that are to be packed do not have an impact on the already packed 

boxes. The model packs the set of boxes with concern to the boxes already packed but 

without concern to the boxes that are to be packed later. This creates good packing for the 

given set of boxes, but not good packing for the pallet as a whole, seeing as it optimises the 

packing for that particular set of boxes.  

 

Comparing the solutions achieved by the approach implemented and the solution achieved 

by the workers shows that there are significant discrepancies between the two, as visualised 

in Figure 13. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Fill rate of packed pallets, average fill rate and average fill rate workers (made by the authors) 

 

The fill rates visualised in Figure 13 shows even more evident the ineffectiveness of the 

procedure conducted. The workers managed to achieve an average fill rate equivalent to 

82%, utilising over 90% of three out of four pallets. The locked-position approach only 

managed to achieve an average fill rate of 25%, with the best pallet utilising, approximately 

50% of the pallet.  
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Another issue faced with this approach concerns the aspect of time. To lock each of the 

positions, the constraints needed to be manually inserted into the model. This is a very 

tiresome procedure that takes a long time to do. Along with the allowed 300 seconds of 

running time for each of the implementations, it took days to conduct the packing of just 

this one order.   

6.3 Modified model 

Comparisons between the pallets packed by the workers and the pallets packed with the 

use of the heuristic. 

6.3.1 Heuristic implementation 

Table 1 provides an overview of the pallets packed by the workers and the heuristic in the 

eight orders that are investigated and showcases the differences between them.   

 

Table 1. Comparison between heuristic and workers (made by the authors) 

Order 

Number 

Number of Pallets Unused Volume 

(𝟏𝟎𝟎𝟎𝒄𝒎𝟑) 

Differences 

Model Workers Model Workers Pallets Utilization 

ORDER 1 1 1 1.163,517 1.163,517 0 0 

ORDER 2 1 1 643,540 643,540 0 0 

 

ORDER 3 

 

2 

 

2 

350,387 57,643  

0 

 

0 
576,512 869,257 

 

 

ORDER 4 

 

 

3 

 

 

2 

353,869 56,344  

 

1 

 

 

1.396,168 
949,826 520,852 

669,634  

 

 

 

ORDER 5 

 

 

 

4 

 

 

 

3 

384,752 95,710  

 

 

1 

 

 

 

1.430,185 

899,068 156,013 

298,871 259,845 

359,061  

 

 

 

 

 

 

423,591 93,780  

 

 

 
473,435 71,358 
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ORDER 6 

 

4 

 

3 

851,787 671,968  

1 

 

1.376.524 
464,817  

 

 

 

 

ORDER 7 

 

 

 

 

5 

 

 

 

 

4 

500,538 122,510  

 

 

 

1 

 

 

 

 

1.420,800 

477,539 42,431 

506,528 41,117 

486,915 813,945 

469,284  

 

 

 

 

 

ORDER 8 

 

 

 

 

 

6 

 

 

 

 

 

4 

453,626 74,971  

 

 

 

 

2 

 

 

 

 

 

2.665,567 

372,880 66,483 

413,051 80,476 

686,585 97,624 

335,683  

741,296  

 

 

The workers managed to pack all the boxes in these eight orders on 20 pallets, while the 

heuristic needed 26 pallets to pack the same amount. It is accounting for a 30% increase in 

the pallets that are needed when the heuristic approach is implemented. These findings 

support a notion that a layer building heuristic solely based on weight will have issues with 

packing problems that have a set of strongly heterogeneous boxes. The packing conducted 

in this thesis has shown that basing the box selection procedure solely on weight has created 

packing solutions that have too much-unused volume in the different sections, subsequently 

leading to pallets that have much more available volume than what is seen is the case with 

the pallets packed by the workers.   

 

Order 3 gave the same number of pallets with the heuristic as the workers did. Even though 

this is the case, the two pallets packed in this order are packed very differently. Where the 

pallets packed by the heuristic have similar unused volume, the once-packed by the workers 

have not. One of the pallets is packed full, while the other is not. Looking at the other orders, 

the same pattern emerges. It is apparent that the workers are packing as much as possible on 

the first pallet and then moving on to another pallet when the first one is as full as it can be. 
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This is something that the heuristic approach is not capable of doing to the same degree, thus 

creating two half-full pallets. 

 

Along with order 3, order 1 and 2 were also packed on the same number of pallets with the 

heuristic as by the workers. This is the case mostly because the orders that end up being 

packed on one pallet include few items, as shown by the sizeable unused volume these two 

orders have. So even though the heuristic manages to pack the items on the same number of 

pallets as the workers, these orders are not representable of how the heuristic performs.   

 

Figure 14 visualises the differences between how full the different pallets in the orders are 

packed, in percentage, by the heuristic and the workers. The fill rates from the two first 

orders are excluded since these orders do not represent the all-around performance of the 

heuristic. 

 

 

 

 

 

 

 

 

 

 

 

 

The fill rates of the pallets packed by the workers are far better than the once achieved by 

the heuristic approach. The average fill rate achieved by the workers on their 18 pallets is 

approximately 83%, versus 63% average for the heuristics 26 pallets. The best fill rate 

achieved with the heuristic is 79% on pallet 8, versus 97% achieved by the workers on both 

pallet 15 and 16. It is also worth mentioning that the workers manage to achieve a fill rate 

of over 90% on 12 out of the 18 pallets they used for the packing, not including the 89% 

achieved on pallet 7.  

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Model Workers

Figure 14. Fill rate comparison (made by the authors) 
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The reason behind the substantial differences in volume utilisation comes down to the box 

selection process. Weight selection could be a good way to get the heaviest boxes as low as 

possible on the pallet, but this comes at the expense of volume utilisation. Not considering 

the individual volume of the boxes creates a lot of difficult packing situations. A set of boxes 

with approximately the same weight can be chosen to be packed into a section of the pallet 

while the volume of the boxes is not taken into account. Situations, where very tall boxes 

are put in a set with boxes that do not have approximately the same height or can be stacked 

on top of each other to achieve a satisfying height, frequently occur when implementing the 

heuristic. Since the heuristic puts an “invisible” sheet between the boxes packed in different 

sections, visualised in Figure 15 and 16, sections like these will have much-unused volumes 

and significantly contribute to a large amount of available volume on the finale pallets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The bottom section of the pallet visualised in Figure 16 is taken from order 7. This section 

contains 55 boxes and is the worst utilised section in the entire order. Much of the reason 

behind this is to do with one of the boxes being a lot taller than the rest of the boxes. This 

box sets the height limit of the section, meaning that it should be paired with boxes of 

approximately the same height or boxes that can be stacked on top of each other to achieve 

a similar height. In this section, with the weight selection criteria for the boxes, this is not 

the case. Large portions of the section are unused, and packing utilisation is poor. Problems 

similar to this happens too often and prohibits the packing from competing with the one 

conducted by the workers.    

 

Figure 16. Pallet showing the 

"invisible" sheet on a poorly 

packed pallet (made by the authors) 

Figure 15. Pallet showing the 

"invisible" sheet on a well-packed 

pallet (made by the authors) 
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In some cases, packing as the one visualised in Figure 15 occurs. This packing is one of the 

better that the heuristic creates. Here the boxes in the two sections have approximately the 

same dimensions, as well as weight. In instances when boxes are relatively equal, the 

heuristic approach works well, leaving little volume left unused. The problem, however, is 

that sections such as the one in Figure 8 are few and far apart when the weight heuristic is 

implemented.  

 

Figure 17 and 18 illustrate how a packed pallet obtained with the heuristic can look like 

when the sections are treated as boxes and how each of the sections is packed, respectively.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at the sections-based packing conducted in Figure 18, the packing comes across as 

nearly perfect, with an unused volume of only 78,720 (𝟏𝟎𝟎𝟎𝒄𝒎𝟑) and fill rate equivalent to 

95%. The reality of the situation, however, is far from achieving the same results. As Figure 

11 illustrates, each of the sections illustrated in Figure 17 has much-unused volumes. The 

unused volume of the packed pallets is in reality  500,538 (𝟏𝟎𝟎𝟎𝒄𝒎𝟑), and the fill rate is 

only approximately 65%. Figure 17 clearly illustrates the problem with locking each of the 

sections with the “invisible” sheet. Boxes already packed in a section cannot be moved 

between the sections, even though the boxes may fit better in another section. The boxes that 

are already packed in a section, therefore, becomes static when new sections are opened for 

packing. This then leads to a lack of dynamic packing, where new boxes considered can 

have an impact on the boxes already packed, restacking or repacking the pallet.  

Figure 17. The packed sections creating 

the packed pallet (made by the authors) 
Figure 18. The packing inside each of the 

sections (made by the authors) 
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The inadequate volume utilisation and the substantial differences in the gaps between the 

boxes may cause problems when stability is concerned. The lack of the boxes in the sections 

to be uniformly packed, probably causes significant differences in the weight distribution 

and creates pallets that are not stable. 

 

One of the main driving forces behind the decision of basing the selection process on the 

weight of the boxes was the idea that this would put the heaviest boxes as close to the bottom 

of the pallets as possible. What was discovered during the packing process, however, is that 

lighter boxes can create heavier sections than what the heaviest boxes can. This can happen 

because a lot more of the lighter boxes can fit into a section, than what is seen with the 

sections packed with the heavier boxes. A heavier section containing light boxes may then 

be put underneath a lighter section containing a small number of heavy boxes. The heaviest 

section is then packed underneath the lighter section, making it possible for heavy boxes to 

be put on top of light boxes, subsequently making it possible for deformation and damages 

to be inflicted on boxes. 

 

6.3.2 Changes, height and Plasticity  

This part is dedicated to showing what small changes to the heuristic may do to the packing 

of the pallets, and how changing from a weight perspective to a height perspective regarding 

the packing selection in the heuristic may contribute to better volume utilisation. Order 7 

will be the focal point and the order used for comparing the packing before and after the 

changes to the heuristic, and when implementing the height. It will also be shown how the 

implementation of plasticity can change the packing.  

Implementation of changes to the heuristic 

The heuristic approach created states that the selection of boxes should be made based on 

the weight of said boxes, starting with the heaviest and working its way down to the lightest. 

This selection process has left much volume left in the sections that have been packed. To 

improve the packing conducted by the heuristic, small changes can be introduced. Table 2 

compares the heuristic approach, the packing conducted by the workers and a third packing 

possibility created by using the heuristic along with having the height of the boxes in mind.  
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Table 2. Comparison between the heuristic, changes and workers (made by the authors) 

 

 

 

 

                       

 

 

 

 

With the implemented changes, the model still packs the boxes on five pallets, same as with 

the weight heuristic approach. Apart from the same number of pallets, the packing and the 

available volume is more like the one done by the workers, in which the volume is not as 

uniformly distributed as is the case with the heuristic approach based on weight. Figure 19 

visualises the fill rates of the three different approaches and shows the similarities between 

the heuristic with changes and the workers. 

 

The fill rates show that the small changes to the heuristic do not create only half-packed 

pallets, like the once seen when the heuristic based on weight is used but packs pallets 

more like the once created by the workers. More of the volume is filled up in the first 

pallets, better utilising the pallets at the start of the packing. Even though the same 

Order 

Number 

Unused Volume (𝟏𝟎𝟎𝟎𝒄𝒎𝟑) 

Model Small Change Workers 

 

 

 

 

   ORDER 7 

 

500,538 470,743 122,510 

477,539 475,164 42,431 

506,528 1.072,981 41,117 

486,915 150,080 813,945 

469,284 260,542  
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Figure 19. Fill rates for model, changes and workers (made by the authors) 
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amounts of pallets are used, the new packing possibility shows that even small changes can 

make a significant impact on how the pallets are packed.  

 

The initial heuristic managed to pack all the boxes in the order into 28 sections, yielding a 

total height of all the sections equal to 669 cm. Implementing the changes to the heuristic 

manages to reduce the number of sections to 27 and subsequently the total height of all the 

sections by 71 cm. Meaning that some of the sections packed are better utilised than what 

the initial heuristic is capable of.  

The height as box selection criteria 

Previous heuristic procedures like the once proposed by Martello, Pisinger, and Vigo (2000) 

have based the box selection process on the volume of the boxes, more specifically the non-

increasing volume. As could be seen with the implementation of the heuristic with box 

selection based on weight, the approach is not capable of competing with the packing 

conducted by the workers. The small changes implemented to the heuristic, somewhat 

considering height, improved the packing of the pallets when the utilisation of the first 

packed pallets are concerned. Height, therefore, seems like the better selection criteria when 

the heuristic created is to be used. Table 3 compares, using order 7, the packing conducted 

by the heuristic based on weight, on height and the packing conducted by the workers.  

 

Table 3. Comparison between heuristic based on weight, based on height and packing by workers (made by the authors) 

 

 

 

 

 

 

 

 

 

Substituting the selection of boxes based on weight with a selection based on height yields 

a solution that packs the boxes on the same number of pallets that the workers are capable 

of. Using the same heuristic, only substituting the box selecting criteria, the model provides 

Order 

Number 

Unused Volume (𝟏𝟎𝟎𝟎𝒄𝒎𝟑) 

Weight Height Workers 

 

 

 

 

   ORDER 7 

500,538 398,752 122,510 

477,539 221,591 42,431 

506,528 178,893 41,117 

486,915 220,768 813,945 

469,284   
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a packing that has 1.420,800 (1000𝑐𝑚3) better volume utilisation. This number is equivalent 

to precisely one pallet.  

 

The problem with the static boxes occurring in the packing with the weight selected boxes, 

do not provide the same issues when the boxes are based on weight. Given that the boxes 

are chosen alongside boxes with approximately the same height, they are already pared with 

boxes more like one another. This means that the large amount of unused volume that occur 

when considering the height from the top of the boxes to the top of the section do not happen 

when the height is the selection criteria. Since the heuristic approach uses the combined area 

of the boxes selected to see how many that can fit into the section, clustering the boxes based 

on height can lead to the same utilisation in the footprint of the pallets but a much better 

utilisation of the volume.   

 

Basing the box selection on height produces the same average fill rate as the packing done 

by the workers, given that both manage to put the same set of boxes on four pallets. Even 

though the fill rates are the same, the heuristic approach with height does not manage to 

achieve the same high numbers that the workers manage. As shown in figure 18, the workers 

manage to get a fill rate of above 90% on three out of the four pallets. The heuristic manages 

to get above 80% on three, and a little above 70% on the fourth. This could mean that, even 

though the same number of pallets are used, the new heuristic approach may not be able to 

fill each of the pallets to its best capacity.  

 

One of the pallets packed according to height is visualised in Figure 20. Comparing this 

pallet to the one packed in Figure 18 shows much improvement in volume utilisation.  
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The bottom section visualised is the section containing the box that is a lot taller than the 

rest of the boxes in the order. Even though this box was paired with boxes similar to itself, 

the section is not better utilised than the one packed with the weight heuristic. However, 

what the section does better, in this case, is that it puts tall boxes in the same section, meaning 

that the other sections do not need to be as tall as the one that can be seen in the weight 

heuristic. This is only the case in instances where taller boxes are in a considerable minority 

compared to the rest of the boxes, as is the case with the order that has been packed. The 

other sections are visibly packed in a manner that creates proper volume utilisation. 

Available volume above the boxes are almost non-existing, and so is the case with the 

available volume between the boxes. This shows that the boxes are more uniformly 

distributed throughout the section, which means that the packing comes across as more 

stable and well packed compared to the one seen in Figure 18.  

 

Even though the packing can be more stable with the height-based selection, the lack of 

independent weight consideration may cause damage and deformation to the packing, 

making this approach not that suitable for implementation in real-life.  

 

Figure 20. The packed order based on the 

height selection (made by the authors) 



54 

 

Plasticity and what it can do to the packing 

As mentioned in the literature regarding pallet packing, plasticity can be implemented into 

packing to obtain new packing possibilities. One of the things that can be implemented is, 

ever so slightly, changing the dimensions of the pallet. In one of the orders, eight rectangular 

homogeneous boxes are to be packed onto a pallet. Using both the weight- and the height 

heuristic makes it so that these boxes are packed in two sections, subsequently yielding a 

solution that packs the pallet in two layers. Looking closely at the data, it is apparent that 

the dimensions of the boxes are a few millimetres too long on both the length and the width 

to be able to put them in one layer. Figure 22 visualises the pallet packed with the original 

dimensions, while Figure 21 shows the packed pallet with the dimensions of the pallet ever 

so slightly changed.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Just by extending the width of the pallet by 0,4 cm, all the boxes can be packed in one single 

layer. It is reasonable to think that this is the packing that has been conducted by the workers 

as well, as 0,2 cm overhang on each side of the pallet is a small amount and hardly visible 

to the naked eye. The plasticity shown in Figure 21 is something that needs to be taken into 

consideration when looking at the differences between the packing conducted by the 

heuristic implemented to the model and the workers.  

 

Figure 22. Order packed with the heuristic 

(made by the authors) 
Figure 21. Order packed with the 

implementation of plasticity (made by the 

authors) 
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Another possible implementation of plasticity is the change of height to the sections packed 

in the heuristic. One of the sections created using the weight-based heuristic had a height of 

22,3 cm, given that the largest box in this section had this height. The smallest boxes selected 

into this section had a height of 11,2 cm. Given the height of the section, two of these boxes 

could not be packed on top of each other, being 0,1 cm to tall. Changing the section to have 

a height of 22,4 allowed for the possibility of having at most double the number of boxes 

such as these packed into the section. Making it possible to pack more items into the section, 

creating better volume utilisation.  
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7. Conclusion 

Packing of containers, bins and pallets has substantial worth across a vast number of 

industries, spanning from warehouse-management and container stowing to goods transport 

across sea, road, air and railway. The industries it operates are industries with high 

uncertainties and complex nature. The problem considered in this thesis has focused on 

implementing weight as an essential factor in the packing of pallets. It has been a study 

dedicated to finding possible methods of packing that could compete, or even outperform, 

the packing conducted by experienced workers.  

 

A new heuristic approach has been developed to check if a weight-based selection of boxes 

can create feasible and viable packing options. The experiments and packing have been 

conducted using a mixed integer linear model created for three-dimensional packing 

problems. The validity of the model has been tested on a small problem and found to be 

satisfactory. Modifications have been done to the model when the heuristic approaches 

concerning weight and height have been implemented, disregarding weight distribution, 

stability and support. The first approach researched the locking of the coordinates of already 

packed boxes. The second approach used the construction heuristic created to pack pallets 

based on the weight of the boxes. The third approach considered how the height of the boxes 

could be implemented to achieve better packing. The final approach took a little look at how 

plasticity can be implemented to the packing.  

 

Locking the coordinates of already packed boxes turned out to not yield satisfactory packing 

solutions. The approach needed more than thrice the number of pallets as the workers did, 

thus creating packing that utilised little of the volume available on each pallet. The 

optimisation of each of the packing procedures did only take the packages already packed 

into consideration, disregarding the boxes left to be packed. This made for a packing that 

only optimised the packing at that exact stage, disregarding the entirety of the pallets and 

the boxes.  

 

Weight as the decision variable in the box selection process has shown to be far from optimal 

in the instances we have tested, creating packet pallets with large amounts of unused volume. 

It has been shown that the weight selection approach has problems with clustering the boxes 

when they are strongly heterogeneous. The notion of packing the heaviest boxes as near the 
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bottom as possible, so to not deform or destroy lighter boxes, has not been shown to work 

the way it was intended. They have sections with heavy boxes being put on top of sections 

with light boxes. Stability and packing patterns have also shown to be less than satisfactory, 

considering the poorly packed pallets. The issues faced are mostly concerning the heuristics 

clustering of boxes with significant differences in shape and size and creating uneven packed 

sections and pallets.  

 

With the order tested, height as the decision variable in the box selection process has been 

shown to yield better volume utilisation than the ones based on weight. Creating better-

packed pallets and more uniformly packed sections. The height selection approach has in 

instances tested shown to be able to pack the same set of boxes on the same number of pallets 

as the workers. This has been done without regard to the final condition of the boxes, and 

the implementation of a height-only box selection criteria can have difficulties when 

implemented in real-life instances given the practical relevance of box condition.  

 

Implementing plasticity to the order tested has shown that small changes to the pallet 

dimensions, as well as the height of the sections packed, can change the packing of even 

very small problems.  Plasticity in the constraints considered may create packing 

possibilities that more resembles how the packing is done in real life.  

 

The experiments conducted and the instances tested in this thesis has shown that the 

approaches implemented have a hard time competing with the packing conducted by the 

workers. Locking the coordinates of boxes already packed has shown to create solutions that 

are not even close to what the workers are capable of. The weight-based heuristic fared better 

than the locked coordinate procedure but could still not compete with the workers. Basing 

the box selection process on height is the only approach that managed to pack the same set 

of boxes on the same number of pallets as the workers, at least in the instances tested. Even 

though this is the case, it was only achieved when disregarding the condition of the boxes.  

 

The computations and experiments conducted in this thesis have shown that it will, with any 

approach, be hard to compete with the workers, and even harder to outperform them. The 

fill rates with the packing conducted by the workers can seem to be too high to improve, at 

least when looking at pallet reduction.  
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7.1 Limitations 

Although the research conducted in this thesis managed to answer the problem it set out to 

test, limitations do exist. Firstly, the time available only made it possible to test the 

approaches to a small number of instances. Secondly, the transferability of the approaches 

conducted may not be existing towards other industries with different data and goals, given 

that all the instances tested stems from one particular industry. Thirdly, time is also a factor 

when concerned with the time allowed for the model to conduct the packing. Allowing the 

models to run for a more extended period could yield different solutions than what is 

obtained in this thesis. Finally, the computation study only researches a small number of 

possible packing methods, which, could lead to findings that are only relatable in small 

instances.  

7.2 Suggestions for future research 

The limitations suggested makes room for further research on three-dimensional bin packing 

with weight restrictions and improvements that could help the packing further along. Better 

improvements to the weight and height-based selection approaches could be implemented, 

clustering the boxes based on both in a more significant matter than what the approaches in 

this thesis have been able to do. An approach similar to the infill box approach investigated 

in the literature review could also be of value in future research, making it possible for items 

to be taken out of their initial boxes and placed in between said boxes. More research could 

also be conducted across different industries, trying to find packing solutions that could 

either be implemented in more than one industry or that could inspire some industries to 

look at applications not yet implemented and tried out. A closer look at the effects of 

plasticity could also make the field of packing more applicable to real-life scenarios.  
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Appendix 

Sets, parameters and variables 

 

Notation/Description/mathematical model AMPL code 

  

Indexation:  

𝑖, 𝑗 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑏𝑜𝑥   

𝑘 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑝𝑎𝑙𝑙𝑒𝑡   

𝑙 = 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑣𝑒𝑟𝑡𝑒𝑥   

𝑎 − 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑎𝑥𝑖𝑠   

𝑏 − 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦  𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑥   

  

Sets 

𝑂𝐴 = 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑥𝑒𝑠 {𝑋, 𝑌, 𝑍}  set AXIS 

𝑂𝐵 = 𝑠𝑒𝑡 𝑜𝑓 𝑏𝑜𝑥 𝑠𝑖𝑑𝑒𝑠 {𝐿, 𝑊, 𝐻}  set SIDES 

  

Parameters:   

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑜𝑥𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑝𝑎𝑐𝑘𝑒𝑑  param n >= 0 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑎𝑙𝑙𝑒𝑡𝑠 𝑡𝑜 𝑢𝑠𝑒  param m >= 0 

𝑣 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑓𝑜𝑟 𝑎 𝑏𝑜𝑥  param v >= 0 

  

Box dimensions 

𝑙𝑖 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑜𝑥 𝑖, ∀ 𝑖 = 1, … , 𝑛  param length {1..n} >= 0 

𝑤𝑖 = 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑏𝑜𝑥 𝑖, ∀ 𝑖 = 1, … , 𝑛  param width {1..n} >= 0 

ℎ𝑖 = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑜𝑥 𝑖, ∀ 𝑖 = 1, … , 𝑛  param height {1..n} >= 0 

𝛾𝑖 =  𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑏𝑜𝑥 𝑖, ∀ 𝑖 = 1, … , 𝑛  param weight {1..n} >= 0 

  

Pallet dimensions 

𝑙′ = 𝑚𝑎𝑥 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡  param pallet_length >= 0 

𝑤′ = 𝑚𝑎𝑥 𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡  param pallet_width >= 0 

ℎ′ = 𝑚𝑎𝑥 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡  param pallet_height >= 0 
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𝛾′ = 𝑚𝑎𝑥 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑝𝑎𝑙𝑙𝑒𝑡  param pallet_weight >= 0 

  

Allowable range  

𝛼𝑙′
= 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑙𝑒𝑛𝑔𝑡ℎ  param allowable_range_l 

𝛼𝑤′
= 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑤𝑖𝑑𝑡ℎ  param allowable_range_w 

𝛼ℎ′
= 𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑟𝑎𝑛𝑔𝑒 𝑓𝑜𝑟 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 ℎ𝑒𝑖𝑔ℎ𝑡  param allowable_range_h 

 

 

Variables:   

Notation/Description/mathematical model AMPL code 

𝑃𝑖𝑘 = 1 𝑖𝑓 𝑏𝑜𝑥 𝑖 𝑖𝑠 𝑜𝑛 𝑝𝑎𝑙𝑙𝑒𝑡 𝑘, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1, … , 𝑛, 𝑘 =

1, … , 𝑚  

var Box_on_pallet {i 

in 1..n, k in 1..m} 

binary 

𝑈𝑘 = 1 𝑖𝑓 𝑝𝑎𝑙𝑙𝑒𝑡 𝑘 𝑖𝑠 𝑢𝑠𝑒𝑑, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑘 = 1, … , 𝑚  var Used_pallet {k in 

1..m} binary 

  

Coordinates 

𝑋𝑖 = 𝑓𝑟𝑜𝑛𝑡 𝑙𝑒𝑓𝑡 𝑏𝑜𝑡𝑡𝑜𝑚 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑋 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖, 𝑖 = 1, … , 𝑛  var X {i in 1..n}  >= 0 

𝑌𝑖 = 𝑓𝑟𝑜𝑛𝑡 𝑙𝑒𝑓𝑡 𝑏𝑜𝑡𝑡𝑜𝑚 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑌 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖, 𝑖 = 1, … , 𝑛  var Y {i in 1..n}  >= 0 

𝑍𝑖 = 𝑓𝑟𝑜𝑛𝑡 𝑙𝑒𝑓𝑡 𝑏𝑜𝑡𝑡𝑜𝑚 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑍 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖, 𝑖 = 1, … , 𝑛  var Z {i in 1..n}  >= 0 

𝑋𝑖
′ = 𝑏𝑎𝑐𝑘 𝑟𝑖𝑔ℎ𝑡 𝑡𝑜𝑝 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑋 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖, 𝑖 = 1, … , 𝑛  var Xr{i in 1..n}  >= 0 

𝑌𝑖
′ = 𝑏𝑎𝑐𝑘 𝑟𝑖𝑔ℎ𝑡 𝑡𝑜𝑝 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑌 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖, 𝑖 = 1, … , 𝑛  var Yr{i in 1..n}  >= 0 

𝑍𝑖
′ = 𝑏𝑎𝑐𝑘 𝑟𝑖𝑔ℎ𝑡 𝑡𝑜𝑝 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑍 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖, 𝑖 = 1, … , 𝑛  var Zr{i in 1..n}  >= 0 

  

Orientation/positioning 

𝑅𝑖𝑎𝑏 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑏𝑜𝑥 𝑠𝑖𝑑𝑒 𝑏 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖 𝑖𝑠 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡ℎ𝑒 𝑎𝑥𝑖𝑠 𝑎,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1, … , 𝑛, 𝑎 ∈ 𝑂𝐴, 𝑏 ∈ 𝑂𝐵  

var Position {i in 1..n, 

a in AXIS, b in 

SIDES} binary 

  

Relative position for box i and j 

𝐴𝑖𝑗 = 1 𝑖𝑓 𝑏𝑜𝑥 𝑖 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑏𝑜𝑥 𝑗, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑖, 𝑗 = 1, … , 𝑛  

var Right{i in 1..n, j in 

1..n} binary 
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𝐵𝑖𝑗 = 1 𝑖𝑓 𝑏𝑜𝑥 𝑖 𝑖𝑠 𝑏𝑒ℎ𝑖𝑛𝑑 𝑏𝑜𝑥 𝑗, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛   var Behind{i in 1..n, j 

in 1..n} binary 

𝐶𝑖𝑗 = 1 𝑖𝑓 𝑏𝑜𝑥 𝑖 𝑖𝑠 𝑎𝑏𝑜𝑣𝑒 𝑏𝑜𝑥 𝑗, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛  var Above{i in 1..n, j 

in 1..n} binary 

  

Stability  

𝐺𝑖 = 1 𝑖𝑓 𝑏𝑜𝑥 𝑖 𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑔𝑟𝑜𝑢𝑛𝑑, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1, … , 𝑛  var Ground{i in 1..n} 

binary 

𝑄𝑖𝑗 = 0 𝑖𝑓 𝑏𝑜𝑥 𝑗 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑠𝑢𝑖𝑡𝑎𝑏𝑙𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑡𝑜 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑏𝑜𝑥 𝑖,

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛   

var Suitable_height{i 

in 1..n, j in 1..n} 

binary 

𝐼𝑖𝑗 =

0 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑋𝑌 𝑝𝑙𝑎𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑥 𝑖 𝑎𝑛𝑑 𝑗 ℎ𝑎𝑣𝑒 𝑎,

𝑛𝑜𝑛-𝑒𝑚𝑝𝑡𝑦 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛, 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛  

var 

No_empty_intersectio

n{i in 1..n, j in 1..n} 

binary 

𝑆𝑖𝑗 = 1 𝑖𝑓 𝑏𝑜𝑥 𝑗 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠 𝑏𝑜𝑥 𝑖 𝑎𝑛𝑑 𝑎𝑟𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑝𝑎𝑙𝑙𝑒𝑡,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛  

var Support{i in 1..n, j 

in 1..n} binary 

𝑉𝑖𝑗𝑙 =

1 𝑖𝑓 𝑣𝑒𝑟𝑡𝑒𝑥 𝑙 𝑓𝑜𝑟 𝑏𝑜𝑥 𝑖 𝑖𝑠 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝑏𝑦 𝑏𝑜𝑥 𝑗, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣   

Vertex_support{i in 

1..n, j in 1..n, l in 1..v} 

binary 

  

Box vertex support 

𝛽𝑖𝑗
𝑋 = 1 𝑖𝑓 𝑋𝑗 >  𝑋𝑖, 0 𝑜𝑟 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛   var X_less{i in 1..n, j 

in 1..n} binary 

𝛽𝑖𝑗
𝑌 = 1 𝑖𝑓 𝑌𝑗 > 𝑌𝑖, 0 𝑜𝑟 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛   var Y_less{i in 1..n, j 

in 1..n} binary 

𝛽𝑖𝑗
𝑋′

= 1 𝑖𝑓 𝑋𝑟𝑗 >  𝑋𝑟𝑖, 0 𝑜𝑟 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛   var Xr_less{i in 1..n, j 

in 1..n} binary 

𝛽𝑖𝑗
𝑌′

= 1 𝑖𝑓 𝑌𝑟𝑗 >  𝑌𝑟𝑖 , 0 𝑜𝑟 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛   var Yr_less{i in 1..n, j 

in 1..n} binary 

  

Absolute variables 
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𝑇𝑖𝑗 = 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 |𝑍𝑗
′ − 𝑍𝑖|, 𝑖, 𝑗 = 1, … , 𝑛  var Absolute {i in 

1..n, j in 1..n} >= 0 

𝛿𝑖𝑗 = 1 𝑖𝑓 𝑍𝑗
′ ≥ 𝑍𝑖 , 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖, 𝑗 = 1, … , 𝑛   var Binary {i in 1..n, j 

in 1..n} binary 

  

Gravity variables 

𝛾𝑖
𝑋 = 𝑋 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 𝑖, 𝑖 = 1, … , 𝑛   var 

X_mass_coordinate 

{1..n} >= 0 

𝛾𝑖
𝑌 = 𝑌 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 𝑖, 𝑖 = 1, … , 𝑛  var 

Y_mass_coordinate 

{1..n} >= 0 

𝛾𝑖
𝑍 = 𝑍 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑓𝑜𝑟 𝑚𝑎𝑠𝑠 𝑖, 𝑖 = 1, … , 𝑛  var 

Z_mass_coordinate 

{1..n} >= 0 

𝜎𝑖𝑘
𝑋 =

𝑓𝑜𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑜𝑛𝑙𝑦 𝑏𝑜𝑥𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑜𝑛 𝑝𝑎𝑙𝑙𝑒𝑡 𝑘 𝑎𝑛𝑑 ℎ𝑎𝑣𝑒 𝑋 ,

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  

var Xij {i in 1..n, k in 

1..m} >= 0 

𝜎𝑖𝑘
𝑌 =

𝑓𝑜𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑜𝑛𝑙𝑦 𝑏𝑜𝑥𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑜𝑛 𝑝𝑎𝑙𝑙𝑒𝑡 𝑘 𝑎𝑛𝑑 ℎ𝑎𝑣𝑒 𝑌 ,

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  

var Yij {i in 1..n, k in 

1..m} >= 0 

𝜎𝑖𝑘
𝑍 =

𝑓𝑜𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑜𝑛𝑙𝑦 𝑏𝑜𝑥𝑒𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑜𝑛 𝑝𝑎𝑙𝑙𝑒𝑡 𝑘 𝑎𝑛𝑑 ℎ𝑎𝑣𝑒 𝑍 ,

𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  

var Zij {i in 1..n, k in 

1..m} >= 0 
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Mathematical model AMPL name 

Objective 

(1) min ∑ 𝑙′𝑤′ℎ′𝑈𝑘 − ∑ 𝑙𝑖𝑤𝑖ℎ𝑖𝑖=1,…,𝑛,𝑘=1,…,𝑚   Unused_Volume 

 

S.t. 

Mathematical model AMPL name 

Logical/bounds 

(2) ∑ 𝑃𝑖𝑘 = 1, 𝑖 = 1, … , 𝑛𝑘=1,…,𝑚   Box_on_one_pallet {i in 1..n} 

(3) ∑ 𝛾𝑖𝑃𝑖𝑘 ≤ 𝛾′𝑈𝑘, 𝑘 = 1, … , 𝑚𝑖=1,…,𝑛   Weight_capacity {k in 1..m} 

  

(4a) 𝑋𝑖
′ ≤ ∑ 𝑙′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛𝑘=1,…,𝑚   Cont_Size_Xr {i in 1..n} 

(4b) 𝑌𝑖
′ ≤ ∑ 𝑤′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛𝑘=1,…,𝑚   Cont_Size_Yr {i in 1..n} 

(4c) 𝑍𝑖
′ ≤ ∑ ℎ′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛𝑘=1,…,𝑚   Cont_Size_Zr {i in 1..n} 

  

Orientation/rotation 

(5a) ∑ 𝑅𝑖𝑎𝑏 = 1, 𝑖 = 1, … , 𝑛, 𝑏 ∈ 𝑂𝐵
𝑎∈𝑂𝐴   Rotation1 {i in 1..N, b in SIDES} 

(5b) ∑ 𝑅𝑖𝑎𝑏 = 1, 𝑖 = 1, … , 𝑛, 𝑎 ∈ 𝑂𝐴
𝑏∈𝑂𝐵   Rotation2 {i in 1..N, a in AXIS} 

(5c) 𝑋𝑖
′ − 𝑋𝑖 = 𝑙𝑖𝑅𝑖, X, L + 𝑤𝑖𝑅𝑖, X, W + ℎ𝑖𝑅𝑖, X, H, 𝑖 =

1, … , 𝑛  

Rotation3 {i in 1..N, a in AXIS, b 

in SIDES} 

(5d) 𝑌𝑖
′ − 𝑌𝑖 = 𝑙𝑖𝑅𝑖, Y, L + 𝑤𝑖𝑅𝑖, Y, W + ℎ𝑖𝑅𝑖, Y, H, 𝑖 =

1, … , 𝑛  

Rotation4 {i in 1..N, a in AXIS, b 

in SIDES} 

(5e) 𝑍𝑖
′ − 𝑍𝑖 = 𝑙𝑖𝑅𝑖, Z, L + 𝑤𝑖𝑅𝑖, Z, W + ℎ𝑖𝑅𝑖, Z, H, 𝑖 =

1, … , 𝑛  

Rotation5 {i in 1..N, a in AXIS, b 

in SIDES} 

(5f) 𝑅𝑖, Z, H = 1, 𝑖 = 1, … , 𝑛  Side_up {i in 1..N, a in AXIS, b in 

SIDES} 

  

Overlapping 

(6a) 𝐴𝑖𝑗 + 𝐴𝑗𝑖 + 𝐵𝑖𝑗 + 𝐵𝑗𝑖 + 𝐶𝑖𝑗 + 𝐶𝑗𝑖 ≥ 𝑃𝑖𝑘 + 𝑃𝑗𝑘 −

1, 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚: 𝑖 ≠ 𝑗 

Overlap_check {i in 1..n, j in 1..n, k 

in 1..m: i<>j} 

(6b) 𝑋𝑗
′ ≤ 𝑋𝑖 + (1 − 𝐴𝑖𝑗)𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Overlapping1 {i in 1..n, j in 1..n: 

i<>j} 
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(6c) 𝑋𝑖 + 1 ≤ 𝑋𝑗
′ + 𝐴𝑖𝑗𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Overlapping2 {i in 1..n, j in 1..n: 

i<>j} 

(6d)𝑌𝑗
′ ≤ 𝑌𝑖 + (1 − 𝐵𝑖𝑗)𝑤′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Overlapping3 {i in 1..n, j in 1..n: 

i<>j} 

(6e) 𝑌𝑖 + 1 ≤ 𝑌𝑗
′ + 𝐵𝑖𝑗𝑤′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 Overlapping4 {i in 1..n, j in 1..n: 

i<>j} 

(6f) 𝑍𝑗
′ ≤ 𝑍𝑖 + (1 − 𝐶𝑖𝑗)ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 Overlapping5 {i in 1..n, j in 1..n: 

i<>j} 

(6g) 𝑍𝑖 ≤ 𝑍𝑗
′ + 𝐶𝑖𝑗ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 Overlapping6 {i in 1..n, j in 1..n: 

i<>j} 

  

Defining box stability 

(7) ∑ ∑ 𝑉𝑖𝑗𝑙 ≥ 3𝑙=1,…,𝑣𝑗=1,…,𝑛: 𝑖≠𝑗 (1 − 𝐺𝑖), 𝑖 = 1, … , 𝑛  Stability {i in 1..N} 

(8) 𝑍𝑖 ≤ (1 − 𝐺𝑖)ℎ′, 𝑖 = 1, … , 𝑛  On_the_ground {i in 1..N} 

  

Defining suitable height 

(9a)𝑍𝑗
′ − 𝑍𝑖 ≤ 𝑇𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Absolute1 {i in 1..n, j in 1..n: i<>j } 

(9b)𝑍𝑖 − 𝑍𝑗
′ ≤ 𝑇𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Absolute2 {i in 1..n, j in 1..n: i<>j } 

(9c)𝑇𝑖𝑗 ≤ 𝑍𝑗
′ − 𝑍𝑖 + 2(1 − 𝛿𝑖𝑗)ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Absolute3 {i in 1..n, j in 1..n: i<>j } 

(9d)𝑇𝑖𝑗 ≤ 𝑍𝑖 − 𝑍𝑗
′ + 2𝛿𝑖𝑗ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Absolute4 {i in 1..n, j in 1..n: i<>j } 

  

(10a) 𝑄𝑖𝑗 ≤ 𝑇𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Absolute5 {i in 1..n, j in 1..n: i<>j } 

(10b) 𝑇𝑖𝑗 ≤ 𝑄𝑖𝑗ℎ′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Absolute6 {i in 1..n, j in 1..n: i<>j } 

  

Continue stability 

(11a) 𝐼𝑖𝑗 ≤ 𝐴𝑖𝑗 + 𝐴𝑗𝑖 + 𝐵𝑖𝑗 + 𝐵𝑗𝑖, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Shared_projection1 {i in 1..n, j in 

1..n: i<>j} 

(11b)𝐴𝑖𝑗 + 𝐴𝑗𝑖 + 𝐵𝑖𝑗 + 𝐵𝑗𝑖 ≤ 2𝐼𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Shared_projection2 {i in 1..n, j in 

1..n: i<>j} 

  

(12a) (1 − 𝑆𝑖𝑗) ≤ 𝑄𝑖𝑗 + 𝐼𝑖𝑗 , 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Support_bottom_top1 {i in 1..n, j in 

1..n: i<>j} 
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(12b) 𝑄𝑖𝑗 + 𝐼𝑖𝑗 ≤ 2(1 − 𝑆𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Support_bottom_top2 {i in 1..n, j in 

1..n: i<>j} 

  

(13a) 𝑃𝑖𝑘 − 𝑃𝑘𝑖 ≤ (1 − 𝑆𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 =

1, … , 𝑚: 𝑖 ≠ 𝑗  

Box_support_same_pallet1 {i in 

1..n, j in 1..n, k in 1..m: i<>j} 

(13b) 𝑃𝑘𝑖 − 𝑃𝑖𝑘 ≤ (1 − 𝑆𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑛, 𝑘 =

1, … , 𝑚: 𝑖 ≠ 𝑗  

Box_support_same_pallet2 {i in 

1..n, j in 1..n, k in 1..m: i<>j} 

  

(14) 𝑉𝑖𝑗𝑙 ≤ 𝑆𝑖𝑗, 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣: 𝑖 ≠ 𝑗  Certified_support {i in 1..n, j in 

1..n, l in 1..v: i<>j} 

  

(15a) 𝑋𝑗 ≤ 𝑋𝑖 + 𝛽𝑖𝑗
𝑋𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗   Lapping1 {i in 1..n, j in 1..n: i<>j} 

(15b) 𝑌𝑗 ≤ 𝑌𝑖 + 𝛽𝑖𝑗
𝑌 𝑤′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗  Lapping2 {i in 1..n, j in 1..n: i<>j} 

(15c) 𝑋𝑖
′ ≤ 𝑋𝑗

′ + 𝛽𝑖𝑗
𝑋′

𝑙′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗   Lapping3 {i in 1..n, j in 1..n: i<>j} 

(15d) 𝑌𝑖
′ ≤ 𝑌𝑗

′ + 𝛽𝑖𝑗
𝑌′

𝑤′, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗   Lapping4 {i in 1..n, j in 1..n: i<>j} 

  

(16a) 𝛽𝑖𝑗
𝑋 + 𝛽𝑖𝑗

𝑌 ≤ 2(1 − 𝑉𝑖𝑗1), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 =

1, … , 𝑣: 𝑖 ≠ 𝑗  

Box_support1 {i in 1..n, j in 1..n, l 

in 1..v: i<>j} 

(16b) 𝛽𝑖𝑗
𝑌 + 𝛽𝑖𝑗

𝑋′
≤ 2(1 − 𝑉𝑖𝑗2), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 =

1, … , 𝑣: 𝑖 ≠ 𝑗  

Box_support2 {i in 1..n, j in 1..n, l 

in 1..v: i<>j} 

(16c) 𝛽𝑖𝑗
𝑋′

+ 𝛽𝑖𝑗
𝑌′

≤ 2(1 − 𝑉𝑖𝑗3), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 =

1, … , 𝑣: 𝑖 ≠ 𝑗  

Box_support3 {i in 1..n, j in 1..n, l 

in 1..v: i<>j} 

(16d) 𝛽𝑖𝑗
𝑋 + 𝛽𝑖𝑗

𝑌′ ≤ 2(1 − 𝑉𝑖𝑗4), 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 =

1, … , 𝑣: 𝑖 ≠ 𝑗  

Box_support4 {i in 1..n, j in 1..n, l 

in 1..v: i<>j} 

  

Weight distribution 

(17a) 𝛾𝑖
𝑋 =

𝑋𝑖+𝑋𝑖
′

2
, 𝑖 = 1, … , 𝑛  

Box_mass_coordinate_X {i in 1..n} 

(17b) 𝛾𝑖
𝑌 =

𝑌𝑖+𝑌𝑖
′

2
, 𝑖 = 1, … , 𝑛  

Box_mass_coordinate_Y {i in 1..n} 

(17c) 𝛾𝑖
𝑍 =

𝑍𝑖+𝑍𝑖
′

2
, 𝑖 = 1, … , 𝑛  

Box_mass_coordinate_Z {i in 1..n} 
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(18a) 𝜎𝑖𝑘
𝑋 ≤ 𝑙′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  Range_X1 {i in 1..n, k in 1..m} 

(18b) 𝜎𝑖𝑘
𝑋 ≤ 𝛾𝑖

𝑋, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  Range_X2 {i in 1..n, k in 1..m} 

(18c) 𝜎𝑖𝑘
𝑋 ≥ 𝛾𝑖

𝑋 − 𝑙′(1 − 𝑃𝑖𝑘), 𝑖 = 1, … , 𝑛, 𝑘 =

1, … , 𝑚  

Range_X3 {i in 1..n, k in 1..m} 

  

(19a) (
𝑙′

2
− 𝛼𝑙′

)(∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ) ≤ ∑ 𝜎𝑖𝑘
𝑋 𝛾𝑖, 𝑘 =𝑖=1,…,𝑛

1, … , 𝑚  

Neighbourhood_X1 {k in 1..m} 

(19b) ∑ 𝜎𝑖𝑘
𝑋 𝛾𝑖𝑖=1,…,𝑛 ≤ (

𝑙′

2
+ 𝛼𝑙′

) (∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ),

𝑘 = 1, … , 𝑚  

Neighbourhood_X2 {k in 1..m} 

  

(20a) 𝜎𝑖𝑘
𝑌 ≤ 𝑤′𝑃𝑖𝑘 , 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  Range_Y1 {i in 1..n, k in 1..m} 

(20b) 𝜎𝑖𝑘
𝑌 ≤ 𝛾𝑖

𝑌, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚  Range_Y2 {i in 1..n, k in 1..m} 

(20c) 𝜎𝑖𝑘
𝑌 ≥ 𝛾𝑖

𝑌 − 𝑤′(1 − 𝑃𝑖𝑘), 𝑖 = 1, … , 𝑛, 𝑘 =

1, … , 𝑚  

Range_Y3 {i in 1..n, k in 1..m} 

  

(21a) (
𝑤′

2
− 𝛼𝑤′

)(∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ) ≤ ∑ 𝜎𝑖𝑘
𝑌 𝛾𝑖,𝑖=1,…,𝑛

𝑘 = 1, … , 𝑚 

Neighbourhood_Y1 {k in 1..m} 

(21b) ∑ 𝜎𝑖𝑘
𝑌 𝛾𝑖𝑖=1,…,𝑛 ≤ (

𝑤′

2
+ 𝛼𝑤′

) (∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ),

𝑘 = 1, … , 𝑚 

Neighbourhood_Y2 {k in 1..m} 

  

(22a) 𝜎𝑖𝑘
𝑍 ≤ ℎ′𝑃𝑖𝑘, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 Range_Z1 {i in 1..n, k in 1..m} 

(22b) 𝜎𝑖𝑘
𝑍 ≤ 𝛾𝑖

𝑍, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 Range_Z2 {i in 1..n, k in 1..m} 

(22c) 𝜎𝑖𝑘
𝑍 ≥ 𝛾𝑖

𝑍 − ℎ′(1 − 𝑃𝑖𝑘), 𝑖 = 1, … , 𝑛, 𝑘 =

1, … , 𝑚 

Range_Z3 {i in 1..n, k in 1..m} 

  

(23a) 0 ≤ ∑ 𝜎𝑖𝑘
𝑍 𝛾𝑖, 𝑘 = 1, … , 𝑚𝑖=1,…,𝑛  Neighbourhood_Z1 {k in 1..m} 

(23b) ∑ 𝜎𝑖𝑘
𝑍 𝛾𝑖𝑖=1,…,𝑛 ≤ 𝛼ℎ′

(∑ 𝛾𝑖𝑃𝑖𝑘𝑖=1,…,𝑛 ), 𝑘 =

1, … , 𝑚 

Neighbourhood_Z2 {k in 1..m} 
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(24) 𝑆𝑖𝑗 + 𝑆𝑗𝑖 ≤ 1, 𝑖, 𝑗 = 1, … , 𝑛: 𝑖 ≠ 𝑗 

 

Logic_support {i in 1..n, j in 1..n: 

i<>j} 

 

(25) 𝑈𝑘 ≤ 𝑈𝑘−1 , 𝑘 = 2, … , 𝑚 Next_pallet {k in 2..m}: 

 

(26a) 𝑃𝑖𝑘 ∈ {0, 1}, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 

(26b) 𝑈𝑘 ∈ {0, 1}, 𝑘 = 1, … , 𝑚 

(26c) 𝐺𝑖  ∈ {0, 1}, 𝑖 = 1, … , 𝑛 

(26d) 𝑅𝑖𝑎𝑏 ∈ {0, 1}, 𝑖 = 1, … , 𝑛, 𝑎 ∈ 𝑂𝐴, 𝑏 ∈ 𝑂𝐵 

(26e) 𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝐶𝑖𝑗 , 𝑄𝑖𝑗, 𝐼𝑖𝑗 , 𝑆𝑖𝑗, 𝛽𝑖𝑗
𝑋 , 𝛽𝑖𝑗

𝑌 , 𝛽𝑖𝑗
𝑋′

, 𝛽𝑖𝑗
𝑌′

, 𝛿𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, … , 𝑛 

(26f) 𝑉𝑖𝑗𝑙 ∈ {0, 1}, 𝑖, 𝑗 = 1, … , 𝑛, 𝑙 = 1, … , 𝑣 

 

(27a) 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 , 𝑋𝑖
′, 𝑌𝑖

′, 𝑍𝑖
′, 𝛾𝑖

𝑋, 𝛾𝑖
𝑌, 𝛾𝑖

𝑍 ≥ 0, 𝑖 = 1, … , 𝑛 

(27b) 𝑇𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 1, … , 𝑛 

(27c) 𝜎𝑖𝑘
𝑋 , 𝜎𝑖𝑘

𝑌 , 𝜎𝑖𝑘
𝑍 ≥ 0, 𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑚 
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AMPL-code 

 
set AXIS;  # set of axis: X,Y,Z 

set SIDES;  # set of boxsides: L,W,H 

 

param n >= 0; # number of boxes to be packed 

param m >= 0; # number of pallets 

param v >= 0; # number of vertices 

 

 

param length{1..n} >= 0; # length of box i 

param width{1..n} >= 0;  # weight of box i 

param height{1..n} >= 0; # height of box i 

param weight{1..n} >= 0; # weight of box i 

 

 

param pallet_length >= 0;  # max length of pallet 

param pallet_width >= 0; # max width of pallet 

param pallet_height >= 0;  # max height of pallet 

param pallet_weight >= 0; # max weight of pallet 

 

param E >= 0;   # small number 

 

var Box_on_pallet{i in 1..n, k in 1..m} binary;   

# 1 if box i is on pallet k, 0 otherwise 

var Used_pallet{k in 1..m} binary; # 1 if pallet k is used, 0 otherwise 

 

var X{i in 1..n} >= 0; # front left bottom coordinate X for box i 

var Y{i in 1..n} >= 0; # front left bottom coordinate Y for box i 

var Z{i in 1..n} >= 0; # front left bottom coordinate Z for box i 

var Xr{i in 1..n} >= 0; # back right top coordinate X for box i 

var Yr{i in 1..n} >= 0; # back right top coordinate Y for box i 

var Zr{i in 1..n} >= 0; # back right top coordinate Z for box i 

 

var Right{i in 1..n, j in 1..n} binary;   

# 1 if box i is on the right side of box j, 0 otherwise 

var Behind{i in 1..n, j in 1..n} binary;  

# 1 if box i is behind box j, 0 otherwise 

var Above{i in 1..n, j in 1..n} binary;   

# 1 if box i is above box j, 0 otherwise 

 

var Position {i in 1..n, a in AXIS, b in SIDES} binary;  

# 1 if the boxside b for box i is paralell to the axis a, 0 otherwise 

 

var Ground{i in 1..n} binary;      

# 1 if box i is on the ground, 0 otherwise 

 

var Suitable_height{i in 1..n, j in 1..n} binary;   

# 0 if box j has the suitable height to support box i, 1 otherwise 

var No_empty_intersection{i in 1..n, j in 1..n} binary;   

# 0 if the projections on the XY plane of the boxs i and j have a 

nonempty intersection, 1 otherwise.  

var Support{i in 1..n, j in 1..n} binary;    

# 1 if box j supports box i and are on the same pallet, 0 otherwise 

var Vertex_support{i in 1..n, j in 1..n, l in 1..v} binary;  

# 1 if vertex l for box i is supported by box j, 0 otherwise 

 

var X_less{i in 1..n, j in 1..n} binary; # 0 if X j <= X i, 1 otherwise 

var Y_less{i in 1..n, j in 1..n} binary; # 0 if Y j <= Y i, 1 otherwise 
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var Xr_less{i in 1..n, j in 1..n} binary; # 0 if Xr j <= Xr i, 1 

otherwise 

var Yr_less{i in 1..n, j in 1..n} binary; # 0 if Yr j <= Yr i, 1 

otherwise 

minimize Unused_Volume:  

sum{k in 1..m} Used_pallet[k] * pallet_length * pallet_width * 

pallet_height - sum{i in 1..n} (length[i] * width[i] * height[i]);  

#  Minimizing total volume: Total volume of pallets used - total volume 

of boxes 

 

subject to Next_pallet {k in 2..m}: 

Used_pallet[k] <= Used_pallet[k-1]; 

# Says that if a pallet is used, pallet k-1 has to be used as well. This 

is for the seccond pallet to m.  

 

subject to Box_on_one_pallet {i in 1..n}:  

sum{k in 1..m} Box_on_pallet[i,k] = 1; 

# each box is placed on one and only one pallet 

 

 

subject to Weight_capacity {k in 1..m}: 

sum{i in 1..n} weight[i] * Box_on_pallet[i,k] <= pallet_weight * 

Used_pallet[k]; 

# weight on pallet k cannot exceed pallet k's weight capacity 

 

 

 

subject to Cont_Size_Xr {i in 1..n}:  

Xr[i] <= sum{k in 1..m} pallet_length * Box_on_pallet[i,k]; 

# The back right top X coordinate for box i cannot exceed the length of 

pallet 

 

subject to Cont_Size_Yr {i in 1..n}:  

Yr[i] <= sum{k in 1..m} pallet_width * Box_on_pallet[i,k]; 

# The back right top Y coordinate for box i cannot exceed the width of 

pallet 

 

subject to Cont_Size_Zr {i in 1..n}: 

Zr[i] <= sum{k in 1..m} pallet_height * Box_on_pallet[i,k]; 

# The back right top Z coordinate for box i cannot exceed the height of 

pallet 

 

 

 

subject to Rotation1 {i in 1..n, b in SIDES}: 

sum{a in AXIS} Position[i,a,b] = 1; 

# box side b for box i must be parallel to one and only one axis.  

 

subject to Rotation2 {i in 1..n, a in AXIS}: 

sum{b in SIDES} Position[i,a,b] = 1; 

# axis a for box i must be parallel to one and only one box side.  

 

subject to Rotation3 {i in 1..n, a in AXIS, b in SIDES}: 

Xr[i] - X[i] = Position[i,"X","L"] * length[i] + Position[i,"X","W"] * 

width[i] + Position[i,"X","H"] * height[i]; 

# Position 3, 4 and 5 says that the boxes can rotate orthogonally on the 

pallet 

# The difference between back right top X coordinate and front left 

bottom X coordinate for box i must be equal to the way box i is 

positioned  
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subject to Rotation4 {i in 1..n, a in AXIS, b in SIDES}: 

Yr[i] - Y[i] = Position[i,"Y","L"] * length[i] + Position[i,"Y","W"] * 

width[i] + Position[i,"Y","H"] * height[i]; 

# Position 3, 4 and 5 says that the boxes can rotate orthogonally on the 

pallet 

subject to Rotation5 {i in 1..n, a in AXIS, b in SIDES}: 

Zr[i] - Z[i] = Position[i,"Z","L"] * length[i] + Position[i,"Z","W"] * 

width[i] + Position[i,"Z","H"] * height[i]; 

# Position 3, 4 and 5 says that the boxes can rotate orthogonally on the 

pallet 

 

subject to Side_up {i in 1..n, a in AXIS, b in SIDES}: 

Position[i,"Z","H"] = 1; 

# Box side "H" (height) for box i must be parallel to the "Z" axis 

 

 

 

subject to Overlap_check {i in 1..n, j in 1..n, k in 1..m: i<>j}:  

Right[i,j] + Right[j,i] + Behind[i,j] + Behind[j,i] + Above[i,j] + 

Above[j,i] >= (Box_on_pallet[i,k] + Box_on_pallet[j,k]) - 1; 

# An overlap can only happen if box i and box j are on the same pallet 

# If the box i and box j are not right, behind or above each other 

(LHS=0), then box i and box j are not on the same pallet 

 

subject to Overlapping1 {i in 1..n, j in 1..n: i<>j}:  

Xr[j] <= X[i] + (1 - Right[i,j]) * pallet_length;  

# Defines Right 

 

subject to Overlapping2 {i in 1..n, j in 1..n: i<>j}:  

X[i] + E <= Xr[j] + Right[i,j] * pallet_length;  

# Defines Right 

 

subject to Overlapping3 {i in 1..n, j in 1..n: i<>j}:  

Yr[j] <= Y[i] + (1 - Behind[i,j]) * pallet_width;  

# Defines Behind 

 

subject to Overlapping4 {i in 1..n, j in 1..n: i<>j}:  

Y[i] + E <= Yr[j] + Behind[i,j] * pallet_width;  

# Defines Behind 

 

subject to Overlapping5 {i in 1..n, j in 1..n: i<>j}:   

Zr[j] <= Z[i] + (1 - Above[i,j]) * pallet_height;  

# Defines Above 

 

subject to Overlapping6 {i in 1..n, j in 1..n: i<>j}:   

Z[i] + E <= Zr[j] + Above[i,j] * pallet_height;  

# Defines Above. Added by us because Above did not work correctly.  

 

 

 

 

subject to Stability {i in 1..n}:  

sum{j in 1..n, l in 1..v: i<>j} Vertex_support[i,j,l] >= 3 * (1 - 

Ground[i]); 

# ensures that at least 3 vertices are supported if box i is not on the 

ground. I and j must be different.  

 

 

subject to On_the_ground {i in 1..n}: 

Z[i] <= (1 - Ground[i]) * pallet_height;  
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# If ground is equal to one, Z coordinate for box i has to be zero. Then 

the box i is on the ground. 

# if ground i equals 1, then box i is on the ground 

 

 

 

var Absolute {i in 1..n, j in 1..n} >= 0; # Represent absolute value  

|Zrj-Zi| 

var Binary {i in 1..n, j in 1..n} binary; # 1 if Zrj>=Zi,0 otherwise 

 

 

# Defines the variable Suitable_height by using the absolute value |Zr-

Zi| and binary variable 1 if Zr>=Z 

 

subject to Absolute1 {i in 1..n, j in 1..n: i<>j}: 

Zr[j] - Z[i] <= Absolute[i,j]; 

#  

 

subject to Absolute2 {i in 1..n, j in 1..n: i<>j}: 

Z[i] - Zr[j] <= Absolute[i,j]; 

#  

 

subject to Absolute3 {i in 1..n, j in 1..n: i<>j}: 

Absolute[i,j] <= Zr[j] - Z[i] + 2 * pallet_height * (1 - Binary[i,j]); 

#  

 

subject to Absolute4 {i in 1..n, j in 1..n: i<>j}: 

Absolute[i,j]  <= Z[i] - Zr[j] + 2 * pallet_height * Binary[i,j]; 

#  

 

subject to Absolute5 {i in 1..n, j in 1..n: i<>j}: 

E*Suitable_height[i,j] <= Absolute[i,j] ; 

# If the absolute value is zero, the suitable height must be 0. If 

suitable height is 1, then absolute value is bigger or equal to one.  

 

subject to Absolute6 {i in 1..n, j in 1..n: i<>j}: 

Absolute[i,j] <= Suitable_height[i,j] * pallet_height; 

# If suitable_height is zero, the absolute value must be 0. If the 

absolute value is bigger than zero, then suitable height must be one.  

 

 

subject to Shared_projection1 {i in 1..n, j in 1..n: i<>j}: 

No_empty_intersection[i,j] <= Right[i,j] + Right[j,i] + Behind[i,j] + 

Behind[j,i]; 

# If there are a non-empty intersection between box i and box j, then box 

i cannot be right of box j or otherwise and box i cannot be behind box j 

or otherwise.  

 

 

subject to Shared_projection2 {i in 1..n, j in 1..n: i<>j}: 

Right[i,j] + Right[j,i] + Behind[i,j] + Behind[j,i] <= 2 * 

No_empty_intersection[i,j]; 

# If there are a non-empty intersection between box i and box j, then box 

i cannot be right of box j or otherwise and box i cannot be behind box j 

or otherwise.  

 

subject to Support_bottom_top1 {i in 1..n, j in 1..n: i<>j}: 

(1 - Support[i,j]) <= Suitable_height[i,j] + No_empty_intersection[i,j]; 

# If box i is supported by box j, then box j has the suitable height to 

support box i and there is a non-empty intersection between the boxes.  
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subject to Support_bottom_top2 {i in 1..n, j in 1..n: i<>j}: 

Suitable_height[i,j] + No_empty_intersection[i,j] <= 2 * (1 - 

Support[i,j]); 

# If box i is supported by box j, then box j has the suitable height to 

support box i and there is a non-empty intersection between the boxes.  

 

subject to Box_support_same_bin1 {i in 1..n, j in 1..n, k in 1..m: i<>j}: 

Box_on_pallet[i,k] - Box_on_pallet[j,k] <= 1 - Support[i,j]; 

# Box i can only be supported by box j if they are on the same pallet 

 

subject to Box_support_same_bin2 {i in 1..n, j in 1..n, k in 1..m: i<>j}: 

Box_on_pallet[j,k] - Box_on_pallet[i,k] <= 1 - Support[i,j]; 

# Box i can only be supported by box j if they are on the same pallet 

 

subject to Certified_support {i in 1..n, j in 1..n, l in 1..v: i<>j}: 

Vertex_support[i,j,l] <= Support[i,j]; 

# If vertex l for box i is supported by box j, then box j supports box i 

 

subject to Lapping1 {i in 1..n, j in 1..n: i<>j}: 

X[j] <= X[i] + X_less[i,j] * pallet_length; 

# Defines X_less. If lhs is bigger than the first term on rhs, then 

X_less has to take value 1. Else it can choose itself as long as it works 

with box support constraints.  

 

subject to Lapping2 {i in 1..n, j in 1..n: i<>j}: 

Y[j] <= Y[i] + Y_less[i,j] * pallet_width; 

# Defines Y_less. If lhs is bigger than the first term on rhs, then 

Y_less has to take value 1. Else it can choose itself as long as it works 

with box support constraints.  

 

subject to Lapping3 {i in 1..n, j in 1..n: i<>j}: 

Xr[i] <= Xr[j] + Xr_less[i,j] * pallet_length; 

# Defines Xr_less. If lhs is bigger than the first term on rhs, then 

Xr_less has to take value 1. Else it can choose itself as long as it 

works with box support constraints.  

 

subject to Lapping4 {i in 1..n, j in 1..n: i<>j}: 

Yr[i] <= Yr[j] + Yr_less[i,j] * pallet_width; 

# Defines Yr_less. If lhs is bigger than the first term on rhs, then 

Yr_less has to take value 1. Else it can choose itself as long as it 

works with box support constraints.  

 

 

 

subject to Box_support1 {i in 1..n, j in 1..n: i<>j}: 

X_less[i,j] + Y_less[i,j] <= sum {l in 1..v} 2 * (1 - 

Vertex_support[i,j,1]); 

# XY plane for box i and j if vertex l is supported by box j.  

 

subject to Box_support2 {i in 1..n, j in 1..n: i<>j}: 

Y_less[i,j] + Xr_less[i,j] <= sum {l in 1..v} 2 * (1 - 

Vertex_support[i,j,2]); 

# XY plane for box i and j if vertex l is supported by box j. 

 

subject to Box_support3 {i in 1..n, j in 1..n: i<>j}: 

Xr_less[i,j] + Yr_less[i,j] <= sum {l in 1..v} 2 * (1 - 

Vertex_support[i,j,3]); 

# XY plane for box i and j if vertex l is supported by box j. 

 

subject to Box_support4 {i in 1..n, j in 1..n: i<>j}: 
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X_less[i,j] + Yr_less[i,j] <= sum {l in 1..v} 2 * (1 - 

Vertex_support[i,j,4]); 

# XY plane for box i and j if vertex l is supported by box j. 

 

 

 

 

#########################################################################

# 

############################Weight 

constraints############################ 

#########################################################################

# 

 

param allowable_range_l >=0; # 

param allowable_range_w >=0; # 

param allowable_range_h >=0; # 

 

var X_mass_coordinate {1..n} >= 0; # X coordinate for mass i 

var Y_mass_coordinate {1..n} >= 0; # Y coordinate for mass i 

var Z_mass_coordinate {1..n} >= 0; # Z coordinate for mass i 

var Xij {i in 1..n, k in 1..m} >= 0; # For selecting only boxes that 

are on pallet k and have X coordinates 

var Yij {i in 1..n, k in 1..m} >= 0; # For selecting only boxes that 

are on pallet k and have Y coordinates 

var Zij {i in 1..n, k in 1..m} >= 0; # For selecting only boxes that 

are on pallet k and have Z coordinates 

 

 

 

subject to Box_mass_coordinate_X {i in 1..n}: 

X_mass_coordinate[i] = (X[i] + Xr[i])/2; 

# X coordinate of mass for item i, assuming weight is uniformly 

distributed in box 

 

subject to Box_mass_coordinate_Y {i in 1..n}: 

Y_mass_coordinate[i] = (Y[i] + Yr[i])/2; 

# Y coordinate of mass for item i, assuming weight is uniformly 

distributed in box 

 

subject to Box_mass_coordinate_Z {i in 1..n}: 

Z_mass_coordinate[i] = (Z[i] + Zr[i])/2; 

# Z coordinate of mass for box i, assuming weight is uniformly 

distributed in box 

 

# Xij = Box_on_cont * X_mass_coordinate (triple equal sign). Real 

variable.  

# Range X1, X2 and X3 are linear constraints. The Xij definition has to 

satisy X1, X2 and X3. 

 

subject to Range_X1 {i in 1..n, k in 1..m}: 

Xij[i,k] <= pallet_length * Box_on_pallet[i,k]; 

#  

 

subject to Range_X2 {i in 1..n, k in 1..m}: 

Xij[i,k] <= X_mass_coordinate[i]; 

# 

 

subject to Range_X3 {i in 1..n, k in 1..m}: 

Xij[i,k] >= X_mass_coordinate[i] - pallet_length * (1 - 

Box_on_pallet[i,k]); 
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# 

 

subject to Neighbourhood_X1 {k in 1..m}:  

((pallet_length / 2) - allowable_range_l) * (sum {i in 1..n} weight[i] * 

Box_on_pallet[i,k]) <= sum {i in 1..n} Xij[i,k] * weight[i]; 

# Ensures that the X central gravity of the pallet is in the 

neighbourhood of L/2.  

 

 

subject to Neighbourhood_X2 {k in 1..m}:  

sum {i in 1..n} Xij[i,k] * weight[i] <=((pallet_length / 2) + 

allowable_range_l) * (sum {i in 1..n} weight[i] * Box_on_pallet[i,k]); 

# 

 

 

# Yij = Box_on_cont * Y_mass_coordinate (triple equal sign). Real 

variable. 

# Range Y1, Y2 and Y3 are linear constraints. The Yij definition has to 

satisfy Y1, Y2 and Y3. 

 

subject to Range_Y1 {i in 1..n, k in 1..m}: 

Yij[i,k] <= pallet_width * Box_on_pallet[i,k]; 

# 

 

subject to Range_Y2 {i in 1..n, k in 1..m}: 

Yij[i,k] <= Y_mass_coordinate[i]; 

# 

 

subject to Range_Y3 {i in 1..n, k in 1..m}: 

Yij[i,k] >= Y_mass_coordinate[i] - pallet_width * (1 - 

Box_on_pallet[i,k]); 

# 

 

 

subject to Neighbourhood_Y1 {k in 1..m}:  

((pallet_width / 2) - allowable_range_w) * (sum {i in 1..n} weight[i] * 

Box_on_pallet[i,k]) <= sum {i in 1..n} Yij[i,k] * weight[i]; 

# Ensures that the Y central gravity of the pallet is in the 

neighbourhood of W/2.  

 

subject to Neighbourhood_Y2 {k in 1..m}:  

sum {i in 1..n} Yij[i,k] * weight[i] <=((pallet_width / 2) + 

allowable_range_w) * (sum {i in 1..n} weight[i] * Box_on_pallet[i,k]); 

# 

 

# Zij = Box_on_cont * Z_mass_coordinate (triple equal sign). Real 

variable. 

# Range Z1, Z2 and Z3 are linear constraints. The Zij definition has to 

satisfy Z1, Z2 and Z3. 

 

subject to Range_Z1 {i in 1..n, k in 1..m}: 

Zij[i,k] <= pallet_height * Box_on_pallet[i,k]; 

# 

 

subject to Range_Z2 {i in 1..n, k in 1..m}: 

Zij[i,k] <= Z_mass_coordinate[i]; 

# 

 

subject to Range_Z3 {i in 1..n, k in 1..m}: 

Zij[i,k] >= Z_mass_coordinate[i] - pallet_height * (1 - 

Box_on_pallet[i,k]); 
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#  

 

subject to Neighbourhood_Z1 {k in 1..m}:  

0 <= sum {i in 1..n} Zij[i,k] * weight[i]; 

# Ensures that the Z central gravity can lie as low as possible.  

 

subject to Neighbourhood_Z2 {k in 1..m}:  

sum {i in 1..n} Zij[i,k] * weight[i] <= allowable_range_h * (sum {i in 

1..n} weight[i] * Box_on_pallet[i,k]); 

# 

 

##############################New 

constraint############################## 

 

subject to Logic_support {i in 1..n, j in 1..n: i<>j}: 

Support[i,j] + Support[j,i] <= 1;  

# Box i cannot be supported by box j if box j is supported by box i and 

otherwise 

 

 

 


