

Master’s degree thesis

LOG950 Logistics

Routing in Smart Waste Management

Preben Kiønig Senland

Number of pages including this page: 60

Molde, 31.10.2019

Mandatory statement

Each student is responsible for complying with rules and regulations that relate to

examinations and to academic work in general. The purpose of the mandatory statement is

to make students aware of their responsibility and the consequences of cheating. Failure to

complete the statement does not excuse students from their responsibility.

Please complete the mandatory statement by placing a mark in each box for statements 1-6

below.

1. I/we hereby declare that my/our paper/assignment is my/our own

work, and that I/we have not used other sources or received

other help than mentioned in the paper/assignment.

2. I/we hereby declare that this paper

1. Has not been used in any other exam at another

department/university/university college

2. Is not referring to the work of others without

acknowledgement

3. Is not referring to my/our previous work without

acknowledgement

4. Has acknowledged all sources of literature in the text and in

the list of references

5. Is not a copy, duplicate or transcript of other work

Mark each

box:

1.

2.

3.

4.

5.

3.

I am/we are aware that any breach of the above will be

considered as cheating, and may result in annulment of the

examination and exclusion from all universities and university

colleges in Norway for up to one year, according to the Act

relating to Norwegian Universities and University Colleges,

section 4-7 and 4-8 and Examination regulations section 14 and

15.

4. I am/we are aware that all papers/assignments may be checked

for plagiarism by a software assisted plagiarism check

5. I am/we are aware that Molde University College will handle all

cases of suspected cheating according to prevailing guidelines.

6. I/we are aware of the University College’s rules and regulation

for using sources

http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://www.regjeringen.no/upload/KD/Vedlegg/UH/UHloven_engelsk.pdf
http://kvalitet.himolde.no/KS_UNL115
http://www.himolde.no/english/biblioteket/Sider/References,-sources-and-citations.aspx
http://www.himolde.no/english/biblioteket/Sider/References,-sources-and-citations.aspx

Personal protection

Personal Data Act

Research projects that processes personal data according to Personal Data Act, should be

notified to Data Protection Services (NSD) for consideration.

Have the research project been considered by NSD? yes no

- If yes:

Reference number:

- If no:

I/we hereby declare that the thesis does not contain personal data according to Personal

Data Act.:

Act on Medical and Health Research

If the research project is effected by the regulations decided in Act on Medical and Health

Research (the Health Research Act), it must be approved in advance by the Regional

Committee for Medical and Health Research Ethic (REK) in your region.

Has the research project been considered by REK? yes no

- If yes:

Reference number:

Publication agreement

ECTS credits: 30

Supervisor: Arild Hoff

Agreement on electronic publication of master thesis

Author(s) have copyright to the thesis, including the exclusive right to publish the document

(The Copyright Act §2).

All theses fulfilling the requirements will be registered and published in Brage HiM, with the

approval of the author(s).

Theses with a confidentiality agreement will not be published.

I/we hereby give Molde University College the right to, free of

charge, make the thesis available for electronic publication: yes no

Is there an agreement of confidentiality? yes no

(A supplementary confidentiality agreement must be filled in)

- If yes:

Can the thesis be online published when the

period of confidentiality is expired? yes no

Date: 31.10.2019

Page unintentionally left blank.

Summary

In this work two models and a matheuristic method are developed for routing problems in

smart waste management. The solution methods are analyzed with regards to their quality

and time use. A simulation is done with one of the models to evaluate its usefulness in

long-term real cases.

Contents

1.0 Introduction .. 1

2.0 Problem Description... 2

2.1 Smart Waste Management .. 2

2.2 Cost Elements ... 2

3.0 Literature .. 4

3.1 Logistics Concepts ... 4

3.1.1 The Vehicle Routing Problem ... 4

3.1.2 The Inventory Routing Problem.. 5

3.2 Metaheuristics .. 6

3.2.1 Genetic Algorithms ... 7

3.2.2 Matheuristics ... 10

3.3 Waste Management .. 10

3.3.1 Classical Waste Management ... 10

3.3.2 Smart Waste Management .. 11

4.0 Mathematical Models ... 13

4.1 Basic Model .. 13

4.1.1 Notation ... 13

4.1.2 Formulation ... 14

4.1.3 Model Description ... 14

4.2 Extended Model ... 16

4.2.1 Notation ... 16

4.2.2 Formulation ... 17

4.2.3 Model Description ... 18

5.0 Matheuristic Implementation ... 20

5.1 A Genetic Algorithm for the Scheduling Sub-Problem 20

5.1.1 Chromosome Representation .. 20

5.1.2 Population Initialization .. 21

5.1.3 Genetic Operators.. 21

5.2 An Exact Method for the Routing Sub-Problem .. 22

5.3 Inefficiencies of the Implementation .. 22

6.0 Data and Testing .. 23

6.1 Test Instances ... 23

 8

6.2 Distances .. 24

6.3 Testing .. 25

6.4 Simulation .. 25

7.0 Results .. 26

7.1 Solution Methods ... 26

7.1.1 Exact Methods ... 26

7.1.2 Matheuristic... 29

7.2 Simulation .. 30

8.0 Final Remarks .. 34

9.0 References .. 35

10.0 Appendix .. 39

10.1 Basic Model AMPL .. 39

10.2 Extended Model .. 41

10.3 Matheuristic Script .. 44

10.4 Simulation Script .. 49

 1

1.0 Introduction

It is estimated that by 2050, two thirds of the global population will live in urban areas

(Marques et al. 2018). Cities growing larger gives an increased stress on their

infrastructure. One approach to deal with this, is to make the infrastructure more efficient

by introducing Internet of Things (IoT) devices into the infrastructure. An IoT device is an

electronic device, usually equipped with a sensor, that is connected to other devices via the

internet. When IoT is used in the context of a city, the term Smart city is often used.

A vital part of any city’s infrastructure is the collection and disposal of waste. If waste isn't

collected as it's produced, it will accumulate, increasing the chance for the spread of

disease and harm to the environment. In addition to this, and efficient collection of waste

allows for more materials to be recycled, reducing the amount of raw materials needed to

be extracted from the earth. Because of this, waste collection in urban areas has gained

attention from researchers and practitioners in the last decade (Xue et al., 2019).

Typically, the local municipality is responsible for the collection, but it can also be

performed be private companies. Regardless of who is performing the collection, it is their

interest to minimize the travel distance of garbage trucks to reduce costs, both monetary

and environmental.

The rest of this thesis is structured in the following way: Section 2 gives a verbal

description of the problem studied in this work. Relevant background literature is covered

in section 3. In section 4, the mathematical models for the problem are developed, while

the matheuristic method is described in section 5. Section 6 describes how the test data is

generated and how the testing is performed. The results from the tests are presented in

section 7, and section 8 concludes.

 2

2.0 Problem Description

This section states the objective of this work and a verbal description of the problem

setting. Considerations regarding cost elements of the problem are also discussed.

2.1 Smart Waste Management

The objective of this thesis is to develop decision-making tools for the Smart Waste

Collection Problem. The problem concerns the collection of waste from bins that are

equipped with sensors to measure their fill level. This information is made available to the

decision-maker, to utilize in the planning of the emptying schedule and routing of the

garbage trucks.

Traditionally, waste is collected at fixed intervals, say weekly or bi-weekly. If the

accumulation of waste in the bins is deterministic, i.e. waste accumulates at a known,

constant rate, this method can be adequate. One only needs to make sure that each bin is

emptied at least every 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/𝑑𝑎𝑖𝑙𝑦 𝑓𝑖𝑙𝑙𝑟𝑎𝑡𝑒 days. The real world is not that simple,

and in most cases we are dealing with stochastic processes.

By equipping the bins with sensors, the decision-maker knows whether each bin must be

emptied on that day or if it can be emptied sometime in the future. We don't have perfect

information about how waste will accumulate in the bins, but we can track their levels, and

make inferences about the current and future fill-rate. One strategy could be to only empty

bins as they approach their maximum capacity, in an attempt to reduce the number of

times they are emptied. This approach could be too naive, as it will in many cases lead to

having to make an additional trip for only a few number of bins. A better approach could

be to, even though these bins are only partially filled, empty them with trucks that are

already in their close proximity.

2.2 Cost Elements

There are several cost elements that need to be considered when modelling waste

management. Some cost elements are shared by many VRP variants, such as total distance

and duration of routes. In some cases it is not enough to consider only the total distance

travelled, because the cost may not be proportional to the distance. The duration of routes

 3

needs to be considered in cases where drivers are paid at a higher wage when they exceed

a certain number of hours worked in a single day. There could also be constraints on the

duration of routes stemming from regulation, be it government regulation, union rules, or

self-imposed rules

Other cost elements are more specific to the problem of waste management. If a full bin

isn’t emptied, people might start leaving their waste next to it. This is of course not

desirable, but it may be permissible. There needs to be a cost associated with the bins

overflowing. In an attempt to avoid any overflowing, this cost could be set very high, or it

could be set at a level that incorporates the marginal costs of the lower service level.

 4

3.0 Literature

The problem studied in this thesis incorporates elements from the Vehicle Routing

Problem. The Vehicle Routing Problem (VRP) was first formulated by Dantzig and

Ramser in a paper called 'The Truck Dispatching Problem', as the problem of optimizing

the routing of a fleet of gasoline delivery trucks between a bulk terminal and a large

number of gas stations (Dantzig & Ramser 1959). It is a generalization of the Travelling

Salesman Problem (TSP), where the objective is to find the shortest path for a salesman

travelling between cities, ending up in the city of origin. The origins of the Travelling

Salesman Problem aren't fully known, but Dantzig, Fulkerson and Johnson (1954) were

among the first to formalize and offer a solution to the problem. TSP and VRP are

combinatorial optimization problems that are known to be NP-hard (Archettia et al. 2009).

As a consequence, applications to real-world problems are often impossible to solve to

optimality within a reasonable time frame. The VRP has been extensively studies over the

years, and several heuristics and meta-heuristics have been developed.

3.1 Logistics Concepts

This section covers two fundamental areas of logistics, the vehicle routing problem and

inventory routing.

3.1.1 The Vehicle Routing Problem

Laporte et al. (2000) gives an overview of classical heuristics and TABU Search based

meta-heuristics for the VRP. The two main techniques used in classical heuristics are to

merge existing routes using a savings criterion, or to use an insertion cost to gradually

assign vertices to vehicle routes. The different categories of classical heuristics presented

are Savings algorithms, sequential improvement methods, the sweep algorithm, petal

algorithms, cluster first - route second algorithms, and improvement heuristics.

The Clarke & Wright savings algorithm (Clarke & Wright 1964) is a well-known heuristic

for VRPs where the number of vehicles is a decision variable. The first step of the

algorithms is to compute the savings (reduced distance) of including node i and j in the

 5

same route. Savings are computed as 𝑠𝑖𝑗 = 𝑐𝑖0 + 𝑐0𝑗– 𝑐𝑖𝑗 ∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 ≠ 𝑗. The next step

is to merge routes together. This can be done in a parallel or sequential order.

Mole and Jameson (1976) and Christofides (1979) have proposed the two most well-

known insertion methods for the VRP, but neither of them are as efficient as alternative

methods.

The sweep method is easy to understand from its name. One imagines a line originating in

the depot, and rotates it. Nodes are added to the routes as they are passed by the line, as

long as there is available capacity in the vehicle. Some implementations also include a

post-optimization phase after this initial clustering, where nodes are exchanged between

the clusters and the cluster-routes are reoptimized (Laporte et al. 2000). Petal algorithms

are an extension of the sweep algorithm, where several routes are generated and then

selected by solving a set partitioning problem (Laporte et al. 2000).

3.1.2 The Inventory Routing Problem

The Inventory Routing Problem (IRP) merges the VRP with the Inventory Management

Problem. The objective of the IRP is to simultaneously optimize the scheduling of

deliveries, the routing of vehicles making said deliveries, and the inventory policies. IRPs

can be classified by looking at the seven main attributes time horizon, structure, routing,

inventory policy, inventory decisions, fleet composition, and fleet size. The time horizon

can be either finite or infinite. The structure describes the number of suppliers and

customers, and is typically one-to-one, one-to-many or many-to-one. When there is one

customer per route, the routing is described as direct, and when there are more than one it

is called multiple. A problem has continuous routing if there isn't a central depot.

Inventory policies are the decision rules for how customer inventories should be

replenished. How inventory management is modeled is described by the inventory

decisions, and deals with issues such as negative inventory, back-orders, stock-outs and

lost sales. Fleet composition and size describe the vehicles available. A fleet can be

comprised of a single vehicle, multiple homogenous or heterogenous vehicles, or

unconstrained (Coelho, Cordeau & Laporte 2013).

 6

When looking at approaches to solving industrial cases of the IRP, Andersson et al. (2010)

note that there are two broad classes of methodologies, heuristics and metaheuristics on

one side, and exact methods that are terminated before optimality is proven. This is due to

the fact that the complexity of the problem and the size of real-world instances requires an

unreasonable long time to solve and verify.

3.2 Metaheuristics

The heuristics mentioned above have been classical heuristics of either the construction or

improvement category. By using improvement heuristics, we can find better solutions than

by using construction heuristics on their own. However, for certain problems this is not

adequate. Improvement heuristics stop when they reach local optima, and, depending on

the problem topology, this can be quite far from the global optimum. Metaheuristics are

methods designed to search for a good solution beyond a local optimum (Hvattum 2017).

The term metaheuristic was coined by Glover (1986), and since then many definitions

have been proposed. Metaheuristics has been defined both as a framework and as the

implementation of the framework. Sorensen and Glover include both these perspectives in

their definition:

“A metaheuristic is a high-level problem-independent algorithmic

framework that provides a set of guidelines or strategies to develop heuristic

optimization algorithms. The term is also used to refer to a problem-specific

implementation of a

heuristic optimization algorithm according to the guidelines expressed in such a

framework.” (Sörensen & Glover, 2013)

Other definitions focus solely on the implementation of the framework:

“A metaheuristic is an iterative master process that guides and modifies

the operations of subordinate heuristics to efficiently produce high-quality

solutions. It may manipulate a complete (or incomplete) single solution or a

collection of solutions at each iteration. The subordinate heuristics may be high (or

 7

low) level procedures, or a simple local search, or just a construction method.”

(Voß et al, 1999)

There are several ways to classify metaheuristics, such as nature-inspired vs non-nature

inspired, population-based vs single-point search, one vs various neighborhood structures,

and memory usage vs memory-less methods (Blum & Roli 2003). Some of the most well-

known metaheuristics are Simulated Annealing, TABU Search, GRASP and Genetic

Algorithms.

3.2.1 Genetic Algorithms

Genetic Algorithms (GA), also called Evolutionary Search or Evolutionary Computation

algorithms, are, as the name suggests, metaheuristics inspired by the theory of evolution.

The idea is to mimic the evolutionary process found in biological systems and apply it to

optimization problems. The first evolution-based metaheuristics were developed in the

1960s and 1970s (Blum & Roli 2003) by Fogel (1962), Rechenberg (1973), and Holland

(1975) who developed the Genetic Algorithm. Using the scheme of Blum & Roli (2003),

we can classify genetic algorithms as nature-inspired, population-based, one neighborhood

structure and memoryless methods.

The population in a genetic algorithm is a set of chromosomes. Each chromosome is a

representation of a solution. Each chromosome can be divided into several genes that

represent different elements of the solution. The position of the gene within the

chromosome is called the locus, and the different states of each gene are called alleles. For

binary problems the chromosome is usually a bit-string (Mitchell 1998). In the bit-string

101010, each of the bits is a gene, with the alleles 0 and 1, and represents each decision

variable in the optimization problem. For a VRP the chromosome can be a list of the nodes

in the order they are visited, e.g. [A, B, C] represents a route where the vehicle drives from

the depot to node A, from node A to node B, and from node B to Node C, before it returns

to the depot. An alternative decoding of [A, B, C], in the presence of limitations on vehicle

capacity or route length, could be that the vehicle drives from the depot to node A and then

back to the depot again, before it drives to nodes B and C.

 8

Chromosomes are evaluated by a fitness function. The fitness-function can simply be the

cost function, or it can have additional elements included, to measure how good this

chromosome is.

The basic version of a genetic algorithm consists of three operators: selection, crossover

and mutation. The selection-operator chooses two “parent” chromosomes from the

population, usually with a bias for better solutions. Genes from these parent chromosomes

are then combines, according to the crossover-operator, to create offspring, i.e. new

chromosomes (Mitchell, 1998). Using a single point (middle) crossover-operator. The two

parent chromosomes 000000 and 111111 can create the two offspring 000111 and 111000.

Finally, the mutation-operator is applied to increase the diversity of the population.

Common mutations are to flip one bit, or to swap the alleles of two genes. Applying the

flip operator on the first locus of the chromosome 000111 gives the chromosome 100111,

while applying the swap operator on the 3rd and 4th loci gives the chromosome 001011. For

VRPs, the typical chromosome is a sequence of nodes in the order they are visited in the

solution. The crossover then needs to be modified, to only have one occurrence of each

node in the chromosome. With the parent chromosomes [1, 2, 3, 4, 5, 6] and [6, 5, 4, 3, 2,

1], and a crossover point in the middle, we start by copying the genes preceding the

crossover point from one parent, e.g. [1, 2, 3] from parent one, and then continue copying

the genes from the other parent. Because all the nodes from the second half ([3, 2, 1])

already are in the offspring chromosome, we skip them and start copying from the

beginning of the parent chromosome until the crossover point ([6, 5, 4]), giving the

offspring [1, 2, 3, 6, 5, 4]. The other offspring will then be [6, 5, 4, 1, 2, 3]. To decode the

chromosome, we need to insert the depot in the beginning and in the end. If we are dealing

with more than one route, we also need divide the sequence into separate routes and insert

the depot at the beginning and end of each of them. One way to separate the routes is to

split sequence before the cumulative load breaches the vehicle capacity. When choosing

the mutation operator for a genetic algorithm for the VRP, the most obvious choice is to

swap two nodes, as it is not possible to flip a non-binary value.

 9

Figure 1: Genetic algorithm scheme, from Hvattum (2017)

The diagram above illustrates the general framework of genetic algorithms. Parent

chromosomes are selected from the population and used in the reproduction of children,

i.e. offspring chromosomes. These children are then modified or mutated in some way,

before they are evaluated and introduced into the general population. To avoid “over

population”, parts of the population are discarded. In general, one wants to discard

chromosomes with the worst evaluation, but some might be kept in order to maintain a

certain level of diversity in the population.

The pseudo code for a genetic algorithm by Reeves (2010) is given below:

1: Choose an initial population of chromosomes

2: while stopping criterion not met do

3: while sufficient offspring has not been created do

4: if recombination condition satisfied then

5: Select parent chromosomes

6: Choose recombination parameters

7: Perform recombination

8: end if

9: if mutation condition satisfied then

10: Choose mutation points

11: Perform mutation

 10

12: end if

13: Evaluate fitness of offspring

14: end while

15: Select new population

16: end while

This is a very general description of a genetic algorithm, that leaves out the decisions that

need to be made for each step when it is implemented.

3.2.2 Matheuristics

Matheuristics are heuristic algorithms that are made by combining metaheuristics and

mathematical programming. (Boschetti et al. 2009). Recently, Matheuristics have been

applied to routing problems in a variety of ways. This development is due to advances both

in hardware and in the solvers used for mixed integer linear models (Archetti & Speranza

2014).

3.3 Waste Management

The field of waste management is concerns questions relating to the collection, disposal

and recycling of waste. Here we are specifically addressing the issue of collecting solid

waste, in an urban area. Urban areas have a high population density, and therefore also a

high production of waste that needs to be removed from that area. Several methods for

waste management have been studies, and more recently, as technology has progressed,

smart management has gained interest from both practitioners and academics.

3.3.1 Classical Waste Management

Buhrkal, Larsen & Ropke (2012) study the waste collection vehicle routing problem with

time windows (WCVRPTW). The element of time windows is introduced because of

limitations on the customer side, and labor laws regarding rest time for the drivers. The

WCVRPTW they study is different from the tradition VRPTW because the vehicles have

to drive to disposal sites to empty their load before they start another route or return to the

depot. They propose an adaptive large neighborhood search (ALNS) metaheuristic to solve

 11

the problem. They use a greedy heuristic to generate the initial solution. The ALNS uses

several destroy and repair methods to improve the solution. The test their method on

instances from Kim et al. (2006) and their own instances from the Copenhagen area in

Denmark.

Karadimas, Papatzelou & Loumos (2007) performed a case study on a small area in

Greece. Their objective is to minimize the time, and not the total distance, which is usually

the case. They first cluster bins in a way that makes sure each cluster is below the vehicle

capacity. This lets them reduce the problem to a asymmetric TSP. Their genetic algorithm

finds routes that have low durations, but they stress that it should be tested on bigger

instances.

3.3.2 Smart Waste Management

In a paper on the smart waste collection routing problem, the authors tackle the problem

with three different approaches, dubbed “limited”, “smart” and “smarter” (Ramos, de

Morais and Barbosa-Póvoa 2018). In the limited approach, they make receive daily

readings of the bins’ fill-evels, and then make routing decisions for that day. First, they

employ a heuristic to decide which bins to empty. The heuristic is simply to empty all bins

that are filled over a certain level. After removing all bins below this level from the

problem, it is modelled as a capacitated vehicle routing problem, using the two-commodity

network flow formulation of Baldacci, Hadjiconstantinou, and Mingozzi (2004) to

minimize the transportation cost. In the smart approach, they simultaneously choose which

bins to empty and the routing of the vehicles. This approach allows that a certain

percentage of bins may overflow. The number of vehicles used is decided by the model,

and there is piecewise penalty for using vehicles. They solve the problem as a mixed

integer linear programming, by adapting the formulation used in the limited approach. The

objective function of the model is the profit, calculated as revenues from selling garbage

collected from the bins, less the penalty for using vehicles and a variable cost that is a

linear function of the distance travelled. In the smarter approach, they use a heuristic to

determine when the model from the smart approach should be run to maximize profit.

They perform a case study for a company with a homogenous vehicle fleet collecting

waste in Portugal

 12

Mes, Schutten & Rivera (2014) model the smart waste management problem as an IRP,

and develop a heuristic method to solve it. The heuristic divides the bins into three groups,

based on whether they need to be emptied on that day, may be emptied on that day, or

should not be emptied on that day. The heuristic makes short-term plans, but also

considers the long-term performance. They test their heuristic on a real-world instance

from a Dutch waste collection company, and show that costs can be reduced by 40%.

Sharifyadzi and Flygansvær (2015) studied the effect of availability of fill-rate data from

sensors installed in waste containers in the Oslo municipality. Using simulation

techniques, they evaluated two systems for waste collection. The base case, where no

sensor data was available and routes and schedules were fixed, and the case where

containers had sensors. The data for the study consisted of 1003 containers, of 5 different

sizes, in 851 locations and 2 trucks. In the base case a static route is made by using the

nearest neighbor algorithm. This is the same method as the operating company was using.

For the case with sensors, they use a modified version of the Clarke & Wright savings

algorithm. The two systems are evaluated on the metrics total haulage distance, service

level, and capacity utilization. The dynamic system with sensors outperformed the base

case on all three metrics, with a reduction in haulage distance of 8.2%. The authors

conclude that there are both environmental and financial benefits to be gained from the use

of the sensors, stating that "it is likely that investment on the sensors pay off" (Sharifyazdi

& Flygansvær, 2015). However, they do not look at set up and maintenance costs of the

sensors. They also don't investigate if there are any opportunities to further optimize the

routing without using sensors, e.g. by using different routing algorithms.

 13

4.0 Mathematical Models

In this section two mixed integer programming models are developed. Both models are 3-

index vehicle flow models. The second model represents the real-world situation more

accurately, but as it is more complex it has computationally harder to solve. The models

are meant to be solved at the beginning of each workday. They will give the routes for the

current day, and a plan for the ones to come. On the next day, the model is solved again

using updated data from the sensors, and the schedule and routes are updated.

4.1 Basic Model

The basic model is a three-index vehicle flow model for smart waste management. The

current bin levels should be combined with the growth rate to feed the model a schedule

for which days each bin can be emptied.

4.1.1 Notation

4.1.1.1 Sets

𝑉 the set of all nodes, where the depot is located at node 0.

𝐷 the set of all days included in the planning horizon.

4.1.1.2 Variables

𝑥𝑖𝑗𝑑 a binary variable taking the value 1 if the edge between vertex i and j is

included in a route on day d.

𝑢𝑖𝑑 a continuous variable representing the vehicle's load when departing from

node i.

4.1.1.3 Parameters

𝑄 the vehicle capacity.

𝑐𝑖𝑗 the cost (distance) of traversing the edge between nodes i and j.

𝑎𝑖𝑑 a parameter set to 1 if node i is allowed to be serviced on day d, 0

otherwise.

𝑏 the capacity for the number of routes per day.

 14

𝑞𝑖𝑑 the fill level of the bin located in node i on day d. For d = 0 this level is

the actual level measured by the sensor, while for d > 0 it is the expected

level, calculated as 𝑞𝑖𝑑 = 𝑞𝑖0 + 𝑔𝑖 ∗ 𝑑, where 𝑔𝑖 is the expected daily

production of waste.

4.1.2 Formulation

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑑

𝑑∈𝐷𝑗∈𝑉𝑖∈𝑉

 (1)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

∑ 𝑥0𝑗𝑑

𝑗∈𝑉

≤ 𝑏 ∀𝑑 ∈ 𝐷 (2)

∑ ∑ xijd  = 1

d∈Dj∈V

 ∀i ∈ V\{0} (3)

∑ 𝑥𝑖𝑗𝑑

𝑗∈𝑉

= ∑ 𝑥𝑗𝑖𝑑

𝑗∈𝑉

∀𝑗 ∈ 𝑉, 𝑑 ∈ 𝐷 (4)

∑ 𝑥𝑖𝑗𝑑

𝑖∈𝑉

≤ 𝑎𝑗𝑑 ∀𝑗 ∈ 𝑉\{0}, d ∈ 𝐷 (5)

𝑢𝑖𝑑 − 𝑢𝑗𝑑 ≥ 𝑞𝑗𝑑 − 𝑄(1 − 𝑥𝑖𝑗𝑑)
∀𝑖 ∈ 𝑉{0}, 𝑗 ∈ 𝑉{0},

𝑑 ∈ 𝐷
(6)

0 ≤ 𝑢𝑖 ≤ 𝑄 ∀𝑖 ∈ 𝑉\{0} (7)

𝑥𝑖𝑗𝑑 ∈ 0,1 ∀𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉, 𝑑 ∈ 𝐷 (8)

4.1.3 Model Description

The objective function (1) is the total distance travelled. The first constraint (2) limits the

number of routes for each day. The limit on the number of trips was chosen over a

duration constraint, because in most real-world applications, most of the driving time is

between the landfill and zone where the bins are located. Constraints (3) and (4) ensure

that each node is visited once during the planning horizon, and that the balance of flow is

maintained at each node. Constraint (5) is used to limit the days when a node can be

 15

visited. It can be used to exclude non-working days, but the primary purpose is to enforce

that the bins are emptied before they overflow. Constraint (6) eliminates sub-cycles and,

together with (7), ensures that the load stays within the vehicle capacity. (8) is the binary-

constraint for the x-variable.

 16

4.2 Extended Model

This model is an extension of the basic model, with more flexibility. It incorporates

elements such as overflow, additional routes and multiple visits of the nodes in the

planning horizon. Because of this it is more complex and computationally more

demanding to solve. The model has also been included in Hrabec et al. (2019).

4.2.1 Notation

4.2.1.1 Sets

𝑉 the set of all nodes where bins are located.

𝑉0 the set off all nodes, including the depot located in node 0.

𝐷 the set of all days in the planning horizon.

𝐷0 a subset of D, where day 0 has been excluded.

4.2.1.2 Variables

𝑥𝑖𝑗𝑑 a binary variable taking the value 1 if the edge between vertex i and j is

included in a route on day d.

𝑦𝑖𝑑 a binary variable taking the value 1 if the bin located in node i is serviced

on day d.

𝑢𝑖𝑑 a continuous variable representing the vehicle's load when departing from

node i.

𝑞𝑖𝑑 a continuous variable representing the expected fill level at node i on day d.

𝑤𝑖𝑑 a continuous variable representing the level of overflow at node i on day d.

𝑣𝑖𝑑 a continuous variable used in the calculation of bin levels.

𝑡𝑑 an integer variable representing additional vehicles used.

4.2.1.3 Parameters

𝑐𝑖𝑗 the cost (distance) of traversing the edge between nodes i and j.

𝑎𝑑 a parameter set to 1 if node i is allowed to be serviced on day d, 0

otherwise.

𝑄 the vehicle capacity.

 17

𝑞𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 the fill level (utilization) of the bin located in node i on day 0, obtained

from the sensors.

𝑞𝑖
𝑚𝑎𝑥 the capacity of the bin located at node i.

𝑏 the capacity for the number of routes per day.

𝑓 the minimum number of times the bins should be emptied during the

planning horizon.

𝑑 the penalty of an overflowing bin, per unit per day.

𝑒 the cost of one addition route, representing overtime or outsourcing from

another company.

𝑀 big M.

𝑔𝑖 the expected daily production rate at each node.

4.2.2 Formulation

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑑

𝑑∈𝐷

+ ∑ ∑ 𝑑𝑤𝑖𝑑

𝑑∈𝐷0

+ ∑ 𝑒𝑡𝑑

𝑑∈𝐷0𝑖∈𝑉𝑗∈𝑉0

𝑖≠𝑗
𝑖∈𝑉0

(9)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

∑ 𝑥0𝑗𝑑 ≤ 𝑏𝑎𝑑 + 𝑡𝑑

𝑗∈𝑉

 ∀ 𝑑 ∈ 𝐷 (10)

∑ ∑  xijd ≥ 𝑓  

d∈ D𝑖∈𝑉
𝑖≠𝑗

∀𝑗 ∈ 𝑉 (11)

∑ 𝑥𝑖𝑗𝑑

𝑗∈V0

𝑖≠𝑗

= ∑ 𝑥𝑗𝑖𝑑

𝑗∈V0

𝑖≠𝑗

∀𝑖 ∈ 𝑉0 , 𝑑 ∈ 𝐷 (12)

𝑢𝑖𝑑 − 𝑢𝑗𝑑 ≥ 𝑞𝑗𝑑 − 𝑄(1 − 𝑥𝑖𝑗𝑑) ∀𝑖, 𝑗 ∈ 𝑉 𝑖 ≠ 𝑗, 𝑑 ∈ 𝐷 (13)

𝑞𝑖0 = 𝑞𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 ∀𝑖 ∈ 𝑉 (14)

𝑦𝑗𝑑 = ∑ 𝑥𝑖𝑗𝑑

𝑗∈𝑉
𝑖≠𝑗

∀𝑗 ∈ 𝑉, 𝑑 ∈ 𝐷 (15)

𝑣𝑖𝑑 ≤ 𝑀(1 − 𝑦𝑖𝑑−1) ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (16)

𝑣𝑖𝑑 ≤ 𝑞𝑖𝑑−1 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (17)

𝑣𝑖𝑑 ≥ 𝑞𝑖𝑑−1 − 𝑀𝑦𝑖𝑑−1 ∀𝑖 ∈ 𝑉, d ∈ 𝐷0 (18)

 18

𝑞𝑖𝑑 = 𝑣𝑖𝑑 + 𝑔𝑖 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (19)

𝑤𝑖𝑑 ≥ 𝑞𝑖𝑑 − 𝑞𝑖
𝑚𝑎𝑥 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (20)

0 ≤ 𝑢𝑖𝑑 ≤ 𝑄 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷 (21)

0 ≤ 𝑞𝑖𝑑 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷 (22)

𝑥𝑖𝑗𝑑 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝑉0, 𝑖 ≠ 𝑗, 𝑑 ∈ 𝐷 (23)

𝑎𝑖𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷 (24)

0 ≤ 𝑤𝑖𝑑 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (25)

0 ≤ 𝑣𝑖𝑑 ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (26)

𝑦𝑖𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑉, 𝑑 ∈ 𝐷0 (27)

𝑡𝑑 ∈ ℕ0 ∀ 𝑑 ∈ 𝐷0 (28)

4.2.3 Model Description

The objective function (9) consists of three parts: the first one is the total distance

travelled, while the second and third are penalty costs. The first penalty is related to the

overflow of bins, and is the product of the penalty coefficient and the unit-days of

overflow. The second penalty is the number of routes above the allowed number of daily

routes. The number of additional routes is multiplied with the cost of having the crew work

overtime or the cost of outsourcing the job. If these aren’t viable options, the cost can be

set to a sufficiently big number, to avoid additional routes. Note however that this may

lead to infeasibility of the model.

Constraint (10) is similar to constraint (2) from the basic model, in that it limits the number

of routes for each day. By introducing the variable 𝑡𝑑 we also allow for additional routes to

be created, at an extra cost. Constraint (11) is the same as constraint (3) from the basic

model, but the instead of stating that each bin must be emptied at least once during the

planning horizon, it allows us to require a different number. Depending on the type of

waste and the length of the planning horizon, it might be reasonable to change this number.

For example, organic waste might need to be emptied more frequently than paper and

cardboard, due odor from the decomposing material. If it is suitable, the model can easily

be changed to have the f-parameter set individually for each bin. The balance constraint

(12) is the same as (4) in the basic model. The load constraint (13) is also similar to that of

the basic model, but in this model 𝑞𝑖𝑑 is a variable for the bin levels. This is done to allow

 19

for multiple visits through the horizon. Constraint (14) initializes the day zero bin level

variables to the values collected from the sensors. Constraint (15) is just used to increase

the readability of the model, as it sets the variable 𝑦𝑗𝑑 to 1 if bin j is emptied on day d.

Constraints (16) through (19) are used to reset the bin level if the bin is emptied the

previous day. This is necessary to have solutions with multiple visits in the solution space.

Constraint (20) accounts for the overflow, so that it can be included in the objective

function. The constraints (21) through (28) set the domains for the decision variables.

 20

5.0 Matheuristic Implementation

The problem of waste management can be split into two main sub-problems. Decisions

about Scheduling – at what point in time the bins should be emptied, and routing – in

which order the garbage truck should empty the bins. The matheuristic method developed

uses a genetic algorithm to solve the scheduling, and then the routing is solved exactly

using mixed integer linear programming. Because the schedule is solved first, the

complexity of the routing problem is greatly reduced, and exact methods are more feasible.

5.1 A Genetic Algorithm for the Scheduling Sub-Problem

5.1.1 Chromosome Representation

The table below represents the scheduling for a waste management problem with 10 nodes

and a 5-day planning horizon.

Node\day 0 1 2 3 4

1 1 0 1 0 1

2 1 0 0 1 0

3 0 1 1 0 0

4 0 1 0 0 0

5 0 0 1 0 0

Each row represents the 5-day emptying schedule for the given bin. A value of 1 means the

bin is scheduled to be emptied, and 0 means it is not. Bin 1, for example, is scheduled to be

emptied today (day 0), in two days, and again in 4 days.

To represent the schedule in a way that is better suited for genetic algorithms, we can

flatten it. To flatten it simply means we change the representation from 2-dimensional to 1-

dimensional. This is done by moving each row to the right of the one that’s originally

above it, giving the following 1-dimensional array:

Figure 2: Chromosome representation

 21

This representation of the solution is suitable as a chromosome in the genetic algorithm

framework.

5.1.2 Population Initialization

The population is initialized with a total of 4𝑛 chromosomes. The population is divided

into evenly sized groups. All chromosomes in a group have the same number of 1-values,

but they are shuffled around. The first group has n 1-values, and the next group has an

increasing amount. The idea behind this is that in a feasible solution, each bin must be

emptied at least once. An alternative approach is to initialize the population with random

solutions.

5.1.3 Genetic Operators

In the reproduction phase, two parent-chromosomes are selected at random from the

population. The crossover-operator is then applied on these two parents, spawning two

child-chromosomes. The crossover-operator chooses a random crossover-point. One child

inherits the genetic information before the crossover point from one parent and the

information after it from the other parent. The other child does the same, but with the

parents swapped. This process is illustrated below:

Figure 3: Crossover

After the crossover, there is a 50% chance of a gene to be mutated. The mutation is done

by taking a gene and changing it from 1 to 0 or from 1 to 0. In the illustration below, the

fifth gene is mutated:

 22

Figure 4: Mutation

The reproduction phase continues until the population is doubled in size, and then the

solutions are evaluated by the evaluation function.

5.2 An Exact Method for the Routing Sub-Problem

Each chromosome from the genetic algorithm represents a schedule of which bins are

emptied on which days. This schedule is passed to the model from chapter 4.2. With the

schedule being fixed, the complexity of the model is greatly reduced, and it can much easier

be solved exactly. The model is solved in AMPL, using the CPLEX solver. After solving

the model, the objective function value is returned to the genetic algorithm, as the fitness of

the chromosome.

5.3 Inefficiencies of the Implementation

The matheuristic is implemented in the Python programming language, which is

drastically slower than compiled languages such as C and C++. Python was chosen for its

readability and because it allows for a short way between idea and prototype. There are

libraries available to increase the speed of python code, but this implementation is done

using the standard library. The interaction with the CPLEX solver is done using the AMPL

API.

Apart from the choice of language, an obvious optimization is parallelization. Because the

evaluation of a chromosome is independent of other chromosomes, the evaluation function

could be parallelized.

 23

6.0 Data and Testing

This section describes how the test instances are generated, and how the methods are

tested.

6.1 Test Instances

The computational experiments are conducted on synthetic data. We generate coordinates

for the nodes by sampling n+1 pseudo random numbers for both axes. The first pair of

coordinates are those of the depot. The fill-levels at the nodes are generated in a similar

fashion.

An example of the data for a test instance is shown in the table:

Node 0 1 2 3 4 5 6 7 8 9 10

X 58 19 97 92 47 66 21 22 29 69 21

Y 97 7 19 9 77 37 47 33 64 40 21

Utilization 0 55 59 38 27 14 83 79 87 42 85

And a graphical representation of the instance is given below. The green hexagon is the

depot, and the other ten markers are the locations of the bins. The size of the inner, blue

circle illustrates the fill-level relative to the size of the bin capacity, shown in pink.

 24

Figure 5: Instance map

The test instances are named according to the number of bins and the number of allowed

daily routes. The instance 8-1, for example, has 8 bins and we allow 1 route each day.

6.2 Distances

We use the Euclidean distances between nodes, i.e. 𝑐𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2, giving

the following symmetrical distance matrix for the example test instance:

 0 1 2 3 4 5 6 7 8 9 10

0 0 98 86.7 94.7 23.1 61 62 73.8 44.4 57.8 84.7

1 98 0 78 72.9 75.1 55.4 40.2 25.7 57.5 59.9 13.9

2 86.7 78 0 11.2 76.2 34.8 80.1 75.5 80.9 34.5 75.3

3 94.7 72.9 11.2 0 82 38.1 80.6 74.1 83.9 39.1 72.2

4 23.1 75.1 76.2 82 0 44.9 39.1 50.7 22.2 43 61.7

5 61 55.4 34.8 38.1 44.9 0 46.1 44.4 46.3 4.7 47.8

6 62 40.2 80.1 80.6 39.1 46.1 0 14.6 18.2 48.3 26.3

 25

7 73.8 25.7 75.5 74.1 50.7 44.4 14.6 0 31.8 47.7 11.8

8 44.4 57.5 80.9 83.9 22.2 46.3 18.2 31.8 0 46.7 43.6

9 57.8 59.9 34.5 39.1 43 4.7 48.3 47.7 46.7 0 51.8

10 84.7 13.9 75.3 72.2 61.7 47.8 26.3 11.8 43.6 51.8 0

6.3 Testing

The models are run on the test instances, to see how they compare to each other with

regards to the time it takes to solve them and the quality of the solutions. When the optimal

solution isn’t verified within the time limit, the gap to the lower bound is analyzed.

6.4 Simulation

To find out how the whether the solution methods are suitable for real world application,

they must be tested over time. To do this, the process is simulated. The model is solved,

and the bins chosen to be emptied on the first day have their levels reset. Then the bin-

levels are updated with sampled growth numbers, and the model is solved again. This is

done using a program written in the Python programming language. The simulation is

done using the extended model, and an instance with 5 nodes.

 26

7.0 Results

In this section the results from the tests are presented. Results the quality and runtime of

the models is presented, and then the matheuristic and simulation results.

7.1 Solution Methods

7.1.1 Exact Methods

This section present findings obtained when using the two models to solve test instances.

CPLEX version 12.9.0.0 is used as the solver for all instances. The solver is given a time

limit of 10 minutes, but other than that all settings are at the default values. The models are

solved with a horizon of five days.

7.1.1.1 Solution Quality

Figure 6: Solution Quality

 27

Both models were used to solve 11 different test instances. The instances range in size

from 5 to 15 bins. For the instances with 5 to 10 bins we allow for one route each day. To

ensure feasibility, the instances with more than 10 bins were solved with up to two daily

routes. For most of the instances the two models find the same optimal solution. For

instance 8-1, a slightly better solution is found using the extended model. Because the

solution space for the basic model is a subspace of that of the extended model, the

extended model’s optimum is always the same as or better than the basic model’s

optimum. For instances 14-2 and 15-2 we get better solutions using the basic model

because the allotted 10-minute runtime isn’t enough for the extended model to find the

optimum. The reason why the extended model so rarely fins a better solution than the basic

model is likely because of the short planning horizon. The bins have an expected daily

growth rate of 10 units, and a capacity of 100 units, meaning there is in average 10 days

from the time a bin is emptied until it has to be emptied again.

7.1.1.2 Solution Time

Figure 7: Solution Time

 28

The figure above shows how the time to find the solution. The dotted line shows the ten-

minute time limit we set. In general, we can see that it takes less time to solve the basic

model than the extended model. When going from 10 to 11 bins, both modes are solved in

less time. This might have something to do with the fact that we allowed for one more

route per day. There seems to be a point around n=14 where the models can’t be solved

within the time limit.

The figure below shows the relative MIP gap of the solutions for instances with 10 to 15

bins. There is quite a bit of variation from instance to instance, but again we see that the

basic model is doing better than the extended model. The biggest relative MIP gap is just

over 40%., meaning the best bound is within 40% of the solution obtained.

Figure 8: Relative MIP Gap

It is clear that the models aren’t given enough time to verify the optimality of the solutions

of larger instances, but that doesn’t necessarily mean that the solutions are bad. Take the

12-2 instance: both models find the same solution, but the extended model has a relative

MIP gap of about 10%, while the basic model’s solution is verified as optimal. In addition,

there isn’t any clear indication that the models always perform worse for larger instances.

 29

For example, the instance 15-2 has a lower relative MIP gap than 14-2. We can’t make any

conclusions about this, since we only have a single observation for each instance size.

7.1.2 Matheuristic

The matheuristic comprised of the genetic algorithm and the extended model was used to

solve all the test instances. The genetic algorithm went through 20 iterations (generations).

To evaluate each solution, the chromosome was sent to AMPL, and the y-variable was

fixed to the values of the genes. The time limit for CPLEX was set to 10 seconds, which in

most cases was sufficient to find the optimal solution, given the tightening done by fixing

all y-variables. The parameter deciding how many times in the planning horizon a bin has

to be emptied was set to 0. This was done because it shouldn’t be necessary to empty the

bins that often, when they on average take 10 days to fill up. The bins should rather be

empty to avoid the penalty associated with overflow. Because of a technical issue with the

population initialization, a random population of size 20 was used. The mutation chance

was set to 0.9. In the figure below, the best solution from each generation is plotted.

Figure 9: Matheuristic Quality

 30

All instances start with a very high total cost. In most cases a slight improvement is made

over the first generations, but they al stagnate before the ninth generation. The total cost is

comprised mostly of penalties, and not the actual distance travelled. The total runtime of

the metaheuristic is plotted below. There is a slight bit of variation, but it is linearly

corelated with the number of bins.

Figure 10: Matheuristic Runtime

The smallest instance (n=5) takes just over 10 minutes, and the largest (n=15) takes just

under an hour. Considering that the models found fairly good solution in 10 minutes for all

instances, the matheuristic isn’t very useful for this problem.

7.2 Simulation

The simulation was done using the extended model, and an instance with 5 nodes. 7 days

were used both as the planning horizon in the model and as the number of days simulated.

The simulation was done with 10 and 20 as the expected daily production of waste, with

standard deviations of 5 and 2.5, respectively.

 31

Figure 11: Static approach for the low growth case

In the static approach, the model is only solved one time, and the waste collection plan is

executed regardless of how the bin levels deviate from what’s expected. In the figure

above we see the bin levels for the five bins over the 7-day period. Bins 2, 3 and 4 are

emptied on the first day (day 0), while the other bins aren’t emptied in the 7-day period.

The total distance for the solution is 190.2 and there aren’t any overflows.

 32

Figure 12: Dynamic approach for the low growth case

In the dynamic approach we solve the model every day, using the updated bin levels. Bins

2, 3 and 4 are emptied on the first day. On day 4 bins 1, 2 and 3 are emptied. Bin 5 isn’t

emptied, but most likely would be if we simulated one more day. The total distance is

492.8 and there no bins overflow.

With a growth of 10 and only seven day, not all bins need to be emptied, and therefore the

method isn’t properly tested. Because of this, the expected growth was increased to 20, and

the simulation was run again.

 33

Figure 13: Static approach for the high growth case

With a static approach for the higher growth scenario, there is a lot more activity. All bins

are emptied during the 7-day period, and on the last day bins 1 and 3 are overflowing. Bin

4 is also close to overflowing, and most likely will be over its capacity on the next day.

The total distance with the static approach is 367.6.

With the dynamic approach, which is plotted below, only one bin overflows during the

simulation. The total distance is 678.2.

 34

Figure 14: Dynamic approach for the high growth case

For both the high growth and the low growth cases, the static method provides the shortest

total distance. When using the static method, there is a buildup towards the end of the

simulations, and it might be worth investigating what will happen over a longer horizon.

8.0 Final Remarks

Two models have been developed. One basic, that’s quite manageable for linear solvers,

and one with more features that is more demanding. The second model was incorporated

with a genetic algorithm in a matheuristic. The models outperform the matheuristic, both

with regards to the time it takes to find a solution and the quality of the solution. The

second model was used in a simulation to analyze how it performs over time. To further

develop solution methods for the smart waste management problem, it could be interesting

to implement another kind of metaheuristic or to develop a classical heuristic tailored for

the problem.

 35

9.0 References

Andersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Industrial

aspects and literature survey: Combined inventory management and routing. Computers &

Operations Research, 37(9), 1515-1536.

Archetti, C., & Speranza, M. G. (2014). A survey on matheuristics for routing problems.

EURO Journal on Computational Optimization, 2(4), 223-246.

Archetti, C., Feillet, D., Gendreau, M., & Speranza, M. G. (2011). Complexity of the VRP

and SDVRP. Transportation Research Part C: Emerging Technologies, 19(5), 741-750.

Baldacci, R., Hadjiconstantinou, E., & Mingozzi, A. (2004). An exact algorithm for the

capacitated vehicle routing problem based on a two-commodity network flow

formulation. Operations research, 52(5), 723-738.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM computing surveys (CSUR), 35(3), 268-308.

Boschetti, M. A., Maniezzo, V., Roffilli, M., & Röhler, A. B. (2009, October).

Matheuristics: Optimization, simulation and control. In International Workshop on Hybrid

Metaheuristics (pp. 171-177). Springer, Berlin, Heidelberg.

Buhrkal, K., Larsen, A., & Ropke, S. (2012). The waste collection vehicle routing problem

with time windows in a city logistics context. Procedia-Social and Behavioral

Sciences, 39, 241-254.

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations research, 12(4), 568-581.

Coelho, L. C., Cordeau, J. F., & Laporte, G. (2013). Thirty years of inventory

routing. Transportation Science, 48(1), 1-19.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management

science, 6(1), 80-91.

 36

Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-

salesman problem. Journal of the operations research society of America, 2(4), 393-410.

Fogel, L. J. (1962, January). Toward inductive inference automata. In Communications of

the ACM (Vol. 5, No. 6, pp. 319-319). 1515 BROADWAY, NEW YORK, NY 10036:

ASSOC COMPUTING MACHINERY.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & operations research, 13(5), 533-549.

Holland, J. H. (1975). Adaptation in natural and artificial systems, Univ. of Michigan. Ann

Arbor, MI, 1, 206.

Hrabec D.,Senland P., Nevrlý V., Popela P., Hoff A., Šomplák R., Pavlas M (2019).

Quantity-Predictive Vehicle Routing Problem for Smart Waste Collection. Chemical

Engineering Transactions, In Press.

Hvattum, Lars Magnus. (2017). "An introduction to heuristics." Molde: Molde University

College, December 22.

Karadimas, N. V., Papatzelou, K., & Loumos, V. G. (2007, September). Genetic

algorithms for municipal solid waste collection and routing optimization. In IFIP

International Conference on Artificial Intelligence Applications and Innovations (pp. 223-

231). Springer, Boston, MA.

Kim, B. I., Kim, S., & Sahoo, S. (2006). Waste collection vehicle routing problem with

time windows. Computers & Operations Research, 33(12), 3624-3642.

Laporte, G., Gendreau, M., Potvin, J. Y., & Semet, F. (2000). Classical and modern

heuristics for the vehicle routing problem. International transactions in operational

research, 7(4‐5), 285-300.

 37

Marques, P., Manfroi, D., Deitos, E., Cegoni, J., Castilhos, R., Rochol, J., ... & Kunst, R.

(2019). An IoT-based smart cities infrastructure architecture applied to a waste

management scenario. Ad Hoc Networks, 87, 200-208.

Mes, M., Schutten, M., & Rivera, A. P. (2014). Inventory routing for dynamic waste

collection. Waste management, 34(9), 1564-1576

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Mole, R. H., & Jameson, S. R. (1976). A sequential route-building algorithm employing a

generalised savings criterion. Journal of the Operational Research Society, 27(2), 503-

511.

Nicos Christofides, Worst-case analysis of a new heuristic for the travelling salesman

problem, Report 388, Graduate School of Industrial Administration, CMU, 1976.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution, Frommann–Holzboog.

Ramos, T. R. P., de Morais, C. S., & Barbosa-Povoa, A. P. (2018). The smart waste

collection routing problem: Alternative operational management approaches. Expert

Systems with Applications, 103, 146-158.

Reeves, C. (2003). Genetic algorithms, Handbook of Metaheuristics. Springer, 10, 0-306.

Sharifyazdim M., Flygansvær, B.M. (2015). DYNAMIC ROUTING IN REVERSE

LOGISTICS: The effect of sensors in waste containers on uncertainty in Jæger, B. (2015).

NOFOMA 2015: Post Conference Proceedings, Molde, 3-5 June 2015, Nordic Logistics

Research Network

Sörensen, K., & Glover, F. W. (2013). Metaheuristics. Encyclopedia of operations

research and management science, 960-970.

 38

Voß, S., Martello, S., Osman, I. H., & Roucairol, C. (Eds.). (2012). Meta-heuristics:

Advances and trends in local search paradigms for optimization. Springer Science &

Business Media.

Xue, Y., Wen, Z., Bressers, H., & Ai, N. (2019). Can intelligent collection integrate

informal sector for urban resource recycling in China?. Journal of cleaner production, 208,

307-315.

 39

10.0 Appendix

10.1 Basic Model AMPL

#Sets

set V;

set D;

#Parameters

param c {i in V, j in V: i<>j} >= 0;

param Q >= 0;

param q {V diff {0}, D} >= 0;

param a{V diff {0}, D};

param b;

#Variables

var x {i in V, j in V, D: i<>j} binary;

var u {V diff {0}, D} >= 0;

#Objective function

minimize Total_Distance: sum {i in V, j in V, d in D:i<>j} c[i,j] * x[i,j,d];

#Constraints

subject to maxRoutes {d in D}: sum {j in V:j<>0} x[0,j,d] <= b;

 40

subject to outDegree {i in V diff {0}}: sum {j in V, d in D:i<>j} x[i,j,d] = 1;

subject to xContinuity {i in V, d in D}:

 sum {j in V:i<>j} x[i,j,d] = sum {j in V:i<>j} x[j,i,d];

subject to uContinuity {d in D, i in V diff {0}, j in V diff {0}: i<>j}:

 u[i,d] - u[j,d] >= q[j,d] - Q * (1 - x[i,j,d]);

subject to uUpper {i in V diff {0}, d in D}: u[i,d] <= Q;

subject to serviceDays {j in V diff {0}, d in D}: sum {i in V:i<>j} x[i,j,d] <= a[j,d];

 41

10.2 Extended Model

extended model

#Sets

set V;

set D;

#Parameters

param c {i in V, j in V: i<>j} >= 0;

param Q >= 0;

param q_sensor {V diff {0}} >= 0;

param q_max {V diff {0}} >= 0;

param g {V diff {0}} >= 0;

param M;

param a {D} >= 0;

param b >= 0;

param f >= 0;

param binover >= 0;

param e >= 0;

#Variables

var x {i in V, j in V, D: i<>j} binary;

var u {V diff {0}, D} >= 0;

var q {V diff {0}, D} >= 0;

#var a {V diff {0}, D} binary;

var y {V diff {0}, D} >= 0;

var w {V diff {0}, D diff {0}} >= 0;

 42

var v {V diff {0}, D diff {0}} >= 0;

var t {D} integer >= 0;

#Objective function

minimize Total_Distance:

 sum {i in V, j in V, d in D:i<>j} c[i,j] * x[i,j,d]

 + sum {i in V diff {0}, d in D diff {0}} w[i,d] * binover

 + sum {d in D} t[d] * e;

#Constraints

subject to maxRoutes {d in D}:

 sum {j in V:j<>0} x[0,j,d] <= b * a[d] + t[d];

subject to outdegree {i in V diff {0}}:

 sum {j in V, d in D:i<>j} x[i,j,d] >= f;

subject to xContinuity {i in V, d in D}:

 sum {j in V:i<>j} x[i,j,d] = sum {j in V:i<>j} x[j,i,d];

subject to uContinuity {d in D, i in V diff {0}, j in V diff {0}: i<>j}:

 u[i,d] - u[j,d] >= q[j,d] - Q * (1 - x[i,j,d]);

subject to uUpper {i in V diff {0}, d in D}:

 u[i,d] <= Q;

s.t. initial_q {i in V diff {0}}:

 q[i,0] = q_sensor[i];

 43

s.t. linerarized_prod1 {i in V diff {0}, d in D diff {0}}:

 v[i,d] <= M * (1 - y[i,d-1]);

s.t. linerarized_prod2 {i in V diff {0}, d in D diff {0}}:

 v[i,d] <= q[i,d-1];

s.t. linerarized_prod3 {i in V diff {0}, d in D diff {0}}:

 v[i,d] >= q[i,d-1] - (1-(1 - y[i,d-1])) * M;

s.t. update_q {i in V diff {0}, d in D diff {0}}:

 q[i,d] = v[i,d] + g[i];

s.t. update_y {j in V diff {0}, d in D}:

 sum {i in V: i<>j} x[i,j,d] = y[j,d];

s.t. over_flow {i in V diff {0}, d in D diff {0}}:

 w[i,d] >= q[i,d] - q_max[i];

 44

10.3 Matheuristic Script

import amplpy

import numpy as np

import pandas as pd

import time

import matplotlib.pyplot as plt

import random

import io

starttime = time.time()

#Functions:

def generatePopulation(nDays, nNodes, populationSize):

 population = []

 solsize = nDays * nNodes

 groupsize = populationSize // nDays #størrelsen avhenger av om det gruppene går

opp i populationSize

 for i in range(1, nDays+1):

 sol = [1] * i * nNodes + [0]*(solsize - (i * nNodes))

 for i in range(groupsize):

 random.shuffle(sol)

 population.append(sol)

 return population

def reproduction(population, mutationChance):

 offspring = []

 while len(offspring) < populationSize:

 #choose parents

 parent1 = random.choice(population)

 parent2 = random.choice(population)

 #do crossover to generate offspring

 crossover = random.randint(0, len(parent1)-1)

 45

 child1 = parent1[:crossover] + parent2[crossover:]

 child2 = parent2[:crossover] + parent1[crossover:]

 #by some chance mutate offspring

 if random.random() <= mutationChance:

 gene = random.randint(0, len(child1)-1)

 if child1[gene] == 0:

 child1[gene] = 1

 else:

 child1[gene] = 0

 if random.random() <= mutationChance:

 gene = random.randint(0, len(child2)-1)

 if child2[gene] == 0:

 child2[gene] = 1

 else:

 child2[gene] = 0

 offspring.append(child1)

 offspring.append(child2)

 return offspring

def evalFitness(chromosome):

 ampl.eval('unfix y;')

 index = 0

 for i in range(1,nNodes+1):

 for d in range(nDays):

 varValue = chromosome[index]

 amplcommand = "let y[{},{}] := {};".format(i, d, varValue)

 ampl.eval(amplcommand)

 index += 1

 ampl.eval('fix y;')

 ampl.solve()

 dist = ampl.getObjective('Total_Distance')

 46

 dist = dist.value()

 return dist

def sumones(solution):

 return sum(solution)

def popFitness(population):

 popfitness = []

 for solution in population:

 #popfitness.append(sumones(solution))

 popfitness.append(evalFitness(solution))

 return popfitness

writefiles = ['5.txt','6.txt','7.txt','8.txt','9.txt','10.txt','11.txt','12.txt','13.txt','14.txt','15.txt']

nodelist = [5, 6, 7, 8, 9, 10, 11, 12 ,13, 14, 15]

#AMPL Setup

ampl = amplpy.AMPL()

modfile = r'M:\ampl\Bergen\extended.mod'

datfile = r'M:\ampl\Bergen\extended_10_5_1.dat'

ampl.read(modfile)

ampl.readData(datfile)

ampl.setOption('solver', 'cplex')

ampl.setOption('cplex_options', 'time=10')

#Setup

random.seed(101)

nDays = 5

nNodes = 5

populationSize = 20 #4 * nNodes

mutationChance = 0.9

bestsols = []

bestfits = []

 47

#Initiate Population

#population = generatePopulation(nDays, nNodes, populationSize)

for n in range(len(writefiles)):

 chromlen = nDays * nodelist[n]

 population = []

 for i in range(populationSize):

 ones = random.randint(0, chromlen)

 zeros = chromlen - ones

 chrom = [1 for i in range(ones)] + [0 for i in range(zeros)]

 random.shuffle(chrom)

 population.append(chrom)

 outfile = writefiles[n]

 f = open(outfile, 'a')

 for i in range(20):

 #Reproduction

 children = reproduction(population, mutationChance)

 population = population + children

 #Calculate fitness

 popfitness = popFitness(population)

 #sort by fitness

 popfitness, population = (list(t) for t in zip(*sorted(zip(popfitness,

population))))

 #wipe out worst (for now at least)

 population = population[:populationSize]

 #record best solution

 bestsols.append(population[0])

 bestfits.append(popfitness[0])

 print("End of iteration: ", i)

 for z in popfitness[:5]:

 f.write(' ')

 48

 f.write(str(z))

 f.write(', ')

 f.write('\n')

 print('best of each generation: ',bestfits)

 print('best solution: ', bestsols[bestfits.index(min(bestfits))])

 print('top five from each generation:')

 runtime = time.time() - starttime

 f.write('Runtime: ')

 f.write(str(runtime))

 f.close()

 49

10.4 Simulation Script

#Import libraries

import amplpy

import numpy as np

import pandas as pd

import time

import matplotlib.pyplot as plt

#Create the ampl object

ampl = amplpy.AMPL()

#Read model and data for files (Maybe change it to define data in py)

modfile = r'M:\ampl\Bergen\extended.mod'

datfile = r'M:\ampl\Bergen\extended_5_7_1.dat'

ampl.read(modfile)

ampl.readData(datfile)

#Set solver and time limit

ampl.setOption('solver', 'cplex')

ampl.setOption('cplex_options', 'mipgap=0.05')

#ampl.setOption('cplex_options', 'time=40')

###The model can now be solved using the 'ampl.solve()' command###

np.random.seed(101)

simulationDays = 7 #How many times the model is solved

clients = 5

customernodes = [i for i in range(1,clients +1)] #not sure where to put this

exprod = [20 for i in range(clients)]

proddev = [5 for i in range(clients)]

outfile = open(r'M:\ampl\Bergen\simulationoutput.txt', 'a+')

 50

real_bin_levels = [[] for i in range(clients)]

for simulation in range(simulationDays):

 #Solve the model

 ampl.solve()

 ampl.display('_solve_elapsed_time >> skrivq.txt')

 ampl.display('Total_Distance >> skrivq.txt')

 ampl.display('{i in V, j in V:i<>j} x[i,j,0]*c[i,j] >> skrivq.txt')

 ampl.display('q >> skrivq.txt')

 ampl.display('w >> skrivq.txt')

 ampl.display('t >> skrivq.txt')

 ampl.display('y >> skrivq.txt')

 #Read which nodes are served on the first day 0 of this solution (should read more

data, but this is it for now)

 served = ampl.getVariable('y')

 df = served.getValues()

 dflist = df.toList()

 served_yesterday = []

 for var in dflist:

 if var[1] == 0 and var[2] == 1:

 served_yesterday.append(int(var[0]))

 #write to file, just to see.

 outfile.write('\nNodes served on day ' + str(simulation) + ': ')

 for node in served_yesterday:

 outfile.write(str(node))

 51

 #Read bin-levels that were used to solve the model

 levelyesterday = ampl.getParameter('q_sensor')

 levelyesterday_df = levelyesterday.getValues()

 levels_yesterday = levelyesterday_df.toList()

 #Store bin levels from day 0. (These are actual levels, not projected ones)

 for i in range(clients):

 real_bin_levels[i].append(levels_yesterday[i][1])

 print(real_bin_levels)

 #Simulate production of waste. All bins have save growth, maybe change this

somehow.

 real_production = [np.random.normal(exprod[i], proddev[i]) for i in range(clients)]

 #Update bin levels:

 levels_today = []

 for dunk in levels_yesterday:

 if dunk[0] in served_yesterday:

 bin_level = real_production[int(dunk[0]-1)]

 levels_today.append(bin_level)

 else:

 bin_level = real_production[int(dunk[0]-1)] + dunk[1]

 levels_today.append(bin_level)

 #Change data using a Pandas DataFrame

 df = pd.DataFrame(

 {'q_sensor': levels_today},

 index=customernodes

)

 ampl.setData(amplpy.DataFrame.fromPandas(df))

outfile.close()

 52

#Save realized bin levels to file

import csv

with open('binlevels.csv', 'w+', newline='') as csvfile:

 writer = csv.writer(csvfile, delimiter= ' ', quotechar='|',

quoting=csv.QUOTE_MINIMAL)

 for i in range(len(real_bin_levels)):

 writer.writerow(real_bin_levels[i])

