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ABSTRACT 

Background: While measuring the logistics ergonomics factors which are essential for 

ergonomics assessment have been mainly performed through wearable sensor-based devices 

lately, the vision-based methods which require only a standard camera to capture human 

pose have been progressing newly with the potential to use in the logistics ergonomics. 

OpenPose as a popular open-source technique among human pose estimation methods has 

been addressed in detecting body points and angle joints in ergonomics studies as well as 

human balance, human kinematics, and spatiotemporal gait in clinical settings; In most of 

these experiments, they only examined a single posture at a time. However, this study 

focuses on examining the performance of pose estimation (OpenPose) in detecting different 

types of postures both for walking (normal, slow, wide, limp, and short walking types) and 

balance experiments (normal and abnormal balance) by comparing the quantitative 2D 

spatiotemporal gait and balance measurements against a golden standard. 

Method: We compared recordings of quantitative gait parameters in 24 walking trails and 

center of mass (CoM) displacement in 6 balance tests tracked from OpenPose and Motion 

capture which were performed by two participants. The comparisons were performed for 

videos captured by front and right-side cameras. 

Results: Results from our research indicate that five out of six gait parameters namely the 

step time, stance time, and double support time measures calculated from the OpenPose 

correlate significantly to that of the motion capture system. However, the step width is the 

only parameter that designates a low correlation between them.  Similarly, the results from 

logistic regression modeling showed insignificant relationship between these five gait 

parameters and the two pose capturing tools (Mocap and Openpose), while step width 

represented a relatively significant effect on them. The PLS-DA model (Partial Least Square 

Discriminant Analysis) demonstrated that gait variables extracted from OpenPose and 

Motion capture can be discriminated in clusters based on gait type with no major differences 

between OpenPose and Mocap. Also, the results from a two-group comparison test 

(Wilcoxon) on balance parameter (CoM values) between Mocap and OpenPose showed that 

the mean level of both samples is the same in four different balance trials, including three 

balance trials and one imbalanced experiment. 
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Conclusion: This study provides preliminary evidence that pose estimation (using 

OpenPose) could work as a tool for quantitative 2D spatiotemporal analyses of gait and 

balance as the key human movements to be referred to in ergonomics postural assessment. 

The results suggest that pose estimation showed promising performance in discriminating 

among normal and abnormal postures as compared to the golden standard (Mocap) in gait 

and balance experiments. This reveals the potential for three-dimensional pose estimation 

using multicamera setups in future research. 
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Chapter 1 

 

1. Introduction  

1.1 Background and Motivation 

Nowadays an integral part of supply chain management is to meet the demanding need of 

the business world to maximize yield while minimizing costs and achieving the highest 

possible quality. Achieving the agility, high productivity and high quality entails a 

competitive excellence in supply chain management. The strength of supply chain depends 

upon, among other things, the amount of operation's output which is affected by a bunch of 

factors including human factor as a significant driving force.  

Ergonomics play a vital role in supporting the efficiency and productivity of supply chain 

operations through maintains the relationship between the company and the environmental 

aspects (Markus, 2008). A good workplace ergonomic system allows employees to operate 

at their highest level of productivity, quality, and efficiency. Ergonomics involves in the 

issues of the optimized design of work procedures, workplaces and tools, optimum operating 

mode, human intervention in automated systems, as well as the optimum performance of 

employees through training and motivation. 

 In the field of business logistics, the scope of ergonomics research is focusing on internal 

and external determinants of human which investigates the impact of work and the working 

environment on human through the physiological reactions of their bodies to the physical 

and mental demands. Through finding solutions that respect the possibilities as well as the 

hygienic, functional, and psychological requirements of employees, ergonomics led to 

reducing fatigue and potential acute or chronic health disorders (Beňo, 2013).  

Workplace ergonomics importance arises mainly from the risk factors that can be threaten 

both the worker's health and the operation output which may be quite costly to both the 

employee and employer. An ergonomic approach can contribute to lower business costs, 

improved quality, and better workplace safety.  

The evaluation of workplaces ergonomics investigates the risks of the physical interaction 

of people with their work environment which is settled in three areas including kinesiology 

(the study of human movement), biomechanics (the study of motion in living things) and the 
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relation of kinesiology and biomechanics with workplace safety (Hazari, et al., 2021). 

Human movement and posture are two main factors that are considered in evaluation of 

ergonomics.  

There are several observational methods of postural ergonomics assessment based on direct 

on-site observation or the video of workers when performing their jobs (Hignett & 

McAtamney, 2000) (Diego-Mas, et al., 2015) (Kee, 2021). Research proposals have been 

published at different stages regarding the improvement of these techniques.  

Although observational methods are applicable in many work areas and easy to use, they 

depend on the judgement of the evaluator and also, they need a field expertise to handle a 

time-consuming manual analysis (Burdorf, et al., 1992) (Fagarasanu & Kumar, 2004).To 

fulfilling these problems researchers proposed the motion capture systems based on optical 

markers and wearable inertial sensors (Battini et al., 2014; Huang et al., 2020; Valero et al., 

2016; Vignais et al., 2013) which have high accuracy for capturing human motions, but with 

drawbacks of expensive equipment, need for a skilled technician, and movement interference 

from body-attached markers/sensors (David, 2005; Trask et al., 2012). 

A number of studies have used a low-cost Motion Capture (MoCap) system based on a 

Microsoft Kinect depth camera (Cai et al., 2019; Clark et al., 2019; Dutta, 2012; Xu and 

McGorry, 2015). Such solutions however have shown limitations such as body occlusions 

(Plantard et al., 2017b), low-quality of tracking from non-frontal views (Wei et al., 2015), 

and the elimination of neck twisting (Manghisi et al., 2017). 

By the emergence of computer vision, vision-based approaches are making an outstanding 

headway for marker-less postural assessment as they provide the assessment availability 

from photos and videos captured by standard cameras (Bogo et al., 2016; Cao et al., 

2017; Mehta et al., 2017; Rhodin et al., 2018; Yang et al., 2018; Zhou et al., 2017). While 

the vision-based methods used in ergonomics researches mainly focused on identifying 

major key points of the human body, in a recent study the joint angles were computed using 

OpenPose (Kim, et al., 2021). However, the results of studies on investigation of human 

kinematics considering the ergonomics context have yet to achieve a reliable level of 

accuracy. In this study the application of OpenPoes for assessing human balance, kinematics 

and spatiotemporal analysis of gait are presented. The difference of this research from the 

limited prior counterparts (Kim, et al., 2021) (Stenum, et al., 2021) (Li, et al., 2021)is 

twofold; This study has looked into the pose estimation algorithm (OpenPose) robustness 

https://www.sciencedirect.com/topics/social-sciences/remote-sensing
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib3
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib22
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib56
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib56
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib59
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib12
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib55
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib7
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib11
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib16
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib61
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib61
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib46
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib60
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib33
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib4
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib10
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib10
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib38
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib49
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib65
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib67
https://www.sciencedirect.com/topics/engineering/keypoints
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,first, in discriminating between the different types of walking, second, in detecting the 

imbalanced pose, compared to the measurement simultaneously derived from a golden 

standard.   

1.2 Problem Statement 

While measuring the logistics ergonomics factors which are essential for ergonomics 

assessment are mainly performed through wearable sensor-based devices lately, the vision-

based methods which required only standard camera to capture human pose are progressing 

today with the potential to use in the logistics ergonomics. According to the literature (Kim, 

et al., 2021) (Li, et al., 2021) (Stenum, et al., 2021), addressing the robustness of pose 

estimation algorithms as the latest up-to-date methods for two-dimensional analysis of 

human pose, is needed to add the next achievement to the chain of forward research in 

logistics ergonomics context.  

OpenPose as an opensource pose estimation algorithm has been studied on several objectives 

in recent years (Cao, et al., 2019) (Chen, 2019) (Kim, et al., 2021) (Li, et al., 2021); The 

findings represented the pose estimation application in detecting body points and angle joints 

in ergonomics researches as well as human balance and human kinematics and 

spatiotemporal gait in clinical settings when the experiments are designed for investigating 

one type of posture. However, this study focuses on analyzing the performance of pose 

estimation (OpenPose) in detecting different types of postures both for walking and balance 

experiments.  

 

1.3 Goals and research question 

Taking into consideration the vital role of postural evaluation in ergonomics within logistics, 

examining pose estimation as the state-of-the-art in human movement studies is targeted to 

be addressed in this study. The goal of this study is to experiment with OpenPose as a popular 

pose estimation algorithm to analyze the quantitative 2D spatiotemporal gait and balance. 

This study is going to answer two different questions: 

1. Could the pose estimation (OpenPose) detect changes across conditions for the 

characterization of different gait types? 
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2. Could the pose estimation (OpenPose) differentiate between abnormal balance pose 

as well as balance?  

 

1.4 Outline 

In Chapter 2, a relevant background information is introduced within both the supply chain 

logistics and the human pose fields. It is started by a brief explanation of logistics activities 

then pointed out the role of human movement studies in logistics. Then a thorough 

explanation of Human Pose Estimation is provided which is furthered by the Pose Estimation 

tools and summed up with a summary of related works in gait and balance posture. Chapter 

3 describes the experimental settings and methodology used in this study as well as the 

statistical analysis done in two parts, gait, and balance. Chapter 4 documents the results 

produced during the research. Chapter 5 evaluates both the results and the applicability of 

our proposed method. Finally, Chapter 6 represents the conclusion for this thesis and 

suggestions for future work. 
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Chapter 2 

2. Literature Review 

This chapter contains the related researches in four parts, including the background of human 

movement studies in supply chain and logistics, a literature review on human pose 

estimation, an introduction on the tools for pose estimation and the background of gait and 

balance postures.  

 

2.1 Supply chain background 

The necessity of appointing the relationship between logistics and human, organizational, 

and social traits originates from the concept of logistics which involves people, materials, 

information, equipment, energy resources, as well as related knowledge and abilities, and 

can make satisfactory results (Loos, et al., 2016).  

The extremely routine and manual nature of logistical activities may put employees at high 

risk of physical strain in working environment which entail gaining empirical insights into 

examining ergonomics within logistics (Gruchmann, et al., 2020). Manual labors in logistics 

workplace settings including warehouses and distribution centers mostly consist of repetitive 

physical movements throughout the day, such as twisting, lifting, bending, or sitting in an 

awkward position which expose the workers to overexertion, pain, and musculoskeletal 

disorders (Schmauder, 2013) (Günthner, et al., 2014).  

For instance, “100 million European citizens suffer from chronic musculoskeletal pain and 

musculoskeletal disorders (MSDs), including 40 million workers who attribute their MSD 

directly to their work” (Hartvigsen, et al., 2018). According to Irastorza et al., work-related 

musculoskeletal disorders (WMSDs)constitute a significant contribution of work-related 

health problems in the European Union, which affect workers in different working sectors 

(Irastorza et al.,2010). Musculoskeletal conditions accounts for the second largest 

contributor to disability worldwide which are estimated to increase by the global population 

ages (Luttmannet al., 2003). 

Ergonomics analyses make it possible to determine and assess repetitive workloads.  Also, 

for evaluating work demands and environmental conditions, an ergonomics analysis offers 
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recording physical stresses and body postures (Feldmann, et al., 2019). Using the result of 

this assessment can be reduced musculoskeletal disorders risk in long term. 

The ergonomic assessment used to be done through observing the operators during work by 

the experts which were time consuming and required specialized ergonomists (Grooten & 

Johanssons, 2017). Today with the transition to Industry 4.0 and the introduction of new 

digital technology, monitoring of workers' physical and psychological well-being is 

supported through integrated platforms (Kadir & Broberg, 2020).  

There are two popular devices for ergonomics assessment in workplaces namely Inertial 

Measurement Units (IMU) which is among the wearable-sensor based tools and Microsoft 

Kinect as a vision-based tool (Tee, et al., 2017) . Rocha-Ibarra et al. evaluated human 

ergonomics of a pick and place task using the Microsoft Kinect™ sensor to capture the 

postures of the subjects (Rocha-Ibarra, et al., 2021).  

Fledmann et al. examined the ergonomic evaluation of body postures in the logistical 

activities of order picking systems by using a motion capturing system (Feldmann, et al., 

2019). 

The worker motion data for developing the concept of a Healthy Operator 4.0 (HO4.0) 

proposed by Sun et al. was collected through wearable devices (Sun, et al., 2020).  

In several studies for the real-time monitoring of an operator’s activities wearable 

technologies were used (Kassner, et al., 2017) (Romero, et al., 2017) (Pavón, et al., 2018). 

Other studies presented the use of deep learning to monitor an operator’s activities utilizing 

wearable devices for data collection (Zheng, et al., 2018) (Shoaib, et al., 2016). For the 

ergonomic assessment of physical workload, Onofrejova et al. used sensor-based wearable 

technologies and highlighted the ergonomic risk in industrial environment (Onofrejova, et 

al., 2022).  

Another research addressed a variety of sensor-based wearable stretch sensors for human 

movement monitoring within workplace practices in physical ergonomics (Chander, et al., 

2020). By using smart wearable devices Ciccarelli et al. provided a human work 

sustainability tool which consider all work-related ergonomic aspects including physical, 

cognitive, environmental, and organizational (Ciccarelli, et al., 2022).  

Seo & Lee proposed a 2D image-based approach that automatically classify workers’ 

postures by using machine-learning algorithms which addressed the automating current 

postural ergonomic evaluation techniques (Seo & Lee, 2021).  
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Moreover, in another study a combination of computer vision approaches, and wearable 

sensors utilized to improve the accuracy of ergonomic risk detection as well as workers' 

locations (Yu, et al., 2019). To sum up, to date ergonomic assessment is performed through 

two categories of technologies including body-attached sensor-based approaches and vision-

based approaches. 

 While the researchers mainly used the sensor-based methods in ergonomic assessment, 

limited researches have addressed the vision-based methods. Recognizing posture through 

devices connected to the body can be named as the main drawback of motion capturing 

wearable tools because they limit the type of motion recording at each trial as well as their 

requirement of specific settings. Moreover, the 2D image-based approach limitation refers 

to collecting dataset due to its requirement to large training data set, as a machine learning-

based classification method (Yan, et al., 2017).  

Human pose estimation as an emerging technology that measures human movement 

kinematics can be addressed these limitations by using only standard camera videos (Cao, et 

al., 2017) (Zago, et al., 2020) (Viswakumar, et al., 2019) (Kidziński, et al., 2020) (Sato, et 

al., 2019) (Fang, et al., 2017) (Mehdizadeh, et al., 2021) and freely available packages of 

training datasets (Stenum, et al., 2021). 

 Using a simple regular camera to capture the whole-body kinematics could considerably 

lessen the role of common techniques which are limited in terms of cost, technical expertise 

requirements, and obtrusiveness such as motion capture systems or wearable devices.  

In a prior study, a pose estimation-based method (OpenPose) has been used for ergonomic 

postural assessment by measuring joint angles which is also validated against a reference 

Xsens inertial MoCap system (Kim, et al., 2021). However, this study is addressed the 

potential of the use of OpenPose as a tool for detecting spatiotemporal gait parameters as 

well as balance as the key human movements to be referred in ergonomics postural 

assessment.  

2.2 Human pose estimation 

Human Pose Estimation (HPE) is defined as estimating the configuration of the human body 

from an image (Sigal, 2014) (Xiong, et al., 2022). HPE detects and categorizes the poses of 

individual body elements and joints in images or videos. Most commonly, it performs 

through a model-based method the visualization and estimation of human body poses in 2D 
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and 3D space. Afterward, when an image and video is entered to the model as input, the 

coordinates of these recognized body parts and joints are detected as output as well as a score 

representing the precision of the estimations.  

This simple construction provides tremendous opportunity for measuring whole-body 

kinematics within almost any setting, with low costs of money, time, and effort.  

The records of this branch of scientific endeavor date back to Aristotle in the fourth century 

BC, as the first known written quantitative analysis of walking  (Baker, 2007) (Mündermann, 

et al., 2006).  

Along with the advance of technology several modern tools for human movement analysis 

such as three-dimensional motion capture, instrumented gait mats, and a variety of wearable 

devices has been appeared in recent years.  

It has abundance of growing applications ranging from human health (Stenum, et al., 2021) 

,fall detection (Chen, et al., 2021) , sitting posture (Chen, 2019) , the field of sport and 

physical exercise (Badiola-Bengo & Mendez-Zorrilla , 2021), to remote patient monitoring 

(Sengupta, et al., 2020), security and surveillance (Penmetsa, et al., 2014) ,augmented and 

virtual reality (Marchand, et al., 2016) , robotics application (Zimmermann, et al., 2018) and 

many more.  

Several recent studies on automatic human pose estimation used deep learning techniques 

by training the neural network using manually labeled image data and then compute the 

individual posture, including joint centers and skeletons (Toshev & Szegedy, 2014) (Wei, et 

al., 2016) (Papandreou, et al., 2018).  

Deep-learning-based methods initially have launched with 2D pose estimation to estimate 

individual joint points from 2D RGB images, and progressed with 3D pose estimation, which 

estimates the 3D human joint locations directly using a single algorithm (Chen & Ramanan, 

2017) (Pavlakos, et al., 2018) (Moon, et al., 2019) (Rhodin, et al., 2018) (Pavllo, et al., 2019).  

Recently, pose estimation has been applied widely in human gait classification and 

recognition (Sato, et al., 2019) (Spehr, et al., 2012) (Kwolek, et al., 2019).Also, the use of 

pose estimation in quantifying spatiotemporal and kinematic gait features has been showed 

promising results (Stenum, et al., 2021). 

Previous studies on gait analysis mainly used two-dimensional pose estimation techniques 

to extract capture gait parameters such as step lengths, step width, step time, stride length on 

a single gait type (Aung, et al., 2019) (Ng, et al., 2020) (Sato, et al., 2019) (Shin, et al., 2021) 
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(Stenum, et al., 2021) (Mehdizadeh, et al., 2021). However, the need of investigating the 

ability of pose tracking algorithms in detecting different gait types persists. 

On the one hand, Seethapathi et al. investigated deep-learning-based human pose tracking 

algorithms from the aspect of the human movement science and presented that these 

algorithms did not set up the arrangement of the quantities which matters in movement 

science (Seethapathi, et al., 2019). Hence, Nakano et al. claimed that that in human 

movement studies such as sports biomechanics or clinical biomechanics which mainly 

involves the functional mechanisms (included ergonomic factors) a combination of free 

available deep-learning-based packages and the principles of conventional motion capture 

systems such as camera calibration or kinematic data processing methods could be used 

(Nakano, et al., 2020). For example, OpenPose as one of the most popular open-source pose 

estimation technologies (Cao, et al., 2019) is considered due to its ease of use.  

On the other hand, measuring human gait and movement using the modern tools limits their 

applicability due to not only their requirements including clinical settings and time 

consuming, but also the high prices and expertise-based usage. In the next section several 

movement assessment tools are elaborated.  

2.3 Pose estimation tools applied to gait research 

The recent progress in movement assessment tools ranges from the Kinect sensor (Microsoft, 

Redmond, WA) (Mehdizadeh, et al., 2020) (Latorre, et al., 2019) (Dolatabadi, et al., 2017) 

(Springer & Seligmann, 2016) (Mehdizadeh, et al., 2020) (Dolatabadi, et al., 2014) to video-

based pose estimation as an achievement of computer vision technology (Anon., u.d.; 

Andriluka, et al., 2014) (Cao, et al., 2019) (Insafutdinov, et al., 2016) (Pishchulin, et al., 

2016) (Martinez, et al., 2017) (Toshev & Szegedy, 2014) (Mathis, et al., 2018) (Nath, et al., 

2019).  

Recently video-based tools have been used to assess human walking through pose tracking 

algorithms (Cao, et al., 2017) (Zago, et al., 2020) (Viswakumar, et al., 2019) (Kidziński, et 

al., 2020) (Sato, et al., 2019) (Fang, et al., 2017) (Mehdizadeh, et al., 2021).  

Detection of body key points in these algorithms is based on trained networks from annotated 

videos of freely available large datasets including MPII (Andriluka, et al., 2014) and COCO 

(Context, 2014). Some of the gait parameters that have been measured with pose estimation 
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under different conditions include step lengths, step width, step time, stride length, gait 

velocity, and cadence (Sato, et al., 2019) (Aung, et al., 2019) (Ng, et al., 2020). 

In the last decade different pose tracking algorithms have been issued such as OpenPose 

(Cao, et al., 2017), DeepLabCut (Mathis, et al., 2018), DeepPose (Toshev & Szegedy, 2014), 

DeeperCut (Insafutdinov, et al., 2016), Alpha-Pose (Fang, et al., 2017), ArtTrack 

(Insafutdinov, et al., 2017). Most of these techniques have models that work relatively well 

for humans and are freely available. OpenPose as a state-of-the-art and open-source model 

is used for multi-person 2D pose estimation in real-time.   

Several studies have investigated the validity of pose tracking algorithms. The reliability and 

validity of motion analysis during squat using a pose tracking algorithm (OpenPose) is 

demonstrated by Ota et al.  (Ota, et al., 2020).  

The need for comparisons of these techniques against simultaneously collected, gold-

standard measurements are addressed in the following studies. The findings obtained by 

Mehdizadeh et. al in validating gait parameters calculated by three pose algorithms against 

gold standard methods in older adults revealed that AlphaPose and Detectron had the highest 

agreement while OpenPose had the lowest agreement in their assessment conditions 

(Mehdizadeh, et al., 2021).  

However, Stenum et al. investigated the validity of a pose tracking algorithm (OpenPose) 

against gold-standard measurements and proved that OpenPose can provide estimates of 

many human gait parameters with the accuracy and precision needed to detect changes in 

the gait pattern in healthy humans (Stenum, et al., 2021).  

In another study, Åberg et. al evaluate the accuracy of gait parameters measurement 

estimated by marker-free video recordings of Timed Up-and-Go tests (TUG) supported by 

OpenPose in comparison with a Marker-based optoelectronic motion capture system as 

golden standard and found different percentages of agreements in the % absolute mean 

difference for different gait parameters ranging from less than 1.1 %, to 6% and 13% (Åberg, 

et al., 2021).  

In this study a pre-trained network provided by Open-Pose is used due to its robustness and 

ease of use (Yadav, et al., 2019) (Cao, et al., 2019) (Stenum, et al., 2021) (Viswakumar, et 

al., 2019) (Anon., u.d.) (Ota, et al., 2020).  
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2.4 Balance posture 

Although gait analysis using pose estimation algorithms has been studied intensively over 

the past decade, less is known about the performance of pose estimation algorithms on 

human balance posture. 

Computing the Center of Mass as a measurement of balance has been proposed by Winter 

(Winter, 1995). Doheny et. al proposed a method for measuring the displacement of a 

person’s Center of Mass using accelerometry to distinguish fallers from non-fallers (Doheny, 

et al., 2012). Dubois and Charpillet calculated the displacement of Center of Mass by a 

tracking marker-less method (Dubois & Charpillet, 2014).  

In another study the 3D position of a Center of Mass of a human body were estimated using 

a deep learning model and by a set of multi-view images from RGB cameras (Kaichi, et al., 

2018). A method based on a deep learning network was proposed by Wei and Dey et al, 

which estimated the Center of Mass through a CNN-based network and by using depth 

images from a single Microsoft Kinect RGB-D camera as input (Wei & Dey, 2019).  

Li et. al measured Center of Mass and Center of Pressure as the balance parameters using 

OpenPose and successfully validated the method comparing to a motion capture tool (Li, et 

al., 2021). While OpenPose showed satisfactory performance in calculating the normal 

balance (Li, et al., 2021), its strength in detecting imbalanced postures is not known yet. 

The aim of this study is to investigate the performance of a two-dimensional pose tracking 

algorithm (OpenPose) in detecting different gait types and imbalanced posture in comparison 

with a golden standard method (3D Motion Capture) regarding the accuracy of the 

measurements.   
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Chapter 3 

 

3. DATA AND METHODS  

Quantitative research involves analyzing and collecting data in a quantified way. Generally, 

it is used to search for patterns, averages, predictions, as well as causal relationships between 

variables under investigation (Bryman, 2012) . 

Experimental research as a kind of quantitative research method follows a strict scientific 

research design. Through experiments, a hypothesis is tested or attempted to be proven. 

Method of this study is based on the quantitative technique and, in particular, it is an 

experimental research. 

3.1 Data 

Data collecting were performed through two experiments, walking trials and balance tests. 

In walking experiment totally, 36 records from 12 walking trials in two directions captured 

from pose estimation (OpenPose) and Mocap. The values of gait parameters got from 

averaging over the steps of each participant. 

For the balance experiment, four datasets from different 30-seconds balance trials were 

provided, each consists of more than 850 observations derived from the Mocap recordings 

and videos of OpenPose. 

 

3.2 Method 

The study is conducted at the laboratory of SINTEF Digital, a research division in SINTEF, 

located in Trondheim, at the Department of Mathematics and Cybernetics, to assess the 

estimation of standard clinical gait parameters such as step length, step width, swing time, 

step time, stance time and double support time as well as center of mass displacement as a 

balance parameter with the use of pose estimation methods. 
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3.2.1 Participants  

Due to the different gait and balance types as the aiming of data collecting for the 

experiments of this study, two participants were contributed who were asked to simulate the 

defined postures according to the protocol of the study. Each participant performed five 

different types of walking and two different types of balance trials. They agreed to be 

videotaped during the data collection period as an element of the study. 

 

3.2.2 Motion capture system 

Measurements of optical motion capture have long been regarded as one of the gold 

standards in the field of biomechanics within the research community. Regarding the validity 

of optical motion capture systems Yeo et al. suggested Qualisys for efficient and accurate 

measurements of gait analysis. In this study three-dimensional (3D) motion capture Qualisys 

with six cameras (Figure 1) was used to capture participants' motion at 200 Hz while they 

were wearing whole-body markers. A total of 39 markers were attached to the head (4), arms 

(7 on each), legs (12), torso (5), pelvis (4) during static and gait measurement (Figure 2). 

Qualisys QTM software was used to record and pre-process the walking trials.  

 

 
Figure 1 : Laboratory setting, Q Qualisys cameras, RGB GoPro cameras 
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Figure 2: Qualisys full-body marker set (Kwolek, et al., 2019) 

 

3.2.3 Cameras 

 
With the aim of using regular video cameras, two Go Pro Hero cameras were used to record 

video from sagittal and frontal views at 60Hz with a 1080p resolution. The cameras were 

placed centered and outside of the 4x4 meter recording space (Figure 1), for footage from 

front and left side. 

From the walking trials and balance tests of participants, 30 videos from each of the front 

and right-side cameras including 12 walking trials in two directions and four balance test 

trials were obtained. Likewise, 30 motion capture recordings were captured with the same 

performed experiment.  

 

3.2.4 Experimental protocol 

 
In several studies the short physical performance battery (SPPB) has been proved to be a 

reliable tool for measuring gait and balance parameters, since it is simple to use, short, and 

standardized, it should be used in clinical settings(Veronese et al., 2014; Volpato et al., 

2011) . Another study showed that the SPPB is faster and simpler to use comparing to the 

currently available gait and balance screening tools (Lauretani et al., 2019). Hence, for 
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assessing pose estimation in a standard clinical setting, as the suggestion of several 

physiotherapists who got involved in this study, SPPB test was conducted for providing the 

reference metrics to be compared between 2D video-based pose estimation algorithms and 

3D golden standard motion capture system. Participants were asked to complete two tasks 

of SPPB test: assessment of standing balance and 4-m walking back and forth per trial 

(Figure 3). Laboratory settings are shown in (Figure 1). 

Following the SPPB protocol, it was determined that several simulated gait and balance 

manners be performed by each participant. These motion tasks included normal and 

disturbed balance tests as well as normal and several abnormal gait trials. Walking slow, 

short, wide, and limp comprised the performances in simulating the abnormal gait tests. In 

total 18 records in walking trials were captured by both instruments (3D Mocap and 2D 

video-based cameras) simultaneously.  

 

Figure 3) Gait test path according to SPPB protocol 

 
The standing balance test was performed in three phases; First, participants were asked to 

remain standing with their feet as close together as possible, second, in a semi-tandem 

position, and finally in a tandem position. Each position had to be held for 10 s (Figure 4).  

One 30-seconds abnormal balance test simulated by each participant and three normal 

balance tests performed which were recorded concurrently by Motion capture and Gopro 

cameras. By extracting the displacement of COM from the recordings, four different datasets 

each consists of more than 850 observations per system provided. 
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Figure 4) Balance test according to SPPB protocol 

 

3.2.5 Video pose estimation (Data processing) 

 
Data pre-processing involved labelling and gap-filling of motion capture recordings for all 

trials and clipping and pose estimation processing for all video recordings. Video clipping 

was done to extract individual 4m walk trials from first to last step on each direction (away 

from frontal plane camera, and towards frontal plane camera). The recorded videos from 

frontal and sagittal views were processed using Open Pose in a Python script on Google 

Collaborative. Scripts used to process video data were developed and used by (Stenum, et 

al., 2021) and are freely available at https://github.com/janstenum/GaitAnalysis-

PoseEstimation. 

Motion capture was processed in MATLAB (Mathworks 2021) to extract spatiotemporal 

gait metrics from 3D marker data. For motion capture and the left views of OpenPose, 

timings of gait events (heel-strikes and toe-offs), as well as spatiotemporal gait metrics (step 

time, stance time, swing time, double support time, step length, and gait speed) were 

separately determined.  

 

3.2.6 Gait and balance parameters 

 
Gait and balance parameters were calculated using the recorded gait and balance from 3D 

Mocap Qualysis and 2D Openpose. The calculated gait variables include Step time (duration 

in seconds between consecutive bilateral heel-strikes), Stance time(duration in seconds 
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between heel-strike and toe-off of the same leg), Swing time (duration in seconds between 

toe-off and heel-strike of the same leg), Double support time (duration in seconds between 

heel-strike of one leg and toe-off of the contralateral leg) and Step length (anterior-posterior 

distance in meters between left and right ankle markers (motion capture) or ankle key points 

(OpenPose) at heel-strike), Step width(medial-lateral distance in meters between left and 

right ankle markers (motion capture) or ankle key points (OpenPose) at heel-strike) and Gait 

speed(step length divided by step time). 

Analysis of the balance test was done through the trajectory of the Center of Mass (CoM). 

CoM was estimated with the segmental kinematics method (Winter, 1990), where inertial 

parameters of body segments allow the computation of the body center of mass through the 

weighted average of the CoM of each segment. Anthropometric data, including the mass 

distribution within the segments and the location of their CoM, were taken from (Wiley & 

Sons, 1990). 

Processing of motion capture data and estimation of CoM trajectory was done in custom-

made Python scripts. Processing of video and pose estimation data was done using a 

customized version of the tools described in (Stenum, et al., 2021) and custom-made 

MATLAB scripts. 

 

3.3 Statistical analysis 

3.3.1 Gait analysis 

 
Analysis of the gait in this study is done in four parts. First, an overall view of the gait data 

from Motion capture and OpenPose is described shortly, the results are reported in 

descriptive analysis section.  

Then, correlation analysis is used to determine the correlation between the gait variables 

calculated from the video and from the motion capture system as the golden standard, the 

results are reported in correlation analysis section.  

In the next part, logistic regression is used for comparing the estimation of gait parameters 

(step time, stance time, swing time, double support time, step length, and step width) 

between the gold standard motion capture and pose estimation. For that, logistic regression 

modeling is developed in several stages. Logistic Regression is from a family of generalized 
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linear models (GLM). It is a binary classification algorithm used when the response variable 

is binary (1 or 0) which includes dependent variables that are non-normal. This method 

without considering the normality assumption for the predictor variables, predict the values 

of response variable (David W. Hosmer, et al., 2013). We used it to find the best fitting and 

clinically interpretable model to describe the relationship between the type of system (Mocap 

or OpenPose) and all six numeric gait parameters (step time, stance time, swing time, double 

support time, step length, and step width)  (David W. Hosmer, et al., 2013). 

The system type (Mocap or OpenPose) is considered as the dependent (response) binary 

variable and six gait parameters are defined as independent variables in the model. For this 

purpose, the family argument in GLM function is set to binomial() .  

In a GLM model a coefficient is assigned to each independent variable and the model is 

written as below: 

 

𝑠𝑦𝑠𝑡𝑒𝑚. 𝑡𝑦𝑝𝑒 = 𝛽0 +  𝛽1 ∗  𝑠𝑡𝑒𝑝. 𝑡𝑖𝑚𝑒 +  𝛽2 ∗  𝑠𝑡𝑎𝑛𝑐𝑒. 𝑡𝑖𝑚𝑒 +  𝛽3 ∗  𝑠𝑤𝑖𝑛𝑔. 𝑡𝑖𝑚𝑒 + 𝛽4

∗  𝐷𝑆. 𝑡𝑖𝑚𝑒 +  𝛽5 ∗  𝑠𝑡𝑒𝑝. 𝑙𝑒𝑛𝑔𝑡ℎ +   𝛽6 ∗  𝑠𝑡𝑒𝑝. 𝑤𝑖𝑑𝑡ℎ  

 

In the above model the null hypothesis (𝐻0) and the alternative hypothesis for each 

independent variable (𝐻1)  are written as follow: 

 

{
𝐻0 ∶  𝛽𝑖 = 0 
𝐻1 ∶  𝛽𝑖 ≠ 0

 ,   𝑖 =   0 , 1 , … , 6  

 

The hypothesis 𝛽𝑖 = 0 means that the independent variable corresponding to this coefficient 

is not significant in the model. In other words, the independent variable has no significant 

relationship with the response variable and if the p-value resulting from the GLM test is 

greater than the significance level (0.05) the null hypothesis is accepted. Alternative 

hypothesis represents that there is a statistically significant association between independent 

variable under study and the type of system. The results are reported in logistic regression 

section. 

 Finally, for investigating the detection possibility of the pose tracking algorithm among 

different type of gait, PLSDA (Partial least squares discriminant analysis) technique is used. 

The gait measures used in the statistical analysis got from averaging over the steps of each 

participant. The significance level in all statistical analysis in this study is set to 0.05. 
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3.3.2 Balance analysis 

 
For comparing the mean of two sample of CoM displacement which is considered as the 

balance parameter, hypothesis testing was performed. For that, first, to determine the 

appropriate type of statistical two-sample test, the test requirements including the normality 

test (M.Jarque & K.Bera, 1980) was checked. Then, the mean of each group is compared 

through Wilcoxon test. For that the null hypothesis (𝐻0) and the alternative hypothesis are 

written as follow: 

{
𝐻0 ∶  μ1 =  μ2  
𝐻1:   μ1 ≠  μ2

    

µ1 refers to mean of CoM from Motion capture and µ2 indicates mean of CoM from 

OpenPose in each of the defined balance tests. The results are reported in balance results 

section.   
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Chapter 4 

 

4. Result 

Snapshot of the output of balance and walking trials from both systems is presented in 

Figure 5 and Figure 6 .  
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Figure 5) View walks from pose tracking video and Motion capture record of the front and right-side camera 

 
 
 

 
Figure 6) Balance test views of pose tracking video and Motion capture recorded from front camera 

4.1 Gait results 

4.1.1 Descriptive Analysis  

The average values of the six gait measures for the Motion capture (Qualisys) and pose 

tracking algorithm (OpenPose) are presented in Error! Reference source not found. and 

Figure 7. The group mean difference as a measure of bias between measurement systems 
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and the group mean absolute difference as a measure of the error between them were also 

calculated shown in the same table. 

 
Table 1 Gait variables values calculated for the motion capture and video data using OpenPose algorithm 

Gait parameters N Mean ± SD Mean ± SD Mean ± SD 

   MC(3D) OP(2D) MC - OP |MC - OP| 

Step Time (s) 36 0,71 ± 0,21 0,72 ± 0,21 0,00 ± 0,03 0,02 ± 0,02 

Stance Time (s) 36 0,99 ± 0,35 0,99 ± 0,33 0,00 ± 0,05 0,04 ± 0,03 

Swing Time (s) 36 0,43 ± 0,10 0,44 ± 0,10 0,00 ± 0,04 0,03 ± 0,03 

Double support time (s) 36 0,28 ± 0,15 0,27 ± 0,13 0,01 ± 0,04 0,03 ± 0,03 

Step Length (m) 36 0,31 ± 0,17 0,33 ± 0,17  -0,02 ± 0,07 0,04 ± 0,06 

Step Width (m) 36 0,27 ± 0,08 0,21 ± 0,08 0,06 ± 0,08 0,07 ± 0,07 

  
 

 
Figure 7) Comparison of gait parameters between Motion capture and OpenPose using means of all step trials  

 

4.1.2 Correlation Analysis 

For representing the strength of the relationship between the gait parameters derived from 

the video and from the inertial motion capture system as the gold standard correlation 

calculation was done. To find the appropriate type of correlation in this case, the normality 

assumption of the gait parameters was evaluated using the Shapiro-Wilks test. The p-value 

of all gait parameters are reported in Table 2.  

 
                              Table 2) Results of Shapiro-Wilks test of gait variables calculated from the motion 

                                            capture and from the Open Pose tracking; *, significant p < 0,05 

Gait parameters            p-value    
MC(3D) OP(2D)  

Step Time (s) 0,79 0,62  

Stance Time (s) 0,61 0,76  
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Swing Time (s) 0,01* 0,01*  

Double support time (s) 0,01* 0,01*  

Step Length (m) 0,1 0,1  

Step Width (m) 0,01* 0,01*  

 

As it is demonstrated in the above table having three of gait parameters less than 0.05, i.e., 

showing they are significant, the hypothesis of normality is rejected, which is the case that 

determined to use the Spearman’s correlation. Accordingly, Spearman correlation analysis 

was used. 

                       Table 3) Results of correlation analysis between gait variables calculated from 

                             the motion capture and from the OpenPose tracking; *, significant p < 0,05  

 

 
 

 

 

 

 

 

 

Spearman’s correlation results for the gait variables from the motion capture and the 

OpenPose tracking are presented in Table 3 and Figure 8. It is observed that five out of six 

gait parameters show strong correlations namely the step time, stance time and double 

support time measures with very high correlation values (Rs > 0.9, p-value < 0.001), step 

length and swing time variables with high correlations (Rs > 0.7, p-value < 0.001). However, 

the step width is the only parameter that designates low correlation and insignificant p-value 

(Rs = 0.29, p-value = 0.23) possibly due to the effect of frontal plane video perspective on 

the scaling of pixels to meters, since the values obtained from the pose estimation are 

dimensionless and cannot be directly compared with motion capture values; This conversion 

of pixels to meters introduced error. 

 

Gait parameters        Spearman correlation 

                                          Rs p-value 

Step Time(s) 0,98 < 0,001* 

Stance Time(s) 0,98 < 0,001* 

Swing Time(s) 0,74 < 0,001* 

Double support time(s) 0,97 < 0,001* 

Step Length(m) 0,85 < 0,001* 

Step Width(m) 0,29 0,23 
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Figure 8) Scatter plots for all gait parameters including mean of steps captured from Motion Capture and OpenPose; 

The blue line is the fitted line. The correlation coefficient and p-value are shown in the figures. 

4.1.3 Logistic Regression 

The common way of fitting a logistic regression model is that all the independent variables 

enter the model at the same time and tested against the alternative hypothesis but since the 

information (number of observations) in this study are limited, the better way of studying 

the relationships is the conservative approach. Of course, a complete model with all the 

independent variables entering the model at the same time is fitted after the forward approach 

to make sure about the effect of each independent variable’s presence on the response 

variable in the model.  

To determine the effect of each predictor on the response variable, a forward logistic 

regression approach is used such that the predictors are added to the model in turn.  

First, the one-predictor model using step time was fitted.  
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                                      Table 4) Results of Logistic regression model / one-predictor in first turn  

 System     

Predictors Estimate Statistic p-value 

(Intercept) 0.92 -0.07 0.947 

Step Time 0.12 0.07 0.945 

Observations 36   

 
The result of logistical regression (                                      Table 4) shows that the p-values are 

significantly greater than 0.05, which states there is no statistically significant relationship 

between the system type and step time. Therefore, we strongly (p-value = 0,95) accept the 

null hypothesis for this variable, it approves that step time measures in both systems are 

statistically the same. 

 Then, the second predictor, stance time, is added to the model.  

 
                               Table 5) Results of Logistic regression model / Two-predictor in second turn 

 System     
Predictors Estimate Statistic p-value 

(Intercept) 0.79 -0.19 0.852 
Step Time 8.65 0.35 0.725 

Stance Time 0.27 -0.35 0.729 

Observations 36   

 

From the result (Table 5) it is observed that there is no association between any of the two 

predictors (stance time and step time) and the system type. Having the p-value > 0.7 for both 

of independent variables, lead to accepting the null hypothesis strongly. As looking at the 

results step time is still insignificant in the model even after entering stance time. 

Next, in the third turn, the three-predictor model is fitted, by adding swing time parameter.  

 
                                 Table 6) Results of Logistic regression model / Three-predictor in third turn 

 System     
Predictors Estimate Statistic p-value 

(Intercept) 1.04 0.03 0.979 

Step Time 167.21 0.51 0.608 
Stance Time 0.09 -0.50 0.615 
Swing Time 0.05 -0.38 0.704 

Observations 36   

 
As it can be seen in Table 6, by adding the swing time to the model, the p-values for all 

three predictors still are highly insignificant, i.e., the level of step time, stance time and 

swing time between Mocap and OpenPose are equal.  
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Then, double support time as the next independent variable is inserted to the model. 

 
                                    Table 7) Results of Logistic regression model / Four-predictor in fourth turn 

 System     

Predictors Estimate Statistic p-value 

(Intercept) 0.76 -0.18 0.861 

Step Time 1027.40 0.67 0.500 

Stance Time 25.12 0.47 0.641 

Swing Time 0.00 -0.96 0.336 
DS Time 0.00 -1.16 0.245 

Observations 36   

 
A decrease in two out of three p-values of the predictors (step time and swing time) in the 

model is shown from the result (Table 7) after entering the double support time to the model 

compared to the previous step. However, the insignificancy of all four predictors relative to 

the system type is obtained, which again confirms no meaningful difference between Mocap 

and OpenPose. The results are rounded up to 2-digits.  

Next, step length is added to the model as predictor.   

 
                                    Table 8) Results of Logistic regression model / Five-predictor in fifth turn 

 System     

Predictors Estimate Statistic p-value 

(Intercept) 0.75 -0.19 0.851 

Step time 21916.24 0.78 0.434 

Stance time 31107 0.16 0.870 

Swing time 0.00 -0.99 0.322 
DS time 0.00 -0.88 0.380 

Step Length 4.96 0.41 0.679 

Observations 36   

 
Having five independent variables in the fitted model, shows high p-value for two of them 

(stance time and step length) and moderate level for the other three (Table 8). The evidence 

approves that the null hypothesis is accepted again. The results are rounded up to 2-digits. 

In the last run of the fitting model, the predictor step width is inserted.  

 
                                Table 9) Results of Logistic regression model / Six-predictor in sixth turn 

 System     

Predictors Estimate Statistic p-value 

(Intercept) 235200.03 16469 0.014* 

Step time 811555555.50 45658 0.212 

Stance time 0.09 -0.23 0.814 
Swing time 0.00 -1.87 0.062 

DS time 4.95 0.09 0.926 
Step Length 5.59 0.37 0.709 
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Step width 0.00 -2.76 0.006* 

Observations 36   

 
Opposing the previous steps, a significant p-value (0.006) is showed up referring to adding 

the predictor step width in the model (Table 9). It represents that there is an association 

between the step width and the type of system such that step width is different for each level 

of system type meaning that it has a significant relationship with the system type. The same 

result for this variable was obtained in the correlation analysis part also. 

Except step width, all other five independent variables are still confirming that there is no 

relationship between them and the system type.  

 

The forward approach and the complete model are in line considering hypothesis testing 

results. From the regression analysis results step time, stance time, swing time, DS time and 

step length proved to be insignificant in the relationship with the system type. For further 

clarification the above mentioned independent variables have no statistically significant 

effect on system type. Also, the only significant independent variable is step width which 

the p-value resulting from the test is relatively less than 0.05.  

 
 

4.1.4 PLS-DA 

To assess the ability of the pose tracking algorithm (OpenPose) in differentiating the 

measured types of gait, Partial Least-Squares Discriminant Analysis (PLS-DA) is 

performed. PLS-DA is a machine learning tool that is being used increasingly as feature 

selector and classifier. It is a combination of principal component and regression analyses to 

extract key features by modeling covariance structures. 

 As a linear, multivariate model, PLS-DA, use the partial least square (PLS) algorithm to 

classifies the labelled data by finding the components that best separate the sample groups 

(Ruiz-Perez, et al., 2020) (Zhou, et al., 2020). It has well performance for the data with 

multiple independent variables and lower number of observations (Eriksson, et al., 2006), 

which is present in the case of this study. 

In the PLS analysis the main goal is to define a maximum covariance model and explain the 

relationship between the gait variables (predictors) and system type, OP and MC (responses). 

To this end, successive orthogonal factors are selected that maximize the covariance between 
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each predictor and the corresponding response to find a model that best assign the system 

type with a selected number of gait variables. 

 The input data in performing the PLS-DA analysis, consists of the gait variables (predictors) 

which formed the X-matrix, and the system type (response) as the Y-matrix; For the 

discriminant analysis, the observations separated to five groups according to the five 

different type of walking pose namely normal, slow, short, wide, and limp. Gait variables 

include step time, stance time, swing time, double support time, step length and step width. 

The PLS-DA model is constructed using R software. In the model two principal components 

(comp1 and comp2) are considered. It classifies the two samples of measuring systems (OP 

and MC) into known groups of gait type (normal, slow, short, wide, and limp) by finding 

patterns and relations between all the extracted gait parameters, test conditions, and 

measuring systems. The result of the model is visualized as shown in the Figure 9. 

 

 

Figure 9)Star plot of PLS-DA clusters, different gait types are shown in different colors, x-axis shows the first component 

and the y-axis represents the second component 
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This star plot considering the observations from both measuring systems together and shows 

the clustering of each sample according to the gait type by different colors, the arrows from 

each group shows centroid towards each individual sample, the confidence ellipses are 

plotted for each sample and the confidence level set to 95%. Some discrimination can be 

seen between the slow gait and wide gait samples vs. the others on the first component (x-

axis), and normal, limp, and short gait vs. the others on the second component (y-axis).  

 

To show how the observations measured by each system is located in the gait-type-based 

clusters another visualization of the PLS-DA with the detailed of system type (OP and 

MC) is presented.  

 
Figure 10) PLSDA plot showing clusters of different gait types in different colors, x-axis shows the first component, and 

the y-axis represents the second component, MC refers to motion capture, and OP means OpenPose  

The distinction shown in the above graph represents that the PLSDA model differentiates 

between different types of gait including normal, slow, short, wide, and limp in both 
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Motion capture and OpenPose in similar clusters and shows no major differences between 

MC and OP measure-methods. 

4.2 Balance results 

By visualizing 2D displacement of CoM from Open Pose data and CoM from 3D Motion 

Capture data for all balance tests (three normal balance tests and one abnormal balance 

test) in line graphs, a well agreement between both systems is observed(Figure 11,Figure 

12,Figure 13,Figure 14). To verify the visual results statistical testing is performed in next 

part.  

 

 
Figure 11) CoM displacement(mm) during the normal balance test 1(30 s), participant’s back towards camera, 

from OpenPose and Motion capture 
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Figure 12) CoM displacement(mm) during the normal balance test 2(30 s), participant facing camera, 

from OpenPose and Motion capture 

 

 

 
Figure 13) CoM displacement(mm) during the normal balance test 3 (30 s), participant’s back towards camera, 

from OpenPose and Motion capture 
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Figure 14) CoM displacement(mm) during the abnormal balance test (30 s), participant facing camera, 

from OpenPose and Motion capture 

 

To compare two groups of CoM data provided from the recordings of Mocap and OpenPose, 

the means of two samples are tested against each other. For applying the proper test to the 

case of this study, among the two-sample hypothesis tests, the normality of the data is 

investigated. Since the size of the balance dataset is large, the Jarque–Bera test is considered 

to verify if the data are normally distributed or not. 

 Referring to the Jarque–Bera test, normality of data considered as the null hypotheses and 

reverse is settled at the alternative hypothesis. According to the test result, the obtained p-

value is close to zero, therefore the null hypothesis is rejected. Due to the non-normality of 

data, the unpaired two-samples Wilcoxon test which is a non-parametric alternative to 

the unpaired two-samples t-test is performed to compare two groups of CoM data from 

OpenPose and Mocap.   

For each of the tests p-value is calculated using R software. The results are shown in The 

attained p-value in the first trial of balance test (Normal balance1 test), equals to 0.97 which 

is strongly insignificant and toward accepting the null hypothesis and shows that mean level 

of both samples is the same.  In the two other balance trials and also in abnormal balance 

trial, p-value shows insignificant values, confirming that both Mocap and OpenPose are in 

well agreement with each other.   

http://www.sthda.com/english/wiki/unpaired-two-samples-t-test-in-r
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Table 10.  The attained p-value in the first trial of balance test (Normal balance1 test), equals 

to 0.97 which is strongly insignificant and toward accepting the null hypothesis and shows 

that mean level of both samples is the same.  In the two other balance trials and also in 

abnormal balance trial, p-value shows insignificant values, confirming that both Mocap and 

OpenPose are in well agreement with each other.   
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Table 10) Results from two-group comparison test driven from CoM values between Mocap and OpenPose in four 

different balance trials (Normal balance 1, Normal balance 2, Normal balance 3 and Abnormal balance) 
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Chapter 5 

5. Discussion 

We examined the performance of pose estimation (OpenPose) in detecting different types of 

postures both for walking (normal, slow, wide, limp, and short walking types) and balance 

experiments (normal and abnormal balance) by comparing the quantitative 2D 

spatiotemporal gait measurements against a golden standard. The comparisons were 

performed for videos captured by front and right-side cameras.  

Results from our research indicate that five out of six gait parameters namely the step time, 

stance time, and double support time measures calculated from the OpenPose correlate 

significantly to that of the motion capture system. However, the step width is the only 

parameter that designates a low correlation between them.  Similarly, the results from 

logistic regression modeling showed insignificant relationship between these five gait 

parameters and the two pose capturing tools (Mocap and Openpose), while step width 

represented a relatively significant effect on them. It might be due to the effect of frontal 

plane video perspective on the scaling of pixels to meters, since the values obtained from the 

pose estimation are dimensionless and cannot be directly compared with motion capture 

values; This conversion of pixels to meters introduced error.  The PLS-DA model (Partial 

Least Square Discriminant Analysis) demonstrated that gait variables extracted from 

OpenPose and Motion capture can be discriminated in clusters based on gait type with no 

major differences between OpenPose and Mocap. Also, the results from a two-group 

comparison test (Wilcoxon) on balance parameter (CoM values) between Mocap and 

OpenPose showed that the mean level of both samples is the same in four different balance 

trials, including three balance trials and one imbalanced experiment. 

 Overall, the results suggest that pose estimation showed promising performance in 

discriminating among normal and abnormal poses as compared to the golden standard 

(Mocap) in both walking and gait experiments.  

The findings of this study are in line with the recent studies using OpenPose in terms of its 

robustness for two-dimensional analysis of human pose (Cao, et al., 2019) (Chen, 2019) 

(Kim, et al., 2021) (Li, et al., 2021)  (Mehdizadeh, et al., 2021)  (Stenum, et al., 2021), which  

could be considered as the next achievement to the chain of forward research in human 

movement context. While gait and balance are among key human movement to be assessed 
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in ergonomics research using pose estimation, other common occupational postures in 

different workplaces can be considered in future studies. 

Using wearable sensor-based tools vs video pose estimation for human postural analysis is 

a controversial issue. This is a discussion among researchers, ergonomists, workers, 

employers, and clinicians, with advantages and disadvantages on both sides (sensors vs 

video pose estimation). On one hand, video pose estimation might allow activity assessment 

without placing sensors on people and might be cheaper if it can be done with conventional 

video cameras. On the other hand, there is the issue of privacy, data security, and monitoring, 

where video data is significantly more sensitive than data from movement sensors. To sum 

up, it depends a lot on the final application, and the availability of resources for safe and 

ethical data management if video is to be collected on regular basis at the workplace. 

Furthermore, the limited dataset of our work due to the performed preliminary experimental 

research could be considered for future studies, which suggests the need for a more 

systematic data collection protocol that could also aid in improving data quality and 

facilitating the acquisition of larger datasets.  

In experimental aspect, estimation of step lengths and widths with pose estimation is 

influenced by the position of the participant along the field of view of the camera. To 

generate estimates of spatial gait parameters (e.g., gait speed, step length) it is necessary to 

scale the video. Here, we accomplished this by scaling the video to known measurements on 

the ground. The process for scaling frontal plane video requires additional linear 

interpolation to account for changes in the distance to the field of progression during gait 

(participant walking away or towards the camera is seen in pose estimation as a change in 

height in screen coordinates). 

Although stationary camera recordings for sagittal plane with consistent camera height gave 

the best results. Frontal plane video results could be improved if the camera follows the 

participant at a fixed distance and with minimal height changes. The developed framework 

relies on several post-processing steps, some of which were completed manually. This 

includes detection of multiple persons, left-right limb switching and gaps in the data. 

We anticipate that clinical video-based analyses will be performed on videos taken by 

smartphone, tablets, or other household electronic devices. Many of these devices have 

standard frame rates of 30 Hz during video recording are comparable to the ones used in this 

study. 
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We did not directly compare the results of our pose estimation analyses to results of any 

other markerless approaches (e.g., Kinect), nor did we run a comparison with other available 

pose estimation algorithms (DeepPose, DeepLabCut, OpenPifPaf).  

Pose estimation methods do not track movements of the human body perfectly from frame-

to-frame. The body key points are unlikely to be equivalent to the marker landmarks as they 

rely on visually labeled generalized points (e.g., “ankle”, “knee”) whereas motion capture 

marker placement relies on manual palpation of bony landmarks. Pose estimation methods 

are also capable of three-dimensional human movement analysis through multiple 

simultaneous camera recordings. 

 Here, we assumed that most videos taken in the home or clinic will be recorded by a single 

device, thus, we limited this study to two dimensional analyses of human walking and 

balance. We used a pre-trained network provided by Open-Pose to avoid spending time and 

resources training our own network. However, it may be possible to obtain more accurate 

video-based analyses by training gait- and balance-specific networks from different views 

(e.g., sagittal, frontal) and for different movement conditions. 
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Chapter 6 

6. Conclusion and future work 

This study provides preliminary evidence that pose estimation (using OpenPose) could work 

as a tool for quantitative 2D spatiotemporal analyses of gait and balance as the key human 

movements to be referred in ergonomics postural assessment. Pose estimation (OpenPose) 

were compared to a golden standard (Mocap) through a set of physical pose-based tests. The 

experiments were two-fold: Gait trials that were tested under five different status including 

normal, slow, short, wide, and limp, and balance posture which were examined on normal 

and abnormal positions. Overall, the results suggest that pose estimation showed promising 

performance in discriminating among normal and abnormal poses as compared to the golden 

standard (Mocap) in both experiments. Besides the results show that gait and balance 

analysis through pose estimation could detect changes across conditions. Therefore, this 

reveals the potential for three-dimensional pose estimation using multicamera setups in 

future researches. 

However, the same results from the two performed statistical tests namely correlation 

analysis and logistic regression were obtained in the gait parameters measurements; It 

represented that although pose estimation showed agreement with the golden standard 

(Mocap) in measuring step time, stance time, double support time and step length, it 

demonstrated relatively poor performance in estimating step width. It might be due to  

the effect of frontal plane video perspective on the scaling of pixels to meters. Hence, future 

studies should be engaged in developing and validating a more precise pose estimation from 

frontal views.  

Furthermore, the limited dataset of our work due to the performed preliminary experimental 

research could be considered for future studies, which suggests the need for a more 

systematic data collection protocol that could also aid in improving data quality and 

facilitating the acquisition of larger datasets.  
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1. ABSTRACT  

Background: Taking into consideration the vital role of postural evaluation in ergonomics 

within logistics, examining pose estimation as the state-of-the-art in human movement 

studies is targeted to be addressed in this research. The goal of this study is to experiment 

with OpenPose as a popular open-source pose estimation algorithm to analyze the 

quantitative 2D spatiotemporal gait and balance. In most recent studies on pose estimation, 

only a single posture at a time has been examined. However, this study focuses on examining 

the performance of pose estimation (OpenPose) in detecting different types of postures both 

for walking (normal, slow, wide, limp, and short walking types) and balance experiments 

(normal and abnormal balance) by comparing the quantitative 2D spatiotemporal gait and 

balance measurements against a golden standard. 

Method: We compared recordings of quantitative gait parameters in 24 walking trails and 

center of mass (CoM) displacement in 6 balance tests tracked from OpenPose and Motion 

capture which were performed by two participants. The comparisons were performed for 

videos captured by front and right-side cameras. 

Results: The same results from two of the performed statistical tests namely correlation 

analysis and logistic regression were obtained in the gait parameters measurements; It 

represented that pose estimation showed agreement with the golden standard (Mocap) in 

measuring step time, stance time, double support time and step length, and only in estimating 

step width it demonstrated relatively poor performance. The PLS-DA model (Partial Least 

Square Discriminant Analysis) demonstrated that gait variables can be discriminated in 

clusters based on gait type with no major differences between OpenPose and Mocap. Also, 

the results from a two-group comparison test (Wilcoxon) on balance parameter (CoM 

values) between Mocap and OpenPose showed that the mean level of both samples is the 

same in four different balance trials, including three balance trials and one imbalanced 

experiment. 

Conclusion: This study provides preliminary evidence that pose estimation (using 

OpenPose) could work as a tool for quantitative 2D spatiotemporal analyses of gait and 

balance as the key human movements to be referred to in ergonomics postural assessment. 

The results suggest that pose estimation showed promising performance in discriminating 

among normal and abnormal postures as compared to the golden standard (Mocap) in gait 
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and balance experiments. This reveals the potential for three-dimensional pose estimation 

using multicamera setups in future research. 

Keywords: Ergonomics Logistics, pose estimation, Openpose, human movement 

2. INTRODUCTION 

Nowadays an integral part of supply chain management is to meet the demanding need of 

the business world to maximize yield while minimizing costs and achieving the highest 

possible quality. Achieving agility, high productivity, and high quality entails competitive 

excellence in supply chain management. The strength of the supply chain depends upon, 

among other things, the amount of operation's output which is affected by a bunch of factors 

including the human factor as a significant driving force.  

Ergonomics plays a vital role in supporting the efficiency and productivity of supply chain 

operations by maintaining the relationship between the company and the environmental 

aspects (Markus, 2008). A good workplace ergonomic system allows employees to operate 

at their highest level of productivity, quality, and efficiency.  

Workplace ergonomics’ importance arises mainly from the risk factors that can threaten both 

the worker's health and the operation output which may be quite costly to both the employee 

and employer. An ergonomic approach can contribute to lower business costs, improved 

quality, and better workplace safety. The evaluation of workplaces ergonomics investigates 

the risks of the physical interaction of people with their work environment which is settled 

in three areas including kinesiology (the study of human movement), biomechanics (the 

study of motion in living things), and the relation of kinesiology and biomechanics with 

workplace safety (Hazari, et al., 2021).  

Human movement and posture are two main factors that are considered in the evaluation of 

ergonomics. There are several observational methods of postural ergonomics assessment 

based on direct on-site observation or the video of workers when performing their jobs 

(Hignett & McAtamney, 2000) (Diego-Mas, et al., 2015) (Kee, 2021).  

With the emergence of computer vision, vision-based approaches are making an outstanding 

headway for marker-less postural assessment as they provide the assessment availability 

from photos and videos captured by standard cameras (Bogo et al., 2016; Cao et al., 

2017; Mehta et al., 2017; Rhodin et al., 2018; Yang et al., 2018; Zhou et al., 2017). While 

the vision-based methods used in ergonomics research mainly focused on identifying 

https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib4
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib10
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib10
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib38
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib49
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib65
https://www.sciencedirect.com/science/article/pii/S0169814121000822#bib67
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major key points of the human body, in a recent study the joint angles were computed using 

OpenPose (Kim, et al., 2021). However, the results of studies on the investigation of human 

kinematics considering the ergonomics context have yet to achieve a reliable level of 

accuracy.  

In this study, the application of OpenPoes for assessing human balance, kinematics, and 

spatiotemporal analysis of gait are presented. The difference of this research from the limited 

prior counterparts (Kim, et al., 2021) (Stenum, et al., 2021) (Li, et al., 2021)is twofold; This 

study has examined the pose estimation (OpenPose) robustness, first, in discriminating 

between the different types of walking, second, in detecting the balanced and imbalanced 

postures, compared to the measurement simultaneously derived from a golden standard.   

3. LITERATURE REVIEW 

The necessity of appointing the relationship between logistics and human, organizational, 

and social traits originates from the concept of logistics which involves people, materials, 

information, equipment, energy resources, as well as related knowledge and abilities, and 

can make satisfactory results (Loos, et al., 2016).  

The extremely routine and manual nature of logistical activities may put employees at high 

risk of physical strain in working environment which entail gaining empirical insights into 

examining ergonomics within logistics (Gruchmann, et al., 2020). Manual labors in logistics 

workplace settings including warehouses and distribution centers mostly consist of repetitive 

physical movements throughout the day, such as twisting, lifting, bending, or sitting in an 

awkward position which expose the workers to overexertion, pain, and musculoskeletal 

disorders (Schmauder, 2013) (Günthner, et al., 2014). For instance, “100 million European 

citizens suffer from chronic musculoskeletal pain and musculoskeletal disorders (MSDs), 

including 40 million workers who attribute their MSD directly to their work” (Hartvigsen, 

et al., 2018).  

The ergonomic assessment used to be done through observing the operators during work by 

the experts which were time consuming and required specialized ergonomists (Grooten & 

Johanssons, 2017). Today with the transition to Industry 4.0 and the introduction of new 

digital technology, monitoring of workers' physical and psychological well-being is 

supported through integrated platforms (Kadir & Broberg, 2020). There are two popular 

devices for ergonomics assessment in workplaces namely Inertial Measurement Units (IMU) 

https://www.sciencedirect.com/topics/engineering/keypoints
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which is among the wearable-sensor based tools and Microsoft Kinect as a vision-based tool 

(Tee, et al., 2017). Rocha-Ibarra et al. evaluated human ergonomics of a pick and place task 

using the Microsoft Kinect™ sensor to capture the postures of the subjects (Rocha-Ibarra, et 

al., 2021). Fledmann et al. examined the ergonomic evaluation of body postures in the 

logistical activities of order picking systems by using a motion capturing system (Feldmann, 

et al., 2019). 

The worker motion data for developing the concept of a Healthy Operator 4.0 (HO4.0) 

proposed by Sun et al. was collected through wearable devices (Sun, et al., 2020).  

In several studies for the real-time monitoring of an operator’s activities wearable 

technologies were used (Kassner, et al., 2017) (Romero, et al., 2017) (Pavón, et al., 2018). 

Other studies presented the use of deep learning to monitor an operator’s activities utilizing 

wearable devices for data collection (Zheng, et al., 2018) (Shoaib, et al., 2016). For the 

ergonomic assessment of physical workload, Onofrejova et al. used sensor-based wearable 

technologies and highlighted the ergonomic risk in industrial environment (Onofrejova, et 

al., 2022). Another research addressed a variety of sensor-based wearable stretch sensors for 

human movement monitoring within workplace practices in physical ergonomics (Chander, 

et al., 2020). By using smart wearable devices Ciccarelli et al. provided a human work 

sustainability tool which consider all work-related ergonomic aspects including physical, 

cognitive, environmental, and organizational (Ciccarelli, et al., 2022). Seo & Lee proposed 

a 2D image-based approach that automatically classify workers’ postures by using machine-

learning algorithms which addressed the automating current postural ergonomic evaluation 

techniques (Seo & Lee, 2021). Moreover, in another study a combination of computer vision 

approaches, and wearable sensors utilized to improve the accuracy of ergonomic risk 

detection as well as workers' locations (Yu, et al., 2019). To sum up, to date ergonomic 

assessment is performed through two categories of technologies including body-attached 

sensor-based approaches and vision-based approaches. 

 While the researchers mainly used the wearable sensor-based methods in ergonomic 

assessment, limited researches have addressed the vision-based methods (Kim, et al., 2021). 

Recognizing posture through devices connected to the body can be named as the main 

drawback of motion capturing wearable tools because they limit the type of motion recording 

at each trial as well as their requirement of specific settings. Moreover, the 2D image-based 
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approach limitation refers to collecting dataset due to its requirement to large training data 

set, as a machine learning-based classification method (Yan, et al., 2017).  

Human pose estimation as an emerging technology that measures human movement 

kinematics can be addressed these limitations by using only standard camera videos (Cao, et 

al., 2017) (Zago, et al., 2020) (Viswakumar, et al., 2019) (Kidziński, et al., 2020) (Sato, et 

al., 2019) (Fang, et al., 2017) (Mehdizadeh, et al., 2021) and freely available packages of 

training datasets (Stenum, et al., 2021). Using a simple regular camera to capture the whole-

body kinematics could considerably lessen the role of common techniques which are limited 

in terms of cost, technical expertise requirements, and obtrusiveness such as motion capture 

systems or wearable devices. In a prior study, a pose estimation-based method (OpenPose) 

has been used for ergonomic postural assessment by measuring joint angles which is also 

validated against a reference Xsens inertial MoCap system (Kim, et al., 2021).  

To sum up, while measuring the logistics ergonomics factors which are essential for 

ergonomics assessment are mainly performed through wearable sensor-based devices lately, 

the vision-based methods which required only standard camera to capture human pose are 

progressing today with the potential to use in the logistics ergonomics. According to the 

literature (Kim, et al., 2021) (Li, et al., 2021) (Stenum, et al., 2021), addressing the 

robustness of pose estimation algorithms as the latest up-to-date methods for two-

dimensional analysis of human pose, is needed to add the next achievement to the chain of 

forward research in logistics ergonomics context. OpenPose as an opensource pose 

estimation algorithm has been studied on several objectives in recent years (Cao, et al., 2019) 

(Chen, 2019) (Kim, et al., 2021) (Li, et al., 2021); The findings represented the pose 

estimation application in detecting body points and angle joints in ergonomics researches as 

well as human balance and human kinematics and spatiotemporal gait in clinical settings 

when the experiments are designed for investigating one type of posture. However, this study 

focuses on analyzing the performance of pose estimation (OpenPose) in detecting different 

types of postures both for walking and balance experiments.  

4. METHODS and DATA  

The study is conducted at the laboratory of SINTEF Digital, a research division in SINTEF, 

located in Trondheim, at the Department of Mathematics and Cybernetics, to assess the 

estimation of standard clinical gait parameters such as step length, step width, swing time, 
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step time, stance time and double support time as well as center of mass displacement as a 

balance parameter with the use of pose estimation methods. 

Data collecting were performed through two experiments, walking trials and balance tests. 

In walking experiment totally, 36 records from 12 walking trials in two directions captured 

from pose estimation (OpenPose) and Mocap. The walking measures got from averaging 

over the steps of each participant. 

For the balance experiment, four datasets from different 30-seconds balance trials were 

provided, each consists of more than 850 observations derived from the videos of both 

OpenPose and Mocap. 

4.1 Participants 

Due to the different gait and balance types as the aiming of data collecting for the 

experiments of this study, two participants were contributed who were asked to simulate the 

defined postures according to the protocol of the study. Each participant performed five 

different types of walking and two different types of balance trials. They agreed to be 

videotaped during the data collection period as an element of the study. 

4.2  Motion capture system 

Measurements of optical motion capture have long been regarded as one of the gold 

standards in the field of biomechanics within the research community. Regarding the validity 

of optical motion capture systems Yeo et al. suggested Qualisys for efficient and accurate 

measurements of gait analysis. In this study three-dimensional (3D) motion capture Qualisys 

with six cameras (Figure 1) was used to capture participants' motion at 200 Hz while they 

were wearing whole-body markers (with 39 markers). Qualisys QTM software was used to 

record and pre-process the walking trials.  
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Figure 15 : Laboratory setting, Q Qualisys cameras, RGB GoPro cameras 

4.3 Cameras 

With the aim of using regular video cameras in pose estimation, two Go Pro Hero cameras 

were used to record video from sagittal and frontal views at 60Hz with a 1080p resolution. 

The cameras were placed centered and outside of the 4x4 meter recording space (Figure 1), 

for footage from front and right side. 

From both walking trials and balance tests, 30 videos from each of the front and right-side 

cameras including 12 walking trials in two directions and four balance test trials were 

obtained. Likewise, 30 motion capture recordings were captured with the same performed 

experiment.  

4.4 Experimental protocol 

For assessing pose estimation in a standard clinical setting, as the suggestion of several 

physiotherapists who got involved in this study, SPPB test was conducted for providing the 

reference metrics to be compared between 2D video-based pose estimation algorithms and 

3D golden standard motion capture system. Participants were asked to complete two tasks 

of SPPB test: assessment of standing balance and 4-m walking back and forth per trial. 

Laboratory settings are shown in (Figure 1). 

Following the SPPB protocol, it was determined that several simulated gait and balance 

types be performed by each participant. These motion tasks included normal and disturbed 

balance tests as well as normal and several abnormal gait trials. Walking slow, short, wide, 
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and limp comprised the performances in simulating the abnormal gait tests. In total 18 

records in walking trials were captured by both instruments (3D Mocap and 2D video-based 

cameras) simultaneously.  

The standing balance test was performed in three phases; First, participants were asked to 

remain standing with their feet as close together as possible, second, in a semi-tandem 

position, and finally in a tandem position. Each position had to be held for 10 s.  

One 30-seconds abnormal balance test simulated by each participant and three normal 

balance tests performed which were recorded concurrently by Motion capture and Gopro 

cameras. By extracting the displacement of COM from the recordings, four different datasets 

each consists of more than 850 observations per system provided. 

4.5 Video pose estimation (Data processing) 

Data pre-processing involved labelling and gap-filling of motion capture recordings for all 

trials and clipping and pose estimation processing for all video recordings. Video clipping 

was done to extract individual 4m walk trials from first to last step on each direction (away 

from frontal plane camera, and towards frontal plane camera). The recorded videos from 

frontal and sagittal views were processed using Open Pose in a Python script on Google 

Collaborative. Scripts used to process video data were developed and used by (Stenum, et 

al., 2021) and are freely available at https://github.com/janstenum/GaitAnalysis-

PoseEstimation. Motion capture was processed in MATLAB (Mathworks 2021) to extract 

spatiotemporal gait metrics from 3D marker data. For motion capture and the left views of 

OpenPose, timings of gait events (heel-strikes and toe-offs), as well as spatiotemporal gait 

metrics (step time, stance time, swing time, double support time, step length, and gait speed) 

were separately determined.  

4.6 Gait and balance parameters 

Gait and balance parameters were calculated using the recorded gait and balance from 3D 

Mocap Qualysis and 2D records from Openpose. The calculated gait variables include Step 

time (duration in seconds between consecutive bilateral heel-strikes), Stance time(duration 

in seconds between heel-strike and toe-off of the same leg), Swing time (duration in seconds 

between toe-off and heel-strike of the same leg), Double support time (duration in seconds 

https://github.com/janstenum/GaitAnalysis-PoseEstimation
https://github.com/janstenum/GaitAnalysis-PoseEstimation
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between heel-strike of one leg and toe-off of the contralateral leg) and Step length (anterior-

posterior distance in meters between left and right ankle markers (motion capture) or ankle 

key points (OpenPose) at heel-strike), Step width(medial-lateral distance in meters between 

left and right ankle markers (motion capture) or ankle key points (OpenPose) at heel-strike) 

and Gait speed(step length divided by step time). 

Analysis of the balance test was done through the trajectory of the Center of Mass (CoM). 

CoM was estimated with the segmental kinematics method (Winter, 1990), where inertial 

parameters of body segments allow the computation of the body center of mass through the 

weighted average of the CoM of each segment. Anthropometric data, including the mass 

distribution within the segments and the location of their CoM, were taken from (Wiley & 

Sons, 1990). Processing of motion capture data and estimation of CoM trajectory was done 

in custom-made Python scripts. Processing of video and pose estimation data was done using 

a customized version of the tools described in (Stenum, et al., 2021) and custom-made 

MATLAB scripts. 

4.7 Statistical analysis 

4.7.1 Gait analysis 

Analysis of the gait in this study is done in four parts. First, an overall view of the gait data 

from Motion capture and OpenPose is described shortly, the results are reported in 

descriptive analysis section.  

Then, correlation analysis is used to determine the correlation between the gait variables 

calculated from the video and from the motion capture system as the golden standard, the 

results are reported in correlation analysis section.  

In the next part, logistic regression is used for comparing the estimation of gait parameters 

(step time, stance time, swing time, double support time, step length, and step width) 

between the gold standard motion capture and pose estimation. For that, logistic regression 

modeling is developed in several stages. Logistic Regression is from a family of generalized 

linear models (GLM). It is a binary classification algorithm used when the response variable 

is binary (1 or 0) which includes dependent variables that are non-normal. This method 

without considering the normality assumption for the predictor variables, predict the values 

of response variable (David W. Hosmer, et al., 2013). We used it to find the best fitting and 

clinically interpretable model to describe the relationship between the type of system (Mocap 
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or OpenPose) and all six numeric gait parameters (step time, stance time, swing time, double 

support time, step length, and step width)  (David W. Hosmer, et al., 2013). 

The system type (Mocap or OpenPose) is considered as the dependent (response) binary 

variable and six gait parameters are defined as independent variables in the model. For this 

purpose, the family argument in GLM function is set to binomial() .In a GLM model a 

coefficient is assigned to each independent variable and the model is written as below: 

 

𝑠𝑦𝑠𝑡𝑒𝑚. 𝑡𝑦𝑝𝑒 = 𝛽0 +  𝛽1 ∗  𝑠𝑡𝑒𝑝. 𝑡𝑖𝑚𝑒 +  𝛽2 ∗  𝑠𝑡𝑎𝑛𝑐𝑒. 𝑡𝑖𝑚𝑒 +  𝛽3 ∗  𝑠𝑤𝑖𝑛𝑔. 𝑡𝑖𝑚𝑒 + 𝛽4

∗  𝐷𝑆. 𝑡𝑖𝑚𝑒 +  𝛽5 ∗  𝑠𝑡𝑒𝑝. 𝑙𝑒𝑛𝑔𝑡ℎ +   𝛽6 ∗  𝑠𝑡𝑒𝑝. 𝑤𝑖𝑑𝑡ℎ  
 

In the above model the null hypothesis (𝐻0) and the alternative hypothesis for each 

independent variable (𝐻1)  are written as follow: 
 

{
𝐻0 ∶  𝛽𝑖 = 0 
𝐻1 ∶  𝛽𝑖 ≠ 0

 ,   𝑖 =   0 , 1 , … , 6  

 

The hypothesis 𝛽𝑖 = 0 means that the independent variable corresponding to this coefficient 

is not significant in the model. In other words, the independent variable has no significant 

relationship with the response variable and if the p-value resulting from the GLM test is 

greater than the significance level (0.05) the null hypothesis is accepted. Alternative 

hypothesis represents that there is a statistically significant association between independent 

variable under study and the type of system. The results are reported in logistic regression 

section. Finally, for investigating the detection possibility of the pose tracking algorithm 

among different type of gait, PLSDA (Partial least squares discriminant analysis) technique 

is used.The gait measures used in the statistical analysis got from averaging over the steps 

of each participant. The significance level in all statistical analysis in this study is set to 0.05. 

4.7.2 Balance analysis 

For comparing the mean of two sample of CoM displacement which is considered as the 

balance parameter, hypothesis testing was performed. For that, first, to determine the 

appropriate type of statistical two-sample test, the test requirements including the normality 

test (M.Jarque & K.Bera, 1980) was checked. Then, the mean of each group is compared 

through Wilcoxon test. For that the null hypothesis (𝐻0) and the alternative hypothesis are 

written as follow: 

{
𝐻0 ∶  μ1 =  μ2  
𝐻1:   μ1 ≠  μ2
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µ1 refers to mean of CoM from Motion capture and µ2 indicates mean of CoM from 

OpenPose in each of the defined balance tests. The results are reported in balance results 

section.   

5. RESULTS 

5.1 Gait Results 

While two participants took part in the study, the experiments were designed such that each 

participant simulates different walking postures. Two normal and four abnormal (slow, 

short, wide, and limp) walking trials were performed by each participant, which formed 12 

waling trials in two directions. All walking trials consisted of 4-meter walk, turn, and 4-

meter walk back to starting point (2x4m walk per trial). In total, 24 videos from each of the 

front and right-side cameras were captured and at the same time, 24 motion capture 

recordings were collected. Due to different styles of walking performed in the experiment, 

the number of steps per trial was not identical, therefore, the values of gait parameters in 

each walking trial got from averaging over the steps of each participant which led to 36 

records in total; This formed the reference dataset used for gait statistical analysis. The 

average values of the six gait measures for the motion capture (Mocap) and the pose 

estimation (OpenPose) are presented in Table 11. 

Table 11 Gait variables values calculated for the motion capture and video data using OpenPose algorithm 
Gait parameters N Mean ± SD Mean ± SD Mean ± SD 

   MC(3D) OP(2D) MC - OP |MC - OP| 

Step Time (s) 36 0,71 ± 0,21 0,72 ± 0,21 0,00 ± 0,03 0,02 ± 0,02 

Stance Time (s) 36 0,99 ± 0,35 0,99 ± 0,33 0,00 ± 0,05 0,04 ± 0,03 

Swing Time (s) 36 0,43 ± 0,10 0,44 ± 0,10 0,00 ± 0,04 0,03 ± 0,03 

Double support time (s) 36 0,28 ± 0,15 0,27 ± 0,13 0,01 ± 0,04 0,03 ± 0,03 

Step Length (m) 36 0,31 ± 0,17 0,33 ± 0,17  -0,02 ± 0,07 0,04 ± 0,06 

Step Width (m) 36 0,27 ± 0,08 0,21 ± 0,08 0,06 ± 0,08 0,07 ± 0,07 

 

Snapshot of the output of walking trial from both systems is presented in Figure 2.  



58 
 

Figure 2) View walks from pose tracking video and Motion capture record of the front and right-side camera 

Correlation Analysis 

To find the appropriate type of correlation in this case, the normality assumption of the gait 

parameters was evaluated. Using the Shapiro-Wilks test for normality, significant p-values 

(less than 0.05) were obtained for three of the gait parameters (swing time, double support 

time, and step width) which did not satisfy the normality assumption. It indicated the choice 

for the type of correlation test, which was Spearman correlation.  

Spearman’s correlation results for the gait variables from the motion capture and the 

OpenPose estimation are presented in Figure 8 and Table 3. It is observed that five out of six 

gait parameters show strong correlations namely the step time, stance time and double 

support time measures with very high correlation values (Rs > 0.9, p-value < 0.001), step 

length and swing time variables with high correlations (Rs > 0.7, p-value < 0.001). However, 

the step width is the only parameter that designates low correlation and insignificant p-value 

(Rs = 0.29, p-value = 0.23) possibly due to the effect of frontal plane video perspective on 

the scaling of pixels to meters, since the values obtained from the pose estimation are 

dimensionless and cannot be directly compared with motion capture values; This conversion 

of pixels to meters introduced error. 
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Figure 3) Scatter plots for all gait parameters including mean of steps captured from Motion Capture and OpenPose; The 

blue line is the fitted line. The correlation coefficient and p-value are shown in the figures. 

                   Table 12) Results of correlation analysis between gait variables calculated from the motion  

                                          capture and from the OpenPose tracking; *, significant p < 0,05  

 
 
 
 
 
 
 
 

Logistic Regression 

To determine the effect of each predictor on the response variable, a forward logistic 

regression approach is used such that the predictors are added to the model in turn. Since the 

number of observations in this study are limited, the better way of studying the relationships 

is the conservative approach. Of course, a complete model with all the independent variables 

entering the model at the same time is fitted after the forward approach to make sure about 

the effect of each independent variable’s presence on the response variable in the model.  

Gait parameters        Spearman correlation 

                                          Rs p-value 

Step Time(s) 0,98 < 0,001* 

Stance Time(s) 0,98 < 0,001* 

Swing Time(s) 0,74 < 0,001* 

Double support time(s) 0,97 < 0,001* 

Step Length(m) 0,85 < 0,001* 

Step Width(m) 0,29 0,23 
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First, the one-predictor model using step time was fitted. The result (                                      Table 

4) shows that the p-values are significantly greater than 0.05, which states there is no 

statistically significant relationship between the system type and step time. Therefore, we 

strongly (p-value = 0,95) accept the null hypothesis for this variable, it approves that step 

time measures in both systems are statistically the same.  

Then, the second predictor, stance time, is added to the model. From the result (Table 5) it 

is observed that there is no association between any of the two predictors (stance time and 

step time) and the system type. Having the p-value > 0.7 for both of independent variables, 

lead to accepting the null hypothesis strongly. As looking at the results step time is still 

insignificant in the model even after entering stance time. 

 Next, in the third turn, the three-predictor model is fitted, by adding swing time parameter. 

As it can be seen in Table 6, by adding the swing time to the model, the p-values for all three 

predictors still are highly insignificant.  

Then, double support time as the next independent variable is inserted to the model. A 

decrease in two out of three p-values of the predictors (step time and swing time) in the 

model is shown from the result (Table 7) after entering the double support time to the model 

compared to the previous step. However, the insignificancy of all four predictors relative to 

the system type is obtained, which again confirms no meaningful difference between Mocap 

and OpenPose.  

Next, step length is added to the model as predictor. Having five independent variables in 

the fitted model, shows high p-value for two of them (stance time and step length) and 

moderate level for the other three (Table 8). The evidence approves that the null hypothesis 

is accepted again.  

In the last run of the fitting model, the predictor step width is inserted.  Opposing the previous 

steps, a significant p-value (0.006) is showed up referring to adding the predictor step width 

in the model (Table 9). It represents that there is an association between the step width and 

the type of system such that step width is different for each level of system type meaning 

that it has a significant relationship with the system type. The same result for this variable 

was obtained in the correlation analysis part also. Except step width, all other five 

independent variables are still confirming that there is no relationship between them and the 

system type.  
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The forward approach and the complete model are in line considering hypothesis testing 

results.  

From the regression analysis results step time, stance time, swing time, DS time and step 

length proved to be insignificant in the relationship with the system type. For further 

clarification the above-mentioned independent variables have no statistically significant 

effect on system type. Also, the only significant independent variable is step width which 

the p-value resulting from the test is relatively less than 0.05. 
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PLS-DA Modelling 

To assess the ability of the pose tracking algorithm (OpenPose) in differentiating the 

measured types of gait, Partial Least-Squares Discriminant Analysis (PLS-DA) is 

performed. PLS-DA is a machine learning tool that is being used increasingly as feature 

selector and classifier. It is a combination of principal component and regression analyses to 

extract key features by modeling covariance structures. As a linear, multivariate model, PLS-

DA, use the partial least square (PLS) algorithm to classifies the labelled data by finding the 

components that best separate the sample groups (Ruiz-Perez, et al., 2020) (Zhou, et al., 

2020). It has well performance for the data with multiple independent variables and lower 

number of observations (Eriksson, et al., 2006), which is present in the case of this study. 

In the PLS analysis the main goal is to define a maximum covariance model and explain the 

relationship between the gait variables (predictors) and system type, OP and MC (responses). 

To this end, successive orthogonal factors are selected that maximize the covariance between 

each predictor and the corresponding response to find a model that best assign the system 

type with a selected number of gait variables. 

 The input data in performing the PLS-DA analysis, consists of the gait variables (predictors) 

which formed the X-matrix, and the system type (response) as the Y-matrix; For the 

discriminant analysis, the observations separated to five groups according to the five 

different type of walking pose namely normal, slow, short, wide, and limp. Gait variables 

include step time, stance time, swing time, double support time, step length and step width. 

The PLS-DA model is constructed using R software.  

In the model two principal components (comp1 and comp2) are considered. It classifies the 

two samples of measuring systems (OP and MC) into known groups of gait type (normal, 

slow, short, wide, and limp) by finding patterns and relations between all the extracted gait 

parameters, test conditions, and measuring systems. The result of the model is visualized as 

shown in the Figure 9. This star plot considering the observations from both measuring 

systems together and shows the clustering of each sample according to the gait type by 

different colors, the arrows from each group shows centroid towards each individual sample, 

the confidence ellipses are plotted for each sample and the confidence level set to 95%. Some 

discrimination can be seen between the slow gait and wide gait samples vs. the others on the 

first component (x-axis), and normal, limp, and short gait vs. the others on the second 

component (y-axis).  
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Figure 4) Star plot of PLS-DA clusters, different gait types are shown in different colors, x-axis shows the first component, 
and the y-axis represents the second component 

To show how the observations measured by each system is located in the gait-type-based 

clusters another visualization of the PLS-DA with the detailed of system type (OP and MC) 

is presented Figure 5.  

 
Figure 5) PLSDA plot showing clusters of different gait types in different colors, x-axis shows the first component, and 

the y-axis represents the second component, MC refers to motion capture, and OP means OpenPose  
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The distinction shown in the above graph represents that the PLSDA model differentiates 

between different types of gait including normal, slow, short, wide, and limp in both Motion 

capture and OpenPose in similar clusters and shows no major differences between MC and 

OP measure-methods.  

5.2 Balance results 

To compare two groups of CoM data provided from the four balance trials recorded by 

Mocap and OpenPose, the means of two samples are tested against each other. For that first 

the normality of the data is investigated. Since the size of the balance dataset is large, the 

Jarque–Bera test is considered to verify if the data are normally distributed or not. According 

to the test result, the obtained p-value is close to zero, therefore data showed non-normality. 

Due to the non-normality of data, the unpaired two-samples Wilcoxon test which is a non-

parametric alternative to the unpaired two-samples t-test is performed. For each test the p-

value is calculated using R software. The attained p-value in the first trial of balance test, 

equals to 0.97 which is strongly insignificant and toward accepting the null hypothesis and 

shows that mean level of both samples is the same.  In the two other balance trials and also 

in abnormal balance trial, p-value shows insignificant values, confirming that both Mocap 

and OpenPose are in well agreement with each other.   

6. DISCUSSION  

We examined the performance of pose estimation (OpenPose) in detecting different types of 

postures both for walking (normal, slow, wide, limp, and short walking types) and balance 

experiments (normal and abnormal balance) by comparing the quantitative 2D 

spatiotemporal gait measurements against a golden standard. The comparisons were 

performed for videos captured by front and right-side cameras.  

Results from our research indicate that five out of six gait parameters namely the step time, 

stance time, and double support time measures calculated from the OpenPose correlate 

significantly to that of the motion capture system. However, the step width is the only 

parameter that designates a low correlation between them.  Similarly, the results from 

logistic regression modeling showed insignificant relationship between these five gait 

parameters and the two pose capturing tools (Mocap and Openpose), while step width 

http://www.sthda.com/english/wiki/unpaired-two-samples-t-test-in-r
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represented a relatively significant effect on them. It might be due to the effect of frontal 

plane video perspective on the scaling of pixels to meters, since the values obtained from the 

pose estimation are dimensionless and cannot be directly compared with motion capture 

values; This conversion of pixels to meters introduced error.  The PLS-DA model (Partial 

Least Square Discriminant Analysis) demonstrated that gait variables extracted from 

OpenPose and Motion capture can be discriminated in clusters based on gait type with no 

major differences between OpenPose and Mocap. Also, the results from a two-group 

comparison test (Wilcoxon) on balance parameter (CoM values) between Mocap and 

OpenPose showed that the mean level of both samples is the same in four different balance 

trials, including three balance trials and one imbalanced experiment. 

 Overall, the results suggest that pose estimation showed promising performance in 

discriminating among normal and abnormal poses as compared to the golden standard 

(Mocap) in both walking and gait experiments.  

The findings of this study are in line with the recent studies using OpenPose in terms of its 

robustness for two-dimensional analysis of human pose (Cao, et al., 2019) (Chen, 2019) 

(Kim, et al., 2021) (Li, et al., 2021)  (Mehdizadeh, et al., 2021)  (Stenum, et al., 2021), which  

could be considered as the next achievement to the chain of forward research in human 

movement context. While gait and balance are among key human movement to be assessed 

in ergonomics research using pose estimation, other common occupational postures in 

different workplaces can be considered in future studies. 

Using wearable sensor-based tools vs video pose estimation for human postural analysis is 

a controversial issue. This is a discussion among researchers, ergonomists, workers, 

employers, and clinicians, with advantages and disadvantages on both sides (sensors vs 

video pose estimation). On one hand, video pose estimation might allow activity assessment 

without placing sensors on people and might be cheaper if it can be done with conventional 

video cameras. On the other hand, there is the issue of privacy, data security, and monitoring, 

where video data is significantly more sensitive than data from movement sensors. To sum 

up, it depends a lot on the final application, and the availability of resources for safe and 

ethical data management if video is to be collected on regular basis at the workplace. 

Furthermore, the limited dataset of our work due to the performed preliminary experimental 

research could be considered for future studies, which suggests the need for a more 
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systematic data collection protocol that could also aid in improving data quality and 

facilitating the acquisition of larger datasets.  

In experimental aspect, estimation of step lengths and widths with pose estimation is 

influenced by the position of the participant along the field of view of the camera. To 

generate estimates of spatial gait parameters (e.g., gait speed, step length) it is necessary to 

scale the video. Here, we accomplished this by scaling the video to known measurements on 

the ground. The process for scaling frontal plane video requires additional linear 

interpolation to account for changes in the distance to the field of progression during gait 

(participant walking away or towards the camera is seen in pose estimation as a change in 

height in screen coordinates). 

Although stationary camera recordings for sagittal plane with consistent camera height gave 

the best results. Frontal plane video results could be improved if the camera follows the 

participant at a fixed distance and with minimal height changes. The developed framework 

relies on several post-processing steps, some of which were completed manually. This 

includes detection of multiple persons, left-right limb switching and gaps in the data. 

We anticipate that clinical video-based analyses will be performed on videos taken by 

smartphone, tablets, or other household electronic devices. Many of these devices have 

standard frame rates of 30 Hz during video recording are comparable to the ones used in this 

study. 

We did not directly compare the results of our pose estimation analyses to results of any 

other markerless approaches (e.g., Kinect), nor did we run a comparison with other available 

pose estimation algorithms (DeepPose, DeepLabCut, OpenPifPaf). Pose estimation methods 

do not track movements of the human body perfectly from frame-to-frame. The body key 

points are unlikely to be equivalent to the marker landmarks as they rely on visually labeled 

generalized points (e.g., “ankle”, “knee”) whereas motion capture marker placement relies 

on manual palpation of bony landmarks. Pose estimation methods are also capable of three-

dimensional human movement analysis through multiple simultaneous camera recordings. 

 Here, we assumed that most videos taken in the home or clinic will be recorded by a single 

device, thus, we limited this study to two dimensional analyses of human walking and 

balance. We used a pre-trained network provided by Open-Pose to avoid spending time and 

resources training our own network. However, it may be possible to obtain more accurate 
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video-based analyses by training gait- and balance-specific networks from different views 

(e.g., sagittal, frontal) and for different movement conditions. 

7. CONCLUSION  

This study provides preliminary evidence that pose estimation (using OpenPose) could work 

as a tool for quantitative 2D spatiotemporal analyses of gait and balance as the key human 

movements to be referred in ergonomics postural assessment. Pose estimation (OpenPose) 

were compared to a golden standard (Mocap) through a set of physical pose-based tests. The 

experiments were two-fold: Gait trials that were tested under five different status including 

normal, slow, short, wide, and limp, and balance posture which were examined on normal 

and abnormal positions. Overall, the results suggest that pose estimation showed promising 

performance in discriminating among normal and abnormal poses as compared to the golden 

standard (Mocap) in both experiments. Therefore, this reveals the potential for three-

dimensional pose estimation using multicamera setups in future researches. 

However, the same results from the two performed statistical tests namely correlation 

analysis and logistic regression were obtained in the gait parameters measurements; It 

represented that pose estimation showed agreement with the golden standard (Mocap) in 

measuring step time, stance time, double support time and step length, and only in estimating 

step width it demonstrated relatively poor performance. It might be due to the effect of 

frontal plane video perspective on the scaling of pixels to meters. Hence, future studies 

should be engaged in developing and validating a more precise pose estimation from frontal 

views.  

Furthermore, the limited dataset of our work due to the performed preliminary experimental 

research could be considered for future studies, which suggests the need for a more 

systematic data collection protocol that could also aid in improving data quality and 

facilitating the acquisition of larger datasets.  
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