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Abstract. We consider a single product maritime inventory routing problem in which
the production and consumption rates are constant over the planning horizon. The
problem involves a heterogeneous fleet of ships and multiple production and consump-
tion ports with limited storage capacity. In spite of being one of the most common
ways to transport goods, maritime transportation is characterized by high levels of
uncertainty. The principal source of uncertainty is the weather conditions, since they
have a great influence on sailing times. The travel time between any pair of ports is
assumed to be random and to follow a log-logistic distribution. To deal with random
sailing times we propose a two-stage stochastic programming problem with recourse.
The routing, the order in which the ports are visited, as well as the quantities to load
and unload are fixed before the uncertainty is revealed, while the time of the visit to
ports and the inventory levels can be adjusted to the scenario. To solve the problem,
a MIP based local search heuristic is developed. This new approach is compared with
a decomposition algorithm in a computational study.

Keywords: Maritime transportation; Stochastic programming; Uncertainty; Matheuris-
tic.

1 Introduction

We consider a maritime inventory routing problem (MIRP) where a heterogeneous fleet
of ships is transporting a single product between ports. There exists one type of ports where
the product is produced, and in the other ports the product is consumed. The production
and consumption rates are constant over the planning horizon. At all ports, there exists an
inventory for storing the product, and lower and upper limits are given for each port. Each
port can be visited one or several times during the planning horizon depending on the size of
the storage, the production or consumption rate, and the quantity loaded or unloaded at each
port visit. The MIRP consists of designing routes and schedules for a fleet of ships in order to
minimize the transportation and port costs, and to determine the quantities handled at each
port call without exceeding the storage limits. The MIRP is a very important and common
problem in maritime shipping and is relevant when the actors involved in a maritime supply
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chain have the responsibility for both the transportation of the cargoes and the inventories
at the ports. The shipping industry is capital intensive, so a modest improvement in fleet
utilization can imply a large increase in profit. Therefore, the ability of ship operators to
make good decisions is crucial. However, the MIRPs are very complex to solve due to the
high degree of freedom in the routing, scheduling, number of port visits, and the quantity
loaded or unloaded at each port visit.

There exists a solid amount of research and resulting publications within MIRPs, and these
have formed the basis of several surveys: Papageorgiou et al. [18], Christiansen et al. [10], and
Christiansen and Fagerholt [8,9]. In addition, Coelho et al. [12] and Andersson et al. [4]
surveyed both land-based and maritime inventory routing problems. Maritime transportation
is characterized by high levels of uncertainty, and one of the most common uncertainties
is the sailing times that are affected by heavily changing weather conditions. In practice,
unpredictable delays may affect the execution of an optimal deterministic plan. In order to
compensate for such delays, it is possible for the ships to speed up when necessary. However,
in practice it will most often be beneficial to consider the uncertainty explicitly when finding
the optimal plan.

Even though maritime transportation is heavily influenced by uncertainty, most of the
research reported in the literature on maritime routing and scheduling consider static and
deterministic problems. However, some contributions exist, and we describe the ones that are
closest to the MIRP with stochastic travel times studied here. For a ship routing and schedul-
ing problem with predefined cargoes, Christiansen and Fagerholt [7] design ship schedules
that are less likely to result in ships staying idle at ports during weekends by imposing
penalty costs for arrivals at risky times (i.e. close to weekends). The resulting schedule needs
to be more robust with respect to delays from bad weather and time in port due to the re-
stricted operating hours in port during weekends. Agra et al. [3] solved a full-load ship routing
and scheduling problem with uncertain travel times using robust optimization. Furthermore,
Halvorsen-Weare and Fagerholt [14] analysed various heuristic strategies to achieve robust
weekly voyages and schedules for off-shore supply vessels working under tough weather con-
ditions. Heuristic strategies for obtaining robust solutions with uncertain sailing times and
production rate were also discussed by Halvorsen-Weare et al. [15] for the delivery of lique-
fied natural gas. For a crude oil transportation and inventory problem, Cheng and Duran [6]
developed a decision support system that takes into account uncertainty in sailing time and
demand. The problem is formulated as a discrete time Markov decision process and solved
by using discrete event simulation and optimal control theory. Rakke et al. [19] and Sherali
and Al-Yakoob [20,21] introduced penalty functions for deviating from the customer contracts
and the storage limits, respectively, for their MIRPs. Christiansen and Nygreen [11] used soft
inventory levels to handle uncertainties in sailing time and time in port, and these levels
were transformed into soft time windows for a single product MIRP. Agra et al. [2] were the
first to use stochastic programming to model uncertain sailing and port times for a MIRP
with several products and inventory management at the consumption ports only. A two-stage
stochastic programming model with recourse was developed where the first-stage consists of
routing, and loading/unloading decisions, and the second stage consists of scheduling deci-
sions. The model was solved by a decomposition approach similar to an L-shaped algorithm
where optimality cuts were added dynamically, and the solution process was embedded within
the sample average approximation method.

The objective of this paper is to present a general single product MIRP with stochastic
sailing times and a heuristic method to solve the problem. As in the work by Agra et al. [2], we
have developed a two-stage stochastic programming model with recourse where the first-stage



consists of routing and loading/unloading decisions, and the second stage consists of schedul-
ing decisions. Although the two problems have several differences (the number of products
considered, management inventory at supply ports, and random aspects of uncertainty), this
work was also motivated by the stability problems reported for the approach followed by Agra
et al. [2]. When the instances become harder, the objective function values obtained by the
heuristic approach had large levels of variance. As in previous work we assume the inventory
limits can be violated with a penalty. Here we discuss in more detail the impact of the value
of such penalties on the stability of the solution procedure, since different penalty values may
correspond to different decision maker strategies, and may influence the efficiency of branch
and cut based procedures. Low penalty values will be used when backlogged consumption
and excess of production are less important than the routing cost, and generate low trans-
portation cost solutions. High penalty values create solutions that are averse to inventory
limit violations. Since the fractional solutions obtained by linear relaxations will present, in
general, no violation of the inventory limits, the integrality linear gaps tend to be much higher
when the penalty values are higher, which deteriorates the performance of branch and cut
based procedures. Additionally, in order to circumvent the stability problems, we propose a
new heuristic procedure which is based on a local search heuristic that uses the solution from
a corresponding deterministic problem as a starting solution.

The remainder of this paper is organized as follows: The mathematical model of the de-
terministic problem is presented in Section 2, while the stochastic model is presented in
Section 3. Section 4 presents the heuristic stochastic solution approaches. Extensive compu-
tational results are reported and discussed in Section 5, followed by some concluding remarks
in Section 6.

2 Mathematical model for the deterministic problem

In this section we introduce a mathematical formulation for the deterministic problem.

Routing constraints Let V' denote the set of ships and N denote the set of ports. Each
ship v € V must depart from its initial position, that can be a point at sea. For each port we
consider an ordering of the visits accordingly to the time of the visit.

The ship paths are defined on a network where the nodes are represented by a pair (i, m),
where ¢ indicates the port and m indicates the visit number to port ¢. Direct ship movements
(arcs) from node (¢, m) to node (j,n) are represented by (i,m, j, n). For ease of notation, if a
ship departs from a point at sea, an artificial port is created and a single visit is associated
with it.

We define S4 as the set of possible nodes (i,m), SZ' as the set of nodes that may be visited
by ship v, and set S as the set of all possible movements (i, m, j,n) of ship v.

For the routing we define the following binary variables: @;y, jn. is 1 if ship v travels from
node (i, m) directly to node (j,n), and 0 otherwise; wjm, is 1 if ship v visits node (i, m),
and 0 otherwise; zjm, is equal to 1 if ship v ends its route at node (i,m), and 0 otherwise;
Yim indicates whether a ship is making the m?" visit to port 4, (i,m), or not. The parameter
12 denotes the minimum number of visits at port ¢ and the parameter i; denotes an upper



bound on the number of visits at port <.

Wimv — Z Tjnimv = 07 WORS Vu (27 m) € S;;L‘u (1)
(3,m)es
Wimv — Z Timjnv — Zimv = 07 Yo € Vu (27 m) € S{j‘? (2)
(4,m)esH
Z Wimv = Yim, V(Za m) € SA7 (3)
veV
Yim = 1, Y(i,m)e St :me {1, ’ﬁi}’ (4)
yi(mfl)_yimzoa V(ivm)ESA ﬁz—’—l <m§ﬁi7 (5)
Timjnv S {07 1}7 Vv € Vu (i7m7j7 n) € S{f(v (6)
Wimwv s Zimv S {0; 1}7 V’U € ‘/7 (va) S S’? (7)
yim € {0,1},  V(i,m) € S4. (8)

Equations (1) and (2) are the flow conservation constraints, ensuring that a ship arriving at
a node also leaves that node or ends its route. Constraints (3) ensure that a ship can visit
node (i,m) only if y;, is equal to one. Equations (4) fix y;m, to 1 for the mandatory visits.
Constraints (5) state that if port ¢ is visited m times, then it must also have been visited
m — 1 times. Constraints (6)-(8) define the variables as binary.

Loading and unloading constraints Parameter J; is 1 if port i is a producer; —1 if port 7 is
a consumer. C, is the capacity of ship v. The minimum and maximum loading and unloading
quantities at port ¢ are given by Ql and Q,, respectively.

In order to model the loading and unloading constraints, we define the following continuous
variables: g;my is the amount loaded or unloaded from ship v at node (,m); fim no denotes
the amount that ship v transports from node (¢, m) to node (j,n). The loading and unloading
constraints are given by:

Z Finimo + JiGimo = Z fimjno, Yu €V, (i,m) € S, 9)
(,n)esy (43,n)esy
fimjno < CoTimjno, Y v €V, (i,m,j,n) € Sy, (10)
Q Wimv < Gimo < min{Cly, Q; }Wimuy, Yo €V, (i,m) € S2, (11)
fimjno >0, Yo €V, (i,m,j,n) € SX, (12)
Gimo > 0, Yo €V, (i,m) € SA. (13)

Equations (9) are the flow conservation constraints at node (¢, m). Constraints (10) require
that the ship capacity is obeyed. Constraints (11) impose lower and upper limits on the
loading and unloading quantities. Constraints (12)-(13) are the non-negativity constraints.

Time constraints We define the following parameters: Ti("2 is the time required to load /unload
one unit of product at port i; Tj;, is the travel time between port i and j by ship v. It
includes also any set-up time required to operate at port j. T is the minimum time be-
tween two consecutive visits to port i. T is the length of the time horizon, and A;,, and



B, are the time windows for starting the m!" visit to port i. To ease the presentation we

also define, for each node (i,m), the following upper bound for the end time of the visit:
T! . = min{T, By, + TlQ@l} Given time variables ¢;,, that indicate the start time of the m!"
visit to port i, the time constraints can be written as:

veV veV|(i,m,j,n)eSX
<T! — Ajn, Y(i,m), (j,n) € S4, (14)
tim = tim—1— > TGim—10 — TPyim >0, ¥(i,m) € Sa:m>1, (15)
veV
Ap, < tim < B, Y(i,m) € S4. (16)

Constraints (14) relate the start time associated with node (7, m) to the start time associated
with node (j,n) when ship v travels directly from (i,m) to (j,n). Constraints (15) impose a
minimum interval between two consecutive visits at port 7. Time windows for the start time
of visits are given by (16).

Inventory constraints The inventory constraints are considered for each port. They ensure
that the stock levels are within the corresponding limits and link the stock levels to the loading
or unloading quantities. For each port ¢, the consumption/production rate, R;, the minimum
S;, the maximum S; and the initial S? stock levels, are given. We define the nonnegative
continuous variables s;,, indicating the stock levels at the start of the m*" visit to port 7. The
inventory constraints are as follows:

si1 =S + JiRit, Vi € N, (17)
Sim = Sim—1 — J;i Z Gi;m—1,0 + JiRi(tim — tim—1), Y(i,m) € S :m > 1, (18)
veV

Sim + Z Qimv — R’L Z T;qumv S Fi; V(Za m) € SA|JZ = _15 (19)
veV veV
veV veV

s, + > Qi — Ri(T —tig,) > S;, Vi€ N|J;=-1, (21)
veV

Sig, — Z Gigi,0 + Ri(T —tiz,) < Si, Vie N|J; =1, (22)
veV

Sim 2 8;,  V(i,m) € $4|J; = —1, (23)

Sim Sgiu V(z,m) ESA|Ji:1' (24)

Equations (17) calculate the stock level at the start time of the first visit to a port, and
equations (18) relate the stock level at the start time of m'" visit to the stock level at
the start time of the previous visit. Constraints (19) and (20) ensure that the stock levels
are within their limits at the end of each visit. Constrains (21) impose a lower bound on the
inventory level at time T for consumption ports, while constrains (22) impose an upper bound
on the inventory level at time T for production ports. Constraints (23) and (24) ensure that
the stock levels are within their limits at the start of each visit.



Objective function The objective is to minimize the total routing costs, including traveling
and operating costs. The traveling cost of ship v from port ¢ to port j is denoted by C’%U and
it includes the set-up costs. The objective function is defined as follows:

veV (i,m,j,n)€SX

3 Mathematical model for the stochastic problem

In the stochastic approach, the sailing times between ports are assumed to be independent
and random, following a known probability distribution (a log-logistic probability distribution
which is discussed in Section 5). As in the work by Agra et al. [2], the model introduced here
is a recourse model with two levels of decisions. The first-stage decisions are the routing, the
port visits sequence, and the load /unload quantities. These decisions must be taken before the
scenario is revealed. The corresponding first-stage variables are Zimjnw, Zimv, Wimw, Yim, and
@imv- The adjustable variables are the time of visits and the inventory levels. In the stochastic
approach we allow the inventory limits to be violated by including a penalty P; for each unit
of violation of the inventory limits at each port i. In addition to the variables ¢, (), and
$im (&) indicating the time and the stock level at node (i,m), when scenario ¢ is revealed,
new variables 7, (§) are introduced to denote the inventory limit violation at node (i, m). If
i is a consumption port, r;m,(£) denotes the backlogged consumption, that is the amount of
demand satisfied with delay. If i is a production port, r;,(£) denotes the demand in excess
to the capacity. We assume the quantity in excess is not lost but a penalty is incurred.

The main goal of the stochastic approach is to find the solution that minimizes the routing
cost C'(X) plus the expected penalty value for inventory deviation to the limits, E¢(Q(X,¢)),
where Q (X, £) denotes the minimum penalty for the inventory deviations when scenario £ with
a particular sailing times vector is considered and a set of first stage decisions, denoted by
X, is fixed. In order to avoid using the theoretical joint probability distribution of the travel
times, we follow the common Sample Average Approximation (SAA) method, and replace
the true expected penalty value Ee(Q(X,&)) by the mean value of a large random sample
2 ={€', ... "} of ¢, obtained by the Monte Carlo method. This larger set of & scenarios is
regarded as a benchmark scenario set representing the true distribution [17].

The objective function of the SAA model becomes as follows:

Min  C(X)+ ﬁ Z Z Pirim (§). (26)
£e (i,m)esS4A

In addition to the routing and loading and unloading constraints (1)-(13), the SAA problem
has the following time and inventory constraints.
Time constraints:

tim (5) + Z /—TlQlev - tjn (5) + Z TM:Eimjnva

veV vEV|(i,m,j,n)ESY

<T™  Y(i,m),(j,n) € S ¢e€ N, (27)

tim(§) = tim-1(6) = > TPGm-10 — TPyim >0,  V(i,m)€Sa:m>1,6€ 2, (28)
veV

Airn < tim(€) < BM Y(i,m) € S, ¢ € . (29)

m)



The inventory constraints are similar to the constraints for the deterministic problem, but
now including the possible violation of the inventory limits. The big constant T is now set
to 27 since the visits to ports can now occur after time period 7. Similarly, B} is set to 27
The inventory constraints are as follows:

Sil (f) = S? + JZRthl(f) — Jﬂ”il(f), Vi € N,f S Q, (30)
$im (&) = Jirim—1(§) = Sim—1(&) — Jirim (&) — J; Z Gim—1.0 + JiRi(tim (&) — tim—1(£)),
veV

V(i,m) € S :m > 1, € 0, (31)

Sim(§)+ZQimv_RiZTquimv Sgiu V(z,m) ESA|J1':_17 569, (32)
veV veV

sim(€) = Y Gimv + Bi D Ty > S, V(i,m) € ST =1, £€ 2, (33)
veV veV

sim, (&) + Z Qi 0 — Ri(T = tig, (§)) + rim, (§) > S, Vie N|J; = —1,§ € £2, (34)
veV

s (&) = D Gigrw + Ri(T =t () =1z, (§) <Ti,  Vie N|J;=1,¢€ 0, (35)
veV

$im(€),Tim(€) >0 V(i,m)€ S :m>1,£€ 0. (36)

For brevity we omit the description of the constraints as their meaning is similar to the
meaning of the corresponding constraints for the deterministic problem. The stochastic SAA
model is defined by (26) and the constraints (1)-(13), (27)-(36), and will be denoted by SAA-
MIRP.

Next we make two important remarks. Remark 1. The SAA-MIRP model has relatively
complete recourse, since for each feasible solution to the first stage, the inclusion of r variables
ensures that the second stage has always a feasible solution. Remark 2. When a first stage
solution X is known, the second stage variables can easily be obtained by solving k separate
linear subproblems.

4 Solution methods

While the deterministic model can be solved to optimality for small size instances, the
SAA-MIRP model becomes much harder with the inclusion of the inventory violation variables
r, and cannot consistently be solved to optimality for large sample sizes. We consider M
separate sets (2;,7 € {1,..., M} each one containing ¢ < k scenarios. The SAA-MIRP model
is solved for each set of scenarios {2;, (replacing {2 by (2; in model SAA-MIRP) giving M
candidate solutions. Let us denote by X1,..., XM the first stage solutions of those candidate
solutions. Then, for each candidate solution the value of the objective function for the large
sample z,(X") = C(X") + Yecn Q(X',€) is computed and the best solution is determined
by X* = argmin{z,(X%) : i € {1,...,M}}. The average value over all sets of scenarios,
Z= a7 Ef\il 2} is a statistical estimate for a lower bound on the optimal value of the true
problem and z(X™*), is a statistical estimate for an upper bound on the optimal value.

Henceforward we discuss two procedures for solving the SAA-MIRP model for the small
sets £2;. When employing scenario generation solution procedures it is desirable that no matter
which set of scenarios is used, one obtains approximately the same objective function value.



This is referred to as stability requirement conditions [17]. Agra et al. [2] used a decomposition
scheme for a stochastic MIRP that was shown to be insufficient to reach stability for hard
instances. Here we revisit this procedure and introduce an alternative method.

4.1 Decomposition procedure

A common approach to solve stochastic problems is to decompose the model into a mas-
ter problem and one subproblem for each scenario, following the idea of the L-shaped algo-
rithm [5]. The master problem consists of the first stage variables and constraints (constraints
(1)-(13)), and recourse variables and constraints (27)-(36) defined for a restricted set of sce-
narios. The subproblems consider fixed first stage decisions, and are solved for each scenario to
supply new variables and constraints to the master problem. Since the problem has relatively
complete recourse, the resulting subproblems are feasible.

We first solve the master problem including only one scenario to optimality. Then for each
disregarded scenario we check whether a penalty for inventory limit violations is incurred when
the first stage decision is fixed. If such a scenario is found, we add to the master problem
additional variables and constraints enforcing that deviation to be penalized in the objective
function. Then the revised master problem is solved again, and the process is repeated until all
the recourse constraints are satisfied. Hence, as in the L-shaped method, the master problem
initially disregards the recourse penalty, and an improved estimation of the recourse penalty is
gradually added to the master problem by solving subproblems and adding the corresponding
constraints. A formal description of this process is given below.

Algorithm 1 Decomposition procedure.

: Consider the master problem with the scenario corresponding to the deterministic problem
: Solve the master problem
while There is a scenario £ € (2; leading to an increase of the objective function cost do
Add constraints (27)-(36) for scenario £
Reoptimize the master problem with the new constraints using a solver for « seconds
end while

ANl

To check whether there is a scenario £ € {2; leading to an increase of the objective function
cost, one can use a simple combinatorial algorithm that, for each scenario, determines the
earliest arrival time based on the computation of a longest path in an acyclic network [2].

4.2 MIP based local search procedure

In order to circumvent some possible stability problems resulting from the previous pro-
cedure, which is based on a truncated branch and cut procedure, we propose a heuristic
approach that iteratively searches in the neighborhood of a solution. The procedure starts
with the optimal solution from a deterministic model, and ends when no improvement is
observed. For the starting solution we either use the deterministic model (1)-(25), with no
inventory violations allowed, or the stochastic model containing only one scenario where all
travelling times are set to their expected value. To define the neighborhood of a solution, let
w denote the solution vector of w variables. Following the local branching idea of Fischetti
and Lodi [13], we consider as the neighborhood of a solution, the set of solutions that can



differ in at most A variables, focusing only on the ship visit variables w;,,. This local search
can be done by adding the following inequality,

> Wimo + ) (1= i) < A. (37)

(i,m)ESA VEV |Wimv»=0 (i,m)ESA VEV [Wimv=1

Inequality (37) counts the number of variables w;,,, that are allowed to flip their value from
the value taken in the solution. Note that the routing variables as well as the quantities to
load and unload can be changed freely.

In each iteration of the heuristic procedure, the SAA-MIR model restricted with the
inclusion of (37) is solved in its extensive form (without the decomposition procedure), since
preliminary tests have not shown clear benefits in using the decomposition technique in the
restricted model. The procedure is described in Algorithm 2.

Algorithm 2 MIP based Local Search procedure

1: Solve either model (1)-(25), or the SAA-MIRP with a single scenario consisting of expected travel
times
: Set w to the optimal value of w
repeat
Add constraint (37) to the model defined for ¢ scenarios
Solve the model for o seconds
Update the solution w
until No improvement in the objective function is observed

5 Computational tests

This section presents some of the computational experiments carried out to test the two
solution approaches for a set of instances of a maritime inventory routing problem. The
instances are based on real data, and come from the short sea shipping segment with long
loading and discharge times relative to the sailing times. These instances result from those
presented in [1], with two main differences. One is the computation of the traveling times,
which we discuss in detail below, and the other is the production and consumption which we
assume here to be constant, where the rates are given by the average of the corresponding
values given in the original set of instances. The number of ports and ships of each instance
is given in the second column of Table 2. The time horizon is 30 days. Operating and waiting
costs are time invariant.

Distribution of travel times and scenario generation

Here we describe the sailing times probability distribution as well as how scenarios are
generated. We assume that the sailing times T;;,(£) are random and follow a three-parameter
log-logistic probability distribution. The cumulative probability distribution can be written
as )

F(Tij(8)) = Y

)

where ¢ = Zur8)=7 (65)77'



10

This type of distribution was used in [15] for an LNG (liquefied natural gas) tanker trans-
portation problem, and was motivated by the sailing times calculated for a gas tanker between
Rome (Italy) and Bergen (Norway), as reported in [16]. In the three-parameter log-logistic
probability distribution, the minimum travel time is equal to v, and the expected travel time
is equal to E[T;;,(§)] = % + 7. The three parameters, in [15], were set to o = 2.24,
B8 =9.79, and v = 134.47. In our settings, the deterministic travel time T5;,, given in [1], is set
to the expected travel time value, that is, T}, = E[T;j,(£)]. In addition, we let v = 0.9 x T};s,,
a = 2.24 (the same value as in [15], since « is a form parameter), and £ is obtained from the
equation T;;, = E[T;, ()] = % + 7. In order to draw a sample, each travel time is ran-
domly generated as follows. First a random number r from (0, 1] is generated. Then the travel

1
1 1—7r\ «
—— . which gi Tiiv = .
T e Vhich gives Tiu(© 7+B( - )

time T3, (§) can be found by setting r =

Computational results

All tests were run on a computer with an Intel Core i5-2410M processor, having a 2.30GHz
CPU and 8GB of RAM, using the optimization software Xpress Optimizer Version 21.01.00
with Xpress Mosel Version 3.2.0.

The number of ports and ships of each instance is given in the second column of Table 1.
The following three columns give the size of the deterministic model (1)-(25), and the last
three columns give the size for the complete stochastic model SAA-MIRP with £ = 25.

Table 1. Summary statistics for the seven instances.

Deterministic Model Stochastic Model
Inst.|(| N |,| V)| # Rows # Col. # Int. Var. | # Rows # Col.  # Int. Var.
A (4,1) 765 545 273 8413 1713 273
B (3,2) 767 590 302 5303 1466 302
C (4,2) 1214 1042 530 8798 2210 530
D (5,2) 1757 1622 822 13157 3082 822
E (5,2) 1757 1622 822 13157 3082 822
F (4,3) 1663 1539 787 9183 2707 787
G (6,5) 4991 5717 2909 20687 7469 2909

Table 2 gives the optimal values of several instances for the deterministic model. Columns
“No violations” give the optimal value (column C(X)) and running time in seconds (column
Time) for the model (1)-(25) with no inventory limit violations allowed. The following columns
consider the stochastic model with the expected travel times scenario only. For three different
penalty values for inventory limit violations (P; =1 x ¢, P, = 10 x £ and P; = 100 x ¢, where
the ¢ is omitted for ease of notation) we provide the routing cost C'(X), the value of the
inventory violation (columns Viol) and the running time (columns Time).

Table 2 shows the influence of the penalty on the solution value and instance hardness. The
running times are small when P; = 1 and tend to increase with the increase of the penalty. For
small penalty values the instances become easier to solve than for the case with hard inventory
bounds. When the penalty increases, the integrality gaps also increase (as fractional solutions
contain, in general, no violation of the inventory limits) making the instances harder to solve.
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Table 2. Instances and the corresponding routing costs and inventory violations for the expected
value scenario

No violations P=1 P, =10 P; =100
Inst.|C(X) Time |C(X) Viol Time|C(X) Viol Time|C(X) Viol Time
130.7 1 6.7 60.0 130.7 0.0 0 |130.7 00 O
364.8 6 5.2 235.0 364.8 0.0 13 |364.8 0.0 19
3915 15 14.7 172.0 2905 3.0 4 |3245 05 10
3471 3 55.9 177.0 3471 0.0 42 |347.1 0.0 52
3449 343 55.8 184.0 3449 0.0 194 (3449 0.0 181
460.9 290 |182.0 110.0 460.9 0.0 437 |460.9 0.0 442
645.8 2962 |336.3 176.5 17 |645.8 0.0 6947 |645.8 0.0 16296

Wk O OO

-~

QHEmoaQwe

For P, = 10, P; = 100 and for the case where violations are not allowed, the solutions coincide
for all instances except instance C.

Next we report the results using both procedures following the solution approach described
in Section 4 with M = 10 sets of scenarios with size ¢ = 25, and a large sample of size £ = 1000.
In Tables 3, 4, and 5, we present the computational results for the decomposition procedure
using branch and cut to solve each master problem with a running time limit of t =1, ¢t = 2,
and t = 5 minutes. After this time limit, if no feasible solution is found, then the running
time is extended until the first feasible solution is found. For each table we give the results for
the three considered cases of penalties, denoted by P; = 1, P, = 10, and P; = 100. For each
penalty we report the following values: the routing cost C(X) of the best solution X* obtained
with the procedure described in Section 4; the average number of violations (columns Viol)

M
. 1 ; . .
for solution X*; the variance between samples 6% = m E (24 — 2¢)?; the variance in
i=1

1
GOk gezg (C(X*) + Q(X*,€) — z1(X*))?; and the running time,
in seconds, of the complete solution procedure. The running time includes solving the M
stochastic problems, and for each solution, computing the penalty value for the large set of k
samples.

the larger sample 67 =

Variances 6% and 67 are used to evaluate the stability of the procedure. One can observe
that when the penalties increase, the variance for the large sample, 67, increases as expected.
For the variance between samples, 6%, the value also increases when we compare P; = 1
against the other values. Such behavior can be explained by the fact that each master problem
is solved by a branch and cut procedure and as explained above, when the penalty increases,
the integrality gaps also increase making the instances harder to solve. For those harder
instances the branch and cut algorithm acts as a heuristic since the search tree is truncated
when the time limit is reached. Thus, the variance tends to increase when we compare those
cases where the instances are solved to optimality (some instances with P; = 1) against
those cases where the solution procedure acts, in general, as a heuristic (most instances with
P, = 10 and P, = 100). However between the cases P, = 10 and P; = 100 there is no
obvious trend. There are instances where the decomposition procedure had a better degree of
in-sample stability for P; = 100 than for P; = 10. Perhaps as the penalty cost is so high, for
some instances the solver identifies the same solution (a solution which is robust in relation
to inventory bounds violation and minimized the routing cost) for most of the small samples
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£2; considered. In general, we may state that the decomposition procedure tends to be less
stable with the increase of the penalties. There is no clear decrease in the variances when the
running time limit is increased.

Table 3. Computational results using the decomposition procedure with a running time limit for
each master problem set to 1 minute

P=1 P, =10 P; =100

Inst.|C(X) Viol 6% 6% Time|C(X) Viol 6% 6% Time|C(X) Viol 6% 6% Time
A [130.7 00 4 0 105[130.7 0.0 27 0 116 [130.7 00 27 0 118
364.8 1.4 13 0 492 (3648 1.4 64 5 3654|364.8 1.3 57 413 4965
2635 3.0 73 0 151 |343.9 25 91 0 292 |411.5 0.0 36 2 749
347.1 2.0 190 0 1627(347.1 2.1 2463 5 3975(347.1 2.2 205 514 3524

0

0

1

3449 3.2 358 2277|344.9 5.8 5830 13 5394 (260.4 18.4 1945 698 4262
501.1 0.1 145 327 1460.9 0.0 451450 0 5361|460.9 0.0 44413 0 4993
433.0 133.9 2136 1115 (484.8 213.6 71357 151 6962 |457.6 212.1 2121500 6 7696

QmEmouaw

Table 4. Computational results using the decomposition procedure with a running time limit for
each master problem set to 2 minutes

P=1 P, =10 P; = 100
Inst.|C(X) Viol 6% 6% Time|C(X) Viol 6% 6% Time|C(X) Viol 6% 463 Time

130.7 0.0 4 0 102 |130.7 00 27 0 114 [130.7 0.0 27 0 109
3648 14 13 583 |364.8 1.4 1368 5 6143 |364.8 1.3 7539 413 8413
263.5 3.0 73 150 |343.9 2.5 91 0 301 {391.5 0.0 54 2 928

347.1 2.0 190 23671363.2 0.2 792 0 7133|347.1 2.1 314 486 6602
344.9 3.2 358 2716 (363.9 3.2 8839 7 8637 (3529 0.2 1809 40 9032
501.1 0.1 145 0 333 |460.9 0.0 7025 0O 7368|460.9 0.0 4024 0 7824
433.0 133.9 2136 1 3260 |543.7 154.5 95489 135 10837|442.3 121.9 746118 9670 13003

0
0
0
0

QHM@moOaQwe

In Table 6, we report the computational results for the MIP based local search heuristic,
starting with a solution obtained by using a single scenario consisting of expected travel times
in the SAA-MIRP model. Based on preliminary results, not reported here, we chose A = 2.
The running time limit is set to 5 minutes, however for most iterations the restricted problem
is solved to optimality quickly. In Table 7, we report the corresponding results for the same
heuristic but starting with a solution obtained using the model (1)-(25), that is, the model
where no deviations to the inventory limits are allowed. We can see that using hard inventory
limits for the starting solution leads to a better solution for six instances and worse for two
instances.

When comparing the variances with those observed for the decomposition procedure one
can observe that the variances between samples are in general lower, meaning that the local
search procedure presents a higher degree of in-sample stability than the classical decomposi-
tion approach. For the larger sample, both procedures present similar variance values, except
for the harder instance (G with P; = 100) where the new heuristic procedure provides better
out-of-sample stability. The running times of the local search heuristic are also lower than
those for the decomposition procedure.
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Table 5. Computational results using the decomposition procedure with a running time limit for
each master problem set to 5 minutes

Bi=1 Pi =10 P; =100
Inst.|C(X) Viol 6% 6% Time|C(X) Viol 63 &7 Time|C(X) Viol 63 67 Time
A [130.7 00 4 0 1021307 0.0 27 O 116 [130.7 0.0 27 0 121
B [364.8 1.4 13 0 602 |364.8 1.4 1350 5 11781|364.8 1.3 76 413 17530
C (2635 3.0 73 0 148(3439 2.5 91 0 277 [391.5 0.0 31 2 1611
D |347.1 2.0 190 0 4120(347.1 2.0 590 5 15130/430.3 1.1 395 127 16889
E [344.9 3.2 358 0 6827|3529 0.2 1791 1 21592(360.9 3.4 5474 768 25769
F [501.1 0.1 145 0 321 [460.9 0.0 36 0 11118/460.9 0.0 11200 0 13218
G [433.0 133.9 2136 1 6421 |534.0 57.3 54937 4 20462|517.0 107.3 43724 23544 21564

Table 6. Computational results using the MIP based local search heuristic

P, =10
C(X) Viol 6% 67 Time

P; =100
C(X) Viol 6% &% Time

P=1

Inst.|C(X) Viol 6% 6% Time
A [1307 0 4 0 205
B |260.7 32.7 74 0 406
C |263.5 3.0 87 0 388
D |3772 6.2 28 0 2729
E (4053 5.6 0 0 3731
F |460.9 0.0 46 0 1484
G |711.9 4.8 239 3 5174

130.7
364.8
391.5
347.1
344.9
460.9
679.5

0.0 54
1.3 22
0.0 11
20 1

3.1 0

0.0 197
1.6 602

0
4
0
5
7
0
5

210

698

704
2768
3728
3438
6116

130.7
364.8
411.5
347.1
344.9
460.9

0.0
1.3
0.0
2.0
3.1
0.0

54 0 210
44 400 769
131 0 944
48 490 2610
63 718 3694
197 0 3118

798.9 13.3 731 3246 9686

Table 7. Computational results using the MIP based local search heuristic with the starting solution
obtained for the deterministic model with hard inventory constraints

P=1 P=10 P, =100

Inst.|C(X) Viol 6% &% Time|C(X) Viol 6% &% Time|C(X) Viol 6% 67 Time
A {1307 0 4 0 72 [130.7 0.0 54 0 89 [130.7 0.0 54 0 96
B [345.2 3.8 24 0 383 |364.8 1.3 22 4 722 [364.8 1.3 44 400 719
C [263.5 3.0 87 0 266 |354.5 0.5 38 0 533 [391.5 0.0 57 0 630
D |347.2 2.0 28 0 1097(347.1 2.0 1 5 2992|347.1 2.0 48 490 3675
E (3449 3.1 0 0 1214|3449 3.1 0 7 3227|3449 3.1 63 718 5822
F [460.9 0.0 46 0 941 [460.9 0.0 460 0 1670|460.9 0.0 197 0 1388
G |654.9 1.8 138 0 4592|679.5 1.6 994 5 8130[912.5 0.6 402 112 10332
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Finally, in Table 8 we present the overall cost z;(X) for the best solution obtained with
the two solution procedures. Columns Decomp. give the cost value for the decomposition
procedure using a time limit of 5 minutes, and columns MIPLS give the corresponding value for
the MIP based local search heuristic using the starting solution with no inventory deviations.
The best result from the two approaches is highlighted in bold.

Table 8. Cost z;(X) of the best solution obtained with each one of the solution procedures

P=1 P, =10 P, = 100
Inst.| Decomp. MIPLS|Decomp. MIPLS|Decomp. MIPLS
A | 130.7 130.7 | 130.7 130.7 | 130.7 130.7
B 441.0 441.0 | 725.6 696.0 | 3707.2 3632.3
C | 3385 3385 | 968.9 479.5| 454.1 391.5
D 397.7 397.7 | 87.0 853.9|3261.5 5414.2
E 422.0 422.0 | 405.1 1115.2 | 8804.7 8047.7
F | 502.9 460.9| 460.9 460.9 | 460.9 460.9
G | 3780.8 692.4 | 14861.1 1085.8|268712.0 2359.6

We can see that the new MIP based local search procedure is better than the decomposition
procedure in ten instances and worse in two. The decomposition procedure performs well
when instances can be solved to optimality. Overall, we may conclude that the local search
heuristic is more attractive than the decomposition procedure based on the branch and cut
when the instances are not solved to optimality, since the local search heuristic is faster,
presents better levels of in-sample stability for almost all instances and better levels of out-of-
sample stability for the hardest instance, and provides good quality solutions. On the other
hand, for the instances that can be solved to optimality, the decomposition procedure is the
best option.

6 Conclusions

We consider a maritime inventory routing problem where the travel times are stochastic.
The problem is modeled as a two-stage stochastic programming problem with recourse, where
violations of inventory limits are penalized. A decomposition procedure that solves the master
problem using a commercial solver and a MIP based local search algorithm, are proposed. For
several instances the master problem is not solved to optimality within reasonable running
times. Hence both procedures can be regarded as heuristics. The two procedures are tested
for stability using different values for the penalties. A computational study based on a small
set of benchmark instances shows that when the penalties are low, the instances are easier to
solve by exact methods, and the decomposition procedure can be used efficiently. On the other
hand, when penalties are high, the integrality gaps tend to increase making the decomposition
procedure, that uses the branch and cut to solve the master problem, less stable than the
MIP based local search heuristic. Additionally, the new proposed heuristic is in general faster
than the decomposition procedure.
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