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Abstra
t. We 
onsider a single produ
t maritime inventory routing problem in whi
h

the produ
tion and 
onsumption rates are 
onstant over the planning horizon. The

problem involves a heterogeneous �eet of ships and multiple produ
tion and 
onsump-

tion ports with limited storage 
apa
ity. In spite of being one of the most 
ommon

ways to transport goods, maritime transportation is 
hara
terized by high levels of

un
ertainty. The prin
ipal sour
e of un
ertainty is the weather 
onditions, sin
e they

have a great in�uen
e on sailing times. The travel time between any pair of ports is

assumed to be random and to follow a log-logisti
 distribution. To deal with random

sailing times we propose a two-stage sto
hasti
 programming problem with re
ourse.

The routing, the order in whi
h the ports are visited, as well as the quantities to load

and unload are �xed before the un
ertainty is revealed, while the time of the visit to

ports and the inventory levels 
an be adjusted to the s
enario. To solve the problem,

a MIP based lo
al sear
h heuristi
 is developed. This new approa
h is 
ompared with

a de
omposition algorithm in a 
omputational study.

Keywords: Maritime transportation; Sto
hasti
 programming; Un
ertainty; Matheuris-

ti
.

1 Introdu
tion

We 
onsider a maritime inventory routing problem (MIRP) where a heterogeneous �eet

of ships is transporting a single produ
t between ports. There exists one type of ports where

the produ
t is produ
ed, and in the other ports the produ
t is 
onsumed. The produ
tion

and 
onsumption rates are 
onstant over the planning horizon. At all ports, there exists an

inventory for storing the produ
t, and lower and upper limits are given for ea
h port. Ea
h

port 
an be visited one or several times during the planning horizon depending on the size of

the storage, the produ
tion or 
onsumption rate, and the quantity loaded or unloaded at ea
h

port visit. The MIRP 
onsists of designing routes and s
hedules for a �eet of ships in order to

minimize the transportation and port 
osts, and to determine the quantities handled at ea
h

port 
all without ex
eeding the storage limits. The MIRP is a very important and 
ommon

problem in maritime shipping and is relevant when the a
tors involved in a maritime supply
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hain have the responsibility for both the transportation of the 
argoes and the inventories

at the ports. The shipping industry is 
apital intensive, so a modest improvement in �eet

utilization 
an imply a large in
rease in pro�t. Therefore, the ability of ship operators to

make good de
isions is 
ru
ial. However, the MIRPs are very 
omplex to solve due to the

high degree of freedom in the routing, s
heduling, number of port visits, and the quantity

loaded or unloaded at ea
h port visit.

There exists a solid amount of resear
h and resulting publi
ations within MIRPs, and these

have formed the basis of several surveys: Papageorgiou et al. [18℄, Christiansen et al. [10℄, and

Christiansen and Fagerholt [8,9℄. In addition, Coelho et al. [12℄ and Andersson et al. [4℄

surveyed both land-based and maritime inventory routing problems. Maritime transportation

is 
hara
terized by high levels of un
ertainty, and one of the most 
ommon un
ertainties

is the sailing times that are a�e
ted by heavily 
hanging weather 
onditions. In pra
ti
e,

unpredi
table delays may a�e
t the exe
ution of an optimal deterministi
 plan. In order to


ompensate for su
h delays, it is possible for the ships to speed up when ne
essary. However,

in pra
ti
e it will most often be bene�
ial to 
onsider the un
ertainty expli
itly when �nding

the optimal plan.

Even though maritime transportation is heavily in�uen
ed by un
ertainty, most of the

resear
h reported in the literature on maritime routing and s
heduling 
onsider stati
 and

deterministi
 problems. However, some 
ontributions exist, and we des
ribe the ones that are


losest to the MIRP with sto
hasti
 travel times studied here. For a ship routing and s
hedul-

ing problem with prede�ned 
argoes, Christiansen and Fagerholt [7℄ design ship s
hedules

that are less likely to result in ships staying idle at ports during weekends by imposing

penalty 
osts for arrivals at risky times (i.e. 
lose to weekends). The resulting s
hedule needs

to be more robust with respe
t to delays from bad weather and time in port due to the re-

stri
ted operating hours in port during weekends. Agra et al. [3℄ solved a full-load ship routing

and s
heduling problem with un
ertain travel times using robust optimization. Furthermore,

Halvorsen-Weare and Fagerholt [14℄ analysed various heuristi
 strategies to a
hieve robust

weekly voyages and s
hedules for o�-shore supply vessels working under tough weather 
on-

ditions. Heuristi
 strategies for obtaining robust solutions with un
ertain sailing times and

produ
tion rate were also dis
ussed by Halvorsen-Weare et al. [15℄ for the delivery of lique-

�ed natural gas. For a 
rude oil transportation and inventory problem, Cheng and Duran [6℄

developed a de
ision support system that takes into a

ount un
ertainty in sailing time and

demand. The problem is formulated as a dis
rete time Markov de
ision pro
ess and solved

by using dis
rete event simulation and optimal 
ontrol theory. Rakke et al. [19℄ and Sherali

and Al-Yakoob [20,21℄ introdu
ed penalty fun
tions for deviating from the 
ustomer 
ontra
ts

and the storage limits, respe
tively, for their MIRPs. Christiansen and Nygreen [11℄ used soft

inventory levels to handle un
ertainties in sailing time and time in port, and these levels

were transformed into soft time windows for a single produ
t MIRP. Agra et al. [2℄ were the

�rst to use sto
hasti
 programming to model un
ertain sailing and port times for a MIRP

with several produ
ts and inventory management at the 
onsumption ports only. A two-stage

sto
hasti
 programming model with re
ourse was developed where the �rst-stage 
onsists of

routing, and loading/unloading de
isions, and the se
ond stage 
onsists of s
heduling de
i-

sions. The model was solved by a de
omposition approa
h similar to an L-shaped algorithm

where optimality 
uts were added dynami
ally, and the solution pro
ess was embedded within

the sample average approximation method.

The obje
tive of this paper is to present a general single produ
t MIRP with sto
hasti


sailing times and a heuristi
 method to solve the problem. As in the work by Agra et al. [2℄, we

have developed a two-stage sto
hasti
 programming model with re
ourse where the �rst-stage
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onsists of routing and loading/unloading de
isions, and the se
ond stage 
onsists of s
hedul-

ing de
isions. Although the two problems have several di�eren
es (the number of produ
ts


onsidered, management inventory at supply ports, and random aspe
ts of un
ertainty), this

work was also motivated by the stability problems reported for the approa
h followed by Agra

et al. [2℄. When the instan
es be
ome harder, the obje
tive fun
tion values obtained by the

heuristi
 approa
h had large levels of varian
e. As in previous work we assume the inventory

limits 
an be violated with a penalty. Here we dis
uss in more detail the impa
t of the value

of su
h penalties on the stability of the solution pro
edure, sin
e di�erent penalty values may


orrespond to di�erent de
ision maker strategies, and may in�uen
e the e�
ien
y of bran
h

and 
ut based pro
edures. Low penalty values will be used when ba
klogged 
onsumption

and ex
ess of produ
tion are less important than the routing 
ost, and generate low trans-

portation 
ost solutions. High penalty values 
reate solutions that are averse to inventory

limit violations. Sin
e the fra
tional solutions obtained by linear relaxations will present, in

general, no violation of the inventory limits, the integrality linear gaps tend to be mu
h higher

when the penalty values are higher, whi
h deteriorates the performan
e of bran
h and 
ut

based pro
edures. Additionally, in order to 
ir
umvent the stability problems, we propose a

new heuristi
 pro
edure whi
h is based on a lo
al sear
h heuristi
 that uses the solution from

a 
orresponding deterministi
 problem as a starting solution.

The remainder of this paper is organized as follows: The mathemati
al model of the de-

terministi
 problem is presented in Se
tion 2, while the sto
hasti
 model is presented in

Se
tion 3. Se
tion 4 presents the heuristi
 sto
hasti
 solution approa
hes. Extensive 
ompu-

tational results are reported and dis
ussed in Se
tion 5, followed by some 
on
luding remarks

in Se
tion 6.

2 Mathemati
al model for the deterministi
 problem

In this se
tion we introdu
e a mathemati
al formulation for the deterministi
 problem.

Routing 
onstraints Let V denote the set of ships and N denote the set of ports. Ea
h

ship v ∈ V must depart from its initial position, that 
an be a point at sea. For ea
h port we


onsider an ordering of the visits a

ordingly to the time of the visit.

The ship paths are de�ned on a network where the nodes are represented by a pair (i,m),
where i indi
ates the port and m indi
ates the visit number to port i. Dire
t ship movements

(ar
s) from node (i,m) to node (j, n) are represented by (i,m, j, n). For ease of notation, if a
ship departs from a point at sea, an arti�
ial port is 
reated and a single visit is asso
iated

with it.

We de�ne SA
as the set of possible nodes (i,m), SA

v as the set of nodes that may be visited

by ship v, and set SX
v as the set of all possible movements (i,m, j, n) of ship v.

For the routing we de�ne the following binary variables: ximjnv is 1 if ship v travels from

node (i,m) dire
tly to node (j, n), and 0 otherwise; wimv is 1 if ship v visits node (i,m),
and 0 otherwise; zimv is equal to 1 if ship v ends its route at node (i,m), and 0 otherwise;

yim indi
ates whether a ship is making the mth
visit to port i, (i,m), or not. The parameter

µ
i
denotes the minimum number of visits at port i and the parameter µi denotes an upper
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bound on the number of visits at port i.

wimv −
∑

(j,n)∈SA
v

xjnimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (1)

wimv −
∑

(j,n)∈SA
v

ximjnv − zimv = 0, ∀v ∈ V, (i,m) ∈ SA
v , (2)

∑

v∈V

wimv = yim, ∀(i,m) ∈ SA, (3)

yim = 1, ∀(i,m) ∈ SA : m ∈ {1, · · · , µ
i
}, (4)

yi(m−1) − yim ≥ 0, ∀(i,m) ∈ SA : µ
i
+ 1 < m ≤ µi, (5)

ximjnv ∈ {0, 1}, ∀v ∈ V, (i,m, j, n) ∈ SX
v , (6)

wimv, zimv ∈ {0, 1}, ∀v ∈ V, (i,m) ∈ SA
v (7)

yim ∈ {0, 1}, ∀(i,m) ∈ SA. (8)

Equations (1) and (2) are the �ow 
onservation 
onstraints, ensuring that a ship arriving at

a node also leaves that node or ends its route. Constraints (3) ensure that a ship 
an visit

node (i,m) only if yim is equal to one. Equations (4) �x yim to 1 for the mandatory visits.

Constraints (5) state that if port i is visited m times, then it must also have been visited

m− 1 times. Constraints (6)-(8) de�ne the variables as binary.

Loading and unloading 
onstraints Parameter Ji is 1 if port i is a produ
er; −1 if port i is
a 
onsumer. Cv is the 
apa
ity of ship v. The minimum and maximum loading and unloading

quantities at port i are given by Q
i
and Qi, respe
tively.

In order to model the loading and unloading 
onstraints, we de�ne the following 
ontinuous

variables: qimv is the amount loaded or unloaded from ship v at node (i,m); fimjnv denotes

the amount that ship v transports from node (i,m) to node (j, n). The loading and unloading


onstraints are given by:

∑

(j,n)∈SA
v

fjnimv + Jiqimv =
∑

(j,n)∈SA
v

fimjnv, ∀v ∈ V, (i,m) ∈ SA
v , (9)

fimjnv ≤ Cvximjnv , ∀ v ∈ V, (i,m, j, n) ∈ SX
v , (10)

Q
i
wimv ≤ qimv ≤ min{Cv, Qi}wimv, ∀v ∈ V, (i,m) ∈ SA

v , (11)

fimjnv ≥ 0, ∀v ∈ V, (i,m, j, n) ∈ SX
v , (12)

qimv ≥ 0, ∀v ∈ V, (i,m) ∈ SA
v . (13)

Equations (9) are the �ow 
onservation 
onstraints at node (i,m). Constraints (10) require
that the ship 
apa
ity is obeyed. Constraints (11) impose lower and upper limits on the

loading and unloading quantities. Constraints (12)-(13) are the non-negativity 
onstraints.

Time 
onstraints We de�ne the following parameters: T
Q
i is the time required to load/unload

one unit of produ
t at port i; Tijv is the travel time between port i and j by ship v. It

in
ludes also any set-up time required to operate at port j. TB
i is the minimum time be-

tween two 
onse
utive visits to port i. T is the length of the time horizon, and Aim and
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Bim are the time windows for starting the mth
visit to port i. To ease the presentation we

also de�ne, for ea
h node (i,m), the following upper bound for the end time of the visit:

T ′
im = min{T,Bim+T

Q
i Qi}. Given time variables tim that indi
ate the start time of the mth

visit to port i, the time 
onstraints 
an be written as:

tim +
∑

v∈V

T
Q
i qimv − tjn +

∑

v∈V |(i,m,j,n)∈SX
v

max{T ′
im + Tijv −Ajn, 0}ximjnv

≤ T ′
im −Ajn, ∀(i,m), (j, n) ∈ SA, (14)

tim − ti,m−1 −
∑

v∈V

T
Q
i qi,m−1,v − TB

i yim ≥ 0, ∀(i,m) ∈ SA : m > 1, (15)

Aim ≤ tim ≤ Bim, ∀(i,m) ∈ SA. (16)

Constraints (14) relate the start time asso
iated with node (i,m) to the start time asso
iated

with node (j, n) when ship v travels dire
tly from (i,m) to (j, n). Constraints (15) impose a

minimum interval between two 
onse
utive visits at port i. Time windows for the start time

of visits are given by (16).

Inventory 
onstraints The inventory 
onstraints are 
onsidered for ea
h port. They ensure

that the sto
k levels are within the 
orresponding limits and link the sto
k levels to the loading

or unloading quantities. For ea
h port i, the 
onsumption/produ
tion rate, Ri, the minimum

Si, the maximum Si and the initial S0
i sto
k levels, are given. We de�ne the nonnegative


ontinuous variables sim indi
ating the sto
k levels at the start of the mth
visit to port i. The

inventory 
onstraints are as follows:

si1 = S0
i + JiRiti1, ∀i ∈ N, (17)

sim = si,m−1 − Ji
∑

v∈V

qi,m−1,v + JiRi(tim − ti,m−1), ∀(i,m) ∈ SA : m > 1, (18)

sim +
∑

v∈V

qimv −Ri

∑

v∈V

T
Q
i qimv ≤ Si, ∀(i,m) ∈ SA|Ji = −1, (19)

sim −
∑

v∈V

qimv +Ri

∑

v∈V

T
Q
i qimv ≥ Si, ∀(i,m) ∈ SA|Ji = 1, (20)

siµi
+

∑

v∈V

qi,µi,v −Ri(T − tiµi
) ≥ Si, ∀i ∈ N |Ji = −1, (21)

siµi
−

∑

v∈V

qi,µi,v +Ri(T − tiµi
) ≤ Si, ∀i ∈ N |Ji = 1, (22)

sim ≥ Si, ∀(i,m) ∈ SA|Ji = −1, (23)

sim ≤ Si, ∀(i,m) ∈ SA|Ji = 1. (24)

Equations (17) 
al
ulate the sto
k level at the start time of the �rst visit to a port, and

equations (18) relate the sto
k level at the start time of mth
visit to the sto
k level at

the start time of the previous visit. Constraints (19) and (20) ensure that the sto
k levels

are within their limits at the end of ea
h visit. Constrains (21) impose a lower bound on the

inventory level at time T for 
onsumption ports, while 
onstrains (22) impose an upper bound

on the inventory level at time T for produ
tion ports. Constraints (23) and (24) ensure that

the sto
k levels are within their limits at the start of ea
h visit.
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Obje
tive fun
tion The obje
tive is to minimize the total routing 
osts, in
luding traveling

and operating 
osts. The traveling 
ost of ship v from port i to port j is denoted by CT
ijv and

it in
ludes the set-up 
osts. The obje
tive fun
tion is de�ned as follows:

Min C(X) =
∑

v∈V

∑

(i,m,j,n)∈SX
v

CT
ijvximjnv . (25)

3 Mathemati
al model for the sto
hasti
 problem

In the sto
hasti
 approa
h, the sailing times between ports are assumed to be independent

and random, following a known probability distribution (a log-logisti
 probability distribution

whi
h is dis
ussed in Se
tion 5). As in the work by Agra et al. [2℄, the model introdu
ed here

is a re
ourse model with two levels of de
isions. The �rst-stage de
isions are the routing, the

port visits sequen
e, and the load/unload quantities. These de
isions must be taken before the

s
enario is revealed. The 
orresponding �rst-stage variables are ximjnv , zimv, wimv, yim, and

qimv. The adjustable variables are the time of visits and the inventory levels. In the sto
hasti


approa
h we allow the inventory limits to be violated by in
luding a penalty Pi for ea
h unit

of violation of the inventory limits at ea
h port i. In addition to the variables tim(ξ), and
sim(ξ) indi
ating the time and the sto
k level at node (i,m), when s
enario ξ is revealed,

new variables rim(ξ) are introdu
ed to denote the inventory limit violation at node (i,m). If
i is a 
onsumption port, rim(ξ) denotes the ba
klogged 
onsumption, that is the amount of

demand satis�ed with delay. If i is a produ
tion port, rim(ξ) denotes the demand in ex
ess

to the 
apa
ity. We assume the quantity in ex
ess is not lost but a penalty is in
urred.

The main goal of the sto
hasti
 approa
h is to �nd the solution that minimizes the routing


ost C(X) plus the expe
ted penalty value for inventory deviation to the limits, Eξ(Q(X, ξ)),
whereQ(X, ξ) denotes the minimum penalty for the inventory deviations when s
enario ξ with

a parti
ular sailing times ve
tor is 
onsidered and a set of �rst stage de
isions, denoted by

X , is �xed. In order to avoid using the theoreti
al joint probability distribution of the travel

times, we follow the 
ommon Sample Average Approximation (SAA) method, and repla
e

the true expe
ted penalty value Eξ(Q(X, ξ)) by the mean value of a large random sample

Ω = {ξ1, . . . , ξk} of ξ, obtained by the Monte Carlo method. This larger set of k s
enarios is

regarded as a ben
hmark s
enario set representing the true distribution [17℄.

The obje
tive fun
tion of the SAA model be
omes as follows:

Min C(X) +
1

| Ω |

∑

ξ∈Ω

∑

(i,m)∈SA

Pirim(ξ). (26)

In addition to the routing and loading and unloading 
onstraints (1)-(13), the SAA problem

has the following time and inventory 
onstraints.

Time 
onstraints:

tim(ξ) +
∑

v∈V

T
Q
i qimv − tjn(ξ) +

∑

v∈V |(i,m,j,n)∈SX
v

TMximjnv ,

≤ TM , ∀(i,m), (j, n) ∈ SA, ξ ∈ Ω, (27)

tim(ξ)− ti,m−1(ξ) −
∑

v∈V

T
Q
i qi,m−1,v − TB

i yim ≥ 0, ∀(i,m) ∈ SA : m > 1, ξ ∈ Ω, (28)

Aim ≤ tim(ξ) ≤ BM
im, ∀(i,m) ∈ SA, ξ ∈ Ω. (29)
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The inventory 
onstraints are similar to the 
onstraints for the deterministi
 problem, but

now in
luding the possible violation of the inventory limits. The big 
onstant TM
is now set

to 2T sin
e the visits to ports 
an now o

ur after time period T . Similarly, BM
im is set to 2T .

The inventory 
onstraints are as follows:

si1(ξ) = S0
i + JiRiti1(ξ)− Jiri1(ξ), ∀i ∈ N, ξ ∈ Ω, (30)

sim(ξ)− Jiri,m−1(ξ) = si,m−1(ξ)− Jirim(ξ)− Ji
∑

v∈V

qi,m−1,v + JiRi(tim(ξ)− ti,m−1(ξ)),

∀(i,m) ∈ SA : m > 1, ξ ∈ Ω, (31)

sim(ξ) +
∑

v∈V

qimv −Ri

∑

v∈V

T
Q
i qimv ≤ Si, ∀(i,m) ∈ SA|Ji = −1, ξ ∈ Ω, (32)

sim(ξ)−
∑

v∈V

qimv +Ri

∑

v∈V

T
Q
i qimv ≥ Si, ∀(i,m) ∈ SA|Ji = 1, ξ ∈ Ω, (33)

siµi
(ξ) +

∑

v∈V

qi,µi,v −Ri(T − tiµi
(ξ)) + riµi

(ξ) ≥ Si, ∀i ∈ N |Ji = −1, ξ ∈ Ω, (34)

siµi
(ξ) −

∑

v∈V

qi,µi,v +Ri(T − tiµi
(ξ)) − riµi

(ξ) ≤ Si, ∀i ∈ N |Ji = 1, ξ ∈ Ω, (35)

sim(ξ), rim(ξ) ≥ 0 ∀(i,m) ∈ SA : m > 1, ξ ∈ Ω. (36)

For brevity we omit the des
ription of the 
onstraints as their meaning is similar to the

meaning of the 
orresponding 
onstraints for the deterministi
 problem. The sto
hasti
 SAA

model is de�ned by (26) and the 
onstraints (1)-(13), (27)-(36), and will be denoted by SAA-

MIRP.

Next we make two important remarks. Remark 1. The SAA-MIRP model has relatively


omplete re
ourse, sin
e for ea
h feasible solution to the �rst stage, the in
lusion of r variables

ensures that the se
ond stage has always a feasible solution. Remark 2. When a �rst stage

solution X is known, the se
ond stage variables 
an easily be obtained by solving k separate

linear subproblems.

4 Solution methods

While the deterministi
 model 
an be solved to optimality for small size instan
es, the

SAA-MIRP model be
omes mu
h harder with the in
lusion of the inventory violation variables

r, and 
annot 
onsistently be solved to optimality for large sample sizes. We 
onsider M

separate sets Ωi, i ∈ {1, . . . ,M} ea
h one 
ontaining ℓ ≪ k s
enarios. The SAA-MIRP model

is solved for ea
h set of s
enarios Ωi, (repla
ing Ω by Ωi in model SAA-MIRP) giving M


andidate solutions. Let us denote by X1, . . . , XM , the �rst stage solutions of those 
andidate

solutions. Then, for ea
h 
andidate solution the value of the obje
tive fun
tion for the large

sample zk(X
i) = C(X i) + 1

k

∑

ξ∈Ω Q(X i, ξ) is 
omputed and the best solution is determined

by X∗ = argmin{zk(X
i) : i ∈ {1, . . . ,M}}. The average value over all sets of s
enarios,

z̄ℓ = 1
M

∑M
i=1 z

i
ℓ is a statisti
al estimate for a lower bound on the optimal value of the true

problem and zk(X
∗), is a statisti
al estimate for an upper bound on the optimal value.

Hen
eforward we dis
uss two pro
edures for solving the SAA-MIRP model for the small

sets Ωi.When employing s
enario generation solution pro
edures it is desirable that no matter

whi
h set of s
enarios is used, one obtains approximately the same obje
tive fun
tion value.
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This is referred to as stability requirement 
onditions [17℄. Agra et al. [2℄ used a de
omposition

s
heme for a sto
hasti
 MIRP that was shown to be insu�
ient to rea
h stability for hard

instan
es. Here we revisit this pro
edure and introdu
e an alternative method.

4.1 De
omposition pro
edure

A 
ommon approa
h to solve sto
hasti
 problems is to de
ompose the model into a mas-

ter problem and one subproblem for ea
h s
enario, following the idea of the L-shaped algo-

rithm [5℄. The master problem 
onsists of the �rst stage variables and 
onstraints (
onstraints

(1)-(13)), and re
ourse variables and 
onstraints (27)-(36) de�ned for a restri
ted set of s
e-

narios. The subproblems 
onsider �xed �rst stage de
isions, and are solved for ea
h s
enario to

supply new variables and 
onstraints to the master problem. Sin
e the problem has relatively


omplete re
ourse, the resulting subproblems are feasible.

We �rst solve the master problem in
luding only one s
enario to optimality. Then for ea
h

disregarded s
enario we 
he
k whether a penalty for inventory limit violations is in
urred when

the �rst stage de
ision is �xed. If su
h a s
enario is found, we add to the master problem

additional variables and 
onstraints enfor
ing that deviation to be penalized in the obje
tive

fun
tion. Then the revised master problem is solved again, and the pro
ess is repeated until all

the re
ourse 
onstraints are satis�ed. Hen
e, as in the L-shaped method, the master problem

initially disregards the re
ourse penalty, and an improved estimation of the re
ourse penalty is

gradually added to the master problem by solving subproblems and adding the 
orresponding


onstraints. A formal des
ription of this pro
ess is given below.

Algorithm 1 De
omposition pro
edure.

1: Consider the master problem with the s
enario 
orresponding to the deterministi
 problem

2: Solve the master problem

3: while There is a s
enario ξ ∈ Ωi leading to an in
rease of the obje
tive fun
tion 
ost do

4: Add 
onstraints (27)-(36) for s
enario ξ

5: Reoptimize the master problem with the new 
onstraints using a solver for α se
onds

6: end while

To 
he
k whether there is a s
enario ξ ∈ Ωi leading to an in
rease of the obje
tive fun
tion


ost, one 
an use a simple 
ombinatorial algorithm that, for ea
h s
enario, determines the

earliest arrival time based on the 
omputation of a longest path in an a
y
li
 network [2℄.

4.2 MIP based lo
al sear
h pro
edure

In order to 
ir
umvent some possible stability problems resulting from the previous pro-


edure, whi
h is based on a trun
ated bran
h and 
ut pro
edure, we propose a heuristi


approa
h that iteratively sear
hes in the neighborhood of a solution. The pro
edure starts

with the optimal solution from a deterministi
 model, and ends when no improvement is

observed. For the starting solution we either use the deterministi
 model (1)-(25), with no

inventory violations allowed, or the sto
hasti
 model 
ontaining only one s
enario where all

travelling times are set to their expe
ted value. To de�ne the neighborhood of a solution, let

w denote the solution ve
tor of w variables. Following the lo
al bran
hing idea of Fis
hetti

and Lodi [13℄, we 
onsider as the neighborhood of a solution, the set of solutions that 
an
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di�er in at most ∆ variables, fo
using only on the ship visit variables wimv. This lo
al sear
h


an be done by adding the following inequality,

∑

(i,m)∈SA
v ,v∈V |wimv=0

wimv +
∑

(i,m)∈SA
v ,v∈V |wimv=1

(1− wimv) ≤ ∆. (37)

Inequality (37) 
ounts the number of variables wimv that are allowed to �ip their value from

the value taken in the solution. Note that the routing variables as well as the quantities to

load and unload 
an be 
hanged freely.

In ea
h iteration of the heuristi
 pro
edure, the SAA-MIR model restri
ted with the

in
lusion of (37) is solved in its extensive form (without the de
omposition pro
edure), sin
e

preliminary tests have not shown 
lear bene�ts in using the de
omposition te
hnique in the

restri
ted model. The pro
edure is des
ribed in Algorithm 2.

Algorithm 2 MIP based Lo
al Sear
h pro
edure

1: Solve either model (1)-(25), or the SAA-MIRP with a single s
enario 
onsisting of expe
ted travel

times

2: Set w to the optimal value of w

3: repeat

4: Add 
onstraint (37) to the model de�ned for ℓ s
enarios

5: Solve the model for α se
onds

6: Update the solution w

7: until No improvement in the obje
tive fun
tion is observed

5 Computational tests

This se
tion presents some of the 
omputational experiments 
arried out to test the two

solution approa
hes for a set of instan
es of a maritime inventory routing problem. The

instan
es are based on real data, and 
ome from the short sea shipping segment with long

loading and dis
harge times relative to the sailing times. These instan
es result from those

presented in [1℄, with two main di�eren
es. One is the 
omputation of the traveling times,

whi
h we dis
uss in detail below, and the other is the produ
tion and 
onsumption whi
h we

assume here to be 
onstant, where the rates are given by the average of the 
orresponding

values given in the original set of instan
es. The number of ports and ships of ea
h instan
e

is given in the se
ond 
olumn of Table 2. The time horizon is 30 days. Operating and waiting


osts are time invariant.

Distribution of travel times and s
enario generation

Here we des
ribe the sailing times probability distribution as well as how s
enarios are

generated. We assume that the sailing times Tijv(ξ) are random and follow a three-parameter

log-logisti
 probability distribution. The 
umulative probability distribution 
an be written

as

F (Tijv(ξ)) =
1

1 + (1t )
α
,

where t =
Tijv(ξ)−γ

β .
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This type of distribution was used in [15℄ for an LNG (lique�ed natural gas) tanker trans-

portation problem, and was motivated by the sailing times 
al
ulated for a gas tanker between

Rome (Italy) and Bergen (Norway), as reported in [16℄. In the three-parameter log-logisti


probability distribution, the minimum travel time is equal to γ, and the expe
ted travel time

is equal to E[Tijv(ξ)] =
βπ

α sin(π/α) + γ. The three parameters, in [15℄, were set to α = 2.24,

β = 9.79, and γ = 134.47. In our settings, the deterministi
 travel time Tijv, given in [1℄, is set

to the expe
ted travel time value, that is, Tijv = E[Tijv(ξ)]. In addition, we let γ = 0.9×Tijv,

α = 2.24 (the same value as in [15℄, sin
e α is a form parameter), and β is obtained from the

equation Tijv = E[Tijv(ξ)] =
βπ

α sin(π/α) +γ. In order to draw a sample, ea
h travel time is ran-

domly generated as follows. First a random number r from (0, 1] is generated. Then the travel

time Tijv(ξ) 
an be found by setting r =
1

1 + (1t )
α
, whi
h gives Tijv(ξ) = γ + β

(

1− r

r

)− 1

α

.

Computational results

All tests were run on a 
omputer with an Intel Core i5-2410M pro
essor, having a 2.30GHz

CPU and 8GB of RAM, using the optimization software Xpress Optimizer Version 21.01.00

with Xpress Mosel Version 3.2.0.

The number of ports and ships of ea
h instan
e is given in the se
ond 
olumn of Table 1.

The following three 
olumns give the size of the deterministi
 model (1)-(25), and the last

three 
olumns give the size for the 
omplete sto
hasti
 model SAA-MIRP with ℓ = 25.

Table 1. Summary statisti
s for the seven instan
es.

Deterministi
 Model Sto
hasti
 Model

Inst. (| N |, | V |) # Rows # Col. # Int. Var. # Rows # Col. # Int. Var.

A (4,1) 765 545 273 8413 1713 273

B (3,2) 767 590 302 5303 1466 302

C (4,2) 1214 1042 530 8798 2210 530

D (5,2) 1757 1622 822 13157 3082 822

E (5,2) 1757 1622 822 13157 3082 822

F (4,3) 1663 1539 787 9183 2707 787

G (6,5) 4991 5717 2909 20687 7469 2909

Table 2 gives the optimal values of several instan
es for the deterministi
 model. Columns

�No violations� give the optimal value (
olumn C(X)) and running time in se
onds (
olumn

Time) for the model (1)-(25) with no inventory limit violations allowed. The following 
olumns


onsider the sto
hasti
 model with the expe
ted travel times s
enario only. For three di�erent

penalty values for inventory limit violations (Pi = 1× ℓ, Pi = 10× ℓ and Pi = 100× ℓ, where

the ℓ is omitted for ease of notation) we provide the routing 
ost C(X), the value of the

inventory violation (
olumns Viol) and the running time (
olumns Time).

Table 2 shows the in�uen
e of the penalty on the solution value and instan
e hardness. The

running times are small when Pi = 1 and tend to in
rease with the in
rease of the penalty. For

small penalty values the instan
es be
ome easier to solve than for the 
ase with hard inventory

bounds. When the penalty in
reases, the integrality gaps also in
rease (as fra
tional solutions


ontain, in general, no violation of the inventory limits) making the instan
es harder to solve.
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Table 2. Instan
es and the 
orresponding routing 
osts and inventory violations for the expe
ted

value s
enario

No violations Pi = 1 Pi = 10 Pi = 100
Inst. C(X) Time C(X) Viol Time C(X) Viol Time C(X) Viol Time

A 130.7 1 6.7 60.0 0 130.7 0.0 0 130.7 0.0 0

B 364.8 6 5.2 235.0 0 364.8 0.0 13 364.8 0.0 19

C 391.5 15 14.7 172.0 0 290.5 3.0 4 324.5 0.5 10

D 347.1 3 55.9 177.0 4 347.1 0.0 42 347.1 0.0 52

E 344.9 343 55.8 184.0 4 344.9 0.0 194 344.9 0.0 181

F 460.9 290 182.0 110.0 3 460.9 0.0 437 460.9 0.0 442

G 645.8 2962 336.3 176.5 17 645.8 0.0 6947 645.8 0.0 16296

For Pi = 10, Pi = 100 and for the 
ase where violations are not allowed, the solutions 
oin
ide

for all instan
es ex
ept instan
e C.

Next we report the results using both pro
edures following the solution approa
h des
ribed

in Se
tion 4 withM = 10 sets of s
enarios with size ℓ = 25, and a large sample of size k = 1000.
In Tables 3, 4, and 5, we present the 
omputational results for the de
omposition pro
edure

using bran
h and 
ut to solve ea
h master problem with a running time limit of t = 1, t = 2,
and t = 5 minutes. After this time limit, if no feasible solution is found, then the running

time is extended until the �rst feasible solution is found. For ea
h table we give the results for

the three 
onsidered 
ases of penalties, denoted by Pi = 1, Pi = 10, and Pi = 100. For ea
h
penalty we report the following values: the routing 
ost C(X) of the best solution X∗

obtained

with the pro
edure des
ribed in Se
tion 4; the average number of violations (
olumns V iol)

for solution X∗
; the varian
e between samples σ̂2

B =
1

(M − 1)M

M
∑

i=1

(ziℓ− z̄ℓ)
2; the varian
e in

the larger sample σ̂2
L =

1

(k − 1)k

∑

ξ∈Ω

(C(X∗) +Q(X∗, ξ)− zk(X
∗))2 ; and the running time,

in se
onds, of the 
omplete solution pro
edure. The running time in
ludes solving the M

sto
hasti
 problems, and for ea
h solution, 
omputing the penalty value for the large set of k

samples.

Varian
es σ̂2
B and σ̂2

L are used to evaluate the stability of the pro
edure. One 
an observe

that when the penalties in
rease, the varian
e for the large sample, σ̂2
L, in
reases as expe
ted.

For the varian
e between samples, σ̂2
B, the value also in
reases when we 
ompare Pi = 1

against the other values. Su
h behavior 
an be explained by the fa
t that ea
h master problem

is solved by a bran
h and 
ut pro
edure and as explained above, when the penalty in
reases,

the integrality gaps also in
rease making the instan
es harder to solve. For those harder

instan
es the bran
h and 
ut algorithm a
ts as a heuristi
 sin
e the sear
h tree is trun
ated

when the time limit is rea
hed. Thus, the varian
e tends to in
rease when we 
ompare those


ases where the instan
es are solved to optimality (some instan
es with Pi = 1) against

those 
ases where the solution pro
edure a
ts, in general, as a heuristi
 (most instan
es with

Pi = 10 and Pi = 100). However between the 
ases Pi = 10 and Pi = 100 there is no

obvious trend. There are instan
es where the de
omposition pro
edure had a better degree of

in-sample stability for Pi = 100 than for Pi = 10. Perhaps as the penalty 
ost is so high, for

some instan
es the solver identi�es the same solution (a solution whi
h is robust in relation

to inventory bounds violation and minimized the routing 
ost) for most of the small samples
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Ωi 
onsidered. In general, we may state that the de
omposition pro
edure tends to be less

stable with the in
rease of the penalties. There is no 
lear de
rease in the varian
es when the

running time limit is in
reased.

Table 3. Computational results using the de
omposition pro
edure with a running time limit for

ea
h master problem set to 1 minute

Pi = 1 Pi = 10 Pi = 100
Inst. C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time

A 130.7 0.0 4 0 105 130.7 0.0 27 0 116 130.7 0.0 27 0 118

B 364.8 1.4 13 0 492 364.8 1.4 64 5 3654 364.8 1.3 57 413 4965

C 263.5 3.0 73 0 151 343.9 2.5 91 0 292 411.5 0.0 36 2 749

D 347.1 2.0 190 0 1627 347.1 2.1 2463 5 3975 347.1 2.2 205 514 3524

E 344.9 3.2 358 0 2277 344.9 5.8 5830 13 5394 260.4 18.4 1945 698 4262

F 501.1 0.1 145 0 327 460.9 0.0 451450 0 5361 460.9 0.0 44413 0 4993

G 433.0 133.9 2136 1 1115 484.8 213.6 71357 151 6962 457.6 212.1 2121500 6 7696

Table 4. Computational results using the de
omposition pro
edure with a running time limit for

ea
h master problem set to 2 minutes

Pi = 1 Pi = 10 Pi = 100
Inst. C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time

A 130.7 0.0 4 0 102 130.7 0.0 27 0 114 130.7 0.0 27 0 109

B 364.8 1.4 13 0 583 364.8 1.4 1368 5 6143 364.8 1.3 7539 413 8413

C 263.5 3.0 73 0 150 343.9 2.5 91 0 301 391.5 0.0 54 2 928

D 347.1 2.0 190 0 2367 363.2 0.2 792 0 7133 347.1 2.1 314 486 6602

E 344.9 3.2 358 0 2716 363.9 3.2 8839 7 8637 352.9 0.2 1809 40 9032

F 501.1 0.1 145 0 333 460.9 0.0 7025 0 7368 460.9 0.0 4024 0 7824

G 433.0 133.9 2136 1 3260 543.7 154.5 95489 135 10837 442.3 121.9 746118 9670 13003

In Table 6, we report the 
omputational results for the MIP based lo
al sear
h heuristi
,

starting with a solution obtained by using a single s
enario 
onsisting of expe
ted travel times

in the SAA-MIRP model. Based on preliminary results, not reported here, we 
hose ∆ = 2.
The running time limit is set to 5 minutes, however for most iterations the restri
ted problem

is solved to optimality qui
kly. In Table 7, we report the 
orresponding results for the same

heuristi
 but starting with a solution obtained using the model (1)-(25), that is, the model

where no deviations to the inventory limits are allowed. We 
an see that using hard inventory

limits for the starting solution leads to a better solution for six instan
es and worse for two

instan
es.

When 
omparing the varian
es with those observed for the de
omposition pro
edure one


an observe that the varian
es between samples are in general lower, meaning that the lo
al

sear
h pro
edure presents a higher degree of in-sample stability than the 
lassi
al de
omposi-

tion approa
h. For the larger sample, both pro
edures present similar varian
e values, ex
ept

for the harder instan
e (G with Pi = 100) where the new heuristi
 pro
edure provides better

out-of-sample stability. The running times of the lo
al sear
h heuristi
 are also lower than

those for the de
omposition pro
edure.
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Table 5. Computational results using the de
omposition pro
edure with a running time limit for

ea
h master problem set to 5 minutes

Pi = 1 Pi = 10 Pi = 100
Inst. C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time

A 130.7 0.0 4 0 102 130.7 0.0 27 0 116 130.7 0.0 27 0 121

B 364.8 1.4 13 0 602 364.8 1.4 1350 5 11781 364.8 1.3 76 413 17530

C 263.5 3.0 73 0 148 343.9 2.5 91 0 277 391.5 0.0 31 2 1611

D 347.1 2.0 190 0 4120 347.1 2.0 590 5 15130 430.3 1.1 395 127 16889

E 344.9 3.2 358 0 6827 352.9 0.2 1791 1 21592 360.9 3.4 5474 768 25769

F 501.1 0.1 145 0 321 460.9 0.0 36 0 11118 460.9 0.0 11200 0 13218

G 433.0 133.9 2136 1 6421 534.0 57.3 54937 4 20462 517.0 107.3 43724 23544 21564

Table 6. Computational results using the MIP based lo
al sear
h heuristi


Pi = 1 Pi = 10 Pi = 100
Inst. C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time

A 130.7 0 4 0 205 130.7 0.0 54 0 210 130.7 0.0 54 0 210

B 260.7 32.7 74 0 406 364.8 1.3 22 4 698 364.8 1.3 44 400 769

C 263.5 3.0 87 0 388 391.5 0.0 11 0 704 411.5 0.0 131 0 944

D 377.2 6.2 28 0 2729 347.1 2.0 1 5 2768 347.1 2.0 48 490 2610

E 405.3 5.6 0 0 3731 344.9 3.1 0 7 3728 344.9 3.1 63 718 3694

F 460.9 0.0 46 0 1484 460.9 0.0 197 0 3438 460.9 0.0 197 0 3118

G 711.9 4.8 239 3 5174 679.5 1.6 602 5 6116 798.9 13.3 731 3246 9686

Table 7. Computational results using the MIP based lo
al sear
h heuristi
 with the starting solution

obtained for the deterministi
 model with hard inventory 
onstraints

Pi = 1 Pi = 10 Pi = 100
Inst. C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time C(X) Viol σ̂2

B σ̂2

L Time

A 130.7 0 4 0 72 130.7 0.0 54 0 89 130.7 0.0 54 0 96

B 345.2 3.8 24 0 383 364.8 1.3 22 4 722 364.8 1.3 44 400 719

C 263.5 3.0 87 0 266 354.5 0.5 38 0 533 391.5 0.0 57 0 630

D 347.2 2.0 28 0 1097 347.1 2.0 1 5 2992 347.1 2.0 48 490 3675

E 344.9 3.1 0 0 1214 344.9 3.1 0 7 3227 344.9 3.1 63 718 5822

F 460.9 0.0 46 0 941 460.9 0.0 460 0 1670 460.9 0.0 197 0 1388

G 654.9 1.8 138 0 4592 679.5 1.6 994 5 8130 912.5 0.6 402 112 10332
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Finally, in Table 8 we present the overall 
ost zk(X) for the best solution obtained with

the two solution pro
edures. Columns De
omp. give the 
ost value for the de
omposition

pro
edure using a time limit of 5 minutes, and 
olumnsMIPLS give the 
orresponding value for

the MIP based lo
al sear
h heuristi
 using the starting solution with no inventory deviations.

The best result from the two approa
hes is highlighted in bold.

Table 8. Cost zk(X) of the best solution obtained with ea
h one of the solution pro
edures

Pi = 1 Pi = 10 Pi = 100
Inst. De
omp. MIPLS De
omp. MIPLS De
omp. MIPLS

A 130.7 130.7 130.7 130.7 130.7 130.7

B 441.0 441.0 725.6 696.0 3707.2 3632.3

C 338.5 338.5 968.9 479.5 454.1 391.5

D 397.7 397.7 857.0 853.9 3261.5 5414.2

E 422.0 422.0 405.1 1115.2 8804.7 8047.7

F 502.9 460.9 460.9 460.9 460.9 460.9

G 3780.8 692.4 14861.1 1085.8 268712.0 2359.6

We 
an see that the new MIP based lo
al sear
h pro
edure is better than the de
omposition

pro
edure in ten instan
es and worse in two. The de
omposition pro
edure performs well

when instan
es 
an be solved to optimality. Overall, we may 
on
lude that the lo
al sear
h

heuristi
 is more attra
tive than the de
omposition pro
edure based on the bran
h and 
ut

when the instan
es are not solved to optimality, sin
e the lo
al sear
h heuristi
 is faster,

presents better levels of in-sample stability for almost all instan
es and better levels of out-of-

sample stability for the hardest instan
e, and provides good quality solutions. On the other

hand, for the instan
es that 
an be solved to optimality, the de
omposition pro
edure is the

best option.

6 Con
lusions

We 
onsider a maritime inventory routing problem where the travel times are sto
hasti
.

The problem is modeled as a two-stage sto
hasti
 programming problem with re
ourse, where

violations of inventory limits are penalized. A de
omposition pro
edure that solves the master

problem using a 
ommer
ial solver and a MIP based lo
al sear
h algorithm, are proposed. For

several instan
es the master problem is not solved to optimality within reasonable running

times. Hen
e both pro
edures 
an be regarded as heuristi
s. The two pro
edures are tested

for stability using di�erent values for the penalties. A 
omputational study based on a small

set of ben
hmark instan
es shows that when the penalties are low, the instan
es are easier to

solve by exa
t methods, and the de
omposition pro
edure 
an be used e�
iently. On the other

hand, when penalties are high, the integrality gaps tend to in
rease making the de
omposition

pro
edure, that uses the bran
h and 
ut to solve the master problem, less stable than the

MIP based lo
al sear
h heuristi
. Additionally, the new proposed heuristi
 is in general faster

than the de
omposition pro
edure.
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