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Abstract

This work describes an application of a multi-depot heterogeneous fixed fleet open vehicle

routing problem. A contractor owns a fleet of vehicles with different capacities and running costs.

The fleet is used to transport craftsmen from their homes to assigned project sites and back, with

some of the craftsmen appointed as drivers while others are passengers. An optimization model is

described that enables the contractor to minimize the transportation costs, and a computational

study shows that the model can be solved to optimality for realistically sized instances using a

standard mixed-integer programming solver.
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1 Introduction

Vehicle routing problems appear in many real-world planning situations (Toth and Vigo, 2014). This

paper is motivated by an application where a contractor is responsible for several long-term projects,

each project being manned by a group of craftsmen. In practice, similar situations may appear for

different types of companies, operating using workers such as bricklayers, decorators, electricians, or

plumbers. The background for the problem is that the company owns a fleet of vehicles that the

workers use both for transportation between project sites and their homes and as storage for some of

their equipment.

The contribution of this paper is first to show that the planning problem of the transportation

company leads to a novel variant of the open vehicle routing problem. Second, a mixed integer

programming model is provided for the problem, and third, computational experiments are conducted

showing that the model can be solved to optimality for range of realistically sized test instances.

Finally, an extension of the problem is also considered, where one of the most important constraints

is relaxed and the resulting extension is solved heuristically.

The remainder of this paper is structured as follows. In Section 2 the problem faced by the company

is described. Relevant literature on open vehicle routing problems is discussed in Section 3. Section 4

contains a mathematical formulation of the specific open vehicle routing problem studied in this work.

A computational study is presented in Section 5, and concluding remarks are given in Section 6.
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2 Problem description

A company must transport workers to project sites and back using company-owned vehicles with

different capacities and running costs. Workers drive the vehicles themselves. At the start of the day,

each vehicle is initially located at the home address of a worker who is appointed as the driver. The

company is free to decide which vehicle each driver should use, and also to decide which workers should

act as drivers. On the way to the project site, each vehicle picks up workers at their respective home

locations. The total number of workers to be picked up must not exceed the vehicle’s capacity. On the

way back from the project site, each vehicle delivers workers back to their homes with the last home

in the path being the vehicle driver’s home.

The company may have several projects running simultaneously. The assignment of workers to

projects is predetermined. That is, for each worker, the home location is given together with the

location of the project to which the worker is assigned. A vehicle can only pick up workers going to

the same project. The reason is that the workers keep some of their equipment in the vehicle between

working days.

The problem is to determine which vehicles and which paths should be used to transport the

workers to their corresponding project sites at the minimum cost, while taking into consideration the

following:

• The travelling costs in both directions are the same.

• The starting locations of the vehicles are not fixed (given).

• Each worker home must be visited only once.

• Vehicle capacity must not be exceeded.

• Vehicles use the same route to return to the original location at the end of the working day.

• Different types of vehicles (different in terms of capacity and cost) are used to transport the

workers.

• The number of vehicles of each type is fixed and limited.

In Figure 1 a small example is provided, with two project sites, nine workers, and three vehicles.

The problem as described here is based on a company where not all workers are equal in terms of their

experience and qualifications. However, there could exist circumstances in which all workers can be

treated as equal. In that case, it makes sense that the assignment of workers to projects is not fixed,

but rather a decision taken together with driver assignments and routing decisions. This variant of

the problem is briefly considered at the end of Section 5.
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Figure 1: Conceptual representation of workers’ routes to the project sites.

3 Literature Review

The capacitated vehicle routing problem (CVRP) is one of the most studied combinatorial optimization

problems. The CVRP calls for the determination of the optimal set of routes to be performed by a

fleet of vehicles to serve a given set of customers (Toth and Vigo, 2014) so that each customer is visited

only once by only one vehicle and all the demand is satisfied. Each vehicle has a limited capacity.

Typically, The CVRP can be used to effectively tackle problems related to delivery and collections of

goods, solid waste collection, street cleaning, school bus routing, dial-a-ride systems, transportation of

handicapped persons, routing of salespeople, and of maintenance units (Toth and Vigo, 2002).

In the CVRP, the transportation network is represented by a graph with arcs corresponding to

road sections, and vertices corresponding to the depot and customer locations. The arcs can be either

directed (traversable in only one direction) or undirected (traversable in both directions). Each arc

has a cost, usually represented by the distance between its vertices, or the travel time (subject to the

type of vehicle and period of the arc traversal).
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In the open vehicle routing problem (OVRP), a vehicle is not required to return to the depot after

the last customer is served (Li et al., 2007). The OVRP has many practical applications described in

the literature, including delivery of goods by hired vehicles when the vehicles are not required to return

to the depot, delivery of goods to customers and collection of goods from the same customers by the

same vehicle on the way back, and planning a set of school bus routes, where pupils are picked up in

the morning at various locations and then brought to school, and in the evening the pupils are taken

back to homes in the reversed order. The latter case is similar to the problem described in Section 2,

where workers are picked up at various locations to be delivered to the project sites and then delivered

back to their homes after work using the reverse routes. The differences are that the OVRP considers

a homogeneous fleet of vehicles (i.e., they have the same capacities and running costs), and that there

is only one depot (school).

Recently the OVRP has been given increased attention from researchers and different algorithms

have been developed. As the OVRP is the NP-hard problem, researchers mainly focus on meta-heuristic

approaches. Li et al. (2007) reviewed OVRP algorithms and provided a variant of record-to-record

travel.

Zachariadis and Kiranoudis (2010) proposed an innovative local search metaheuristic examining

wide solution neighborhoods. Repoussis et al. (2010) presented a hybrid evolution strategy for solv-

ing the OVRP. Pichpibul and Kawtummachai (2013) proposed a heuristic approach based on the

Clark-and-Wright algorithm. Their method includes several procedures: a modified Clark-and-Wright

procedure, open-route construction, two-phase selection procedure, and route post-improvement.

The multi-depot OVRP (MDOVRP) is similar to the OVRP except that the vehicles can start

in either of several depots. An integer linear programming model for the MDOVRP was proposed

by Pichka et al. (2014). The objective function in the model aims to minimize total traveling costs

while considering fixed activation costs of engaging vehicles. An ant colony optimization algorithm

was been proposed by Yao et al. (2014) to solve a real-life problem of seafood delivery formulated as

an MDOVRP. To deal with the multi-depot feature, they suggested to convert the problem into an

OVRP by using a dummy central depot. Liu et al. (2014) presented a genetic algorithm and a mixed

integer programming model for the MDOVRP, and Lalla-Ruiz et al. (2016) later provided an improved

mixed integer programming model. Recently, Soto et al. (2017) proposed a metaheuristic algorithm to

tackle the MDOVRP, namely a multiple variable neighborhood search hybridized with a tabu search.

Shen et al. (2018) considered a version of MDOVRP with time windows, and developed a heuristic

solution method based on particle swarm optimization and tabu search.

While most research on OVRPs consider a homogeneous fleet of vehicles, the heterogeneous fixed

fleet OVRP (HFFOVRP) allows the vehicles in the fleet to vary in terms of capacities and costs.

However, a very limited number of research studies cover this kind of problem. Among those few,
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Yousefikhoshbakht et al. (2016) proposed a mixed integer programming formulation as well as ant

colony system algorithm. Moreover, they proposed a compound heuristic algorithm to solve the HF-

FOVRP. The algorithm includes the sweep algorithm; insert, swap, and 2-opt moves; a modified elite

ant system; and column generation. Li et al. (2012) proposed a solution method for the HFFOVRP

based on a multi-start adaptive memory programming metaheuristic.

4 Mathematical Formulation

The problem described in Section 2 can be interpreted as a multi-depot heterogeneous fleet open

vehicle routing problem with a special structure. Below, a mathematical formulation for the problem

is given, based on a model provided by Yousefikhoshbakht et al. (2015). However, some differences to

this model arise for the following reasons:

• There are no fixed costs associated to using the vehicles, as the company uses its own fleet and

all the fixed costs (insurance, registration, taxes) are supposed to be paid regardless whether a

vehicle is used in the current transportation plan or not. It is also assumed that the workers do

not get paid extra while performing the driver’s function.

• There are multiple depots, which correspond to project sites.

• Each worker (customer) is assigned to a specific project site (depot). Hence, a sparse matrix of

links between worker homes and project sites is used.

• Variable costs and distances are defined explicitly.

The model aims to find an optimal path for transporting workers from project sites to worker homes.

The ending nodes generated as a result of solving the model will be used as starting points (initial

location of vehicles) to travel to project sites. Hence, it is assumed that costs are symmetric.

Sets

V Set of vehicle types

W Set of worker homes

Wp Set of worker homes assigned to project p

P Set of project sites

A Set of links within W ∪ P

Ap Set of links belonging to project p

N Set of all nodes: N = (1, 2, . . . , |P |, |P |+ 1, . . . , |P |+ |W |)
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Parameters

Dij Distance between node i and node j; i, j ∈ N

Ck Driving cost per unit of distance of vehicles of type k ∈ V

QP
i Number of workers to deliver at node i ∈ N

Nk Number of vehicles of type k ∈ V

QV
k Capacity of vehicles of type k ∈ V (unit: number of workers)

Variables

xijk Equals 1 if a vehicle of type k goes directly from node i

to node j (i 6= j), and 0 otherwise

yijk The quantity of workers that a vehicle of type k is carrying

after leaving node i to service node j

Model

min
∑
k∈V

∑
i∈N

∑
j∈N

DijCkxijk (1)

∑
k∈V

∑
(i,j)∈Ap

xijk = 1 p ∈ P, j ∈Wp (2)

∑
k∈V

∑
j∈W

xijk ≤ 1 i ∈W (3)

0 ≤
∑

(i,j)∈A

xijk −
∑

(j,i)∈A

xjik ≤ 1 j ∈W,k ∈ V (4)

∑
p∈P

∑
(p,j)∈Ap

xpjk ≤ Nk k ∈ V (5)

∑
k∈V

∑
i∈N

yijk −
∑
k∈V

∑
i∈N

yjik = QP
j j ∈W (6)

QP
j xijk ≤ yijk ≤ (QV

k −QP
i )xijk i, j ∈ N, i 6= j, k ∈ V (7)∑

p∈P

∑
i∈W

xipk = 0 k ∈ V (8)

xijk ∈ {0, 1} i, j ∈ N, i 6= j, k ∈ V (9)

yijk ≥ 0 i, j ∈ N, k ∈ V (10)

The objective (1) is to minimize the total transportation cost. Constraints (2) ensure that each

worker home must be visited once. Constraints (3) make sure that at most one vehicle departs from any

worker home. Constraints (4) enforces that if a vehicle visits a customer, the vehicle can either remain

there (the ending point) or depart from it. Constraints (5) ensure that the number of vehicles of each

type does not exceed the predefined amount. Constraints (6) guarantee that all customers’ demands

(number of workers to be delivered at each customer) are fully satisfied. Constraints (7) ensure that
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Table 1: Data on the composition of the vehicle fleet

k QV
k Ck Nk QV

k Nk

s2 2 100 14 28

s3 3 120 18 54

s5 5 130 5 25

s6 6 160 7 42

s9 9 179 1 9

Total: 45 158

vehicle capacity is not exceeded. Constraints (8) exclude any arc from any of the customers to the

depot. Constraints (9) state that an arc has the value 1 if it belongs to the optimal solution, and has

the value 0 otherwise. Constraints (10) ensure that the flow is non-negative.

5 Computational study

This section describes computational experiments using the model presented in Section 4. All compu-

tations were performed on a virtual server with 32GB RAM and 4-core Xeon E5-2698 2.3Ghz CPU.

Using real-world data from the company that inspired this work, Section 5.1 contains results from

tests where the assignment of workers to projects is fixed. As an extension of this, Section 5.2 presents

some heuristics to improve the assignment of workers, in the case that workers can replace each other.

Computational results from these heuristics are then presented and discussed.

5.1 Fixed worker assignments

The instances used to test the mathematical model presented in Section 4 are based on data from

a Norwegian company. A typical working day is used as the basis for the project sites, the number

of available workers and their home locations, as well as the assignment of workers to projects. The

example week used to generate the instances consisted of 43 workers being assigned to 11 different

projects. Table 1 shows the total vehicle fleet of the company. The fleet consists of five types of

vehicles, with different capacities and driving costs.

A real problem instance with 11 projects and 43 workers was used in computational experiments

with different combinations of vehicle types. The obtained results are shown in Table 2. The notation

used for vehicle types contains the capacity information (number of seats in the vehicle, or the number

of workers the vehicles of this type can transport), for example, vehicles of type s2 can transport two

workers, vehicles of type s3 can transport three workers, and so on.

Table 2 presents results for instances with 11 projects and 43 workers, using variations of the
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Table 2: Computational experiments for instances with 11 projects and 43 workers.

Exp. Tot. Vehicle quantity Total

no. cap. s2 s3 s5 s6 s9 #V #C cost Sec. #R

1 158 14 18 5 7 1 2680 3084 3603.70 7.9 14

2 149 14 18 5 7 0 2144 2493 3628.56 11.7 15

3 107 14 18 5 0 0 1608 1902 4876.27 15.6 16

4 82 14 18 0 0 0 1072 1311 5191.50 1.2 19

5 48 24 0 0 0 0 536 720 6366.20 1.2 24

6 99 0 0 0 0 11 536 720 4248.77 0.5 11

7 45 11 1 1 1 1 2680 3084 3690.12 27.8 15

8 45 8 3 1 1 1 2680 3084 3656.29 13.9 14

9 48 3 14 0 0 0 1072 1311 5226.95 1.0 17

10 43 10 1 1 1 1 infeasible

11 45 0 15 0 0 0 infeasible

available vehicle fleet. That is, the fleet has a much larger capacity than what is required, and it

is therefore interesting to see how the results change when modifying the fleet. The table shows an

identifier for the instance solved (“Exp. no.”), the total capacity of the fleet (“Tot. cap.”), the number

of vehicles of each type, the number of variables (“#V”) and constraints (“#C”) in the corresponding

mixed integer programming formulation, and regarding the optimal solution: the total cost, the time

used to solve the instance to optimality (“Sec.”), and the number of routes in the solution (“#R”).

As seen in Table 2, the solution time for the instances is quite low, due to a relatively low amount

of workers per project (about four on average). To assess the effect on solution times of having larger

projects, Table 3 shows corresponding results where one additional project has been added to the

instance. The project added is relatively big, requiring 19 workers, yielding a total of 12 projects and

62 workers.

The results provided in Tables 2 and 3 show that a limited variety of vehicles and restricted total

capacity, that is total capacity equal to the number of workers or only slightly larger than the number

of workers, tend to negatively affect the total cost or lead to instances with no feasible solutions. The

instances can be infeasible even if the capacity is sufficient (e.g. 43 workers vs 43/45 seats). This can

be explained by the fact that vehicles are not allowed to travel between project sites. Each vehicle

chosen by the model is only used by workers assigned to the same project. Therefore, there might be

cases of unused capacity. For example, if a project has only three workers assigned to it and a five-seat

vehicle has been chosen to transport the three workers, there will be unused capacity corresponding

to two workers, and this vehicle cannot be used for any other route. The unused capacity depends
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Table 3: Computational Experiments 12 projects, 62 workers

Exp. Tot. Vehicle quantity Total

no. cap. s2 s3 s5 s6 s9 #V #C cost Sec. #R

12 158 14 18 5 7 1 6480 7041 4095.83 353.4 19

13 149 14 18 5 7 0 5184 5670 4133.18 348.0 20

14 107 14 18 5 0 0 3888 4299 5454.80 1319.6 23

15 82 14 18 0 0 0 2592 2928 5799.30 10.3 26

16 68 34 0 0 0 0 1296 1557 7065.51 6.2 34

17 126 0 0 0 0 14 1296 1557 4842.92 9.0 14

18 65 21 1 1 1 1 6480 7041 4304.23 137.4 25

19 65 12 7 1 1 1 6480 7041 4235.77 616.5 22

20 65 7 17 0 0 0 2592 2928 5818.35 496.4 24

largely on the capacities of the available vehicles.

Even when the instance has feasible solutions, an insufficient quantity of a particular vehicle type

can also lead to a higher total cost, simply because the replacement chosen from the remaining vehicle

types might have a higher fuel cost per km or a lower capacity. Moreover, an insufficient quantity

of higher capacity vehicles appears to make more negative impact on the total cost than insufficient

quantity of lower capacity vehicles. The lowest cost is obtained using the full fleet of vehicles in the

input (the very first row in the table) and therefore it appears that the variety of capacities and a

sufficient quantity is critical for finding a good solution.

On the other hand, variety greatly affects computational time, as it is directly linked to the total

number of variables and constraints that need to be handled by the solver. The number of variables

in a given problem instance depends on the following:

• The total number of links, which is affected by the total number of nodes and the number of

projects. Due to absence of links between nodes belonging to different projects, for the same

total amount of workers, a higher number of projects results in a lower number of links. For each

project p ∈ P , the number of links is equal to (|Wp| + QP
p )(|Wp| + QP

p − 1). The total number

of links for a given instance is equal to the sum of all project cluster links.

• The number of different variables defined for each link, in this case two, corresponding to xijk

and yijk.

• The number of vehicle types, equal to the size of set V in the model.

Hence, the total number of variables for the model can be calculated as 2|V |
∑

i∈P (|Wp|+QP
p )(|Wp|+

QP
p − 1). As the number of variables is higher when workers are assigned to fewer different projects,
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Table 4: Computational Experiment with 1 projects and 77 workers

Exp. Tot. Vehicle quantity Total

no. cap. s2 s3 s5 s6 s9 #V #C cost Sec. #R

21 123 39 0 0 0 5 24024 24413 3589.14 11441 19

an instance with a single project and 77 workers was generated to test the capabilities of the model.

This particular instances contained just 2 vehicle types, resulting in 24024 variables. The results are

displayed in Table 4.

As can be seen, it took 11,441 seconds or 3.17 hours for the solver to find the solution. This can

still can be considered as an acceptable duration. However, adding just one more vehicle type, the

calculations might take an unacceptably long time, and for such cases a heuristic approach may be

relevant.

5.2 Free worker assignments

The assignment of workers to projects is given and is not part of the model from Section 4. That is,

the company assigns workers to projects according to some criteria before deciding on a transportation

plan. Sometimes, there are good reasons why certain workers are assigned to specific projects. For

example, a worker may already be familiar with the project, the worker may have specific skills that

are required by the project, or there are personal preferences among the workers that are important

to follow.

However, if for a particular planning period, the only concern is the minimization of transportation

cost, it is of interest to check if the costs can be reduced by modifying the assignment of workers to

projects. To this end, three heuristics are defined that can be used to improve the assignments. The

heuristics are structured as follows:

1. Start by using the given assignment of workers to projects, and obtain the corresponding optimal

solution of the model for fixed assignments.

2. Use a heuristic rule to create a new assignment of workers to projects, and solve the corresponding

problem.

3. Repeat Step 2 until all possible variants of worker assignments have been generated, or until

another stopping criterion has been met.

4. After having considered many different assignments, return with the best solution found.

Below is the description of three different heuristic rules used to generate alternative assignments

of workers to projects. The rules are applied for a given sequence of projects, and Step 2 above is
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Table 5: Results of applying heuristics to decide assignments of workers to projects.

Exp. Tot. Vehicle quantity Initial Sh. dist. Greedy Combined

no. cap. s2 s3 s5 s6 s9 solution to proj. chain nearest

22 158 14 18 5 7 1 3603.7 3483.95 3458.2 3458.2

repeated for all permutations of projects, or until a time limit has been reached:

Shortest distance to project. The workers for each project are selected according to the distance

from each worker’s home location to the project site. For each project in turn, the worker homes nearest

to the project are selected from a list of unassigned workers. This is repeated until the demand of the

project has been met. For the project first in turn, the whole set of workers is available to choose from,

whereas for the subsequent projects the list of unassigned workers grows shorter. Hence, the order in

which projects take turns in selecting homes is important and each possible sequence of projects is

considered in turn, until all alternatives have been exhausted.

Greedy chain. This is a simple, greedy rule. The workers for each project are selected according

to the distance from the previous node to their home location. The first worker added is the one with

a home location nearest to the project site. The second worker is the worker with a home location

nearest to home location of the first worker added, and so on. As for the first heuristic rule, the

order of projects for which workers are added is important and all possible sequences of projects are

considered in turn.

Combined nearest. This heuristic combines the two methods described above: The first worker

added is the one whose home location is nearest to the project site, and each subsequent worker is

the nearest to either of the project site and the previous worker home added. If the distances are the

same, for two workers, priority is given to the worker nearest to the previous home location.

To test the effect of freely assigning workers to projects, the original instances with 11 projects

and 43 workers is used, with the complete vehicle fleet being available. In our experiments, to change

the initial assignment of workers and projects, the three heuristics “Shortest distance to projects”,

“Greedy chain”, and “Combined nearest” were used. The number of possible sequences of projects is

very large, and the improvement process was stopped after one hour. The obtained results are shown

in Table 5.

The solution obtained for the problem instance with fixed worker assignments, with a cost of 3603.7,

is used as a basis for comparisons. After one hour of running time the heuristics were able to improve

the initial solution by around 4 %. The “Greedy chain” and “Combined nearest” methods performed

best for this particular instance. After solving various other instances, with different home locations,

it was observed that the “Combined nearest” method performed at least as well as the “Greedy chain”

method, and depending on the location of worker homes relative to the project sites may give better
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Table 6: Results of applying heuristics to decide assignments of workers to projects on a reduced

instance (5 projects, 18 workers)

Exp. Tot. Vehicle quantity Initial Sh. dist. Greedy Combined

no. cap. s2 s3 s5 s6 s9 solution to proj. chain nearest

23 158 14 18 5 7 1 385.93 317.18 353.21 296.84

results. In some cases, the method “Shortest distance to project” gave better results than the “Greedy

chain” method. Table 6 shows an example with five projects and 18 workers (a subset of the instance

in Table 5), and applying the same three heuristics.

6 Concluding remarks

In this work, a mixed integer mathematical model for solving a multi-depot open vehicle routing

problem with heterogeneous vehicles was developed. This model provided a way to solve a real-life

problem of a company that needs to find a least-cost solution for transporting workers between their

home locations and their assigned project sites. Apart from the mathematical model that provides

an exact solution to the posed problem, several heuristics were developed for a variant of the problem

where workers are not preassigned to specific projects.

Computational experiments reveal that realistically sized instances can be solved to optimality

within reasonable running times. The running times are, however, sensitive to the ratio of workers to

projects, with higher ratios providing a larger computational challenge. As an example, an instance

with only one project and 77 workers, the running time exceeded 3 hours on a standard desktop

computer. For even larger instances, work on heuristic solution methods could be warranted.

In the main problem, workers are assigned to projects by the management before planning the

transportation. A variant of the problem was considered where the selection of workers for each project

is free, and can be adjusted to minimize the total transportation costs. This problem was tackled by

three different heuristics, called “Shortest distance to projects”, “Greedy chain”, and “Combined

nearest”, with the latter heuristic showing the best performance.

There are further variants of the problem that may be relevant for decision makers in companies

that operate under similar constraints. For example, when considering a longer time horizon, the

project portfolio is in constant change. This means that the workers may change from one project to

another, that workers may be split into different teams, and that it may become beneficial to change

which workers are appointed as drivers. A transition from one set of routes to another set of routes

must then take place, with some workers handing their vehicles over to different workers. If such

transitions take place frequently, it may influence the optimal routes, given that extra driving must
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take place to change from one set of routes to the next.

It may also be relevant to explore alternative objective functions in the current setting: minimizing

transportation costs will in general lead to routes where each vehicle is transporting as many workers

as possible. However, this may mean that some workers (such as the driver) spend much time in the

vehicle. By using more vehicles with fewer workers per route, the costs may increase, but it may be

possible to reduce the total time spent on the road for the workers, thereby increasing the amount of

time that can be spent working on the projects. This can be achieved by minimizing the total time

spent on the road for all the workers. Balancing these two criteria naturally leads to a multi-objective

optimization problem.
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