
COMBINING SOLUTIONS OF THE OPTIMUM SATISFIABILITY PROBLEM
USING EVOLUTIONARY TUNNELING

Rodrigo Ferreira da Silva1, Lars Magnus Hvattum2,�, Fred Glover3
1Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
2Faculty of Logistics, Molde University College, Molde, Norway
3Meta-Analytics, Inc., Boulder, CO, USA

rfsilva@dcc.ufmg.br1, hvattum@himolde.no2,�, fredwglover@yahoo.com3

Abstract
The optimum satisfiability problem involves determining values for Boolean vari-
ables to satisfy a Boolean expression, while maximizing the sum of coefficients
associated with the variables chosen to be true. Existing literature has identified a
tabu search heuristic as the best method to deal with hard instances of the prob-
lem. This paper combines the tabu search with a simple evolutionary heuristic
based on the idea of tunneling between local optima. When combining a set of
solutions, variables with common values in all solutions are identified and fixed.
The remaining free variables in the problem may be decomposed into several in-
dependent subproblems, so that parts of the solutions combined can be extracted
and combined in an improved solution. This solution can be further improved by
applying the tabu search in an improvement stage. The value of the new heuristic
is demonstrated in extensive computational experiments on both existing and new
test instances.

Keywords: Zero-one integer programming, boolean optimization, metaheuristic,
tabu search, adaptive memory programming, recombination operator.

Received: 28 January 2020
Accepted: 17 June 2020
Published: 24 April 2020

1 Introduction

The optimum satisfiability problem (OptSAT) was in-
troduced in [4], where it was referred to as the Boolean
optimization problem. It subsumes a large class of bi-
nary optimization models, including weighted versions
of set covering, graph stability, set partitioning and
maximum satisfiability problems. These problems are
all NP-hard, and exact optimization methods may re-
quire excessive computational resources to solve large
instances. Previous research on OptSAT has therefore
focused on developing efficient heuristic solution meth-
ods.

Formally, the OptSAT involves maximizing a linear
objective function z =

∑n
j=1 cjxj in binary variables,

subject to a Boolean equation φ(x1, . . . , xn) = false.
Every Boolean function can be written in disjunctive
normal form, allowing φ to be expressed in the form
φ = T1 ∨ . . . ∨ Tm where each term Ti is a conjunction
of some non-negated variables xj , j ∈ Ai ⊂ {1, . . . , n},
and some negated variables xj , j ∈ Bi ⊂ {1, . . . , n}:
Ti = (

∧
j∈Ai

xj) ∧ (
∧

j∈Bi
xj). This was the original

formulation provided in [4].

A reformulation can be considered as observed by
Hvattum et al. [11], based on transforming φ into
conjunctive normal form by applying DeMorgan’s law.
Then, φ = T1 ∨ . . . ∨ Tm = T1 ∧ . . . ∧ Tm = true,
where Ti = (

∨
j∈Ai

xj)∨(
∨

j∈Bi
xj). By converting the

boolean variables into binary variables, this formula-
tion can be expressed as a mixed integer programming

(MIP) problem, with one constraint for each clause Ti:

max z =
n∑

j=1

cjxj∑
j∈Bi

xj +
∑
j∈Ai

(1− xj) ≥ 1, i ∈ {1, . . . ,m}

xj ∈ {0, 1}, j ∈ {1, . . . , n}

After moving the constant terms to the right hand
side of each constraint and changing to less-than-or-
equal constraints, an equivalent formulation is:

max z =
n∑

j=1

cjxj∑
j∈Ai

xj −
∑
j∈Bi

xj ≤ |Ai| − 1, i ∈ {1, . . . ,m} (1)

xj ∈ {0, 1}, j ∈ {1, . . . , n}

Informally, the problem can be regarded as a satisfi-
ability problem [2, 5] that is extended to include an ob-
jective function. To solve this problem, a greedy heuris-
tic based on pseudo-boolean functions was devised in
[4]. The heuristic was shown to perform better than
commercially available MIP-solvers at the time. A sim-
ple tabu search (adaptive memory search) for solving
OptSAT was in turn presented in [11], where new best
results were obtained. A more advanced tabu search
method was proposed in [12], and was shown to yield

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX

23

https://doi.org/10.13164/mendel.2020.1.023
ISSN: 1803-3814 (Printed), 2571-3701 (Online)

significant computational advantages both in compar-
ison with the preceding heuristic methods and in com-
parison with the then leading commercial MIP-solvers,
Xpress and CPLEX. The same paper also provided re-
sults by using two different constructive heuristics, al-
though these were unable to improve on the results
from the local search based methods. A system for au-
tomatic programming was used in [17] to improve the
simple tabu search heuristic from [11]. Using a new set
of hard test instances, the system was able to create
code that improved on the simple tabu search heuris-
tic. Up to date versions of commercial MIP solvers, in-
cluding Xpress, CPLEX, and Gurobi, were considered
in [13]. The testing performed showed that the best
tabu search heuristic still outperformed the commer-
cial solvers, despite the improvements of commercial
solvers suggested by several authors since the original
experiments [1, 14, 15].

Recently, a deterministic recombination operator
that is said to tunnel between local optima was de-
scribed by Whitley [19]: given two locally optimal so-
lutions, one can remove variables with common assign-
ments and identify separated components. A new so-
lution can then be built by combining the best parts of
the two solutions for each separated component. The
main contribution of this paper is two-fold. First, we
show that the tunneling operator can be applied to the
OptSAT problem. Second, we design a simple evolu-
tionary heuristic that combines the use of a tabu search
with the tunneling operator, and show through com-
putational experiments how it performs on instances
of OptSAT.

The remainder of the paper is structured as follows.
In Section 2 the concept of evolutionary tunneling for
OptSAT is explored. Section 3 describes both an exist-
ing tabu search for OptSAT, as well as a new heuristic
combining the tabu search with a recombination oper-
ator working on a set of solutions. Results of compu-
tational experiments are reported in Section 4, before
concluding remarks are given in Section 5.

2 Evolutionary tunneling for OptSAT

The recombination operator suggested in [19], tunnel-
ing between local optima, is based on the idea that
once common parts of two solutions are disregarded,
the remaining parts become separate subproblems that
do not interact with each other. We will first exam-
ine whether this may happen to instances of OptSAT,
or whether these instances will remain connected after
fixing the common variable assignments of different so-
lutions.

Consider a set of solutions, and fix the common val-
ues. The remaining problem is thus simplified: some
variables disappear (those that are fixed) and some
constraints can be ignored (those corresponding to
clauses where now at least one literal is guaranteed
to be true). The question is whether this will split
the problem into several separate components, or just
leave a reduced problem that is still connected. To

see whether a problem can be split into several com-
ponents, we draw a graph where the nodes represent
variables and where edges represent clauses (or con-
straints in the 0-1 IP formulation) such that there is
an edge between any two variables that have literals
appearing in the same clause. Let us illustrate using
the following artificial example:

max z = 7x1 + 6x2 + 5x3 + 4x4 + 3x5 + 2x6 + x7

φ = x1x3x5 ∨ x2x5x6 ∨ x4x6x7 = 0

Using formulation (1), this instance can also be writ-
ten as:

max z = 7x1 + 6x2 + 5x3 + 4x4 + 3x5 + 2x6 + x7

x1 + x3 + x5 ≤ 2

x2 + x5 + x6 ≤ 2

x4 + x6 + x7 ≤ 2

xj ∈ {0, 1}, j ∈ {1, . . . , 7}

The corresponding graph (without fixing any vari-
ables), referred to as a variable interaction graph [19],
is shown in Figure 1. As an example, there is no edge
between node 1 and node 2, because there is no clause
in φ containing both variables x1 and x2. Let us now
assume that we fix x2 = 0. The clause x2x5x6 can then
be removed, as it will contain at least one false literal.
This results in the variable interaction graph shown in
Figure 2.

The graph is now disconnected, with two compo-
nents, indicating that the remaining problem can be
solved separately for each component, and then com-
bined into a single solution afterwards. This separation
into smaller problems improves the computational effi-
ciency of the method used to solve the remaining prob-
lem. If instead of fixing x2, we had been fixing x5 = 1
or x6 = 1 the graph would also become disconnected.

Now, consider what happens when we fix x2 = 1 in-
stead of x2 = 0. We then only drop the node for x2,
and none of the clauses are guaranteed to be satisfied.
The resulting graph, shown in Figure 3 has a bridge
between the node for x5 and the node for x6, indicat-
ing that there is a clause that contains only these two
variables, and that without this clause, the problem
would decompose as in the previous example. Instead
of solving the remaining problem (after fixing x2 = 1)
as a single instance, we may try, in turn, to fix either
x5 or x6 to make sure the bridge-clause is satisfied,
and solve the resulting decomposed problem as sepa-
rate parts. After fixing variables, it may therefore be
beneficial to look both for separated components and
bridges.

Finally, note that in the original example (without
fixing any variables), there are two vertex cuts of size
1, consisting of node 5 and node 6, respectively. These
already behave similarly to a bridge: it is possible to fix
the value of x5 (or x6) and the problem will decompose
into separate parts. These can be found as bridges in
the corresponding line graph, where nodes correspond

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX

24

Combining Solutions of the Optimum Satisfiability Problem Using Evolutionary Tunneling

3

1

5

2

6

4

7

Figure 1: Variable interaction graph for an example
with no fixed variables.

3

1

4

75 6

Figure 2: Variable interaction graph for an example
with x2 fixed to 0.

3

1

5 6

4

7

Figure 3: Variable interaction graph for an example
with x2 fixed to 1.

x1x3x5 x2x5x6 x4x6x7

Figure 4: Line graph of an example with no fixed vari-
ables.

to clauses and edges to variables that appear in the
clauses corresponding to the edge’s end points. For ex-
ample, the line graph of the original example is shown
in Figure 4.

Preliminary tests indicated that fixing the common
parts of two solutions often results in either a discon-
nected graph or a graph with bridges. Figure 5 shows
the full graph for instance with 100 variables and 400
clauses from [4]. Figure 6 shows the two resulting com-
ponents after fixing the common parts of a pair of ex-
ample solutions (one component in blue and the other
in red).

3 Heuristics

This section first describes a state-of-the-art tabu
search for solving OptSAT. This tabu search is used
as a stand-alone method, but also as a part of an evo-
lutionary heuristic that is described next, and in which
the recombination operator is based on tunneling.

3.1 Tabu search for OptSAT

For large and difficult instances of the OptSAT, the
current best heuristic is a tabu search heuristic with
adaptive clause weights (TS-ACW) from [12]. The
search is designed to be able to move in infeasible space
by penalizing an infeasibility measure. The basic com-
ponents of the method, which derive from a simple ver-
sion of tabu search [9], may be summarized as follows.

The starting solution is randomly generated. A move
is the flip of a variable, that is, changing a variable from
0 to 1 or vice versa. The search neighborhood is the set
of possible flips, which implies that it has a cardinality
equal to the number of variables. The move selection
is greedy, always choosing the non-tabu move having
the highest move evaluation. Tabu tenure is drawn at
random from the range {10, . . . , 15}, and an aspiration

criterion allows a move to be selected in spite of being
tabu if it leads to a new best solution.

The evaluation of a move is based on the change
in the objective function value and in the change of
the number of violated constraints (or clauses). First,
the objective function coefficients are normalized to the
range [0, 1〉, and ∆Zj is defined as the change in the
normalized objective function when flipping variable
j. The range of ∆Zj is therefore 〈−1,+1〉. Second,
∆Vj is defined as the change in the number of violated
rows when flipping variable i. The value of ∆Vj is in
{−m,−m+ 1, . . . ,m− 1,m}, but is usually an integer
close to 0. The move evaluation function is then defined
as Fj = ∆Vj + w ∗ ∆Zj , where w is a weight that
dynamically balances the two components to keep the
search focused around the infeasibility barrier. That
is, w is updated every iteration to induce a strategic
oscillation around the feasibility boundary.

Adaptive clause weighting is a long-term learning
approach that operates in conjunction with the move
evaluation function to diversify the search [16]. Consid-
ering that some clauses may be harder to satisfy than
others, each clause is assigned a weight, Wi. When a
clause becomes violated during the search, the associ-
ated weight is incremented. This information is then
used to modify the move evaluation function by using
a weighted version of ∆Vj . Full details of the TS-ACW
method are given in [12].

3.2 Evolutionary heuristic with tunneling

To test the idea of tunneling for OptSAT, a simple evo-
lutionary heuristic has been developed. The heuristic
starts by creating an initial reference set of µ = 400
random solutions. In each iteration, a subset of T so-
lutions are selected at random from the current refer-
ence set, with T being randomly chosen between TL
and TU . These T solutions are then used to generate

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX

25

R.F. da Silva et al.

Figure 5: Variable interaction graph of instance
qn100m400t2s0c0num0 from [4].

Figure 6: Variable interaction graph after fixing com-
mon parts of two selected solutions.

one new solution to be added to the reference set.

Using the tunneling operator, the variables with
common assignments in the T solutions are fixed to
their respective values. Then, a variable interaction
graph is created and disconnected components are
identified. For each disconnected component, the best
variable assignment from the T solutions is selected.
Once each variable has been assigned a value, the re-
sulting solution is improved by running the TS-ACW
for a number of I = 1000 iterations, while keeping fixed
the variables that are common in all the T combined
solutions. Since identifying disconnected components
leads to an increased computational time, in particular
for large problem instances, a version of the search is
also considered where we simply fix the common vari-
ables and start the TS-ACW from the best of the T
solutions. The exploitation of variables with common
assignments is related to the concepts of strongly de-
termined and consistent variables [7] and path relink-
ing [6]. Temporarily fixing the values of variables with
common values and subjecting the reduced space to
more intensive algorithmic exploration is an instance
of SIN-space optimization in mixed integer optimiza-
tion [8].

If the new solution obtained is distinct from those
in the reference set, it is added to the set. If the size
of the reference set reaches µ + α, with α = 100, the
set is reduced by eliminating the α worst solutions. If
a number of iterations is performed without finding a
new best solution, a diversification process is started,
where the reference set is reduced to its µ/4 best so-
lutions, and 3µ/4 new random solutions are generated
and added. Then, I is increased by a factor of IF = 20,
to allow a more thorough improvement phase. A time
limit is used as the overall stopping criterion for the
method.

There are four versions of the evolutionary heuristic

considered: In ED
2 and ED

5−15, disconnected compo-
nents are identified and the improvement phase starts
from the best possible solution obtained by combin-
ing parts from different solutions, whereas in E2 and
E5−15, the improvement phase is started from the best
of the combined solutions after fixing the variables with
common assignments in all the combined solutions. In
ED

2 and E2, TL = TU = 2, whereas in ED
5−15 and

E5−15, TL = 5 and TU = 15. The variant ED
5−15, with

all the parameter settings as described above, was ob-
tained by using the software SMAC [10] to automati-
cally tune the parameters.

4 Computational experiments

This section presents results by the evolutionary
heuristic with tunneling for OptSAT instances
from the literature, as well as some new, randomly
generated, hard instances.

4.1 Results on instances from the literature

Instances for the OptSAT were provided in [4]. When
measuring the performance of heuristics on these in-
stances, we follow the convention used in previous re-
search [4, 11, 12, 13]: the obtained objective function
value is divided by the value of the best solution found
by a commercial MIP solver, CPLEX 6.0, as run with a
fixed time limit of up to 600 seconds per instance on a
50 MHz SUN Sparcstation 5 by [4]. Presenting results
in percentages, this means that values > 100 corre-
spond to solutions that are better than the ones found
by CPLEX, and values < 100 correspond to solutions
worse than those found by CPLEX. In the following,
we focus on the hardest instances from the literature,
as identified by [13].

Table 1 shows the results of five methods: TS-ACW
and the four variants of the evolutionary heuristic, each

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX

26

Combining Solutions of the Optimum Satisfiability Problem Using Evolutionary Tunneling

Table 1: Results on hard instances from the literature.

TS-ACW ED
2 ED

5−15 E2 E5−15

Avg Sec B Avg Sec B Avg Sec B Avg Sec B Avg Sec B

Class 27 111.195 4.8 111.187 5.0 111.185 8.1 111.148 8.2 111.195 4.5
Class 29 101.290 23.9 101.270 36.6 101.270 29.2 101.262 11.5 101.290 25.0
Class 30 100.391 1.5 100.386 7.9 100.381 34.4 100.384 32.8 100.391 1.5
Class 31 101.452 27.4 101.364 4.2 101.398 39.2 101.411 18.1 101.452 27.9
Class 38 100.987 8.1 100.978 29.0 100.980 28.4 100.973 13.8 100.987 8.7
Class 40 101.618 22.8 101.556 10.7 101.581 36.3 101.593 18.8 101.618 24.4
Class 49 101.517 16.4 101.463 12.4 101.479 40.1 101.492 20.8 101.517 16.8
Class 52 109.931 1.9 109.916 6.3 109.873 6.2 109.738 3.5 109.931 1.6
Class 53 113.226 2.3 113.226 2.4 113.163 13.7 112.144 11.5 113.226 2.5
Class 54 114.948 32.6 114.826 21.3 113.324 47.6 112.965 27.4 114.967 33.3
Class 59 107.363 0.6 107.362 4.5 107.353 10.2 107.300 8.5 107.363 0.6
Class 61 101.557 7.0 101.536 35.6 101.533 27.0 101.523 22.0 101.557 7.7
Class 62 100.984 8.6 100.970 11.0 100.958 31.3 100.966 34.1 100.984 8.1
Class 63 103.583 15.4 103.498 3.8 103.536 39.8 103.539 16.0 103.583 17.2

Average 105.003 12.4 104.967 13.6 104.858 28.0 104.746 17.6 105.004 12.8

using a time limit of 60 seconds. The heuristics were
all executed on an Intel Core i7 CPU at 3.33GHz, with
24 GB RAM, and using the operating system Ubuntu
12.04. For each method, the average solution quality
(“Avg”) and the time in seconds to find the best solu-
tion (“Sec B”) are reported. Results are reported in-
dividually for 14 problem classes, each containing five
instances. Each instance is run ten times with different
random seeds, and the numbers presented are the av-
erage values over the fifty runs made within each class.

Although the recombination operator with tunnel-
ing succeeds in identifying disconnected components
and combining the best components before applying
the TS-ACW as an additional improvement method,
ED

2 and ED
5−15 in general perform worse than E5−15,

where the identification of disconnected components
is skipped. When fixing relatively fewer variables, in
ED

5−15 compared to ED
2 , the time to identify and ex-

ploit disconnected components increases further, and
results become worse. However, the method E2 per-
forms worse than E5−15 because the number of fixed
variables becomes very large when only T = 2 solu-
tions are combined, in particular as the reference set
has started to converge towards good solutions. When
that happens, the TS-ACW used as a subsolver can
no longer effectively improve the solution with fixed
variables.

The results therefore show that, although the identi-
fication of disconnected components in OptSAT works
as intended, the time overhead is too large compared
to simply fixing the common variables and using tabu
search to improve the remaining components, with-
out necessarily identifying them as being disconnected.
However, despite selecting the most difficult of the in-
stances from existing literature, current hardware en-
ables both TS-ACW and E5−15 to find what is likely
optimal solutions to almost all the instances. To bet-
ter judge the difference between E5−15 and TS-ACW,
harder instances must be used.

4.2 Results on new instances

To gauge the effectiveness of E5−15 compared to TS-
ACW, new sets of hard test instances are generated,
as in [17]. The instance generator used takes as input:
the number of variables n, the number of terms m, the
number of literals in each term, and the probability
that each literal is negated. In the instance generated
for the tests reported below, each term is generated
with 3 literals, and none of the literals are negated. The
objective function coefficients, cj are randomly gener-
ated between n and 2n. The instance generator ensures
that each instance has at least one feasible solution.

Hard 3-SAT instances are obtained when the ratio
of clauses to variables is between four and five [18]. We
generated six new classes of instances, labelled as class
64 to class 69, with five new instances in each class.
Each class has a different combination of values for n
and m, with a ratio of n/m = 5. The largest existing
instances, for class 54 in Table 1, have n = 1000 and
m = 10000, but only 2 literals per clause.

Results are presented in Table 2 for TS-ACW and
E5−15. Given that these instances are meant to be
hard to solve, the heuristics are run both for 60 seconds
and 600 seconds, with 10 runs for each instance. Re-
sults are again presented relative to the best solutions
obtained by a commercial MIP solver. These were ob-
tained using CPLEX 12.9 [3] with a time limit of four
hours (14,400 seconds) on a single thread, on a com-
puter with Windows 7, a 64-bit Intel i5-4690 CPU at
3.5GHz, and 16 GB RAM. For instances of class 64
and class 65, CPLEX would occasionally run out of
memory before the time limit was reached. CPLEX
is not able to solve any of the new instances to opti-
mality, and the dual bounds at the end of the runs are
between 25 % and 40 % above the primal bounds.

The results show that TS-ACW with 60 seconds
of running time is able to consistently outperform
CPLEX, and also seems better than E5−15 with 60
seconds running time on the more difficult instances.

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX

27

R.F. da Silva et al.

Table 2: Results on new and larger instances.

TS-ACW (60) TS-ACW (600) E5−15 (60) E5−15 (600)
(n,m) Avg Sec B Avg Sec B Avg Sec B Avg Sec B

Class 64 (500, 2500) 103.334 26.9 103.462 262.1 103.367 29.9 103.420 113.8
Class 65 (1000, 5000) 102.283 17.8 102.505 153.1 102.638 44.7 102.992 288.9
Class 66 (1500, 7500) 100.939 13.0 101.190 144.1 100.968 46.4 101.868 350.0
Class 67 (2000, 10000) 101.188 7.9 101.399 115.4 100.868 48.2 102.182 444.0
Class 68 (2500, 12500) 101.387 6.6 101.595 86.9 100.507 50.9 102.203 475.6
Class 69 (3000, 15000) 101.324 5.1 101.413 45.5 100.004 49.7 101.948 462.1

Average 101.742 12.9 101.928 134.5 101.392 45.0 102.436 355.7

However, with 600 seconds of running time, E5−15 pro-
vides the best results for the larger test instances. This
shows that the recombination operator based on vari-
able fixing is useful when solving large instances of Opt-
SAT, but that sufficient running time is required before
the positive effect is gained.

In additional experiments, not reported in full, we
have observed that the relative performance of CPLEX
improves when the randomly generated clauses have
some negated literals, in particular on larger instances.
On the other hand, the relative performance of the
heuristics improves when the generated clauses have a
larger number of literals.

5 Concluding remarks

A recombination operator recently proposed for combi-
natorial optimization problems has the ability to tun-
nel between local optima [19]. When combining a set
of solutions, variables with common assignments are
fixed, whereupon the optimization problem may de-
compose into independent subproblems. A new solu-
tion can then be reached by combining the best solu-
tions for each independent subproblem. Here, this idea
is tested for the optimum satisfiability problem (Opt-
SAT). For that purpose, a simple evolutionary heuristic
is developed, starting from a set of random solutions
and in each iteration applying the recombination oper-
ator to a randomly selected subset of solutions. After
the recombination, the solution is improved further by
applying a tabu search described in existing literature.

It turns out that for OptSAT, combining a set of so-
lutions does indeed often lead to a decomposition into
independent subproblems. However, given the time
used to identify and combine solutions for the subprob-
lems, it turns out to be more efficient simply let a tabu
search improve the best of the combined solutions after
fixing the variables with common values.

To demonstrate the effectiveness of the recombina-
tion operator where consistent variables are fixed and a
tabu search is used to improve the remaining variables,
computational experiments are performed on both ex-
isting test instances from the literature and on new
instances. These highlight the usefulness of combining
solutions, as with longer running times the evolution-
ary heuristic outperforms the stand-alone tabu search

on a set of large instances.

Acknowledgement: The authors wish to thank two
anonymous reviewers for their insightful and helpful
comments.

References

[1] Bixby, R. Mixed integer programming: It works
better than you may think. slide presentation,
Gurobi Optimization, 2010.

[2] Cook, S. The complexity of theorem-proving pro-
cedures. In Proceedings of the Third ACM Sym-
posium on Theory of Computing (1971), pp. 151–
158.

[3] CPLEX, 2020. https://www.ibm.com/support/
knowledgecenter/en/SSSA5P 12.9.0/.

[4] Davoine, T., Hammer, P., and Vizvári, B. A
heuristic for boolean optimization problems. Jour-
nal of Heuristics 9 (2003), 229–247.

[5] Du, D., Gu, J., and Pardalos, P., Eds. Satisfi-
ability Problem: Theory and Applications, vol. 35
of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. 1997.

[6] Glover, F. A template for scatter search and
path relinking. In Artificial Evolution, J.-K. Hao,
E. Lutton, E. Ronald, M. Schoenauer, and D. Sny-
ers, Eds., vol. 1363 of Lecture Notes in Computer
Science. Springer, 1997, pp. 13–54.

[7] Glover, F. Adaptive Memory Projection Meth-
ods for Integer Programming. Springer US,
Boston, MA, 2005, pp. 425–440.

[8] Glover, F. Parametric tabu search for mixed
integer programs. Computers and Operations Re-
search 33 (2006), 2449–2494.

[9] Glover, F., and Laguna, M. Tabu Search.
Kluwer Academic Publisher, Boston, Dordrecht,
London, 1997.

[10] Hutter, F., Hoos, H., and Leyton-Brown,
K. Sequential model-based optimization for gen-
eral algorithm configuration. In LION-5 (2011),
LNCS, pp. 507–523.

[11] Hvattum, L., Løkketangen, A., and
Glover, F. Adaptive memory search for boolean
optimization problems. Discrete Applied Mathe-
matics 142 (2004), 99–109.

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX

28

Combining Solutions of the Optimum Satisfiability Problem Using Evolutionary Tunneling

[12] Hvattum, L., Løkketangen, A., and
Glover, F. New heuristics and adaptive mem-
ory procedures for boolean optimization problems.
In Integer Programming: Theory and Practice,
J. Karlof, Ed. CRC Press, Boca Raton, FL, 2006,
pp. 1–18.

[13] Hvattum, L., Løkketangen, A., and
Glover, F. Comparisons of commercial MIP
solvers and an adaptive memory (tabu search)
procedure for a class of 0–1 integer program-
ming problems. Algorithmic Operations Research
7 (2012), 13–21.

[14] Koch, T., Achterberg, T., Andersen,
E., Bastert, O., Berthold, T., Bixby,
R., Danna, E., Gamrath, G., Gleixner,
A., Heinz, S., Lodi, A., Mittelmann, H.,
Ralphs, T., Salvagnin, D., Steffy, D., and
Wolter, K. MIPLIB 2010 - mixed integer pro-
gramming library version 5. Mathematical Pro-
gramming Computation 3 (2011), 103–163.

[15] Lodi, A. MIP computation and beyond. Techni-
cal Report ARRIVAL-TR-0229, 2008.

[16] Løkketangen, A., and Glover, F. Surrogate
constraint analysis — new heuristics and learn-
ing schemes for satisfiability problems. In Satisfi-
ability Problem: Theory and Applications, D. Du,
J. Gu, and P. Pardalos, Eds., vol. 35 of DIMACS
Series in Discrete Mathematics and Theoretical
Computer Science. 1997.

[17] Løkketangen, A., and Olsson, R. Generating
meta-heuristic optimization code using ADATE.
Journal of Heuristics 16 (2010), 911–930.

[18] Selman, B., Mitchell, D., and Levesque, H.
Generating hard satisfiability problems. Artificial
Intelligence 81 (1996), 17–29.

[19] Whitley, D. Next generation genetic algorithms:
a user’s guide and tutorial. In Handbook of Meta-
heuristics, M. Gendreau and J.-Y. Potvin, Eds.,
3rd ed., vol. 272 of International Series in Opera-
tions Research & Management Science. Springer,
Switzerland, 2019, pp. 245–274.

MENDEL — Soft Computing Journal, Volume 26, No.1, August 2020, Brno, Czech RepublicX

29

R.F. da Silva et al.

