
Intl. Trans. in Op. Res. 29 (2022) 2995–3030
DOI: 10.1111/itor.12998

INTERNATIONAL
TRANSACTIONS

IN OPERATIONAL
RESEARCH

Long-term effects of short planning horizons for inventory
routing problems

Mohamed Ben Ahmed∗, Onyemaechi Linda Okoronkwo,
Edwin Chimezie Okoronkwo and Lars Magnus Hvattum

Faculty of Logistics, Molde University College, PO Box 2110, Molde NO-6402, Norway
E-mail: mohamed.ben.ahmed@himolde.no [Ahmed]

Received 11 August 2020; received in revised form 24 February 2021; accepted 13 May 2021

Abstract

This paper presents a detailed study concerning the importance of the planning horizon when solving inven-
tory routing problems (IRPs). We evaluate the quality of decisions obtained by solving a finite-horizon IRP.
We also discuss the relevance of explicitly considering profit maximization models rather than the traditional
cost minimization variant. As a means to this end, we describe four classes of the IRP corresponding to dif-
ferent types of markets. Two of them lead to nonlinear models, which are linearized. Furthermore, we provide
a deterministic simulator to evaluate the long-term effects arising from using planning horizons of varying
lengths when solving the IRP. A computational study is performed on cases generated from benchmark data
instances. The results confirm that the long-term performance of the IRP decisions is, in part, contingent on
the length of the selected planning horizon. They also show that considering profit maximization instead of
cost minimization leads to different decisions, generating considerably more revenue and profits, albeit not
nearly as much as suggested by individual solutions to static IRPs with short planning horizons.

Keywords: profit maximization; path flow; linearization; end effect; simulation

1. Introduction

The inventory routing problem (IRP) integrates two fundamental logistic problems: inventory man-
agement and vehicle routing. Precisely, a supplier must decide (i) when to serve a given customer,
(ii) how much to deliver to this customer when it is served, and (iii) how to combine customers
into vehicle routes. Most often, the vehicles have limitations on the quantity of product they can
transport, and the objective is to minimize the total transportation and inventory holding costs.

The IRP literature differentiates between instant, finite, and infinite planning horizons (Anders-
son et al., 2010). If at most one visit per customer is required, then it is deemed to be instant. The
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problem is termed finite if the length of the planning horizon T < ∞; otherwise, it is an infinite
horizon problem. To reduce complexity, the IRP has often been modeled over finite planning hori-
zons. However, this comes at the cost of generating end-of-horizon effects. A typical consequence
is that customers’ inventories are empty or near empty at the end of the last period. As goods have
a relatively high cost of shipping and holding, myopic decisions involve delivering fewer goods to
customers in the final planning periods. If additional planning periods are modeled, this shortage
would be corrected by more intensives deliveries, and the end effects would be transferred to the
new final period. The distortions occur because models fail to account for the future impact of deci-
sions made in the final period; only the immediate consequences of these decisions are considered.
When more planning periods are considered, the end effects become less significant, but it becomes
more intricate to compute solutions of the IRP.

Given these concerns, we investigate (i) the potential long-term gain from explicitly maximizing
profits rather than minimizing costs in an IRP setting, and (ii) the effect of varying the length of the
planning horizon on the quality of the decisions obtained by solving a finite-horizon IRP model.
First, we consider four different models for the IRP, which are adapted from Zaitseva et al. (2018).
All of the models described hereafter account for limits on the number stops a vehicle can make
within a route. These characteristics can be used to represent real-life applications of the IRP, such
as perishable goods delivery problems and time-critical delivery problems. The models are:

1. A basic cost minimization model.
2. A profit maximization model with lost sales. By modifying the basic cost minimization model to

allow for lost sales, a profit maximization variant can be obtained. Here, the company may scale
back the volume of its deliveries, in case it is more profitable to accept penalties for lost sales
than to service the full demand at a high transportation cost.

3. A profit maximization model under monopoly. This model examines the case of a price-setting
company. The company can adjust its prices, whereupon the customer demands follow accord-
ingly.

4. A profit maximization model with variable production costs. The last model extends the profit
maximization with lost sales variant by incorporating variable production costs. Production
costs can increase or decrease following the company’s production volume.

The profit maximization models are generalizations of the cost minimization model. Therefore,
when considering a particular instance and a fixed planning horizon, the profit obtained by profit
maximization models are necessarily at least as good as the profit obtained by the optimal decisions
from the cost minimization model. Zaitseva et al. (2018) showed that the increase in profits could be
substantial. However, just as end-of-horizon effects can influence the value of decisions in a given
model, they can also distort the comparison between two different models. To properly assess the
actual difference between cost minimization models and profit maximization models and the actual
impact of varying the length of the planning horizon used when solving IRPs, we propose using
simulation. In this simulation, decisions about scheduling, routing, and potentially pricing and
production rates are determined by solving a sequence of IRPs. Although simulation is an accepted
tool for evaluating such policies in the face of uncertainty, this work shows that policies based on
solving problems with finite planning horizons exhibit similar behavior even when no stochasticity
is present. In summary, this paper makes the following contributions:
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• We use a deterministic simulator to calculate the long-term effects of making decisions by solving
IRPs with short planning horizons.

• We present path flow formulations of four distinct classes of the IRP, including profit maximiza-
tion variants with nonlinear expressions that are linearized.

• We perform an extensive computational study using benchmark test instances. The experiment is
designed to examine the impact of three factors: the length of the planning horizon, the maximum
route length allowed, and the market structure.

The remainder of this paper is organized as follows. Section 2 contains a review of relevant liter-
ature. In Section 3, we formally present the problem at hand and provide a detailed description of
the proposed models. Next, in Section 4 we describe the deterministic simulator. This is followed
by the results of extensive computational experiments in Section 5. Concluding remarks follow in
Section 6.

2. Literature review

For recent surveys of research on IRPs, see the work by Andersson et al. (2010) and Coelho et al.
(2014b). In the following, we focus on contributions related to the planning horizon of IRPs (Sec-
tion 2.1) and on profit maximization in IRPs (Section 2.2).

2.1. IRPs with long planning horizons

A substantial body of IRP literature is concerned with the deficiency of short planning horizons.
Several notable contributions ventured to solve IRP for long planning horizons. Dror et al. (1985)
proposed a way to take into consideration what happens after the short-term planning period. The
authors computed the stock-out probability, the average cost to deliver, and the anticipated cost of
a stock-out for each customer and each day in the planning horizon. By dint of these metrics, they
determined the optimal replenishment day, which yields a minimum expected total cost. If this day
falls within the short-term planning period, the customer will be visited. Otherwise, an anticipated
delivery is scheduled, and a future benefit is included within the objective. These computed values
reflect the long-term effects of short-term decisions.

Bard et al. (1998) formulated an extension of the ideas by Dror et al. (1985) to address an IRP
with satellite facilities. A satellite facility is a location apart from the depot where vehicles can be
loaded. They proposed a rolling horizon framework, in which shipment schedules are determined
over a two-week moving period. Only customers scheduled for the first week are routed. The two-
week planning horizon is then shifted by a week, and the process is repeated. The routing decisions
are fixed by employing three heuristics (randomized Clarke-Wright, GRASP, and modified sweep).
An analysis similar to Dror et al. (1985) was performed to determine an optimal replenishment day
for each customer. A handful of contributions adapted and enhanced these solution strategies and
attempted to mitigate the effect of short-term decisions, including Anily and Federgruen (1990),
Trudeau and Dror (1992), and Jaillet et al. (2002).

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



2998 M.B. Ahmed et al. / Intl. Trans. in Op. Res. 29 (2022) 2995–3030

Archetti et al. (2016) presented a new variant of the IRP in which the ratio between the total
costs and the total delivered quantity is minimized. This ratio represents the unitary distribution
cost, and the problem was labeled the IRP with a logistic ratio. The authors’ motivation for us-
ing this objective function is to avoid low inventory levels at the end of the planning horizon and
capture the IRP’s long-term impact. Using a branch-price-and-cut based-algorithm, the authors
could optimally solve instances with up to five vehicles and 15 customers over three periods. Re-
cently, Archetti et al. (2019) proposed an exact iterative algorithm to solve larger instances with
more customers and a longer planning horizon.

We encounter a more advanced treatment of long-term decisions in the cyclic IRP. It is a long-
term decision problem where the distribution policy and vehicle routes, once computed for a base-
line period, will remain the same in the following periods. Raa and Aghezzaf (2008) brought forth
a cyclic planning approach, in which a vehicle travels in every period of the cyclic planning hori-
zon the same route to serve customers. Replenishment frequencies that minimize total costs are
heuristically derived. With these patterns at hand, a steady-state distribution plan is constructed,
which can be repeatedly reproduced no matter how long the planning horizon is. Later, Lefever
et al. (2016) reformulated the problem as a convex optimization problem and proposed a mod-
ified branch-and-bound procedure for its solution. Raa and Aghezzaf (2009) extended the for-
mer approaches by integrating a fleet sizing problem. Vansteenwegen and Mateo (2014) exam-
ined a particular case of the cyclic IRP where a single vehicle is at disposal and employed an
iterated local search to solve it. Chitsaz et al. (2016) studied the multiple vehicles variant of the
problem and solved it using a decomposition algorithm. Ekici et al. (2015), Zenker et al. (2016),
Raa and Dullaert (2017), and Dai et al. (2020) provide further examples for solving the IRP
over a perpetual time horizon. Cyclic IRP plans can mitigate the end-of-horizon effects as they
allow for equal ending inventory levels at each planning period. However, a cyclic IRP is not
necessarily appropriate when some parameters of the problem, such as customer demands, vary
over time.

A completely different solution strategy for tackling long-term IRPs is concerned with using
rolling horizon heuristics (RHH). This approach operates by splitting up the planning horizon into
shorter and more manageable periods. Rakke et al. (2011) used a rolling horizon matheuritics when
studying a maritime IRP. A later effort to incorporate rolling horizon matheuristics was performed
by Agra et al. (2014). The authors developed a mathematical programming formulation for the
problem and a heuristic algorithm, which uses a rolling horizon decomposition, local branching,
and a feasibility pump procedure. The relevance of RHH is high for maritime IRPs as these natu-
rally involve long planning horizons. However, a handful of studies have used RHH when solving
basic IRPs (Coelho et al., 2014a).

Many of the contributions documented above tend to reduce the long-term IRP into a more
basic form. In doing so, they neglect the long-term impact of such decisions, and are in principle,
still dealing with short planning horizons.

2.2. IRPs with profit maximization

A key characteristic of the class of IRPs with profit maximization is that the set of customers
to be served and the demands to be satisfied are not necessarily known in advance. Therefore, a
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decision-maker must identify the customers to serve and determine their fill rates to maximize the
profit. Revenue is usually associated with each customer to quantify their attractiveness. In other
settings, a penalty cost for lost sales is attributed to each customer.

Several variations of this problem have been addressed in the literature. They respond to chal-
lenges faced by a logistic provider. In what follows, we provide a classification perspective that may
help identify the relevance of IRPs with profit maximization models.

• Lost sales. For a supplier with limited resources (e.g., production, fleet), it may be impossible
to meet customer demands. Only a proportion of demands can be fulfilled, while the remaining
part is treated as lost sales and not backlogged. These shortages are discouraged by a penalty
term specific to each customer. The objective is to choose a distribution policy that maximizes
the profits (revenues minus costs). Chien et al. (1989) proposed a day-to-day version of the prob-
lem where inventory holding costs are null. The solution approach breaks down the problem
into two subproblems: an inventory allocation subproblem and a combined customer assignment
and vehicle routing subproblem, both of which were solved to optimality. Numerous contribu-
tions have drawn inspiration from the seminal work of Chien et al. (1989) and successfully in-
corporated lost sales within profit maximization models, for example, Goyal and Gunasekaran
(1995), Al-Ameri et al. (2008), Kleywegt et al. (2002), Kleywegt et al. (2004), and Liu and
Lee (2011).

• Customer selection. In some applications, the supplier must select a subset of customers from
those available in the market. For each selected customer, the supplier gets a revenue, while no
penalty is incurred from those not selected. The objective is to maximize the sum of revenues
minus operations costs. These variants are often encountered in the IRP’s maritime applications,
where a shipping company has a mix of contracted cargoes (spot) and optional cargoes. Hemmati
et al. (2015) described a profit maximization IRP that arises in tramp shipping. In that problem,
revenue is collected from mandatory cargoes as well as optional cargoes. A two-phase heuristic
was proposed to compute routes and schedules for the shipping company. Akin models with
profit maximization are found in Grønhaug et al. (2010), Stålhane et al. (2014), Papageorgiou
et al. (2014a), and Andersson et al. (2015).

• Maximum collection. The counterpart of delivery to customers is the collection from customers,
where goods are picked-up from selective points to the depot based on profitability. The ob-
jective is to select pick-up points and quantities that maximize total profits. Montagné et al.
(2019) introduced an application of this problem for waste collection. The developed approach
relies on linear programming to build delivery schedules, while service routes are computed
heuristically.

• Variable production rates. Some IRPs involve decisions regarding the production rate at the sup-
plier. Solutions to these planning problems specify how much to produce, how much to sell, and
how to combine deliveries within vehicle routes to maximize profits. The problem is not to be
confounded with the production routing problem (PRP), which incorporates as well as lot-sizing
decisions. Papageorgiou et al. (2014b) described a maritime variant of this problem, where a sin-
gle product can be loaded from a set of production ports and discharged in specified consumption
ports. An arc-flow based formulation was proposed to model the problem, while a branch-and-
cut algorithm was developed to solve it. Similar problems were also considered by Grønhaug and
Christiansen (2009) and Papageorgiou et al. (2014b, 2015).
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3. Mathematical formulations for multiple classes of the IRP

In the following, we describe mathematical formulations for four classes of the IRP. The considered
models are adapted from Zaitseva et al. (2018) and correspond to specific market structures within
the IRP.

Although the models may seem incompatible, they can all be used for the same application, which
involves a price-setting company whose unit production cost varies with the production rate, and
that can choose not to meet the available demand at the cost of a penalty and lost sales. If prices
and production quantities are decided a priori, and it is assumed that all demands must be met,
decisions can be made using a cost minimization model. If only prices and production quantities
are decided a priori, a profit maximization model with lost sales can be used to make decisions.
If only deciding the production rates a priori, a model for profit maximization under monopoly
can be used. Finally, if only deciding prices a priori, a model for profit maximization with variable
production costs can be used. These four models are now described in turn. For either model, its
performance can be evaluated under the assumption that the decisions can be converted into a final
profit over the long term.

3.1. Problem definition, terminology, and notation

The inventory routing problem considered in this paper is formally defined as follows. Let G =
(V, A) be an undirected graph where V = {0, 1, . . . , n} is the vertex set, and A = {(i, j) : i, j ∈ V, i ≤
j} is the arc set, all defined over a finite and discrete time horizon H . Vertex 0 represents the depot,
whereas the set V ′ = {1, . . . , n} corresponds to n customers. Let T = {1, . . . , H} be a set of time
periods. A fleet of m identical vehicles of capacity Q are stationed at the depot. At each time period
t ∈ T , a quantity r0t is produced by the supplier and rit units are demanded by customer i ∈ V ′.
Production costs are represented by the unit cost function f (r0t ). A starting inventory level I0

i and a
maximum inventory level Ui are given for each i ∈ V . The inventory levels cannot be negative. That
is, stock-out is not allowed. A holding cost is charged both at the supplier and at the customers.
The unit inventory cost at i ∈ V is denoted by hi.

The problem is to determine, at each time period t ∈ T and for each customer i ∈ V ′, a shipped
quantity, and a traveled route, providing that:

1. Each customer i ∈ V ′ is visited at most once.
2. Each vehicle performs at most one tour, delivering at most Q units, visiting at most L customers,

and starting and ending at the depot 0.
2. Inventory levels at both the supplier and customers are nonnegative and must not exceed a

maximum holding capacity.

For modeling purposes, we use a path-flow formulation where K = {1, 2, . . . , k} is the set of
routes that satisfy the problem requirements. These routes are enumerated a priori and fed into the
formulation. We first generate tours by representing them as random combinations (X0, . . . , Xk)
of (0, . . . , n), where each tour contains at most L customers. Then, a travelling salesman problem
(TSP) is solved for each tour to obtain the optimal sequencing of nodes. A symmetric cost matrix ci j
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is defined on A. The cost of a route k ∈ K, denoted by ck, is computed using the arc costs ci j . Strictly
speaking, given a route k that successionally visits vertices i0, i1, . . . , ip, 0 < p ≤ L, its associated
cost is given by

ck =
p−1∑
j=0

ci j i j+1 .

Let aik be a binary coefficient equal to 1 if and only if customer i ∈ V ′ belongs to route k. Define
ykt, a binary variable equal to 1 if and only if a route k is used in the optimal solution in period
t ∈ T , and 0 otherwise. Continuous variables xikt represent the quantity of product delivered to
each customer i ∈ V ′ at time t ∈ T by means of route k ∈ K. The inventory levels at the end of
period t at the supplier and customers are described by I0t and Iit, respectively.

3.2. Cost minimization

In this formulation, transportation and inventory holding costs are minimized. We deliberately
omit production costs as they are assumed to be fixed. Accordingly, the cost minimization variant
can be stated as follows:

Minimize
∑
k∈K

∑
t∈T

ckykt +
∑
i∈V

∑
t∈T

hiIit, (1.1)

subject to
∑
k∈K

ykt ≤ m, t ∈ T, (1.2)

xikt ≤ Qaikykt, i ∈ V ′, k ∈ K, t ∈ T, (1.3)

xikt ≤ Ui − Ii,t−1, i ∈ V ′, t ∈ T, k ∈ K, (1.4)∑
i∈V

xikt ≤ Qykt, t ∈ T, k ∈ K, (1.5)

Iit = Ii,t−1 + xikt − rit, i ∈ V ′, t ∈ T, k ∈ K, (1.6)

I0,t = I0,t−1 + r0t −
∑
i∈V ′

xikt, t ∈ T, k ∈ K, (1.7)

Ii0 = I0
i , i ∈ V, (1.8)

0 ≤ I0,t−1 + r0t ≤ U0, t ∈ T, (1.9)

Iit ≥ 0, i ∈ V, t ∈ T, (1.10)

(x) positive, (1.11)

(y) binary. (1.12)
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The objective function (1.1) is to minimize the sum of all costs incurred by transportation, in-
ventory holding at customers, and inventory holding at the supplier. Constraints (1.2) restrict the
maximum number of routes in a solution to the number of available vehicles while constraints (1.3)
ensure that a customer is visited at most once during each period, t ∈ T . Constraints (1.4) establish
that if a customer is visited, the quantity delivered is such that the maximum inventory level is not
exceeded. The vehicle capacity constraints are provided by constraints (1.5). Furthermore, inven-
tory balance for customer nodes, defined at the end of each period, is ensured in constraints (1.6).
Inventory levels at the supplier are represented by (1.7). The initial conditions for the inventory
levels are given by constraints (1.8), and the inventory bounds are enforced by constraints (1.9) and
(1.10). Finally, constraints (1.11) and (1.12) set the domains for the decision variables. Given inte-
ger values of x satisfying constraints (1.6) and (1.7), constraints (1.6) and (1.7) necessarily induce
the I−variables to be integer-valued.

3.3. Profit maximization with lost sales

The seller can earn a sales revenue of p0 per unit of product consumed by customer i ∈ V ′ in period
t ∈ T , which is the unit price for that customer. Let bi a penalty for each unit of unsatisfied demand,
while f (r0,t ) is a function that approximates the unit production cost. We also introduce a new
decision variable wit that represents the proportional amount of product consumed by customer
i ∈ V ′ at period t ∈ T . Accordingly, the profit maximization IRP with lost sales becomes

Maximize
∑
i∈V ′

∑
t∈T

p0wit −
∑
k∈K

∑
t∈T

ckykt −
∑
i∈V

∑
t∈T

hiIit

−
∑
i∈V ′

∑
t∈T

bi(rit − wit ) −
∑
t∈T

f (r0,t )r0,t, (2.1)

subject to

(1.2)−(1.5), (1.7)−(1.10),

Iit = Ii,t−1 +
∑
k∈K

xikt − wit, i ∈ V ′, t ∈ T, (2.2)

0 ≤ wit ≤ rit, i ∈ V ′, t ∈ T, (2.3)

(x, w) positive, (2.4)

(y) binary. (2.5)

The objective function (2.1) maximizes the earned net profit, which is equal to the total revenues
minus transportation, inventory holding, and production costs as well as a penalty term that is in-
duced by unsatisfied demands. Constraints (2.2) are inventory conservation constraints at customer
i ∈ V , linking the inventory of period t with that of period t − 1, plus any deliveries minus the con-
sumption wit. Constraints (2.3) guarantee for each customer i ∈ V that the consumed quantity of
products in period t does not exceed the preset demand rit. The routing constraints and inventory
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conservation constraints at supplier are identical to (1.2)–(1.5) and (1.7)–(1.10). Finally, constraints
(2.4) and (2.5) define the integrality conditions of variables.

3.4. Profit maximization under monopoly

We introduce the pricing variable pi, representing the revenue per unit consumed at customer i ∈ V ′.
There is a maximum price pmax, and the demand, rit = g(pi), is a decreasing function of the price.

Proposition 1. A demand curve in a monopolistic market can be a linear downward-sloping curve. To
sell more, the seller must decrease the price; when reducing the sales, the prices can increase (Krugman
and Wells, 2015, Chapter 13). Accordingly, it can be approximated by a function of the type g(pi) =
u1 pi + u2, i ∈ V , where u1, u2 ∈ R, and u2 have strictly negative values.

Using these definitions, we can formulate the monopolistic variant of the IRP as follows.

Maximize
∑
i∈V ′

∑
t∈T

piwit −
∑
k∈K

∑
t∈T

ckykt −
∑
i∈V

∑
t∈T

hiIit

−
∑
i∈V ′

∑
t∈T

bi(g(pi) − wit ) −
∑
t∈T

f (r0,t )r0,t, (3.1)

subject to

(1.2)−(1.5), (1.7)−(1.10), (2.2),

0 ≤ wit ≤ g(pi), i ∈ V ′, t ∈ T, (3.2)

0 ≤ pi ≤ pmax, i ∈ V ′, (3.3)

(x, w, p) positive, (3.4)

(y) binary. (3.5)

The objective function (3.1) is to maximize the total earned profits. Constraints (3.2) ensure that
the consumed amount of product by each customer i ∈ V ′ does not exceed the demand, rit = g(pi).
Constraints (3.3) ensure the restriction on the maximum allowed price, while (3.4) and (3.5) define
the integrality conditions for the variables. The remaining set of constraints are reproduced from
the previous model.

Remark 1. The objective function (3.1) contains a nonlinear term
∑

i∈V ′
∑

t∈T piwit, which is the
product of two variables (w) and (p). We emphasize that this term is nonseparable.

Proposition 2. We can derive an equivalent mixed-integer linear programming model for the IRP
under monopoly by applying an approximating piecewise linear function, upon the transformation of
the nonseparable function.

The linearization process, as well as the resulting linear model, are described in Appendix A.
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3.5. Profit maximization with variable productions costs

We introduce the variable R0,t representing the production rate in time period t ∈ T , and the total
production cost f (R0,t ) as a function of the production rate.

Proposition 3. The average total cost is equal to the sum of the average fixed cost and average variable
cost. It has a U-shape because these two components vary in opposite directions when production
increases (see Krugman and Wells, 2015, Chapter 11). Thus, the average total cost function can be
approximated by a function of the type f (R0,t ) = u′

1R0,t + u′
3

R0,t
+ u′

2, t ∈ T , where u′
1, u′

2, and u′
3 ∈

R
+ \ {0}.
The profit maximization variant with variable production costs describes as follows:

Maximize
∑
i∈V ′

∑
t∈T

p0wit −
∑
k∈K

∑
t∈T

ckykt −
∑
i∈V

∑
t∈T

hiIit

−
∑
i∈V ′

∑
t∈T

bi(rit − wit ) −
∑
t∈T

f (R0,t )R0,t, (4.1)

subject to

(1.2)−(1.6), (1.8), (2.2)−(2.3),

I0,t = I0,t−1 + R0,t −
∑
i∈V ′

xikt, t ∈ T, k ∈ K, (4.2)

0 ≤ I0,t−1 + R0,t ≤ U0, t ∈ T, (4.3)

0 ≤ R0,t ≤ rmax, t ∈ T, (4.4)

(x, w, R) positive, (4.5)

(y) binary. (4.6)

The objective function (4.1) maximizes the total revenue minus transportation, inventory hold-
ing, production costs, and the penalty term for lost sales. Constraints (4.2) define the inventory at
the supplier, while Constraints (4.3) prohibit stock-outs at the supplier. Constraints (4.4) require
that the total produced amount does not exceed the production capacity. Constraints (4.5) and
(4.6) represent the logical restrictions. The remaining constraints are identical to those described in
the monopoly variant of the IRP.

Remark 2. The objective function (4.1) includes a quadratic term
∑

t∈T f (R0,t )R0,t that is equiva-
lent after factorization to

∑
t∈T u′

1R2
0,t + u′

2R0,t + u′
3.

Proposition 4. We can derive an equivalent linear model representation of the IRP with variable
production costs by applying an approximating piecewise linear function.

The linearization process and the linear counterpart of this problem are described in Appendix B.
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Fig. 1. Generic framework of the deterministic simulation.

4. Deterministic simulator for the IRP

In this section, we address the issue of evaluating IRP decisions made using the optimization models
over a longer time horizon, so that the consequences of end-of-horizon effects can be measured.
For this purpose, we implement a deterministic simulator that embeds decisions made from the
optimization model, which is updated with fixed time increments. Fagerholt et al. (2010) formerly
investigated the idea of combining simulation and optimization similarly in the context of strategic
maritime planning. The simulator developed in this paper is built on three phases: an optimization
stage, an update procedure, and a time advance mechanism. Figure 1 illustrates the general steps of
the simulation framework.

The procedure operates by initializing the system state, as well as the simulation clock. The sys-
tem state contains all available information about customer demands, starting inventory levels, and
pricing (i.e., input parameters of the mathematical model). The optimization stage relies on solving
an IRP model whose planning horizon H and start date t are specified by the simulation clock.
Whenever the optimization model is invoked, distribution, production, and pricing decisions, over
H periods are determined, out of which the decisions for the first �t periods are implemented. The
system state is updated afterward to account for these changes, and performance metrics, such as
incurred costs and profits, are recorded. Next, the simulation clock is advanced with a fixed time
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Fig. 2. Illustration of the time advance mechanism.

increment (�t ≤ H), the current time (t) is updated, and the procedure is reiterated. The simulation
continues until reaching the end of the simulation horizon at S. Figure 2 describes the time advance
mechanism between iterations. At each time instant (t), information about customers’ demand is
known for the next H periods.

5. Computational study

In this section, we present computational experiments that were carried out on data instances of
the IRP adopted from Archetti et al. (2007). All runs were made on a PC equipped with an Intel
Core i5-6300U CPU running at i7-8700, with 16GB of RAM. The mathematical models described
in Section 3 and the simulation framework described in Section 4 were coded in AMPL language
and compiled with CPLEX Optimization Studio 12.8 using its default setting.

5.1. Description of problem instances

The data set comprises nine generic instances, hereafter referred to as Ins_n_L, where n corre-
sponds to the number of customers, n ∈ {5, 10, 15}, and L represents the maximum route length,
L ∈ {2, 3, 4}. A fleet of m = 3 identical vehicles is used in each instance. Data related to the sup-
plier, customers, and vehicles’ capacities are kept as in Archetti et al. (2007). More specifically,
the production quantity rit consumed by a customer i ∈ V ′ at time t ∈ T is constant over time,
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and represented by an integer value in the interval [10,100]. Inventory holding costs are selected
in the interval [0.1,0.5]. For each of the nine instances, the planning horizon is varied in the range
H = 1, . . . , 8.

Parameter values for the four different models are set to correspond to the cost minimization case
with standard parameter values from the benchmark instances. Hence, the production function f is
given by f (r) = 5 × 10−4r + 3

r + 2, where the production rate r can be either stationary or variable.
The maximum production rate rmax was set equal to the sum of customers’ demands. Similarly,
the demand function g is defined by g(p) = −2.5p + 113, where the price limit pmax is equal to 41.
Given fixed demand values, the corresponding price can be calculated by the inverse function g−1.
The penalty term for unsatisfied demanded bi is a proportion of the price and is set to 0.2pi. In the
particular case of monopoly, penalty values were fixed a priori and were given values equal to those
obtained in the other models.

Five grid points are used for the piece-wise linear transformation of the objective function in the
monopoly case. Likewise, five grid points are selected to transform the nonlinear terms in the IRP
model with variable production costs. Further empirical studies can be carried out to determine the
optimal number of grid points; however, this is beyond this paper’s scope. The simulation length
(S) was set to 30 days, and jumps of �t = 1 day in time are used to reproduce a real planning
situation and provide maximum flexibility for re-planning. It implies that for each simulation, 30
calculations of IRP decisions are conducted. A time limit of 30 minutes is enforced in each step of
the simulation, providing an overall time limit of approximately 15 hours per simulation run.

5.2. Performance of the cost minimization model

In this section, we discuss several experiments to test the long-term quality of policies produced by
a cost minimization variant of the IRP. We examine the effect of varying the length of the planning
horizon on the performance of IRP decisions. Figure 3 presents a summary of the results grouped
by the number of customers. The horizontal axis represents the planning horizon, and the vertical
axis represents recorded profits. A significant performance difference appears between one-period
and eight-period tests. We see also that the profits obtained are, in general, increasing with the
length of the planning horizon. Thus, there is evidence that a potential gain can be achieved by
selecting longer planning horizons.

When planning horizons are short and the maximum route lengths low, the end of horizon ef-
fects can lead to simulations where the encountered IRPs do not have any feasible solutions. This
happens when L = 2 and n = 15, as well as for L = 2 and n = 10 with H = 1, and these results are
omitted in Fig. 3. For more detailed results, the reader can refer to Tables C.1–C.3 in Appendix C.

5.3. Performance of the profit maximization model with lost sales

In Fig. 4, we present the results of tests conducted for the profit maximization case with lost sales.
Again, higher profits are obtained for tests with longer planning horizons. In all tests, we were
able to derive feasible decisions for the IRP with profit maximization. In contrast to the cost
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(a) (b)

(c)

Fig. 3. Effect of varying the length of the planning horizon for the cost minimization case.

minimization variant, allowing lost sales induces more flexibility in the IRP solutions, thereby
avoiding stock-outs at customers at the cost of added complexity.

Detailed experimental results are listed in Tables C.4–C.6 in Appendix C. They show high inven-
tory costs at the supplier, low transportation costs, and low inventory holding costs at customers
for reduced planning horizons. These cost patterns indicate near-empty inventories at customers;
meanwhile, inventories are full at the supplier. Also, high costs of lost sales are recorded for short
planning horizons; however, these costs decrease when the IRP is solved with longer planning
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(a) (b)

(c)

Fig. 4. Effect of varying the length of the planning horizon for the case of profit maximization with lost sales.

horizons. A natural explanation is that short term decision involves delivering less to customers.
In the short run, it is more profitable to pay the penalty for unsatisfied customers rather than mo-
bilizing resources.

5.4. Performance of the profit maximization model under monopoly

Figure 5 summarizes the results of experiments conducted for the case of a price-setting company.
The corresponding mathematical model is harder to solve, and in 50% of the simulations, optimality

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies



3010 M.B. Ahmed et al. / Intl. Trans. in Op. Res. 29 (2022) 2995–3030

(a) (b)

(c)

Fig. 5. Effect of varying the length of the planning horizon for the monopoly case.

cannot be proven within the 30-minute time limit for all the individual IRP instances encountered.
Furthermore, the gap to the dual bound can be up to 62% on average for the hardest instances.
Instances that yield an average gap higher than 1% are highlighted by using a white fill color in
Fig. 5. These large optimality gaps affect the slope of the profit function, which behaves differently
from the other models. Better results are sometimes recorded for shorter planning horizons, where
better solutions can be found for the instances encountered. This effect is most apparent for the
instances with n = 15 customers.
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For a price-setting company, the customer demands can be decreased by increasing the unit
price. This does happen in the test cases examined here, with the consequence that inventories
at the supplier become almost full. Besides, the cost of lost sales can be higher when using the
monopoly model. This occurs when the solution implies a price and a corresponding demand such
that the demand cannot be completely satisfied. For instance, the cost of lost sales is higher when
the planning horizon or the route length is short. In this case, the inventory levels at the supplier
may become very high. The results show that substantial savings can be achieved when the planning
horizon is longer. The savings are mainly due to a reduction in transportation costs. A more limited
reduction is owed to a decrease in costs at the supplier. The detailed cost results are shown in
Tables C.7–C.9 in Appendix C.

5.5. Performance of the profit maximization model with variable production costs

For the final IRP-variant, with variable production costs, almost all IRPs encountered were solved
to optimality, except in 11 of the simulations. For these simulations, the maximum recorded opti-
mality gap was 1.56%. The single simulation with an average optimality gap above 1% is highlighted
in Fig. 6 using a white fill color. It appears that a stable performance is obtained once the length of
the planning horizon reaches three periods.

Low inventory costs are incurred at the supplier. As the production rates can be adjusted, the
model forces the company to produce no more than necessary. In contrast, inventory costs at cus-
tomers, respectively, inventory levels, are high. If the planning horizon is longer, the optimal deci-
sions involve increasing the production rate in early periods, leading to a lower unit production cost
and, eventually, further savings. A longer horizon offers more possibilities for the coordination of
production and transportation. Detailed results are presented in Tables C.10–C.12 in Appendix C.

5.6. Comparing the different classes of the IRP

Given the results provided in the previous section, we assess the long-term gain of using profit max-
imization in the IRP, rather than deciding prices and production rates a priori while not allowing
lost sales. We make the following comparisons:

• Cost minimization versus profit maximization with lost sales. The profit maximization model with
lost sales performs better than or equal to the cost minimization variant in only 47 out of 72
simulations. Allowing lost sales leaves room for flexibility in planning and induces substantial
savings in transportation and inventory holding costs. These differences are considerable when
route lengths are short, in which case allowing lost sales results in superior profits. When the route
length is very restrictive, it is more important to select the customers to be served wisely. However,
when the planning horizon is longer, the differences in quality between the two policies tend to
be smaller. For H = 6, the cost minimization model leads to 0.45% higher profits than the lost
sales model. From a purely theoretical perspective, the model with lost sales should perform at
least as well as the cost minimization model: the only difference is increased flexibility through the
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(c)

Fig. 6. Effect of varying the length of the planning horizon for the variable production costs case.

possibility of losing sales. This strongly suggests that the lost sales model’s performance depends
on having an even longer planning horizon than tested in this research.

• Cost minimization versus monopoly. When compared to the cost minimization variant, the
monopoly variant records the overall best profit values. It outperforms the former in 91.6%
of the simulations, while the average improvement in profit is 12.9%. The difference in quality
reaches its peak with medium length planning horizons (generally H = 3, or H = 4). However,
the monopoly model is too complex to allow optimal solutions to be found within the allotted
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Table 1
Performance comparison of profit maximization models with regard to a baseline cost minimization test case with H = 3

(%) improvement (%) improvement (%) improvement with
n L Baseline profit with lost sales with monopoly variable production costs

5 2 91,955 5.1 28.7 21.0
5 3 101,250 1.6 17.1 7.6
5 4 103,090 −1.1 14.8 8.1

10 2 187,839 5.6 16.2 18.8
10 3 202,463 −0.4 10.9 11.9
10 4 203,776 −0.7 11.8 10.9

15 2 * * * *

15 3 336,502 0.0 17.2 9.0
15 4 340,586 0.0 17.9 9.0

∗This setting led to infeasible IRP instances.

running time. This means that for test cases with longer planning horizons and more customers,
the potential improvement from allowing prices to be optimized is likely underestimated.

• Cost minimization versus variable production costs. The results demonstrate that the variable pro-
duction costs policy consistently outperforms the cost minimization policy. Deciding about the
production rate leads to lower unit production costs and lower inventory holding costs. Further-
more, the differences in quality appear to increase with the length of the planning horizon. Plan-
ning over longer planning horizons leads to better coordination of production and distribution.
However, the variable production cost model produces solutions with almost empty inventories at
the supplier, exemplifying an end-of-horizon effect that increases the risk of making bad decisions
unless the planning horizon is sufficiently long.

Another way to compare the performance of the different IRP policies is to compute their relative
gap. Table 1 shows the performance ratio (Px − Pc)/Pc, where Px refers to the profit recorded by a
profit maximization model, and Pc represent the profit obtained by the cost minimization model.
All of them are computed for a baseline test case with H = 3. The table shows that substantial
savings can be achieved by adopting different profit maximization policies for the IRP. We also
observe that increasing the planning horizon has a more pronounced effect for instances with small
number of customers than in instances with large number of customers.

Our findings can be juxtaposed with those obtained by Zaitseva et al. (2018), where the authors
conducted two experiments using a single planning instant to evaluate the quality of the different
profit maximization policies. The two instances solved varied in terms of the length of the planning
horizon, and the number of customers. Their results indicated that adopting a profit maximization
policy for a price-setting company generates up to 283% in increased profits for a 5-customer in-
stance, and up to 96% in increased profits for a 10-customer instance. Based on our simulations,
these results are highly exaggerated, with more appropriate estimates being less than 15% and 8%
profit increases, respectively. The discrepancy is due to the myopic nature of the IRP models: They
merely consider the immediate gain, rather than anticipate the future effects taken into account
through the simulations.
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Table 2
Summary of cost minimization results for eight tests with n = 5 and no limit on the maximum route length

H CPU(s) %Gap TC VC IHSU IHC TP

1 3.1 0.0 50,295 30,743 6950 373 97,281
2 4.0 0.0 52,081 32,678 5657 1518 95,495
3 6.1 0.0 44,486 25,089 5614 1554 103,090
4 11.5 0.0 41,523 22,098 5875 1321 106,053
5 17.3 0.0 42,974 23,535 5825 1386 104,602
6 32.7 0.0 42,130 22,711 5846 1344 105,446
7 57.2 0.0 41,659 22,220 5713 1497.67 105,917
8 73.4 0.0 41,002 21,556 5933 1284 106,574

Table 3
Summary of profit maximization with lost sales results for eight tests with n = 5 and no limit on the maximum route
length

H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

1 4.2 0.0 50,516 30,620 7122 355 191 96,107
2 8.5 0.0 52,081 32,678 5657 1518 0 95,495
3 26.9 0.0 44,591 24,912 5694 1564 192 102,025
4 55.3 0.0 40,929 21,498 5849 1352 0 106,647
5 192.4 0.0 43,233 23,566 5978 1339 122 103,731
6 328.3 0.0 41,272 21,849 5873 1321 0 106,304
7 535.8 0.0 41,168 21,717 5728.2 1494 0 106,408
8 1243.1 0.0 41,001 21,556 5937 1279 0 106,575

Table 4
Summary of profit maximization under monopoly results for eight tests with n = 5 and no limit on the maximum route
length

H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

1 4.8 0.00 54,568 39,724 2582 33 0 117,634
2 14.8 0.00 52,751 37,676 2171 513 162 118,738
3 53.7 0.00 51,889 37,243 1602 645 170 118,982
4 235.5 0.00 49,567 34,775 1518 828 217 120,456
5 1733.7 0.00 49,804 35,002 1521 944 109 120,545
6 8503.2 0.00 48,080 32,900 1582 1059 310 121,289
7 42,790.3 0.32 49,206 34,075 1541 1140 222 120,552
8 54,286.4 0.99 49,541 34,345 1640 1139 187 120,286

5.7. Investigating the impact of route limit constraints

In the results so far, it can be seen that increasing the maximum route length from three to four
visits has a relatively small effect on the final profits. In this section, we examine how IRP decisions
change when the route length limitations are lifted completely. We run new tests for instances with
five customers with a full enumeration of routes. Tables 2–5 present results of tests conducted for
the unconstrained versions of our IRP models.
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Table 5
Summary of profit maximization with variable production costs results for eight tests with n = 5 and no limit on the
maximum route length

H CPU(s) %Gap TC VC IHSU IHC PC Lost sales TP

1 2.8 0.0 47,218 36,248 364 48 10,468 90 99,909
2 3.8 0.0 35,992 24,605 248 423 10,393 323 109,971
3 7.609 0.0 36,116 24,795 223 511 10,576 12 111,403
4 9.7 0.0 35,016 23,442 284 657 10,633 0 112,560
5 19.5 0.0 35,216 23,599 336 648 10,630 4 112,338
6 56.8 0.0 33,825 22,222 278 693 10,632 0 113,751
7 108 0.0 34,049 22,253 321 805 10,615 55 113,252
8 294 0.0 34,442 22,565 324 848 10,705 0 113,134

Observe that 15 out of the 32 unconstrained tests record higher profits than tests where the
maximum number of stops is enforced. An increase in the route size results in lower transportation
costs and an increase in profits in consequence. We also observe that the gain earned by using a
maximum route size is relatively small in terms of the total profits. The average increase in profit
is 0.09% for the basic cost minimization model, 0.15% for the profit maximization model with
lost sales, 0.23% for the profit maximization model with monopoly, and 0.00% for the variable
production costs model.

Interestingly, for 17 tests out of 32, it seems beneficial to enforce route limit constraint. The
explanation may be simple. When only a few customers are assigned to a vehicle, they can be served
with higher quantities. In the longer run, this translates into fewer visits, and subsequently, lower
transportation costs.

6. Concluding remarks

The contribution of this paper is twofold. First, we investigated the consequences of explic-
itly maximizing profits rather than minimizing costs in an IRP setting. Four IRP models were
implemented to take into account different market conditions: classic cost minimization, profit
maximization with lost sales, profit maximization under monopoly, and profit maximization
with variable production costs. The two latter variants include nonlinear expressions, which are
linearized using a piece-wise linear transformation. Second, we examined the effect of vary-
ing the planning horizon’s length on the quality of the decisions derived by solving an IRP
model. In this regard, we developed a deterministic simulator that calculates the long-term ef-
fects of making IRP decisions over short planning horizons. In doing so, we diverge from the
typical literature on the IRP, which tends to focus on increasing the problem size in terms of
the number of nodes, while ignoring the consequences of considering an increased planning
horizon.

Extensive computational experiments show that the length of the planning horizon can signif-
icantly affect decision-making performance. By considering planning horizons for up to eight pe-
riods, we showed that end-of- horizon effects could be mitigated. However, in some cases, it is
unclear how many periods are required to achieve stable performance. The obtained results also
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demonstrate the viability of considering profit maximization within an IRP setting, particularly
when the company can adjust its production volumes.

Several research avenues appear promising to enhance the proposed study. The consideration
of larger test instances is one such avenue. A different one would take into account even longer
planning horizons. A third promising research avenue is the utilization of heuristic mechanisms to
derive IRP decisions. The exploration of this latter direction could provide a significant impetuous
to solve IRP models with long planning horizons.
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Appendix A: Linearization process of IRP model under monopoly

To enhance the solvability of the proposed nonlinear IRP under monopoly, we first apply a trans-
formation technique to reduce the model to a separable form. Next, we use a piecewise linear ap-
proximation to derive an equivalent linear formulation. We start by recalling the nonseparable term
in the objective (3.1) needed throughout:

Furthermore, we define the ensuing substitutions:

αit = 1
2

(pi + wit ), i ∈ V ′, t ∈ T, (A.1)

βit = 1
2

(pi − wit ), i ∈ V ′, t ∈ T, (A.2)

αit, βit ≥ 0, i ∈ V ′, t ∈ T. (A.3)

Without loss of generality and for simplicity of description, we assume that the domains for
(z) and (p) are used to define the auxiliary variables (α) and (β). Strictly speaking, given [0, pmax],
respectively, [0, Q], the domain of (p), respectively, of (z), then (α) and (β) are defined over [lα, uα],
respectively, [lβ, uβ ], such that

[lα, uα] =
[

0,
1
2

(pmax + Q)
]

, (A.4)

[lα, uα] =
[

0,
1
2

(pmax − Q)
]

. (A.5)

We note the product pizit can be replaced by α2
it − β2

it, as long as the domains are preserved.
Using the identities (A.1) and (A.2), we obtain

∑
i∈V ′

∑
t∈T

piwit =
∑
i∈V ′

∑
t∈T

(α2
it − β2

it ). (A.6)

The expression (A.6) contains now nonlinear functions α2
it and β2

it of single variables and is sep-
arable.

The separable problem defined in (A.6) can be approximated into a linear form by replacing each
nonlinear function with a piecewise linear approximation. For illustration, consider the function θ

defined by θ (μ) = μ2. In general, the function θ can be approximated for any finite interval [a, b]
via the grid points μ1, . . . , μn by the piecewise linear function θ̂

θ̂ (μ) =
n∑

j=1

λ jθ (μ j ),
j∑

j=1

λ j = 1; λ j ≥ 0, j = 1, . . . , n, (A.7)

where at most two λ j-variables are positive, and they must be adjacent. This condition can be
modeled using binary variables s j for j = 1, . . . , n − 1 (where s j = 1 if μ j ≤ μ ≤ μ j+1 and s j = 0
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otherwise) and the constraints:

λ1 ≤ s1,

λi ≤ s j−1 + s j, j = 1, . . . , n − 1,

λn ≤ sn−1,

n−1∑
j=1

s j = 1,

s ∈ [0, 1].

This set of variables and constraints represents a special-ordered set of type 2 (SOS 2), and this
representation is called the λ-form approximation (Bazaraa et al., 2005). In many modern MILP
solvers, it is possible to declare special ordered sets explicitly.

Using these definitions, we introduce now the grid points α̂it j for i ∈ V ′, t ∈ T and j = 1, . . . , nα,
where α̂,1 = 0 and α̂it,nα

= 1
2 (pmax + Q). Hence, the therm α2

it could be replaced for each i ∈ V ′, t ∈
T by its linear approximation

α2
it =

nα∑
j=1

λα
it jα̂

2
it j, i ∈ V ′, t ∈ T, (A.8)

αit =
nα∑
j=1

λα
it jα̂it j, i ∈ V ′, t ∈ T, (A.9)

nα∑
j=1

λα
it j = 1, i ∈ V ′, t ∈ T, (A.10)

λα
it j ≥ 0, j = 1, . . . , nα, i ∈ V ′, t ∈ T. (A.11)

Similarly, we can derive a linear representation of β2
it using the grid points β̂it j for i ∈ V ′, t ∈ T ,

and j = 1, . . . , nβ , where β̂,1 = 0 and β̂it,nβ
= 1

2 (pmax − Q). Hence, the corresponding linear approx-
imation is described by

β2
it =

nβ∑
j=1

λ
β

it jβ̂
2
it j, i ∈ V ′, t ∈ T, (A.12)

βit =
nβ∑
j=1

λ
β

it jβ̂it j, i ∈ V ′, t ∈ T, (A.13)

nβ∑
j=1

λ
β

it j = 1, i ∈ V ′, t ∈ T (A.14)

λ
β

it j ≥ 0, j = 1, . . . , nβ, i ∈ V ′, t ∈ T. (A.15)
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Bazaraa et al. (2005) maintain that the SOS constraints become redundant when minimizing a
strictly convex function. Hence, the ones associated with the β-variables can be omitted, as we are
maximizing the negation of a convex function (

∑
i∈V ′

∑
t∈T (−β2

it )). Finally, by using the forego-
ing definitions, the IRP under monopoly can be restated in an equivalent compact linear form as
follows.

Maximize
nα∑
j=1

λα
it jα̂

2
it j +

nβ∑
j=1

λ
β

it j β̂
2
it j −

∑
k∈K

∑
t∈T

ckykt

−
∑
i∈V

∑
t∈T

hiIit −
∑
i∈V ′

∑
t∈T

bi(g(pi) − wit ) −
∑
t∈T

f (r0,t )r0,t, (A.16)

subject to

(1.2)−(1.5), (1.7)−(1.10), (2.2), (3.2)−(3.5),

αit = 1
2

(pi + wit ), i ∈ V ′, t ∈ T, (A.17)

βit = 1
2

(pi − wit ), i ∈ V ′, t ∈ T, (A.18)

nα∑
j=1

λα
it jα̂it j = αit, i ∈ V ′, t ∈ T, (A.19)

nβ∑
j=1

λ
β

it j β̂it j = βit, i ∈ V ′, t ∈ T, (A.20)

nα∑
j=1

λα
it j = 1, i ∈ V ′, t ∈ T, (A.21)

nβ∑
j=1

λ
β

it j = 1, i ∈ V ′, t ∈ T (A.22)

λα
it j ≥ 0, j = 1, . . . , nα, i ∈ V ′, t ∈ T, (A.23)

λ
β

it j ≥ 0, j = 1, . . . , nβ, i ∈ V ′, t ∈ T, (A.24)

At most, two adjacent λα are nonzero. (A.25)

Appendix B: Linearization process of IRP model with variable production costs

To enhance the solvability of the IRP model with variable production costs, we propose to apply
a λ-form piecewise linear approximation to derive an equivalent linear model representation of
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this problem. Toward this end, first consider the objective function (4.1) that include the nonlinear
term:

∑
t∈T

u′
1R2

0,t + u′
2R0,t + u′

3.

Following Bazaraa et al. (2005), we first consider the interval of interest [0, rmax]. We next define
the grid points R̂ jt for j = 1, . . . , n, t ∈ T , where R̂1t = 0 and R̂nt = rmax. Accordingly, the functions
for which R0,t is an argument could be replaced by their linear approximations:

R2
0,t =

n∑
j=1

λ jtR̂2
jt, j = 1, . . . , n, t ∈ T, (B.1)

R0,t =
n∑

j=1

λ jtR̂ jt, j = 1, . . . , n, t ∈ T, (B.2)

n∑
j=1

λ jt = 1, t ∈ T, (B.3)

λ jt ≥ 0, j = 1, . . . , n, t ∈ T. (B.4)

This yields the following equivalent reformulation of the IRP problem with variable production
costs:

Maximize
∑
i∈V ′

∑
k∈K

∑
t∈T

p0cikt −
∑
k∈K

∑
t∈T

ckykt −
∑
i∈V

∑
t∈T

hiIit

−
∑
i∈V ′

∑
t∈T

bi(rit − wit ) −
n∑

j=1

(u′
1λ jtR̂2

jt + u′
2λ jtR̂ jt + u′

3), (B.5)

subject to

(1.2)−(1.6), (1.8), (2.2)−(2.3), (4.2)−(4.6),

R0,t =
n∑

j=1

λ jtR̂ jt, j = 1, . . . , n, t ∈ T, (B.6)

n∑
j=1

λ jt = 1, t ∈ T, (B.7)

λ jt ≥ 0, j = 1, . . . , n, t ∈ T. (B.8)
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The SOS 2 variables and constraints are deliberately omitted from this formulation as the adja-
cency restriction inherently holds (see Bazaraa et al., 2005).

Appendix C: Summary of computational results

In Tables C.1–C.3, we summarize the results obtained for the cost minimization model, where
columns 1 and 2 give the parameters of the test. In particular, the first column displays the se-
lected time horizon, and the second column shows the allowed length of vehicle routes. Columns
3–9 show the results. More specifically, column 3 provides the CPU time in seconds. Column 4
gives the average gap,

∑S
�t=1

ZD−Z
ZD , where Z refers to the cost of the incumbent solution at each

simulation instant �t, and ZD is the dual bound found within the time limit. Column 5 shows
the total incurred costs TC, and column 9 the total profits T P. Finally, columns 6–8 provides a
summary of transportation and inventory holding costs. We denote by VC, IHS, and IHC the
transportation costs, the inventory holding costs at the supplier, and the inventory holding costs
at customers.

Table C.1
Summary of cost minimization results for 24 tests with n = 5

L H CPU(s) %Gap TC VC IHSU IHC TP

2 1 2.5 0.0 49,612 30,107 6750 526 97,964
2 2 2.9 0.0 47,409 28,013 6080 1087 100,167
2 3 3.7 0.0 55,621 36,317 5554 1521 91,955
2 4 5.7 0.0 47,644 28,210 5964 1241 99,932
2 5 9.6 0.0 43,608 24,186 5627 1566 103,968
2 6 12.7 0.0 40,653 21,205 5969 1250 106,923
2 7 17.3 0.0 40,925 21,476 5717 1504 106,651
2 8 34.2 0.0 41,279 21,845 5883 1323 106,297

3 1 2.3 0.0 49,667 30,138 6853 447 97,909
3 2 3.2 0.0 47,283 27,903 5957 1195 100,293
3 3 6.8 0.0 46,326 26,951 5546 1600 101,250
3 4 9.2 0.0 42,808 23,388 5889 1302 104,768
3 5 14.0 0.0 43,395 23,992 5609 1566 104,181
3 6 28.9 0.0 42,724 23,298 5854 1343 104,852
3 7 39.4 0.0 41,157 21,723 5629 1576 106,419
3 8 76.5 0.0 41,864 22,441 5888 1613 105,712

4 1 2.9 0.0 49,730 30,191 6894 416 97,846
4 2 4.1 0.0 52,081 32,678 5657 1518 95,495
4 3 7.3 0.0 44,486 25,089 5614 1554 103,090
4 4 11.2 0.0 43,375 23,957 5879 1311 104,201
4 5 19.0 0.0 42,974 23,535 5825 1386 104,602
4 6 31.4 0.0 42,130 22,711 5846 1344 105,446
4 7 48.5 0.0 41,182 21,744 5637 1571 106,394
4 8 78.4 0.0 41,016 21,578 5961 1249 106,560
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Table C.2
Summary of cost minimization results for 24 tests with n = 10

L H CPU(s) %Gap TC VC IHSU IHC TP

2 1 * * * * * * *

2 2 5.9 0.00 126,226 59,074 19,037 3876 191,246
2 3 9.0 0.00 129,633 61,932 17,123 6340 187,839
2 4 11.9 0.00 119,465 52,463 19,260 3504 198,007
2 5 18.4 0.00 115,893 48,674 18,778 4203 201,579
2 6 33.5 0.00 113,421 46,099 18,397 4688 204,051
2 7 87.6 0.00 114,718 47,447 18,432 4601 202,754
2 8 129.4 0.00 114,341 47,084 18,676 4342 203,131

3 1 6.1 0.00 126,570 59,925 20,951 1455 190,902
3 2 14.3 0.00 119,131 52,220 19,093 3580 198,341
3 3 40.9 0.00 115,009 47,540 17,638 5593 202,463
3 4 182.5 0.00 113,777 46,529 18,518 4492 203,695
3 5 519.8 0.00 111,927 44,555 18,394 4739 205,545
3 6 3,511.1 0.00 110,360 43,037 18,596 4488 207,112
3 7 9,639.7 0.00 110,379 43,074 18,563 4504 207,093
3 8 22,920.6 0.03 109,950 42,672 18,692 4348 207,522

4 1 14.7 0.00 123,372 56,716 20,955 1463 194,100
4 2 74.1 0.00 122,724 55,995 18,018 4473 194,748
4 3 218.3 0.00 113,696 46,210 18,016 5232 203,776
4 4 1,374.6 0.00 112,490 45,224 18,483 4545 204,982
4 5 12,806.0 0.00 111,217 43,868 18,427 4683 206,255
4 6 34,445.3 0.17 110,892 43,641 18,453 4559 206,580
4 7 46,185.8 0.34 110,938 43,649 18,580 4471 206,534
4 8 50,676.8 0.51 109,360 42,056 18,615 5036 208,112

∗This setting led to infeasible IRP instances.

Table C.3
Summary of cost minimization results for 24 tests with n = 15

L H CPU(s) %Gap TC VC IHSU IHC TP

2 1 * * * * * * *

2 2 * * * * * * *

2 3 * * * * * * *

2 4 * * * * * * *

2 5 * * * * * * *

2 6 * * * * * * *

2 7 * * * * * * *

2 8 * * * * * * *

3 1 * * * * * * *

3 2 67.3 0.00 137,539 53,606 27,404 1492 337,565
3 3 139.6 0.00 138,602 50,120 22,885 5713 336,502
3 4 533.0 0.00 143,205 54,529 24,307 4486 331,899
3 5 1,089.6 0.00 140,446 51,768 24,038 4755 334,658
3 6 1,940.1 0.00 136,114 47,574 23,183 5473 338,990
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Table C.3
(Continued)

L H CPU(s) %Gap TC VC IHSU IHC TP

3 7 2,004.4 0.00 135,264 46,658 23,723 4999 339,840
3 8 3,986.0 0.00 136,114 47,451 23,368 5412 338,990

4 1 * * * * * * *

4 2 238.9 0.00 142,561 39,311 27,202 1337 332,543
4 3 566.5 0.00 13,316 46,129 22,686 6003 340,586
4 4 5,370.9 0.00 13,316 45,387 23,703 4953 341,178
4 5 12,277.6 0.01 132,856 44,226 23,540 5206 342,248
4 6 23,589.0 0.11 129,946 41,375 23,419 5268 345,158
4 7 40,719.8 0.20 131,142 42,537 23,507 5214 343,962
4 8 51,496.8 0.55 131,136 42,676 22,920 5656 343,968

∗This setting led to infeasible IRP instances.

Tables C.4–C.6 display the numerical results of the simulation study conducted for the case of
profit maximization with lost sales. Columns 1 and 2 give the parameters of the test, and columns
3–10 show the results. An additional column is included to accommodate the cost of lost sales.

Table C.4
Summary of profit maximization with lost sales results for 24 tests with n = 5

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

2 1 2.6 0.0 50,129 21,901 7377 1185 1528 96,461
2 2 3.9 0.0 45,097 25,694 6113 1062 0 102,479
2 3 8.0 0.0 50,924 31,613 5460 1622 0 96,652
2 4 21.5 0.0 48,507 29,074 5942 1262 0 99,069
2 5 37.6 0.0 43,463 23,901 5762 1489 82 103,705
2 6 59.5 0.0 41,131 21,693 5926 1283 0 106,445
2 7 140.1 0.0 41,078 21,646 5662 1541 0 106,498
2 8 438.6 0.0 40,815 21,362 5962 1262 0 106,761

3 1 2.5 0.0 48,898 29,175 6955 446 94 98,210
3 2 6.7 0.0 47,242 27,857 5979 1178 0 100,334
3 3 21.3 0.0 44,076 24,470 5791 1459 128 102,862
3 4 47.7 0.0 42,936 23,498 5929 1274 7 104,604
3 5 163.8 0.0 42,503 22,944 5758 1468 104 104,553
3 6 215.4 0.0 42,724 23,298 5854 1343 0 104,852
3 7 387.9 0.0 40,982 21,539 5648 1566 0 106,594
3 8 1132.1 0.0 41,850 22,428 5923 1271 0 105,726

4 1 4.8 0.0 50,720 30,841 7114 360 177 95,971
4 2 7.8 0.0 52,081 32,678 12,229 1518 0 95,495
4 3 28.9 0.0 44,492 24,746 5747 1546 225 101,961
4 4 66.3 0.0 41,802 22,375 5752 1446 0 105,774
4 5 168.9 0.0 43,211 23,544 5982 1334 122 103,753
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Table C.4
(Continued)

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

4 6 408.7 0.0 41,306 21,883 5867 1328 0 106,270
4 7 502.4 0.0 41,294 21,831 5617 1603 14 106,211
4 8 1352.7 0.0 41,001 21,556 5937 1279 0 106,575

Table C.5
Summary of profit maximization with lost sales results for 24 tests with n = 10

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

2 1 3.5 0.00 125,774 54,632 22,502 3174 1228 185,561
2 2 4.4 0.00 126,226 59,074 19,037 3876 0 191,246
2 3 10.1 0.00 119,118 51,663 18,042 5175 0 198,354
2 4 23.5 0.00 120,925 53,865 19,332 3473 17 196,463
2 5 41.5 0.00 115,429 48,149 18,686 4342 14 201,975
2 6 62.6 0.00 112,754 45,365 18,358 4793 0 204,718
2 7 115.0 0.00 116,020 48,682 18,689 4374 37 201,265
2 8 161.2 0.00 113,407 46,049 18,697 4409 13 204,001

3 1 5.5 0.00 126,506 59,752 21,034 1450 32 190,807
3 2 16.8 0.00 118,782 51,874 18,721 3949 0 198,690
3 3 67.3 0.00 115,582 47,983 18,020 5282 58 201,599
3 4 260.8 0.00 112,090 44,729 18,375 4745 2 205,372
3 5 779.7 0.00 110,825 43,443 18,440 4695 9 206,603
3 6 3247.8 0.00 110,914 43,083 18,798 4209 5 207,111
3 7 12,399.8 0.01 110,727 43,328 18,450 4688 23 206,631
3 8 32,858.9 0.07 110,693 43,439 18,691 4325 0 206,779

4 1 12.6 0.00 120,973 53,982 21,260 1403 90 196,050
4 2 97.8 0.00 119,669 52,851 18,031 4548 0 197,803
4 3 380.1 0.00 114,928 47,288 17,564 5811 27 202,411
4 4 2741.2 0.00 112,868 45,605 18,603 4418 4 204,584
4 5 13,578.3 0.00 110,679 43,329 18,644 4467 0 206,793
4 6 35,790.7 0.10 110,325 43,069 18,647 4370 0 207,147
4 7 46,276.0 0.19 110,862 43,483 18,497 4633 11 206,554
4 8 53,698.9 0.30 110,337 43,090 18,630 4379 0 207,135

Table C.6
Summary of profit maximization with lost sales results for 24 tests with n = 15

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

2 1 6.5 0.00 186,781 43,869 56,756 1996 24,277 166,940
2 2 7.7 0.00 155,526 49,250 34,974 3797 7621 281,473
2 3 15.3 0.00 143,099 49,528 25,915 5013 2758 318,214
2 4 17.0 0.00 141,294 48,917 25,117 5069 2307 322,274
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Table C.6
(Continued)

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

2 5 54.3 0.00 141,986 49,630 25,112 4540 2307 321,582
2 6 71.3 0.00 140,262 47,905 25,112 5053 2307 323,306
2 7 136.5 0.00 140,330 47,952 25,117 5069 2307 323,238
2 8 179.4 0.00 140,309 47,952 25,112 5053 2307 323,259

3 1 12.5 0.00 148,126 54,587 28,891 2846 1918 317,387
3 2 31.2 0.00 137,892 49,346 23,495 5167 0 337,212
3 3 142.7 0.00 138,602 50,120 22,885 5713 0 336,502
3 4 362.6 0.00 141,142 52,357 24,381 4473 47 333,728
3 5 538.1 0.00 137,871 49,164 23,990 4024 37 337,048
3 6 1,489.8 0.00 136,114 47,574 23,183 5473 0 338,990
3 7 2,497.8 0.00 135,434 46,830 23,628 5091 0 339,670
3 8 5,880.9 0.00 134,324 45,564 23,968 4904 4 340,760

4 1 66.6 0.00 144,019 55,391 26,489 2099 156 330,303
4 2 215.7 0.00 142,561 54,215 22,911 5551 0 332,543
4 3 2,462.9 0.00 134,518 45,967 22,706 5960 0 340,586
4 4 6,038.6 0.01 133,341 44,744 23,669 5021 22 341,653
4 5 9,116.8 0.01 132,061 43,309 23,521 5304 43 342,829
4 6 16,284.0 0.01 130,115 41,583 23,344 5304 0 344,989
4 7 40,832.3 0.17 130,512 41,982 23,506 5138 2 344,584
4 8 43,013.2 0.14 130,090 41,522 23,553 5130 0 345,014

We provide in Tables C.7–C.9 the numerical results of the simulation study conducted for the
case of a price-setting company. They report the parameters of the test case, the cost metrics, and
the recorded profit. Column 9 displays the cost of lost sales.

Table C.7
Summary of profit maximization under monopoly results for 24 tests with n = 5

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

2 1 3.7 0.00 55,295 40,840 2171 55 0 116,253
2 2 7.4 0.00 52,771 33,317 3437 793 833 118,051
2 3 14.4 0.00 52,740 36,792 1697 607 224 118,326
2 4 30.4 0.00 50,064 37,395 2201 826 56 119,793
2 5 103.1 0.00 49,783 35,039 1389 983 142 120,073
2 6 309.9 0.00 48,301 33,109 1663 972 328 121,397
2 7 3690.9 0.00 49,476 34,332 1658 979 279 120,386
2 8 13,333.4 0.03 47,990 32,650 1738 1047 327 121,778

3 1 4.2 0.00 54,318 40,914 2151 59 0 117,513
3 2 10.3 0.00 52,987 36,954 2265 669 310 118,169
3 3 37.6 0.00 52,324 38,501 1744 601 188 118,564
3 4 147.9 0.00 49,529 36,228 1886 607 348 119,983

Continued

© 2021 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation
of Operational Research Societies



M.B. Ahmed et al. / Intl. Trans. in Op. Res. 29 (2022) 2995–3030 3027

Table C.7
(Continued)

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

3 5 880.7 0.00 49,118 37,344 1741 826 144 120,031
3 6 3355.6 0.00 48,392 33,223 1648 1010 283 120,944
3 7 27,166.4 0.10 48,999 33,796 1565 1132 277 120,569
3 8 52,479.8 0.70 49,245 33,988 1669 1157 202 120,527

4 1 4.4 0.00 54,579 39,724 2243 44 0 117,591
4 2 14.3 0.00 52,636 36,718 2166 508 345 118,514
4 3 55.2 0.00 52,763 36,838 1932 620 343 118,319
4 4 203.9 0.00 49,637 36,655 1880 767 104 120,278
4 5 1727.7 0.0 49,637 36,655 1880 767 104 120,278
4 6 8570.4 0.1 49,624 34,821 1447 929 198 120,064
4 7 41,264.8 0.23 48,999 33,796 1565 1132 277 120,569
4 8 54,281.1 0.99 49,145 33,913 1721 1069 213 120,695

Table C.8
Summary of profit maximization under monopoly results for 24 tests with n = 10

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

2 1 14.3 0.00 147,618 58,267 42,545 1844 723 177,988
2 2 31.0 0.00 149,058 56,774 43,944 4084 18 201,389
2 3 65.5 0.00 138,774 49,416 39,738 5368 14 218,324
2 4 530.7 0.00 132,263 40,499 41,543 5910 72 223,513
2 5 1458.4 0.00 135,312 40,176 45,668 5203 27 215,427
2 6 7133.9 0.00 132,125 37,337 45,115 5400 35 219,203
2 7 34,862.1 0.47 134,895 39,581 45,115 5931 29 214,861
2 8 54,292.3 0.62 132,193 37,248 44,771 5787 149 215,073

3 1 29.5 0.00 140,241 57,672 36,474 1857 0 219,086
3 2 108.0 0.00 133,039 40,992 44,014 3787 8 217,522
3 3 440.6 0.00 130,524 40,551 40,200 5514 20 224,531
3 4 12,415.3 0.00 128,642 36,359 44,238 5967 25 225,698
3 5 47,675.7 0.56 129,296 34,200 45,311 5537 9 221,555
3 6 54,197.4 1.06 128,472 33,757 44,648 5812 17 222,952
3 7 54,327.1 1.33 128,864 33,371 45,497 5722 36 220,531
3 8 54,139.7 1.33 128,248 33,671 44,693 5611 35 222,668

4 1 75.9 0.00 136,926 54,682 36,120 1887 0 222,682
4 2 336.2 0.00 131,415 39,549 43,932 3690 6 221,552
4 3 14,528.1 0.00 128,464 38,108 41,684 4430 3 227,858
4 4 49,884.4 0.82 127,536 34,673 43,742 4875 8 226,512
4 5 54,333.8 1.20 128,000 33,532 45,119 5108 3 223,428
4 6 54,142.6 1.41 128,088 33,997 44,133 5716 3 223,674
4 7 57,477.2 1.43 128,196 34,223 44,936 5569 25 221,769
4 8 54,118.7 1.63 129,367 34,289 44,909 5805 126 220,610
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Table C.9
Summary of profit maximization under monopoly results for 24 tests with n = 15

L H CPU(s) %Gap TC VC IHSU IHC Lost sales TP

2 1 33.2 0.0 188,022 37,487 81,416 1178 8055 128,277
2 2 153.8 0.0 174,115 46,369 58,585 3923 5355 300,531
2 3 13,018.8 0.1 175,728 32,996 67,646 5313 9889 252,798
2 4 40,772.0 2.1 168,627 30,922 65,819 6480 5521 270,476
2 5 54,223.6 7.8 169,110 32,229 65,102 6548 5347 272,752
2 6 54,191.2 9.3 169,289 33,001 64,950 6435 5019 271,178
2 7 54,274.4 10.1 170,284 32,573 65,715 6299 5813 262,675
2 8 54,242.3 10.1 169,512 31,003 66,292 6391 5943 258,550

3 1 98.9 0.0 174,198 57,482 52,088 1930 2814 296,325
3 2 6684.3 0.0 158,989 58,323 35,762 4213 808 390,277
3 3 53,780.5 1.4 158,739 58,885 34,121 5707 142 394,275
3 4 54,134.8 5.7 161,644 43,208 49,193 6211 3148 346,081
3 5 54,136.2 10.0 168,166 46,362 51,034 6325 4560 331,980
3 6 54,070.9 16.1 168,777 44,471 53,027 6096 5300 320,894
3 7 54,096.2 23.8 172,265 45,116 54,861 6397 6008 306,529
3 8 54,066.6 29.9 176,391 46,383 57,751 6524 5849 295,317

4 1 615.7 0.0 164,199 64,804 36,993 2511 6 387,450
4 2 36,141.0 0.1 153,808 54,436 34,182 4524 782 398,053
4 3 54,066.0 1.7 152,866 53,969 59,884 5486 536 401,086
4 4 54,097.9 8.7 156,268 52,198 37,858 5748 581 388,097
4 5 54,102.8 23.3 161,685 49,835 43,117 5231 3618 359,814
4 6 54,086.0 39.0 165,347 52,230 43,674 5996 3563 355,429
4 7 54,100.0 52.5 165,984 49,226 45,841 5952 5081 339,137
4 8 54,098.4 61.8 174,342 49,872 6311 52,203 6071 311,579

We provide in Tables C.10–C.12 the cost metrics pertaining to the profit maximization problem
with variable production costs. In addition to the aforementioned cost metrics, we define PC, as
displayed in column 9, a metric that maps the total production costs.

Table C.10
Summary of profit maximization with variable production costs results for 24 tests with n = 5

L H CPU(s) %Gap TC VC IHSU IHC PC Lost sales TP

2 1 1.9 0.0 49,599 38,607 361 55 10,458 118 97,385
2 2 2.3 0.0 36,460 24,751 286 350 9963 1110 105,567
2 3 4.0 0.0 36,352 25,056 247 461 10,589 0 111,224
2 4 5.0 0.0 35,480 23,958 256 633 10,633 0 112,096
2 5 8.1 0.0 35,336 23,627 357 682 10,614 56 111,960
2 6 12.4 0.0 34,339 22,729 342 634 10,634 0 113,237
2 7 25.3 0.0 34,161 22,049 310 897 10,645 261 112,112
2 8 46.8 0.0 33,812 22,045 319 748 10,639 61 113,457

3 1 2.3 0.0 47,178 36,248 364 8 10,468 90 99,949
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Table C.10
(Continued)

L H CPU(s) %Gap TC VC IHSU IHC PC Lost sales TP

3 2 3.8 0.0 36,216 24,605 248 378 9970 1014 106,291
3 3 7.5 0.0 38,575 27,248 226 515 10,574 12 108,944
3 4 8.5 0.0 34,970 23,426 381 527 10,636 0 112,606
3 5 17.9 0.0 36,011 24,429 298 649 10,631 4 111,546
3 6 34.6 0.0 34,737 23,136 275 686 10,627 13 112,773
3 7 87.6 0.0 34,354 22,531 311 862 10,624 24 113,100
3 8 143.4 0.0 33,338 21,462 360 812 10,705 0 114,238

4 1 2.4 0.0 47,218 36,248 364 48 10,468 90 99,909
4 2 3.3 0.0 35,992 24,605 423 248 10,393 323 109,971
4 3 7.0 0.0 36,116 24,795 223 511 10,576 12 111,403
4 4 10.4 0.0 35,016 23,442 284 657 10,633 0 112,560
4 5 19.4 0.0 35,216 23,599 336 648 10,630 4 112,338
4 6 47.0 0.0 33,846 22,244 692 279 10,632 0 113,730
4 7 99.1 0.0 34,049 22,253 805 321 10,615 55 113,252
4 8 241.7 0.0 34,442 22,565 848 324 10,705 0 113,134

Table C.11
Summary of profit maximization with variable production costs results for 24 tests with n = 10

L H CPU(s) %Gap TC VC IHSU IHC PC Lost sales TP

2 1 2.7 0.00 97,110 56,672 923 242 21,235 18,038 130,173
2 2 9.0 0.00 98,215 56,114 761 2498 38,645 198 218,269
2 3 17.0 0.00 93,050 49,698 753 3594 38,743 261 223,118
2 4 60.4 0.00 93,568 49,524 1456 3384 39,102 102 223,395
2 5 133.5 0.00 92,103 48,399 1045 3677 38,880 103 224,855
2 6 288.3 0.00 90,225 46,224 1054 3765 39,142 40 227,049
2 7 333.7 0.00 91,002 46,911 1071 3814 39,129 77 226,085
2 8 385.7 0.00 89,042 44,443 1013 4260 39,312 15 228,354

3 1 6.7 0.00 113,594 72,214 929 210 37,437 2804 189,860
3 2 24.8 0.00 95,304 54,409 749 1680 37,893 572 219,308
3 3 199.0 0.00 90,623 47,250 898 3492 38,920 63 226,533
3 4 714.6 0.00 90,169 46,314 1184 3705 38,956 10 227,252
3 5 10,740.2 0.00 88,413 45,364 970 3133 38,909 36 228,877
3 6 16,857.0 0.01 86,513 42,894 865 3756 38,955 44 230,740
3 7 38,100.4 0.17 87,775 43,964 1069 3727 38,979 36 229,516
3 8 49,979.8 0.32 86,881 43,211 949 3645 39,038 38 230,399

4 1 18.3 0.00 106,627 67,130 954 192 38,315 35 210,668
4 2 193.0 0.00 99,453 57,313 654 2609 38,828 50 217,770
4 3 1522.6 0.00 91,483 49,266 749 2598 38,856 14 225,919
4 4 17,521.8 0.00 89,440 47,317 926 2407 38,726 63 227,718
4 5 51,758.7 0.4 88,303 45,996 946 2560 38,800 2 229,158
4 6 52,504.0 0.58 87,612 45,097 972 2741 38,786 17 229,774
4 7 54,032.6 0.81 87,443 44,722 956 2934 38,809 21 229,922
4 8 54,055.7 0.90 86,828 43,652 950 3386 38,823 18 230,555
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Table C.12
Summary of profit maximization with variable production costs results for 24 tests with n = 15

L H CPU(s) %Gap TC VC IHSU IHC PC Lost sales TP

2 1 4.2 0.00 109,558 43,626 1379 296 18,412 45,845 136,321
2 2 7.1 0.00 105,321 46,436 1073 3109 43,583 11,121 314,177
2 3 15.7 0.00 106,472 45,631 965 4965 50,830 4082 348,223
2 4 27.2 0.00 109,908 51,269 1032 3656 52,799 38 353,580
2 5 66.6 0.00 111,390 50,063 1259 5055 52,580 2432 351,553
2 6 118.4 0.00 109,523 48,513 1203 4992 52,262 2554 352,811
2 7 180.3 0.00 109,061 47,952 1114 5069 52,618 2307 354,507
2 8 182.9 0.00 109,088 47,952 1132 5053 52,643 2307 354,480

3 1 10.8 0.00 111,674 52,695 1170 243 30,161 27,404 226,407
3 2 23.0 0.00 107,258 50,928 1019 2723 52,301 287 366,412
3 3 112.1 0.00 107,874 50,984 1019 3362 52,446 64 366,908
3 4 174.4 0.00 108,794 43,874 1186 4052 52,915 63 366,118
3 5 842.6 0.00 106,792 49,131 1142 3752 52,744 23 368,197
3 6 2438.3 0.00 104,300 46,360 1043 4103 52,720 74 370,435
3 7 7526.0 0.00 104,567 46,344 1243 4023 52,954 4 370,519
3 8 8764.0 0.00 102,250 44,149 1338 3820 52,943 0 372,854

4 1 61.5 0.00 120,344 65,344 1131 283 43,506 10,079 304,366
4 2 318.5 0.00 101,754 45,193 943 3026 52,180 413 371,286
4 3 899.6 0.00 103,532 48,917 1047 5061 52,560 2323 371,161
4 4 1260.5 0.00 102,090 46,843 993 3215 52,398 82 372,697
4 5 7064.2 0.01 100,744 43,073 1174 3769 52,725 4 374,343
4 6 38,107.1 0.07 97,550 39,996 925 3856 52,691 81 377,148
4 7 50,325.1 0.50 98,128 40,652 970 3750 52,734 23 376,861
4 8 52,299.1 1.56 98,146 41,405 10 2856 53,839 36 375,296
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