
Journal of Heuristics (2021) 27:923–950
https://doi.org/10.1007/s10732-021-09479-9

Delayed improvement local search

Heber F. Amaral1,2 · Sebastián Urrutia2,3 · Lars M. Hvattum3

Received: 26 November 2020 / Revised: 21 May 2021 / Accepted: 25 May 2021 / Published online: 29 June 2021
© The Author(s) 2021

Abstract
Local search is a fundamental tool in the development of heuristic algorithms. A neigh-
borhood operator takes a current solution and returns a set of similar solutions, denoted
as neighbors. In best improvement local search, the best of the neighboring solutions
replaces the current solution in each iteration. On the other hand, in first improvement
local search, the neighborhood is only explored until any improving solution is found,
which then replaces the current solution. In this work we propose a new strategy for
local search that attempts to avoid low-quality local optima by selecting in each iter-
ation the improving neighbor that has the fewest possible attributes in common with
local optima. To this end, it uses inequalities previously used as optimality cuts in
the context of integer linear programming. The novel method, referred to as delayed
improvement local search, is implemented and evaluated using the travelling salesman
problem with the 2-opt neighborhood and the max-cut problem with the 1-flip neigh-
borhood as test cases. Computational results show that the new strategy, while slower,
obtains better local optima compared to the traditional local search strategies. The
comparison is favourable to the new strategy in experiments with fixed computation
time or with a fixed target.

Keywords Combinatorial optimization · Local search inequalities · Heuristic ·
2-Opt · Traveling salesman problem · Max-cut

B Sebastián Urrutia
sebastian.a.urrutia@himolde.no

Heber F. Amaral
heber.amaral@ifsudestemg.edu.br

Lars M. Hvattum
hvattum@himolde.no

1 Instituto Federal do Sudeste de Minas Gerais, R. da Independência, 30 - Aparecida, Bom
Sucesso, Minas Gerais, Brazil

2 Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte,
Minas Gerais, Brazil

3 Faculty of Logistics, Molde University College, Britvegen 2, 6410 Molde, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10732-021-09479-9&domain=pdf
http://orcid.org/0000-0002-7561-6825

924 H. F. Amaral et al.

1 Introduction

Finding an optimal solution to a given instance of a combinatorial optimization prob-
lem can be a hard computational task. Most of the methods used to solve hard
combinatorial optimization problems fall into twomajor groups: exactmethods,whose
goal is to find an optimal solution of the problem together with a proof of optimality,
and heuristic methods, which seek to find a sufficiently good solution within a rea-
sonable time limit. One of the most well-known heuristic techniques is called local
search and is the focus of this article.

Local search procedures start from a feasible initial solution and proceed by apply-
ing operations on the current solution to obtain better solutions. The set of solutions
that can be generated with a given operator on a solution s is called the neighborhood
of s. Local search procedures choose, from the neighborhood of the current solution,
one feasible solution that improves the value of the objective function. The chosen
solution becomes the new current solution. This process is repeated until there are no
improving solutions in the neighborhood of the current solution. A solution having no
improving solution in its neighborhood is called a local optimum.

Strategies for implementing local search differ in theway the new solution is chosen
among the improving solutions in the current neighborhood. This work proposes a
delayed improvement local search (DILS) strategy,which attempts to avoid converging
to a low-quality local optimum. This is achieved by first defining attributes that are
present in all local optima, and then selecting at each iteration of the local search
an improving neighbor that has the fewest possible attributes in common with local
optima. The DILS is compared to the well-known best improvement local search
(BILS) and first improvement local search (FILS) strategies.

To evaluate DILSwe consider two different optimization problems and correspond-
ing neighborhood operators. The first is the well-known travelling salesman problem
(TSP) with the 2-opt neighborhood (Johnson andMcGeoch 1997). This neighborhood
is commonly used when developing more elaborate heuristic techniques for the TSP
and related problems. The second test case is the max-cut problem, using the 1-flip
neighborhood (Festa et al. 2002).

The main objective of this article is the proposal of a new strategy for local search
procedures applied to combinatorial optimization problems. We suggest the use of
local search inequalities (Lancia et al. 2015) for implementing our strategy. Finally,
we evaluate the proposed strategy by comparing its behavior and performance to that
of two classic local search strategies.

The rest of this work is organized as follows: Sect. 2 provides background material
and a review of the related literature. In Sect. 3 we present the general form of DILS.
Section4 deals with the application of DILS to the TSP using the 2-opt neighborhood.
Then, the application of DILS to max-cut using the 1-flip neighborhood is shown in
Sect. 5. In Sect. 6 we explain how our computational experiments are structured. Com-
putational results focus on demonstrating the behavior of DILS, as well as evaluating
the performance. Section7 presents results for the TSP, while Sect. 8 presents results
for max-cut. Finally, concluding remarks follow in Sect. 9.

123

Delayed improvement local search 925

2 Background

Consider a solution s of a combinatorial optimization problem. Let f (s) be the cost of
solution s. Let N be a neighborhood operator that from a given solution produces a set
of modified solutions. Thus, the neighborhood of s is N (s). A pseudo-code of a local
search procedure for aminimization problem is presented in Algorithm 2.1. A solution
returned by the local search is a local optimum of the considered neighborhood.

Algorithm 2.1: Local search.
1 Local Search(s){
2 while there is s′ ∈ N (s) such that f (s′) < f (s) do
3 s ← s′;
4 return s;
5 }

Many improving solutionsmaybe available in N (s) at a given iteration of the search.
The best-known strategies for local search differ in the selection of the improving
neighbor, which often guides the local search to local optima of different quality.

The BILS selects at each iteration the neighbor with the best objective function
value.With this strategy the number of iterations of the local search tends to be smaller
than with other approaches, as the objective function value of the current solution is
improved as much as possible in each iteration. On the other hand, it requires the
evaluation of the whole neighborhood.

The FILS selects at each iteration the first evaluated neighbor that is better than
the current solution. In this case, the order in which the neighborhood is evaluated
influences the search. Observe that if the neighborhood is evaluated in a random
order, first improvement is equivalent to a random selection of an improving neighbor.

One of these two strategies is implemented in the vast majority of the local search
and metaheuristics literature. Hansen and Mladenović (2006) analyzed and compu-
tationally compared these two strategies along with worst improvement (selection of
the least improving neighbor) in the context of 2-opt for the TSP. They concluded that
FILS is the best method when the search starts from a random initial solution, whereas
BILS is better when the initial solution is constructed with a greedy heuristic.

In the context of local search strategies it is important to mention the variable
neighborhood descent (VND) (Duarte et al. 2018) procedure. VND defines a strategy
for performing local search on the union of several neighborhoods. Since the search
stops onlywhen a local optimumof all the consider neighborhoods is found, the quality
of the final solution is in general better than the one obtained with a local search using
a single neighborhood.

Several techniques have been introduced over the years to improve the effectiveness
of local search and prevent it from getting stuck in low-quality local optima. These
include metaheuristics such as simulated annealing (Kirkpatrick et al. 1983; Černỳ
1985), guided local search (Voudouris 1997), tabu seach (Glover 1986, 1989, 1990),

123

926 H. F. Amaral et al.

variable neighborhood search (Mladenović andHansen 1997), and iterated local search
(Lourenço et al. 2010).

When used in the context of a metaheuristic, not only the quality of the returned
solution is important but also the speed of execution of the search as a whole. The
FILS focuses on the speed by evaluating as few neighbors of the current neighborhood
as possible. On the other hand, BILS focuses on decreasing the number of iterations
of the search by improving the objective function as much as possible. The literature
discusses several techniques to speed-up a neighborhood evaluation, such as delta
evaluations (the evaluationof a neighbor basedon thedifference in cost compared to the
current solution) (Bertsimas 1988), heuristic evaluations (an approximate evaluation
of the cost function instead of its exact evaluation) (Prandtstetter and Raidl 2008;
Solnon et al. 2008), candidate lists (evaluating first the neighbors that are considered
most likely to be improving) (Pekny and Miller 1994), and neighborhood reductions
(a priori excluding neighbors that can be proven to be non-improving) (Nowicki and
Smutnicki 1996).

Both BILS and FILS can be seen as greedy, selecting the most improving neighbor
in the case of BILS and the first available in FILS. Those greedy decisions can lead
the search to a local optimum of bad quality. The approach to be presented in the next
section decides in a less greedy way on which neighbor to select as the next current
solution at each iteration. It moves the search to an improving neighbor that has the
greatest potential for further improvements when applying the same neighborhood
operator for making subsequent moves. The new approach relies on the availability of
fast to execute local optimality tests. Lancia et al. (2015) introduced a set of tests for
the 2-opt neighborhood of the TSP and for the 1-flip neighborhood of max-cut.

It is important to remark that the approach being proposed is not a new metaheuris-
tic. Metaheuristics based on local search implement mechanics to escape from local
optima. Our approach, as any other local search procedure, stops as soon as a local
optimum of the considered neighborhood becomes the current solution.

3 Delayed improvement strategy

Define an attribute a(s) to be a function that retrieves a specific part of a solution s.
Let a local optimality precondition check p(a(s)) be a predicate on a given attribute
of a feasible solution such that if s is a local optimum of a given neighborhood N
then, for any attribute function a, p(a(s)) evaluates to true. In other words, p tests a
condition that is always satisfied for local optima of N .

Consider a set A = {a1, a2, . . . , am} of attributes and let P = {p1, p2, . . . , pt }
be a set of local optimality precondition checks of N . Define Ai ⊆ A as the subset
of attributes that are relevant for predicate pi . Let kP (s) = |{(i, j) : pi (a j (s)) =
false, 1 ≤ i ≤ t, a j ∈ Ai }| be the number of checks in P that evaluate to false for a
solution s. By definition, kP (s) = 0 for every local optimum s of neighborhood N .

The DILS selects at each iteration, a solution s′ that maximizes k(s′) among all
improving solutions of N (s). Solution cost is used as tie-breaker.Algorithm3.1 depicts
the proposed approach.

123

Delayed improvement local search 927

Algorithm 3.1: Delayed improvement local search.
1 Delayed Improvement Local Search(s)
2 while I (s) = {s′ ∈ N (s) : f (s′) < f (s)} is not empty do
3 k ← maxs′∈I (s) kP (s′);
4 s′′ ← argmins′∈I (s),kP (s′)=k f (s′);
5 s ← s′′;
6 return s;

The idea behind the method is to improve the current solution while avoiding, as
much as possible, the convergence to a low-quality local optimum. That is, the search
should be givenmore opportunities of finding high quality solutions by slaloming local
optima of bad quality. It may seem counter-intuitive to avoid local optima, since the
final objective of DILS, as with any local search, is to find a locally optimal solution.
However, local optima that can be foundwithin a few improvingmoves from the initial
solutionmay not be as good as those that can be obtained aftermakingmany improving
steps. DILS aims to locate a local optimum that is far from the initial solution and that
is obtained only after making many improving moves. This is achieved by improving
the solution while remaining as far away as possible from other local optima that
would halt the search.

The approach has a potential drawback in terms of running time. Since all checks
need to be evaluated for all candidate solutions, each iteration of the search is compu-
tationally more demanding than in BILS. However, this effect can be diminished by
performing the evaluation of the checks only after the cost evaluation of the candidate
solution and only if the candidate solution is improving. Since local optima are being
avoided, the expected number of iterations required to reach a local optimum tends
to be higher in DILS than in BILS or FILS. Thus, to be computationally effective,
the proposed local search approach needs to attain on average better results than the
classic approaches. In this paper we analyse the computational performance of DILS
in implementations of the 2-opt neighborhood for the TSP and the 1-flip neighborhood
for the max-cut problem.

Both BILS and FILS select at each iteration the evaluated solution with the best
cost. After any iteration the current solution is the best ever evaluated since the start of
the search. This property does not hold for DILS and, in consequence, it may happen
that the returned solution at the end of the search is not the best ever evaluated: one
of the evaluated neighbors in a previous step may have been better than the final
local optimum. While this behavior is theoretically possible, it is extremely rare in
practice, and it is therefore not worth spending computational resources on storing
any additional solutions encountered during the local search.

4 Delayed improvement applied to the traveling salesman problem

The TSP is among the most studied combinatorial optimization problems. Given a
set V of points and the (symmetric) distances between them, the problem consists

123

928 H. F. Amaral et al.

in obtaining a tour of minimum length through all the points in V . It is an NP-hard
problem and, in consequence, no polynomial-time exact algorithm is expected to exist.
The TSP and its variations are very relevant in practice and their solution is part of
many real-world operations research applications. For convenience, we define the TSP
on a complete undirected graph G in which the vertices represent the points of the
instance. Then, a solution to the TSP is a Hamiltonian cycle of G.

Many algorithms, both exact and heuristic, have been proposed for the TSP (Laporte
1992; Kumar and Panneerselvam 2012; Rego et al. 2011). Among those algorithms
there are several constructive heuristics and local search heuristics. For the latter, the
2-opt neighborhood is commonly used (Johnson and McGeoch 1997)

The 2-opt neighborhood consists of all the solutions that can be obtained from s by
eliminating two non-consecutive edges of s and reconnecting the two obtained paths
to form a new tour. Observe that a solution s and a neighbor of s differ in that one
part of the tour (the one in between the two eliminated edges) is inverted in relation
to each other. Thus, the cost difference of a solution and a neighbor from the 2-opt
neighborhood is given by the cost of just four edges, the two eliminated from the
original solution and the two inserted to reconnect the tour.

To apply theDILS strategy to the 2-opt searchwe need, as introduced in the previous
section, a set of local optimality precondition checkers. Lancia et al. (2015) introduced
local search inequalities in the context of the 2-opt neighborhood for the TSP. These
inequalities are true statements for all local optima relative to the 2-opt neighborhood.
The authors used the inequalities to improve the performance of a branch and cut
algorithm. Including the inequalities in an integer linear programming model does
not cut away any 2-opt local optimum and, in consequence, despite cutting feasible
solutions from the search space, no optimal solution is excluded. In this work, we
propose to use a subset of the inequalities presented by Lancia et al. (2015) as local
optimality precondition checkers.

4.1 Local optimality precondition checkers

We now describe the inequalities proposed by Lancia et al. (2015) following their
notation. Given any subset S of V with four vertices (without loss of generality assume
S = {1, 2, 3, 4}), we split the possible edges among the points in S in three disjoint
pairs of edges: the horizontal edges α, the crossing edges β and the vertical edges γ

(see Fig. 1). Define c(p) as the sum of the cost of each edge in the pair p, assuming,
without loss of generality, that c(α) ≥ c(β) ≥ c(γ). Given a solution s we denote
respectively by x(α) , x(β) and x(γ) the number of edges of α, β and γ present in s.
Note that x(α) + x(β) + x(γ) ≤ 3 for any solution s whenever the total number of
points in the instance is greater than four.

Proposition 1 in Lancia et al. (2015) states that if c(α) > c(β), then inequalities
x(α) ≤ 1 hold for any 2-opt locally optimal solution s. Then, we can create a local
optimality precondition checker p1 that takes as input any four vertices of the graph
and checks whether (c(α) > c(β)) → (x(α) ≤ 1).

The second proposition from Lancia et al. (2015) states that if c(β) > c(γ), then
x(α) + x(β) ≤ 2 is valid for any 2-opt locally optimal solution s. Then, we create a

123

Delayed improvement local search 929

Fig. 1 Subsets α , β and γ of
E(1, 2, 3, 4)

local optimality precondition checker p2 that, as p1, takes as input any four vertices
of the graph and checks whether (c(β) > c(γ)) → (x(α) + x(β) ≤ 2) holds.

Proposition 3 from Lancia et al. (2015) states a set of three types of inequalities that
hold for 2-opt locally optimal solutions whenever c(α) > c(β) > c(γ). From each of
these types of inequalities we create a number of new local optimality precondition
checkers as follows.

Let x(e) be equal to 1 if edge e is in solution s and equal to 0 otherwise. From
the inequalities 2x(α) + x(β) + x(eγ) ≤ 3 for each eγ ∈ γ , we create two checkers.
Local optimality precondition checker p3a checks (c(α) > c(β) > c(γ)) → (2x(α)+
x(β)+x(γ1) ≤ 3) and checker p3b checks (c(α) > c(β) > c(γ)) → (2x(α)+x(β)+
x(γ2) ≤ 3) where γ1 and γ2 are the edges of γ taken in lexicographical order.

From the inequalities 2x(α) + 2x(eβ1) + x(eβ2) + x(γ) ≤ 4 for each eβ1, eβ2 ∈
β, eβ1 	= eβ2, we create two checkers. Local optimality precondition checker p4a
checks (c(α) > c(β) > c(γ)) → (2x(α)+ 2x(β1)+ x(β2)+ x(γ) ≤ 4) and checker
p4b checks (c(α) > c(β) > c(γ)) → (2x(α) + 2x(β2) + x(β1) + x(γ) ≤ 4) where
β1 and β2 are the edges of β taken in lexicographical order.

Finally, from inequalities 3x(α)+2x(β)+ x(γ) ≤ 5 we create the local optimality
precondition checker p5 that checks (c(α) > c(β) > c(γ)) → (3x(α) + 2x(β) +
x(γ) ≤ 5). In Lancia et al. (2015) a fourth set of local search inequalities is also
proposed. However, the number of inequalities of that type grows exponentially with
the instance size, and we opt not to use them due to the amount of computational work
associated with their verification.

Algorithm 4.1 depicts the application of DILS for TSP. The algorithm takes an
initial solution and iterates until no improving neighboring solution is found, just
like any local search algorithm. At each iteration, for each improving neighbor the
algorithm computes the number of local optimality precondition checkers that are not
satisfied. The improving neighbor with maximum number of violated local optimality
precondition checkers is selected as the next current solution. Ties are broken by the
best value for the objective function.

4.2 Implementation details

The main drawback of DILS is the computational effort associated with the evaluation
of the local optimality precondition checkers for every neighboring solution. A naive
implementation of such an evaluation would produce an O(n4) procedure to compute

123

930 H. F. Amaral et al.

Algorithm 4.1: Delayed improvement local search for TSP.
1 Delayed Improvement Local Search for TSP(s)
2 while I (s) = {s′ ∈ N (s) : f (s′) < f (s)} is not empty do
3 k ← −1;
4 c ← ∞;
5 foreach s′ ∈ I (s) do
6 k′ ← 0;
7 foreach all distinct a, b, c, d ∈ V do
8 k′ ← k′ + (p1(a, b, c, d) = false);
9 k′ ← k′ + (p2(a, b, c, d) = false);

10 k′ ← k′ + (p3a(a, b, c, d) = false);
11 k′ ← k′ + (p3b(a, b, c, d) = false);
12 k′ ← k′ + (p4a(a, b, c, d) = false);
13 k′ ← k′ + (p4b(a, b, c, d) = false);
14 k′ ← k′ + (p5(a, b, c, d) = false);

15 if k′ > k or (k′ = k and f (s′) < c) then
16 s′′ ← s′;
17 c ← f (s′);
18 k ← k′;

19 s ← s′′;
20 return s;

the number of local optimality precondition checkers that evaluate to false for each
neighbor.

However, inspecting the checkers, one can verify that all of them, in order to be
evaluated to false, need at least two non-consecutive edges involving nodes a, b, c, and
d. Then, one can iterate over all the pairs of edges of the solution when evaluating the
checkers. Thus, the computation time required for the evaluation of all the checkers
is reduced to O(n2).

Moreover, in the context of a local search, as with the objective function, after the
evaluation of the first solution, there is no need to evaluate the exact number of false
checkers but only the difference between the number of false checkers of the current
solution and of the neighboring solution being evaluated. Let us call this number Δ.
In the case of 2-opt, just two edges are exchanged from the current solution to each
neighbor. Then, to compute Δ, one needs to evaluate only checkers for nodes a, b, c,
and d that are the endpoints of edges that were added or removed from the current
solution.

Furthermore, in the context of a 2-opt local search, all checkers can be evaluated
for a single neighbor in O(n) steps, since we just consider all pairs of non-consecutive
edges that are present in one solution and not in the other one. As only two edges are
exchanged, the numbers of pairs to be considered is limited by 4n.

In this work, we improve further upon this, by evaluating Δ for each neighboring
solution in amortised constant time, yielding O(n2) time to evaluate all the O(n2)
solutions in the neighborhood. To achieve this, we compute and store two values for
each pair of non-consecutive edges in the solution in each iteration. The first value
is the Δ associated with the corresponding 2-opt move. The second one, Δ′, is the
number of false checkers obtained when performing an invalid reconnection of the

123

Delayed improvement local search 931

paths after the pair of edges is removed. In this case, we are saving the number of
checkers evaluated to false for infeasible solutions that are composed of two cycles.

With that information stored we can now select the improving move with larger Δ,
breaking ties with the objective function value. In the next iteration the stored values
will be used to update the values of Δ and Δ′ of each move.

The newcurrent solution is very similar to the previous one. It differs in the exchange
of a pair of edges. Let e and f be the edges that were present in the previous solution
and are not present in the current solution. Also, let g and h be the edges that replaced
e and f to obtain the new solution. Consider first the updating of Δ and Δ′ for a pair
of non-consecutive edges (say i and j) both different from the new edges g and h. The
values of Δ and Δ′ for that pair may indeed change, as one must compensate for the
number of checkers that would be affected before the most recent move but not after,
and vice versa.

This means that additional calculations, to update Δ and Δ′, must be performed
for combinations of edges involving one of the edges i or j , as well as one of the four
edges g, h, e, or f . Since there are four edges involved in the evaluated move (i, j and
the edges that would replace them) and four edges that went in or out of the solution in
the last iteration, there is a total of 16 pairs of edges to be considered when updating
Δ, as well as 16 pairs of edges to be considered for updating Δ′. The number of pairs
is constant, and therefore the cost of updating Δ and Δ′ is also constant.

Depending on the update of the solution in the last iteration, the move involving i
and j may now need to add different edges than before in order to reconnect the two
paths that appear as a result of removing them. In those cases one must use Δ′ as the
base to update Δ and Δ as the base to update Δ′.

It remains to compute Δ and Δ′ for the moves involving the new edges g and h
introduced in the solution in the last iteration.We do not have any previous information
about Δ and Δ′ for these moves so we must compute each value of Δ and Δ′ from
scratch in O(n) time. Given that there are O(n) moves involving the two new edges
the total time for evaluating those moves is O(n2).

Thus, we have O(n2) moves for which we can evaluate Δ and Δ′ in constant time
and O(n)moves that can be evaluated in O(n). The full evaluation of the neighborhood
is then O(n2) which gives us O(1) amortised time for each move.

5 Delayed improvement applied to themax-cut problem

The cardinality max-cut problem is the following: Given a graph G = (V , E), split
V into sets S and S̄ such that the number of edges with one end in S and the other
in S̄ is maximized. The problem is strongly NP-Hard (Garey et al. 1976). Heuristics,
approximation algorithms, and exact approaches have been proposed for max-cut.
Most of the literature considers the weighted version of the problem, in which the
sum of the weights of the edges with endpoints in both sets has to be maximized,
while we consider the unweighted problem. A local search heuristic using the 1-flip
neighborhood was proposed by Festa et al. (2002).

The 1-flip neighborhood consists of all the solutions that can be obtained from a
solution s by moving one vertex from S to S̄ or from S̄ to S. The cost difference of

123

932 H. F. Amaral et al.

a solution and a neighbor obtained by moving a vertex v from one set to the other, is
given by the difference between the number of vertices adjacent to v that are in the
same set as v and the number of vertices adjacent to v that are in the other set.

5.1 Local optimality precondition checkers

To apply the DILS strategy to the 1-flip search we use a local optimality precondition
checker derived from the local search inequality introduced by Lancia et al. (2015):
in a local optimum for the 1-flip neighborhood, no vertex can have more adjacent
vertices in its own set than in the other set, otherwise moving the vertex to the other
set would improve the solution.

Let δ(v) be the vertices adjacent to v in G and T (s, v) be the vertices of G that are
in the same set as v in solution s. Then, the local optimality precondition checker p
checks, for a given v ∈ V , whether |{u : u ∈ δ(v), u ∈ T (s, v)}| ≤ |δ(v)|/2.

Algorithm 5.1 describes the application of DILS to max-cut. The algorithm takes
an initial solution and iterates until no improving neighbor is found. At each iteration,
for each improving neighbor the algorithm computes the number of local optimality
precondition checkers that are not satisfied. The improving neighbor with the maxi-
mum number of violated local optimality precondition checkers is selected as the next
solution to visit. Ties are broken by the best value for the objective function.

Algorithm 5.1: Delayed improvement local search for max-cut.
1 Delayed Improvement Local Search for max-cut(s)
2 while I (s) = {s′ ∈ N (s) : f (s′) < f (s)} is not empty do
3 k ← −1;
4 c ← ∞;
5 foreach s′ ∈ I (s) do
6 k′ ← 0;
7 foreach v ∈ V do
8 k′ ← k′ + (p(v) = false);

9 if k′ > k or (k′ = k and f (s′) < c) then
10 s′′ ← s′;
11 c ← f (s′);
12 k ← k′;

13 s ← s′′;
14 return s;

5.2 Implementation details

In a naive implementation of BILS or FILS using the 1-flip neighborhood, one would
just store, for each vertex, the difference between the number of adjacent vertices in
the same set and the number of adjacent vertices in the other set. That difference,

123

Delayed improvement local search 933

which we call Δ(v) (or just Δ when v is obvious), is the improvement of the objective
function value if v is moved to the other set.

That implementation can be improved by computing and updating a list of vertices
for which Δ is larger than 0. All improving neighbors can be obtained by moving
a vertex from this list. When working with relatively good solutions, such as those
produced by a greedy construction heuristic, the number of vertices with a positive
Δ is much smaller than the number of vertices in the graph. Then, FILS can simply
choose the first vertex on the list, while BILS can look for the vertex on the list with
the maximum value of Δ.

One may think that a better way to implement BILS is by maintaining a sorted list
of vertices with Δ > 0. However, when working with graphs of density around 0.5,
corresponding to the most interesting instances for cardinality max-cut, the values of
Δ changes for about half of the vertices after every move. It is therefore cheaper to
scan an entire unsorted list each iteration, rather than updating a sorted list after every
iteration.

To implement DILS we need to compute, besides Δ, the number of vertices that
would haveΔ > 0 if vertex v is moved. Observe that this number is exactly the number
of local optimality precondition checkers that the neighbor does not satisfy. Instead
of computing this number directly, we compute the difference in unsatisfied checkers
of each improving neighboring solution in relation to the current solution, which we
refer to as Δ′.

It ismore difficult to updateΔ′ than to updateΔ. After eachmove,Δ is only updated
for the vertex being moved and its adjacent vertices. However, Δ′ may change also
for the vertices adjacent to the vertices adjacent to the moved vertex. In high density
graphs the update operations would then involve almost all the vertices of the graph.
However, Δ′ is only relevant for improving neighbors, i.e., the neighbors obtained by
moving a vertex with a positive Δ. Then, our proposal is to compute Δ′ just for the
vertices with a positive Δ.

For computing Δ′ we use an additional list of vertices that have Δ ∈ {−1, 0, 1, 2}.
These vertices are the ones that may go from a positive to a non-positive Δ or from a
non-positive to a positive Δ after the move of an adjacent vertex and, in consequence,
need to be considered in the computation of the Δ′ value of its adjacent vertices.

6 Experimental setup

To analyze DILS we design two types of experiments, attempting to highlight either
the behavior of the method or the performance of the method. These experiments are
both conducted on instances of the TSP and the max-cut, and the DILS is compared
to the corresponding behavior or performance of BILS and FILS.

To investigate the behavior of DILS we execute DILS, BILS, and FILS on a single
test instance starting from the same initial solution. In these tests we compute the num-
ber of checkers not satisfied at each iteration for all of the three methods. This enables
us to show how the three methods differ in terms of their progressions of solution qual-
ity and the number of violated checkers at each iteration of the search. Furthermore,

123

934 H. F. Amaral et al.

to investigate the behavior, we analyze the number of iterations performed to reach a
local optimum by each of the methods.

When analyzing the performance of DILS, we consider the local search methods
in a multi-start framework. Each method is restarted when having reached a local
optimum, while recording the value of the best local optimum encountered. The time
consumption of DILS may be higher than the time consumption for the other meth-
ods due to having a higher computational effort per iteration while trying to execute
more iterations before converging to a local optimum. Therefore, when evaluating the
performance of DILS, it is unfair to run each of the methods for any fixed number of
restarts.

Instead, we consider two different settings for making fair comparisons. In the first
setting we fix a running time limit and repeatedly execute a given local search (BILS,
FILS, or DILS) from different initial solutions until the time limit is reached. The
best solution found is returned. This multi-start approach is a fairer comparison of the
methods, since the faster methods can be repeated more times than the slower ones,
thereby increasing their probability of finding a good local optimum.

In the second setting we consider individual instances and produce time to target
(TTT) plots (Aiex et al. 2007). To create these plots we set a target solution cost and
measure the time needed (up to a high overall time limit) for each method to reach
a solution with an objective function value at least as good as the target. We repeat
the experiment a large number of times and sort the time to target values in ascending
order. Plotting these data we get an estimate of the probability p(t) of the algorithm
obtaining a solution with the desired quality as a function of the running time.

6.1 Test instances

For both the TSP and the max-cut we consider 30 test instances. In the case of TSP
they come from the TSPLib (Reinelt 1991). For max-cut the instances are randomly
generated and consist of graphs with the number of nodes (|V|) ranging from 1500 to
2500 and a density (D) ranging from 0.45 to 0.54.

6.2 Construction heuristics

The local search procedures start from an initial solution. In this work we use two
different methods to obtain these initial solutions for TSP. The main method is an
insertion heuristic. It starts with a tour consisting of a randomly selected vertex and
the vertex that is nearest to it. Then, during n−2 iterations, a random vertex not yet in
the tour is inserted in the position which increases the length of the tour the least. An
alternative approach constructs an initial solution by creating a random permutation
of the vertices. In general, the main method produces much better solutions than the
random permutation.

For max-cut we use a construction heuristic that randomly permutes the nodes of
the graph and, in the obtained order, adds the next node to the best of the two sets
while considering only the nodes previously included in the solution.

123

Delayed improvement local search 935

0 5 10 15

0
2

4
6

8
10

12
14

berlin52

BILS
DILS
FILS

Fa
ls

e
lo

ca
l o

pt
im

al
ity

 p
re

co
nd

iti
on

 c
he

ck
er

s

Iteration

Fig. 2 Number of checkers not satisfied for the berlin52 instance, with the initial solution created by a
constructive heuristic

6.3 Computational setup

The local search methods were implemented using the C programming language.
The code was compiled with the gcc compiler using the O3 optimization flag. The
experiments were run on a 64bits Intel(R) Xeon(R) E5405, 2GHz machine with 4
processors and 16.0GB of RAM running the Ubuntu 18.04.3 LTS operating system.
The methods were all programmed according to the same programming standards and
with the same level of optimization.

7 Computational results for TSP

Computational results for the TSP are based on two types of experiments. The tests
presented in Sect. 7.1 are designed to show the behavior of DILS, while the tests in
Sect. 7.2 compare the performance of DILS with the performance of BILS and FILS.

7.1 Search behavior

We first consider the behavior of DILS on two illustrative test instances. Figures2 and
3 show the number of checkers not satisfied by the current solution at each iteration in a
single execution for instances berlin52 and pr299, respectively. The initial solutionwas
obtained with the constructive heuristic. Figures 4 and 5 show, for the same executions
of each search, the objective function value of the current solution at each iteration of
the search.

As expected, the number of iterations is larger for DILS than for the other methods.
The number of violated checkers goes up during the first few iterations of DILS,

123

936 H. F. Amaral et al.

0 20 40 60 80 100

0
50

10
0

15
0

pr299

BILS
DILS
FILS

Fa
ls

e
lo

ca
l o

pt
im

al
ity

 p
re

co
nd

iti
on

 c
he

ck
er

s

Iteration

Fig. 3 Number of checkers not satisfied by the current solution for the pr299 instance, with the initial
solution created by a constructive heuristic

0 5 10 15

77837783

8236

berlin52

7783

7883

7983

8083

8183

8283

8383

8483

8583

8683

8783
BILS
DILS
FILS

C
os

t

Iteration

Fig. 4 Objective function value of the current solution for the berlin52 instance, with the initial solution
created by a constructive heuristic

meaning that the search is able to find improving solutions with fewer properties
associated to local optima. At some point, this is not possible anymore and the search
slowly approaches a local optimum. In Figs. 4 and 5 it can be seen that, even though
the improvement in the objective function is slower than for the other methods, the
longer search performed by DILS can lead to finding local optima with the same or
better quality than the ones otherwise obtained.

In Fig. 6 we show the same information as in Fig. 3, for the same instance but
with the search starting from a random solution. We can observe that the number of

123

Delayed improvement local search 937

0 20 40 60 80 100

54274

52440

53281

pr299

52440
52740
53040
53340
53640
53940
54240
54540
54840
55140
55440
55740
56040
56340
56640
56940
57240
57540
57840
58140
58440
58740
59040
59340
59640
59940
60240
60540 BILS

DILS
FILS

C
os

t

Iteration

Fig. 5 Objective function value of the current solution for the pr299 instance, with the initial solution
created by a constructive heuristic

0 5000 10000 15000 20000

0
10

00
0

20
00

0
30

00
0

40
00

0

pr299

BILS
DILS
FILS

Fa
ls

e
lo

ca
l o

pt
im

al
ity

 p
re

co
nd

iti
on

 c
he

ck
er

s

Iteration

Fig. 6 Number of checkers not satisfied by the current solution for the pr299 instance, with the initial
solution randomly generated

iterations performed by DILS is much larger than the the number of iterations for the
other methods. In the particular case plotted in the figure, DILS performs around 100
times more iterations than BILS. This ratio becomes even larger when the instances
increase in size.

A random solution has, in general, a larger number of improving neighbors than
a solution obtained by a constructive heuristic. Thus, in the first iterations, DILS is
able to find improving neighbors that increase the number of checkers not satisfied,
after which it very slowly convergences to a local optimum. The large differences

123

938 H. F. Amaral et al.

Table 1 Number of iterations
performed by each search

Inst. BILS FILS DILS DILS/BILS

1 berlin52 6.41 8.96 14.02 2.19

2 ch130 13.28 19.43 27.86 2.10

3 ch150 14.15 21.42 30.4 2.15

4 d1291 75.74 104.23 134.67 1.78

5 kroA200 20.3 29.95 41.01 2.02

6 kroB200 18.56 27.63 37.46 2.02

7 kroC100 11.8 17.25 24.01 2.03

8 kroD100 11.2 16.13 23.11 2.06

9 lin105 10.85 16.37 25.13 2.32

10 linhp318 24.83 36.24 52.69 2.12

11 p654 42.42 69.44 113.41 2.67

12 pcb1173 83.06 127.64 172.59 2.08

13 pcb442 27.43 44.62 63.14 2.30

14 pr1002 80.49 114.38 152.87 1.90

15 pr152 13.15 18.79 28.18 2.14

16 pr2392 163.92 236.39 316.95 1.93

17 pr299 25.62 39.7 54.75 2.14

18 pr439 37.41 58.48 83.31 2.23

19 rat195 15.19 23.25 31.3 2.06

20 rd400 32.41 47.36 62.1 1.92

21 rl1323 87.93 135.67 195.34 2.22

22 rl1889 118.78 179.46 243.34 2,05

23 tsp225 18.08 27.65 38.26 2.12

24 u1060 78.54 114.14 161.68 2.06

25 u1432 47.96 70.25 90.22 1.88

26 u1817 94.74 140.91 179.21 1.89

27 u2152 102.28 146.33 195.97 1.92

28 u2319 40.96 64.29 80.77 1.97

29 u574 47.86 68.29 93.66 1.96

30 vm1748 96.59 140.71 188.94 1.95

Average of 100 restarts

in the number of iterations performed before a local optimum is reached, plus the
extra cost for evaluating the checkers, makes it improbable that DILS can compensate
for the difference in computational time by the quality of the solution obtained. In
consequence, we conclude that DILS is not competitive when the initial solution is
randomly generated, and the rest of the experiments consider initial solutions obtained
with the construction heuristics.

Table 1 gives the average number of iterations for each method over 100 restarts.
The number of iterations of DILS is close to twice the number of iterations of BILS
in all the instances considered, with an average ratio of 2.1.

123

Delayed improvement local search 939

7.2 Search performance

In the first set of experiments we fix a running time limit of 300s and execute the local
search methods in a multi-start framework. To get more reliable results, each instance
is solved ten times by each of DILS, BILS, and FILS. As observed, DILS requires
more iterations to reach a local optimum. In the experiments with a fixed time limit,
the number of restarts executed by DILS is an order of magnitude smaller than the
number of restarts by BILS and FILS.

In Table 2 we report both the average cost of the solutions found over the ten
executions (Avg. Z) and the cost of the best solution in the ten executions (Min.
Z). When we consider the minimum cost over the ten runs for each instance, DILS
obtained the best results for 25 instances, while the BILS and the FILS found the best
solutions for only 10 instances each. By applying a chi-squared test, the hypothesis
that the performance of DILS is equal to the performance of BILS is rejected, with a P
value of 6× 10−9. The same conclusion holds when comparing DILS to FILS. When
considering average costs over the 10 executions, the number of best performances
is 17 for DILS, 12 for BILS, and 9 for FILS. Applying again a chi-squared test, the
hypothesis that the average performance of DILS is equal to the average performance
of FILS is rejected with a P value of 0.001, whereas the same test fails to reject the
hypothesis that DILS and BILS could have the same average performance as the P
value is 0.06.

For the runs in Table 2 we also calculate the percentage gap to the best solution
found for each instance within the experiment. The table then reports both the average
and the standard deviation of these gaps across the 30 instances, considering both the
average and the best objective function values found within the ten executions. We
can then apply Welch’s t-test for the hypothesis that the gaps are equal for any pair of
methods. These tests show that the average gaps are not significantly different for any
pair of methods, but the best out of ten executions is better for DILS than the other two
methods, with P values less than 0.005. In conclusion, DILS overall performs better
than the other methods on the tested instances.

The second set of performance evaluation tests considers time to target (TTT) plots
(Aiex et al. 2007). We use an overall time limit of 900s, and perform 100 runs that
end by either reaching the chosen target or by reaching the time limit. Figures7 to
9 show TTT plots for instances rat195, tsp225 and rd400. Four plots are shown for
each instance considering progressively harder targets. The hardest target is set to the
best average solution cost over the three algorithms in Table 2 rounded to the nearest
integer. The other three targets are 1%, 2% and 3% above the hardest target, rounded
to the nearest integer.

The plots show that when the target is easy, BILS and FILS perform better than
DILS. However, all the three algorithms reach the target in a few seconds. On the
other hand, when the target gets harder to achieve, the performance of DILS improves
relative to BILS and FILS. With the hardest target, the superior performance of DILS
is clear. We can conclude that while DILS is slower than the classic strategies to obtain
average quality solutions, in the long run it tends to achieve solutions of better quality.

123

940 H. F. Amaral et al.

Table 2 Results for DILS, BILS and FILS

Instance BILS FILS DILS

Avg. Z Min. Z Avg. Z Min. Z Avg. Z Min. Z

1 berlin52 7542.0 7542 7542.0 7542 7542.0 7542

2 ch130 6117.6 6110 6117.0 6110 6120.4 6110

3 ch150 6577.3 6561 6566.0 6548 6574.9 6548

4 d1291 55200.8 54935 55401.4 54961 55287.6 54901

5 kroA200 29678.0 29573 29686.2 29599 29683.3 29610

6 kroB200 29728.2 29645 29733.3 29632 29793.0 29632

7 kroC100 20749.0 20749 20749.0 20749 20749.0 20749

8 kroD100 21294.0 21294 21296.8 21294 21308.4 21294

9 lin105 14379.0 14379 14379.0 14379 14379.0 14379

10 linhp318 43245.2 43103 43255.2 43059 43245.9 42958

11 p654 35049.4 35007 35069.7 35049 35069.4 34915

12 pcb1173 62440.5 61885 62175.9 61866 61765.1 61141

13 pcb442 53506.1 53383 53495.1 53117 53038.3 52715

14 pr1002 275906.2 274720 276056.4 274975 275679.4 274353

15 pr152 73682.0 73682 73682.0 73682 73682.0 73682

16 pr2392 416929.7 414049 415425.0 412988 415618.1 413393

17 pr299 49185.2 48943 49179.5 49011 49220.8 49117

18 pr439 110308.6 109730 110489.4 109937 110048.8 109394

19 rat195 2405.2 2387 2402.2 2380 2399.8 2389

20 rd400 15908.6 15856 15904.4 15835 15875.7 15811

21 rl1323 290386.3 285853 291240.3 287928 289982.0 285853

22 rl1889 346631.9 343891 348353.9 346499 344231.4 339537

23 tsp225 4036.9 4031 4041.2 4022 4037.5 4020

24 u1060 238396.8 237519 238504.0 237602 237519.0 236893

25 u1432 166572.3 165792 166646.2 166054 166621.3 166282

26 u1817 64391.0 64083 64514.0 64137 64380.7 63945

27 u2152 73100.0 72417 73213.5 72675 72780.1 72361

28 u2319 248396.3 247856 248218.4 247735 248246.1 247533

29 u574 38865.3 38745 38821.6 38597 38807.8 38548

30 vm1748 363912.0 361293 363577.3 362488 362627.3 358457

No. of best 12 10 9 10 17 25

Avg. % gap 0.69 0.27 0.71 0.30 0.53 0.04

Std. % gap 0.58 0.37 0.61 0.45 0.37 0.10

Performing for 300s, 10 repetitions, starting from solution generated from the constructive heuristic. The
best obtained solution for each instance is highlighted in bold

123

Delayed improvement local search 941

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for rat195.
target = 2472

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for rat195.
target = 2448

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for rat195.
target = 2424

0 200 400 600 800
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
time

p(
t)

BILS
DILS
FILS

TTT plot for rat195.
target = 2400

Fig. 7 TTT plots for rat195, with easiest target on the top left and the hardest target on the bottom right

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for tsp225.
target = 4158

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for tsp225.
target = 4118

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for tsp225.
target = 4077

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for tsp225.
target = 4037

Fig. 8 TTT plots for tsp225, with easiest target on the top left and the hardest target on the bottom right

8 Computational results for max-cut problem

Computational results for the max-cut problem are presented based on the same two
types of tests as for the TSP.

123

942 H. F. Amaral et al.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for rd400.
target = 16352

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for rd400.
target = 16193

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for rd400.
target = 16034

0 200 400 600 800
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
time

p(
t)

BILS
DILS
FILS

TTT plot for rd400.
target = 15876

Fig. 9 TTT plots for rd400, with easiest target on the top left and the hardest target on the bottom right

8.1 Search behavior

To investigate the behavior of DILS we performed the same type of tests as for TSP.
We executed DILS, BILS and FILS for the same instance and from the same initial
solution. Figure10 shows the number of checkers not satisfied by the current solution
at each iteration in a single execution of each search for an instance with 2000 nodes
and a density of 0.5, while Fig. 11 considers an instance with 2500 nodes and the same
density. The initial solutions were obtained with the construction heuristic. Figures12
and 13 show, for the same executions of each search, the objective function value of
the current solution at each iteration of the search.

As for the TSP, the number of iterations of DILS is larger than for the othermethods.
In the first iterations of the search, DILS moves to solutions with approximately three
times the number of unsatisfied checkers compared to the initial solution. Then, DILS
slowly converges and finds better local optima than both BILS and FILS.

Table 3 gives the average number of iterations for eachmethod over 100 restarts. The
number of iterations of DILS is again close to the double of the number of iterations
of BILS in all instances considered, with an average ratio of 1.82.

8.2 Search performance

As for the TSP, we show results for max-cut and the 1-flip neighborhood using both
a fixed time limit and a fixed target. Table 4 shows results of performing DILS, BILS
and FILS for 60 s, executing each multi-start method ten times, starting from solutions
generated by the construction heuristic described in Sect. 6.2.

The superior performanceofDILS is clear. For 26of the30 instances,DILSobtained
the best solution, whereas FILS obtained the best solution in three instances and BILS

123

Delayed improvement local search 943

0 200 400 600

0
10

0
20

0
30

0
40

0
g6.0.5_2000.

BILS
DILS
FILS

Fa
ls

e
lo

ca
l o

pt
im

al
ity

 p
re

co
nd

iti
on

 c
he

ck
er

s

Iteration

Fig. 10 Number of checkers not satisfied by the current solution for a instance with 2000 vertex and density
0.5, with the initial solution created by a constructive heuristic

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0

g6.0.5_2500.

BILS
DILS
FILS

Fa
ls

e
lo

ca
l o

pt
im

al
ity

 p
re

co
nd

iti
on

 c
he

ck
er

s

Iteration

Fig. 11 Number of checkers not satisfied by the current solution for a instance with 2500 vertex and density
0.5, with the initial solution created by a constructive heuristic

obtained the best solution only for one instance. Here, the average behavior is even
more in favor of DILS, as the method has the best average performance on all 30
instances, whereas the other two methods fail to obtain the best average performance
on any instance. Considering the % gap to the best solution found for each instance
within the experiment, the same dominance is revealed. ApplyingWelch’s t-test on the
% gap and the chi-squared test on the number of best performances reveal that both
of these differences are statistically significant at any reasonable significance level.

123

944 H. F. Amaral et al.

0 200 400 600

514983

515382
515310

g6.0.5_2000.

511919
512019
512119
512219
512319
512419
512519
512619
512719
512819
512919
513019
513119
513219
513319
513419
513519
513619
513719
513819
513919
514019
514119
514219
514319
514419
514519
514619
514719
514819
514919
515019
515119
515219
515319

BILS
DILS
FILS

C
os

t

Iteration

Fig. 12 Objective function value of the current solution for a instance with 2000 vertex and density 0.5,
with the initial solution created by a constructive heuristic

0 200 400 600 800 1000

802199

802741
802545

g6.0.5_2500.

797489

797689

797889

798089

798289

798489

798689

798889

799089

799289

799489

799689

799889

800089

800289

800489

800689

800889

801089

801289

801489

801689

801889

802089

802289

802489

802689

BILS
DILS
FILS

C
os

t

Iteration

Fig. 13 Objective function value of the current solution for a instance with 2500 vertex and density 0.5,
with the initial solution created by a constructive heuristic

In the second set of performance evaluation tests we produce time to target (TTT)
plots. Figures 14, 15, and 16 show TTT plots for instances with 1500, 2000, and
2500 nodes. The density for each graph is 0.5. The overall time limit was set to 180s.
Three plots are shown for each instance, considering progressively harder targets. The
hardest target is set to the best average objective function value, considering each
method separately, in Table 4 minus 0.05% rounded to the nearest integer. The other
two targets are 0.1% and 0.15% below the best average, rounded to the nearest integer.

The plots show that with easy targets and large graphs BILS and FILS outperform
DILS. However, in these cases all the three algorithms reach the target within a few

123

Delayed improvement local search 945

Table 3 Number of iterations
performed by each search.

|V| D BILS FILS DILS DILS/BILS

1 1500 0.45 364.10 402.00 628.40 1.73

2 1500 0.46 346.30 416.20 624.50 1.80

3 1500 0.47 349.40 400.50 620.80 1.78

4 1500 0.48 331.20 417.90 627.60 1.89

5 1500 0.49 320.40 379.70 596.30 1.86

6 1500 0.50 345.90 385.50 609.10 1.76

7 1500 0.51 344.90 410.90 601.30 1.74

8 1500 0.52 332.50 404.80 611.30 1.84

9 1500 0.53 356.40 413.20 609.70 1.71

10 1500 0.54 324.60 422.80 617.10 1.90

11 2000 0.45 517.00 530.30 887.40 1.72

12 2000 0.46 495.30 575.90 870.60 1.76

13 2000 0.47 491.20 585.00 894.10 1.82

14 2000 0.48 431.70 596.00 901.00 2.09

15 2000 0.49 430.80 554.90 835.90 1.94

16 2000 0.50 450.60 615.70 865.60 1.92

17 2000 0.51 505.50 578.30 876.60 1.73

18 2000 0.52 463.90 533.00 863.30 1.86

19 2000 0.53 469.70 574.40 876.40 1.87

20 2000 0.54 472.20 554.90 885.20 1.87

21 2500 0.45 658.80 747.10 1132.80 1.72

22 2500 0.46 654.00 757.00 1149.80 1.76

23 2500 0.47 644.20 751.20 1161.70 1.80

24 2500 0.48 572.90 696.70 1160.30 2.03

25 2500 0.49 672.90 798.10 1162.80 1.73

26 2500 0.50 611.80 757.20 1157.40 1.89

27 2500 0.51 633.90 698.30 1104.70 1.74

28 2500 0.52 626.10 751.10 1138.00 1.82

29 2500 0.53 634.30 725.70 1091.50 1.72

30 2500 0.54 569.90 727.80 1073.20 1.88

Average of 100 executions

seconds. On the other hand, when the target gets harder to achieve, the performance
of DILS is much better than BILS and FILS.

9 Conclusions

In this work, we introduced delayed improvement local search (DILS), a local search
technique based on the idea of selecting as the next solution the improving neighbor
that has fewer characteristics of locally optimal solutions. To implement this idea we

123

946 H. F. Amaral et al.

Table 4 Results of performing DILS, BILS and FILS for 60 s, 10 repetitions, starting from solutions
generated by the constructive heuristic

|V| D BILS FILS DILS

Avg. Z Max. Z Avg. Z Max. Z Avg. Z Max. Z

1 1500 0.45 263644.1 263785 263717.2 263864 263875.1 263958

2 1500 0.46 268781.1 268869 268795.2 268982 268911.9 269020

3 1500 0.47 274362.1 274433 274381.1 274422 274547.7 274714

4 1500 0.48 280477.1 280542 280549.7 280631 280675.1 280770

5 1500 0.49 285535.6 285671 285574.3 285641 285690.0 285852

6 1500 0.50 290937.2 291142 291005.4 291163 291123.5 291256

7 1500 0.51 297168.7 297344 297202.7 297402 297381.4 297456

8 1500 0.52 302495.7 302613 302568.1 302792 302670.8 302711

9 1500 0.53 308096.4 308224 308148.7 308231 308292.8 308440

10 1500 0.54 314198.3 314277 314177.1 314263 314328.4 314463

11 2000 0.45 466453.5 466748 466489.7 466603 466667.2 466872

12 2000 0.46 475573.2 475762 475605.2 475724 475779.4 475882

13 2000 0.47 485711.8 485802 485858.8 486102 485986.6 486122

14 2000 0.48 495714.7 495772 495737.6 495827 495940.5 496075

15 2000 0.49 505281.9 505449 505363.5 505565 505466.2 505687

16 2000 0.50 515741.1 515807 515737.7 515919 515892.7 516056

17 2000 0.51 526140.2 526320 526128.6 526285 526280.7 526382

18 2000 0.52 535987.2 536151 536066.9 536221 536278.2 536502

19 2000 0.53 545706.9 545851 545746.8 545976 545853.0 545964

20 2000 0.54 556148.2 556475 556136.1 556238 556298.3 556474

21 2500 0.45 725663.7 725809 725692.0 725783 725898.6 726034

22 2500 0.46 740798.9 740860 740819.7 741013 740993.8 741058

23 2500 0.47 756634.5 756703 756705.9 756997 756765.7 756969

24 2500 0.48 771467.9 771665 771549.8 771732 771679.2 771845

25 2500 0.49 788344.5 788511 788364.1 788536 788547.9 788818

26 2500 0.50 803207.0 803526 803157.3 803322 803275.9 803572

27 2500 0.51 818493.9 818778 818460.7 818623 818571.5 818791

28 2500 0.52 834306.3 834597 834334.9 834421 834508.4 834836

29 2500 0.53 849186.7 849358 849241.3 849420 849404.1 849532

30 2500 0.54 865441.2 865644 865536.8 865694 865745.8 866126

No. of best 0 1 0 3 30 26

Avg. % gap 0.0 0.04 0.03 0.03 0.00 0.00

Std. % gap 0.02 0.02 0.01 0.02 0.00 0.00

The best obtained solution for each instance is highlighted in bold

123

Delayed improvement local search 947

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_1500
target = 290687

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_1500
target = 290832

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_1500
target = 290978

Fig. 14 TTT plots for a graph with 1500 vertex and 0.5 density, with easiest target on the top left and the
hardest target on the bottom left

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_2000
target = 515119

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_2000
target = 515377

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_2000
target = 515635

Fig. 15 TTT plots for a graph with 2000 vertex and 0.5 density, with easiest target on the top left and the
hardest target on the bottom left

evaluated for each neighbor solution the compliance with local search inequalities that
are always satisfied by locally optimal solutions.

Each inequality gives rise to a local optimality precondition checker. There is a one
to one correspondence between a local optimality precondition checker evaluated as
false and an unsatisfied local search inequality. In each iteration of DILS, the number
of local optimality precondition checkers evaluated to false is computed for each

123

948 H. F. Amaral et al.

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_2500
target = 802071

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_2500
target = 802473

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

p(
t)

BILS
DILS
FILS

TTT plot for g6.0.5_2500
target = 802874

Fig. 16 TTT plots for a graph with 2500 vertex and 0.5 density, with easiest target on the top left and the
hardest target on the bottom left

neighbor and this number along with the solution cost is used to determine the next
current solution.

We implemented DILS for the 2-opt local search of the traveling salesman prob-
lem (TSP) and for the 1-flip local search of the max-cut problem using the local
search inequalities from Lancia et al. (2015). Computational results show that, for the
instances tested, DILS has a better performance than the classic local search imple-
mentations known as best improvement local search and first improvement local search
when initial solution are constructed with greedy construction heuristics.

The efficacy of DILS depends on the availability of local optimality checkers for
the neighborhood operators considered. If local search inequalities are not currently
available for a neighborhood operator, local optimality checkers can be obtained by
studying the properties of local optima for the neighborhood being used.

The performance of DILS also depends on the implementation of the test for the
local optimality checkers. In this work we stored information about the neighboring
solutions in previous iterations, which helped us to quickly recompute the number
of checkers evaluated to false for each neighbor after each step of the local search.
With better implementations, using more stored information and more complex data
structures it might be possible to further improve the performance of DILS.

Future research includes applying DILS to other neighborhoods for the TSP such as
node swap, for which Lancia et al. (2015) provided local search inequalities, and 3-opt.
DILS can also be applied to other combinatorial optimization problems, in addition to
the TSP and the max-cut. Finally, the idea of DILS to use local search inequalities may
be extended to local search based metaheuristics such as tabu search, iterated local
search, and variable neighborhood search. In each of these, being able to postpone
the convergence to a local optimum, beyond what can be done using standard search
components, may turn out to be very beneficial.

123

Delayed improvement local search 949

Acknowledgements The authors wish to thank the editor and the reviewers for their insightful comments
and suggestions, which helped to improve this paper.

Funding Open access funding provided byMolde University College - Specialized University in Logistics.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aiex, R.M., Resende, M.G., Ribeiro, C.C.: TTT plots: a perl program to create time-to-target plots. Optim.
Lett 1(4), 355–366 (2007)

Bertsimas, D.: Probabilistic combinatorial optimization problems. Ph.d thesis, Massachusetts Institute of
Technology (1988)

Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm.
J. Optim. Theory Appl. 45(1), 41–51 (1985)

Duarte, A., Sánchez-Oro, J., Mladenović, N., Todosijević, R.: Variable neighborhood descent. In: Handbook
of Heuristics, pp. 341–367 (2018)

Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the max-cut problem. Optim.
Methods Softw. 7, 1033–1058 (2002)

Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput.
Sci. 1(3), 237–267 (1976)

Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res.
13(5), 533–549 (1986)

Glover, F.: Tabu search-part i. ORSA J. Comput. 1(3), 190–206 (1989)
Glover, F.: Tabu search-part ii. ORSA J. Comput. 2(1), 4–32 (1990)
Hansen, P., Mladenović, N.: First vs. best improvement: an empirical study. Discrete Appl. Math. 154(5),

802–817 (2006)
Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in local optimization. In:

Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combinatorial Optimization, pp. 215–310. Wiley,
Chichester (1997)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–
680 (1983)

Kumar, S.N., Panneerselvam, R.: A survey on the vehicle routing problem and its variants. Intell. Inf.Manag.
4, 66–74 (2012)

Lancia, G., Rinaldi, F., Serafini, P.: Local search inequalities. Discret. Optim. 16, 76–89 (2015)
Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J.

Oper. Res. 59(2), 231–247 (1992)
Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau,

M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 363–397. Springer, Boston (2010). https://
doi.org/10.1007/978-1-4419-1665-5_12

Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)
Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Manag. Sci. 42(6),

797–813 (1996)
Pekny, J.F., Miller, D.L.: A staged primal-dual algorithm for finding a minimum cost perfect two-matching

in an undirected graph. ORSA J. Comput. 6(1), 68–81 (1994)
Prandtstetter, M., Raidl, G.R.: An integer linear programming approach and a hybrid variable neighborhood

search for the car sequencing problem. Eur. J. Oper. Res. 191(3), 1004–1022 (2008)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-4419-1665-5_12
https://doi.org/10.1007/978-1-4419-1665-5_12

950 H. F. Amaral et al.

Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods,
implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011)

Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)
Solnon, C., Cung, V.D., Nguyen, A., Artigues, C.: The car sequencing problem: overview of state-of-the-art

methods and industrial case-study of the ROADEF’2005 challenge problem. Eur. J. Oper. Res. 191(3),
912–927 (2008)

Voudouris, C.: Guided local search for combinatorial optimisation problems. Ph.d thesis, University of
Essex (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Delayed improvement local search
	Abstract
	1 Introduction
	2 Background
	3 Delayed improvement strategy
	4 Delayed improvement applied to the traveling salesman problem
	4.1 Local optimality precondition checkers
	4.2 Implementation details

	5 Delayed improvement applied to the max-cut problem
	5.1 Local optimality precondition checkers
	5.2 Implementation details

	6 Experimental setup
	6.1 Test instances
	6.2 Construction heuristics
	6.3 Computational setup

	7 Computational results for TSP
	7.1 Search behavior
	7.2 Search performance

	8 Computational results for max-cut problem
	8.1 Search behavior
	8.2 Search performance

	9 Conclusions
	Acknowledgements
	References

