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Abstract 

Ordinal regression models are frequently used in academic literature to model 
outcomes of soccer matches, and seem to be preferred over nominal models. One 
reason is that, obviously, there is a natural hierarchy of outcomes, with victory 
being preferred to a draw and a draw being preferred to a loss. However, the often 
used ordinal models have an assumption of proportional odds: the influence of an 
independent variable on the log odds is the same for each outcome. This paper 
illustrates how ordinal regression models therefore fail to fully utilize independent 
variables that contain information about the likelihood of matches ending in a draw. 
However, in practice, this flaw does not seem to have a substantial effect on the 
predictive accuracy of an ordered logit regression model when compared to a 
multinomial logistic regression model. 
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Introduction 

Predicting the outcome of a soccer match not only amounts to determining the relative strength 
of the two teams involved. Since the match may end in a draw, factors such as the risk aversion 
of the teams involved may influence the probability of a decisive result. Many different methods 
have been proposed to predict the outcomes of soccer matches, but one of the most common 
methods is to model match outcomes directly using a regression model with an ordinal valued 
dependent variable. This paper points out how the assumption of proportional log odds in the 
common ordinal regression models prevent the exploitation of independent variables conveying 
information regarding the likelihood of draws. 

Academic literature has only to a small extent considered the peculiarities surrounding the 
prediction of draws. Pope and Peel (1989) found that experts lacked the ability to forecast draws. 
Cain, Law, and Peel (2000) noted that bookmakers’ odds for draws were approximately constant, 
and had no significant explanatory power when predicting the score of a match. They also 
concluded that draws did not offer profitable betting opportunities on the whole. Dixon and Pope 
(2004) noted that bookmakers’ draw odds were almost constant, whereas a Poisson model 
provided greater dispersion. Van Calster, Smiths, and Van Huffel (2008) studied the relationship 
between selected performance indicators and the occurrence of scoreless draws, without 
focusing on the prediction of draws. They found that matches between average and bad-to-
average teams more often resulted in scoreless draws, in particular if matches with these teams 
in general had few goals. Furthermore, they found indications that there is an increased rate of 
scoreless draws for matches with few spectators. 

Ordered logit regression (OLR) and ordered probit regression (OPR) have been used in several 
publications to predict match results in soccer. Kuypers (2000) argued that ordinal regression 
makes sense, since match outcomes are naturally ordered, and therefore did not test any non-
ordered regression models. Ordered regression models have later been used for prediction of 
match results by Koning (2000), Forrest and Simmons (2000), Dobson and Goddard (2001, 
2003, 2008), Audas, Dobson, and Goddard (2002), Goddard and Asimakopoulos (2004), 
Goddard (2005), Forrest, Goddard, and Simmons (2005), Graham and Stott (2008), Hvattum 
and Arntzen (2010), and Hvattum (2015). Some research has relied on the use of ordered 
regression models as a means to normalize bookmakers’ odds, such as by Štrumbelj (2014, 
2016).  

The use of multinomial logit regression (MLR) models as an alternative to OLR or OPR models 
has been limited. Nyberg (2014) used an MLR model to evaluate market efficiency, by using as 
independent variables the averages of normalized implied probabilities from bookmakers’ odds. 
Vlastakis, Dotsis, and Markellos (2009) similarly used an MLR model with bookmaker odds as 
independent variables, trying to obtain profitable forecasts when combined with other models. 
Searching in academic journals, no positive identification has been made for work where 
multinomial models have been used with independent variables not based on bookmaker odds, 
where the problems of predicting draws using ordered models have been discussed in detail, or 
where an empirical comparison has been made between multinomial and ordered models for the 
prediction of soccer matches. 

This work intends to demonstrate that the common use of standard ordered regression is 
potentially inappropriate for modelling match result outcomes, and to show that MLR avoids the 
problem identified for OLR and OPR. While it is not surprising that the ordered regression 
models are unsuitable for predicting draws, from a theoretical perspective, this paper quantifies 
how big the potential gap can be. Furthermore, the paper evaluates both existing independent 
variables from the literature as well as new independent variables, in terms of being able to 
improve predictions of drawn soccer matches.  
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The remainder of this paper is structured as follows. In the next section, the specification of an 
OLR model and an MLR model for the prediction of soccer results are given. The following 
section describes the experimental setup used in this paper. The penultimate section then 
provides results from the experiments. This includes testing whether MLR is indeed superior to 
OLR in terms of being able to utilize information pertaining specifically to the probability of 
draws occurring. Furthermore, the tests examine a range of existing and new independent 
variables, trying to establish whether any of them contain information that is important when 
determining the probability of draws. Concluding remarks are presented in the last section. 

Background 

Two different types of regression models, OLR and MLR, are evaluated in this work. For both 
model types, the idea is to estimate a model based on historical data that can be used to predict 
the outcomes of future soccer matches. The outcome is encoded as a dependent variable 
(response variable), �, which is taken to be ordinal in OLR and nominal in MRL. Several 
measurements are available before a match is played. These are encoded as independent 
variables (predictor variables), �, which are typically real-valued or binary. The models then aim 
to describe the relationship between the independent variables and the possible values of the 
dependent variable, such that the probability of a given value for y is a function of x and a number 
of parameters that must be estimated. 

The following description of the standard ordinal regression models used for the prediction of 
soccer match outcomes is based on (Dobson and Goddard, 2001) and (Greene, 2012). Assume 
that M historical matches have been recorded, and that the result of a match is denoted by �. The 
potential results, �, of a soccer match can be ordered from 1 to K = 3, with � = 1 representing a 
home win, � = 2 representing a draw, and � = 3 representing an away win. 

Assume that there are V independent variables, and that a value xi for each independent variable 
i has been calculated prior to each match. It is of interest to find the probability ��(�) of each 
potential result �	 = 	1, … , K as a function of the independent variables �	 = 	 (��, … , ��)� . This 
is done by introducing one parameter �� for each independent variable �, and parameters ��  for 
�	 = 	1, … , K − 1. To simplify the notation, write �	 = 	 (��, … , ��), and let �� = ∞ and  �� =
−∞. 

Furthermore, denote by � the cumulative probability distribution that describes the error term in 
an unobserved process that links the independent variables and the dependent variable. When F 
is chosen as the logistic distribution, the OLR model is formed, whereas choosing a standard 
normal distribution gives an OPR model. The logistic distribution, which will be used in this 
paper, is given by 

�(�) = 1
1 + ��� 

The conditional probabilities of each result can now be stated, for each potential result �, as 

��(�) = ��−�� − �� − �(−���� − ��)	

which can be written explicitly for soccer matches as 

��(�) = �(−�� − ��),	�!(�) = �(−�! − ��) − ��(�),	�"(�) = 1 − ��(�) − �!(�).	
Figure 1 illustrates the OLR model, showing how independent variables x are turned into 
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probabilities. While this class of models has been frequently used to model and predict outcomes 
of soccer matches, it is evident that independent variables that only influence the likelihood of 
draws, without influencing the relative proportion of home wins to away wins, are of limited 
utility: while the probability of draws is not constant for varying x, their distribution has to follow 
the assumption of proportional log odds. Figure 2 illustrates the shape of estimated probabilities 
using the difference in Elo ratings, Ei j, as the only independent variable. The model was 
estimated based on results of 36,648 matches from the four divisions in the English league 
system between the 1997/1998 and the 2014/2015 season, using the method of maximum 
likelihood. 

 
Figure 1. Ordered logit regression does not facilitate independent variables that only influence the relative 

likelihood of a drawn result. 

In this work, the OLR model is compared with the MLR model (Greene, 2012)[Chapter 18]. The 
MLR model has additional parameters that allows the probability of the middle result, the draw, 
to be influenced without necessarily changing the ratio of probabilities for the extreme results. 
For the ease of presentation, define �� 	= 	1 for all matches. This is to avoid introducing a 
separate parameter � for the constant term in the regression, by directly including the constant 
term in the linear combination of the independent variables. Hence, in this case we have �	 =
	(��, ��, … , ��)�. Parameters $�� are introduced for each independent variable �, including the 
one representing the constant term, for each possible result �, with $� 	= 	 ($��, $��, … , $��). 
Conditional probabilities of each result can now be written, for each potential result � = 1, … , K 
as 

��(�) = e&'(

∑ e&*(+,�,…,�
	

where one potential result - is chosen, setting $+� = 0 for all independent variables � to ensure 
model identifiability. For soccer matches, taking -	 = 	3 as the reference result, this can be 
written explicitly as 

��(�) = 0123

�4012340153,	�!(�) = 0153

�4012340153	,	�"(�) = �
�4012340153.	
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The number of parameters in an OLR model is V	 + K	 − 1, and the number of parameters in an 
MLR model is (V	 + 1)(K − 1). Hence, in the context of predicting soccer match outcomes, 
with K = 3, using MLR instead of OLR roughly amounts to doubling the number of parameters. 
In models with many independent variables, this increases the risk of overfitting, resulting in 
worse predictions for future matches. In addition, the assessment of a single independent variable 
in the multinomial regression model is less straightforward. However, this may be an acceptable 
sacrifice in the pursuit of better predictions of drawn matches. For both types of regression 
models, maximum likelihood estimation is used to determine the regression coefficients. 

 

 
Figure 2. Probabilities of match outcomes as a function of Elo rating differences, estimated using ordered logit 

regression. 

Experimental setup 

The experiments presented in this paper can be divided in two parts. In the first part, the OLR 
and the MLR models are compared in terms of their ability to incorporate independent variables 
that contain information regarding the likelihood of a matches ending in a draw. This is 
performed by generating an artificial independent variable that contains a controlled amount of 
information regarding the likelihood of a draw. In the second part, a wide range of existing and 
novel independent variables are investigated, using both the OLR and the MLR models, trying 
to identify variables that can be used to improve the models’ ability to predict drawn matches. 

To evaluate predictions, two directions are pursued. First, the predictions are compared by 
calculating their quadratic loss (Witten and Frank, 2005): taking ��(�) as the estimated 
probability of outcome � for a match with given values for the independent variables �, and 
taking 7� as a binary indicator equal to 1 if the match ended with outcome � and 0 otherwise, the 
quadratic loss of a single match is ∑ (��(�) − 7�)!�∈{�,!,"} . The quadratic loss is then averaged 
over all predicted matches, and the resulting averages from using different prediction methods 
can be compared. 

Second, predictions are evaluated by considering the return on bets placed. A bookmaker 
provides decimal odds ;� for each outcome �, such that a successful bet gives a profit of (;� − 1) 
times the stake and an unsuccessful bet gives a loss equal to the stake. A prediction method is 
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assumed to place a unit bet at an odds of ;� for all outcomes where ;��� > 1. The average return 
on investment is then calculated over all predicted matches. Odds data are available from up to 
13 different bookmakers, from which the best available odds (the highest value of ;�) is 
considered for each outcome of each match. 

Data 

The data used in the experiments are publicly available. Match results and odds data were 
downloaded from http://www.football-data.co.uk. The main experiments are 
based on data from English league matches. Matches from four divisions, currently named the 
Premier League, the Championship, League One, and League Two, are included, starting from 
the 1997/1998 season up to and including the 2014/2015 season. The total number of matches 
in this data set is 36,648. The two first seasons are used only for initial calibration required for 
the calculation of some of the independent variables studied, whereas seasons 1999/2000 
through 2009/2010 are used solely as historical observations. The remaining five seasons are 
used for making forward predictions: the regression coefficients are estimated based on 
observations up to the start of a given season, and then the predictions for that season are 
evaluated. 

In additional experiments, to verify the findings from the tests using English league matches, 
additional leagues are also considered. In particular, for the same seasons as for the English 
league, matches from the two highest divisions of the French, the Italian, and the Spanish league 
systems are considered. Considering all 18 seasons from 1997/1998 to 2014/2015, these 
additional data sets contain 13,392 matches, 14,236 matches, and 15,156 matches, respectively. 
The same methods to evaluate the regression models are used throughout. 

Independent variables 

Table 1 lists sets of independent variables that are known from existing literature and that have 
been used when predicting soccer match outcomes. Different independent variables are 
considered in the different parts of the experiments, but one variable is always included: the 
difference in Elo rating between the two teams, =�� as included in the set >�. The Elo rating of a 
team is updated dynamically after each match. Let ?�@ and  ?�A be the rating of the home team 
and the away team before a match. Define the actual outcome of a match, from the perspective 
of the home team, as B@ = 1 for a home win, B@ = 0.5 for a draw, and  B@ = 0 for an away 
win. According to the Elo-ratings before the match, an expected outcome for the home team is 

calculated as D@ = E1 + F(GHI�GHJ)/LM
��

, and for the away team as DA = 1 − D@. After the 

match, new Elo-ratings are calculated as ?�@ = ?�@ + -(B@ − D@) and ?�A = ?�A + -(D@ − B@), 
so that the rating points gained by one team is equal to the points lost by the other team. The 
calculations involve three parameters, where F	 = 	10, N	 = 	400, and	- is equal to 10(1 + |Q|), 
where |Q| is the absolute value of the goal difference in the match.  

The values of the parameters were determined in a computational study reported by Hvattum 
and Arntzen (2010). Initial Elo ratings are obtained in a bootstrapping process: all teams are first 
given the same ratings. Two seasons of data are then used to update the ratings. If the ratings 
obtained at the end of the two seasons are similar enough to the ratings taken at the start, the 
process is halted. Otherwise, the ratings obtained at the end of the two seasons are taken as new 
ratings at the start and the process is repeated. 

For a more detailed description of the variables previously used in the literature, see (Goddard, 
2005) and (Hvattum, 2015). Regarding the variables in sets >R and >S, the definition in (Goddard 
and Asimakopoulos, 2004) is followed: a match is significant if it is still possible, before the 
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match is played, for the team in question to either win the league, to be promoted to a higher 
division, or to be relegated to a lower division, when assuming that all other teams obtains on 
average one point from their remaining matches. 

Table 2 lists sets of independent variables that have not been found in existing publications using 
regression to predict soccer matches. The first of these, in T�, is only used in the first part of the 
experiment: it is an ex post calculated value that is specifically designed to contain information 
only about whether or not a given match ended in a draw. The binary variable U is only useful 
to illustrate the difference between OLR and MLR in terms of being able to incorporate 
information regarding draws, and cannot be used for making ex ante predictions. The level of 
information included in the variable is represented by a parameter V, such that when V	 = 	0.5 
the variable consists of random noise, being arbitrarily assigned either the value 0 or the value 
1. When	V	 = 	1 (0), the variable takes the value 1 (0) if the match ended in a draw and takes the 
value 0 (1) otherwise. For intermediate values of V, the value of the variable is randomly chosen 
with a bias that depends on the value of V. 

Variables in T!–TX are calculated on a similar basis as >�, and are included to check whether 
the probability of draws differs systematically for matches with large favorites or for matches 
with better teams (higher average ratings). The variable in TY supplements >R and >S, to check 
whether draws are more likely in unimportant matches. The calculation of the variable in TZ is 
based on previous encounters between the two teams involved, and equals the weighted average 
number of goals scored in past matches between the two teams. Matches with team � as the home 
team are weighted by 0.8, and matches with team � as the home team are weighted by 0.2. If no 
previous matches between the teams are available, the variable equals the average number of 
goals for all the matches involving the two teams. This variable is included to see if there is a 
connection between draws and the amount of goals in past matches between two particular 
teams. 

Set T[ consists of four new variables, two for the home team and two for the away team, 
representing the average number of goals scored and conceded for both teams. This means that 
T[ is somewhat similar to >! − >[, but on a different time scale and without splitting into home 
and away performance. The variable in TR represents the average of the drawing rates for the 
two teams involved in a match, calculated based on matches in the current and the previous 
season. This variable is included to see if the historic drawing rates of teams influence the 
probability of draws in a given match. In an attempt to classify local derbies, TS is a binary 
variable equal to 1 if the distance between two teams’ home grounds is less than 15 kilometres 
beeline. This may give additional information compared to just using the natural logarithm of 
the geographical distance, as in >��, to check if the probability of draws is different in derbies 
from other matches. 

The variable in T�� measures whether the match is in an early or a late phase of the season, 
coded as a binary indicator variable being 1 if the teams have played less than three matches so 
far this season or if the teams have less than three matches left to play this season. The variable 
is included to see if there are more draws in the beginning of seasons, when the league is not yet 
settled, or in the end of the season, when league positions are more or less decided. The variable 
in the set T�� is used to indicate whether a match is played in the weekend, including Friday, or 
on any day from Monday to Thursday. This is based on an indication that the level of home 
advantage may depend on the day of the week in which a match is played (Krumer and Lechner, 
2016). 
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Table 1. Selection of independent variables used in extant literature, including (Goddard, 2005) and (Hvattum, 
2015). 

Table 2. Selection of novel independent variables introduced in this paper. 

Set Description 

>� =�� is the difference in Elo rating prior to the match between the home team � and the 
away team �. 

>! ��L\] equals ̂ �L\]/_�\ where ̂ �L\] is the total number of goals scored by team � in matches 
played 0–12 months (�	 = 	0) or 12–24 months (�	 = 	1) before the current match; within 
the current season (`	 = 	0), the previous season (`	 = 	1), or two season ago (`	 = 	2); in 
a division N ∈ {−2,−1,0,1,2} steps from the team’s current division; and _�\ is the 
number of matches considered when counting the number of goals. 

>" b�L\] equals c�L\]/_�\ where c�L\]is the total number of goals conceded by team � 
defined for (N, �, `) as above. 

>X d�e@  is the number of goals scored in the mth most recent home match by team	�. 
>Y d�eA  is the number of goals scored in the mth most recent away match by team	�. 
>Z f�e

@  is the number of goals conceded in the mth most recent home match by team	�. 
>[ f�e

A  is the number of goals conceded in the mth most recent away match by team	�. 
>R g��@ equals 1 if the match is important for championship, promotion, or relegation issues 

for home team � but not for away team �, and 0 otherwise. 
>S g��A equals 1 if the match is important for championship, promotion, or relegation issues 

for away team � but not for home team �, and 0 otherwise. 
>�� h�� is the natural logarithm of the geographical distance between the home grounds of 

team � and team �. 

Set Description 

T� U is randomly chosen, ex post, to be 1 with probability of V if the match ended in a draw 
and with a probability of (1 − V) if the match did not end in a draw, and 0 otherwise. 

T! =��
!  is the square of the difference in Elo rating prior to the match between the home team 

� and the away team �. 
T" =��

Aij  is the average Elo rating of the home team � and the away team � prior to the match. 
TX =��

Aij! is the square of the average Elo rating of the home team � and the away team � 
prior to the match. 

TY g�� equals 1 if the match is not important for either the home team � or the away team �, 
and 0 otherwise. 

TZ k�� equals the weighted average number of goals scored in previous matches between 
teams � and �, with a higher weight for matches where � was the home team. 

T[ l�
@m, l�

@n , l�Am, and l�An are the average number of goals scored or conceded for the 
home team and away team over the current and previous season. 

TR o�� equals the average number of draws in matches involving teams � or � over the current 
and previous season. 

TS h��
p  is a binary variable equal to 1 if the distance between the home grounds of teams � 

and � is less than 15 kilometres, and 0 otherwise. 
T�� q�� is a binary variable equal to 1 if the match is played in an early or a late round, that is 

one of the first three or one of the last three matches for the teams in the current season, 
and 0 otherwise. 

T�� o�� equals 1 if the match is played on a Friday, Saturday, or a Sunday, and 0 otherwise. 
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Results 

This section presents the results from the two parts of the experiment. 

Using ex post information to evaluate OLR and MLR 

The first part is designed to highlight the practical difference between OLR and MLR when 
including independent variables that contain information about the likelihood of draws. To this 
end, the independent variables in >� and T� are combined, with the parameter V indicating the 
amount of information regarding draws that is contained in the variable of T� referred to as U. 
The evaluation is performed using the five seasons from 2010/2011 to 2014/2015, which contain 
10,180 matches. Some matches are not included in the evaluation, as the Elo ratings could not 
be calculated for all teams, leaving 9,730 matches for which the calculations are performed. 

The expected return on random betting (selecting a match and an outcome using a uniform 
probability distribution) is 0.989 across the 9,730 matches included in the test. The basic 
regression models with only the Elo difference included as an independent variable performs 
worse than this, with 0.967 for OLR and 0.962 for MLR, suggesting that the odds are possibly 
biased against the type of information included in Elo ratings. As there are some matches with 
arbitrage opportunities, a betting rule based on the Shin normalization of the best available odds 
(Štrumbelj, 2016) can also be used, resulting in a return on investment of 0.980. 

Figure 3 illustrates how the quadratic loss changes for predictions using OLR and MLR when 
the information content of U changes with V. With V = 0.5, U contains only noise, and OLR and 
MLR have similar performance, both slightly worse than the probabilities obtained by using the 
Shin normalization of the best available betting odds. However, as the information content 
increases, either by increasing or decreasing the value of V, MLR starts to perform noticeably 
better than OLR. The same trend can be observed in Figure 4, where the return on investment is 
shown for different values of V. It can be seen though, that even OLR obtains positive returns 
on betting when the information content in U is large enough: this is presumably as the variable 
is also indirectly related to the probability of a home win. 

 
Figure 3. Quadratic loss when using OLR and MLR with independent variable U calculated ex post with 

information about the occurrences of draws, together with =��. 
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Figure 5 further illustrates the situation when V is close to 0.5: For each regression model we 
consider whether the return on draw bets is higher than 1, and calculate the P-value from a one-
sided one-sample t-test. Thus, the plotted P-values correspond to the probability that a higher 
return on bets, considering only draw bets, would be observed, given that the expected return on 
draw bets is 1. The figure illustrates that these P-values decrease much faster for MLR than for 
OLR when information regarding draws is available from the independent variables. 
Furthermore, the difference between MLR and OLR becomes evident even for smaller 
deviations of V from 0.5 when considering P-values from a one-sided two-sample unequal 
variance t-test. The P-values here signify the probability of observing a relatively higher return 
on draw bets for MLR given that the expected return on draw bets is equal for OLR and MLR. 

The first part of the experiments has illustrated how MLR is better than OLR at exploiting 
information regarding the occurrence of draws. This difference can be seen by observing lower 
values for the quadratic loss function or by observing a higher return on investment when 
considering bets placed when model probabilities are higher than the inverse of the best odds 
available. In addition, calculating P-values as in Figure 5 may give an even clearer indication as 
to whether a given set of independent variables actually contain information regarding draws 
that is better exploited by MLR than by OLR. In the following, each of these measures will be 
used when evaluating the difference between MLR and OLR for both a set independent variables 
that have been previously presented and used in the literature and a set of new independent  
variables. 

 
Figure 4. Return on investment when using OLR and MLR with independent variable U calculated ex post with 

information about the occurrences of draws, together with =��.  

Using ex ante information to evaluate OLR and MLR 

Having illustrated the extent to which MLR is able to use information regarding the likelihood 
of draws better than OLR, the second part of the experiments examines the performance of MLR 
and OLR on a variety of independent variables as summarized in Table 1 and Table 2. Some of 
the matches from 2010/2011 to 2014/2015 cannot be considered, as not all of the independent 
variables in sets >!–>[ and T�–T�� can be calculated, in particular for teams being newly 
promoted to League Two. This leaves a total of 9,308 matches that is the basis for the following 
comparisons. 
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Figure 5. P-values for comparing the return on draw bets based on OLR and MLR with independent variable U 

calculated ex post with information about the occurrences of draws, together with =��.  

Table 3 summarizes the results, presenting the quadratic loss for predictions, the return on 
investments (ROI) on all bets, the ROI on draw bets, and the same P-values as calculated in 
Figure 5. Numbers in bold indicate that the results are better than when just using the Elo rating 
difference (>�) as the sole independent variable. Using Shin normalization of odds yields 
predictions resulting in an average quadratic loss of 0.6205, which is far better than the loss of 
the regression models. 

The first tests only consider independent variables already known from the literature. The 
independent variables in sets >! and >" are tested together, as is the case for variables in sets 
>X − >[, as well as >R and >S. Most combinations of independent variables improve the 
performance when it comes to ROI, in particular when considering only draw bets, but it no case 
is MLR better than OLR with statistical significance. Nevertheless, except for the combination 
with >R and >S, the two-sample t-test comparing MLR and OLR have lower P-values than the 
base case of only using >�. This means that some of the other independent variables may contain 
some information that is relevant for predicting draws, but not enough to make a statistically 
significant difference. On the other hand, the combination with >R and >S is the only one where 
the quadratic loss of MLR is improved. From this it seems that the independent variables hitherto 
used in academic studies that have applied ordered regression on soccer match prediction do not 
provide much information that is relevant for the prediction of draws. 

The next tests consider a collection of novel independent variables, as summarized in Table 2. 
The situation is similar as for the existing variables: for many of the new variables there is an 
improved ROI for draw bets and an ROI for bets in general, and also a relative improvement of 
the ROI for draw bets using the MLR models compared to the OLR models. However, if any of 
the variables contained information relevant for prediction of draws, it would be expected that 
the ROI on draw bets for MLR would be significantly better than for OLR. This is not the case, 
as for most of the combinations of independent variables, OLR has an equal or better return. 

Finally, two new combinations of independent variables are considered, where existing and new 
variables are combined. Combination f� consists of the sets of variables that obtained improved 
P-values from the two-sample t-test comparing MLR and OLR. That is, f� comprises >� − >[, 
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>��, T!, and TY − T��, for a total of 114 independent variables. The second combination f! 
extends f� by also including >R	and >S which were seen to improve the quadratic loss of MLR 
in the tests reported in Table 3. Interestingly, this larger combination shows the best performance 
so far in terms of ROI on draw bets for the MLR model, whereas the OLR model performs in 
line with previous observations. Again, though, the difference between MLR and OLR is not 
statistically significant. However, the ROI of draw bets for the MLR model with f! is better than 
the ROI of draw bets from the corresponding model with only >�, with a P-value of 0.03 from a 
one-sided two-sample t-test. 

In a set of additional tests, data sets from the French, Spanish, and Italian leagues are considered. 
The data sets span the same years as the English data set, but have fewer divisions included. The 
number of matches eligible for calculating predictions in the test seasons from 2010/2011 to 
2014/2015 is 2,890 for the French league, 2,935 for the Spanish league, and 2,910 for the Italian 
league. Since only two divisions are available, some of the independent variables included in >! 
and >" must be omitted. This pertains to those combinations of ��L\]	and b�L\] that involve 
divisions N = 2 or N = −2 steps from a team’s current division.  

With some slight differences, tests using >�, f�, and f! yields the same results as for the English 
league. For example, for the French league, all six models evaluated provide a positive return on 
draw bets. The best ROI on draw bets is for the MLR models including many independent 
variables. The P-values from comparisons of MLR and OLR are in line with the observations 
from the English league, and thus not statistically significant even though the direction of the 
difference in performance indicates that MLR is better than OLR. 

Having examined four separate data sets, from four different league systems, an overall trend is 
quite clear: when including a large set of independent variables, several of which were designed 
to probe for predictive power with respect to forecasting draws, the performance of MLR seems 
better than OLR when looking at the return on draw bets. However, even though the trend is 
clear, a basic one-sided two-sample t-test is unable to determine a statistically significant 
difference in the performance. A final test was therefore conducted in which the data sets where 
joined together, considering at once 79,432 matches out of which 18,043 are used to calculate 
quadratic loss and return on bets. The results indicate that the return on bets is not in general 
improved by combining several different leagues. A possible partial explanation is that the base 
rates for draws are different for each league, and that there are no variables included to adjust 
for this. For example, 30.6 % of the matches ended in a draw in the French data set, whereas 
only 27.3 % of the matches ended in a draw in the English data set. To facilitate the fact that 
different leagues have different distributions of results, binary indicator variables are also added 
to the mix of independent variables. This seems to improve the return on bets in general, and the 
ROI on draw bets for MLR improves more than for OLR. The test again fails to indicate a 
statistically significant difference between OLR and MLR, suggesting that there is indeed very 
little information in the 119 different variables included that can help to improve draw 
predictions. 
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Table 3. Main results. 

  Quadratic loss ROI (#bets) ROI draws (#bets) P-values 

r |r| OLR MLR OLR MLR OLR MLR OLR MLR Diff 

>� 1 0.629 0.629 0.967 (12831) 0.962 (11966) 0.936 (4106) 0.910 (3337) 0.99 1.00 0.74 
>� − >" 49 0.628 0.629 0.985 (12849) 0.988 (12636) 0.959 (4201) 0.961 (3337) 0.95 0.93 0.48 

>�, >X − >[ 53 0.628 0.629 0.967 (12934) 0.969 (12770) 0.949 (4262) 0.966 (4004) 0.98 0.90 0.32 

>�, >R, >S 3 0.628 0.628 0.976 (12895) 0.968 (12176) 0.951 (4175) 0.925 (4054) 0.97 1.00 0.75 
>�, >�� 2 0.629 0.629 0.973 (12825) 0.968 (11996) 0.954 (4098) 0.938 (3541) 0.96 0.98 0.66 

>�, T! 2 0.629 0.629 0.967 (12886) 0.959 (12145) 0.939 (4135) 0.925 (3342) 0.99 1.00 0.64 

>�, T" 2 0.628 0.629 0.970 (12828) 0.957 (11936) 0.956 (4115) 0.925 (3504) 0.96 0.99 0.78 
>�, TX 2 0.628 0.629 0.969 (12822) 0.957 (12073) 0.942 (4100) 0.908 (3317) 0.99 1.00 0.81 
>�, TY 2 0.629 0.629 0.966 (12854) 0.970 (11877) 0.935 (4120) 0.938 (3425) 0.99 0.98 0.47 

>�, TZ 2 0.629 0.629 0.969 (12853) 0.967 (12324) 0.935 (4120) 0.928 (3228) 0.99 1.00 0.58 

>�, T[ 5 0.628 0.628 0.973 (12799) 0.972 (11859) 0.948 (4105) 0.942 (3797) 0.98 0.97 0.56 

>�, TR 2 0.629 0.629 0.968 (12820) 0.963 (11899) 0.935 (4094) 0.914 (3225) 0.99 1.00 0.71 

>�, TS 2 0.629 0.629 0.969 (12836) 0.970 (11817) 0.938 (4107) 0.934 (3277) 0.99 0.99 0.55 

>�, T�� 3 0.629 0.629 0.967 (12793) 0.970 (11912) 0.941 (4086) 0.943 (3173) 0.99 0.97 0.48 

>�, T�� 2 0.629 0.629 0.969 (12833) 0.968 (11915) 0.939 (4100) 0.923 (3256) 0.99 1.00 0.65 

f� 114 0.629 0.630 0.982 (13188) 0.984 (12923) 0.955 (4461) 0.981 (3277) 0.97 0.77 0.23 

f! 116 0.629 0.630 0.985 (13226) 0.987 (12931) 0.953 (4515) 0.985 (4198) 0.97 0.73 0.18 

 
 



IJCSS – Volume 16/2017/Issue 1              www.iacss.org 

63 

Concluding remarks 

Ordered regression is commonly used in academic literature to determine probabilities for the 
outcomes of soccer matches. However, this use is only justifiable when the influence of an 
independent variable on the log odds is the same for each outcome. For the prediction of soccer 
matches, this implies that independent variables only containing information about the relative 
propensity of drawn results cannot be fully exploited. Hence, standard ordered regression models 
cannot utilize variables characterizing situations where the risk aversion of teams (the probability 
of a draw) vary but their relative strength (the ratio of probabilities for home wins and draw 
wins) do not.  

This paper showed that multinomial logit regression (MLR) is a viable alternative to ordered 
logit regression (OLR) when independent variables related to the probability of draws are 
present. A significant effort was then expended to evaluate the ability of independent variables 
to improve predictions of draws in soccer, including both existing variables from the literature 
as well as a range of novel variables. The results were uniform: no observations made indicated 
a statistically significant difference in the quality of predictions made using MLR or OLR. 
Despite this, most of the tests did show that MLR led to better returns on draw bets than OLR 
when including many different independent variables.  

It therefore seems that the use of ordered regression to estimate outcome probabilities in soccer 
matches is acceptable, despite having some theoretical shortcomings. With the independent 
variables typically used in studies to forecast soccer matches, there is no evidence that using 
nominal regression is significantly better in actual practice. The forecasts derived from the 
regression models considered in this paper are unlikely to directly benefit actors in the betting 
market, given that the return on investment from bets placed based on the derived probabilities 
is never above 1 with statistical significance. However, both the OLR models and the MLR 
models are ostensibly equally good choices for analysing a range of related situations, such as 
the competitive balance within a league (Koning, 2000), the impact of managerial changes 
(Audas et al., 2002), or the effect of playing on artificial turf (Hvattum, 2015). 

Although this paper has focused on the much used ordered regression models and only 
considered a multinomial regression model as an alternative, many other methods have been 
examined in the literature. The ability of alternative methods, such as other non-proportional 
odds ordinal models, random forests, or Gaussian process ordinal regression, to predict draws in 
soccer remains unexplored. However, based on the results in this work, it does seem that as of 
now, we are simply not aware of any independent variables that are effective at discriminating 
matches that are likely to end in a draw. 
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