Pressure versus ability: Evidence from penalty shoot-outs between teams from different divisions

Alex Krumer ${ }^{\text {a,\#,** }}$
${ }^{a}$ Faculty of Business Administration and Social Sciences, Molde University College, Britvegen 2, Molde 6402, Norway

ARTICLE INFO

JEL classification:

D00
L00
D20
D79
Z20

Keywords:
Performance
Soccer
Collective decision-making
Choking

Abstract

This study utilizes data from 586 shoot-outs between teams from different divisions in national cups of the top five European soccer countries. We find that a difference in one league between the teams increases the gap between probabilities of winning by 8 percentage points in favor of a team from a higher division. This result contradicts the widespread belief that penalty shoot-outs are a game of chance, highlighting the importance of ability even in a simple mechanical task that takes place in high-pressure situations.

1. Introduction

One of the important features of any tournament is the fairness criteria according to which the probabilities of winning the tournament are naturally ordered according to the players' ranking (Groh, Moldovanu, Sela \& Sunde, 2012). A penalty shoot-out is the culmination of a tied soccer (football) game that involves large stakes and high pressure (Jordet, Hartman, Visscher \& Lemmink, 2007). It is widely believed that either team has the same probability of winning a penalty shoot-out, regardless of its ranking. If this is indeed the case, then the method of penalty shoot-outs does not satisfy the fairness criteria, since better teams do not have a higher probability of winning.

Our aim in this study is to investigate whether penalty shoot-out between teams from different abilities is indeed a complete game of chance. To do this, we utilize data from penalty shoot-outs in the national cup competitions of the top five European soccer countries (Germany, Italy, Spain, England, and France) according to the ranking of the Union of European Football Associations (UEFA). More specifically, we use data from games between teams from different divisions,
since, by definition, a team from a higher division is regarded as a higher ranked team. We also assume that rankings and abilities are highly connected. This assumption is intuitive, since teams from higher divisions are able to attract better field players, goalkeepers, and coaches. Therefore, we can test whether higher-ranked teams have a higher probability of winning in penalty shoot-outs. In total, there were 586 games between teams from different divisions, starting from the year in which these countries introduced a one-leg cup structure. ${ }^{1}$

There are three possible predictions in a shoot-out between a team from a higher and lower divisions. As already mentioned, a shoot-out is a situation where the stakes are high. Therefore, the first prediction is based on economic theory, according to which, agents with higher ability are supposed to enhance their performance when the stakes are greater (Ehrenberg \& Bognanno, 1990; Lazear, 2000; GonzálezDíaz, Gossner \& Rogers, 2012; Jetter \& Walker, 2015; CohenZada, Krumer \& Shapir, 2018; Iqbal \& Krumer, 2019). In addition, professional kickers/goalkeepers randomize their actions during penalty kicks (Palacios-Huerta, 2003). However, according to survey presented in Palacios-Huerta (2014a), players from lower ability

[^0]distribution (MLS league) would prefer to kick to the same side more frequently than more skilled players from the top European leagues. Such a preference is likely to affect the success rate in favor of the more skilled players. ${ }^{2}$

On the other hand, higher-ranked teams are expected to win even before the shoot-out and such high expectations may put additional pressure on these teams, since they have more to lose. Such high stakes may provoke "choking" under pressure (Baumeister, 1984; Baumeister, Hamilton and Tice, 1985; Ariely et al., 2009; Jordet, 2009; Hickman \& Metz, 2015; Harb-Wu \& Krumer, 2019). Therefore, according to the choking literature, the lower-ranked team actually has a higher probability of winning. The third prediction is based on widespread beliefs that both teams would have the same probability of winning a shoot-out.

It is important to note that in a recent paper, Arrondel, Duhautois \& Laslier (2019) used a binary variable "higher level" as one of the controls to estimate the probability of winning in shoot-outs in French Cups. This variable indicated whether a team is from a higher division than its opponent. The authors briefly report a positive coefficient without further discussion, suggesting that teams from higher divisions have a higher probability of winning.

We used a different measure in the present study, namely a difference in leagues between the two teams. In addition, we used data from five countries. We find that, on average, a difference of one league between the teams increases the higher division team's probability of winning the shoot-out by about 4 percentage points. To put this finding into perspective, if the probability of each of two equal teams from the same division winning the shoot-out is 50 percent, a difference in one division creates a gap of 8 percentage points between the teams' probabilities of winning (54 percent relative to 46 percent). Interestingly, a team from the higher division won in five out of the six shoot-outs that took place in the cup finals (the only exception was Hannover 96, who won against Borussia Mönchengladbach in 1991-92).

Our findings suggest that teams from different divisions do not have equal probabilities of winning. Rather, teams with higher ability perform better in the most critical moment of the game. This result is in line with several previous studies that have used data from sport to show that higher ability contestants enhance their performance when it matters most. For example, Cohen-Zada, Krumer \& Shapir (2018) studied tennis tiebreaks, which, like penalty shoot-outs, are the culmination of tennis matches. The authors found that the most important factor affecting the probability of winning is a player's ability, as measured by his or her world rankings. This result is in line with González-Díaz, Gossner \& Rogers (2012), who found that higher-ability tennis players respond positively to the importance of points. Similarly, Jetter \& Walker (2015) found a clutch-player effect in professional tennis, according to which top players perform better in the most important tournaments. Similarly, Iqbal \& Krumer (2019) showed that higher stakes improved the performance of higher ranked tennis players in Davis Cup tournaments.

Our study contributes to the literature in several ways. First, it investigates the performance on a team level rather than the performance on the individual level, as described in the previous paragraph. Second, we emphasize relative performance rather than absolute performance in interactive contests. Previous studies on interactive contests such as tennis and soccer have shown that high stakes could actually harm the absolute performance of players. For example, Paserman (2010) and Cohen-Zada et al. (2017) found that tennis players choke more in the most important junctures of tennis match. Jordet et al. (2007) and Arrondel, Duhautois \& Laslier (2019) illustrated that the probability of

[^1]scoring in a penalty shoot-out is negatively affected by the stakes involved. Dohmen (2008) found a higher probability of missing the goal without the goalkeeper's inference when playing at home. Finally, Jordet (2009) showed that superstars had a lower probability of scoring a penalty compared to other players.

In addition, it is possible that in non-interactive tasks, abnormal stakes would provoke choking, as Harb-Wu \& Krumer (2019) showed using a task of shooting in professional biathlon. Hickman \& Metz (2015) found that higher stakes in professional golf increase the likelihood of missing a shot on the final hole. Cao, Price \& Stone (2011), as well as Toma (2017), presented evidence of choking under pressure in free-throw shots of close professional basketball games. ${ }^{3}$

Although we cannot say anything about the absolute performance of the teams, we find that, on a team level, the relative performance of the higher ranked team is better in the most important moment of the game.

The remainder of the paper is organized as follows. Section 2 describes the penalty shoot-out setting. Section 3 presents the data and descriptive results, before Section 4 presents the estimation strategy and results. Finally, we offer concluding remarks in Section 5.

2. Description of penalty shoot-outs in national cups

A penalty shoot-out normally takes place in elimination-type tournaments, where a winner advances to the next stage and the loser is eliminated. This structure appears in national cup tournaments where teams from different divisions compete against each other. With some exceptions, it does not appear in the league matches that adopt the round-robin structure, where each team competes against all the others. The winner of a national cup participates in the European Cup tournament in the following season. ${ }^{4}$ As a result, national cups provide teams from lower divisions with an opportunity to participate in the inter-European club competitions that are organized by UEFA. ${ }^{5}$

A shoot-out only takes place in games that end in a draw. ${ }^{6}$ Before the advent of shoot-outs, such games were decided by the toss of a coin or by a replay. In 1968, Yosef Dagan, the Israel Football Association's secretary at the time, proposed penalty shoot-outs after his team lost by the drawing of lots at the 1968 Olympics. The International Football Association Board (IFAB) approved the proposal in 1970.

Each team takes turns shooting at goal from the penalty spot, with the goal only defended by the opposing team's goalkeeper. Five different kickers from each team that execute the task, such that each team takes one kick, then the other team takes a kick, and so on. If the score is still tied after five pairs of kicks, then each team has to kick one more time each until one of the teams wins.

3. Data and variables

3.1. Data

To estimate the effect of difference in teams' abilities on the probability of winning a shoot-out, we only used data on games between

[^2]Table 1
Description of the dataset.

Competition	Seasons	Observations
Germany: DFB-Pokal	$1991-2018$	150
Spain: Copa del Rey	$1986-2018$	58
France: Coupe de France	$1981-2018$	183
Italy: Coppa Italia	$1979-2018$	80
England: Football League Cup	$1997-2018$	115
Total	586	

Note: The final game of the 1973-74 season in Coppa Italia had a one-leg structure and is therefore included in our dataset.
teams from different divisions. This makes it easier to disentangle the abilities of the teams and define a stronger and a weaker team. We only used data on games with a one-leg structure to avoid the possible asymmetry that may stem from different winner-loser effects, which may be driven by the result of the second game (for evidence on winner-loser effects, see Malueg \& Yates, 2010; Cohen-Zada, Krumer \& Shtudiner, 2017; Page \& Coates, 2017).

We used data from games in the domestic cups of the top five European soccer countries starting from the year in which these countries introduced a one-leg cup structure. Table 1 describes the relevant competitions and the years. ${ }^{7}$ In total, there were 586 games between teams from two different divisions.

For every game, we have information available regarding the names of the teams, the location, and the round of the game in the tournament, the total number of rounds in the tournament, and the division of each team in the respective season. The higher the division, the higher the ability of the club. These data are available from www.rsssf.com.

3.2. Variables

For each match in our dataset, we randomly picked one of the teams and denoted it as Team A and the other team as Team B. Thus, our outcome variable takes the value of one if Team A won the shoot-out and zero otherwise. We can see from Table 2 that a random Team A won 48.8 percent of the shoot-outs (see Appendix A for descriptive statistics for each league separately).

We use the difference between teams' divisions to estimate the effect of difference in abilities on probability of winning the shoot-out. Note that a lower number of a team's division represents a higher ability; for example, a first division is higher than a second division. Therefore, if Team A is from a higher division than Team B, the difference between teams' divisions will be a negative number. Fig. 1 shows that, on average, a higher division team has a 10 percentage points higher probability of winning (55 percent versus 45 percent).

We also controlled for home advantage. The variable that indicates having a home advantage by Team A gets the value of one if Team A competes at home and zero otherwise. In addition, since there were final games in a neutral field, the variable that indicates having a home advantage by Team B gets the value of one if Team B competes at home, and zero otherwise. ${ }^{8}$ We also controlled for the ratio between the round of the game in the tournament and the total number of rounds. Interestingly, teams from the higher division won in five out of six finals in

[^3]Table 2
Descriptive statistics.

	Mean	Standard deviation	Min	Max
Variable Name				
Team A wins	0.488	0.500	0	1
Team A home advantage	0.505	0.500	0	1
Team A division	2.410	1.150	1	6
Team B division	2.372	1.130	1	6
Difference in divisions between teams A \quad and B	0.038	1.708	-4	4
Observations	586			

Fig. 1. Share of wins as a function of teams' divisions.
our data. The only exception was Hannover 96, which won against Borussia Mönchengladbach in the final of 1991-92 DFB-Pokal.

As we randomized the identity of teams A and B, they are not expected to be different in any of their characteristics. Table 3 compares the means of each characteristic of the two teams and tests whether the difference between them is significant. In Columns 3 and 4 of Table 3, we report the difference and the P-values of the paired t-test, respectively. We can see that teams A and B do not differ in any of their characteristics, implying that the randomization process was successful.

4. Estimation strategy and results

Since our outcome variable is a binary one, we estimate a logit model of the probability of Team A to win the shoot-out as a function of difference in divisions between the teams. Our basic set of controls includes a dummy variable for whether each of the teams has a home advantage, and the relative round of the tournament. In addition, since the rules of penalty shoot-outs changed several times over the years, we use year dummies. ${ }^{9}$ Finally, we also use country dummies as well. Formally, this specification takes the form:
$\log \left(\frac{\pi_{A B y c}}{1-\pi_{A B y c}}\right)=\beta_{0}+\beta_{1} \cdot$ DiffDiv $_{A B y c}+\beta_{2} \cdot X_{A B y c}+\varepsilon_{A B y c}$
Where the dependent variable is the probability of Team A to defeat Team B, given the country c and year $y, X_{A B y c}$ is our set of controls, and $\varepsilon_{A B y c}$ is an error term. As described above, if the difference in divisions between the teams A and B, DiffDiv AByc , is negative, then Team A is from the higher division.

[^4]Table 3
Comparison of teams' pre-treatment characteristics.

	Team A (1)	Team B (2)	Difference (3)	P-value (4)
Team wins 0.488 0.512 -0.024 0.563 Home advantage Division 0.505 0.485 0.020 0.619	2.410	2.372	0.038	0.595

Notes: Columns 1 and 2 present the average value of each of the characteristics of Teams A and B respectively. The differences between these values appear in Column 3. Column 4 reports the P -values of paired t -test.

Column 1 of Table 4 presents the results, from estimating Eq. 1 without a list of controls. Standard errors appear in parentheses. The results show that the coefficient β_{1} is negative and significant at the 1% level. This implies that Team A has a significantly higher probability of winning a shoot-out if it is from a higher division. Next, we add to Eq. (1) the home advantage and relative round variables. Column 2 shows that a difference in one division in favor of Team A, increases the Team A's probability of winning by 4 percentage points. The results are robust to including year and country dummies, as appear in Columns 3 and 4 , respectively.

In this specification, the effect of being a team from a higher division (relative to being from a lower division) on the probability of Team A to win the shoot-out is $2 \beta_{1}$. To illustrate the magnitude of this estimate, the probability of each of two equal teams from the same division winning the shoot-out is 50 percent. However, according to the results in Column 4, a team from the first division increases its probability of winning against a team from the second division to 54 percent, which is 8 percentage points higher than the probability of the other team winning (54 percent relative to 46 percent).

In Column 5, we add interactions between DiffDiv and a dummy variable for Team A's a home advantage, and separately between DiffDiv and the relative round of the tournament. The marginal effect of DiffDiv becomes larger, but also the standard errors, increasing the significance level to 5.2%. However, it is important to note that the most significant interaction term has the p-val of 0.49 , suggesting that these interactions only add a statistical noise.

In Column 6, we restricted the data to cases where a higher-division team is from the top division. We see a very similar magnitude as previously. If we take an underdog team from the third division, the probabilities of winning would be 59.2 percent versus 40.8 percent in favor of a team from the top division, which is a very large difference. This gap is even wider when we use a team from the second division as a higher division team, as shown in Column 7. The result indicates that, in a game between teams from the second and fourth divisions, the probabilities of winning would be 61.4 percent versus 38.6 percent in favor of a second division team.

One additional control that would have been worth to add is the identity of the first kicking team. For example, Apesteguia \& PalaciosHuerta (2010) found that the first kicking team had a significant margin of 21 percentage points over the second kicking team. Although, Kocher, Lenz \& Sutter (2012) as well as Arrondel, Duhautois \& Laslier (2019) challenged that result, Palacios-Huerta (2014b) reproduced this first-mover advantage using a significantly larger sample size than in the two challenging papers (including the entire data of Kocher, Lenz \& Sutter (2012)). More recently, González-Díaz \& Palacios-Huerta (2016) obtained a similar result in a multi-stage chess contest (chess matches) between two players, and found that the player playing with the white pieces in the odd games was much more likely to win the match than the player playing with the white pieces in the even games. Therefore, omitting the identity of the first-kicking team may bias the results. However, it was not possible to obtain the information on the identity of the first kicking team in games that took place in the period of more than 40 years (many of them between teams from low divisions). Nevertheless, based on a very plausible assumption that teams from higher division did not have a significantly larger probability of being the first kicking team, our results remain unbiased.

Taken together, our results suggest that, on average, higher-ranked teams outperform their opponent in penalty shoot-outs. This does not mean that individual players from the highest level do not choke, as was described by Jordet (2009). However, since soccer is a team sport, it is more natural to look at the team's overall performance. Finally, despite our findings, it still seems reasonable for lower-division teams to reach a penalty shoot-out, since they are likely to have a better chance of winning in a shoot-out than during regular time.

5. Conclusion

In this study, we have found that higher-ranked soccer teams perform a simple mechanical task better in a situation that involves high pressure. These results contradict a widespread belief that penalty shoot-outs are a "lottery" in which teams have equal probabilities of winning. Our results also suggest that penalty shoot-outs satisfy the fairness criteria according to which the probabilities of winning the tournament are ordered naturally according to the teams' rankings. Our findings are in line with economic theory, according to which higher ability agents are supposed to enhance their (relative) performance when the stakes are larger.

Finally, the findings of this study may help coaches and players from lower divisions prepare better for shoot-outs. For example, coaches should not refer to shoot-outs as a game of chance, but instead invest more time in preparing for penalty shoot-outs, both technically and psychologically. Doing so might increase their probability of winning.

Table 4
Logit average marginal effect of difference in divisions on the probability of winning a penalty shoot-out.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Difference in divisions	-0.033***	-0.040***	-0.041***	-0.040***	-0.061*	-0.046***	-0.057**
	(0.012)	(0.014)	(0.014)	(0.013)	(0.031)	(0.017)	(0.028)
Basic controls	No	Yes	Yes	Yes	Yes	Yes	Yes
Country dummies	No	No	Yes	Yes	Yes	Yes	Yes
Year dummies	No	No	No	Yes	Yes	Yes	Yes
Interactions with basic controls	No	No	No	No	Yes	No	No
Number of obs.	586	586	586	585	585	309	192

Note: The list of basic controls includes whether a team has home advantage and the round of the match in the tournament relative to the total number of rounds. Columns 1-4 include all the data. In Column 5, we add interaction of DiffDiv with basic controls. In Column 6, a higher-division team is from the top division only. In Column 7, a higher-division team is from the second division only. Standard errors are in parentheses. *, **, *** denote significance at the $10 \%, 5 \%$, and 1% levels, respectively.

Appendix A. descriptive statistics per country

Tables A1-A5.

Table A1
Descriptive statistics for Germany.

	Mean	Standard deviation	Min
Variable Name			
Team A wins	0.520	0.501	0
Team A home advantage	0.513	0.501	0
Team A division	2.206	0.985	1
Team B division	2.120	0.933	1
Difference in divisions between teams A	0.087	1.634	4
\quad and B	150		4
Observations		3	

Table A2
Descriptive statistics for Spain.

	Mean	Standard deviation	Min
Variable Name			
Team A wins	0.517	0.504	0
Team A home advantage	0.500	0.504	1.093
Team A division	2.586	1.095	1
Team B division	2.552	1.600	-3
Difference in divisions between teams A	0.034		4
\quad and B	58		4
Observations			3

Table A3
Descriptive statistics for France.

	Mean	Standard deviation	Min
Variable Name			
Team A wins	0.481	0.501	0
Team A home advantage	0.497	0.501	0
Team A division	2.672	1.379	1
Team B division	2.486	1.378	1
Difference in divisions between teams A	0.186	1.952	-4
\quad and B	183		6
Observations			4

Table A4
Descriptive statistics for Italy.

	Mean	Standard deviation	Min
Variable Name			
Team A wins	0.500	0.503	0
Team A home advantage	0.575	0.497	0
Team A division	2.113	0.871	1
Team B division	2.125	0.753	1
Difference in divisions between teams	-0.013	1.237	-2
A and B	80		3
Observations		3	

Table A5
Descriptive statistics for England.

	Mean	Standard deviation	Min
Variable Name			
Team A wins	0.435	0.498	0
Team A home advantage	0.461	0.500	1
Team A division	2.374	1.055	1
Team B division	2.600	1.083	1
Difference in divisions between teams	-0.226	1.712	-3
\quad A and B	115		4
Observations		3	

References

Apesteguia, J., Palacios-Huerta, I., 2010. Psychological pressure in competitive environments: Evidence from a randomized natural experiment. The American Economic Review 100 (5), 2548-2564.
Arrondel, L., Duhautois, R., Laslier, J.F., 2019. Decision under psychological pressure: The shooter's anxiety at the penalty kick. Journal of Economic Psychology 70, 22-35.
Ariely, D., Gneezy, U., Loewenstein, G., Mazar, N., 2009. Large stakes and big mistakes. The Review of Economic Studies 76 (2), 451-469.
Azar, O.H., Bar-Eli, M., 2011. Do soccer players play the mixed-strategy Nash equilibrium? Applied Economics 43 (25), 3591-3601.
Bar-Eli, M., Azar, O.H., Ritov, I., Keidar-Levin, Y., Schein, G., 2007. Action bias among elite soccer goalkeepers: The case of penalty kicks. Journal of Economic Psychology 28 (5), 606-621.
Baumeister, R.F., 1984. Choking under pressure: self-consciousness and paradoxical effects of incentives on skillful performance. Journal of Personality and Social Psychology 46 (3), 610.
Baumeister, R.F., Hamilton, J.C., Tice, D.M., 1985. Public versus private expectancy of success: Confidence booster or performance pressure? Journal of Personality and Social Psychology 48 (6), 1447.
Chapter 19 edited byBeilock, S.L., Gray, R., 2007. Why do athletes choke under pressure? In: Tenenbaum, G., Eklund., R.C. (Eds.), Handbook of sport psychology, 3rd ed. Wiley \& Sons, Hoboken, pp. 425-444 Chapter 19edited by.
Cao, Z., Price, J., Stone, D.F., 2011. Performance under pressure in the NBA. Journal of Sports Economics 12 (3), 231-252.
Cohen-Zada, D., Krumer, A., Rosenboim, M., Shapir, O.M., 2017. Choking under pressure and gender: Evidence from professional tennis. Journal of Economic Psychology 61, 176-190.
Cohen-Zada, D., Krumer, A., Shapir, O.M., 2018. Testing the effect of serve order in tennis tiebreak. Journal of Economic Behavior \& Organization 146, 106-115.
Cohen-Zada, D., Krumer, A., Shtudiner, Z., 2017. Psychological momentum and gender. Journal of Economic Behavior and Organization 135, 66-81.
Dohmen, T.J., 2008. Do professionals choke under pressure? Journal of Economic Behavior \& Organization $65(3-4)$, 636-653.
Ehrenberg, R.G., Bognanno, M.L., 1990. Do tournaments have incentive effects? Journal of Political Economy 98 (6), 1307-1324.
Gneezy, U., Meier, S., Rey-Biel, P., 2011. When and why incentives (don't) work to modify behavior. Journal of Economic Perspectives 25 (4), 191-210.
González-Díaz, J., Gossner, O., Rogers, B.W., 2012. Performing best when it matters most: Evidence from professional tennis. Journal of Economic Behavior \& Organization 84 (3), 767-781.

González-Díaz, J., Palacios-Huerta, I., 2016. Cognitive performance in competitive environments: Evidence from a natural experiment. Journal of Public Economics 139, 40-52.
Groh, C., Moldovanu, B., Sela, A., Sunde, U., 2012. Optimal seedings in elimination tournaments. Economic Theory 49 (1), 59-80.
Jetter, M., Walker, J.K., 2015. Game, set, and match: Do women and men perform differently in competitive situations? Journal of Economic Behavior \& Organization 119, 96-108.
Jordet, G., 2009. Why do English players fail in soccer penalty shootouts? A study of team status, self-regulation, and choking under pressure. Journal of Sports Sciences 27 (2), 97-106.
Jordet, G., Hartman, E., Visscher, C., Lemmink, K.A., 2007. Kicks from the penalty mark in soccer: The roles of stress, skill, and fatigue for kick outcomes. Journal of Sports Sciences 25 (2), 121-129.
Harb-Wu, K., Krumer, A., 2019. Choking under pressure in front of a supportive audience: Evidence from professional biathlon. Journal of Economic Behavior \& Organization 166, 246-262.
Hickman, D.C., Metz, N.E., 2015. The impact of pressure on performance: Evidence from the PGA TOUR. Journal of Economic Behavior \& Organization 11, 319-330.
Iqbal, H., Krumer, A., 2019. Discouragement effect and intermediate prizes in multi-stage contests: Evidence from Davis Cup. European Economic Review 118, 364-381.
Kocher, M.G., Lenz, M.V., Sutter, M., 2012. Psychological pressure in competitive environments: New evidence from randomized natural experiments. Management Science 58 (8), 1585-1591.
Lazear, E.P., 2000. The power of incentives. The American Economic Review 90 (2), 410-414.
Malueg, D.A., Yates, A.J., 2010. Testing contest theory: evidence from best-of-three tennis matches. The Review of Economics and Statistics 92 (3), 689-692.
Page, L., Coates, J., 2017. Winner and loser effects in human competitions. Evidence from equally matched tennis players. Evolution and Human Behavior 38 (4), 530-535.
Palacios-Huerta, I., 2003. Professionals play minimax. The Review of Economic Studies 70 (2), 395-415.
Palacios-Huerta, I., 2014a. Lessons for experimental design. Chapter 3 in Beautiful game theory: How soccer can help economics. Princeton University Press.
Palacios-Huerta, I., 2014b. Psychological pressure on the field and elsewhere. Chapter 5 in Beautiful game theory: How soccer can help economics. Princeton University Press.
Paserman, M.D., 2010. Gender differences in performance in competitive environments? Evidence from professional tennis players. mimeo.
Toma, M., 2017. Missed shots at the free-throw line: Analyzing the determinants of choking under pressure. Journal of Sports Economics 18 (6), 539-559.

[^0]: * Corresponding author.

 E-mail address: alex.krumer@himolde.no.
 \# I would like to thank Kjetil Haugen and Danny Cohen-Zada for their helpful comments. I also thank Jonas Marcus Bruhin for data collection. The usual disclaimer applies.
 ${ }^{1}$ For England, we use data from the England Football League Cup. See discussion in Section 3 on why we chose only a one-leg structure.

[^1]: ${ }^{2}$ See also Azar \& Bar-Eli (2011) for additional evidence on randomization in penalty kicks. It is also worth mentioning Bar-Eli et al. (2007) who showed an overestimation of a jumping strategy among goalkeepers.

[^2]: ${ }^{3}$ For additional references on the link between incentives and performance, see the comprehensive review by Gneezy, Meier \& Rey-Biel (2011). Also, see Beilock \& Gray (2007) for a psychological review of choking in sports.
 ${ }^{4}$ Up until the 1998-99 season, the winners of the national cups (or in some cases, the runners-up) participated in the UEFA Cup Winner's Cup. After that, the winners (or in some cases, the runners-up) participated in the UEFA Cup (later called the Europa League).
 ${ }^{5}$ There were several cases where teams from lower divisions won the national cups, including En Avant de Guingamp from France in 2008-09 and Hannover 96 from Germany in 1991-92.
 ${ }^{6}$ In a best-of-two type of game (for example, the Champions League), a penalty shoot-out takes place if the overall result of the two games is the same for both teams.

[^3]: ${ }^{7}$ We did not include English FA cup since, according to the rules of this tournament, in order to reach the shoot-outs, teams have to play twice, which makes it difficult to assume that a team from a lower division that did not lose twice to a team from a higher division is really a lower-ability team.
 ${ }^{8}$ There were two French Cup finals (Metz vs. Sochaux in 1987-88 and Strasbourg vs. Amiens in 2000-01), one German (Hannover 96 vs. Borussia Mönchengladbach in 1991-92), one Italian (Bologna vs. Palermo in 1973-74), and two English Football League finals (Liverpool vs. Birmingham City in 2000-01 and Liverpool vs. Cardiff City in 2011-12) that were played on neutral fields.

[^4]: ${ }^{9}$ See Dohmen (2008) and Apestigua \& Palacios-Huerta (2010) for additional details on the rules of the penalty kicks.

