Hindawi

Complexity

Volume 2021, Article ID 1629419, 21 pages
https://doi.org/10.1155/2021/1629419

Research Article

WILEY

Hindawi

Agent-Oriented Software Engineering Methodologies: Analysis

and Future Directions

Reem Abdalla®' and Alok Mishra

Benghazi University—Faculty of Education, Benghazi, Libya
2Informatics and Digitalization Group, Molde University College—Specialized University in Logistics, Molde, Norway

Correspondence should be addressed to Alok Mishra; alok.mishra@himolde.no
Received 18 October 2021; Revised 18 November 2021; Accepted 6 December 2021; Published 29 December 2021
Academic Editor: Saikou Diallo

Copyright © 2021 Reem Abdalla and Alok Mishra. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The Internet of Things (IoT) facilitates in building cyber-physical systems, which are significant for Industry 4.0. Agent-based
computing represents effective modeling, programming, and simulation paradigm to develop IoT systems. Agent concepts, techniques,
methods, and tools are being used in evolving IoT systems. Over the last years, in particular, there has been an increasing number of
agent approaches proposed along with an ever-growing interest in their various implementations. Yet a comprehensive and full-
fledged agent approach for developing related projects is still lacking despite the presence of agent-oriented software engineering
(AOSE) methodologies. One of the moves towards compensating for this issue is to compile various available methodologies, ones that
are comparable to the evolution of the unified modeling language (UML) in the domain of object-oriented analysis and design. These
have become de facto standards in software development. In line with this objective, the present research attempts to comprehend the
relationship among seven main AOSE methodologies. More specifically, we intend to assess and compare these seven approaches by
conducting a feature analysis through examining the advantages and limitations of each competing process, structural analysis, and a
case study evaluation method. This effort is made to address the significant characteristics of AOSE approaches. The main objective of
this study is to conduct a comprehensive analysis of selected AOSE methodologies and provide a proposal of a draft unified approach

that drives strengths (best) of these methodologies towards advancement in this area.

1. Introduction

Agent-based systems are one of the most vibrant and signif-
icant areas of research and development to have emerged in
information technology in recent years [1]. Presently, the
complexities in developing software are growing faster.
Therefore, the software is failed to produce flexibility, ro-
bustness, efficiency, and reliability. To fulfill these demands,
agent-oriented (AO) technique is evolved in the software
engineering field [2]. AOSE supports the design of dynamically
interacting components, each components with its own thread
of control, and networking applications, includes ubiquitous
computing, sensor networks, and intelligent cities, and can
handle uncertainty [3-7].

The future IoT is expected to enable a new and wide
range of decentralized systems (from small-scale smart
homes to large-scale smart cities) in which “things” are

capable to sense/actuate, compute, and communicate and
thus provides a central and crucial role. The growing im-
portance of such a novel networked cyber-physical context
demands suitable and effective computing paradigms to
fulfill the various requirements of IoT systems engineering.
The synergic meeting of agents with IoT makes it possible to
develop smart and dynamic IoT systems of diverse scales [8].

The disruptive potentials of the IoT include complex re-
quirements and development issues (large-scale deployments,
heterogeneity, cyber-physicality, interoperability, distributed
smartness, self-management, etc.). To appropriately address
them and comprehensively support the development of the
IoT ecosystem, agent-based computing represents proper and
solid modeling, programming, and simulation paradigm [9].
Software agent-directed simulation and modeling can be
undertaken on various devices, tiny notebooks to desktops,
large-scale workstations, or powerful computing clusters and

mailto:alok.mishra@himolde.no
https://orcid.org/0000-0002-4276-6683
https://orcid.org/0000-0003-1275-2050
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1629419

supercomputers [10]. Software agents have been now inte-
grated into many applications. Due to a move to mobile
computing paradigms, lightweight platforms, mainly oriented
for resource-constrained devices, have emerged [11]. How-
ever, resource-constrained devices lack the resources necessary
to support a traditional runtime collection agent alongside the
main application. Sherrell et al. [12] proposed an extensible,
open, agent-based framework for the trustworthy collection
and evaluation of runtime integrity evidence from resource-
constrained platforms. Recently Savaglio et al. [9] supported
that agent-based computing comprehensively supports the
development of the IoT ecosystem, to represent proper and
solid modeling, programming, and simulation paradigm. They
further argued that agent-based computing facilitates the
management of devices, their actions and reactions, and their
data, as well as the interconnection of different embedded
computing platforms and communication protocols. Savaglio
et al. [13] showed as a case study that how agent-based
methodologies can drive smart objects (SO)/IoT system
reengineering, in order to highlight and enhance both func-
tional and nonfunctional features (e.g., support to interop-
erability, attention for resource-constrained SOs, modularity,
maintainability, and evolvability) that generate fundamental
benefits for the complex, heterogeneous, and constantly
evolving IoT scenario.

AO considerations are being continuously accepted into
the various software design paradigms. Agents may work
alone, but most commonly, they cooperate towards achieving
some application goal(s). From a software engineering view,
resolving a problem should include problem realization, re-
quirements analysis, architecture design, and implementation
[14]. Many AOSE methodologies have emerged in order to
facilitate the construction of intelligent software [15]. How-
ever, the immaturity of this emerging technology can result in
difficulties for a developer when determining which meth-
odology can best fit a potential application. A few studies have
been conducted to address the comparison and evaluation of
AOSE methodologies [15]. AOSE is an efficient methodology
for open, complex, and distributed systems in networking,
academic, medical, industrial, and commercial areas [16].

In order to implement AOSE methodology for different
problem domains, the developing system architecture has to
be considered as MAS [16]. Many of the issues addressed
with multiagent ways, for instance, distributed coordination
and self-organization, are now becoming part of industrial
and business systems. However, MASs are still not widely
adopted in the industry owing to the lack of a connection
between MAS and software engineering [17].

AO programming represents a novel programming
paradigm that adopts concepts and technologies of MAS to
implement software. It has gained great attention from
researchers and practitioners from both artificial intelligence
and software engineering fields [18]. In eHealth systems,
progress depends on the interoperability of local healthcare
software and is often hampered by ad hoc development
methods leading to closed systems with a multitude of
protocols, terminologies, and design approaches [19].

The eHealth domain, by requirements, includes auton-
omous organizations and individuals, for example, patients

Complexity

and doctors, which would make AOSE a good way to de-
velop systems that are potentially more open yet retain more
local control and autonomy [19]. Recently Salazar and Li
[20] observed that cyber-physical production system (CPPS)
is one of the most significant concepts of Industry 4.0, which
has attracted disseminated attention from both the academic
community and the industry. They observed it is generally
accepted that the IoT and advanced methodologies for
manufacturing systems are essential factors to achieve CPPS.
Fortino et al. [8] also supported that an agent-based com-
puting paradigm is required to support IoT systems analysis,
design, and implementation. They further observed that the
agent-based computing paradigm provides developers with
a high-quality set of metaphors, design methods, technology,
and frameworks to simplify the modeling and programming
of smart IoT systems as multiagent systems, generally by
means of knowledge bases, conflict argumentation frame-
works, and semantic annotation tools.

With the increasing significance of such critical systems
in the industry, our need for employing agent technologies
to promote commercial and industrial software systems is
rising rapidly. Therefore, some promising methodologies are
proposed, yet most of these methodologies need to be
further evaluated [20]. For many years, the progress in AO
development has focused on tools and methods for par-
ticular development phases, which is not enough for the
industry to adopt agent technology [15]. There is still no
standardization in AOSE, resulting in several methodolo-
gies, and another issue of this discipline is that there are very
few tools that are able to automatically generate code [21].

Therefore, this work provides analyzing seven AOSE
methodologies along with a proposed draft of unified
methodology. The objective of this study is to analyze se-
lected AOSE methodologies: Gaia, Tropos, PASSI, O-MaSE,
ADELFE, ASEME, and Prometheus, in order to distinguish
each one’s strengths, weaknesses, commonalities, variations,
and range of applicability. The aim of this paper is thus to
move one step closer to a standard methodology by pro-
posing a common process and set of models. We do not aim
to propose a final standard methodology, but an exploratory
proposal, which we hope will lead to discussion in the AOSE
community and eventually this discussion and collabora-
tion, might lead to a real unified AOSE methodology.

The rest of the paper is structured as follows. Section 2 is
related work. In Section 3, selected methodologies are briefly
presented. Section 4 describes the structural analysis of
methodologies. Section 5 provides a comparative analysis of
selected AOSE methodologies. Section 6 outlines a proposed
novel unified AO methodology. Section 7 illustrates a case
study of the proposed methodology. Section 8 contributes
discussion. Finally, the paper concludes with the conclusion,
limitations, and future research directions.

2. Related Work

There are multiple frameworks to compare proposed
methodologies to the agent. Slhoub et al. [22] discussed
varjous agent-based systems classified in different applica-
tion areas and an evaluation of three various AQO

Complexity

methodologies: PASSI, MaSE, and Prometheus. In the work
by Sukhvir and Richa [23], there is a discussion regarding
various agent-based systems classified in different applica-
tion areas and an evaluation of five various AO method-
ologies, Gaia, O-MaSE, MESSAGE, Prometheus, and
Tropos, through conducting a feature analysis to integrate
their strong points to develop new extensions.

This work was achieved through a comparative study
based on a features-analysis method. Elammari and Elsaeti
[24] analyzed five agent-based methodologies in an attempt
to identify a suitable AO methodology by performing
structural analysis. Their evaluation assesses and under-
stands the relationship among these AO methodologies [24].
Abdalla and Mishra [25] introduce a comparative study of
agent approaches with the purpose to assess and compare
the development lifecycle processes of four different well-
known AOSE methodologies, ADELFE, PASSI, Gaia, and
O-MaSE, to define the similarities and differences.

Zohreh [26] studied and surveyed AO methodologies
towards its industrial acceptance. They proposed a solution
to this problem by the usage of an assessment framework to
provide a clear and basic definition of common character-
istics and the main components used in MASs. Dam and
Winikoff [27] provide an analysis study aimed to capture the
relations among five prominent AO approaches, Gaia,
O-MaSE, MESSAGE, Prometheus, and Tropos, in particular,
through an analysis of their features by assessing the
strengths and drawbacks within an attribute-based structure.
Included in this framework are criteria such as concepts,
modeling language, operation, and pragmatics.

The comparison can take a wider scope with a small
experimental evaluation of methodologies, which makes this
comparison more important as it includes inputs from
methodological rulers using a questionnaire. A structural
analysis is performed where main common factors and clear
differences are identified for the five agent methodologies in
terms of paradigms, processes, and programs. Also, several
initial proposals are presented so as to integrate these AO
approaches by combining their advantages and minimizing
their drawbacks [28].

Given the main purpose as to apply AOSE methodology
for constructing powerful, industrial-strength MAS as well
as the current trends, the best way to develop agent programs
is by obtaining further analysis and understanding of the
proposed method. There are many attempts to evaluate and
compare AO methodologies undertaken by many re-
searchers in this field. Dam and Winikoff [27] state that it is
time to work towards a new generation of AOSE to give us
an ultimate and next-generation methodology.

3. Selecting Methodologies

We will adopt a multiphase selection method [29]. The
primary step minimizes the set of approaches by utilizing the
standard criteria that follow:

Documentation. The document of methodology must
be clear and elaborate in characteristic, not just a
presentation at a conference but also that cited and

included in books, journal papers, or other well-known
technical reports.

Maturity. The methodology chosen has to have extensive
use and improvement over time, involving the use by
other nonauthors and their colleagues and students.

Tool support. The approach has to be preferably have
backing tools rather than not. Only chosen method-
ologies are to be applied to develop a particular project
[28]; for this reason, the presence of tool support is an
effective attribute.

In further detail, the following are the methodologies
selected for the present work.

Gaia [30] that is particularly designed for the develop-
ment of agent-based systems; Tropos [31] that is a detailed
AOQ software engineering methodology and that supports a
broad domain of software lifecycle processes; PASSI [32] for
planning and the evolution of multiagent communities to
integrate design models; O-MaSE [33] that is a customizable
AO approach based on compatible and well-established
ideas strengthened by additional applications in industrial
development environments; ADELFE [34] that is a multi-
AO approach convenient for adaptive MAS; ASEME [35]
that suggests a modular agent design approach and presents
the notions of control within the agent; and finally, Pro-
metheus that presents models and activities to construct
smart agents using objectives, beliefs, plans, and events.

These approaches support all of the standards set earlier:
all of their documentations have appeared in journal papers
(see Tables 1-3) and have support tools (except for Gaia). In
terms of maturity, O-MaSE, Prometheus, Tropos, Gaia, and
PASSI stand out meeting the criteria, but the other two,
ADELFE and ASEME, are a bit weaker on the maturity
criteria, to be more precise and detailed.

3.1. Methodologies Overview. This short overview covers the
processes, models, and techniques in the methodologies
intended for our research.

3.1.1. Gaia Methodology. Gaia [36] was the first agent
methodology, which was designed specifically for agent-based
systems by dividing the activity of developing software into
two main steps, analysis and design; it groups and arranges
the specifications as the foundation for the second stage,
which is a computational organization. Gaia determines both
the objectives and the expected conduct of the organizations,
which form the system in general. For this purpose, it breaks
down the global organization into highly interrelated sub-
sidiary institutions. The preliminary roles model may not be
fully defined but can be determined without imposing a
particular organizational architecture [36]. In this respect, the
first step (i.e., preliminary interaction) describes the main
interactions expected to achieve the elementary roles. The
environmental model aims to represent the abstract and
computational environment where MAS is to be developed.
The organizational rule model provides a set of principles that
the organization has to take into account and put into effect in
its global conduct [37]. The design stage is based on the

Complexity

TaBLE 1: Comparative analysis of Gaia and Tropos methodologies.

Methodology

Strengths

Limitations

Application domain

Gaia

(i) Directs designers to a well-
defined design for the MAS
(ii) Model and copying with
the features of complex
systems

(iii) Is easy to apply

(i) Agents cannot share common goals

(ii) It does not handle systems while acting
as an actor

(iii) The coherence between the protocols is
rather weak

(iv) Components of the system may enter or
leave at runtime in open or dynamic systems
(v) It addresses goals, but verification of
goals is still out of scope

(vi) It does not UC scenarios [23]

(i) Application of agent methodology in
healthcare information systems [46]

(ii) Multiagent system vulnerability detector
for a secured E-learning environment [66]

(iii) Multiagent-based transformer
condition monitoring [67]

Tropos

(i) Suggests methods and tools
for automating models
transformation

(ii) Focuses on the preliminary

stage of requirements

(iii) Uses actors and goals as
basic concepts [68].

(i) Itis not designed to support a certain type
of software.

(ii) Developed software agents designed for
accomplishing special goals are not
Supported by Tropos methodology

(iii) Does not UC scenarios [23].

(i) A process for developing adaptable and
open service systems: Application in supply
chain management [30]

(ii) Using Tropos to model agent-based
architectures for adaptive systems: a Case
study in ambient intelligence [39].

(iii) Developing a decision support system
for integrated production in agriculture
[52].

TaBLE 2: Comparative analysis of PASSI and O-MaSE methodologies.

Methodology

Strengths

Limitations

Application domain

PASSI

(i) Suggests a complete lifecycle
methodology from requirement to code
methodology

(ii) Integrates design models and
concepts from both object-oriented
(O0) and MAS using UML notation

(iii) Refers to the most diffused
standards: UML, the foundation for
intelligent physical agents (FIPA),
JAVA, and Rational Rose [32]

(i) The need to refer simultaneously to
various models in order to understand
the system and the way it works and
changes over time is a critical issue

(ii) Every model offers its own set of
notation and special concepts, resulting
in an abnormal complexity in terms of
vocabulary

(iii) It does not support the environment
model [32]

(i) A domain analysis approach for
MASs product lines [58]

(ii) The development of a multiagent-
based middleware for RFID asset
management system using the PASSI
methodology [59]

(iii) Patterns reuse in the PASSI
methodology [32]

O-MaSE

(i) Is comprehensive for building MAS

(ii) Is step-by-step lifecycle methodology
MAS

(iii) Provides guidance throughout the
entire software development lifecycle

(iv) Open systems are considered, thus
agents can be created, deleted, or moved
during implementation

(i) Some of the software applications are
closed

(ii) Management, product distribution,
and testing and assessment have been
absent

(iii) There is the only one-to-one

connection among agents in the system

(iv) It does not clearly define the usage
case model [23].

(i) Agent-based mixed-initiative
collaboration project [60]

(ii) O-MaSE: a customizable
approach to developing multiagent
development processes [61]

(iii) Developing a multiagent
conference management system using
the O-MaSE process framework [42]

output of the analysis stage. The topology and control systems
are defined through the architectural design step, which also
employs catalogs of different institutions’ models. Figure 1
shows the processes in Gaia stages.

3.1.2. Tropos Methodology. The methodology comprises five
stages. In the first phase, the main system requirements are
extracted. Later, most of the general features determined in
the initial requirements analysis are used in the late

requirements analysis stage. Throughout both these phases,
the same concepts and technical methods are applied, es-
pecially during the first phase as it is intended to extract the
main system requirements [38].

In this phase, the primary function of the system actor is to
deliver system-based services to actors based on services from
the recent analysis stage [39]. In this respect, the architectural
and detailed design stages concentrate mainly on the system
specifications based on the requirements obtained from the
previous stages [40].

Complexity

TaBLE 3: Comparative analysis of ADELFE, ASEME, and Prometheus methodologies.

Methodology Strengths Limitations

Application domain

(i) Can be used by a nonspecialist in
agent systems

(ii) Will also be easier to combine the

arts from other approaches into .
P PP exist

(i) It is specialized; thus, it cannot be used
to design all existing applications or
model all kinds of agents

(ii) Some definitions of work still do not

(i) Tools for self-organizing applications
engineering [49]

(ii) A sample application of ADELFE
focusing on analysis and design of the

ADELEE ADELFE mechanical synthesis problem [43]
(iii) Sometimes the developer may find (iii) A tool for generating model
(iii) Use the cooperation rules [49] the graphical modeling tool difficult to transformations by example in MASs
use [49] [62]
(iv) Allows different UML/AUML (iv) A.DELFE 3 0 design, building
o adaptive multiagent systems based on
realizations ; :
simulation a case study [1]
(i) Supports documentation of (i) The guidelines are missing because the (i) Automated product pricing using
nonfunctional requirements authors rely only on the paradigm shifts argumentation [54]
(ii) Provides the model (ii) The same thing happens with the (ii) Using ASEME methodology for
transformations among the various tasks to be conducted in each stage of model-driven agent systems
development stages development development [35]
ASEME . .
(iii) Some processes need to be improved (iii) Engineering an agent-based system
P P for product pricing and automation [35]
(iv) In Feqmrements, mp l.em§ntat10n, (iv) Using agent-based methodologies in
and design, there are no guidelines for the . .
: healthcare information systems [47]
production of models
(i) Offers a complete hfe.:cycle (i) There is less focus on initial (i) An open meteorological alerting
methodology from requirements . . .
D . . requirements system: issues and solutions [63]
specification to detailed design
(ii) Supports both dynamic and (ii) It does not deal at all with mobile (11? Tool support for agent develop ment
. A using the Prometheus methodology in
static models for individual agents agents ‘
Prometheus quality software [64]
(iii) Provides elaboratefi guidance on (iii) Tt cannot be established on UML (iii)) AO mode.llng and. development of a
how to carry out the different stages person-following mobile robot [65]
(iv) Gives clear support to the (iv) Support for the socialite side of the
. agent focuses on the lowest common
environment concept s
divisors: messages and protocols
Analysis phase Architectural design Detailed design Requirements Analysis Architectural Design Detailed Design
(i) Preliminary role (i) Role i) A (i) Social actor (i) Actor (i) Agent
(ii) Interactiony > (11) Interagtlop ™ ((13 Segs;‘t:e (ii) Dependency *(ii) Organizational P (ii) Agent’s behavior
(iii) Organizational rules (iii) Organizational structure Organizational rules Structures (iii) Social pattern
) (iv) Organizational patterns

(iv) Environment

FiGUrE 1: Gaia methodology process.

In the elaborate design step, the purpose is to define the
agent abilities and reactions, by which point, the application
platform is usually selected already and so can be utilized to
an exhaustive design that will move directly to the code
stage. The execution processes follow a step-by-step pattern
of the exhaustive design characterizations based on the path
among the execution platform constructed and the detailed
design concepts [41] (see Figure 2).

3.1.3. PASSI Methodology. PASSI (Process for Agent Societies
Specifications and Implementation) proposed by Cossention
[32] is a step-by-step requirements to code methodology for
designing and developing multiagent societies integrating
design models and concepts from both object-oriented soft-
ware engineering and artificial intelligence approaches using
UML notations to code phase. It consists of five steps involving
all the stages adopted in the UML modeling language. Since

(iii) Environment

FIGURE 2: Tropos methodology process.

UML is highly accepted in both academia and the industry,
PASSI uses UML as its language of modeling with expanded
schemes to include certain notions left out from UML.
These are later updated so as to represent the best of what
modeling should be in a particular artifact within the agent
design community [32]. In PASSI, an agent is an important
software entity, both at the abstract level and the design level.
In light of this fact, an agent represents a class, thus making it
an independent unit when designing software by reaching a
goal through independent resolutions, procedures, and social
relations: Figure 3 shows the processes in PASSI stages.

3.1.4. O-MaSE Methodology. The O-MaSE process structure
[27, 42] assists processing engineers in order to determine
custom MAS analysis activates. It offers the models, prin-
ciples, approaches fragments, and guidelines necessary to
collect O-MaSE-compatible operations with the main goal to

6
System requirement Agent society model Agent Implementation
model (i) Role model
(l) Domain > (i) Ontology P13 Agent structure
(i) Agent (iii) Protocol (ii) Agent behavior
(iii) Role
(iv) Task 1
Code model
Deployment model '€4— (i) Code Reuse

(i) Deployment configuration (ii) Code completion

FiGUure 3: PASSI methodology process.

allow the construction of agent-software activities. O-MaSE
is composed of three major models: (1) a metamodel, (2) a
group of method fragments, and (3) a group of guidelines.
The O-MaSE metamodel is regarded as the main factor
needed to develop and execute MAS.

As for the method fragments, these are processes followed
to provide a set of work products, possibly including diagrams,
documents, or codes. The relationships among the method
fragments are specified by the guidelines. Figure 4 shows the
processes in O-MaSE stages.

3.1.5. ADELFE Methodology. The ADELFE methodology
[43] has been designed to focus on several aspects left dis-
regarded by current approaches. It unifies AMAS (adaptive
multiagent systems) theory and offers a specific process de-
rived from an interpretation of RUP (rational unified pro-
cess). Several addendums have been proposed as AMAS
theory so as to include features characterizing the environ-
ment in the system in order to identify certain shortcomings
in the collaboration process. Each user and task deliverer has
an individual goal to deal with the required request without
the need to understand the entire system functions.

In this methodology, the engineer, AMAS specialist or
not, is directed to use adaptive MASs in order to define the
agents with the help of the environment models. ADELFE
offers the analyst tool to evaluate the sufficiency of AMAS
technology at two levels: global (system) and local (com-
ponents). At the local level, three parameters are taken into
account, whereas the global one involves eight. To dem-
onstrate agent interaction protocol (AIP), the agent unified
modeling language (AUML) [44] principle is used together
with UML and RUP. Two other tools are incorporated into
the framework (see Figure 5).

3.1.6. ASEME Methodology. ASEME (agent systems meth-
odology), proposed by Spanoudakis and Moraitis [35],
contains the requirements, design, and implementation
stages. It backs modular agent design processes and offers
the notions of an agent within control to determine the
agent’s conduct by formatting various modules that execute
his ability and intraagent control (IAC) model that defines
the protocols that control and coordinate the activities of the
agent community. The requirements analysis stage identifies
the actors, their goals and interactions, and use case (UC)
diagrams so as to assign actors to roles and goals in ac-
cordance with the capabilities needed to fulfill those tasks.

The partake doers are recognized by the objectives
assigned to each. Furthermore, data is collected as to the

Complexity

Requirements
Engineering

(i) Models goals

(ii) Goal refinement

Analysis
(i) Model interfaces
(ii) Model roles
4’ (iii) Model domain

v

Design

(i) Model agent classes
(ii) Model protocol
(iii) Model plan
(iv) Model policies
(v) Model capabilities
(vi) Model actions

FIGURE 4: O-MaSE methodology process.

Late Requirements

(i) Definition of the Analysis phase Design phase
(i) it:tilresd System (i) Domain analysis (i) Detailed architecture
(ii) Adequacy (ii) Agent architecture
(iif) gzgg;ton ofthe " ot he AMAS theory (iii) Non cooperative

(iii) Agent identification
(iv) System architecture

Situations

(iv) Characterization of Ry e—

The environment
(v) Applying UCs

Figure 5: ADELFE methodology process.

specific requirements that constitute the anticipated tasks of
the project. The analysis stage is based on the notions of
ability and function, comprising two steps: the UC and the
roles diagrams. Initially, the actors in the previous steps are
converted to roles, which can be more abstract than the roles
of specific actors depending on the scope of implementation.
The design stage encompasses the functional and behavioral
sides of the MAS, and the related models are the agent
interactions protocol (IP) and IAC that carry out a certain IP
by assuming the crucial roles and relations between them
[35]. The execution phase is the programming language for
different levels throughout the development process. Fig-
ure 6 shows the processes in ASEME stages.

3.1.7. Prometheus Methodology. The Prometheus method-
ology [45] is composed of three stages: first, at the speci-
fication stage, the system is defined by the objectives and UC
scenarios; the system mediator to its surroundings is
explained in terms of the events, concepts information, and
tasks. Next comes structural design, through which the type
of agents is determined. Here, the general structure of the
system is described in the system overview model, while UC
is incorporated into the communication protocols. Finally,
the third stage involves detailed design used to develop and
define the details of the internal agents such as capabilities,
beliefs, plans, tasks, and events. Then, process models are
applied as a starting point among the protocols and inter-
action plans. In general, each of these steps contains models
that concentrate on the dynamics of the system in the form
of schemas and models regarding system architecture or its

Complexity

Requirements Analysis Phase

Analysis Phase (i) Use case mode
(i) Define actors ’ (ii) Roles modes
(ii) Actor goals '

(iii) Specific requirements

Design Phase
(i) Agent inter action protocol
(ii) Intra agent control models.
(iii) Agent behavior

FiGure 6: ASEME methodology process.

ingredient as well as textual depicter forms that deliver the
details for individual elements. Figure 7 shows the processes
in the Prometheus stages.

4. Structural Analysis of Methodologies

Based on our earlier work [25, 46, 47], the assessment of
methodologies was performed by introducing a comparative
study of agent approaches with the purpose to assess and
compare the development lifecycle processes of different
well-known AOSE methodologies, to define the similarities
and differences between them [46] as well as a case study
method that designed a target system using different
methodologies [25, 47]. In this paper, we perform a struc-
tural comparison rather than comparing AOSE methodol-
ogies based on their features. We explore what models and
processes these methodologies share and what are their
distinguishing aspects.

In this section, methodology processes and models are
addressed so as to identify the common cores and com-
ponents of these methodologies. To do so, structural analysis
is performed on each process and model, allowing us to
determine the similarities between these methodologies as
well as the benefits of each one.

4.1. Structural Analysis: The Commonalities

4.1.1. Initial Requirements. Of the seven selected AO
methodologies, Tropos and ADELFE make use of this
technique, which is an important stage in this methodology;
Tropos focuses on the intentions of stakeholders. In addi-
tion, this model is concerned with key agent notions such as
objectives, intents, plans, and so on, as used in AO pro-
gramming. Through a variety of forms of objective-oriented
analysis, these preliminary aims ultimately lead to the
functional and nonfunctional demands of the target system.

Therefore, the difference among various development
stages decreases. Furthermore, this can lead to the formation
of unified and consistent techniques and tools for designing
software. The goal-oriented requirements analysis approach
was used in this model by Yu [48] to study an organizational

System Specification Architectural Design

(i) Scenarios
(ii) Goals
(iii) Actions & percepts

(i) Interaction protocols
(ii) System overview
(iii) Agent messages

v

Detailed Design

(i) Process diagrams
(ii) Agent overview
(iii) Capability
overview
(iv) Capabilities
(v) Plans, data, events

FIGURE 7: Prometheus methodology process.

base involving the users, their intentions, and relationship.
ADELFE initial demand stage objective is to convert this
seeing to a UC diagram and arrangement of the require-
ments (functional or not) at this step; the developer has to
determine the task of the thoughtful system and model its
environment [38].

4.1.2. Applying UC Requirement Analysis. This technique is
applied in order to characterize each system’s practical re-
quirements. The model has been successful in object-ori-
ented methods to gather system requirements apart from
assisting developers to identify the main interactions among
system entities. Of the selected methodologies, ADELFE,
PASSI, ASEME, and Prometheus have applied UC models.
In ADELFE, while complementing the workflow require-
ments, this operation consists of three steps: designing UC,
clarifying the linked sequence diagrams, and determining
collaboration failures. In these UC, only energetic compo-
nents are implicit and appear as the products of an effective
requirements group [49].

Exploring situation collaboration failure in the system
and within its conditions is carried out so as to help de-
velopers in identifying problems and noncooperative items
and incidents. This definition serves as a filter across the
evolution activities to later define the agents in the process
[49]. Instead of using the objectives in the requirements
engineering stage, PASSI authors prefer the approach of
Booch et al. [50] and use the UC diagrams to describe re-
quirements. In this respect, the domain characterization
stage practically depicts system components of a hierarchical
set of UC diagrams. The sequence models explain graphical
scenarios for the detailed UC, while agents are presented as a
pack of UC in the functional analysis of the previous stage.

In ASEME, the purpose of using the UC model is to
show that artificial agents are designed as components
reactive with other artificial agents or human agents. No
new elements other than those offered by UML are
needed, but shifts in semantics are displayed. First, the
actor interacts with the system and supposes a role. Then,
agents are developed as roles inside the system boundary
[35]. Similar to conventional UML, UC models, human

actors are demonstrated as roles outgoing the system box.
Later, the various UC should be linked to at least one
artificial agent role.

The UC diagram in ASEME also adds three new ideas
regarding the actor diagram and offers actors designed in-
side the system boundary. The diagram can add abstraction
roles to ensure that agent IP and goals are viewed from a
developer standpoint by adding subgoals related to imple-
mentation in the shape of UC [51]. The third step of the
system specification stage in the Prometheus approach is to
set up UC as comprehensive descriptions of a series of events
to fulfill specific goals or to react to a specific event [45].

4.1.3. The Concept of Environment. The concept of envi-
ronment to MAS is essential as agents operate in an envi-
ronment, and in order to support complex open systems,
agent methodologies need evident model’s characteristic of
the domain as well as the environment of their imple-
mentation. Often, complicated open systems have very dy-
namic and diversified environments, with which defining, and
familiarizing is necessary if the constant change is an issue.

As a result, an agent system needs to have models to
accurately represent the environment in which it operates.
Despite the importance of developing an environment
model, ADELFE, Prometheus, and O-MaSE manage to
specify such models. In ADELFE, before identifying UC and
during the final requirements, the environment should be
thoroughly planned by the developer. Afterward, one pro-
cedure is added to the RUP to describe the system envi-
ronment. Specification starts by determining that elements
interact with the system as well as the restrictions in these
connections.

In UML, an entity represents an actor and can be
characterized as effective or ineffective in ADELFE. In turn,
an effective or active element may act independently and be
capable of working dynamically with the system. Whereas an
ineffective element can be taken as an exporter of the system
and, as such, utilized or updated by an effective one, but it
cannot be changed independently. This distinction between
entities is necessary because the agent that makes up the
system and is not yet recognized at this step will be set
between the effective ones. A mediator model that includes a
series of concepts and events conceivable in the sur-
roundings of the agents is offered to showcase the
environment.

Prometheus presents the environment from the system
perspective. The motivation behind this showcase is that the
system, in general, and agents, in particular, see the sur-
roundings across a number of sensors. For this reason, it is
essential to obtain obvious input/output specifications for the
required system features. The model offered by Prometheus
only covers this interface, and the main components of the
surrounding in which agents will work are shown by the
domain diagram in O-MaSE. These components are de-
scribed in the form of objects from the surrounding, which
contain agents, and interactions among those objects. It can
also be used to show the general characteristics of the en-
vironment to see how the objects connect [42].

Complexity

To show how an organization may conduct in a certain
circumstance a developer uses the elements determined in
the objectives, roles, and agents diagrams along with those
elements determined in the domain model in order to define
organizational policies. Nevertheless, most of the other
seven approaches fail to properly consider this significant
point. In fact, Gaia does not provide a comprehensive model
as to the environment design for developers, and such data is
encoded only in the authorizations and protocols of specific
roles. This handicap makes Gaia unsuitable for designing
implementations with active and diverse environments. In
this respect, Tropos offers resources as an entity but no more.

4.1.4. Capturing Goals. In the domain of artificial intelli-
gence, there are two forms of agents, weak and robust. The
first group is distinguished from the next in terms of in-
dependence, reactivity, proactivity, and socialite capabilities
[52]. The strong agency is defined by all such properties as
those of weak agency, but sometimes, it also attributes to
other features like mobility, veracity, and benevolence. In
general, agents must have proactive abilities to accomplish
their goals pursued over time. For this reason, all agent
methodologies subject to the analysis here pay more in-
tention to agent goals. The exceptions, in this case, are
ADELFE and PASSI. Gaia models the goals in the form of
roles and responsibilities. The other methodologies identify
goals in the requirements analysis stage to be applied as a
basis for identifying agents. In Tropos, setting goals is an
important process, also known as goal modeling, and is done
by setting both system and individual goals, thus resulting in
more goal-oriented outcomes [53].

Goal diagrams are designed through the early require-
ments stage by utilizing initially specified actors and ob-
jectives and, thereafter, described during goal models [38].
These models operate identically while determining actor
relationships in the late requirements stage and structural
design [41]. The objectives and plan diagrams enable de-
signers to understand the goals and plans by completing
certain activities, namely means-end analysis, which con-
verts a goal into subobjectives to determine schemas, re-
sources, as well as soft goals, which offer a means for
accomplishing the goal. Next comes contribution analysis,
which enables developers to assess the objectives in terms of
either positive or negative contribution.

While there are variations in terms of goal setting in
agent societies, O-MaSE specifies a goal concept as a main
objective of the institution and sets it whenever the situation
calls for it. According to DeLoach and Garcia-Ojeda [33], the
objectives of the organization are set in the form of a be-
havioral goal hierarchy and involve the goal characteristics
and the relationship of precedence.

As to ASEME, the goal model is similar to the Tropos
actor model but without the same diagrams. ASEME defines
more concepts used by agent modeling language (AMOLA),
which offers more appropriate models for system analysis,
and uses the goal and actor concepts in the related diagram
[54]. Determining objectives is also a vital ingredient in
Prometheus and presents such models as an essential part of

Complexity

the institution. The goal-capturing stage has two steps:
identifying goals and structuring goals [45].

First, the objectives are specified by analyzing and un-
derstanding the group of requirements. Then, they are
arranged in a shape that can be transferred to the design
phase [45]. In general, each objective has a role (one to one).
Also, in its analysis stage, Gaia defines the goals of the
organizations alongside their predictable behavior.
According to some studies, ADELFE and PASSI method-
ologies do not address the issue of goals well enough.

4.1.5. Social System Structure. Presently, computer system
applications are becoming more and more complex. In this
respect, the benefits associated with using MAS in all types of
software engineering programming require strong support
for engineering complex open systems that emphasize the
social aspects of an agent system [55]. Among the most
important features to add AO paradigms in software en-
gineering is the ability to develop and implement complex
systems [56]. Consequently, it is quite necessary for AOSE
approaches to offer a clear way to comprehend the general
framework of the system. Except for Gaia, most of the se-
lected processes handle this matter fairly well. Between the
seven approaches, only Gaia does not have a thorough vision
when it comes to a social system [27].

O-MaSE provides a social overview by supporting the
concepts of roles and objectives and represents the con-
versations among the main elements in the system. Tropos
has extensive schemas, which offer the relations among
actors, objectives, resources, and functions in the system. If
the significance of a comprehensive look at the structure of
an organizational system lies in its ability to show a fixed
structure, by the same token, it is necessary to capture high-
level system dynamics [27].

The conversations and connections taking place between
agents involve characterization of the mechanism that agents
employ to organize their other complicated social actions or
interactions such as rivalry, discussion, and teamwork.
Accordingly, O-MaSE and Tropos show conversations at
two various standards of detail by including a group of high-
level connections and more granularity performance in
terms of IP [53].

From our observations, ADELFE, PASSI, Prometheus,
Tropos, and O-MaSE share certain features as they model
high-level interactions using sequence/interaction diagrams
extracted from UML sequence models. Each methodology
has different interaction diagrams; for example, Tropos and
ADELFE depict conversations among agents. This is while
the sequence models in O-MaSE show reactions among roles
and actors. PASSI uses serial graphics to explore the tasks of
each agent through role-specific screenplays [15].

The role model in ASEME is basically derived from the Gaia
methodology since; in both cases, the conversations are ex-
plored and modeled at the role level instead of the agent level,
and serial interactional schemas are not used for the objectives
[51]. Getting into more IP detail, ASEME, ADELFE, and Tropos
suggest the application of the AUML, IP model, with certain
tasks added to the AIP to suit AMAS’s demands in ADELFE.

4.1.6. Agent Acquaintance Model. In Prometheus and Gaia,
the dependency and interaction among agents are illustrated
in terms of agent acquaintance schemes in the form of
guided diagrams including rectangles (referring to agents)
and lines with arrows (referring to links, interactions, and
relations) among different system elements. While Gaia
realizes the connection, links are found among agents
without determining the current properties of those links.
Prometheus indicates the types of agents as well as the
connections among them.

However, in the design stage of Prometheus, these
connections appear in a more detailed manner. For this,
agent knowledge diagrams in these two approaches are
intended to help developers determine potential bottlenecks
formed among the system elements.

Table 4 shows the results of this analysis.

4.2. Structural Analysis: The Differences

4.2.1. Model-Driven Engineering (MDE) Approach. In
ASEME, the MDE method appears with special features
concerning the AOSE community and can be applied in all
stages of conventional software processes (from require-
ments to execution). It allows the transition from one stage
to another through typical transformations. The three forms
of conversion used for automation between the ASEME
models are: model to model (M2M), text to model (T2M),
and model to text (M2T).

Process designers simply enrich these models in each
stage with specific information, thereby leading to execution
progressively. Furthermore, the steps in the design stage
within this approach is a state chart designing models known
to developers that can be performed by either different
programming languages or AO platforms [57]. Yet, unlike
ASEME, the Tropos methodology nominates methods and
tools to automate but only in several stages of software
processes.

4.2.2. Documentation of Nonfunctional Requirements.
One of the most significant differences between ASEME and
the other participant methodologies is in its backing reg-
istration of nonfunctional requirements, in the requirements
analysis step, where they are utilized to make management
decisions and choose which technologies will be used for
design and development [51].

4.2.3. Deployment Model. A major feature, which distin-
guishes PASSI from other participant methodologies, lies in
its strong focus on the deployment model, regarded as one of
the main models in UML [39]. There are substantial benefits
to this model. For example, in the process of building the
deployment model, developers can have a better grasp of the
intricacies to operate the system. In addition, developing
high-scale deployment offers a basis for evaluating the
feasibility of executing the system and the use of the spread
concept. It also provides an assessment of different other
measures, such as costs. Using this activity, PASSI describes

10 Complexity
TaBLE 4: The summary of commonalities.
Initial requirement Using use cases Capturing goal Social structure Acquaintance model
Gaia X X v X v
Tropos v X v v X
PASSI X v X N X
O-MaSE X X v v X
ADELFE v v X V X
ASEME X v N; N X
Prometheus X v v N N

the system based on agent classes and their position on the
available processing units in the diagrams. While building
the deployment diagrams, designers have the opportunity to
accurately set the system in a design step by thinking about
agent-linked data. PASSI offers elasticity in the system
spread design by enabling the developers to create various
system arrangements and to update them regularly.

4.2.4. Data Coupling Diagram. A key aspect that distin-
guishes Prometheus from other participant methodologies is
data coupling as it offers evident processes to cope with agent
characterizations. One of them is the use of data coupling
models. The second is the model of agent acquaintance.
These models are composed of system functions and external
resources in terms of specified data. In this way, developers
are able to assemble functionalities into agents by simply
visually assessing the data coupling techniques and pro-
viding guidelines and processes. This depends on both
minimizing coupling and increasing cohesion. It appears
that placing agents that can read or write the same type of
information with each other reduces the association of
agents. The results are shown in Table 5.

5. Comparative Analysis of Selected
AOSE Methodologies

After comprehensive analysis and understanding of these
methodologies involved in the study, we can now extract the
strengths and weaknesses (limitations), as well as the scope
of the application of these methodologies. This will provide a
foundation towards the next step of proposal that drives the
strengths (best) of these methodologies. Tables 1-3 provide
inclusive analyses at a glance of selected methodologies in
the study.

6. Proposed Methodology

We work towards the unification of the strengths of selected
agent methodologies. We applied the assessment technique
(structural analysis) of the seven competing AO methodol-
ogies, yielding in-depth comprehension as an outcome of
their comparative analysis. We assessed their advantages and
disadvantages (limitations), and their resemblance and var-
iations are also investigated as to processes and models.
Following this analysis, we take the first step to combine their
features with the purpose to construct a core approach and
combine characteristics selected from various approaches.

In this respect, some preliminary suggestions are in-
troduced for the design of a relatively complete MAS
methodology based on the selected methodologies. The
purpose of this step is to contribute to the combination of
the best features selected for agent development method-
ologies. Figure 8 illustrates the proposed approach processes.

As in ASEME, the MDE method appears with special
features concerning the AOSE community and can be ap-
plied in all stages of conventional software processes. It
allows the transition from one model and stage to another
through typical transformations. As shown in Figure 9, with
some exceptions, we will utilize the common and essential
notations as presented in [69].

6.1. Requirement Specification. The first stage proposed is
requirements specification. This stage is significant in software
development processes, where it enables the system analysts
to obtain the requirements of the target system. From our
perspective, the success of any system development depends
on the in-depth study of the system requirements.

6.1.1. Initial Requirements. This stage provides the initial
step of the requirements analysis towards identifying basic
stakeholders and equipping designers with useful knowledge
about the environment in which software operates and the
type of interactions to take place among system agents. The
early requirements phase of the Tropos includes a study of
the organizational preparation, including stakeholders, their
objectives, and relations.

In ADELFE the purpose of this step is to realize a
convention on the initial demands related to the charac-
terization of the system and the surroundings in which the
system will be implemented. It is created to determine what
the most suitable system can be for end-users. The unified
approach should have an initial requirements stage, which
can be adopted from Tropos and ADELFE.

6.1.2. Definitive Requirements. The aim of the definitive re-
quirements is to convert this view to a UC diagram. To arrange
the requirements (functional or not) in this step, the developer
has to determine the task of the comprehensive system and to
model its environment. The following steps, in our view, in-
troduce strong support for gathering requirements.

(1) Distinguish UC. This technique is used to characterize the
different system functional requirements. It has been demon-
strated to be an efficient model in object-oriented (OO)

Complexity

11

TaBLE 5: The summary of differences.

Model-driven Documentation Deployment model Data coupling

Gaia X X X X
Tropos X X X

PASSI X X v X
O-MaSE X X X X
ADELFE X X X X
ASEME v i X X
Prometheus X X X v

Initial Requirements Definitive Requirements Analysis Design

Define User Distinguish Use-
Requirements Cases
A

A
Goal Model

A

[2]

A 4
Validate User
Requirements

Role Model

Structural
Model

y

(Agent Communication)

Model

A 4

Y

Environment
Model

Y
Ontology Model

-

Define Consensual
Requirements

@4

A 4
A 4

C)
A
Behavior
Model

A

(Interaction Model)

FIGURE 8: A proposed AOSE methodology.

- agent
% info
actor
soft goal f role
=
info
-
resource w - _
/ data ¢d position
[message (in)/ [percept /) info
[info \ | info \ —
capability message (out) action orga'nization
info info info

FIGURE 9: A unified notation set [69].

techniques in grouping system requirements. In addition, it
assists the developers in deciding on the main interactions
among system entities. Of the selected methodologies, ADELFE,
PASSI, ASEME, and Prometheus have applied UC models.
Particularly, Prometheus offers UCs, while PASSI proposes the
use of UML-like UC diagrams, ADELFE utilizes this technique
to clarify the linked sequence diagrams and to determine

collaboration failures. In these UC, only energetic components
are implicit and appear as the products of an effective re-
quirements group [49].

Exploring situation collaboration failure in the system
and within its conditions is carried out so as to help de-
velopers in identifying problems and noncooperative items
and incidents. In ASEME, some shifts in semantics are
displayed. First, the actor interacts with the system and
supposes a role. Then, agents are developed as roles either
inside the system boundary, that is, for elements to be
designed, or outside the system boundary, that is, for agents
in the environment [35]. Similar to conventional UML UC
models, human actors are demonstrated as roles outgoing
the system boundary.

Later, the various UC should be linked to at least one agent
role. The UC diagram in ASEME also adds three new ideas
regarding the actor diagram and offers actors designed inside
the system boundary. The diagram can include abstraction
roles to ensure that agent IPs and goals are viewed from a
developer standpoint by adding subgoals related to imple-
mentation in the shape of UC. To assist the analysts in defining
the main connections/reactions among entities and adopt more
with agent technology, the integrated methodology will
combine the UC on ADELFE and ASEME approaches.

12

(2) Goal Model. It can be said that the agents’ objectives are
one of the most critical models of agency, which contribute
to the strengthening of agents. Except for ADELFE and
PASSI, most of the selected approaches concur on the
significance of goal concepts and identify goals in the re-
quirements analysis stage to be applied as a basis for
identifying agents. Obtaining goals is one of the base pro-
cesses in O-MaSE and is a significant modeling activity in
Tropos and ASME. Gaia expresses goals in form of roles’
responsibilities in a way that is more realistic than goals in
other approaches.

Determining objectives is also a vital ingredient in
Prometheus and presents such models as an essential part of
the institution. The unified approach should support cap-
turing objectives by defining goals and their architecture and
representation. It is as well substantial to address stake-
holders’ purposes and their relations through the functions
and resources utilized to fulfill goals as carried out in the
requirements analysis stage in ASEME. Goals can be or-
ganized and presented as a hierarchy of objectives as applied
in O-MaSE utilizing the suggested unified notation [69].

(3) Environment Model. The notion of the environment is
basic for MAS since agents operate in an environment. To
support complex open systems, agent methodologies need
obvious diagrams to characterize the scope knowledge and the
implementation environment. Complicated open systems
generally have extremely dynamic and heterogeneous envi-
ronments. By officially defining the environment, a knowl-
edge base is created that constantly deals with environmental
changes. As a result, an agent system needs to have models to
represent the environment in which it operates.

Despite the significance of developing an environment
model, only O-MaSE, ADELFE, and Prometheus manage to
specify such models. In ADELFE, before identifying UC and
during the final requirements, the environment should be
thoroughly planned by the developer. Afterward, one proce-
dure is added to the RUP to describe the system environment.
Specification starts by determining which elements interact
with the system as well as the restrictions in these connections.

The model offered by Prometheus is a view of the en-
vironment inside of actors, notions, and actions. The main
components of the surrounding in which agents will work
are shown by the domain diagram in O-MaSE. These
components are described in the form of objects from the
surrounding, which contain agents, and interactions among
those objects. It can also be used to show the general
characteristics of the environment to see how the objects
connect. However, most competing approaches do not take
into account this important matter thoroughly enough.

In fact, Gaia does not provide a comprehensive model of
the implementation environment to the designers, and the
environmental data is encoded in permissions and protocols
for a specific role. This omission makes Gaia unsuitable for
engineering implementations with effective and diverse
environments. Tropos offers resources as an entity but no
more [27]. At this stage of our proposed approach, the
environment and the concepts and interactions should be
taken into account. We may adopt Prometheus’s analysis

Complexity

overview model and characterize the environment activity in
ADELFE to address this concept.

(4) Ontology Model. The ontology model provides the
notions utilized by the agent system. Of the competing
approaches, PASSI and O-MaSE offer the ontology dia-
gram. Instead of this model, ADELFE adapts to the AMAS
theory, which means that the agent is able to handle its
environment and the other agents. PASSI has a domain
ontology description model that involves notions as classes,
elements of the domain, and predicates that emphasize
characteristics of notions and tasks that agents can do in the
scope. PASSI also has a connection ontology model that
offers connection tracks among agent kinds. O-MaSE’s
domain model also represents the main elements. These are
demonstrated within the scope of different types of objects
that agents operate with. It also displays the interactions
among those object kinds and among them and the agents.
Object kinds are realized by a name and a group of features
and are, then, utilized in other approach steps. Developing
an ontology model has to be taken as a critical function in
the activities of the proposed approach as the task includes
specifying certain range notions, their properties, and re-
lations. We suggest that the unified methodology utilizes
PASST’s domain and communication ontology models to
describe the ontology of the system scope in the best way
due to its prominent advantage over the other method-
ologies in this regard.

6.2. Analysis Phase. The analysis stage intends to specify a
comprehensive system’s architecture and its conduct. These
are obtained utilizing a role model as well as an interaction
model. It seems to us that there are three major processes in
the analysis stage: role model, agent communication, and
interaction model. In respect of analysis activity, one critical
stride is to determine the agents’ roles. Based on the in-
formation captured from the requirements steps, the system
analysts specify the number of roles functionalities existing
in the system.

6.2.1. Role Model. Among the significant demands of AOSE
approaches is to help designers distinguish the agents
comprising the system; especially, agents are the main
components in agent-based systems. A popular way applied
in most selected approaches coping with agent role is to
begin from the smallest elements of the agents and then
group these elements to compose agents. In Prometheus, an
agent kind is created by integrating one or more func-
tionalities. Various sets of tasks present alternate designs
that are assessed according to the coherence of the agent
kinds and the range of connections among agents.

Tropos presents these elements as an ability. Gaia,
O-MaSE, and ASEME specify the agent as a role. Agents are
specified by gathering UC in PASSI. Tropos has extensive
schemas, which offer relations among actors, objectives,
resources, and functions in the system. As mentioned earlier,
the depiction of ADELFE does not offer adequately elaborate

Complexity

guidance to permit us to status whether it applied this
technique or not.

6.2.2. Agent Communication Model. In Prometheus and
Gaia, the dependency and interaction among agents are il-
lustrated in terms of agent acquaintance schemes. While Gaia
realizes the connection, links are found among agents without
determining the current properties of those links. Prometheus
indicates the types of agents as well as the connections among
them. Agent acquaintance diagrams in these two approaches
are intended to help developers determine potential bottle-
necks formed among the system elements. The data coupling
offers evident processes to cope with agent characterizations.
One of them is the use of data coupling models. The second is
the model of agent acquaintance.

These models are composed of system functions and
external resources in terms of specified data. As noted
earlier, using this technique, designers are able to assemble
functionalities into agents by simply visually assessing the
data coupling techniques and providing guidelines and
processes. This depends on both minimizing coupling and
increasing cohesion. It appears that placing agents together
that can read or write the same type of information reduces
the association of agents. These intermediate models are
adopted in the unified approach.

6.2.3. Interaction Model. The prominence of this step lies in
describing the agents in the system and their functions,
responsibilities, and objectives. As mentioned in our
structural analysis, ADELFE, PASSI, Prometheus, Tropos,
and O-MaSE share certain features as they present high-level
connections utilizing sequence/interaction models extracted
from UML sequence models. Each methodology has dif-
ferent interaction diagrams; for example, Tropos and
ADELFE depict conversations among agents. This is while
the sequence models in O-MaSE show reactions among roles
and actors. PASSI uses serial graphics to explore the tasks of
each agent through role-specific [53].

The role model in ASEME is derived from the Gaia
methodology since, in both cases, the conversations are
explored and modeled at the role level instead of agent level,
and serial/interactional schemas are not used for the ob-
jective [51]. Getting into more IP detail, ASEME, ADELFE,
and Tropos suggest the application of the AUML IP model,
with certain tasks added to the AIP to suit AMAS’s demands
in ADELFE. The interactions of the system can be obtained
at a high-level utilizing AUML connection protocols for the
proposed methodology.

6.3. Design Phase. This stage concentrates on determining
agents’ architecture and conduct via determining their el-
ements and relations. It is quite necessary for AOSE ap-
proaches to offer a clear way to comprehend the general
framework of the system. Not all current approaches present
support for social structure and conduct (role, communi-
cation, and interactions). In O-MaSE, the process designer

13

needs to identify the specific set of stages and then identify
the activities and tasks for each phase and reuse them again.

Since what has been said will be specific to every project
underdeveloped, there are no strict bases on processes to be
developed at any stage. It characterizes the microlevel of
dynamics employing finite-state models. The design stage in
ASEME encompasses the functional and behavioral sides of
the MAS, and the related models are the agent IP and IAC
that carry out a certain IP by assuming the crucial roles and
relations between them. In Tropos, every agent’s plan is
depicted utilizing a UML process model.

As a result, in order to rethink beliefs and plans in an
adaptive manner, it is difficult to think of a changing envi-
ronment. Yet it proposes several potential notations that the
developer could utilize to cover the agent’s dynamic conduct.
The service model in Gaia offers a description of the inputs,
outputs, preconditions, and postconditions of each task of-
fered by an agent. However, the models for showing the
agent’s organizing abilities are not depicted. ADELFE directs
the designer to decide whether AMAS theory is ideal in the
project being developed. This illustrates the significance of
verifying the sufficiency of the analytical workflow and the
sufficiency tool that analyzes the standards provided by the
developer to determine whether this theory is beneficial.

If the system is not appropriate to AMAS technology, the
developer could utilize another AO approach. Defining
agent structures include determining their abilities and
connections. The roles defined in the previous step can be
useful in realizing such abilities. The conduct of agents can
be getting by a set of potential current notations involving
activity models, state charts, and finite state machines.

6.4. Implementation. Except for Gaia, All the participant
methodologies provide backing tools that can produce code
skeletons from design paradigms. ADELFE offers the analyst
tools to evaluate the sufficiency of AMAS technology at two
levels to demonstrate AIP. In this respect, the AUML prin-
ciple is used together with UML and RUP. PASSI utilizes the
UML deployment model and expands it with merits to permit
the mobility of agents to be defined. For example, in the
process of building the deployment model, developers can
have a better grasp of the intricacies to operate the system.
Also, developing high-scale deployment offers a basis for
evaluating the feasibility of executing the system as well as the
use of the spread concept. It also provides an assessment of
different other measures, such as costs. Using this activity,
PASSI describes the system based on agent classes and their
position on the available processing units in the diagrams.
O-MaSE also offers some limited backing for determining
mobility processes in the case of concurrent functions. The
execution phase in ASEME is the programming language for
different levels throughout the development process.

Later, during the verification phase, the system functions
are checked against the requirements, and the respective phase
is completed in relation to three abstraction levels: societal,
agent, and capability. Nevertheless, the preferable method is
successive, that is, the software elements are checked for the
effective running of algorithms, the agents are tested for the

14

effective execution of abilities, and the MAS is checked for its
general valid procedures in the end, that is, all processes are
carried out one after another. In general, this stage needs more
improvement coinciding with the work on experimenting and
addressing agent projects in recent years [15, 70].

7. Case Study

As mentioned previously, we do not aim to propose a de-
finitive normative methodology, but rather a proposal draft,
which we hope will lead to discussion in the relevant
community, possibly resulting in aid towards a true stan-
dardized methodology for AOSE. To build an agent infor-
mation project, we applied the health information system
[49, 71] to the proposed methodology. The system is
established to represent the hospital, family at home, and
healthcare providers all in one integrated system.

7.1. Requirement Specification

7.1.1. Distinguishing UC. To assist the analysts in defining
the main connections/associations among entities and adopt
more with agent technology, the proposed methodology
integrated the UC on ADELFE and ASEME approaches.
Figure 10 shows an example of this combination by rep-
resenting the UC for the example used in this study.

7.1.2. Environment Model. Figure 11 presents the general
design of the system towards development of the agent
overview scheme from the overall system model, which
characterizes the four kinds of agents as specified and also
displays the messages among them, that is, notions received
by the user interface agent and the information read and
written in this regard.

7.1.3. Goal Model. 1t is substantial to consider stakeholders’
purposes and their interactions via the functions and resources
utilized to fulfill goals. Goals can be organized and presented as
a hierarchy of objectives, utilizing the suggested unified no-
tation [69]. In the proposed methodology analysis phase, the
significant step is in getting the objectives, which pick the initial
system characterization and transform them into an arranged
group of system objectives. It is shown in Figure 12.

7.2. Analysis Phase

7.2.1. Agent Role. A basic stage applied in our unified ap-
proach is coping with the agent role to begin from the
smallest elements of the agents and then to group these
elements to compose agents. Figure 13 displays obvious the
roles and their goals according to the goal diagram in the
previous phase. The goals linked with each role are repre-
sented under the role name.

7.2.2. Interaction Model. The AUML notation is used, but
some specific functionality has been added to AIP diagrams
to fit the AMAS theory requirements. Figure 14 displays the

Complexity

interaction protocol for the system under study that uses
serial graphics to explore the tasks of each agent through
role-specific.

7.3. Design Phase. Depending on the analysis phase, Figure 15
shows a role model for the target system with more details. The
lines among the roles in this model refer to possible connection
paths. It also contains information on the interactions among
role tasks. The goals related to each role are represented under
the role name. Additionally, illustrated are the tasks related to
each role, used to determine each role’s behavior.

We adopted a case study approach in the form of feature
analysis to develop the healthcare provider system, using the
proposed approach. The goal of this study is to explore the
potentials of the approach in presenting solutions for system
problems. The system constructs software agents repre-
senting the hospital, the family members at home, the pa-
tient being monitored personal device assistant (PDA), and
the healthcare providers.

The proposed approach is clearly agent-based and
considers the social aspects. We applied the goal model
covering the entire goals as classified into subgoals. It
consists of a role hierarchy and a set of role schemas for each
role in the hierarchy. The roles define the expected behaviors
of the agents and provide services and goals to any agent. The
role model allows us to build an abstract view of the system
according to which its member agents behave in the system.

8. Discussion

The notation of the seven approaches is acceptable, and most
have a modeling language in terms of fulfilling different
aspects such as systematic transitions, modularity, and ease
of comprehension. However, none of the approaches clearly
offers mechanisms or models to back the design of reusable
components. In addition, only ASEME provides techniques
and adequate support for transition from one stage to an-
other through typical transformations by three forms of
conversion used for automation between the ASEME
models. However, there are numerous aspects of agent-
based systems that were not sufficiently handled in most of
the approaches. For example, except ASEME, none of the
seven approaches provides backing registration of non-
functional requirements, in the requirements analysis step.

Regarding the environment percepts feature, ADELFE,
Prometheus, and O-MaSE provide support for modeling the
environment of agents. As to architecture, all seven meth-
odologies provide support with different degrees to agent
architecture, while Prometheus introduces distinctive backing
for belief, goal, and plan; the other methodologies seem to be
weak in this respect. Regarding the process lifecycle, all of the
approaches reference the specification, analysis, design, and
detailed design to a certain degree. Additionally, all of them
offer instances and heuristics to help designers in all meth-
odology stages. Tropos and ADELFE make use of initial and
final requirements, which is an important stage in these
approaches. Moreover, they suppose full specification of re-
quirements and do treat the grouping of requirements. This

Complexity

15

user
register patient
data

provider

e

sickness

parent

home computer

=

upload data to
hospital

collect patient
reports
)\ analyzing patient

manage medical hospital
records manager

get update from

home computer
keep medicl

history update

0

hospital
computer

atient

record patient
data
upload data

keep well PDA
manage therapy
option

monitor patient
condition

H0g 0

>_

Figure 10: UC diagram.

Provide Authorization

Provider

S
Provider DB

Request Processing

User Preferences

~_

Communicate
Request

User Preferences

User Interface

S—
Print preferences

Send Patient Data

Home Computer

S—
Patient Report

| Patient Preferences | Send Patient Data /\
Access Medical .
History | Plan Options | | Display Data | | Recent Data |
Hospital A
Manager
S——

Medical History

E Eersonal Dat; j

FIGURE 11: System overview diagram.

guides designers to the benefit of richer requirements pro-
duced by agent technologies. The seven methodologies also
share several common features; for example, Prometheus and
Gaia share the use of the acquaintance technique. In addition,
all of these methodologies provide models to cover the social
system structure.

In an environment that is generally constricted, the
current agents and MASs provide solutions for complex
applications. However, the present and future applications
are convoluted and open to criticism. Like the Internet, these
develop in an unpredictable environment and present other
challenges to constructing software.

16

—L

EmE—

I

|

|
.
v

FIGURE 12: Goal diagram.

PDA

:Patient

Alternative treament;
Provider

History provider:
Hospital

Role Provider Hospital Home Compute
Goal 12,1.2.1,1.2.2 14,141,142

0 1222,122.1 142.1,1.42.1.1

FIGURE 13: Roles and their goals.
Data processor: Data loader: Tretment monitor:
PDA Home computer .Parents PDA
Personal medical data
Data processing
Load data
display data
Notify home computer|
Offer propsals

request communicat

Ackrjowledge request]

Alternative treatment plan

Access medical history

send resent data

FiGURE 14: Interaction model.

Update medical
history

Complexity

Complexity

provider
1.1,1.1.1,1.1.2,

HoIGIIL g LI
o LolloIL2,)1

provide

access to medical history

17

Hospital
1.2,1.2.1,1.2.2,

1.2.21,1.2.2.2

up date medical

medical data

alternative treatment plan

history

Home computer
14,1.4.1,14.2

,1.42.1,142.1.1

request communicate

communicate with home computer

L

PDA ™
13,13.1,13.2, s hadal
13.2.1 chedules

,1.3.2.1.1,1.3.2.1.2,

load recent
data

FiGure 15: Role model.

As a result, it is significant to offer novel paradigms,
tools, and approaches to meet these challenges. Many of the
selected methodologies are picked according to “standards,”
like the RUP, UML, and UML models, to improve AO
technologies in the manufacturing world, where OO tech-
nology is the base. In terms of strengths, weaknesses, and
application domains of seven methodologies, Tables 3-5
describe the results of this analysis study. Gaia is a gen-
eral approach that is usable to a wide domain of MAS;
furthermore, it addresses the social agent aspect of systems
[37].

Gaia does not directly deal with special modeling
technicalities. Also, it does not include an implementation
stage. As we mentioned the difficulties are spotted when
working on some design schemas and role models, with the
underlying reason being that performing elaborated role
models needs determining the liveness responsibilities of
each role, decisive in plotting the protocols later. In addition,
the authorizations and safety responsibilities mentioned in
Gaia are not clear. As an outcome, in the paradigm of the
role set up for the target system, this feature of roles is not
well-described. Regarding the notation, which characterizes
these roles’ characteristics, liveness responsibilities are ra-
tionally well-identified, while liability is not submitted [60].

As for Tropos, it was affected by the framework analysis
of the initial demands of the intended system. It directs
designers towards understanding an AO system as orga-
nizing of actors through plans that are dependent on other
actors, which are seeking to accomplish goals. The Tropos
methodology aims to cover all analyses and design processes
in the software development lifecycle, starting with the
analysis stage to system implementation.

It provides the early phase of the requirements analysis
with identifying basic stakeholders and equips the designers
with a satisfactory knowledge about the environment in
which the software operates and the type of interactions that

should happen among system agents. In the requirements
analysis, the main supposition that distinguishes Tropos
from other methodologies is that actors and objectives are
utilized as basic notions for modeling and analysis during all
software lifecycle stages, not just during early requirements.

It concentrates on the preliminary stage of requirements
engineering. The discovery of stakeholders and credits
among them lies in the knowledge of the engineer. Based on
various perspectives that could lead to different results, the
achievement of objectives and their relations among
stakeholders can be derived. The system actors are added in
the midst of the analysis. To accommodate the new actor, the
dependencies among the actors are rearranged. Throughout
the entire development process, Tropos is based on the
unified use of small groups of intentional symbols [52].

Nevertheless, in order to rethink beliefs and plans in an
adaptive manner, it is difficult to think of a changing
environment. O-MaSE is designed as a set of parts that
developers combine to meet specific goals. In fact, they do
not need a particular set of stages. They assume that they
follow a traditional waterfall approach to allay this prob-
lem. Requirements analysis, design, and implementation
are the three main phases with the main activities allocated
as expected. It is the beginning point in O-MaSE [72]. In
order to design MASs, there are several drawbacks. For
example, O-MaSE presents MASs with a specific organi-
zation. The number of agents and their roles in O-MaSE is
limited. Also, O-MaSE does not cover the concept of
subteams and has no diagrams that represent interactions
with the environment. In addition, there is the only one-to-
one connection among agents in the system, and it does not
clearly define the usage case model [23]. While many re-
curring problems have been processed in O-MASE, there
are some necessary missions for a mature agent approach
such as management, product distribution, testing, and
assessment, which are absent.

18

In PASSI, an agent is an essential part of the software at
both low- and high-precision levels. The agent is an example
of software execution of an independent element able to
achieve a goal via its independent resolutions, activities, and
social interactions based on this view [32]. While interacting
with other agents to achieve their objectives, the agent can
play many useful roles representing a set of functions carried
out by the agent in pursuit of a subgoal. As a meaningful unit
of individual or interactive behavior, the task is defined in
PASSI. Distinguishing features also exist, such as in PASSI,
from other participant methodologies. In the case of PASSI,
this lies in its strong focus on the deployment model, which
is regarded as one of the main models in UML.

Using this activity, PASSI describes the system based on
agent classes and their position on the available processing
units in the diagrams. ADELFE directs the designer in
making the resolution as to if AMAS theory is desired in the
project under development. This illustrates the necessity of
verifying the sufficiency of the analytical workflow and the
sufficiency tool that analyzes the standards provided by the
developer to determine whether this technology is beneficial.
It provides certain actions and standards to assist the de-
veloper to determine elements in the system that need ex-
ecution as agents [49]. Their characteristics should be
studied in addition to the relations and the cooperation
failures that may determine if entities should be regarded as
agents. This can be reutilized in other agent approaches, and
the ADELFE processes can then be analyzed in the form of
fragments.

It will also be easier to combine the parts from other
approaches into ADELFE [68]. ADELFE’s main strong point
can also be a major constraint; it is highly specialized and
cannot be used to develop all kinds of agents (e.g., BDI). As it
permits the designer only to test the behavior of certain
agents and verify them based on specifications, there is a
need to improve many activities, especially fast prototyping
[68]. To improve agent behavior by inserting or deleting
portions of it, the designer will be able to react with the
system as it is designed. Many work definitions still do not
exist. Currently, for direct execution and testing, there is no
running tool like the platform or a group of programming
tools associated with this approach [68].

As mentioned earlier, ASEME, the model-driven engi-
neering (MDE) method, appears with special features
concerning the AOSE community and can be applied in all
stages of conventional software processes (from require-
ments to execution). It allows the transition from one stage
to another through typical transformations. In addition, it
backs the registration of nonfunctional requirements in the
requirements analysis step, where they are utilized to make
management decisions and choose which technologies will
be used for design and development.

Prometheus suggests complete lifecycle processes, from
requirements specification to elaborated design, and sup-
ports the agent developer according to goals and tasks. It
offers elaborated guidance on how to carry out the different
stages. Prometheus has an environmental paradigm that
describes the surroundings where agents work and provide
support for this concept compared to other competitive

Complexity

approaches. However, the Prometheus environment model
is limited to clear input and output specifications with re-
spect to the distinct needs and requirements of the system.

In this methodology, the formation of the kinds of agents
can be oriented to data association. In addition, the agents
are composed of other component roles and abilities. In
addition, for individual agents, Prometheus supports both
dynamic and static models [73].

Additionally, an important aspect, which distinguishes
Prometheus from other participant methodologies, is data
coupling as it offers evident processes to cope with agent
characterizations. Developers can get the information that
agents draw from the environment and the actions that the
agents begin to respond to in these events using the system
specification stage in Prometheus. Prometheus does not
handle mobile agents at all and has less focus on initial
requirements and business processes analysis than ap-
proaches, such as ADELFE and Tropos. Lastly, Prometheus
is not established on UML.

9. Conclusion, Limitations, and Future Work

The main purpose of agent methodologies is to deliver the
required processes, models, mechanisms, and tools so that
agent-based systems can be developed in a more formal and
organized manner. As pointed out previously, many AOSE
methodologies with various backgrounds had been made
available to experts in recent years. This study conducted an
analysis and evaluation of key AOSE methodologies, fo-
cusing on their features and limitations and proposed
unified AO methodology. With the increasing necessity for
complex systems in the industry, the intention to employ
agent technologies to promote commercial and industrial
software systems is rising rapidly as well, moving the in-
dustry from a form of product for a user to a manner of
delegation, where it can also involve the users in order to
make decisions and take actions accordingly. Thus, the
availability of the AO approach to support software engi-
neers in designing agent-based projects is very significant.

To this end, the present research study carried out a
comparison of seven prominent AO approaches to com-
prehend the interactions among them. Specifically, our
major objectives observed were: first, to determine the re-
semblance and variations in terms of processes and models
that were paramount in directing the development of agent-
based projects and, second, to estimate each methodology’s
features, limitations, and range of usability.

However, assessment of these methodologies had con-
tinuously faced several difficulties; the completeness of
various methodologies varies explicitly; and each method-
ology had different advantages and drawbacks with nu-
merous individually oriented features to support various
aspects of their proposed application scopes.

In our view, all of the seven AO methodologies were
clearly agent-based; the structural is widely regarded as an
agent methodology; and most of them consider the social
aspects.

Generally, all these methodology approaches provided
sufficient support for major AO properties. The most social

Complexity

characteristics addressed in all offer support for most social
standards as communication, communication language, and
relationship. The assessment of the AOSE methodologies
showed that most amount of attention had been paid to
requirements, design, and implementation stages. However,
progress is still needed in all stages of the software processes.

Based on this comparative analysis, we proposed an
exploratory unification of the assessment AO approaches by
integrating their strong characteristics. With regard to future
work, it includes increasing the number of AO methodol-
ogies and adding other evaluation methods to the assess-
ment. In doing so, the work can be improved by involving
supplementary models and techniques. In addition, this
paper had considered the commonalities and differences
between participant methodologies in terms of process and
models without the detailed techniques that are an im-
portant issue for future work.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to thank the Molde University
College—Specialized University in Logistics, Norway, for
the support of the open access fund.

References

[1] W. Mefteh, F. Migeon, M. P. Gleizes, and F. Gargouri,
“ADELFE 3.0 design, building adaptive multi agent systems
based on simulation a case study,” in Computational Collective
Intelligence (ICCCI 2015), PT I Book Series: Lecture Notes in
Artificial Intelligence, P. Muller, Ed., vol. 9329, pp. 19-28,
Instant UML, Wrox Press, Birmingham, UK, 2015.

[2] R. Padmanaban, M. Thirumaran, K. Suganya, and R. V. Priya,
“Aose methodologies and comparison of object oriented and
agent-oriented software testing,” in Proceedings of the Inter-
national Conference on Informatics and Analytics, pp. 1-16,
ACM, Pondicherry India, August 2016.

[3] H. Mubarak, “Developing flexible software using agent-ori-
ented software engineering,” IEEE Software, vol. 25, no. 5,
pp. 12-15, 2008.

[4] O. Robert, P. Piotr, T. Agnieszka, K. Bogna, P. Tadeusz, and
B. Marek, “Spatiotemporal modeling of the smart city Resi-
dents’ activity with multi-agent systems,” Applied Sciences,
vol. 9, p. 2059, 2019.

[5] B. Lorica, “How to think about AI and machine learning
technologies, and their roles in automation: an overview and
framework, including tools that can be used to enable au-
tomation,” 2018, https://www.oreilly.com/ideas/how-to-
think-about-ai-and-machine-learning-technologies-and-
their-roles-in-automation.

[6] A.Dey, A. Pal, and H. Long, “Fuzzy minimum spanning tree
with interval type 2 fuzzy arc length: formulation and a new
genetic algorithm,” Soft Computing, vol. 24, no. 6,
pp. 3963-3974, 2020.

19

[7] A. Dey, A. Pal, and T. Pal, “Interval type 2 fuzzy set in fuzzy
shortest path problem,” Mathematics, vol. 4, no. 4, p. 62, 2016.

[8] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou,

“Agent-oriented cooperative smart objects: from IoT system

design to implementation,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 48, no. 11, pp. 1939-1956,

2017.

C. Savaglio, M. Ganzha, M. Paprzycki, C. Bidicd, M. Ivanovi¢,

and G. Fortino, “Agent-based Internet of things: state-of-the-

art and research challenges,” Future Generation Computer

Systems, vol. 102, pp. 1038-1053, 2020.

[10] S. Abar, G. K. Theodoropoulos, P. Lemarinier, and
G. M. P. O’Hare, “Agent based modelling and simulation
tools: a review of the state-of-art software,” Computer Science
Review, vol. 24, pp. 13-33, 2017.

[11] C. Skourlas, P. Belsis, S. Gritzalis, C. Lambrinoudakis,

V. Tsoukalas, and D. Vassis, “An agent based architecture

benchmark,” Procedia-Social and Behavioral Sciences,

vol. 147, pp. 429-435, 2014.

B. Sherrell, J. Clemens, and R. Pal, “Runtime state verification

on resource-constrained platforms,” in Proceedings of the

MILCOM 2018-2018 IEEE Military Communications Con-

ference (MILCOM), pp. 1-6, IEEE, Los Angeles, CA, USA,

October 2018.

[13] C. Savaglio, T. Leppédnen, W. Russo, J. Riekki, and G. Fortino,
“Re-engineering IoT systems through ACOSO-meth: the
IETF CoRE based agent framework case study,” in WOA,
pp. 81-89, 2018.

[14] C. E. Lin, K. M. Kavi, F. T. Sheldon, K. M. Daley, and
R. K. Abercrombie, “A methodology to evaluate agent-ori-
ented software engineering techniques,” in Proceedings of the
2007 40th Annual Hawaii International Conference on System
Sciences (HICSS’07), p. 60, IEEE, Waikoloa, HI, USA, January
2007.

[15] J.J. Gémez-Sanz and R. Fuentes-Fernandez, “Understanding
agent-oriented software engineering methodologies,” The
Knowledge Engineering Review, vol. 30, no. 4, pp. 375-393,
2015.

[16] M. Habiba, “Metrics for evaluating agent-oriented software
engineering model,” in Proceedings of the 2012 International
Conference on Informatics, Electronics ¢ Vision (ICIEV),
pp. 17-22, IEEE, Dhaka, Bangladesh, May 2012.

[17] C.Lucena and I. Nunes, “Contributions to the emergence and
consolidation of agent-oriented software engineering,”
Journal of Systems and Software, vol. 86, no. 4, pp. 890-904,
2013.

[18] X. Mao, Q. Wang, and S. Yang, “A survey of agent-oriented
programming from software engineering perspective,” Web
Intelligence, vol. 15, no. 2, pp. 143-163, 2017.

[19] A. Taweel, E. Garcia, S. Miles, and M. Luck, “Agent-oriented
software engineering of distributed eHealth systems,” in Pro-
ceedings of the OTM Confederated International Conferences On
the Move to Meaningful Internet Systems, pp. 332-341, Springer,
Graz, Austria, September 2013.

[20] L. Salazar and H. Li, “Proportional reliability of agent-ori-
ented software engineering for the application of cyber
physical production systems,” in Service Orientation in Hol-
onic and Multi-Agent Manufacturing, pp. 139-156, Springer,
Cham, Switzerland, 2018.

[21] R. Cunha, C. Billa, and D. Adamatti, “Development of a
graphical tool to integrate the Prometheus AEOlus meth-
odology and jason platform,” International Journal of Natural
Computing Research, vol. 6, 2017.

[9

[12

https://www.oreilly.com/ideas/how-to-think-about-ai-and-machine-learning-technologies-and-their-roles-in-automation
https://www.oreilly.com/ideas/how-to-think-about-ai-and-machine-learning-technologies-and-their-roles-in-automation
https://www.oreilly.com/ideas/how-to-think-about-ai-and-machine-learning-technologies-and-their-roles-in-automation

20

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

K. Slhoub, M. Carvalho, and F. Nembhard, “Evaluation and
comparison of agent-oriented methodologies: a software
engineering viewpoint,” in Proceedings of the 2019 IEEE In-
ternational Systems Conference (SysCon), April 2019.

S. Sukhvir and S Richa, “Evaluation of agent oriented software
engineering (AOSE) methodologies-A review,” International
Journal of Latest Research in Science and Technology, vol. 1,
no. 2, pp. 94-97, 2012.

M. Elammari and R. Elsaeti, “Structural analysis of agent
oriented methodologies,” Proceedings of International Journal
of Information & Computation Technology, vol. 4, no. 6,
pp. 613-618, 2014.

R. Abdalla and Mishra, “Comparing the artifacts of agent
methodologies,” TEM Journal, vol. 7, no. 2, pp. 433-438, 2018.
O. Zohreh, “A survey of agent- oriented software engineering
paradigm: towards its industrial acceptance,” Journal of
Computer Engineering Research, vol. 1, no. 2, pp. 14-28, 2010.
K. H. Dam and M. Winikoff, “Comparing agent-oriented
methodologies,” in Agent-Oriented Information Systems,
AOQIS, in: Lecture Notes in Computer Science, P. Giorgini,
B. Henderson-Sellers, and M. Winikoff, Eds., vol. 3030,
pp- 78-93, Springer, New York, NY, USA, 2004.

H. Dam and M. Winikoff, “Towards a next-generation AOSE
methodology,” Science of Computer Programming, vol. 78,
pp. 684-694, 2013.

D. Law, “Methods for comparing methods: techniques in
software development,” in Multi-Agent Systems the Knowledge
Engineering Review, vol. 30, pp. 394-418, , no. 4, Cambridge
University Press, Cambridge, UK, 1988.

Y. Wautelet, Y. Achbany, J. Lange, and M Kolp, “A process for
developing adaptable and open service systems: application in
supply chain management,” in Enterprise Information Sys-
tems-BK. Lecture Notes in Business Information Processing,
vol. 24, pp. 564-576, Springer, Berlin, Germany, 2009.

P. Giorgini, M. Kolp, J. Mylopoulos, and J. Castro, “Tropos: a
requirements-driven methodology for agent-oriented soft-
ware,” in Agent-Oriented Methodologies, B. Henderson-Sellers
and P. Giorgini, Eds., Idea Group Publishing, Hershey, PA,
USA, pp. 20-45, 2005.

M. Cossentino, “From requirements to code with the PASSI
methodology,” in Agent-Oriented MethodologiesIGI Global,
Hershey, PA, USA, 2005.

S. DeLoach and J. Garcia-Ojeda, “The O-MaSEMethodology,”
in Chapter from Book Handbook on Agent-Oriented Design
Processes, pp. 253-285, Springer, Berlin, Germany, 2014.

C. M.-P. Bernon, G. Gleizes, and P. Glize, “The adelfe
methodology for an intranet system design,” in Proceedings of
the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems at CAiSE, Springer-Verlag,
Toronto, Canada, January 2002.

N. Spanoudakis and P. Moraitis, “Using ASEME methodology
for model-driven agent systems development,” in LNCS, 6788,
106-127, X. I. AOSE, D. Weyns, and M. P. Gleizes, Eds.,
Springer, Berlin, Germany, 2011.

F. Zambonelli, N. Jennings, and M. Wooldridge, “Multi-agent
systems as computational organizations: the Gaia method-
ology,” in Agent-Oriented Methodologies, B. Henderson-
Sellers and P. Giorgini, Eds., Idea Group Publishing, Hershey,
PA, USA, pp. 136-171, 2005.

M. Wooldridge, N. Jennings, and D. Kinny, “The Gaia
methodology for agent- oriented analysis and design,” Au-
tonomous Agents and Multi-Agent Systems, vol. 3, no. 3, 2000.
P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopoulos, “Tropos: an agent-oriented software

(39]

(40]

(41]

(42]

[43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

Complexity

development methodology,” Autonomous Agents and Multi-
Agent Systems, vol. 8, no. 3, pp. 203-236, 2004.

L. Penserini, P. Bresciani, T. Kuflik, and P. Busetta, “Using
tropos to model agent-based architectures for adaptive sys-
tems. a case study in ambient intelligence,” in Proceedings of
the IEEE International Conference on Software - Science,
Technology and Engineering, pp. 37-46, IEEE, Herzlia, Israel,
February 2005.

J. Mylopoulos, J. Castro, and M. Kolp, “Tropos: toward agent-
oriented information systems engineering,” in Proceedings of
the Second International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS2000), Springer, Stock-
holm, Sweden, June 2000.

F. Giunchiglia, J. Mylopoulos, and A. Perini, “The tropos
software development methodology: processes, models and
diagrams,” in Proceedings of the Third International Workshop
on Agent-Oriented Software Engineering, Springer, Bologna,
Italy, July 2002.

S. DeLoach and J. Valenzuela, “An agent-environment in-
teraction model,” in AOSE VII/AOSE 2006, LNCS,
L. Padgham and F. Zambonelli, Eds., Vol. 4405, Springer,
Berlin, Germany, 2007.

D. Capera, G. Picard, M. P. Gleizes, and P Glize, “A sample
application of ADELFE focusing on analysis and design the
mechanical synthesis problem. Engineering Societies,” in The
Agents World Vbook Series: Lecture Notes in Artificial Intel-
ligence, vol. 3451, pp. 231-244, Springer, Berlin, Heidelberg,
2005.

J. Odell, H. Parunak, and B. Bauer, “Representing agent in-
teraction protocols in UML,” in Proceedings of the Ist In-
ternational ~ Workshop — on Agent-Oriented Software
Engineering (AOSE 2000), pp. 121-140, Springer-Verlag,
Limerick, Ireland, January 2000.

L. Padgham and M. Winikoff, “Prometheus: a practical agent-
oriented methodology,” in Agent-Oriented Methodologies,
B. Henderson-Sellers and P. Giorgini, Eds., Idea Group
Publishing, Hershey, PA, USA, pp. 107-135, 2005.

R. Abdalla and A. Mishra, “Application of agent methodology
in healthcare information systems,” TEM Journal -Technology
Education Management Informatics, vol. 6, no. 1, pp. 147-152,
2017.

R. Abdalla and A. Mishra, “Using agent-based methodologies
in healthcare information systems,” Cybernetics and Infor-
mation Technologies, vol. 18, no. 2, pp. 123-132, 2018.

E. Yu, “Modelling strategic relationships for process reen-
gineering,” Ph.D. thesis, University of Toronto, Department
of Computer Science, Toronto, Canada, 1995.

K. Horvath, P. Sengstack, F. Opelka et al., “A vision for a
person-centered health information system,” National
academy of medicine, 2018.

G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Mod-
eling Language User Guide, Addison-Wesley, Boston, MA,
USA, 1999.

N. Spanoudakis, “A method fragment for transforming Gaia
or ASEME liveness formulas to BPMN models for simula-
tion,” in Proceedings of the International Workshop on En-
gineering Multi-Agent Systems, Springer, Turkey, May 2011.

A. Perini and A. Susi, “Developing a decision support system
for integrated production,” Environmental Modelling &
Software, vol. 19, no. 9, pp. 821-829, 2004.

C. Giacomo, L. Letizia, and P. Mariachiara, “Service-oriented
agent methodologies,” in Proceedings of the 16th IEEE In-
ternational ~ Workshops on Enabling Technologies:

Complexity

(54]

(55]

(56]

(57]

[58

(59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

Infrastructure for Collaborative Enterprises (WETICE 2007),
IEEE, Evry, France, June 2007.

N. Spanoudakis and P. Moraitis, “The agent systems meth-
odology (ASEME): a preliminary report,” in The Agent Sys-
tems Engineering Methodology (ASEME), N. Spanoudakis, Ed.,
Paris Descartes University, Paris, France, 2009.

S. Mariani and A. Omicini, “Special issue “multi-agent sys-
tems”,” Applied Sciences, vol. 10, p. 5329, 2020.

M. Dastani, “Programming multi-agent systems,” The
Knowledge Engineering Review, vol. 30, no. 4, pp. 394-418,
2015.

D. Harel and H. Kugler, “The rhapsody semantics of state-
charts (or, on the executable core of the UML) - preliminary
version,” in INT 2004. LNCS, H. Ehrig, W. Damm, J. Desel
et al., Eds., vol. 3147, pp. 325-354, Springer, Berlin, Germany,
2004.

I. Nunes, U. Kulesza, C. Nunes, C. deLucena, and E. Cirilo, “A
domain analysis approach for multi-agent systems product
lines,” in Enterprise Information Systems-BKBook Series:
Lecture Notes in Business Information Processingvol. 24, p. 716,
Springer, Berlin, Germany, 2009.

L. V. Massawe, F. Aghdasi, and J. Kinyua, “The development
of a multi-agent-based middleware for RFID asset manage-
ment system using the PASSI methodology,”vol. 1-3,
pp- 1042-1048, in Proceedings of the IEEE Computer Society
Proceedings OF The 2009 Sixth International Conference ON
Information Technology: New Generations, vol. 1-3,
pp- 1042-1048, IEEE, Las Vegas, NV, USA, April 2009.

M. Cox, B. Kerkez, C. Srinivas, G. Edwin, and W. Archer,
“Toward agent-based mixed-initiative interfaces,” in Pro-
ceedings of the 2000 International Conference on Artificial
Intelligence, CSREA Press, Sydney, Australia, 2000.

S. DeLoach and J. Garcia-Ojeda, “O-MaSE: a customizable
approach to developing multi-agent development processes,”
International Journal of Agent-Oriented Software Engineering,
vol. 4, pp. 244-280, 2010.

I. Garcia-Magarino, S. Rougemaille, R. F. Fernandez,
F. Migeon, M. P. Gleizes, and]. Gomez-Sanz, “A tool for
generating model transformations by-example in multi-agent
systems,” in Proceedings of the The International Conference
ON Practical Applications OF Agents and Multi-Agent Systems
(PAAMS 2009), vol. 55, University of Salamanca, Salamanca,
Spain, April 2009.

I. Mathieson, S. Dance, L. Padgham, M. Gorman, and
M. Winikoff, “An open meteorological alerting system: issues
and solutions,” in Proceedings of the 27th Australasian
Computer Science Conference, V. Estivill-Castro, Ed., Aus-
tralian Computer Society, Inc., Dunedin, New Zealand,
pp. 351-358, January 2004.

L. Padgham, J. Thangarajah, and M. Winikoft, “Tool support
for agent development using the Prometheus methodology,”
in Proceedings of the Fifth International Conference on 23
January, IEEE, Melbourne, Australia, September 2005.

M. Gascueia, Ferndndez, and A. Caballero, “Agent-oriented
modeling and development of a person-following mobile
robot,” Expert Systems with Applications, vol. 38, no. 4,
pp. 4280-4429, 2011.

F. El Hajj, A. El Hajj, and R. A. Chehade, “Multi-agent system
vulnerability detector for a secured E-learning environment,”
in Proceedings of the IEEE2016 SiXTH International Confer-
ence On Digital Information Processing and Communications,
pp- 113-118, IEEE, Beirut, Lebanon, April 2016.

F. Saminni and W. Tang, “Implementation of Gaia meth-
odology for multi-agent based transformer condition

(68]

(69]

(70]

(71]

(72]

(73]

21

monitoring,” in Proceedings of the IEEE PES Innovative Smart
Grid Technologies Conference Europe, IEEE, Berlin, Germany,
October 2012.

B. Henderson-Sellers and P. Giorgini, Agent Oriented
Methodology, 1dea Group Publishing, Hershey, PA, USA,
2005.

L. Padgham, M. Winikoff, S. DeLoach, and M. Cossentino, “A
unified graphical notation for AOSE,” in Proceedings of the
Ninth International Workshop on Agent Oriented Software
Engineering, M. Luck and J. J. Gomez-Sanz, Eds., Springer,
Estoril, Portugal, pp. 61-72, May 2008.

C. Nguyen, A. Perini, and P. Tonella, “Experimental evalu-
ation of ontology-based test generation for multi-agent sys-
tems,” in Proceedings of the Ninth International Workshop on
Agent-Oriented Software Engineering, AOSE, J. J. Gomez-
Sanz, M. ., and Luck, Eds., Springer, Estoril, Portugal,
pp. 165-176, May 2008.

N. Ericsson, “Technical description,” Integrated Health Care
Information System, 2004.

S. DeLoach and M. Wood, “Multiagent systems engineering:
the analysis phase,” 2000. Technical Report, Air Force In-
stitute of Technology, AFIT/EN-TR-00-02.

A. Bawa, S. Bhatia, and V. Kaur Attri, “A review on agent
oriented software ENGINEERING,” International Journal of
Advanced Research in Computer and Communication Engi-
neering, vol. 4, no. 4, 2015.

