
Received December 30, 2020, accepted January 15, 2021, date of publication January 26, 2021, date of current version March 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3054730

Software Product Quality Metrics:
A Systematic Mapping Study
FATIMA NUR COLAKOGLU 1, ALI YAZICI 2, AND ALOK MISHRA 2,3, (Senior Member, IEEE)
1HAVELSAN, 06510 Ankara, Turkey
2Department of Software Engineering, Atilim University, 06830 Ankara, Turkey
3Department of Informatics and Digitalization, Molde University College—Specialized University in Logistics, 6410 Molde, Norway

Corresponding author: Alok Mishra (alok.mishra@himolde.no)

This work was supported by Molde University College—Specialized University in Logistics, Norway.

ABSTRACT In the current competitive world, producing quality products has become a prominent factor to
succeed in business. In this respect, defining and following the software product quality metrics (SPQM)
to detect the current quality situation and continuous improvement of systems have gained tremendous
importance. Therefore, it is necessary to review the present studies in this area to allow for the analysis
of the situation at hand, as well as to enable us to make predictions regarding the future research areas. The
present research aims to analyze the active research areas and trends on this topic appearing in the literature
during the last decade. A Systematic Mapping (SM) study was carried out on 70 articles and conference
papers published between 2009 and 2019 on SPQM as indicated in their titles and abstract. The result is
presented through graphics, explanations, and the mind mapping method. The outputs include the trend map
between the years 2009 and 2019, knowledge about this area and measurement tools, issues determined to
be open to development in this area, and conformity between conference papers, articles and internationally
valid quality models. This study may serve as a foundation for future studies that aim to contribute to the
development in this crucial field. Future SM studies might focus on this subject for measuring the quality
of network performance and new technologies such as Artificial Intelligence (AI), Internet of things (IoT),
Cloud of Things (CoT), Machine Learning, and Robotics.

INDEX TERMS Software quality, software product quality, metrics, systematic mapping.

I. INTRODUCTION
IEEE 1061:1998 defines measurement and software qual-
ity metric (SQM) as a function whose inputs are software
data, while the output is a single numerical value that can
be interpreted as the degree to which software possesses a
given attribute that affects its quality [1]. Within the current
competitive world, producing quality products has become
a prominent factor that warrants the enduring success of
competitors in business. In this regard defining and following
the SPQM to be applied in the detection of the current qual-
ity state. Hence maintaining the continuous improvement of
systems within the software industry has gained considerable
significance.

Many international standards and models focusing on
this need are in line with Tom DeMarco, who stated that
‘‘we cannot control and improve something that we haven’t

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Luca Bernardi .

measured’’ [2]. Pursuing this motto, this paper sets out to ana-
lyze a specific set of articles and conference papers published
in the last decade using the SM approach, which specifically
focuses on SPQM as indicated in their titles and abstract
sections.

The metrics and analyses of measurement results are good
indicators for the quality of the products and/or organizational
operations [3]. For instance, if the metrics spot a deviation
from the threshold in a negative manner, a red flag will
be raised immediately to implement an emergency plan for
intervention [4]. In such cases, these metrics function as a
safety belt for firms. In order to be able to compete in the
industry, it is crucial to measure the current situation so
that undesired scenarios can be prevented while continuous
development is enhanced. This is so critical that if the road
map is set with the wrong set of metrics, these meaningless
and incorrect metrics will most probably mislead users [5].
In other words, if calibrated and validated metrics are not
defined in an efficient way to reach the target, most likely

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 44647

https://orcid.org/0000-0003-1398-4136
https://orcid.org/0000-0001-5405-802X
https://orcid.org/0000-0003-1275-2050
https://orcid.org/0000-0002-3223-7032


F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

the pointer will show incorrect data. Such cases where, for
example, the charts show operations to go smoothly, in reality,
the company may have gone bankrupt.

In the 2018-2019 World Quality Report [6], the end-user
satisfaction is shown to be only around 40% while the detec-
tion of software defects before delivery to the end-user rate
is less than 40%. Additionally, an increase in the quality of
software/product is around 40%. The mapping of SPQM is a
strategically important process for the increase in the quality
of products and processes. As indicated in the same report, the
current situation of the SPQM is a topic that is treated with
the utmost care in the international standards and software
process models.

CMMI (Capability Maturity Model Integration) and
PMBOK (Project Management Body of Knowledge) present
detailed information about the plan, development and man-
agement of the projects and systems in software engineering.
The new versions of CMMI v2.0 model and the PMBOK [7]
are on agility and continuous improvement. The CMMI
maturity model, and well-known standards such as IEEE
1061-Standard for a Software Quality Metrics Methodol-
ogy, ISO 9001-Standard for Quality Management Systems,
ISO 25010-Systems and Software Quality Requirements and
Evaluation (SQuaRE), and AS9100-Standard for Quality
Management Systems-Requirements for Aviation, Space and
Defense Organizations all agree in their emphasis on the
necessity of measurement and process analysis to increase the
quality of product, process and projects. Moreover, in [8] it
is highlighted that there is a need for guidance to evaluate the
software quality of European projects. Ouhbi et al. explore
the need for software product quality prediction by consid-
ering the software quality models and standards, especially
ISO 25010 [9].

Based on these supporting arguments above, the main
motivation of this paper is to conduct an SM study for
the delineation of the state of the art in SPQM, serving to
support future investigations on the subject. Undertaking an
SM activity is a valuable experience providing both reusable
research skills and a good overview of a research topic [10].
Additionally, such a study provides a systematic and objective
procedure for identifying the nature and extent of the empiri-
cal study data that is available to answer a particular research
question [11].

When the literature on SPQM was reviewed, a few SM
studies related to the object-oriented software metrics only
are found and there is no comprehensive study focusing on
the SPQM with a general view which is crucial for SQA
professionals and researchers. In addition, in the majority of
the previous SM studies, it is observed that usually only a
very specific and narrow field about SPQM is investigated.
Recently Ouhbi et al. [9] also supported further study in this
direction.

To this end, the main research question is to find out and
investigate how the SPQM studies have been developed dur-
ing the last decade, and what the patterns, trends, and gaps are
in this area. This will be very helpful to researchers, Software

Quality Assurance (SQA) professionals and software process
and quality divisions in companies.

This study aims to extract the data for SPQM covering the
years between 2009 and 2019, and to introduce the patterns,
trends and gaps in this area with the help of the SM method
[10]. This method guides both academia and the industry
at all levels related to software engineering by presenting a
trend map and revealing the relations among different termi-
nologies. Further, the use of OpenAIRE digital library, and
representing the trends with the mind mapping method are
other two novel features of this study.

The remainder of the article is structured as follows.
Section II gives some background information on soft-
ware quality models and metrics, and data regarding the
related papers on SPQM. Section III provides the research
method and research questions (RQs), paper selection crite-
ria, overview, quality assessment criteria, and data extraction
of the selected studies. In Section IV answers to RQs are
provided with visual graphics. The mind mapping of the
SPQM trend and the discussion on these trends are included
in Section V by comparing with other articles, standards
and quality models. Section VI discusses the threats to the
validity of the results by using four validity types. Section VII
draws the conclusion, limitations, and suggestions for further
research laid out by pointing to the current research scenario
and trends in the last decade in this area and the improvement
opportunities in SPQM.

II. BACKGROUND AND RELATED WORK
A. BACKGROUND
Quality is defined as the degree to which a set of solution
characteristics fulfills the requirements in CMMI v2.0 [4].
Software Quality is defined in ISTQB as the totality of
functionality and features of a software product that bear
on its ability to satisfy stated or implied needs [12]. IEEE
1061:1998 defines software product metric as a metrics used
to measure the characteristics of any intermediate or final
product of the software development process [1].

ISO/IEC 25000 defines ‘Quality Model’ as a defined set
of characteristics, and of relationships between them, which
provide a framework for specifying quality requirements and
evaluating quality [13]. Each one of these quality models con-
sists of a set of quality characteristics and sub-characteristics,
such asmaintainability, reliability and so on. Therefore, it will
be possible to contribute to the product quality by defining
and using the metrics that serve the quality characteristics.

ISO 9126 Software Engineering Product Quality standard
is revised by ISO 25010:2011 [14]. In comparison to these
quality models, ISO 25010:2011 presents the newly catego-
rized quality models in three areas, namely, Quality in Use
(QinU), System/Software Product Quality (SPQ), and Data
Quality (DQ) [15]. The definition of quality characteristics
and sub-characteristics for each quality model are defined in
ISO 25010 [15] and ISO 25012 [16].

Based on the definition of SQM given earlier, IEEE
1061:1998 standards define SPQM as a metric used to

44648 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

measure the characteristics of the documentation and
code [1]. SPQM is the framework for software product qual-
ity assessment based on a set of quality sub-characteristics
that are refined into a set of characteristics, which are further
refined into a set of metrics [17].

The metric levels represent the classifications made
according to the stages of measurement throughout the
project life cycle. Requirement level (Functional and Non-
Functional), Code level (Class Level, Directory Level, File
Level, Method Level, Variable Level), Design Level, and
Test Level are among the most common metric levels. Some
SPQM examples based on the code level are [17]: Lack of
Cohesion in Methods (LCOM) is defined as the number of
non-intersecting sets of local methods. The cohesion of a
class is characterized by how closely the local methods are
related to the local instance variable in the class. Depth of
Inheritance Tree (DIT) is a measure of how many ancestor
classes can potentially affect this class. The node in the
tree represent classes, the DIT metric is the length of the
maximum path from the node to the root of the tree. LCOM
and DIT are examples of class level metrics. Defect Density
(DD) is the SPQM that evaluate the effectiveness of defect
detection in project lifecycle [4]. Delivered Defect Density
(DDD) metric is calculated by dividing the number of known
defects by product size. DD and DDD are test level metrics.
In addition, examples of SPQM based on the quality

attributes which are presented in ISO 25010 and ISO 25012
are as follows: Mean Time Between Failures (MTBF) is
defined as a Reliability metric that is the average time
between system breakdowns. MTBF is the example of Relia-
bility quality attribute of SPQ and also can be categorized as
a system level metric. Customer product satisfaction and per-
ception trends are the example of Satisfaction quality attribute
of QinU [4]. When Availability, Portability and Recoverabil-
ity are the system-dependent data quality attributes;Accuracy,
Completeness, Consistency, Credibility, and Currentness are
related with inherent-data quality [16]. Portability metric
given by 1-ET/ER, where ET is a measure of the resources
needed to move the system to the target environment, and
ER is a measure of the resources needed to create the system
for the resident environment is an example of a system level
metric [17].

In this study, SM is applied to analyze the SPQM in
selected papers with reference to the most recent ISO 25010
series quality model (a list of papers is provided in the
appendix).

B. RELATED WORK
SM and systematic literature review (SLR) studies related to
SPQM and their content, scope, and differences are listed in
Table 1. Although the SM and SLR studies in the table are
related to software quality metrics, this study differs from the
ones in this table in terms of scope and covered years.

Compared to these earlier studies in Table 1, in addition to
the title and abstract fields of articles and conference papers
about SPQM, our study focuses on the metrics applicable in

all the development cycle that leads to software product qual-
ity for various types of application domains and programming
types. In Table 1, only paper [18] is similar to the present
study, but its scope is limited to object-oriented software’s
internal metrics only for the years 2004-2013.

Furthermore, paper [19] is related but not near to the
present study. In [19], SM is conducted on software quality
models focusing on encompassed model elements and sup-
ports to architecting quality. In the same study, RQs related to
publication trends, types of research, common meta-models
elements are considered in software quality models and archi-
tecture support of quality models. Also, there is no data
about the SPQM as outlined in the present study. Thus their
scope, approach and RQs are different from our study. The
years between 2009 and 2019 have been selected for analysis
in detail since the SPQMs have diverse and broad content.
Therefore, the present study extends the RQs on SPQM and
rigor.

After the release of the PROMISE repository, which is an
online database provided by the School of IT and Engineer-
ing, University of Ottawa to share the datasets and models
among software engineers [20], the publication rate of prod-
uct qualitymetric-related papers increased significantly in the
years 2008-2009. To analyze the condition of the progress and
transition in this area during and after 2009, the period from
2009 to the current year is selected as the period of analysis
for this SM study. Also, in the literature, there are some SLR
and SM studies in 2008 which cover the analysis of quality
metric-related data; therefore, the year 2008 was excluded
from this study.

In the present study, the SM of SPQMwas chosen because
SPQM is one of the important knowledge areas in SWEBOK
(Software Engineering Body of Knowledge) [21]. As indi-
cated in the trends of World Quality Report, the SPQMs
today are under a lot of attention, as a result of which there
can be continuous improvement in these products based on
international standards and models [6].

This study is a complementary study in the context of
SPQM. Therefore, it is assumed that the readers have a degree
of familiarity with software quality and SPQM terms to be
able to follow the rationale herein.

III. RESEARCH METHOD
The related principles of SM as proposed in [22] are applied
here as the research method. Accordingly, the process of
this study has the following main steps: Developing the
Research Method, Definition of Goal and RQs, Quality
Assessment Criteria, Conducting Search and Paper Selection,
Data Extraction, Data Synthesis and Results, Discussions,
Threats to Validity, Conclusions, Limitations and Future
Work.

A. DEVELOPING AND EVALUATING THE RESEARCH
METHOD
The research method for this SM study is given in Fig.1. The
process starts with the article and conference paper selection

VOLUME 9, 2021 44649



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

FIGURE 1. The overview of the research method.

by specific search keywords and, then, proceeds with the
filtering phase based on the inclusion/exclusion criteria. The
second step of the process is the classification of the papers
based on a set of criteria to answer the RQs. At the end of
the data classification, data is baselined to generate synthesis
for the SM study. In Fig.1, the utilized academic search
engine databases (Google Scholar, Scopus, and OpenAIRE)
appear in dark blue boxes. To the best knowledge of the
authors, OpenAIRE has not been used before for software
engineering-related SM studies.

Before starting the SM study, preliminary research was
conducted to establish the infrastructure of the study to ensure
that it will obtain healthy and verifiable results. For this
purpose, several SM tools were investigated. After analyzing
the SM tool comparison in [23], the version of the free web
tool CADIMA (v2.1.3) is selected [24]. Paper elimination,
including automatic duplicate papers elimination and no-
full text item, is facilitated with the help of the CADIMA
tool.

B. RESEARCH QUESTIONS
The research questions for SM study are classified into three
groups, namely, (i) bibliometric and demographic analysis
questions, (ii) technical evaluation and emerging trend ques-
tions and (iii) questions for future directions by analyzing

limitations and gaps. Table 2 lists the RQs along with possible
answers to each.

C. QUALITY ASSESSMENT CRITERIA
After the papers are selected based on the search keywords,
quality assessment is applied for each paper. The quality
assessment is realized based on the three questions to evaluate
the completeness, consistency, and relevance of the selected
study. The questions below are derived from the previous
studies of Kitchenham et al. [34] and other SM studies.

Q1. Are the aims and scope of the study clearly stated?
Q2. Are all the study questions answered?
Q3. Are the data source, contexts, and conclusions described

appropriately for future reference?

Each quality assessment question is answered based on
the options proposed by Kitchenham et al. [34] as Yes = 1,
Somewhat = 0.5 and No = 0. In this approach, each author
assesses the study based on the quality questions by using
the web-based CADIMA tool. The quality score for each
study is computed by adding up all the scores of the answers
to the questions. If there is a conflict between the score of
authors, meetings and peer review sessions are held until
reaching a joint-decision. The threshold for the acceptable
quality rate is set as over 1.5 i.e., with a quality score greater

44650 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

TABLE 1. List of related studies.

VOLUME 9, 2021 44651



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

TABLE 1. (Continued.) List of related studies.

than 1.5 (50% of the percentage score). Content analysis is
realized by using Table 4 for different levels.

D. CONDUCTING SEARCH AND PAPER SELECTION
The population, intervention, comparison, and outcome
(PICO) selection criteria [35] were used as follows to deter-
mine the search keywords. PICO method provides guidance
for lots of research areas conducting SM. The CADIMA
tool also supports the PICO criteria before the selection and
elimination of the papers. By applying the PICO viewpoint,
the search keywords were generated as shown in Table 3.

Table 4 shows the utilization of inclusion/exclusion criteria
and application of the search level for each criteria to filter the
papers in the pool.

The CADIMA tool has a feature that allows the implemen-
tation of inclusion/exclusion criteria based on the voting of
the researchers. The voting scale for topic inclusion/exclusion
criteria is between 0-3. ‘‘0’’ indicates the strong opinion for
excluding the articles and conference papers, whereas ‘‘3’’
refers to the strong opinion for the inclusion of articles and
conference papers. To increase the reliability of the voting
mechanism and final results, the articles and conference
papers were first voted by one author and then reviewed
by the others. Based on the results of the joint voting, the
excluded articles and conference papers were moved to the
‘‘Excluded’’ Excel spreadsheet in Google Docs system.

E. DATA EXTRACTION
Methods related to the synthesis of quantitative and qualita-
tive data in software engineering, such as narrative synthesis,
meta-analysis, cross-case analysis, thematic analysis, content
analysis, case survey, and qualitative comparative analysis are
categorized in [36].

While an SM study is conducted, statistical methods may
also be used to analyze the present data. However, because of
the heterogeneity of the primary studies in our SM repository,
it was not possible to carry out a statistical analysis of the
data. After assessing the applicability of the possible methods

for this SM study, the most applicable synthesis method was
determined to be the thematic analysis.

In this study, data synthesis is carried out through employ-
ing the thematic analysis method steps as outlined in the the-
matic synthesis checklist given in [37] and [38]. The detailed
results and graphical representation of the thematic synthesis
are explained in Section IV.

The overall process of selecting the relevant papers is
shown in Fig.2. The related search strings along with the
databases searched and the total number of search results
can be found in Table 5. The total number of articles and
conference papers, which were published in the designated
period of this study is found to be 985. The backward and
forward snowballing technique [39] was utilized to eliminate
the risk of missing relevant papers. 54 additional papers are
found as a result and shown in Fig. 2.

In total, our paper repository consists of 1039 papers.
After elimination of non-English and duplicate papers, 612
articles and conference papers remain to screen. Unfortu-
nately, 28 papers are written in Korean, Chinese, and Spanish,
and only titles and abstract parts of these papers are written
in English. Therefore, these papers are excluded from the
repository.

After applying the inclusion and exclusion criteria on titles
and abstracts, 612 articles and conference papers remain
to be screened. These articles are categorized according
to the PICO criteria given in Table 3, and the relevance
level of the topic is judged from the title and abstract.
After that, 263 papers remain. These articles are analyzed
based on the inclusion and exclusion criteria in a full-text
manner. After this elimination, the final paper pool size is
70 papers. In all, 70 papers amount to 719 pages in total.
The final pool is published in an online repository on Google
Drive [40].

A sample categorization of the article data screens on
Google spreadsheet is given in the link [40]. Data extraction
is completed using CADIMA and the online spreadsheet of
Google.

44652 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

TABLE 2. Research questions.

VOLUME 9, 2021 44653



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

TABLE 2. (Continued.) Research questions.

TABLE 3. PICO selection criteria and search keywords.

IV. DATA SYNTHESIS AND RESULTS
The results of the SM study are presented below.

RQ1: Bibliometric and Demographics of the Publica-
tions

RQ1.1 Which are the most cited papers between 2009
and 2019?

The citation count of papers is taken from the Scopus
database as of July 31, 2019. This database defines citation
count as the total number of documents indexed that cite a
document, group of documents, or researchers and exclude
self-citations of all authors. The average normalized citation
count (NCC) is 2.62, and there are 12 papers on average.
We calculated NCC per paper for each country by using the
formula below:

NCC per paper

=
Sum of (NCC) for all papers per country

Number of papers for country
(1)

The most cited papers are [S19], [S29], and [S66] with 245
citations (NCC = 30.63), 137 citations (NCC = 17.13), and
106 citations (NCC = 13.25) respectively.

When we analyze the number of papers with the normal-
ized citation count, India is seen to be the leading coun-
try for quantitative criteria; whereas, the USA emerges as
the leading country for quality criteria as shown in Fig.3.
When we compared the number of papers among Germany,
Brazil, and China, Germany and Brazil have the most
paper in quantitative criteria, but China leads in the quality
aspect.

RQ1.2 Which are the top publishing venues?
The top ten venues were determined through the calcu-

lation of the sum of the total citation count and the total
number of papers, as presented in Fig.4. According to the
inclusion/exclusion criteria in our paper pool, there are no
papers presented in EUROSPI2, MetriKon, MetriSec and
SAM. Between the years 2009 and 2019, there are no papers
published in EUROSPI2,MetriKon,MetriSec, and SAMwith
keywords ‘‘software product quality metric /measure/ mea-
surement’’ in the title or abstract parts. In these conferences
or workshops, there are lots of metrics related to software, but
there is no direct link between these metrics and the increase
in software quality.

RQ2: SM questions related to technical issues and
trends

RQ2.1 What type of research methods/facets are used
in the papers?

Most papers generated by the empirical research method
have been published in 2011 under the computer sci-
ence field. Also, analytical papers have been mostly pub-
lished in 2010 under this same category as presented
in Fig.5.

The research method results of the selected papers in
this study are categorized according to [41]. The results of
this study show that 67% of the 42 papers were developed
using the empirical research method. In our study, this ratio
is found to be 74.3% (52 papers out of 70). An empiri-
cal research method is mostly utilized for the papers under
consideration.

44654 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

TABLE 4. Inclusion/exclusion criteria.

RQ2.2 What type of research approaches are used in
the papers?

According to Fig.6, the most frequently used research
approach is Goal-Question-Metric (GQM), followed by the
Novel Approach (this approach refers to a unique/new
approach for known methods, approaches in qualitative
research) [42]. 19 papers (evaluation or survey papers) do not
mention their research methods in detail and consequently,
these are not categorized. Finally, 6 papers were marked

as Others, which include statistical approaches such as the
Hidden Markov Model and systematic reviews.

One of the 19 papers marked as N/A in Fig. 6 uses
the advanced version of GQM, with the name GQIM
(Goal-Question-Indicator-Metric) instead. Besides, 3 papers
use a combination of research approaches, namely, AHP
(Analytical Hierarchical Process) with Novel Approach [43],
AHP with Fuzzy Approach [44], GQM with PSM (practical
software measurement) [45].

VOLUME 9, 2021 44655



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

TABLE 5. Digital library search results.

Although GQM is an old method, it is still the most popular
approach in the SPQM area during the observed duration.
Newly introduced methods are seen to be less utilized.

RQ2.3 What is the SPQM presented in the papers?
SPQMs data are analyzed in detail and documented for

each 70 articles on the ‘‘Metric Details’’ spreadsheet of
Online Repository on Google Drive [40]. Summary of this
extracted data is presented under RQ 2.3.1 and RQ 2.3.2.

RQ2.3.1 Which metrics levels are commonly presented
in the papers?

The summary of level based quality metrics is given below:

• McCabe’s and Halstead’s metrics represent quality at
the method-level, while Chidamber and Kemerer’s (CK)
metrics suite represents quality at a class-level.

• Brito e Abreu’s MOOD metrics and Bansiya-Davis’s
QMOOD metrics are the ones that have been most
widely used in the papers. Michael Howard’s measure-
ment method has been used for the measurement of the
security ofMicrosoft’s Security Development Lifecycle.

• Sizing metrics are mostly related to fault proneness.

• Correlation between the modularity metrics and
ANMCC (Average Number of Modified Components
per Commit) in the Java projects has been proposed by
[S3].

• The papers mostly mentioned the usage of coupling and
cohesion metrics per measure for the maintainability,
understandability, and reusability quality attributes, and
inheritance and complexity-related metrics per measure
of the flexibility, understandability, and reusability qual-
ity attributes.

• There are some special quality attributes for object-
oriented software related metrics as given in [S61] and
[S70].

Extendibility

= 0.5× (abstraction− coupling+ inheritance

+ polymorphism) (2)

Effectiveness

= 0.2×

 abstraction+ encapsulation
+ composition
+ inheritance+ polymorphism

 (3)

44656 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

FIGURE 2. Flowchart diagram of the search results.

FIGURE 3. Normalized citation count per paper vs. country.

Flexibility

= 0.25× (encapsulation− coupling+ composition

+ polymorphism) (4)

Understandability

= 0.33×

−abstraction+ encapsulation− coupling+ cohesion− polymorphism
− compexity− designsize


(5)

FIGURE 4. Top ten conference venues.

Functionality

= (0.12× cohesion)

+

(
0.22×

(
polymorphism+ messaging
+ design size+ hierarchies

))
(6)

• The other Design Level metrics are interface density,
easy learning (average time for learning/master the
usage for the component), clearness of error messages,
the number of configurable metrics for the interface,

VOLUME 9, 2021 44657



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

FIGURE 5. Research facets distribution.

FIGURE 6. The research approach distribution of papers.

IPCI (Index of Package Changing Impact), Gang of Four
(GoF) design patterns related metrics, IIPE (Index of
Inter-Package Extending), IIPU (Index of Inter-Package
Usage), IIPUD (Index of Inter-Package Usage Diver-
sion), IIPED (Index of Inter-Package Extending Diver-
sion), APMH (Average number of alternate paths in
multiple hierarchies).

• The mostly used Project Management Level metrics
are effort variance, productivity, COCOMO, Schedule
Variance, Schedule Performance Index (SPI), Earned
Value Analysis (EVA), Cost Performance Index (CPI),
Return on Security Investment (ROSI), Cost of Qual-
ity, average effort spend for maintainability and Energy
Consumption.

• The mostly used requirement level metrics are RSCR
(Requirement Specification Change Request), RV
(Requirements Volatility), traceability metrics to ana-
lyze the consistency between business requirements and
product requirements.

• The mostly used Test Level Metrics are a number of
test cases, the number of bugs in unit tests, integra-
tion tests, and regression tests. Other metrics are like
branch and line coverage ratio, test density per class,
test-growth-ratio relation to source code and NPATH

(Number of execution path through functions), DRE
(Defect Removal Efficiency), DDD (Delivered Defect
Density), IDD (Internal Defect Density), RE (Review
Efficiency).

• The mostly used system level, which consists of
one more software, product metrics are as follows:
Customer-Found Defects and Regressions, Customer
Perception Calculate, MTTF (Mean Time to Fail-
ure), MTTR (Mean Time to Repair), MTBF (Mean
Time Between Failures), ROCOF (Rate of Occurrences
of Failure) and POFOD (Probability of Failure on
Demands).

RQ2.3.2 Which metric levels can be applicable for which
application domains?

10 out of the 70 papers mention the quality measurement
of the web application, 4 papers per safety-critical applica-
tions, 3 papers per mobile application, 2 papers for embedded
software applications, and finally, 1 paper is related to new
technology and artificial intelligence.

In our paper repository, the common metrics used for Web
application domains were observed to be Comments to Code
Ratio, Number of Data Base Connections, WMC (Weighted
Methods per Class) and LCOM [S20]. MOOD and QMOOD
metrics are applicable to the Object-Oriented and Aspect-
Oriented approaches.

The followingmetrics were suggested in the papers tomea-
sure the application domains for directory and class levels:

• The directory-level metrics: total LOC, physical LOC,
Number of Statements, Number of Blank Lines, Num-
ber/Percentage of Comment Lines, Non-comment Non-
blank (NCNB), and Executable Statements.

• The class-level metrics are mostly given as WMC,
RFC, LCOM, CBO (Coupling between Objects), DIT,
Dynamic CBO, MC (Method/Message Complexity),
CWC (Coupling Weight for a Class), AC (Attribute
Complexity), CLC (Class Complexity), AMCC (Aver-
ageMethodComplexity per Class), ACC (Average Class
Complexity), ACF (Average Coupling Factor) and AAC
(Average Attributes Per Class).

• McCabe’s and Halstead’s metrics represent quality at a
method-level, while CK metrics represent quality at the
class-level.

• Generic Source Code Metrics were suggested as LOC,
NOM (Number of Methods), NOF (Number of Fields),
CC (Cyclomatic Complexity), LCOM, Number Lines
of Comment, Percentage Comment, CA (Afferent Cou-
pling), CE (Efferent Coupling), and ABC (Association
Between Class) [S60].

• In [S20], the followingmetrics were proposed as suitable
for Object-Oriented and Aspect-Oriented Programs:
Maintainability Index (MI), DIT, CBO, and LOC.

• In [S21], the following metrics are suggested as Class
Level, Object-Oriented metrics: CA, CE, DIT, LCOM,
MLOC, NBD (Nested Block Depth), NOC, NOF, NOM,
NORM, NSC (Number of Children), NSF, NSM-PAR

44658 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

FIGURE 7. The number of papers for statistical method/model.

(Number of Parameters), RMD,WMC (WeightedMeth-
ods per Class), and McCabe Complexity.

• In [S30] mentioned the DIT and LCOM metrics, which
are unsuitable for Object-Oriented design to measure
quality and complexity. NOC cannot be used to predict
fault proneness in all circumstances.

• In [S67] mentioned that the low CBO values show that
most of the classes refer to few other classes. Low values
of DIT and NOC strongly suggest that reuse through
inheritance may not be fully adopted in the design of
class libraries.

• As shown in Table 6, maintainability-related metrics,
presented as a common quality characteristic, was used
to measure the quality of all types of applications, except
for artificial intelligence. Furthermore, the security met-
ric was another common quality characteristic for all
application domains except for embedded applications.
There is a need for choosing the best combination of
metrics for each different application domain for the
given application context. Moreover, the selection of
metric parameters can be automated by using prediction
functions and different techniques [S28].

RQ2.4 Which statistical model/method is used to validate
or generate new metrics?

As shown in Fig. 7, a genetic algorithm is used by only
two papers, [S28] in 2012 and [S58] in 2013. Also, swarm
optimization is used in only [S26] in 2014. Only one paper
[S44] used a statistical extrapolationmethod to forecast future
data relying on historical data. The most popular statistical
method utilized is descriptive analysis. Machine learning
methods show better results compared to statistical methods
for predicting the relationship between Object-Oriented met-
rics and change proneness.

Between 2014 and 2015, in the future plan of the two
papers [S25] and [S38], the authors mention that they wanted
to replicate their study with a larger data set by using the less
explored learning techniques, such as genetic algorithms and
colony optimization, to obtain more adequate results. How-
ever, when our search keywords are applied, in this respect, no

FIGURE 8. Distribution of papers content related to standards, model.

answer emerges. This means that there has been no example
of the usage of genetic algorithms and swarm optimization
in the last five years. Another SM study may be carried out
by entering keywords that directly include the name of the
statistical method/algorithm and the type of SPQM to analyze
the trend of using these algorithms. As mentioned [S33],
there is a need for finding the most appropriate statistical
method/algorithm to come up with fault predictions in early
project phases by matching them with quality attributes.

RQ2.5 Which standards and process models have been
used/referenced frompapers tomeasure software product
quality?

74% of the papers, while proposing the product quality
metrics, do not reference any standards or models. On the
other hand, the most popular model seems to be CMMI.
In Fig. 8, 4 papers marked as Others mention ITIL (Infor-
mation Technology Infrastructure Library), ISO/IEC 14598,
ISO/IEC 14764, and Software Component Maturity Model
(SCCM). [S55] generated the Component Quality Charac-
teristic (CQC) Model by analyzing and merging the quality
requirement components with the traditional quality models.
This model consists of six quality characteristics and 23
sub-quality characteristics including reliability, portability,
maintainability, usability, functionality, and efficiency.

None of the papers mentions ISO 9001, COBIT (Con-
trol Objectives for Information and Related Technology),
and ISO/IEC 33001 during their measurement and analysis
process.

RQ2.6 Which quality models have been used in the
papers to measure software quality?

The most frequently used quality model remains ISO
9126 [14], although the ISO 25010 standard was published
in 2011. Only two papers are referring to the Mc Call
model and FURPS. Others are marked as a Design Quality
Model (DQM), Quality Model for Object-Oriented Design
(QMOOD), Pragmatic Software Quality Model.

Questions RQ2.7-RQ2.9 below aims at understanding the
level of contribution of the quality attributes (SPQ, DQ, and
QinU) of ISO 25010 Quality Model) attained by the papers
under investigation. A list of all papers about the quality

VOLUME 9, 2021 44659



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

TABLE 6. Paper references for application domains.

FIGURE 9. The distribution of quality characteristics for the SPQ model.

characteristics is given in the Online Repository on Google
Drive [40].

RQ2.7 Which quality attributes of SPQ in ISO 25010
Quality Model are mostly measured in the papers?

As presented in Fig. 9, most of the SPQM are related
to Maintainability and Reliability quality attributes. Mostly
used quality attributes are the same since 2015 when we
compared our results with those of the article [18]. Trace-
ability between numbers of papers based on each quality
attribute can be reached from the Online Repository on
Google Drive [40].

RQ2.8 Which quality attributes of QinU in ISO 25010
Quality Model are mostly measured in the papers?

As presented in Fig. 10, the maximum number of metrics
that can be observed in QinU is Freedom from Risk, Effective-
ness and Satisfaction.

RQ2.9 Which quality attributes of DQ in ISO 25012
[16] Quality Model are mostly measured in the papers?

As shown in Fig. 11, there is no paper related to the usage
of other data quality models such as Credibility, Correct-
ness, Accessibility, Compliance, Confidentiality, Efficiency,
Availability, Portability, and Recoverability. The most often

44660 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

FIGURE 10. The distribution of quality characteristics for the QinU model.

FIGURE 11. The distribution of quality characteristics for DQ model.

used data quality characteristics are Understandability and
Accuracy.

The highlights of the measurement of the quality
attributes/sub-attributes mentioned in the papers are listed
below:

1. The coupling and cohesion metrics are mostly used in
themeasurement of themaintainability, understandabil-
ity, and reusability quality attributes.

2. The inheritance and complexity metrics are mostly used
tomeasure the Flexibility, Fault Proneness, Understand-
ability, and Reusability quality attributes.

3. [S24] presents a WMC, LOC, and RFC metric com-
bination as applicable to many various types of soft-
ware projects for predicting the change-prone classes
to reduce the cost of testing.

4. [S20] proves that there is a strong correlation between
the NODBC, CCR metrics, and maintainability for
data-intensive applications.

5. [S30] asserts that the five metrics of MOOD suite are
appropriate for quality measurement and that Coupling
Factor is not suitable for quality measurement.

6. The maintainability metric of the product can be mea-
sured as mentioned in [S32] by giving different weights
to each of the quality attributes for analyzability,
changeability, stability, and testability.

7. In the paper pool of this study, four new metrics were
offered as listed in Table 7.

TABLE 7. Lists of new metrics.

FIGURE 12. The distribution of SDLC phase for papers.

RQ2.10Which of the Software Development Life Cycle
(SDLC) stages are mostly addressed in the data of the
papers?

As shown in Fig. 12, the most of the SPQMs focus on the
code and design phase to predict and avoid bugs in a proactive
manner. Moreover, 6.6% of the papers are related to the test
phase, aiming to eliminate bugs of software before release.
To become more proactive, more metrics for the requirement
phase can be considered.

RQ2.11 Which software programming types have been
subject to SPQM in the articles?

The SDLC phase of 43 out of 70 papers was revealed
to be at the code level. As shown in Fig. 13, 35 of the 43
papers have been subject to increasing the quality of Object-
Oriented programming. Three papers are related to Aspect-
Oriented programming metrics and also three of them are
related to Basic Programming and one is related to Script

VOLUME 9, 2021 44661



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

FIGURE 13. The number of papers for programming types.

Programming for the code phase. Finally, five of them are
marked asOtherswhich include Component-Based Program-
ming or Language-Independent programs.

The conclusions of [S20] are usable only for Object-
Oriented, and medium-size systems. There is a need
for metrics for Aspect-Oriented, Service-Oriented, and
Component-Based application development to predict the
maintainability.

RQ2.12 Are there any SPQMs related to SDLCmodel?
Only [S9] and [S63] mention the relationship between the

metrics and the Agile model. The SDLC phase and steps were
not used as a parameter of metric in most of the papers. These
articles have used generic development metrics instead, but
these have been re-evaluated according to the activities of the
agile methods. There exist a few studies that consider quality
in agile methods. In [S9] and [S36], generic development
metrics have been used, but they have been re-evaluated by
using the 3C (Continuous Integration, Continuous Measure-
ment, Continuous Improvement) model for activities of the
agile model.

RQ 2.13 Is there a metric threshold value mentioned or
not in the paper repository?

Adding the threshold to the metric data has tremendous
importance to control deviation from the goal of the product
quality. If the metric data exceed the threshold, the system
will immediately issue a warning to implement an emer-
gency plan. Therefore, threshold value-related data has been
searched in this study.

Twenty-two of the 70 papers mention the threshold values
only concerning their study or in a general manner, often
in brief comments only. The proposed threshold values in
the literature are mostly based on the experiences and cod-
ing standards [S52]. Therefore, these threshold values might
appear to be lower or higher, depending on the structure and
scope of the source code.

To generate relative thresholds for different types of source
code metrics, RTTOOL (relative threshold tool) is imple-
mented by the authors of [S52]. The tool has been vali-
dated by using the Qualitas Corpus dataset, which is an
open-source software system collection for empirical studies

FIGURE 14. Future plan offered by the papers.

related to code products. This tool is publically available at
http://aserg.labsoft.dcc.ufmg.br/rttool/.

The calculation method of RTTOOL for extracting the
relative threshold value and penalty rate when it exceeds the
threshold is given in [S52]. [S40] proposes that their study
can be a starting point for determining threshold values for
design metrics to improve design practices.

RQ2.14 Is there any information about software prod-
uct quality metrics/measurement management tools in
our paper repository?

Although there is a lack of integrated quality met-
ric/measurement management tools, which collect and ana-
lyze the metrics to measure different quality characteristics,
various tools are available to measure different types of qual-
ity metrics as given in the following: ASSIST [46], Analizo
[47], RAF [48], RTTool [49], iPlasma Tool [50], MUSE
(Muse Understand Scripting Engine) [51], VizzMaintenance
[52] and EMERALD (EnhancedMeasurement for Early Risk
Assessment of Latent Defects) [53]. When we analyzed the
name of the software quality datasets and metric tools on
the Internet, we encountered the QSM (Quantitative Software
Management) tool [54] that supports full measurement pro-
cesses from beginning to the end for large projects. The tool
includes 10, 000 projects from the industry, with validated
data for use by users with a license or as a demo version.
Unfortunately, there is no paper in our pool that uses QSM.

RQ3: What are the limitations and future directions of
current researches?

Most of the papers plan the next step and give suggestions,
which relate them to ‘‘Improve the Technique’’ (39%) and
‘‘Make More Detailed Research’’ (26%) by using new case
studies, as shown in Fig. 14. In this sense, 39% of the papers
in the pool mentioned that techniques could be improved
through the implementation of different languages and appli-
cations to the different phases of the projects.

Based on this, future directions and limitations can be
categorized into three groups as follows.

1) STANDARDS/MODELS
Amajority of the papers mention low understandability levels
and a lack of examples of quality models like ISO 25010

44662 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

and ISO 9126. To increase the usability of the quality models
to generate more quality metrics, additional documents can
be prepared to address clarities in different research areas.
Practically, the implementation of quality attributes and inte-
gration of multiple quality models can be the new area for
researchers [S39].

Also, there is a difference between the metric ontology
and quality models/standards. This prevents the common
usage of the standards in industry and papers. The difference
in ontology is one of the biggest obstacles for continuous
improvement of standards. Therefore, conferences and work-
shops might be productive grounds where the discrepancy
observed between the standards and academic articles can be
discussed.

The authors of [S55] propose new quality characteristics
to measure the marketability quality characteristics with sub-
characteristics: Development Time, Cost, and Time to Mar-
ket, Targeted Market, and Affordability. Also, the authors of
[S37], propose new quality attributes to measure the attribute
of developer/tester by using parameters such as culture,
behavior, and point of view. The usage and contribution
of these new quality characteristics can be analyzed and
included in the new version of the ISO 25010.

With the help of machine learning and AI techniques, the
software development processes and software quality model
can bemodelled to guide the developers/testers.With this new
intelligent model, new attributes associated with quality will
be automatically included in the system. Besides, this model
can also guide developers/testers about activities and with the
help of this model, the error-rate of the developers could be
reduced [S4].

2) METRICS/MEASUREMENTS/TECHNIQUES
There is a need for choosing the best combination of metrics
for each different application domain for the given application
context. Moreover, the selection of metric parameters can be
automated with the tool by using prediction functions and
combining different techniques [S28].

Further research is required to detect the defects of the
COSMIC (Common Software Measurement International
Consortium) functional size metrics for various application
domains by applying broader measurements belonging to
different application domains [S65]. There is a need for more
complicated metrics with more diversified parameters, such
as the complexity of attributes with software cost, effort, and
time factors.

There is a need for the new product quality metrics for new
technology trends such as AI, IoT, CoT, Machine Learning,
and Robotics [S50].

Although there are many security-related metrics in the
literature, we cannot say that the entire system is secured
by analyzing the metric for only one security attack type.
Therefore, there is a need for more reliable security met-
rics/measurements to quantify different aspects of secu-
rity (unintended threats) for specific goals with different

combinations [S19]. There is a need to ensure the minimiza-
tion of security vulnerabilities for technology products [55].
Therefore, it is estimated that the need for security-related
product quality metrics may increase.

CMMI v2.0 [4] and PMBOK [7] emphasize the adoption
of the processes following the agile approach. Unfortunately,
only two papers propose metrics related to Agile. Moreover,
an SM study by [56] emphasizes that there is a limited study
that mentions the contribution of DevOps (Development and
Operations), which is a method for increasing the agility of
development and operations for fast delivery to customers.
Therefore, more metrics are required for measuring the qual-
ity of agile projects.

Due to the lack of knowledge about software metric
thresholds, the performance of software engineering metrics
is affected in a negative manner [57]. Unfortunately, little
threshold information is detected in our paper repository.
Therefore, there is a need for producing new threshold values
according to the different application domains, programming
languages, size of the projects, quality characteristics, and
SDLC phase, methods.

EFQM defined Benchmarking, as a systematic compari-
son of approaches with other relevant organizations, offers
insights that will help the organizations to improve perfor-
mance [58]. Therefore, the usage of similar metric formula
needs to be encouraged among software companies working
in the same sector. In this way, they can use the opportunity
to improve their processes.

3) TOOLS
Calculation of metrics at different tool platforms and then
bringing them together to calculate another metric is a hard
and time-consuming task. There are many product quality
metric tools to measure different types of quality metrics.
Instead of using lots of tools for measurement, using one tool
to measure multi-purpose metrics would increase the relia-
bility, traceability, and completeness of the metric data. As a
result, there is a need for an integrated and multi-dimensional
measurement tool that would automatically calculate the dif-
ferent levels of metrics and generate relative thresholds for
them by using third-party statistical and machine learning
tools [S66]. In this way, instead of spending time on met-
ric calculations, the time can be used more efficiently for
locating the root cause and offering solutions for the metrics
which exceed the threshold values. Thus, researchers can
have access to metrics at any time they wish to assess the
current status of the project [59].

There is also a need for a tool to measure and test the
correctness of the functional size measurement for differ-
ent types like IFPUG, UniFSM, EFES (Effort Estimation
Methodology), and so on. Additionally, the E-Quality tool
can be extended for object-oriented languages, like C++,
C#, and PHP. Also, the tool can be extended to visualize the
design phase by extracting design metrics and relations from
UML diagrams [S34].

VOLUME 9, 2021 44663



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

FIGURE 15. Mind map of software product quality metrics trend.

V. DISCUSSIONS
The SM results of SPQM-related articles and conference
papers for the 2009 and 2019 years are presented with the
Mind Mapping technique [60], which allows us to see the
big picture by visualizing and accelerating the process of gap
analysis. With the help of this technique, we have a chance to
analyze the current situation and improvement opportunities
related to SPQM. The mind map shown in Fig.15, was drawn
by using the iMindMap v10.1.1. By analyzing this figure,
researchers will get an opportunity to obtain some general
information about the trends of the SPQM in the literature.
Trends for each categorization are shown through percentage
values. Besides, the highest percentage in each category is
marked with a flag and a different color. The percentages are
calculated with the following formula:

Distribution of Categories per RQs(x%)

=

(
Sum of Category(x)

Sum of Category(x, y, z)

)
× 100 (7)

For example, Distribution of Maintainability Characteristics
per RQ 2.7 = (Sum of maintainability metrics related paper
(46)) / (Sum of other categories (1 + 5 + 46 + 11 + 4 + 26
+ 12 + 9)) × 100, (46/114) × 100 = 40.35 %.

The discussions and remarks about the SPQM trends for
the last ten years are listed as follows based on Fig. 15.

As we compared our study results with those of [41] the
result for the selection of a quality model for use appears to
be the same. The usage of ISO 9126 (an earlier version of
ISO 25010) is still more popular than ISO 25010 between the
years 2006 and 2019. Therefore, it can be said that a majority
of the articles and conference papers published within this

duration has not realized a transition to the new standard yet,
as shown in Fig. 15. Although the ISO 25010 quality model
was released in 2011, the ISO 9126 is still more popular. To
increase the usage of the new version of the quality model,
additional guidelines can be prepared to give more explana-
tions and examples to clarify certain issues.

The most popular quality characteristics to measure Soft-
ware Product Quality are Maintainability, Reliability, and
Security. Also, the most popular quality characteristics to
measure the QinU are Freedom from Risk, Effectiveness,
and Satisfaction. Lastly, the most popular quality character-
istics to measure DQ are Understandability, Accuracy, and
Completeness. Whereas Understandability, Reliability, and
Reusability quality factors were top in the study that exam-
ined the articles and conference papers written in 2007 and
2014 [27], it was Maintainability, Reliability, and Security
in the present study. It is still observed that reliability is
an important quality factor for the measurement of product
quality. There is a need for metrics to measure the data quality
in the following aspects of quality characteristics: Credibility,
Correctness, Accessibility, Compliance Confidentiality, Effi-
ciency, Availability, Portability, and Recoverability. There is
no quality attribute within the standards or quality models for
the metrics which are related to the culture, attribute, attitude,
and point of view of the developers, testers, and managers to
quality attributes, standards, and process models [S37].

In our paper pool, while presenting the quality metrics,
the most referenced standard was IEEE 1061:1998 and the
referenced process model was CMMI. Countries that have
the highest number of CMMI certificates made a greater
contribution to SPQM. There is a direct link between the

44664 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

rate of the usage of the quality standards and process models
and those of SPQMs-related articles and conference papers.
Encouraging the usage of these standards and models will
contribute to the literature on SPQM. The textbook ‘‘Soft-
ware Engineering: Modern Approaches’’ [3] and CMMI [4]
have proposed a set of metrics as listed here: a measure of
size, effort, variance in cost, number of defects by severity,
percentage of the missing and defective requirements found
per hour in inspection, rework percentage before and after
delivery, customer/developer satisfaction index, productivity,
reliability (Mean Time to Failure), maintainability (software
down/error time), percentage of system vulnerabilities, test
coverage rate, CC, fault density, number of entries and exits
per module and the percentage of comment lines. There is
a consistency between the metric sets given in the CMMI
model and books with the metrics suggested in this paper
repository.

Although GQM was introduced to the software industry
in the 1990s, it is still the most popular approach in the
SPQM area during and after 2009. Still, transition rates to
new approaches remain low.

As shown in Fig. 15, there are a few metrics related to non-
functional requirements, which can affect the performance
efficiency and quality of the systems negatively. For example,
non-functional requirements related to security can affect
critical software at medical centers. Therefore, there is a need
for more quality metrics as non-functional requirements to
predict and eliminate the bugs in a proactive manner. Also, it
is essential to be able to extract coupling and cohesionmetrics
from UML representations to predict bugs in the previous
phases of development.

A majority of the metrics are related to the quality of
Object-Oriented software for medium-sized systems. There
is a need for new metrics for other types of programming lan-
guages and large and small-sized systems. Further research is
needed to calculate the metrics for service-oriented software
development and component-based application development.
These metrics should be tailored by with the company
size.

The majority of the papers have validated their proposed
metrics by using medium/large data. To do so, more open-
source code data is needed because, after a while, the open-
source codes at hand may be insufficient to prevent diversity.
The NASAMDP datasets were collected frommany different
projects developed by many developers. However, there is no
information about the number of developers and their experi-
ences. As such we cannot measure defect prediction by using
the personal data of developers. Therefore, there is a need for
more open-source and publically accessible project databases
to test the validity of new or existing metric set combinations.
Moreover, there is also a need for the developer/tester- related
data to measure their effectiveness on metrics such as the
number of developers, culture, attributes, points of view to
the processes and standards, and so on. Through enhancing
the collaboration between the computer engineering/science,
mathematics and statistics departments of universities, the

use of statistical models/methods can be increased. These
methods/models can be used to propose newmetrics, validate
the results of the metrics and also predict the bugs in the next
phase of the projects.

VI. THREATS TO VALIDITY
The threats-to-validity part of quality assessment is realized
for this SM study by inspecting the title, keywords, abstract
and, full-text of the articles and conference papers to ana-
lyze the relevancy level of papers with SPQM. If sufficient
information was not available in these sources, the table of
contents and some parts of the articles were explored in depth.

A. INTERNAL VALIDITY
To prevent the loss of any data about SPQM, alternative key-
words and different combinations were searched from search
engines. The inclusion and exclusion criteria were applied to
the final pool of papers. To remove subjectivity in the selec-
tion of the papers, the authors ranked the papers, and then
the results were compared. If the authors’ scores were differ-
ent, the issue would be resolved and a unanimous decision
is taken. The voting scale for the topic inclusion/exclusion
criteria is between 0-3. ‘‘0’’ indicates a strong opinion for
excluding the articles and conference papers, whereas ‘‘3’’
refers to the strong opinion for the inclusion of articles and
conference papers. Based on the results of joint voting, the
excluded articles and conference papers were moved to an
‘‘excluded’’ spreadsheet in the Google Docs system. If this
SM study was repeated, the selected set of primary papers
might have deviated in a small amount, but we believe that the
big picture of the result given in this paper would not change
much.

B. CONSTRUCT VALIDITY
After the final paper pool was constructed, the data was
systematically mapped following the research questions by
using the GQM approach. GQM approach helps to minimize
risks of construct validity by providing traceability between
goal and questions. Questions are answered based on the cate-
gorization schema. This categorization schema is determined
for each RQ based on the knowledge in literature about SQM
and finalized after several iterative improvement processes.
Additionally, with the help of peer review in a crosscheck
manner, meetings and evidence-based data production, the
reliability and validity of this study took its final form.

C. CONCLUSION VALIDITY
As presented in Section IV, graphs, trends, and analyses have
been generated directly from the raw and synthesized data
to ensure the validity of the conclusion. By using this raw
data, this SM study can be replicated by following the same
steps defined in this study. As stated before, the selected set
of primary papers might have deviated in small amounts, but
the authors believe that the bigger picture related to the results
here do not change significantly.

VOLUME 9, 2021 44665



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

D. EXTERNAL VALIDITY
There is an external limitation that this study included, lim-
iting the number of papers available in the selected digi-
tal library databases to English only; merely the titles and
abstracts of some papers are written in English and the rest
are not in English. As a result, even though these papers were
highly related to our topic, they could not be included in
the SM repository. These papers, which contain information
about the evaluation of existing metrics or the introduction
of new metrics, couldn’t be read and studied widely due
to language barriers. The results of this study are discussed
and compared with books, other papers, and quality stan-
dards/models. It was found that the results of our study are
sufficient to reflect the know-how in the literature about
SPQMs reported by researchers and professionals.

Additionally, this study serves as a starting point for
researchers in the SPQM area, SQA professionals, and soft-
ware process and quality divisions in a company, implying
that there is no intention to generalize these results.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK
This study will hopefully function as a starting point for
other studies related to SPQM. Additionally, the results of
this survey can be used by the industry by applying the
most-often-used product quality metrics to measure quality
attributes and using threshold values to compare and analyze
the results. By comparing their results by thresholds, correc-
tive and preventive actions can be taken to eliminate possible
threats in the projects.

SaaS, QoS, and QoE are out of the scope of this SM study.
Future SM or SLR studies might focus on this subject for
measuring the quality of network performance. Moreover,
future SM studies can observe the trend and gap analysis
of the new SPQM that come with new technologies such as
AI, IoT, CoT, Machine Learning, and Robotics [S50]. CMMI
v2.0 [4] and PMBOK [7] emphasize the adoption of the
processes following Agile. Unfortunately, only two papers
propose metrics related to Agile. It may be useful to conduct
an SM or SLR study in this area.

Although there are many security-related metrics in the
literature, we cannot say that the entire system is secure
by analyzing the metric for only one security attack type.
Therefore, there is a need for more reliable security met-
rics/measurements to quantify different aspects of security
(unintended threats) for specific goals with different combi-
nations [S19] [55]. Therefore, it is estimated that the need for
security-related product quality metrics may increase in the
future, thus setting the ground for additional studies.

APPENDIX
List of papers, which used to extract data for this SM study,
is given as follows:

[S1] P. Rotella and S. Chulani, ‘‘Implementing quality
metrics and goals at the corporate level,’’ in Proc.
8th Working Conf. Mining Softw. Repositories, 2011,
pp. 112–113.

[S2] R. Plösch, J. Bräuer, C. Körner, and M. Saft, ‘‘MUSE:
A framework for measuring object-oriented design
quality,’’ J. Object Technol., vol. 15, no. 4, pp. 1–29,
2016.

[S3] Z. Li, P. Liang, P. Avgeriou, N. Guelfi, and A. Ampat-
zoglou, ‘‘An empirical investigation of modularity
metrics for indicating architectural technical debt,’’ in
Proc. 10th Int. Sigsoft Conf. Qual. Softw. Archit., 2014,
pp. 119–128.

[S4] J. Yahaya and A. Deraman, ‘‘Measuring the unmeasur-
able characteristics of software product quality,’’ Int.
J. Adv. Comput. Technol., vol. 2, no. 4, pp. 95–106,
Oct. 2010.

[S5] G. Nair and V. Suma, ‘‘Estimation of characteris-
tics of a software team for implementing effective
inspection process through inspection performance
metric,’’ 2011, arXiv:1107.3201. [Online]. Available:
https://arxiv.org/abs/1107.3201

[S6] D. I. K. Sjøberg, B. Anda, and A. Mockus, ‘‘Question-
ing software maintenance metrics: A comparative case
study,’’ in Proc. IEEE Int. Symp. Empirical Softw. Eng.
Meas., 2012, pp. 107–110.

[S7] A. Gosain, S. Nagpal, and S. Sabharwal, ‘‘Quality met-
rics for conceptual models for data warehouse focusing
on dimension hierarchies,’’ACMSIGSOFT Softw. Eng.
Notes, vol. 36, no. 4, p. 1, 2011.

[S8] I. Atoum, C. Bong, and N. Kulathuramaiyer, ‘‘Towards
resolving software quality-in-use measurement chal-
lenges,’’ J. Emerg. Trends Comput. Inf. Sci., vol. 5, no.
11, pp. 877–885, 2014.

[S9] R. L. Nord, I. Ozkaya, H. Koziolek, and P. Avgeriou,
‘‘Quantifying software architecture quality report on
the first international workshop on software archi-
tecture metrics,’’ ACM SIGSOFT Softw. Eng. Notes,
vol. 39, no. 5, pp. 32–34, Sep. 2014.

[S10] K. Jinzenji, T. Hoshino, L.Williams, andK. Takahashi,
‘‘Metric-based quality evaluations for iterative soft-
ware development approaches like agile,’’ in Proc.
IEEE 23rd Int. Symp. Softw. Rel. Eng. Workshops,
Nov. 2012, pp. 54–63.

[S11] K. Lochmann and L. Heinemann, ‘‘Integrating quality
models and static analysis for comprehensive qual-
ity assessment,’’ in Proc. 2nd Int. Workshop Emerg.
Trends Softw. Metrics, 2011, pp. 5–11.

[S12] C. E. Otero, E. Dell, A. Qureshi, and L. D. Otero,
‘‘A quality-based requirement prioritization frame-
work using binary inputs,’’ in Proc. 4th Asia Int. Conf.
Math./Anal. Modeling Comput. Simulation, 2010,
pp. 187–192.

[S13] L. Ping, ‘‘A quantitative approach to software main-
tainability prediction,’’ Proc. Int. Forum Inf. Technol.
Appl., vol. 1, 2010, pp. 105–108.

[S14] S. Misra, A. Adewumi, L. Fernandez-Sanz, and
R. Damasevicius, ‘‘A suite of object oriented cog-
nitive complexity metrics,’’ IEEE Access, vol. 6,
pp. 8782–8796, 2018.

44666 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

[S15] V. A. S. Velan S, and C. Babu, ‘‘Evaluation of reusabil-
ity in aspect oriented software using inheritance met-
rics,’’ in Proc. IEEE Int. Conf. Adv. Commun., Control
Comput. Technol., May 2014, pp. 1715–1722.

[S16] K. Z. Sultana, B. J.Williams, and A. Bosu, ‘‘A compar-
ison of nano-patterns vs. Software metrics in vulner-
ability prediction,’’ in Proc. 25th Asia–Pacific Softw.
Eng. Conf. (APSEC), Dec. 2018, pp. 355–364.

[S17] S. Husein and A. Oxley, ‘‘A coupling and cohesion
metrics suite for object-oriented software,’’ in Proc.
Int. Conf. Comput. Technol. Develop. (ICCTD), vol. 1,
2009, pp. 421–425.

[S18] M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani,
and M. A. Jabar, ‘‘A mapping study to investigate
component-based software system metrics,’’ J. Syst.
Softw., vol. 86, no. 3, pp. 587–603, Mar. 2013.

[S19] P. K. Manadhata and J. M. Wing, ‘‘An attack sur-
face metric,’’ IEEE Trans. Softw. Eng., vol. 37, no. 3,
pp. 371–386, May 2011.

[S20] R. Malhotra and A. Chug, ‘‘An empirical study to
redefine the relationship between software design
metrics and maintainability in high data intensive
applications,’’ Eng. Comput. Sci., vol. 1, pp. 61–66,
Dec. 2013.

[S21] B. L. Sousa, M. A. S. Bigonha, and K. A. M. Ferreira,
‘‘An exploratory study on cooccurrence of design
patterns and bad smells using software metrics,’’
Softw., Pract. Exper., vol. 49, no. 7, pp. 1079–1113,
May 2019.

[S22] J. Dong, ‘‘An improved fuzzy synthesis evaluation
algorithm for software quality,’’ Proc. Int. Conf.
Inf. Manag. Innov. Manag. Ind. Eng., vol. 2, 2009,
pp. 565–569.

[S23] A. Tahir and R. Ahmad, ‘‘An AOP-based approach
for collecting software maintainability dynamic met-
rics,’’ in Proc. 2nd Int. Conf. Comput. Res. Dev., 2010,
pp. 168–172.

[S24] S. Eski and F. Buzluca, ‘‘An empirical study on
object-oriented metrics and software evolution in
order to reduce testing costs by predicting change-
prone classes,’’ in Proc. IEEE 4th Int. Conf. Softw.
Test., Verification Validation Workshops, Mar. 2011,
pp. 566–571.

[S25] R. Malhotra and M. Khanna, ‘‘A new metric for pre-
dicting software change using gene expression pro-
gramming,’’ in Proc. 5th Int. Workshop Emerg. Trends
Softw. Metrics, 2014, pp. 8–14.

[S26] R. A. Coelho, F. D. R. N. Guimaraes, and
A. A. A. Esmin, ‘‘Applying swarm ensemble cluster-
ing technique for fault prediction using software met-
rics,’’ in Proc. 13th Int. Conf. Mach. Learn. Appl.,
Dec. 2014, pp. 356–361.

[S27] P. Meirelles, C. Santos, Jr., J. Miranda, F. Kon,
A. Terceiro, and C. Chavez, ‘‘A study of the relation-
ships between source code metrics and attractiveness
in free software projects,’’ in Proc. Brazilian Symp.
Softw. Eng., Sep. 2010, pp. 11–20.

[S28] D. Westermann, J. Happe, R. Krebs, and R. Farahbod,
‘‘Automated inference of goal-oriented performance
prediction functions,’’ in Proc. 27th IEEE/ACM Int.
Conf. Automat. Softw. Eng., Sep. 2012, pp. 190–199.

[S29] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya,
‘‘Choosing software metrics for defect prediction: An
investigation on feature selection techniques,’’ Softw.-
Practice Exper., vol. 41, no. 5, pp. 579–606, 2011.

[S30] M. Bansal and P. Agrawal, ‘‘Critical analysis of object
oriented metrics in software development,’’ in Proc.
Int. Conf. Adv. Comput. Commun. Technol., 2014,
pp. 197–201.

[S31] Ö. F. Arar and K. Ayan, ‘‘Deriving thresholds of soft-
ware metrics to predict faults on open source software:
Replicated case studies,’’ Expert Syst. Appl., vol. 61,
pp. 106–121, Nov. 2016.

[S32] L. B. L. de Souza and M. de Almeida Maia, ‘‘Do
software categories impact coupling metrics?’’ in
Proc. IEEE Int. Work. Conf. Min. Softw. Repos.,
May 2013, pp. 217–220.

[S33] A. Kaur, P. S. Sandhu, and A. S. Bra, ‘‘Early software
fault prediction using real time defect data,’’ in Proc.
2nd Int. Conf. Mach. Vis., 2009, pp. 242–245.

[S34] U. Erdemir, U. Tekin, and F. Buzluca, ‘‘E-quality:
A graph based object oriented software quality visu-
alization tool,’’ in Proc. 6th Int. Workshop Visualiz-
ing Softw. Understand. Anal. (VISSOFT), Sep. 2011,
pp. 1–8.

[S35] M. P. Barcellos, R. D. Falbo, and A. R. Rocha, ‘‘Estab-
lishing a well-founded conceptualization about soft-
ware measurement in high maturity levels,’’ in Proc.
7th Int. Conf. Qual. Inf. Commun. Technol., Sep. 2010,
pp. 467–472.

[S36] J. Feigenspan, S. Apel, J. Liebig, and C. Kästner,
‘‘Exploring software measures to assess program com-
prehension,’’ in Proc. Int. Symp. Empir. Softw. Eng.
Meas., 2011, pp. 127–136.

[S37] M. Umarji and C. Seaman, ‘‘Gauging accep-
tance of software metrics: Comparing perspectives
of managers and developers,’’ in Proc. 3rd Int.
Symp. Empirical Softw. Eng. Meas., Oct. 2009,
pp. 236–247.

[S38] A. Tripathi and K. Sharma, ‘‘Improving software qual-
ity based on relationship among the change prone-
ness and object oriented metrics,’’ in Proc. Int. Conf.
Comput. Sustain. Glob. Dev. (INDIACom), 2015,
pp. 1633–1636.

VOLUME 9, 2021 44667



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

[S39] S. Srivastava and R. Kumar, ‘‘Indirect method to mea-
sure software quality using CK-OO suite,’’ in Proc.
Int. Conf. Intell. Syst. Signal Process. (ISSP), 2013,
pp. 47–51.

[S40] A.-J. Molnar, A. Neamţu, and S. Motogna, ‘‘Longitu-
dinal evaluation of software quality metrics in open-
source applications,’’ in Proc. 14th Int. Conf. Eval.
Novel Approaches Softw. Eng., 2019, pp. 80–91.

[S41] T. Ruhroth, H. Voigt, and H. Wehrheim, ‘‘Measure,
diagnose, refactor: A formal quality cycle for software
models,’’ in Proc. 35th Euromicro Conf. Softw. Eng.
Adv. Appl., 2009, pp. 360–367.

[S42] P. K. Kapur, G. Singh, N. Sachdeva, and A. Tickoo,
‘‘Measuring software testing efficiency using two-way
assessment technique,’’ in Proc. 3rd Int. Conf. Rel.,
Infocom Technol. Optim., Oct. 2014, pp. 1–6.

[S43] R. Plösch, J. Bräuer, C. Körner, and M. Saft, ‘‘Measur-
ing, assessing and improving software quality based on
object-oriented design principles,’’Open Comput. Sci.,
vol. 6, no. 1, pp. 187–207, Dec. 2016.

[S44] Y. Shi, M. Li, S. Arndt, and C. Smidts, ‘‘Metric-
based software reliability prediction approach and its
application,’’ Empirical Softw. Eng., vol. 22, no. 4,
pp. 1579–1633, Aug. 2017.

[S45] C. Santos, T. Novais, M. Ferreira, C. Albuquerque,
I. De Farias, and A. Furtado, ‘‘Metrics focused on
usability ISO 9126 based,’’ in Proc. Iber. Conf. Inf.
Syst. Technol. Cist., Jul. 2016, pp. 1–3.

[S46] S. U. Farooq, S. Quadri, and N. Ahmad, ‘‘Metrics,
models and measurements in software reliability,’’ in
Proc. IEEE 10th Int. Symp. Appl. Mach. Intell. Infor-
mat. (SAMI), Jan. 2012, pp. 441–449.

[S47] S. Ragab and H. Ammar, ‘‘Object oriented design met-
rics and tools a survey,’’ in Proc. 7th Int. Conf. Inform.
Syst., 2010, pp. 1–7.

[S48] V. Gupta and J. K. Chhabra, ‘‘Package level cohesion
measurement in object-oriented software,’’ J. Brazilian
Comput. Soc., vol. 18, no. 3, pp. 251–266, Sep. 2012.

[S49] U. Pooja, ‘‘Prediction of software defects using object-
oriented metrics,’’ vol. 9, no. 1, pp. 889–899, 2018.

[S50] D. Chhillar and K. Sharma, ‘‘Proposed T-model to
cover 4S quality metrics based on empirical study of
root cause of software failures,’’ Int. J. Electr. Comput.
Eng., vol. 9, no. 2, pp. 1122–1130, 2019.

[S51] J. S. Challa, A. Paul, Y. Dada, V. Nerella, and
P. R. Srivastava, ‘‘Quantification of software quality
parameters using fuzzy multi criteria approach,’’ in
Proc. Int. Conf. Process Autom., Control Comput.,
Jul. 2011, pp. 1–6.

[S52] P. Oliveira, F. P. Lima, M. T. Valente, and
A. Serebrenik, ‘‘RTTool: A tool for extracting rel-
ative thresholds for source code metrics,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance Evol., Sep. 2014,
pp. 629–632.

[S53] M. Aniche, C. Treude, A. Zaidman, A. Van Deursen,
and M. Gerosa, ‘‘SATT: Tailoring code metric thresh-
olds for different software architectures,’’ in Proc.
IEEE 16th Int. Work. Conf. Source Code Anal. Manip.
(SCAM), Dec. 2016, pp. 41–50.

[S54] J.Wang, H.Wang,M.Guo, andM.Xia, ‘‘Securitymet-
rics for software systems,’’ in Proc. 47th Annu. South-
east Reg. Conf. (ACM-SE), vol. 47, 2009, pp. 1–6.

[S55] A. Tiwari and P. S. Chakraborty, ‘‘Software compo-
nent quality characteristicsmodel for component based
software engineering,’’ in Proc. IEEE Int. Conf. Com-
put. Intell. Commun. Technol., Feb. 2015, pp. 47–51.

[S56] G. Lajios, ‘‘Software metrics suites for project land-
scapes,’’ in Proc. 13th Eur. Conf. Softw. Maintenance
Reeng., 2009, pp. 317–318.

[S57] M. F. S. Oliveira, R. M. Redin, L. Carro, L. Lamb,
and F. Wagner, ‘‘Software quality metrics and their
impact on embedded software,’’ in Proc. 5th Int.
Workshop Model-based Methodol. Pervas. Embedded
Softw., Apr. 2008, pp. 68–77.

[S58] K. Punitha and S. Chitra, ‘‘Software defect prediction
using software metrics,’’ in Proc. Int. Conf. Inf. Com-
mun. Embed. Syst. (ICICES), 2013, pp. 555–558.

[S59] J. Chen and X. Liu, ‘‘Software maintainability metrics
based on the index system and fuzzy method,’’ in Proc.
1st Int. Conf. Inf. Sci. Eng., Dec. 2009, pp. 5117–5120.

[S60] G. D. Pereira Moreira, R. P. Mellado, D. Á. Montini,
L. A. V. Dias, and A. M. da Cunha, ‘‘Software product
measurement and analysis in a continuous integration
environment,’’ inProc. 7th Int. Conf. Inf. Technol., New
Generat., 2010, pp. 1177–1182.

[S61] P. S. Silveira, K. Becker, and D. D. Ruiz, ‘‘SPDW+:
A seamless approach for capturing quality metrics in
software development environments,’’ Softw. Qual. J.,
vol. 18, no. 2, pp. 227–268, Jun. 2010.

[S62] M. K. Debbarma, N. Kar, and A. Saha, ‘‘Static
and dynamic software metrics complexity analysis in
regression testing,’’ in Proc. Int. Conf. Comput. Com-
mun. Informat., Jan. 2012, pp. 1–6.

[S63] A. Janus, R. Dumke, A. Schmietendorf, and
J. Jager, ‘‘The 3C approach for agile quality
assurance,’’ in Proc. 3rd Int. Workshop Emerg.
Trends Softw. Metrics (WETSoM), Jun. 2012,
pp. 9–13.

[S64] G. Rakic, Z. Budimac, and K. Bothe, ‘‘Towards a
’Universal’ software metrics tool: Motivation, process
and a prototype,’’ in Proc. 5th Int. Conf. Softw. Data
Technol., vol. 2, 2010, pp. 263–266.

[S65] G. Yilmaz, S. Tunalilar, and O. Demirors, ‘‘Towards
the development of a defect detection tool for COS-
MIC functional size measurement,’’ in Proc. Joint
Conf. 23rd Int. Workshop Softw. Meas. 8th Int.
Conf. Softw. Process Product Meas., Oct. 2013,
pp. 9–16.

44668 VOLUME 9, 2021



F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

[S66] I. Chowdhury and M. Zulkernine, ‘‘Using complex-
ity, coupling, and cohesion metrics as early indica-
tors of vulnerabilities,’’ J. Syst. Archit., vol. 57, no. 3,
pp. 294–313, Mar. 2011.

[S67] U. Kulkarni, Y. Kalshetty, and V. Arde, ‘‘Validation of
CK metrics for object oriented design measurement,’’
in Proc. 3rd Int. Conf. Emerg. Trends Eng. Technol.
(ICETET), 2010, pp. 646–651.

[S68] M. Rudolph and R. Schwarz, ‘‘A critical survey
of security indicator approaches,’’ in Proc. 7th Int.
Conf. Availability, Reliab., Secur. (ARES), 2012,
pp. 291–300.

[S69] P. Sandhu, A. Brar, R. Goel, J. Kaur, and S. Anand,
‘‘A model for early prediction of faults in software
systems,’’ in Proc. 2nd Int. Conf. Comput. Autom. Eng.
(ICCAE), vol. 4, 2010, pp. 281–285.

[S70] M. Thirugnanam and J. N. Swathi, ‘‘Quality metrics
tool for object oriented programming,’’ Int. J. Comput.
Theory Eng., vol. 2, no. 5, pp. 712–717, 2010.

REFERENCES

[1] IEEE Standard for a Software Quality Metrics Methodology,
Standard 1061-1998, 1998.

[2] T. Demarco, Controlling Software Projects: Management, Measurement,
and Estimates. London, U.K.: Pearson, 1982.

[3] E. Braude andM. Bernstein, Software Engineering: Modern Approaches,
2nd ed. Hoboken, NJ, USA: Wiley, 2011, pp. 722–753.

[4] CMMI Development Full Model v2.0, CMMI Institute, Pittsburgh, PA,
USA, 2018.

[5] K. Johnson and M. Kulpa, ‘‘Measurement within the CMMI,’’ in Proc.
16th Int. Conf. Softw. Eng. Process Group, FL, USA, Mar. 2004.

[6] S, M. Cap Gemini. (Sep. 2018). World Quality Report-2018-2019.
Accessed: Sep. 30, 2019. [Online]. Available: https://community.
microfocus.com/t5/Application-Delivery-Management/The-World-
Quality-Report-2018-19-is-now-available/ba-p/1666131/page/2

[7] A Guide to the Project Management Body of Knowledge (PMBOK
GUIDE), Project Management Institute (PMI), Newtown Square, PA,
USA, 2017.

[8] G. Casale, C. Chesta, P. Deussen, E. Di Nitto, P. Gouvas, S. Koussouris,
V. Stankovski, A. Symeonidis, V. Vlassiou, A. Zafeiropoulos, and
Z. Zhao, ‘‘Current and future challenges of software engineering for
services and applications,’’ Procedia Comput. Sci., vol. 97, pp. 34–42,
2016.

[9] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, andA. Toval, ‘‘Predicting soft-
ware product quality: A systematic mapping study,’’ Comput. Sistemas,
vol. 19, no. 3, pp. 547–562, Oct. 2015, doi: 10.13053/CyS-19-3-1960.

[10] B. Kitchenham, P. Brereton, and D. Budgen, ‘‘The educational value
of mapping studies of software engineering literature,’’ in Proc. 32nd
ACM/IEEE Int. Conf. Softw. Eng., vol. 1, 2010, pp. 589–598, doi:
10.1145/1806799.1806887.

[11] D. Budgen, M. Turner, P. Brereton, and B. Kitchenham, ‘‘Using mapping
studies in software engineering,’’ Ppig, vol. 2, pp. 195–204, Dec. 2008.

[12] ISTQB. International Software Testing Qualifications Board
(ISTQB) Glossary. Accesses: Aug. 1, 2019. [Online]. Available:
https://glossary.istqb.org/en/search/

[13] Systems and Software Engineering—Systems and Software Quality
Requirements and Evaluation (SQuaRE)—Guide to SQuaRE), Stan-
dard ISO/IEC 25000: 2014. Accessed: Mar. 1, 2020. [Online]. Available:
https://iso25000.com/index.php/en/iso-25000-standards

[14] Information Technology—Software Product Quality—Part 1: Quality
Model, Standard ISO/IEC 9126-1, 2001.

[15] Systems and Software Engineering—Systems and Software Quality
Requirements and Evaluation (SQuaRE)—System and Software Quality
Models, Standard ISO/IEC 25010, 2011. Accessed: Mar. 1, 2020.
[Online]. Available: https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010

[16] Software Engineering—Software Product Quality Requirements
and Evaluation (SQuaRE)-Data Quality Model, Standard ISO,
ISO/IEC 25012, 2008. Accessed: Mar. 1, 2020. [Online]. Available:
https://iso25000.com/index.php/en/iso-25000-standards/iso-25012

[17] N. Fenton and S. Pfleeger, Software Metrics: A Rigorous and Practical
Approach, 2nd ed. London, U.K.: PWS, 1997, pp. 245–322.

[18] M. Santos, P. Afonso, P. H. Bermejo, and H. Costa, ‘‘Metrics and
statistical techniques used to evaluate internal quality of object-
oriented software: A systematic mapping,’’ in Proc. 35th Int.
Conf. Chilean Comput. Sci. Soc. (SCCC), Oct. 2016, pp. 1–11, doi:
10.1109/SCCC.2016.7836021.

[19] P. Nistala, K. V. Nori, and R. Reddy, ‘‘Software quality models:
A systematic mapping study,’’ in Proc. IEEE/ACM Int. Conf. Softw. Syst.
Processes (ICSSP), May 2019, pp. 125–134.

[20] PROMISE Software Engineering Database, School Inf. Technol.
Eng., University of Ottawa, Ottawa, ON, Canada, 2020. Accessed:
Mar. 31, 2020. [Online]. Available: http://promise.site.uottawa.
ca/SERepository/

[21] P. Bourque and R. Fairley, ‘‘Guide to the software engineering body of
knowledge: SWEBOK,’’ IEEE Comput. Soc., Washington, DC, USA,
Tech. Rep. ISO/IEC TR 19759, May 2014.

[22] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Tech. Rep., vol. 2, no. 3,
pp. 1–57, 2007.

[23] C. Kohl, E. J. McIntosh, S. Unger, N. R. Haddaway, S. Kecke,
J. Schiemann, and R. Wilhelm, ‘‘Online tools supporting the conduct and
reporting of systematic reviews and systematic maps: A case study on
CADIMA and review of existing tools,’’ Environ. Evidence, vol. 7, no. 1,
pp. 1–17, Dec. 2018, doi: 10.1186/s13750-018-0115-5.

[24] CADIMA SLR Tool. Accessed: Feb. 29, 2020. [Online]. Available:
https://www.cadima.info/index.php

[25] S. Rehman, ‘‘Swot analysis of software quality metrics for global
software development: A systematic literature review protocol,’’ IOSR
J. Comput. Eng., vol. 2, no. 1, pp. 1–7, 2012, doi: 10.9790/0661-0210107.

[26] A. Tahir and S. G. MacDonell, ‘‘A systematic mapping study on
dynamic metrics and software quality,’’ in Proc. 28th IEEE Int. Conf.
Softw. Maintenance (ICSM), Sep. 2012, pp. 326–335, doi: 10.1109/
ICSM.2012.6405289.

[27] N. Vanitha and R. ThirumalaiSelvi, ‘‘A report on the analysis of met-
rics and measures on software quality factors—A literature study,’’ Int.
J. Comput. Sci. Inf. Technol., vol. 5, no. 5, pp. 6591–6595, 2014.

[28] A. Dur and S. Titang, ‘‘The visualization of software quality metrics—
A systematic literature review,’’ M.S. thesis, Dept. Comput. Sci. Eng.,
Gothenburg, Sweden, 2015.

[29] E. Ronchieri andM.Canaparo, ‘‘A preliminarymapping study of software
metrics thresholds,’’ in Proc. 11th Int. Joint Conf. Softw. Technol., 2016,
pp. 232–240, doi: 10.5220/0005988402320240.

[30] T. Wahyuningrum and K. Mustofa, ‘‘A systematic mapping review of
software quality measurement: Research trends, model, and method,’’
Int. J. Electr. Comput. Eng., vol. 7, no. 5, pp. 2847–2854, 2017, doi:
10.11591/ijece.v7i5.pp2847-2854.

[31] M. Yan, X. Xia, X. Zhang, L. Xu, and D. Yang, ‘‘A systematic mapping
study of quality assessment models for software products,’’ in Proc. Int.
Conf. Softw. Anal., Test. Evol. (SATE), Nov. 2017, pp. 63–71.

[32] S. Tiwari and S. S. Rathore, ‘‘Coupling and cohesion metrics for object-
oriented software: A systematic mapping study,’’ in Proc. 11th Innov.
Softw. Eng. Conf., Feb. 2018, pp. 1–11.

[33] A. J. Suali, S. S. M. Fauzi, M. H. N. M. Nasir, W. A. W. M. Sobri, and
I. K. Raharjana, ‘‘Software quality measurement in software engineering
project: A systematic literature review,’’ J. Theor. Appl. Inf. Technol.,
vol. 97, no. 3, pp. 918–929, 2019.

[34] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, ‘‘Systematic literature reviews in software engineering—A
systematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,
Jan. 2009, doi: 10.1016/j.infsof.2008.09.009.

[35] (Jul. 27, 2019). Systematic Reviews-Research Guide. Accessed:
Mar. 31, 2020. [Online]. Available: https://libguides.murdoch.edu.au/
systematic/PICO

[36] B. Kitchenham, D. Budgen, and O. P. Brereton, ‘‘Using mapping studies
as the basis for further research: A participant-observer case study,’’
J. Inf. Softw. Technol., vol. 53, no. 6, pp. 638–651, Jun. 2011, doi:
10.1016/j.infsof.2010.12.011.

[37] D. S. Cruzes and T. Dybå, ‘‘Recommended steps for thematic synthesis
in software engineering,’’ in Proc. Int. Symp. Empir. Softw. Eng. Meas.,
2011, vol. 7491, pp. 275–284, doi: 10.1109/ESEM.2011.36.

VOLUME 9, 2021 44669

http://dx.doi.org/10.13053/CyS-19-3-1960
http://dx.doi.org/10.1145/1806799.1806887
http://dx.doi.org/10.1109/SCCC.2016.7836021
http://dx.doi.org/10.1186/s13750-018-0115-5
http://dx.doi.org/10.9790/0661-0210107
http://dx.doi.org/10.1109/ICSM.2012.6405289
http://dx.doi.org/10.1109/ICSM.2012.6405289
http://dx.doi.org/10.5220/0005988402320240
http://dx.doi.org/10.11591/ijece.v7i5.pp2847-2854
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2010.12.011
http://dx.doi.org/10.1109/ESEM.2011.36


F. N. Colakoglu et al.: Software Product Quality Metrics: A Systematic Mapping Study

[38] V. Clarke and V. Braun.Guidelines for Reviewers and Editors Evaluating
Thematic Analysis Manuscripts. Accessed: Jul. 14, 2019. [Online]. Avail-
able: https://www.psych.auckland.ac.nz/en/about/thematic-analysis.html

[39] C. Wohlin, ‘‘Guidelines for snowballing in systematic literature studies
and a replication in software engineering,’’ Assoc. Comput. Mach., vol. 7,
pp. 1–10, May 2014, doi: 10.1145/2601248.2601268.

[40] F. N. Colakoglu and A. Mishra. Online Paper Repository for System-
atic Mapping Study on Software Product Quality Metrics. Accessed:
Oct. 15, 2020. [Online]. Available: https://tinyurl.com/yxvzgqh4

[41] D. Santos, A. Resende, P. Junior, and H. Costa, ‘‘External quality metrics
for object oriented software—A systematic literature review,’’ Duke Law
J., vol. 20, no. 3, pp. 1–18, doi: 10.1017/CBO9781107415324.004.

[42] B. Everitt and A. Skrondal, The CAMBRIDGE Dictionary of Statistics,
4th ed. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[43] C. E. Otero, E. Dell, A. Qureshi, and L. D. Otero, ‘‘A quality-based
requirement prioritization framework using binary inputs,’’ in Proc.
4th Asia Int. Conf. Math./Analytical Model. Comput. Simulation, 2010,
pp. 187–192, doi: 10.1109/AMS.2010.48.

[44] J. Chen and X. Liu, ‘‘Software maintainability metrics based on the
index system and fuzzy method,’’ in Proc. 1st Int. Conf. Inf. Sci. Eng.,
Dec. 2009, pp. 5117–5120, doi: 10.1109/ICISE.2009.1073.

[45] G. D. Pereira Moreira, R. P. Mellado, D. Á. Montini, L. A. V. Dias, and
A. Marques da Cunha, ‘‘Software product measurement and analysis in a
continuous integration environment,’’ in Proc. 7th Int. Conf. Inf. Technol.,
New Generat., 2010, pp. 1177–1182, doi: 10.1109/ITNG.2010.85.

[46] B. Keser, T. Iyidogan, and B. Ozkan, ‘‘ASSIST: An integrated measure-
ment tool,’’ in Proc. 23rd Int. Work. Softw. Meas., 2013, pp. 237–242, doi:
10.1109/IWSM-Mensura.2013.41.

[47] P. Meirelles, C. Santos, J. Miranda, F. Kon, A. Terceiro, and C. Chavez,
‘‘A study of the relationships between source code metrics and attractive-
ness in free software projects,’’ Proc. 24th Brazilian Symp. Softw. Eng.,
2010, pp. 11–20, doi: 10.1109/SBES.2010.27.

[48] B. L. Sousa, M. A. S. Bigonha, and K. A. M. Ferreira, ‘‘An exploratory
study on cooccurrence of design patterns and bad smells using software
metrics,’’ Softw., Pract. Exper., vol. 7, pp. 1079–1113, May 2019, doi:
10.1002/spe.2697.

[49] P. Oliveira, F. P. Lima, M. T. Valente, and A. Serebrenik, ‘‘RTTool:
A tool for extracting relative thresholds for source code metrics,’’ in Proc.
IEEE Int. Conf. Softw. Maintenance Evol., Sep. 2014, pp. 629–632, doi:
10.1109/ICSME.2014.112.

[50] L. B. L. de Souza and M. de Almeida Maia, ‘‘Do software
categories impact coupling metrics?’’ in Proc. 10th Work. Conf.
Mining Softw. Repositories (MSR), May 2013, pp. 217–220, doi:
10.1109/MSR.2013.6624030.

[51] R. Plösch, J. Bräuer, C. Körner, and M. Saft, ‘‘MUSE: A framework for
measuring object-oriented design quality,’’ J. Object Technol., vol. 15,
no. 4, pp. 1–29, 2016, doi: 10.5381/jot.2016.15.4.a2.

[52] A.-J. Molnar, A. Neamáu, and S. Motogna, ‘‘Longitudinal evaluation
of software quality metrics in open-source applications,’’ in Proc. 14th
Int. Conf. Eval. Novel Approaches Softw. Eng., 2019, pp. 80–91, doi:
10.5220/0007725600800091.

[53] K. Gao, T. M. Khoshgoftaar, H. Wang, and N. Seliya, ‘‘Choosing soft-
ware metrics for defect prediction: An investigation on feature selection
techniques,’’ Softw., Pract. Exper., vol. 41, no. 5, pp. 579–606, Apr. 2011,
doi: 10.1002/spe.1043.

[54] QSM. Industry Database (Quantitative Software Management Tool).
Accessed: Mar. 31, 2020. [Online]. Available: https://www.qsm.com/
luminosity/QSM_Demo/

[55] Cynet. (Apr. 2020). COVID-19 Cyber Attack Analysis. Accessed:
Mar. 2020. [Online]. Available: https://tinyurl.com/y69bnmd4

[56] A. Mishra and Z. Otaiwi, ‘‘DevOps and software quality: A systematic
mapping,’’ Comput. Sci. Rev., vol. 38, Nov. 2020, Art. no. 100308, doi:
10.1016/j.cosrev.2020.100308.

[57] K. A. M. Ferreira, M. A. S. Bigonha, R. S. Bigonha, L. F. O. Mendes,
and H. C. Almeida, ‘‘Identifying thresholds for object-oriented software
metrics,’’ J. Syst. Softw., vol. 85, no. 2, pp. 244–257, Feb. 2012, doi:
10.1016/j.jss.2011.05.044.

[58] EFQM User Guide: EFQM Benchmarking Guidelines, EFQM, Brussels,
Belgium, 2013.

[59] K. Valenca, E. D. Canedo, and R. M. Da Costa Figueiredo, ‘‘Construction
of a software measurement tool using systematic literature review,’’ in
Proc. IEEE Int. Conf. Internet Things, Jul. 2018, pp. 1349–1354, doi:
10.1109/Cybermatics_2018.2018.00308.

[60] T. Buzan, Mind Map Mastery: The Complete Guide to Learning and
Using the Most Powerful Thinking Tool in the Universe. London,
U.K.: Watkins Media, 2018.

FATIMA NUR COLAKOGLU received the B.S.
degree in computer science and information sys-
tem (CTIS) from Bilkent University, Ankara,
Turkey, in 2011, and the M.S. degree in software
engineering from Atilim University, Ankara, in
2019.

She worked at AYESAŞ, as a Software Qual-
ity Specialist in avionics projects. From 2014 to
2019, she worked as a Quality Assurance and Pro-
cess Management Specialist at TUBITAK Bilgem

Iltaren. Since 2019, she has been a Quality Specialist at HAVELSAN,
Ankara. She has eight years of experience in software quality assurance
and is the coauthor of two published articles related to quality process and
process tailoring. She owns the certificates of ISO 9001:2015 Lead Auditor,
AS 9100, CMMI v2.0, EFQM, ISO 10002:2018, ISO 27001, ISO 14001, ISO
45001, ISO 20000, ISO 31000, ISO 19011, and DO-178. She has received
the highest-ranked student and excellent academic success awards from the
CTIS Department, Bilkent University.

ALI YAZICI received the B.S. and M.S. degrees in
mathematics from Middle East Technical Univer-
sity (METU), Ankara, Turkey, in 1972 and 1974,
respectively, and the Ph.D. degree from the Com-
puter Science Department, Waterloo University,
Waterloo, ON, Canada, in 1983.

He is currently the Chairperson of the Soft-
ware Engineering Department, Atilim University,
Ankara. His research interests include parallel and
distributed computing, cloud computing, big data

programming, database systems, symbolic computing, and e-Topics. In the
last 40 years, he has been affiliated as a full-timeAcademic Staff withMiddle
East Technical University, Yarmouk University, Jordan, Sultan Qaboos Uni-
versity, Oman, TOBB University of Economics and Technology, and Atilim
University, Turkey. He is the writer of many scientific articles, books, and
research reports in the field of computing and informatics.

Prof. Yazici is a Founding Member of Turkish Mathematics Foundation
(since 1990) and Turkish Informatics Foundation (since 1990), and an Asso-
ciate Member (since 1981) and an Honorary Board Member of Informatics
Association of Turkey (2017–2021).

ALOK MISHRA (Senior Member, IEEE) is cur-
rently Professor in informatics and digitalization at
Molde University College (A Specialized Univer-
sity in Logistics), Norway. He is also a Professor
in software engineering with Atilim University,
Turkey. His areas of research interests include soft-
ware engineering, information systems, informa-
tion technology, and artificial intelligence.

He is an editorial board member of many
reputed journals, including Computer Standards

and Interfaces (Elsevier), Journal of Universal Computer Science, Com-
puting and Informatics, and Data Technologies and Applications journal.
He is actively involved in editing special issues of reputed journals in his
areas of research interest. He had also extensive experience in online educa-
tion related to computing and management disciplines. In teaching, he has
received Excellence in Online Education Award by U21Global Singapore,
while in research; he has been awarded by the Scientific and Research
Council of Turkey and the Board of Management of University for out-
standing publications in Science Citation Index and Social Science Citation
Index (Thomson Reuter) journals. He was a recipient of many scholarships,
international awards, and research projects.

44670 VOLUME 9, 2021

http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1109/AMS.2010.48
http://dx.doi.org/10.1109/ICISE.2009.1073
http://dx.doi.org/10.1109/ITNG.2010.85
http://dx.doi.org/10.1109/IWSM-Mensura.2013.41
http://dx.doi.org/10.1109/SBES.2010.27
http://dx.doi.org/10.1002/spe.2697
http://dx.doi.org/10.1109/ICSME.2014.112
http://dx.doi.org/10.1109/MSR.2013.6624030
http://dx.doi.org/10.5381/jot.2016.15.4.a2
http://dx.doi.org/10.5220/0007725600800091
http://dx.doi.org/10.1002/spe.1043
http://dx.doi.org/10.1016/j.cosrev.2020.100308
http://dx.doi.org/10.1016/j.jss.2011.05.044
http://dx.doi.org/10.1109/Cybermatics_2018.2018.00308

