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A B S T R A C T   

Given a directed acyclic graph G = (V,A) and two vertices u,v ∈ V, the reachability problem is to answer if there 
is a path from u to v in the graph. In the context of very large graphs, with millions of vertices and a series of 
queries to be answered, it is not practical to search the graph for each query. On the other hand, the storage of the 

full transitive closure of the graph is also impractical due to its O(

⃒
⃒
⃒V|2) size. Scalable approaches aim to create 

indices used to prune the search during its execution. Negative indices may be able to determine (in constant 
time) that a query has a negative answer while positive indices may determine (again in constant time) that a 
query has a positive answer. In this paper we propose a novel scalable approach called LYNX that uses a large 
number of topological sorts of G as a negative cut index without degrading the query time. A similar strategy is 
applied regarding a positive cut index. In addition, LYNX proposes a user-defined index size that enables the user 
to control the ratio between negative and positive cuts depending on the expected query pattern. We show by 
computational experiments that LYNX consistently outperforms the state-of-the-art approach in terms of query- 
time using the same index-size for graphs with high reachability ratio. In intelligent computer systems that rely 
on frequent tests of connectivity in graphs, LYNX can reduce the time delay experience by end users through a 
reduced query time. This comes at the expense of an increased setup time whenever the underlying graph is 
updated.   

1. Introduction 

Reachability is a fundamental problem on graphs that consists of 
determining whether there exists a directed path from a vertex u ∈ V to 
another vertex v ∈ V in a given directed graph G = (V,A). In this work 
we deal with this problem restricted to directed acyclic graphs (DAGs) 
which can be obtained from general directed graphs in linear time by 
collapsing the strongly connected components of the original directed 
graph by using e.g., Tarjan’s classic algorithm (Tarjan, 1972). 

A query can be answered in constant time if the transitive closure of 
the DAG has previously been computed and stored. As an alternative to 
the storage of a quadratic size index, a linear-time depth-first search 
(DFS) can be triggered for each query to be answered. 

For highly queried graphs with millions of vertices and edges, trig
gering a graph search for each query is prohibitive. Moreover, 
computing the transitive closure is also prohibitive in terms of execution 
time and storage space. Efforts have been made to reduce the time and 

storage space to compute the transitive closure of the graph with the use 
of labeling and compression procedures (e.g. He, Wang, Yang, & Yu, 
2005; Jin, Xiang, Ruan, & Fuhry, 2009; Chen, 2009; Jin, Ruan, Xiang, & 
Wang, 2011; Cheng, Huang, Wu, & Fu, 2013; Jin & Wang, 2013; Zhou 
et al., 2017; Zhou et al., 2018). 

The context of very large graphs is becoming increasingly common 
with the emergence of massive data sets from applications on social and 
biological networks, software analysis and traffic routing, among others. 
In particular, the World-Wide Web can be seen as a huge directed graph 
with billions of vertices and edges (Kleinberg, Kumar, Raghavan, Raja
gopalan, & Tomkins, 1999). Expert systems that rely on determining 
connectivity in graphs therefore benefit immensely by speeding up how 
fast such queries can be answered. Applications of this can be found in 
the area of the semantic web, or any other area where XLM graphs can 
be built to answer structural queries (Wang, He, Yang, Yu, & Yu, 2006), 
as well as for applications in biology, for example with respect to pro
tein–protein interaction, metabolic pathways, and gene regulatory 
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networks (Yildirim, Chaoji, & Zaki, 2012). 
Recent scalable approaches (Yildirim et al., 2012; Anand, Seufert, 

Bedathur, & Weikum, 2013; Veloso, Cerf, & Zaki, 2014; Li, Hua, & Zhou, 
2017; Wei, Yu, Lu, & Jin, 2018; Su, Zhu, Wei, & Yu, 2017) aim to index 
the graph consuming acceptable preprocessing time and storage space to 
reduce the time spent during the graph search in each query processing. 
These are known as refined online search methods (Jin, Ruan, Dey, & 
Xu, 2012) and Label + G methods (Wei et al., 2018). 

Indices induce two distinct types of cuts. A negative cut index in
duces a set of negative cuts, i.e. a subset of all ordered pairs of vertices 
(u, v) ∈ V × V for which v is not reachable from u. A negative cut allows 
to prune the search tree as soon as an intermediate vertex known for not 
reaching v is explored. On the other hand, a positive cut index induces a 
set of positive cuts, i.e. a subset of all ordered pairs of vertices (u, v) ∈
V × V for which u reaches v (a subset of the transitive closure of G). A 
positive cut allows to halt the search and answer the query positively. In 
this setting, both negative and positive cuts are exact. 

In this work we propose a novel reachability index approach called 
LYNX (extended high dimensional reachabiLitY iNdeX). Like FELINE 
(Veloso et al., 2014), LYNX uses a dimensional approach that represents 
its negative cut index with topological sorts of the graph. We introduce 
improvements over FELINE’s indexing algorithm to overcome some 
limitations that are shown later in this article. Additionally, LYNX in
troduces a user-defined number of topological sorts on the negative cut 
index without degrading the query performance. In HD-GDD (Li et al., 
2017) the authors also propose the use of many (more than two) topo
logical sorts. However, unlike the case of LYNX, the use of a large set of 
topological sorts may degrade the query time. A similar strategy is 
applied to the positive cut index, extending the approach proposed by 
Yildirim et al. (2012). 

Moreover, LYNX lets the user set the amount of memory available to 
store the indices. As more memory becomes available, the query per
formance increases at the cost of an increase in preprocessing time and 
space. 

The original contributions of this work can be summarized as 
follows:  

• Opportunities for improvement over FELINE (Veloso et al., 2014), 
HD-GDD (Li et al., 2017), IP (Wei et al., 2018) and BFL (Su et al., 
2017) are identified in Section 4.  

• In Section 5, we propose a strategy to improve FELINE’s negative cut 
index generating diverse topological sorts resulting in fewer false 
positives.  

• Also in Section 5, as the primary contribution of this work, we 
introduce a novel method called LYNX that allows a larger index size, 
storing a larger set of topological sorts and sets of intervals, but using 
a bounded number for each query without degrading query time. 

• Computational results are presented in Section 6 for benchmark in
stances proposed by Yildirim et al. (2012) and synthetic instances 
with higher average vertex degree. 

2. Preliminaries 

Given an undirected graph G = (V,E), where V is the set of vertices 
and E the set of edges, the distance between two vertices is the length of 
the minimum path connecting them. The eccentricity of a given vertex is 
the maximum distance to any vertex of the graph. The maximum ec
centricity represents the diameter of the graph. Vertices with eccentricity 
equal to the diameter are on the periphery, while vertices with minimum 
eccentricity (radius) are in the center of the graph. 

A simple directed acyclic graph (DAG) is represented as G = (V,A)
where V is the set of vertices and A the set of arcs between them. The set 

of successors of a vertex u is represented by Suc(u) = {v ∈ V|(u, v) ∈ A}
and the set of predecessors is represented by Pre(u) = {v ∈ V|(v,u) ∈ A}. 
Then, we can define the indegree and outdegree of a given vertex u 
respectively denoted by din(u) = |Pre(u)| and dout(u) = |Suc(u)|. A vertex 
u with no outgoing arcs, i.e. dout = 0, is called a sink, and a vertex u with 
no incoming arc, i.e. din = 0, is called a source. 

A topological sort t of G is permutation of V such that ∀(u, v) ∈ A it 
holds that t(u) < t(v), where t(u) represents the position of u in t. That is, 
t is a bijective function that maps each vertex of G to a number in {1,… 
, |V|} with the additional property that t(u) is smaller than t(v) for every 

edge (u,v) ∈ A. A reachability query from u to v in G is denoted by u⇝? v. If 
v is reachable from u by transversing the arcs of the graph, then the 
query is answered positively, represented by u⇝v. Otherwise, it is rep
resented by u¬⇝v. 

We can use this notation to represent the set of all vertices that can 
reach u as In(u) = {v ∈ V|v⇝u} and the set of all vertices reached by u as 
Out(u) = {v ∈ V|u⇝v}. 

Negative and positive cut indices can be used to prune a search 
during a reachability query in the graph. A negative cut index induces a 
subset of all non-reachable pairs of vertices in G, denoted by IN⊆{(u,v) ∈
V × V|u¬⇝v}. A positive cut index induces a subset of all reachable pairs 
in the graph, denoted by IP⊆{(u, v) ∈ V × V|u⇝v} = tr(G) where tr rep
resents the transitive closure of G. 

3. Related work 

Proposed in 2010, GRAIL (Yildirim et al., 2012) is considered the 
first approach for reachability queries that scales to very large real- 
world graphs. In its preprocessing stage, GRAIL builds three indices: a 
negative-cut index, a positive-cut index and a topological-level filter as 
an additional negative cut index. The first negative cut index consists of 
an interval for each vertex of the graph. The interval set L is built in 
linear time by a randomized min-post labeling algorithm. For each pair of 
vertices u, v ∈ V if Lv¬⊆Lu, then u¬⇝v. However, if Lv⊆Lu, then either 
u⇝v or (u, v) is considered to be a false positive pair of the index. 

Similarly, the positive cut index is an assignment of an interval to 
each vertex of the graph constructed by a min-post labeling algorithm 
that produces an interval set representing a sub-tree (set of paths) of the 
DAG, such that if Lv⊆Lu, then u⇝v. 

In the topological level filter, vertices are divided into levels such 
that all sinks (vertices with no outgoing arcs) are placed in the first level 
and the other vertices are placed one level above the level of the highest 
of its successors. Then, the topological level filter can be applied as a 
negative cut index during the search, since if the level of u is smaller than 
or equal to the level of v then u¬⇝v. 

FERRARI (Anand et al., 2013) introduces some flexibility over 
GRAIL, that gives more control to the user to set a bound to the size of its 
positive cut index, which has a direct effect on the query processing 
time. In addition, it uses a seed based pruning approach, that computes 
the reachability of vertices with high outdegree to every other vertex of 

the graph. For a query u⇝? v, if a seed reached by u reaches v, then u⇝v. 
However, if a seed reaches u and does not reach v, then u¬⇝v. 

As an alternative to GRAIL and FERRARI, FELINE (Veloso et al., 
2014) proposes an index representation inspired by Dominance Drawing. 
In this approach, the negative cut index is represented by two topolog
ical sorts tX and tY . The first topological sort, is generated by using a DFS 
algorithm, in which each vertex is added to the end of tX as all its suc
cessors are explored. The topological sort tY is generated using the 
Maximum-Rank heuristic, proposed by Kornaropoulos (2012), as shown 
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in Algorithm 1.  

The algorithm starts by initializing SG as the set of sources. In each 
iteration, the vertex of SG with the highest position on tX (maxRank 
function) is chosen to be added on tY . That vertex is then removed from 
G in line 6. Consequently, SG is updated by removing u and adding new 
sources introduced in G, if any, in line 7. The algorithm finishes when tY 
contains all vertices of G. 

During the processing of a query u⇝? v, on an intermediary vertex w 
such that u⇝w, if tX(v) < tX(w) ∨ tY(v) < tY(w), then w¬⇝v and the 
search can be pruned on w. Therefore, this negative cut index is able to 
cut each ordered pair in IN = {(u, v) ∈ V × V|tX(v) < tX(u)∨
tY(v) < tY(u)}. 

Maximizing the size of IN is equivalent to maximizing the set of in

versions between tX and tY , that can be written as I(tX,tY) = {(u,v)
⃒
⃒
⃒tX(u)

< tX(v) ∧ tY(v) < tY(u)}. Alternatively, it is also equivalent to mini
mizing the size of the set of intersections I(tX, tY) = {(u, v)|tX 
(u) < tX(v) ∧ tY(u) < tY(v)}, where each pair (u, v) are in the same rela
tive order in both tX and tY . 

HD-GDD (Li et al., 2017) is an extension of FELINE that works with 
three or more topological sorts on its negative cut index. With more 
topological sorts, it is possible to introduce more inversions between 
pairs of vertices, which reduces the number of vertices explored during 
the search. However, each topological sort on the index may need to be 
checked for each vertex explored. Then, there is a trade-off between 
number of vertices explored and evaluation time spent on each vertex. 

Wei et al. (2018) proposed a random labeling approach called IP, 
based on independent permutations (Broder, 1997). The IP algorithm 
uses the fact that if u⇝v, then In(u)⊆In(v) and Out(v)⊆Out(u). Therefore, 
if In(u)¬⊆In(v) or Out(v)¬⊆Out(u), then u¬⇝v. 

The algorithm generates random permutations of the vertices by 
using an unbiased algorithm. For each random permutation π, the al
gorithm generates two sets L in(u) and L out(u). The set L in(u)
represents the set of top-k smallest numbers π(v) such that v ∈ In(u). 
Similarly, L out(u) is the set of top-k smallest numbers π(v) such that 
v ∈ Out(u). The index is generated for all vertices u ∈ V in time 
O(k(|V| +|A|)) with total index size at most 2kn. A DFS search from an 
intermediate vertex u to v can be pruned negatively if 
min(L in(v)) > min(L in(u)) ∨ min(L out(v)) > min(L out(u)). 

IP also considers two additional labels: two types of topological level 
filter based on the one proposed in GRAIL (Yildirim et al., 2012), one 

starting from sinks and another starting from the sources of the graph; 
and a huge vertex label index. This last label index is generated by 
computing the transitive closure of the vertices with high degree in the 
graph and used to prune the DFS search whenever a vertex with high 
outdegree is reached. 

Bloom filter Labeling (BFL) (Su et al., 2017) proposes another la
beling approach that uses randomness to create its index. Similarly to IP, 
BFL explores the fact that if In(u)¬⊆In(v) or Out(v)¬⊆Out(u), then u¬⇝v. 
Briefly, each vertex is mapped to a number in the subset {1,2,…, s} by a 
hash function g(⋅). Each vertex u ∈ V is associated with a subset of {1,2,
…, s} such that L out(u) =

⋃
(u,w)∈AL out(w). If L out(v)¬⊆L out(u), then 

u¬⇝v and the DFS search can be pruned at this point. Otherwise, either 
u⇝v or the pair is a false positive. 

BFL uses a bit vector to represent a subset of {1,2,…, s} for each 
vertex. Then, the unions to compute each subset L out of the index can be 
done efficiently by performing a bitwise-or on two bit vectors. This same 
strategy is applied during the query search to check if L out(v)¬⊆L out(u)
efficiently and prune the DFS search. 

4. Opportunities for improvement 

In this section we identify some opportunities for improvement over 
existing literature on reachability approaches for very large graphs. 

4.1. FELINE 

Fig. 1 shows a pathological case for the Maximum-Rank heuristic 
used by FELINE. Let G = (V,A) be the DAG presented in Fig. 1 and tX =

(1, 2,3, 4,5) a topological sort of G. The result obtained by Maximum- 
Rank given G and tX as input is tY = (2,1,3,4,5). Note that I(tX,tY) = {(1,
2)}, meaning that only one inversion between tX and tY was obtained. A 
better choice would be t′Y = (1, 3,4, 2,5) giving the inversion of pairs (2,
3) and (2,4). 

This simple example can be extended to show that the ratio between 
the number of inversions obtained by the heuristic and the maximum 
number of inversions that may be obtained can be arbitrarily large, by 
introducing new vertices extending the path from 1 to 5 in G, and 
modifying tX accordingly. 

The Maximum-Rank heuristic used by FELINE attempts to solve the 
Weak Dominance Drawing (WDD) (Kornaropoulos & Tollis, 2012) 
problem. The optimization version of WDD consists of finding two to
pological sorts, tX and tY , of a given DAG G = (V, A), minimizing the 
intersection I(tX, tY) between them. Minimizing the size of the intersec
tion set is the same as maximizing the number of pair inversions I(tX,tY). 

However, since FELINE fixes the topological sort tX at the start of the 
index generation process, the quality of the solution it can find is 
bounded by the number of inversions between tX and another topolog
ical sort of the graph. This number may be much smaller than the 
maximum number of inversions between two arbitrary topological sorts 
of G. In this way, considering tX as a parameter of the problem instead of 
a variable, the solution search space is dramatically reduced and in 
consequence the quality of the best solution to be found may be reduced. 

This restricted version of WDD, in which one topological sort is fixed 
as an input, is called One-Sided Weak Dominance Drawing (OSWDD) (de 
Silva, Urrutia, & dos Santos, 2019) and was proven to be NP-hard. 

Fig. 1. Maximum-Rank pathological case.  
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4.2. HD-GDD 

HD-GDD (Li et al., 2017) extends the dimensional approach of FE
LINE to use 3 or more topological sorts on its index. The first topological 
sort is generated with a DFS algorithm, as it is done in FELINE. Then, the 
algorithm computes the higher dimensions using a Maximum-Rank-like 
heuristic, however changing the function maxRank to iteratively select 
the sources using heuristic conditions that consider, in this order: the 
vertex with maximum coordinate in previous topological sorts; the 
vertex with maximum total sum of the positions on previous topological 
sorts; the deviation in the topological sorts positions; and, the minimum 
position in previous topological sorts, when the previous conditions are 
all tied. 

Each new topological sort introduced into the index has to be 
examined for every vertex explored during the DFS search. Then, if a 
topological sort introduces just a few inversions in comparison with the 
previous ones, the time needed to check each vertex during the search is 
increased without pruning the search on a significant number of 
vertices, which may increase the query time. Consequently, HD-GDD 
approach works well only using up to 5 topological sorts. 

4.3. IP and BFL 

Even though IP and BFL have significantly outperformed the previ
ous approaches reducing the query and indexing time, considerable 
improvements were made only in the negative cut index. The huge 
vertex label of IP can be seen as a modest positive cut index since the 
number of selected vertices is relatively small in comparison with the 
graph size (only vertices with outdegree >100). This implies that its 
performance can be degraded for positive queries. 

BFL is considered the state-of-the-art approach for reachability 
queries on very large DAGs. It uses a simple positive cut index similar to 
GRAIL, however considering only one graph min-post transversal label
ing. Since 2010, little effort has been made to build a better index 
suitable for positive queries, even though they may represent a signifi
cant part of queries in realistic scenarios. 

5. LYNX 

In this section, we propose a novel approach for the reachability 
problem on very large graphs called LYNX. The negative cut index is 
based on FELINE, however we introduce a new simple but effective 
method to improve the negative cut index generation, called jumps, that 
works together with FELINE’s Maximum-Rank heuristic. Additionally, 
we propose another simple but powerful improvement in the index 
generation and query answering procedure. As in HD-GDD, we use a 
larger set of topological sorts but, opposite to HD-GDD, our approach 
does not degrade the performance of each individual query since only 
two topological sort positions are compared in each query as in FELINE. 

The same strategy used in the negative cut index is also used on the 
positive cut index to allow a larger family of graph interval label sets 
without degrading query performance. With this, we significantly 
improve on GRAIL’s original strategy that is widely used in almost all 
latter approaches for the problem (e.g. Anand et al., 2013; Veloso et al., 
2014; Li et al., 2017; Su et al., 2017). 

Together with the strategies briefly described above, LYNX proposes 
a flexible approach in which the user can define a memory budget for the 
whole index and also set the portion of that budget that it is allocated to 
the negative and positive indices. Then, the index can be boosted using 
user knowledge about the dataset or query patterns. 

5.1. Graph of topological sorts 

We define the graph of topological sorts of a DAG as GTS = (VTS,ETS). 
The vertex set VTS represents the set of all topological sorts of G, such 

that VTS = {permutation p of V
⃒
⃒(u, v) ∈ A⇒p(u) < p(v)}. The edge set is 

defined as ETS = {(s, t) ∈ VTS × VTS
⃒
⃒
⃒

⃒
⃒
⃒I(s, t)

⃒
⃒
⃒ = 1}. Then, there exists an 

edge between every pair (s, t) of topological sorts of G for which the 
number of inversions between them is exactly one. This means that two 
adjacent topological sorts differ only in the position of two consecutive 
vertices that have been swapped. This class of graphs is extensively 
studied in Brightwell and Massow (2013). 

The eccentricity of a vertex p ∈ VTS can be seen as the minimum 
number of consecutive swap moves necessary to change p into any other 
topological sort of G. The periphery of GTS is the set of those topological 
sorts having maximum eccentricity, i.e. those which needs the largest 
number of swap moves to reach the farthest topological sort. This 
number of swap moves equals the diameter of GTS. 

From the point of view of the graph of topological sorts, Weak 
Dominance Drawing (WDD) corresponds to finding a diametral pair 
(p1, p2) on GTS. This problem was proven to be NP-hard in Kornar
opoulos and Tollis (2011). 

Corneil, Dragan, and Köhler (2002) show an approximate algorithm 
to compute the diameter of graphs with no induced cycles of size larger 
than k. The proposed algorithm performs two consecutive BFS proced
ures: the first one starting from an arbitrary vertex and storing the last 
vertex visited u; the second one starts from u. Let v be the last vertex 
visited in the second BFS, then the returned pair is (u, v). The authors 
showed that the distance between u and v is at least diam(G) − ⌊k/2⌋. − 2. 

Therefore, the diameter of GTS can be approximated by diam(GTS) − 5 
since, as shown by Massow (2009), the cycle space of GTS is generated by 
only 4-cycles and 6-cycles. However, executing BFS on GTS is not prac
tical since the number of vertices of that graph, i.e. the number of to
pological sorts of G, can be exponentially large. 

Executing BFS on GTS to obtain one vertex with maximum distance 
from the start vertex is equivalent to solve an instance of the One-Sided 
Weak Dominance Drawing Problem (OSWDD) (de Silva et al., 2019), an 
NP-hard problem. 

5.2. Jumps strategy 

As shown in Section 4.1, the Maximum-Rank heuristic does not 
attempt to solve WDD. Since one of its topological sorts is fixed, the 
problem tackled by Maximum-Rank can be seen as finding a vertex 
furthest away from a given vertex in GTS which corresponds to solve 
OSWDD. Independently of the quality of the heuristic, the quality of its 
solution (the number of inversions between tX and tY) is bounded by the 
eccentricity of the vertex tX in GTS. 

Therefore, we propose a jumps heuristic based on the idea of the 
algorithm proposed by Corneil et al. (2002) that uses two BFS to obtain 
an approximation to diametral pairs on GTS as shown in Section 5.1. 
However, since GTS can be exponentially large, we use the Maximum- 
Rank heuristic on G as an alternative to BFS on GTS. This is a greedy 
heuristic to find a furthest vertex on GTS from another given vertex. 

We start with the jumps strategy generating a random topological 
sort tX. For this, we use an algorithm similar to the Maximum-Rank 
heuristic, replacing maxRank function with a random vertex selection 
from SG (see Algorithm 1). Note that the topological sort tX represents a 
vertex of GTS. 

After this, we use the Maximum-Rank heuristic to generate tY . At this 
point we have two topological sorts, tX and tY , the first one created 
without any optimization criterion (random) and the second one 
generated attempting to maximize its distance from the first one. 

At this point, the Maximum-Rank heuristic is executed again with tY 
as input and t′X as outcome. The distance between tX and tY is probably 
smaller than the distance between tY and t′X. Indeed, if we replace the 
heuristic by a BFS algorithm on GTS we would be certain that the dis
tance between tY and t′X would be at least as large as the distance be
tween tX and tY since the maximum distance between tY and another 
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vertex of GTS, which BFS computes, is bounded from below by the dis
tance between tY and tX. 

It is important to note that t′X is always a local optimum within the 
swap neighborhood. In each iteration, the Maximum-Rank heuristic 
keeps track of all sources of the DAG and a source with maximum 
ranking on tY is removed from the graph. Then, if u is next to v in t′X such 
that t′X = (…,u,v,…), then u⇝v or they are reversed on tY . 

5.3. LYNX Negative cut index 

The negative cut index of LYNX is generated using the jumps strat
egy. Both t′X and tY produced by an execution of the proposed heuristic 
are added to the index. The first pair t′X and tY of topological sorts is 
generated by creating tX with a DFS-like algorithm as starting point, and 
next ones with tX as a random topological sort as described in Section 
5.2. 

The reachability query proposed by HD-GDD checks each topological 
sort in the index for every vertex visited during the DFS execution. LYNX 
uses a different strategy. For each vertex u, LYNX saves the topological 
sort where u has the highest position, defined as tH(u), and the topological 
sort where the vertex has the lowest position among all, defined as tF(u). 
This can be done in O(|V|N) where N is the number of topological sorts 
generated. 

With this procedure, we can efficiently prune the search using the 
negative cut index by checking only two topological sorts for each vertex 

explored. For a query u⇝? v, if tH(u)(u) > tH(u)(v) or tF(v)(u) > tF(v)(v), the 
search can be pruned at this point. 

Since u has its highest position in tH(u) in comparison with all other 
stored topological sorts, more vertices are on the left side of u in tH(u) and 

a query u⇝? v can be pruned on u if tH(u)(v) < tH(u)(u). Similarly, tF(v) has 

the highest probability to prune a search as a negative cut index for a 
query to v, since v has lower position in tF(v). 

5.4. LYNX positive cut index 

As in GRAIL, the positive cut index of LYNX is composed by a number 
of assignments of intervals to each vertex. Those assignments are built 
by randomized DFS transversals of G. In each DFS transversal an interval 
is computed for each vertex representing a directed sub-tree of the DAG, 
such that if Lv⊆Lu, then u⇝v. 

In GRAIL, each assignment of intervals in the index is checked for 
each vertex explored during a reachability query in search of a positive 
cut. We propose a strategy (similar to LYNX negative cut index strategy) 
in which the size of the interval (i.e. number of vertices inside the in
terval) assigned to each vertex is computed during each of the DFS 
transversals. Then, for each vertex u we store the index of the interval 
assignment in which the interval of u is larger. Such interval is called pu. 

During the DFS search for a reachability query u⇝? v, for any inter
mediate vertex w explored, if pw(v)⊆pw(w) the search is halted and the 
query is answered positively. 

5.5. Reachability query 

Algorithm 2 depicts the DFS search function used in LYNX to answer 
reachability queries. The negative cut index is checked in line 4 to prune 
the search if the position of u is higher than v in tH(u) or tF(v). Otherwise, if 
the search is not pruned, the positive cut index is used to answer the 
query positively if pu(v)⊆pu(u). If not, the search continues visiting u 
neighbors. 

We now show an example execution of LYNX negative cut index 
construction and of its usage in a reachability query for the graph in 

R.F. da Silva et al.                                                                                                                                                                                                                              



Expert Systems With Applications 181 (2021) 114962

6

Fig. 2. For this example, we define that the index to be constructed 
consists of four topological sorts. Then, we construct two pairs of to
pological sorts using the jumps strategy each of them starting from a 
different random permutation of the vertices of the graph. In this case: 
p1 = (4, 6,5, 2,1, 3) and p2 = (2,4,3,1,6,5). 

The first topological sort t1 of the graph is constructed using the 
Maximum-Rank heuristic on the given graph with p1 as parameter. SG =

{1,2, 3} which are the sources of the graph. Since 3 is the vertex most to 
the right in p1 we add 3 to t1 and remove it from the graph. After this we 
have t1 = (3) and SG = {1,2}. Since 1 is more to the right than 2 in p1 we 
continue adding 1 to t1 and removing it from the graph. We repeat the 
above procedure until SG = ∅. When the heuristic terminates we have 
t1 = (3,1,2,5,6,4). 

The Maximum-Rank heuristic is applied again using t1 as parameter 
and obtaining t2 = (2,1,4,3,6,5). Finally, following the jumps strategy, 
we apply the Maximum-Rank heuristic once again using t2 as parameter 
and obtain t3 = (3,1,5,2,6,4). Then, we add t2 and t3 to the negative cut. 
Fig. 3 shows the three topological sorts constructed in the graph of to
pological sorts of G and the jumps from t1 to t2 and from t2 to t3. 

Repeating the procedure using permutation p2 as parameter we 
obtain t4 = (1, 3, 5,2, 6,4), t5 = (2, 3,6, 1,4, 5) and t6 = (1,3,5,2,4,6). 

Then, the negative cut index is composed by the following topolog
ical sorts:  

• t2 = (2,1,4,3,6,5),  
• t3 = (3,1,5,2,6,4),  
• t5 = (2,3,6,1,4,5),  

• t6 = (1,3,5,2,4,6). 

For each vertex we set tl as the topologial sort in which the vertex 
appear most to the left and th as the topologial sort in which the vertex 
appear most to the right. In case of ties we choose the lowest indexed 
topological sort. The assignment is as following:  

• tl1 = t6 and th1 = t5,  
• tl2 = t2 and th2 = t3,  
• tl3 = t3 and th3 = t2,  
• tl4 = t2 and th4 = t3,  
• tl5 = t3 and th5 = t2,  
• tl6 = t5 and th6 = t6. 

To answer query 1⇝? 3 we check the topological sort in which 1 ap
pears most to the right (th1 = t5) and the one in which 3 appears most to 
the left (tl3 = t3). Since t5(3) < t5(1) we can cut the search and answer 
the query negatively. 

5.6. Additional improvements 

In preprocessing time, we build two Boolean vectors to represent 
which vertices are sources and sinks of the graph. This can be done in 
linear time by checking all arcs of the graph. Then, this simple index is 
used before examining the negative and positive cut index on reach
ability query. The search can be pruned whenever u ∕= v and u is a sink 
or v is a source of the graph. 

It is important to note that this check does not add any new cut in the 
search. However, it improves the performance for all benchmark in
stances tested since sources and sinks usually represent a considerable 
portion of the vertices. Additionally, when this condition is verified, the 
search can be pruned without even the need to check indices and ad
jacency lists. 

6. Experimental results 

To demonstrate the efficiency of LYNX, computational experiments 
were conducted comparing this new approach to FELINE and BFL. BFL is 
the current state-of-the-art as it outperforms all the previous approaches 
for most benchmark instances (Yildirim et al., 2012; Anand et al., 2013; 
Veloso et al., 2014; Wei et al., 2018). All experiments were executed on 
an Intel Core i7-4790 K CPU 4.00 GHz, with 16 GB of RAM and Ubuntu 
12.04. The source code was compiled with g++ with -O3 option. The 
original source codes of FELINE and BFL were kindly provided by the 
authors Veloso et al. (2014) and Su et al. (2017), respectively. 

In the experiments, we focus on the time to answer queries as well as 
the time used for preprocessing, to make the system ready to answer 
queries. From the perspective of an end user of a system that relies on 
answering connectivity queries in graphs, the query times influences the 
real-time delay experienced when using the system, whereas the pre
processing time influences the setup time incurred when the database 
used to generate the graph is updated. These two criteria are therefore 
both important, but for most applications, we expect that the query time 
is more critical than the preprocessing time. 

6.1. Benchmark instances 

Two sets of instances were used as benchmarks, one with real-world 
graphs and the other with synthetic graphs. The first set, shown in 
Table 1, is composed of 14 real-world instances extensively used in the 
literature proposed by Jin et al. (2009) and Yildirim et al. (2012), from a 
wide spectrum of domains. The number of vertices range from 6,000 to 

Fig. 2. Crown graph.  

Fig. 3. Topological sorts t1, t2 and t3 in GTS.  
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25,037,600 with the average vertex degree ranging from 0.5 to 11. 
Instances arXiv1, citeseer2 and citeseerx3 include biblio

graphic citations of scientific papers. Instances go, go_unipprot and 
uniprotenc_150m4 represent knowledge databases from the Gene 
Ontology Project, and instances uniprotenc_22m and uni

protenc_100m are subgraphs of instance uniprotenc_150m. The 
instance pubmed5 includes bibliographic citations of biomedical litera
ture. Instance cit-Patents6 comprises all US patents granted between 
1975 and 1999. Finally, instances govwild7, yago8, twitter (Cha, 
Haddadi, Benevenuto, & Gummadi, 2010) and web-uk9 are large web 
graph databases, ranging from social networks to knowledge databases. 

We use synthetic benchmark instances to show how the performance 
on query time is affected as the number of arcs is increased in the graph. 
This set of instances consists of 20 DAGs with 10 million vertices, with 
the average vertex outdegree between 1 and 20. It is important to note 
that a synthetic instance with more arcs is not an extension of another 
with less arcs. 

The algorithm proposed by Yildirim et al. (2012) is used to generate 
synthetic instances. It starts by creating a random permutation of the 
vertices. Then, for each arc to be added, two vertices are randomly 
picked and an arc is created from the leftmost to the rightmost in the 
generated permutation. 

6.2. Parameters setting 

In this Section we discuss about the parameters setting for BFL and 
LYNX for the next experiments. FELINE has no parameters to be set. Su 
et al. (2017) study best values for the two parameters of BFL: the size of 
the interval s and the number of intervals d. They show that s = 160 and 
d = 10 are good values for dense graphs like cit-Patents. 

To compare with LYNX, we started with the mentioned BFL param
eters values, however they produced only modest results for BFL 
considering all instances tested. Experimental test showed that if we 
increase s, the overall performance of BFL is improved and the query 
time is reduced for instance cit-Patents. Note that cit-Patents is 
the same instance used as benchmark in Su et al. (2017) to improve 
parameters values. 

Then, we use s = 1280 for BFL since it is the maximum value for s 
that does not exceed the overall memory available in the test environ
ment considering all benchmark instances. We also observed that the 
difference between the overall memory used by BFL and the estimated 
index size by the algorithm’s output is much larger than what is ex
pected for the graph in-memory representation, which suggests that this 
measure is not precise. For this reason, we use the overall memory usage 
as measure for all approaches compared. The memory limit of LYNX is 
set equal to the memory actually used by BFL for each instance. In this 
way, the comparison might be unfair for LYNX since it is limited to the 
amount of memory used by BFL but it is not unfair to BFL that is only 
constrained by the availability of physical memory in the computational 
environment. Also, we fix the ratio between negative and positive cut 
indexes to 3 for all instances tested. That is, 3/4 of the available memory 
is used for the negative index and the other 1/4 is used for the positive 
index. 

6.3. Jumps strategy efficiency 

In this section, we analyse the efficiency of the jumps strategy pro
posed for LYNX. To accomplish this, we modified LYNX to work like 
FELINE, with only two topological sorts on its negative cut index. With 
this FELINE version of LYNX as a common base, we create another 
version just including the jumps strategy used in LYNX. 

Table 2 shows the number of negative cuts in the first level of the DFS 
search for 1 million of queries. Each negative cut in the beginning of the 
DFS avoids several vertices to be searched during the graph transversal. 
The results shows that the jumps strategy consistently increases the 
number of negative cuts for almost all graphs tested. The only exception 

Table 1 
Real-world benchmark instances.  

Instance |V| |E| davg  Sources Sinks 

arXiv 6000 66,707 11.1 961 624 
go 6793 13,361 2.0 64 3087 
pubmed 9000 40,028 4.4 2,609 4702 
citeseer 693,947 312,282 0.5 613,497 381,665 
uniprotenc_22m 1,595,444 1,595,442 1.0 556,158 2 
cit-Patents 3,774,768 16,518,947 4.4 515,785 1,685,423 
citeseerx 6,540,401 15,011,260 2.3 567,151 5,740,712 
go_uniprot 6,967,956 34,770,235 5.0 6,946,003 286 
govwild 8,022,880 23,652,610 2.9 1,302,461 5,189,465 
uniprotenc_100m 16,087,295 16,087,293 1.0 14,598,960 2 
yago 16,375,503 25,908,132 1.6 3,003,181 13,372,794 
twitter 18,121,168 18,359,487 1.0 3,138,961 16,383,480 
web-uk 22,753,644 27,221,332 1.2 10,826,445 16,136,119 
uniprotenc_150m 25,037,600 25,037,598 1.0 21,650,057 2  

Table 2 
Influence of jumps strategy on negative cuts.  

Instance Negative cuts without jumps Negative cuts with jumps 

arXiv 597,761 606,196 
go 726,032 753,032 
pubmed 731,600 768,131 
citeseer 955,619 974,621 
uniprotenc_22m 990,420 999,932 
cit-Patents 661,565 686,280 
citeseerx 800,270 812,599 
go_uniprot 997,803 997,904 
govwild 911,708 911,769 
uniprotenc_100m 967,640 996,989 
yago 980,250 980,250 
twitter 853,233 854,114 
web-uk 847,728 848,030 
uniprotenc_150m 951,356 998,352  

1 http://arxiv.org/  
2 http://citeseer.ist.psu.edu  
3 http://citeseerx.ist.psu.edu  
4 http://www.geneontology.org/  
5 http://www.pubmedcentral.nih.gov/  
6 http://www.snap.stanford.edu/  
7 http://govwild.hpi-web.de/project/govwild-project.html  
8 http://www.mpi-inf.mpg.de/yago-naga/yago/  
9 http://law.di.unimi.it/ 
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is the instance yago for which the number remained the same. 
We also highlight the results for instance uniprotenc_150m, the 

largest instance tested in terms of the number of vertices, for which 95.1 
% of the queries can be answered in the first level of the DFS without 
using jumps strategy. However, when we turned on the jumps strategy 
more than 99.8 % of the queries can be answered without transversing 
the graph. 

6.4. Efficiency of LYNX including more topological sorts 

This next experiment shows how LYNX behaves with respect to the 
query time, preprocessing time and index size, as we added more to
pological sorts in the negative cut index. In this test, we use the instance 
cit-Patents, which is one of the most difficult instances from the 
real-world benchmark instance set. The topological sorts are inserted in 
the index in pairs, and the pairs are generated by using the jumps 
strategy. 

Table 3, shows that, preprocessing time and index size grow linearly 
with the number of topological sorts used in the index. On the other 
hand, unlike HD-GDD, LYNX can store more topological sorts in its index 
and each topological sort introduced improves the index reducing the 
query time. The query time is reduced from 17 s with two topological 
sorts, to 94.22 ms for 800 topological sorts. However, for 800 topolog
ical sorts, the index size grows to 12 GB in memory and the pre
processing time exceeds 18 min. 

6.5. Results for real-world graphs 

In our experiments on real-world graphs, each graph is tested in ten 
repetitions with random queries and ten repetitions with balanced 
queries, each repetition using an independent set of one million queries. 
The results reported here are average values over the relevant repeti
tions, unless otherwise stated. Table 4 shows preprocessing time of FE
LINE, BFL and LYNX for real-world benchmark instances. Note that 
LYNX needs more time than FELINE and BFL to create its index due to 
the larger size of the index in comparison with FELINE, and more so
phisticated algorithms involved. However, the time spent is still 
reasonable considering graphs with millions of vertices and arcs that 
will be preprocessed once and queried many times. 

The memory usage for FELINE, BFL and LYNX is shown in Table 5. 
The index size of FELINE increases as the number of vertices grows, to 
store the two topological sorts of the negative cut index and the set of 
interval of the positive cut index. For BFL, the index size increases as the 
number of vertices and arcs is increased, since we fixed the s parameter. 

Table 3 
Influence of the number of topological sorts on LYNX.  

Topological sorts Index size (MB) Preprocessing (s) Query time (ms) 

2 656 5.1 17491.40 
4 685 8.0 5070.33 
6 713 10.5 2636.61 
8 742 13.2 1963.98 
10 771 16.5 1676.95 
20 915 30.2 930.94 
30 1059 45.0 698.12 
40 1203 58.4 547.51 
50 1347 73.4 504.35 
60 1491 88.8 429.32 
70 1635 101.7 371.34 
80 1779 115.3 341.85 
90 1923 128.5 315.88 
100 2067 142.4 289.04 
200 3507 277.6 185.34 
300 4947 415.5 151.15 
400 6387 550.7 129.42 
500 7827 686.7 115.50 
600 9267 825.2 106.28 
700 10707 960.8 98.62 
800 12147 1100.3 94.22  

Table 4 
Preprocessing time in seconds for real-world graphs.  

Instance FELINE BFL LYNX 

arXiv < 0.01  < 0.01  17.13 
go < 0.01  < 0.01  12.24 
pubmed < 0.01  < 0.01  15.37 
citeseer 0.25 0.11 36.81 
uniprotenc_22m 0.53 0.17 66.20 
cit-Patents 4.76 3.32 150.68 
citeseerx 3.87 2.67 179.54 
go_uniprot 3.95 3.06 242.03 
govwild 4.09 2.56 223.18 
uniprotenc_100m 6.71 2.17 537.50 
yago 10.01 4.39 519.93 
twitter 5.69 2.35 493.08 
web-uk 7.55 3.14 638.39 
uniprotenc_150m 11.63 3.75 859.99  

Table 5 
Memory usage (MB) for real-world graphs.  

Instance FELINE BFL LYNX 

arXiv 51 700 710 
go 50 700 710 
pubmed 51 701 711 
citeseer 170 1010 983 
uniprotenc_22m 356 1398 1395 
cit-Patents 908 2549 2,554 
citeseerx 1356 3714 3,748 
go_uniprot 1552 4090 4,154 
govwild 1,742 4,474 4,448 
uniprotenc_100m 3127 7797 7694 
yago 3225 8052 8031 
twitter 3428 8615 8567 
web-uk 4447 10,918 11,105 
uniprotenc_150m 4849 11,777 11,691  

Table 6 
Query time (ms) for 1 million random queries on real-world benchmark 
instances.  

Instance R-ratio FELINE BFL LYNX LYNX
BFL  

95% C.I. 

arXiv 15.52 
% 

767.2 228.6 108.5 0.475 [0.470, 
0.479] 

go 0.24 % 105.7 42.3 26.4 0.623 [0.605, 
0.641] 

pubmed 0.64 % 82.6 41.1 28.5 0.694 [0.682, 
0.705] 

citeseer 0.00 % 65.3 27.3 18.7 0.686 [0.672, 
0.700] 

uniprotenc_22m 0.00 % 32.4 25.2 16.4 0.652 [0.639, 
0.665] 

cit-Patents 0.04 % 5514.9 82.3 440.4 5.350 [5.267, 
5.432] 

citeseerx 0.23 % 165.5 35.7 45.6 1.277 [1.250, 
1.305] 

go_uniprot 0.00 % 42.2 24.2 14.8 0.609 [0.599, 
0.620] 

govwild 0.01 % 145.1 32.7 45.6 1.395 [1.358, 
1.432] 

uniprotenc_100m 0.00 % 48.6 28.6 22.0 0.770 [0.752, 
0.787] 

yago 0.00 % 54.1 27.4 25.7 0.938 [0.931, 
0.945] 

twitter 7.38 % 97.1 34.5 40.4 1.172 [1.155, 
1.189] 

web-uk 8.98 % 246.1 61.1 53.9 0.883 [0.863, 
0.904] 

uniprotenc_150m 0.00 % 51.6 30.6 24.9 0.813 [0.803, 
0.824] 

geom. mean     0.923   
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The memory usage of LYNX is limited to the one used by BFL for all 
instances tested with possibly a small variation due to how operational 
system allocates memory. 

Table 6 shows the average query time for 10 executions of one 
million random queries. A random query is created by picking random 
initial and final vertices. BFL and LYNX outperform FELINE for all in
stances tested. The results obtained by LYNX are on average slightly 
better than those obtained by BFL. However, BFL achieved shorter query 
times for 4 out of 14 instances. It is important to note that most instances 
have a small average vertex degree and also the number of positive 
random queries (R-ratio) is less than 1 %. Although this instance set is 
commomly used on literature, these numbers show that they have very 
particular features that can influence the comparison with approaches 
that are focused on graphs with lower R-ratio, like BFL. 

The table also shows 95% confidence intervals for the value of LYNX
BFL , 

which measures the relative performance of LYNX compared to BFL. 
Since each execution uses one million queries, the standard deviation for 
the performance metric is small, and the confidence interval is very 
narrow. A paired t-test is used to compare the average query time of 
LYNX and BFL over the ten executions, revealing that the differences are 
statistically significant at any reasonable level of confidence. 

Next, Table 7 shows average results for 10 executions of 500 thou
sand negative and 500 thousand positive queries. With this test we 
intend to analyze the performance of LYNX in comparison to BFL and 
FELINE in a possible realistic scenario with a larger set of positive 
queries. Again, LYNX has better results for 10 out of 14 instances, with a 
rather large average improvement over BFL. In this case, paired t-tests 
reveal that the differences are statistically significant for all instances 
except the citeseerx instance, where the P-value is 0.355. Also note that 
for this instance the 95% confidence interval for LYNX

BFL contains the value 
1. 

6.6. Results for synthetic graphs 

Table 8 shows the index preprocessing time for synthetic instances 
with 10 million vertices and average vertex outdegree between 1 to 20. 
The preprocessing time of LYNX is higher than FELINE and BFL. How
ever, it grows slowly as the number of arcs is increased. In fact, while 
BFL increases its preprocessing time from 3.22 s for the smallest instance 
to 25.54 s for the largest (an increase of 7.9 times), LYNX preprocessing 
time increases from 314.0 to 904.65 s for the same instances (an increase 
of 2.9 times). 

The memory usage for synthetic instances is shown in Table 9. Again, 
FELINE uses less memory than BFL and LYNX. The memory needed by 
BFL increases as the number of arcs increase for a fixed s. The memory 
usage for LYNX is limited by the one used for BFL for each instance. 

Table 10 shows the query time of for 1 million random queries. The 
query time of FELINE grows faster than BFL and LYNX, which can be also 
observed graphically on Fig. 4. For an average vertex degree up to 11, 
with a small R-ratio (number of positive queries), BFL overcomes LYNX. 
However, as the number of arcs grows and also the R-ratio, LYNX clearly 
outperforms BFL and the difference between the two becomes larger. 

For benchmark instance syn-10-20, with an R-ratio of 22.97 %, 
LYNX runs in less then 40 % of the time used by BFL. For this instance, 
LYNX uses 904 s to generate its index and BFL uses 25 s. The pre
processing time and query time of 1 million queries together is 1,760 s 
for LYNX against 2,210 for BFL. Therefore, even though the pre
processing time for LYNX is much higher than BFL, LYNX overcomes BFL 
by far in the overall result for instances with high R-ratio. 

From these experiments we can conclude that LYNX succeeded in 
improving the performance of FELINE. The improvement is such, that 
LYNX is competitive with the state of the art algorithm. There is not a 
clear dominating approach between LYNX and BFL. LYNX appear to be 
better on average in the benchmark data-set. Besides, on synthetic in
stances with 10 million vertices BFL tends to be better only for very 
sparse graphs while the performance of LYNX is much better than BFL 
for denser graphs. 

When considering algorithms for connectivity queries in graphs, one 
may wish to find an algorithm that both minimizes query times and 

Table 7 
Query time (ms) for 1 million balanced queries on real-world benchmark 
instances.  

Instance FELINE BFL LYNX LYNX
BFL  

95% C.I. 

arXiv 991.3 367.1 163.2 0.444 [0.438, 0.451] 
go 100.9 73.9 43.3 0.586 [0.579, 0.593] 
pubmed 183.6 120.4 74.7 0.621 [0.612, 0.630] 
citeseer 89.7 69.5 44.4 0.639 [0.629, 0.650] 
uniprotenc_22m 86.5 57.6 33.7 0.584 [0.580, 0.589] 
cit-Patents 18605.6 870.3 2186.5 2.513 [2.487, 2.538] 
citeseerx 304.3 125.9 125.0 0.996 [0.954, 1.038] 
go_uniprot 390.4 401.2 137.1 0.342 [0.339, 0.344] 
govwild 275.8 108.9 115.4 1.060 [1.040, 1.079] 
uniprotenc_100m 141.1 83.1 56.0 0.673 [0.665, 0.681] 
yago 67.6 39.5 48.5 1.228 [1.217, 1.239] 
twitter 62.3 29.4 33.3 1.133 [1.117, 1.148] 
web-uk 200.0 98.4 73.6 0.747 [0.735, 0.760] 
uniprotenc_150m 164.7 98.4 68.7 0.698 [0.692, 0.704] 

geom. mean    0.772   

Table 8 
Preprocessing time (s) for synthetic instances.  

Instance FELINE BFL LYNX 

syn-10M-1 7.58 3.22 314.00 
syn-10M-2 10.05 4.91 376.19 
syn-10M-3 11.23 6.27 405.51 
syn-10M-4 12.11 7.61 426.92 
syn-10M-5 12.95 8.93 447.52 
syn-10M-6 13.72 10.17 472.29 
syn-10M-7 14.43 11.43 492.01 
syn-10M-8 15.11 12.39 516.34 
syn-10M-9 15.71 13.66 539.03 
syn-10M-10 16.49 14.80 566.45 
syn-10M-11 17.35 16.24 606.11 
syn-10M-12 18.06 17.03 637.76 
syn-10M-13 18.58 18.10 669.48 
syn-10M-14 19.40 19.20 708.53 
syn-10M-15 20.25 20.29 731.35 
syn-10M-16 20.70 21.33 762.31 
syn-10M-17 21.32 22.65 817.96 
syn-10M-18 22.00 23.40 846.62 
syn-10M-19 22.68 24.55 881.66 
syn-10M-20 23.45 25.54 904.65  

Table 9 
Memory usage (MB) for synthetic instances.  

Instance FELINE BFL LYNX 

syn-10M-1 1947 5090 4815 
syn-10M-2 2095 5240 5031 
syn-10M-3 2207 5372 5258 
syn-10M-4 2311 5522 5415 
syn-10M-5 2417 5683 5583 
syn-10M-6 2526 5852 5827 
syn-10M-7 2635 6027 5994 
syn-10M-8 2753 6208 6241 
syn-10M-9 2878 6392 6422 
syn-10M-10 2994 6577 6604 
syn-10M-11 3114 6760 6859 
syn-10M-12 3224 6936 7107 
syn-10M-13 3328 7108 7275 
syn-10M-14 3441 7284 7519 
syn-10M-15 3559 7463 7687 
syn-10M-16 3685 7649 7811 
syn-10M-17 3813 7843 8127 
syn-10M-18 3948 8043 8321 
syn-10M-19 4083 8241 8590 
syn-10M-20 4211 8440 8703  
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preprocessing times. As illustrated above, this instead forms a trade-off, 
where algorithms that invest more time in the preprocessing phase can 
gain an advantage in the phase of actively testing queries. LYNX is not 
dominated by any existing algorithms in terms of this trade-off, as no 
algorithm currently has both lower preprocessing times and query times 
than LYNX. 

Both LYNX and BFL could be further improved by using the SCARAB 
framework (Jin et al., 2012) and DAG Reduction (Zhou et al., 2017; 
Zhou et al., 2018) which can speed up Refined Online Search approaches 
by reducing the graph size. Such experiment is outside the scope of this 
work. 

7. Conclusion 

In this work, we showed opportunities of improvement over recent 
approaches for reachability on very large graphs. A pathological case for 
FELINE is identified. We showed that the heuristic used by FELINE 
solves a problem whose optimal solution is limited to the eccentricity of 
the vertex representing tX in the graph of topological sorts. BFL and IP 
have a limited use of positive cuts, using the same strategy by Yildirim 
et al. (2012) that is improved in this work. 

We proposed a novel approach called LYNX that overcomes some of 
the FELINE shortcomings and creates better indices. It allows a larger 
negative cut and positive cut index increasing its performance. 

Computational results show that LYNX outperforms FELINE and has 
competitive results in comparison with BFL for real-world instances, 9% 
better in average using the same index size. We show experiments with 
synthetic instances in which, even using a larger preprocessing time, 
LYNX consistently outperforms BFL in the overall results (preprocessing 
plus query time) as the number of arcs and the reachability ratio grows. 

From these experiments we can conclude that LYNX succeeded in 
improving the performance of FELINE. Moreover, the improvement is 
such, that LYNX is competitive with state-of-the-art algorithms. 

However, the main limitation of LYNX lies in its higher preprocessing 
time. For this reason, it is most suitable for large static networks in 
which a high number of queries need to be answered fast. Whenever the 
underlying graph is updated frequently, the added preprocessing time 
may be prohibitive, and other methods with longer query times may be 
preferred. This is a trade-off that must be addressed for each application 
separately, depending on the needs of the end users. 

Future work includes collecting more real-world instances with a 
high number of vertices and arcs, and combining LYNX with the 
SACARAB framework (Jin et al., 2012) which can speed up Refined 
Online Search approaches by reducing the graph size. Once combined we 
will be able to compare the results of LYNX with the other state-of-the- 
art approaches in reduced graphs. Finally, rather than working on 
graphs extracted from various applications, it remains to implement 
LYNX as a part of an actual expert system to evaluate how the improved 
query times can influence the behavior of the end users. 
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Table 10 
Query time (ms) for 1 million random queries on synthetic benchmark instances  

Instance R-ratio FELINE BFL LYNX LYNX
BFL  

syn-10M-1 0.00 % 80.07 34.27 37.04 108.07 % 
syn-10M-2 0.00 % 283.27 44.45 52.57 118.26 % 
syn-10M-3 0.00 % 990.78 47.28 110.10 232.86 % 
syn-10M-4 0.00 % 4,143.29 60.28 359.48 596.39 % 
syn-10M-5 0.01 % 19,189.83 223.53 1,513.31 677.00 % 
syn-10M-6 0.12 % 88,920.91 1,480.11 6,729.79 454.68 % 
syn-10M-7 0.57 % 371,138.62 9,023.79 28,471.64 315.52 % 
syn-10M-8 1.66 % 1,011,163.88 33,194.64 78,998.78 237.99 % 
syn-10M-9 3.47 % 2,039,423.75 86,928.96 164,553.57 189.30 % 
syn-10M-10 5.56 % 3,094,120.25 171,151.09 255,431.69 149.24 % 
syn-10M-11 7.80 % 4,143,705.25 284,854.66 346,045.91 121.48 % 
syn-10M-12 9.97 % 5,044,193.00 437,610.60 432,520.21 98.84 % 
syn-10M-13 12.05 % 5,816,364.50 607,268.01 508,844.34 83.79 % 
syn-10M-14 14.00 % 6,793,176.50 811,775.72 562,137.75 69.25 % 
syn-10M-15 15.80 % 7,713,948.50 1,019,217.07 616,853.78 60.52 % 
syn-10M-16 17.43 % 8,062,516.00 1,235,536.72 661,500.98 53.54 % 
syn-10M-17 19.06 % 8,315,207.00 1,478,750.13 731,334.65 49.46 % 
syn-10M-18 20.39 % 9,561,146.00 1,698,724.03 772,635.99 45.48 % 
syn-10M-19 21.67 % 9,918,577.00 1,925,852.27 772,956.71 40.14 % 
syn-10M-20 22.97 % 9,804,729.00 2,185,029.81 856,852.79 39.21 %  

Fig. 4. FELINE, BFL and LYNX comparison on query time for random queries as 
the number of arcs is increased. 
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the work reported in this paper. 
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