
TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

1166                                                                                                                      TEM Journal – Volume 10 / Number 3 / 2021. 

Design Patterns Discovery in Source Code: 
Novel Technique Using Substring Match 

 
Akshara Pande 1, Vivekanand Pant 2, Manjari Gupta 3, Alok Mishra 4,5 

 
1Graphic Era Hill University, Bell Road, Clement Town, Dehradun, India 

2IBM, IBM India Private Ltd., Gurugram, India 
3(Computer Science), DST-CIMS, Institute of Science, BHU, Varanasi, India 

4Faculty of Logistics, Molde University College (Specialized University in Logistics), 6410 Molde, Norway 
5Department of Software Engineering, Atilim University, Ankara 06830, Turkey 

 
Abstract – The role of design pattern mining is a very 

significant strategy of re-engineering as with the help 
of detection one could easily understand complex 
systems. Of course, identifying a design pattern is not 
always a simple task. Additionally, pattern recovering 
methods often encounter problems dealing with space 
outburst for extensive systems. This paper introduces a 
new way to discover a design pattern based on an 
Impact Analysis matrix followed by substring match. 
UML diagrams corresponding to codes are created 
using Visual Paradigm Enterprise. Impact Analysis 
matrices of these UML diagrams are converted to 
string format. Considering system code string as main 
string and design pattern string as a substring, the 
main string is further decomposed. A substring match 
technique is developed here to discover design patterns 
in the source code. Overall, this procedure has the 
potential to convert the representation of system design 
and design pattern in ingenious shapes. In addition, 
this method has the advantage of moderation in the 
size. Therefore, this approach is beneficial for Software 
professionals and researchers due to its simplicity.  

   

Keywords – Design patterns, UML diagrams, Visual 
Paradigm Enterprise software, Impact Analysis 
Matrix, Substring match. 

 

 
DOI: 10.18421/TEM103‐21 
https://doi.org/10.18421/TEM103‐21 
 

Corresponding author: Manjari Gupta,  

(Computer Science), DST-CIMS, Institute of Science, 
BHU, Varanasi, India. 
Email: manjari@bhu.ac.in 
 

Received:   23 May 2021. 
Revised:     29 June 2021. 
Accepted:   09 July 2021. 
Published:  27 August 2021. 
 

©  2021  Akshara  Pande  et  al;  published  by 
UIKTEN.  This  work  is  licensed  under  the  Creative 
Commons  Attribution‐NonCommercial‐NoDerivs  4.0 
License. 
  
The  article  is  published  with  Open  Access  at 
www.temjournal.com 

 

1. Introduction 
 
A design pattern is a general recurring explanation 

for commonly encountered issues in software design. 
A design pattern being not a final solution cannot be 
directly converted to code but provides a direction of 
solving an issue and is reusable in many different 
situations. Since software developers tend to unravel 
many similar sorts of problems, it is advisable to 
integrate similar elements to other methods in any 
software solution. It is an illustration or format 
providing ways of tackling an issue that is useful in a 
wide range of circumstances [1] and reduces the 
technical risk of projects by avoiding the use of new, 
unconventional designs. Design patterns are well 
written and understood by software developers, so 
that the application is understood in certain terms and 
the final product will have better comprehension 
value. If the solution is easy to understand, the 
extension will be easier to maintain. When 
considering the development pipeline of a project, 
development time gradually decreases as awareness 
of design pattern increases. Therefore, the field of 
design patterns attract researchers from academia and 
industry both. 

In the present study, we will focus on the issue of 
identifying the design patterns, more specifically 
whether a specific design pattern is present in source 
code or not, with the help of Impact Analysis Matrix 
followed by substring match. We use the matrix-
based approach to simplify and speed up the design 
pattern identification process.  

 
1.1. Problem Statement 

 
 Researchers developed different tools and 

techniques for automatically detecting design 
patterns from source code. It has been seen that these 
tools and techniques do not agree on their results if 
these are applied to the same case study. There are 
many reasons for this: 1) They generally use different 
specifications of design patterns as there is no formal 



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

TEM Journal – Volume 10 / Number 3 / 2021.                                                                                                                      1167 

definition of design patterns; 2) Generally, tools are 
developed by focusing on some particular (one/more) 
design patterns.  

 In this paper we propose a technique that is 
applicable on detecting any design pattern. In this 
paper, we describe our technique by using two design 
patterns: factory method and proxy. However, the 
same way it can be applied to detect any other design 
pattern. 
 
1.2. Objectives and Research Questions 
 

  The main motivation to identify design patterns is 
to provide a good perspective to understand the 
original design decisions. This is also beneficial in 
various areas of software engineering such as re-
engineering, refactoring, maintenance, evaluating 
software quality, understanding programs, and 
enhancing software documentation.  
  This section presents research questions that will be 
answered in this paper: 
 

RQ1: Does the change in representation of system 
design and design pattern make the process of design 
pattern detection easy? 
Motivation: To study and analyze the effectiveness 
of string format representation of design patterns on 
the results of their detection process. 
RQ2: Are we able to find design pattern occurrence 
if all the relationships are considered altogether? 
Motivation: To study the impact of one/all 
relationships on the results of discovering design 
patterns process. 
 
1.3. Contributions 
 

In summary, the main factors of proposed method 
for discovering design patterns are as follows: 

 

1) In this paper we are able to find design pattern 
existence with the help of matching between two 
substrings, one corresponding to system design 
and other corresponding to design pattern. The 
matching could be complete matching or partial 
matching based on relationships. If all 
relationships present in design pattern are there 
in system design too, this will belong to 
complete match. But if only one or few 
relationships exist in design patterns that are 
there in system design, then it will be a partial 
match case. 

2) We have implemented our code in python and 
python is portable. So, there is no dependency on 
the platform as to run the same code, and we do 
not have to make any change according to the 
operating system.  

3) This method provides decomposition of system 
design. First a size of relationship matrix of a 
particular design pattern is considered. Assuming 

the size of design pattern as a window, traversing 
of window is done for the same relationship in 
the system under consideration.   

4) Simple: Once we have a set of decomposed 
substrings corresponding to system design, the 
task of design pattern detection becomes very 
easy with the help of the membership operator 
(“in”) of python. 

  

The paper is organized as follows. In section 2, we 
discuss the background study of the paper. In section 
3 we present related works. Research methodology 
and our proposed design patterns detection approach 
is explained in section 4. Section 5 shows 
experimental results and discussion. Finally, we 
conclude and give future research scope in section 6.  
 

 

2. Background 
 

2.1. Design Patterns 
 

  Design patterns are general solutions provided by 
expert designers to common design problems. 
Twenty-three design patterns were given by four 
authors Erich Gamma, Richard Helm, Ralph Johnson 
and John Vlisside in the year 1994 [1]. Design 
patterns are the best evolved solutions to common 
problems of software development solved by expert 
designers over a long period of time. Therefore, these 
are helpful to novice developers as they directly use 
these solutions without wasting their time to reinvent 
the solution again and again. Since design patterns 
have been reused several times, we can say these are 
time tested and thus software development using 
design patterns improves quality of product as well 
as productivity of developers. As we know business 
requirements demand short delivery time for 
software, design patterns can help us in achieving 
this goal also. Therefore, design patterns help in 
achieving all three basic drivers cost, quality and 
productivity in a software product.  
 

2.2. Visual Paradigm Enterprise 
 

  Visual Paradigm is a tool that supports SysML, 
BPMN (Business Process Modelling Notation) and 
UML2.  It also includes report production and code 
engineering features.  It also contains the feature of 
reverse engineering from code. Besides this, Entity 
Relationship Diagrams (ERD) and Object Relational 
Mapping Diagrams (ORM) are both also supported 
by Visual Paradigm. It can also be used to identify 
the relationships among model elements with the use 
of a matrix. Two enhancements are made in the latest 
version of visual paradigm: i) supported multiple 
relationship types; ii) supported showing elements' 
user ID in matrix's column and row header. 
(https://en.wikipedia.org/wiki/Visual_Paradigm). 
 



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

1168                                                                                                                      TEM Journal – Volume 10 / Number 3 / 2021. 

2.3. UML Diagram Corresponding to Source Code 
and Design Patterns 

 

We first selected Java source code for system 
design and for design patterns and did the reverse 
engineering to convert code into UML diagrams with 
the help of Visual Paradigm Enterprise 
(https://www.visual-paradigm.com/). The UML 
diagram of source code 
(https://www.javatpoint.com/abstract-factory-pattern) 
is illustrated in Figure 2. This UML diagram consists 
of two relationships Generalization and Realization 
respectively. The corresponding matrix of UML 
diagrams can be generated with the help of the 
Impact Analysis feature of Visual Paradigm 
Enterprise software. 

We selected two design patterns, factory method 
and proxy design patterns for present study. 
However, as we mentioned above our technique can 
be used to detect instances of any design pattern. In 
the factory method design pattern, it is possible for 
subclasses to create objects. Factory method design 
pattern makes design flexible and less complicated. 
Abstract factory design pattern is somewhat similar 
to factory method but Abstract factory has family 
prominence. The next one is the Proxy design pattern 
which is structural and allows us to allocate an 
alternative for another object. We are allowed to 
perform something prior or post request is sent to the 
original object. Factory method and proxy design 
pattern corresponding UML diagrams generated are 
shown in Figure 3(a) and Figure 3(b) respectively. 
Factory method design pattern only consists of 
Generalization relationship whereas Proxy design 
pattern consists of two relationships: Realization and 
Association. Impact Analysis Matrix of source code 
as well as of design pattern can be downloaded in 
comma separated values (csv) format. Impact 
Analysis Matrix contains the information about 
relationships present in the code.  
 
 
 
 
 

3. Related Work 
 

Gamma et al. also famously called “Gang of Four 
(GoF)” suggested classic formats for their 23 design 
patterns [1]. Design pattern has continued to evolve 
since the release of the GoF book, primarily because 
software developers face new challenges related to 
hardware changes and requirements. Now-a-days 
Design patterns are divided into four categories: 
creational, structural, behavioral, and concurrency. 
Using classes and object interactions, design patterns 
are utilized to advance software maintenance. The 
information about design patterns utilized in source 
code assists programmers to better understand the 
design. During the re-engineering, identification of 
design patterns is significant in order to get essential 
knowledge. In the past, several design pattern mining 
techniques have already been designed. One of the 
reports put forth an attempt towards the automatic 
identification of design patterns with the help of 
reverse engineering of small-talk code [2]. A couple 
of advances of design pattern mining focus upon 
formal specification such as the essential role for 
composition and formalization of design patterns [3], 
[4]. In one of the research, database inquiries were 
done to recoup the events of design patterns [5]. 

In the most recent decade, graph theory has a huge 
assortment of uses to explain numerous functional 
and genuine applications. One of the significant 
applications of graph theory is in the area of design 
pattern detection. Some of the graph matching 
methods are applied to compute the closeness of two 
vertices [6]. In one of the reports, mining of design 
patterns were done using similarity scoring 
algorithms [7]. Nonetheless the fundamental 
downside of this algorithm is that it was not capable 
of matching the similarity of two graphs. To 
overcome this issue, a research [8] suggested another 
strategy of Template Matching which ascertains the 
similitude between subgraphs. 

In some of the design pattern detection techniques 
UML diagrams are likewise utilized [9], [10]. In 
recent years, Machine learning is also being used in 
design patterns detection and similar problems [11], 
[12].  

 



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

TEM Journal – Volume 10 / Number 3 / 2021.                                                                                                                      1169 

 

 
 

Figure 1. UML Diagram generated by reverse-engineering of Java source code with the help of Visual Paradigm 
Enterprise software (https://www.visual-paradigm.com/) 

 

 
(a) Factory method design pattern



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

1170                                                                                                                      TEM Journal – Volume 10 / Number 3 / 2021. 

 
(b) Proxy design pattern 

 

Figure 2. UML Diagrams of design patterns generated by reverse-engineering of Java source code with the help of 
Visual Paradigm Enterprise software (https://www.visual-paradigm.com/) 

 

 
Figure 3. Steps of the methodology 

 

4. Research Methodology and the Proposed 
Approach 

 
The methodology consists of several steps. These 

are the processing steps basically starting from code 
to pattern generation.  It is very difficult to 
understand the presence of any design pattern from 
the code directly. UML diagrams are simpler and 
quicker to understand than textual content. So, these 
diagrams are better suited than a huge number of 
lines of code description. Therefore, we converted 
system design and design pattern Java code into 

UML diagrams with the help of Visual Paradigm 
Enterprise.  

Visual Paradigm Enterprise also provides an 
automatically formed matrix called Impact Analysis 
Matrix. This matrix helps to determine the 
connectivity and relationships between elements. But 
this matrix may contain many null values as well so 
preprocessing is required to handle them and after 
preprocessing, we get the refined matrices.  

Further refined matrices may be extracted for 
particular relationships. The relationship matrix of 
refined system design is further decomposed in the 



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

TEM Journal – Volume 10 / Number 3 / 2021.                                                                                                                      1171 

size of design pattern. String patterns are generated 
for both system design and design patterns from the 
refined relationship matrices. Then substring match 
is applied to find the occurrence of design pattern in 
system design. The block diagram, presented in 
Figure 3, depicts the overall steps involved. We also 
discussed each step-in detail in this section.  
 
4.1. Pre-processing of Impact Analysis Matrix 
 

   We used a jupyter notebook (Anaconda Navigator) 
to read csv files corresponding to Impact Analysis 
Matrices of source code and design pattern. We used 
panda’s dataframe to read the csv file. The ‘NaN’ 
values present in the dataframe were replaced by zero 
as they indicate absence of any relationship between 
two classes. Each class is treated as nodes of the 
graph. To denote a relationship between two classes, 
we used specific values in the dataframe. For 
instance, we assumed ‘1’ for presence of 
Generalization relationship, ‘2’ for Realization 
relationship and ‘3’ for Association relationship. 
Supplementary Table 1 denotes Impact Analysis 
dataframe for system design with relationships 
Generalization and Realization. However, Table 2 
and Table 3 denote Impact Analysis data frames for 
factory method and proxy design patterns with their 
relationships respectively. 
 

Table 1. Impact Analysis dataframe for system design after 
pre-processing 
 

 
 

Table 2. Impact Analysis dataframe for factory method 
design pattern after pre-processing 
 

 
 

Table 3. Impact Analysis dataframe for proxy design 
pattern after pre-processing 
 

 
 

4.2. Relationship-wise extraction of Dataframe 
 

Particular relationship specific data frames were 
generated. In the current scenario, system design 
consists of two relationships hence two data frames 
were generated: one for Generalization (Table 4) and 
other for Realization (Table 5). Likewise, data 
frames were generated for design patterns as well. 
Factory method design pattern consists of only one 
relationship i.e. Generalization so there is no need to 
extract that. But the proxy design pattern consists of 
two relationships - Realization (Table 6) and 
Association (Table 7)) hence two data frames were 
generated for that.   
 

Table 4. Generalization relationship dataframe for system 
design 
 

 
 

Table 5. Realization relationship dataframe for system 
design 
 

 
 

Table 6. Realization relationship dataframe for proxy 
design pattern 
 

 
 

Table 7. Association relationship dataframe for proxy 
design pattern 
 

 
 

4.3. Decomposition of Relationship dataframe of 
System Design 

 

   The relationship Ri of system design dataframe was 
taken into account and decomposed further in the 
size of relationship Ri of design pattern dataframe. 
The relationship Ri of design pattern dataframe acted 
like a window which would scroll over the 
relationship Ri of system design dataframe. For the 
generalization relationship of factory method design 
pattern (size 4X4), we get 25 data frames 
corresponding to the generalization relationship of 
system design (Table 8). 



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

1172                                                                                                                      TEM Journal – Volume 10 / Number 3 / 2021. 

Table 8. Illustration of decomposition of system design for 
generalization relationship 
 

 
 

4.4.  Pattern Formation 
 

  All the relationship data frames have only two 
values: ‘0’ indicates absence of relationship and ‘k’ 
indicates presence of relationship ‘k’ between two 
classes. The string consisting of 0 and k can be 
generated corresponding to the dataframe.  Here, we 
generated strings for relationship dataframes of 
decomposed system design and design pattern. 
 
4.5.  Substring Match Algorithm 
 

Substring match algorithm actually consists of 
three main steps: 
 

a. Decomposition of relationship dataframe of 
system design; 

b. String generation for relationship dataframes of 
system design and design pattern; 

c. Substring match. 
 
4.5.1. Algorithm: decomp_relationship_source(Si,DPi) 

 

1. Determine the size of ‘i’ relationship dataframe 
of design pattern DP (n=len(DPi)   

2. Determine the size of ‘i’ relationship dataframe 
of Source code S (m=len(Si)   

3. Find all n*n dataframes in m*m dataframe 
:decomp(m,n) 

4. decomp(Si,m,n) 
 

4.1. for each x extract entries upto m-n+1 in rows 
of dataframe Si 

4.2. for each y extract entries upto m-n+1 in 
columns of dataframe Si 

4.3. Obtained all the dataframes of size n*n; 
number of dataframes=(m-n+1)*(m-n+1) 

 
4.5.2. Algorithm: String_gen(df) 
 

1. Determine the size of dataframe df (k=len(df)) 
2. Assume presence of relationship between two 

classes as Relationship_status = p 
3. Absence of relationship between two classes is 

Relationship_status = 0 
4. For p each 0th row to kth row store 

relationship_status 

4.5.3. Substring_match(Si,DPi) 
 

1. Call decomp_relationship_source(Si,DPi); this 
function will return an array of decomposed 
dataframes  (name it as arr_decomp_Si) of 
source code Si for relationship i 

2. Call String_gen(DPi); this function will generate 
string for dataframe of DP for relationship i 

3. Call String_gen(arr_decomp_Si); this function 
will generate strings for set of dataframes of 
arr_decomp_S for relationship i 

4. Match whether string of DPi is a subset of set of 
strings of arr_decomp_Si 

 

5. Experimental Results and Discussion 
 

In this section, we would explain the 
Substring_match algorithm with the help of factory 
method and proxy design patterns. The purpose is to 
find occurrence of design patterns in provided system 
design. 
 

5.1. Detecting Factory Method design pattern 
instances in System Design 

 

After preprocessing of dataframes of design pattern 
and system design, relationship-wise different 
dataframes were extracted. Factory method design 
pattern has only one relationship generalization 
(Table 2). The main source code has two 
relationships: generalization and realization, hence 
two dataframes corresponding to each relationship 
were obtained (Table 4 and Table 5). The objective 
was to find relationship generalization of dataframe 
of design pattern in the dataframe of same 
relationship for system design. System design was 
further decomposed based on the size of 
generalization dataframe of design pattern and we 
obtained 25 sets of system design (Figure SF1 
(Supplementary Figure 1)). 

Next was to generate strings for generalization 
relationship for design pattern and decomposed 
system design. Generalization relationship of factory 
method design pattern formed string: 
'0001000100010000'. However, generalization 
relationship of decomposed system design formed 25 
strings as: 

'0000000010000000','0000000000000000','000000
0000000000','0000000000000001','00000000000000
10','0000100000000000','0000000000000000','00000
00000000000','0000000000010001','0000000000100
010','1000000000000000','0000000000000000','0000
000000000000','0000000100010001','000000100010
0010','0000000000000000','0000000000000000','000
0000000000000','0001000100010000','00100010001
00000','0000000000001000','0000000000000000','00
00000000000000','0001000100000000','0010001000
000000' 



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

TEM Journal – Volume 10 / Number 3 / 2021.                                                                                                                      1173 

   Next objective was to find the occurrence of a 
string of design patterns in strings of a set of system 
designs for the same relationship. We found that 
factory method design patterns are present in system 
design for generalization relationships (Figure 4). 
 

 
 

Figure 4. Screenshot of output for searching occurrence of 
string of factory method design pattern for generalization 

relationship (s1) in sets of strings for system design for 
generalization relationship (arr1) of system design 

 
5.2.  Find presence of Proxy design Pattern in  

System Design 
 

Proxy design pattern has two relationships 
realization and association namely, presented in 
Table 6 and 7 respectively. Our objective was to 
establish if a proxy design pattern is present in 
system design or not. System design realization 
relationship was further decomposed based on the 
size of dataframe of design pattern and we obtained 
16 sets of system design (Figure SF2 (Supplementary 
Figure 2)). 
   Next was to generate strings for design pattern and 
decomposed system design. Proxy design pattern 
formed string: ‘000200230’ 
However, realization relationship of decomposed 
system design formed 16 strings as: 
'000000020','000000200','000000000','000000000','0
00020020','000200200','000000000','000000000','020
020000','200200000','000000000','000000000','02000
0020','200000200','000000000','000000000' 
   Next objective was to find occurrence of string of 
design pattern in strings of set of system design. We 
found that proxy design pattern does not exist in 
system design, presented in Figure 5. 
 

 
 

Figure 5. Screenshot of output for searching occurrence of 
string of proxy design pattern (s2) in sets of strings for 

system design for realization relationship (arr3) of system 
design 

However, if we drop association relationships and 
consider only the realization relationship of the proxy 
design pattern, in that case the formed string is: 
'000200200'. And we found out a proxy design 
pattern is present in system design for the same 
relationship realization, shown in Figure 6. 
 

 
 

Figure 6. Screenshot of output for searching occurrence of 
string of proxy design pattern for realization relationship 

(s3) in sets of strings for system design for realization 
relationship (arr3) of system design 

 

Analysis of Results 
 

RQ1: The answer to the first research question we 
can provide as follows:  
Substring match algorithm (section 4.5) is a simple 
method which contains two important functions: 
 

i. decomp_relationship_source() - it allows us to 
decompose the system design () in the size of the   
design pattern.  

ii. String_gen() - Using this function, we are able to 
convert matrices of decomposed system design 
and design patterns into strings. It is pretty much 
obvious from above results that once we obtain 
strings corresponding to system design and 
design pattern we can easily perform matching 
between both.  

                           

RQ2: From the above result it is clear that we have to 
consider one relationship at a time. In the case of 
Proxy Design Pattern (section 5.2), two relationships 
realization and association are considered altogether. 
But in system design only the realization relationship 
is present. Thus, substring match algorithm results 
non-existence of proxy design pattern. But when we 
drop association relationship and consider realization 
relationship, the same substring match algorithm 
shows the presence of proxy design pattern in system 
design.  

 

6. Conclusion and Future Research 
 

   Common solutions exist in software design patterns 
for fixing troubles in the massive software systems. 
They play important roles in forward and reverse 
engineering both. Design pattern detection enhances 
understandability and quality. We hope that our work 
will be beneficial for software professionals and 
researchers. One of the advantages of the method is 
to identify design patterns based on relationships.     
  The second advantage of our method is simple 
decomposition of system design matrix in the length 
of design pattern. It makes the process of presenting 
system design in terms of substrings easier. This 
paper gives the insights of the presence of three kinds 
of design pattern detection using substring match: 
complete match, partial match and no match. For 
instance, factory method design pattern is completely 
detected in source design as this design pattern 



TEM Journal. Volume 10, Issue 3, Pages 1166‐1174, ISSN 2217‐8309, DOI: 10.18421/TEM103‐21, August 2021. 

1174                                                                                                                      TEM Journal – Volume 10 / Number 3 / 2021. 

contains only one relationship: generalization. In the 
case of proxy design pattern, out of two only one 
relationship (realization) was found in system design, 
this indicates partial match. If none of design pattern 
relationships is found in system design, this will be 
the case of no match. 
   In the present paper, we use Visual Paradigm 
Enterprise software to generate Impact Analysis 
Matrix. In future we will further extend this work and 
focus on developing a tool which will be able to 
generate matrices by itself so that users need not to 
run around to perform different tasks. Thus, our 
future tool will be more user friendly to detect design 
patterns. The limitation of the study is that we are not 
able to include more than one relationship for design 
pattern detection. In future, we will try to improve 
the method so that we can take all the relationships 
altogether, and our algorithm will be able to provide 
relationship status specifically for both presence and 
absence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

References 
 
[1]. Gamma, E., Helm, R., Johnson, R., Vlissides, J., & 

Patterns, D. (1995). Elements of reusable object-
oriented software (Vol. 99). Reading, Massachusetts: 
Addison-Wesley. 

[2]. Brown, K. (1996). Design reverse-engineering and 
automated design-pattern detection in Smalltalk. 
North Carolina State University. Dept. of Computer 
Science. 

[3]. Wang, Y., & Huang, J. (2008). Formal modeling and 
specification of design patterns using 
RTPA. International Journal of Cognitive Informatics 
and Natural Intelligence (IJCINI), 2(1), 100-111. 
https://doi.org/10.4018/978-1-60566-902-1.ch013 

[4]. Alnusair, A., Zhao, T., & Yan, G. (2014). Rule-based 
detection of design patterns in program 
code. International Journal on Software Tools for 
Technology Transfer, 16(3), 315-334. 
https://doi.org/10.1007/s10009-013-0292-z. 

[5]. Rasool, G., Philippow, I., & Mäder, P. (2010). Design 
pattern recovery based on annotations. Advances in 
Engineering Software, 41(4), 519-526. 
https://doi.org/10.1016/j.advengsoft.2009.10.014 

[6]. Blondel, V. D., Gajardo, A., Heymans, M., Senellart, 
P., & Van Dooren, P. (2004). A measure of similarity 
between graph vertices: Applications to synonym 
extraction and web searching. SIAM review, 46(4), 
647-666. https://doi.org/10.1137/s0036144502415960 

[7]. Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., & 
Halkidis, S. T. (2006). Design pattern detection using 
similarity scoring. IEEE transactions on software 
engineering, 32(11), 896-909. 
https://doi.org/10.1109/tse.2006.112. 

[8]. Dong, J., Sun, Y., & Zhao, Y. (2008, March). Design 
pattern detection by template matching. 
In Proceedings of the 2008 ACM symposium on 
Applied computing (pp. 765-769). 

[9]. Bergenti, F., & Poggi, A. (2002). Improving UML 
designs using automatic design pattern detection. In 
Handbook of Software Engineering and Knowledge 
Engineering: Volume II: Emerging Technologies (pp. 
771-784). 

[10]. Wenzel, S., & Kelter, U. (2006, October). Model-
driven design pattern detection using difference 
calculation. In Workshop on Pattern Detection for 
Reverse Engineering. 

[11]. Mhawish, M. Y., & Gupta, M. (2020). Software 
Metrics and tree-based machine learning algorithms 
for distinguishing and detecting similar structure 
design patterns. SN Applied Sciences, 2(1), 1-10. 

[12]. Mhawish, M. Y., & Gupta, M. (2020). Predicting 
Code Smells and Analysis of Predictions: Using 
Machine Learning Techniques and Software 
Metrics. Journal of Computer Science and 
Technology, 35(6), 1428-1445. 

 
 
 

  


