
Research Article
Entropy-Driven Global Best Selection in Particle Swarm
Optimization forMany-Objective SoftwarePackageRestructuring

Amarjeet Prajapati ,1 Anshu Parashar ,2 Sunita ,3 and Alok Mishra 4

1Computer Engineering & IT Department, JIIT, Noida, India
2Department of Computer Science and Engineering, TIET, Patiala, Punjab, India
3Computer Science & Engineering Department, CCET, Chandigarh, India
4Informatics and Digitalization, Molde University College -Specialized University in Logistics, Molde, Norway

Correspondence should be addressed to Alok Mishra; alok.mishra@himolde.no

Received 12 October 2021; Revised 18 November 2021; Accepted 22 November 2021; Published 7 December 2021

Academic Editor: Zeljko Stevic

Copyright © 2021 Amarjeet Prajapati et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Many real-world optimization problems usually require a large number of conflicting objectives to be optimized simultaneously to
obtain solution. It has been observed that these kinds of many-objective optimization problems (MaOPs) often pose several
performance challenges to the traditional multi-objective optimization algorithms. To address the performance issue caused by
the different types of MaOPs, recently, a variety of many-objective particle swarm optimization (MaOPSO) has been proposed.
However, external archive maintenance and selection of leaders for designing the MaOPSO to real-world MaOPs are still
challenging issues. )is work presents a MaOPSO based on entropy-driven global best selection strategy (called EMPSO) to solve
the many-objective software package restructuring (MaOSPR) problem. EMPSO makes use of the entropy and quality indicator
for the selection of global best particle. To evaluate the performance of the proposed approach, we applied it over the fiveMaOSPR
problems. We compared it with eight variants of MaOPSO, which are based on eight different global best selection strategies. )e
results indicate that the proposed EMPSO is competitive with respect to the existing global best selection strategies based on
variants of MaOPSO approaches.

1. Introduction

)e transformation of science and engineering problem into a
search-based optimization problem provides a great oppor-
tunity to utilize the potential of different metaheuristic al-
gorithms [1]. In the last three decades, a large variety of
metaheuristic algorithms addressing the different classes of
optimization problems have been proposed (e.g., [2–6]). As
the different classes of optimization problems possess a dif-
ferent nature and complexity, they pose different challenges in
designing the optimization algorithms. Based on the chal-
lenges posed by the different classes of optimization problems,
the different types of metaheuristic algorithms have been
designed [7]. Furthermore, the formulation of large and
complex real-world problems as the optimization problems

encourages researchers and practitioners to design the de-
velopment of more variety of optimization approaches [8].

)e different optimization problems can treat different
goals as single objective or different independent objective
functions for the optimization. Hence, based on the con-
sideration of number of objective functions as a single or
independent objectives, the optimization problems are
generally classified as the single-objective optimization (i.e.,
single objective to be optimized), multi-objective optimi-
zation (i.e., more than objectives to be optimized), and
many-objective optimization (i.e., more than three objec-
tives to be optimized, a special case of multi-objective op-
timization) [9]. Similarly, the optimization approaches
designed to solve these optimization problem classes can be
classified as single-objective optimization approach, multi-
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objective optimization approach, and many-objective op-
timization approach, respectively.

It has been found that most of the real-world optimi-
zation problems usually require more than three objectives
to be optimized independently to generate the solution. For
example, industrial task scheduling [10], designing engi-
neering models for different purposes [11], clustering of the
software system to recover the software architecture [12],
optimization of hybrid car controller [13], calibration op-
timization of the automotive [14], and improving existing
software package structure [2] require more than three
objectives to be optimized simultaneously to produce the
solution. Such real-world many-objective optimization
problems (MaOPs) pose several challenges in the designing
the metaheuristic optimization approach that can address
them effectively and efficiently.

To address the different types of synthetic MaOPs, a
variety of many-objective optimization approaches based on
the different frameworks of metaheuristic algorithms have
been proposed (e.g., MOEA/D [15] and NSGA-III [3]). To
solve the real-world MaOPs (e.g., many-objective software
remodularization), several researchers and practitioners
have customized the existing metaheuristic optimization
algorithms (e.g., many-objective software remodularization
using NSGA-III by [8]). Recently, particle swarm optimi-
zation (PSO) based on many-objective optimization algo-
rithms has been widely explored to address the different
science and engineering MaOPs (e.g., [16–20]). In the PSO-
based many-objective optimization, the selection of leaders
(i.e., personal best or global best) has the major influence on
the generation of well-distributed and converged approxi-
mation of the Pareto front. )erefore, the major challenge of
the PSO-based many-objective optimization algorithm is
designing the effective leader selection strategies corre-
sponding to the large and complex real-world MaOPs.

)e different strategies designed to select the leaders in
many-objective PSO algorithms have different influences on
the convergence and diversity of the final approximation of
the Pareto front. )e PSO-based many-objective optimi-
zation algorithms exploited the different leader selection
strategies (e.g., distance ranking scheme [21], virtual
inverted generational distance indicator [22], grid-based
selection [18], vector angle selection [20], and fuzzy Pareto
dominance [23]). Even the leader selection strategies
adapted in the different existing PSO-based many-objective
optimization algorithms are effective. Still, there is huge
scope in their improvement corresponding to the different
types of real-world MaOPs.

Recently, the software remodularization problem of
software engineering field has been widely treated as the
MaOP and solved its different aspects using the different
types of many-objective optimization algorithms (e.g.,
[2, 8, 9]). However, there are many other aspects of software
remodularization problems in software engineering and
such software package restructuring problems have not been
sufficiently explored. In particular, the many-objective op-
timization aspect of software package restructuring problem
(called MaOSPR problem) gained little attention. )is work
presents entropy-driven many-objective particle swarm

optimization (MaOPSO) (called EMPSO) to solve the
MaOSPR problem. Towards this contribution, EMPSO ex-
ploits the synergy of the indicator-based [24] and entropy-
based [25] ranking approaches to select the leader (especially
global best particle). )e use of both ranking schemes to-
gether in evaluating the global best helps in maintaining
diversity and convergence simultaneously. Particularly, the
entropy-based ranking scheme helps in maintaining the
diversity, whereas the indicator-based ranking scheme
promotes convergence.

To justify the potential of proposed EMPSO, we com-
pared it with other variants of many-objective PSO (MPSO)
that uses other global best selection strategies. )ese are, i.e.,
grid-based strategy (GMPSO) [26], fuzzy Pareto dominance
strategy (FMPSO) [27, 28], indicator-based approach
(IMPSO) [24], distance-based ranking strategy (DMPSO)
[21], b-dominance strategy (BMPSO-6) [29], ε-dominance
strategy (SMPSO) [30], α-dominance strategy (AMPSO)
[31], and weighted average ranking strategy (WMPSO) [32].
)ese variants of the MPSO have been using the same
configuration and parameter setting as of the EMPSO.

)e rest part of the study is presented as follows. Section
2 covers materials and methods including the related work
mainly focusing on search-based software package
restructuring and many-objective approaches, problem
modelling, and a detailed description of the working of the
proposed approach along with its variants. Section 3 dis-
cusses the experimental setup and problem selection and
presents results obtained through the different variants of
the proposed approach including internal and external
threats to validity and their mitigations. Section 4 provides
the conclusion of the work and suggests some future works.

2. Materials and Methods

)e past few decades have witnessed the rapid development
of PSO [33]-based metaheuristic optimization approaches
due to wide application in solving the various optimization
problems (e.g., [4, 34–36]). )e easy implementation and
effective optimization potential of the PSO algorithmmake it
more attractive in research and practice. In this regard, the
PSO algorithm has also gained wide attention in solving the
real-world optimization problems of different fields (e.g.,
[37–39]). )e broad applicability of the PSO algorithm has
encouraged researchers and practitioners to design its
multiple variants to address the different aspects of the
optimization problems. )e variants of the PSO algorithms
can be classified into four groups: 1) hybridization with other
metaheuristic algorithms (e.g., Ding et al. 2021); 2) modi-
fying and adaptive parameters (e.g., Hop et al. 2021); 3)
varying topologies for the velocity updation (e.g., [40]); and
4) different learning strategies [41].

2.1. Many-Objective PSO. It has been commonly observed
that the traditional multi-objective optimization algorithms
face several performance challenges if applied over the
many-objective optimization problems. Similar to the per-
formance challenges faced by conventional multi-objective
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optimization over the many-objective optimization prob-
lems, the traditional multi-objective PSO approaches also
face similar performance challenges. To overcome the
performance challenges of the conventional multi-objective
PSO caused by the many-objective optimization problems, a
variety of many-objective PSO approaches have been pro-
posed [16, 17, 20, 42, 43].

)e major challenge of the traditional multi-objective
PSO over the many-objective optimization problem is the
selection of personal best and global best [22]. )e existing
many-objective PSO approaches have adopted different
strategies to select the individual’s best and global best.
Mostaghim et al. [21] used the newest method [44] for the
personal best selection and designed a distance-based
ranking strategy to determine the global best. Hu et al. [42]
exploited the concept of Pareto dominance for the selection
of personal best and parallel cell coordinate approach with
density estimation of non-dominated solution for the se-
lection of the global best.

Wu et al. [22] adopted the concept of reference points to
compute the contribution degree of each candidate solution
of the population. Further, based on the highest contribution
degree, the personal best and global best are selected. Li et al.
[45] used grid-based ranking approach to improve the
discriminability of the particles in many-objective PSO to
choose personal best and global best. Leung et al. [19]
proposed a Hybrid Global Leader Selection Scheme
(HGLSS) using the concepts of space expanding strategy
(SES) and Euclidean distance strategy (EDS). Yang et al. [20]
designed a vector angle and decomposition-based method to
select the personal best and global best for the many-ob-
jective PSO approach.

Even the personal best and global best selection strategies
adapted in the existing PSO-based many-objective optimi-
zation algorithms have been satisfactory in guiding the
optimization process. Still, there is massive scope in their
improvement. )e major limitation of the abovementioned
PSO-based many-objective optimization algorithms is that
most approaches use either convergence or divergence
properties of the search space in designing the global best
selection strategy. Such global best selection strategy types
may not guide the optimization process towards the well-
distributed and converged approximation of the Pareto
front. Moreover, such kinds of PSO-based many-objective
optimization algorithms require more specific strategies at
the different other selection points such as personal best
selection and archive maintenance to curb the issue caused
by the global best selection strategy.

2.2. Problem Modelling. SPR problem is a significant opti-
mization problem of software reengineering that can be
viewed and modelled from different perspectives. )is study
models the SPR problem as a MaOO problem where
multiple (generally more than 3) package restructuring
objectives are optimized to produce restructuring solutions.
Further, the MaOO model of SPR problem assumes that the
software system needed a complete package restructuring,
i.e., creating software package structure from scratch where

the number and size of the package in the produced SPR can
be different from the original package structure. To for-
mulate the MaOOmodel of the SPR problem, the associated
decision variables and the objective functions need to be
appropriately encoded and defined.

)e encoding of the SPR problem in terms of the de-
cision variables is an important task. In this work, we
adopted the integer-based representation scheme to encode
the SPR problem as suggested by the previous researchers
(e.g., [46, 47]). In this encoding scheme, the software system
is first transformed into a weighted class dependency graph
(WCDG) and then mapped with the integer vector. Par-
ticularly in this encoding scheme, an integer vector of size n
is created (n is the number of classes of the software system),
and its indices are mapped with the different classes. )e
packages in which the classes are to be placed are mapped
with the integer values (i.e., 1,2,. . ., n). )e integer vector-
based encoding scheme used for the SPR problem is dem-
onstrated in Figure 1.

After defining the decision variables, we need to define
the objective functions for the SPR problem. )e primary
goal of the objective functions in MaOO model of SPR
problem is to evaluate the quality of package restructuring
solutions and guide the optimization process towards the
optimal SPR solutions. Software coupling and cohesion are
the two essential measures widely used to evaluate the
quality of SPR solutions. )e definition of coupling and
cohesion can vary based on the information (e.g., structural,
lexical, and changed history) used in the computation. It has
been observed that all three types of source code informa-
tion, i.e., structural, lexical, and changed history, play an
important role to define the objective functions of the SPR
problems [46, 48].

)erefore, this work considers all coupling and cohesion
designed in terms of structural, lexical, and changed history
information as objective functions. )e definition of these
objectives is based on the studies presented in [8, 46, 48].)e
objectives are as follows: 1) structural software package
coupling (to minimize), 2) structural software package co-
hesion (to maximize), 3) lexical software package coupling
(to minimize), 4) lexical software package cohesion (to
maximize), 5) changed history software package coupling (to
minimize), and 6) changed history software package co-
hesion (to maximize). To avoid the generation of very small
packages or very large packages, we have included two more
objectives: 7) number of packages (to maximize) and 8)
difference between the minimum andmaximum numbers of
classes in the packages (to minimize).

2.3. Proposed Approach. )e basic framework of the pro-
posed many-objective PSO approach is presented in Fig-
ure 2. It mainly contains five major components: 1)
initialization of position and velocity of particles in the
swarm, 2) updation of the external archive, 3) updation of
personal best position, 4) updation of global best position,
and 5) updation of current velocity and position of the
particles in the swarm. )e details of each component are
provided in the subsequent subsections.
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2.3.1. Swarm Initialization. In the initialization phase of the
proposed work, the position vectors and the velocity vectors
associated with each particle of the swarm are initialized.)e
position vector of the particle in the optimization problem is
viewed as the candidate solution. In our optimization
problem, the integer vector encoding approach is used to
represent the candidate solution; hence, the position vector
of each particle is denoted with the integer vector encoding.
)e velocity vector is encoded as a binary vector with the
same size as the position vector. )e initialization of the
position vector and velocity vector of all the swarm particles
is initialized using the randomization method. )is is the
simple and more effective approach used to initialize the
candidate solutions of the population of evolutionary and
swarm-based heuristic algorithms. )e demonstration of
position and velocity vector initialization is given in Figure 3.
Just for demonstration, we have taken six objectives (i.e.,
assumed obj1, obj2, obj3, obj4, obj5, and obj6 are to be
maximized) and their values are randomly assigned.

2.3.2. Maintaining External Archive. )e concept of external
archive is widely used to collect the useful elitist non-dom-
inated solutions found in every generation of proposedmany-
objective PSO. To maintain the non-dominated solutions in
the external archive, there are two strategies: insertion and
removal. In this approach, the non-dominated candidates
from the swarm are first collected and stored in the external
archive. Next, the removal strategy is applied if the external
archive overflows. )e overall process of both strategies is as
follows: 1) the non-dominated candidates from the swarm are
collected, one by one; 2) the new non-dominated candidate
can be part of the external archive if no candidate solution of

external archive dominates it; 3) if new non-dominated
candidate dominates some candidate solutions of the external
archive, it should place in the external archive, and the
dominated candidates of the external archives are deleted; 4) if
the external archive overflows, the candidate removal strategy
is applied; and 5) the candidate solutions of the external
archive having the minimum Euclidean distance are deleted
one by one until the size of the external archive.

2.3.3. Selection of Personal. Most PSO algorithm variants
typically use personal best experience (Pbest) and the swarm
best experience (Gbest) to update the particle’s velocity and
position. Such variants of the PSO face some potential
challenges, such as premature convergence and loss of di-
versity. )erefore, it becomes crucial to design an effective
learning strategy that can help in improving diversity and
convergence. For our Java package restructuring problem, a
class of discrete combinatorial optimization problems, we
have designed an effective approach for selecting personal
and global best positions.

)e following method is used to determine the personal
best position (Pbest) of a particular particle. At the begin-
ning (i.e., initialization phase), the current position of each
particle is assumed as their personal best position. In the
further iterations, if the newly updated position of the
particle dominates the personal best position, then the
current personal best position will be replaced with the new
position; otherwise, the current personal best position will
remain unchanged. If both the newly generated position and
the current best position are non-dominated with each
other, then a solution from both solutions as a personal best
is randomly selected.
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Figure 1: Integer vector-based encoding of SPR problem.
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2.3.4. Selection of Global Best. )e selection of global best in
the PSO algorithm is an important task. It has become more
crucial in case of the multi-/many-objective PSO algorithm.
In many-objective PSO, it becomes more challenging to
select a global best particle that can lead the optimization
process towards well-distributed approximation of Pareto
front. To incorporate the convergence and diversity behavior
in the global best selection, we adapted the indicator-based
[24] and entropy-based [25] ranking approaches together in
the selection process of the global best. For this, we utilize the
candidate solutions of the external archive because its
candidate solutions are the best non-dominated solutions.
To compute the fitness of the candidates of the external
archive, we use both quality indicator [24] and entropy [25]
collectively. To compute indicatorrank, which is based on the
I∈+, an indicator is defined as follows:

Iε+(p, q) �
argmin

ε fi(p) − ε≤fi(q), i ∈ 1, 2, . . . , m{ }( 􏼁,

indicatorrank(p) � 􏽘

q∈S/ p{ }

−e
− Iε+(q,p)/α

,

(1)

where Iε+(p, q) denotes the minimum value required so that
candidate solution p dominated candidate solution q in
objective space. To compute the entropy-based ranking
entropyrank of the candidate solution p of the external ar-
chive, we define it in terms of the Shannon entropy.

H � − 􏽘
m

i�1
di × log di( 􏼁,where di �

k

m
. (2)

)e symbol m denotes the number of candidate solu-
tions of the external archive and k is the number of fitness
values in the ith segment. To compute the entropyrank of
particular candidate of the external archive, the segment
rank where the candidate resides is used. Now, based on the
indicatorrank and the entropyrank, we quantify the impor-
tance of each candidate solution of the external archive as
follows:

R(i) � α × indicatorrank(i) + β × entropyrank(i). (3)

)e small value of R(i) indicates the good performance
of particle i, and therefore, the particle in the external archive
having the smallest R(i) is considered as the global best
particle. )e value of α and β is used to control the con-
tribution of indicatorrank and the entropyrank, respectively.

2.3.5. Updation of Velocity. )e evolution of the swarm
from one iteration to iteration requires the updation of
velocity and position of each particle of the swarm. )e
updation rule of the velocity and position depends on the
nature and encoding of the velocity and position vectors. In
this approach, we use the following method to update each
swarm particle’s velocity vector and position vector.

v
new
i � Ω ω × vi + c1r1 × pbesti⊕pi( 􏼁 + c2r2 × gbest⊕pi( 􏼁( 􏼁,

p
new
i � piΘ v

new
i ,

(4)

where ω represents inertia weight.)e {c1, c2,} and {r1, r2} are
the learning factors and random numbers, respectively. )e
vi, pi, pbesti, and gbest represent the current velocity,
current position, personal best position, and global best
position of the ith particle of the swarm—the operators ×, +,
and ⊕ present multiplication, addition, and XOR. )e
function Ω(.) returns a velocity vector. Figure 4 depicts the
new velocity computation.

)e value of inertia weight ω plays an important role in
exploring and exploiting the search space during the opti-
mization process. )e high value of ω enhances the ex-
ploration (i.e., global search) capability of the optimization
algorithm, and the low value of ω boosts the exploitation
(i.e., local search) capability [49]. In literature, various
strategies have been suggested to balance the exploration
and exploitation capabilities of the optimization algorithms.
In our approach, we use the nonlinear decreasing strategy of
the inertia weight [49]. It is the most appropriate inertia
weight assignment for our approach, because in the be-
ginning, there require more exploration and later more
exploitation. )e following equation is used to update the
value of inertia weight:

ω(t) � ωmax −
t − 1

tmax − 1
􏼠 􏼡

α

ωmax − ωmin( 􏼁, (5)

where t represents the current iteration number, tmax is the
maximum number of iterations decided for the algorithm,
ωmin and ωmax are the minimum and maximum inertia
weight values, respectively, and α denotes the decline ex-
ponent. )e value of the cognitive coefficient (c1) and the
social coefficient (c2) also has an essential effect on the
exploitation and exploration of the search space. It has been
observed that the linear variation in cognitive coefficient
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Figure 3: Demonstration of swarm initialization.
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(decreasing) and social coefficient (increasing) over algo-
rithm iteration helps the optimization process in the smooth
transition from exploration to exploitation [50].

2.3.6. Updation of Position. It is commonly known that
different strategies used in updating the current position of a
particle have a different influence on the exploration and
exploitation capabilities of the swarm optimization algo-
rithms [51]. )e strategies have been found more appro-
priate to balance the global search (i.e., exploration) and the
local search (i.e., exploitation). In this proposed approach,
we use an approach where the new position is determined
based on the individuals of the current swarm, individuals of
the external archives, and the new velocity of the particle. In
this work, to update the particle’s position, we use the ap-
proach suggested by Liu et al. [51].

2.3.7. Variants of the MPSO. To validate the effectiveness of
the entropy-based global best selection method of our
proposed EMPSO, we compare it with other possible global
best selection strategies. In the literature of many-objective
optimization, a variety of selection methods have been
proposed. )ese selection methods are used to select a
candidate solution from the pool of non-dominated can-
didate solutions based on the convergence and diversity
criteria. In this work, we have considered the eight existing
selection strategies and created eight variants of many-ob-
jective PSO. A brief description of created variants of the
many-objective PSO is given as follows:

(1) GMPSO: In this variant of the proposed approach,
we use the grid-based strategy [26] to select the
global best position from the external archives. )e
grid-based selection strategy influences both con-
vergence and diversity of the algorithm because it
considers both while determining the fitness value
for selecting a candidate solution.

(2) FMPSO: In this variant of the proposed approach, we
use the fuzzy Pareto dominance strategy [27, 28] to
select global best position from the external archives.
In this selection strategy, fuzzy Pareto dominance-
based fitness values for the non-dominated candidate
solutions are computed, and based on the fitness
value, each candidate solution is ranked.

(3) IMPSO: In this variant of the proposed approach, we
use an indicator-based approach [24], a popular
approach to distinguish the non-dominated solu-
tions. In this strategy, a quality indicator-based
technique is used to compute the degree of domi-
nance of the candidate solutions. Furthermore, based
on the degree of dominance the fitness of the
nondominated solution is computed. )e non-
dominated solutions are ranked and selected.

(4) DMPSO: In this variant of the proposed approach,
we use a distance-based ranking strategy [21]. In this
ranking strategy, the candidate solutions are ranked
by considering the distances among the solutions
based on their objective space.

(5) BMPSO: In this variant of the proposed approach,
we use the b-dominance strategy [29].)is strategy is
a generalized form of the Pareto domination-based
box vectors. To compute its value, the whole ob-
jective space is divided into hyper-boxes based on the
predefined parameter ε [30].

(6) SMPSO: In this variant of the proposed approach, we
use the ε-dominance strategy [30]. )is strategy
makes the consideration of convergence and di-
vergence properties simultaneously. Here, we use the
additive ε-dominance, which is used to extend the
Pareto dominance.

(7) AMPSO: In this variant of the proposed approach,
we use the α-dominance strategy [31].)is strategy is
a relaxed form of the strict Pareto domination with
the weak Pareto front consideration. )e main idea
behind the α-dominance strategy is to set lower
bounds of trade-off rates between two objectives.

(8) WMPSO: In this variant of the proposed approach, we
use a weighted average ranking strategy [32], a sim-
plistic approach to distinguish the non-dominated
solutions. In this strategy, a non-dominated solution is
provided with a rank in terms of the number of better
objectives than the other non-dominated solutions.

3. Results and Discussions

)ese problem instances are complex open-source software
systems and developed for different applications. An
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Figure 4: Demonstration of new velocity computation.
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empirical study over the five Java-based software projects is
conducted to validate the different variants of the many-
objective PSO approach. )e selected software projects as
the test problems are as follows: JUnit, DOM 4J, JHotDraw,
JDI-Ford, and Xerces-J.

)e brief information regarding these systems is pro-
vided in Table 1.

Each variant of the many-objective PSO approach is
applied over each selected software project, and SPR results
are collected. In particular, each of the variants is applied 31
times on each of the software projects. )e performance of
each variant is evaluated in terms of inverted generational
distance (IGD) [52], modularization quality (MQ) [47], and
hypervolume (HV) [53] quality metrics. )e performance of
each variant is also compared with each other. As these
variants have the nature of randomness (i.e., stochastic
optimization), we need some statistical tests to compare
these approaches effectively.

)eMann–WhitneyWilcoxon rank-sum test is the most
widely used approach for comparing the results of meta-
heuristic search optimizers. )erefore, we use this statistical
method to compare the different approaches. For this ap-
proach, we have taken the value of confidence level and level
of significance 5% and 95%, respectively. Since the PSO-
based optimization approaches are stochastic, collecting
results and performing an effective assessment for such a
metaheuristic search optimizer are challenging. For the
proposed approach, first, we execute each of the proposed
variants 31 times over each of the selected problem instances
and maintain 31 Pareto fronts (i.e., best non-dominated
solutions so far). Next, the IGD, hypervolume, and MQ
values of each of the Pareto front obtained from the different
variants of the proposed approach are computed. )en, we
applied the Mann–Whitney Wilcoxon rank-sum test over
the results. Finally, comparative results of each variant are
provided in the form of Mann–Whitney differences [ranks]
corresponding quality measures, i.e., IGD, hypervolume,
and MQ. )e difference value in the Mann–Whitney dif-
ferences [ranks] for a particular approach represents how
many times the approach is performing significantly better
and howmany times it performs significantly worse than the
rest of the approaches. )e rank values signify the ordering
position of each approach computed in terms of differences.
)e variants of the proposed approach having the smaller
rank values are better than those having larger rank values.
)e differences and rank values of the variants EMPSO,
GMPSO, FMPSO, IMPSO, DMPSO, BMPSO, SMPSO,
AMPSO, and WMPSO computed in terms of IGD, hyper-
volume, and MQ measure are demonstrated in Tables 2–4,
respectively.

)e difference [rank] values computed in terms of IGD
presented in Table 2 shows that only some variants can
achieve rank 1, and many have higher rank values. Now, if
we see the results of EMPSO, it has achieved rank 1 in 3 cases
of five cases. In the rest of the cases, the EMPSO has achieved
rank 2. Such good results of EMPSO indicate that the
proposed strategy used to select global best is more effective
than the rest of the strategies. )e results of GMPSO,
FMPSO, and IMPSO show that they are performing nearly

equivalent, as each of them has rank 1 in only one case and
the rest of the cases have either rank 2, rank 3, rank 4, rank 5,
or rank 6. )is indicates that the grid-based, fuzzy Pareto
dominance, and indicator-based strategies are the second
best performing strategy.)e results of the variants DMPSO,
BMPSO, SMPSO, AMPSO, and WMPSO show that no
variant could achieve rank 1 and rank 2, and has rank 3, rank
4, rank 5, or rank 6. )is indicates that the rest of the se-
lection strategies, i.e., distance-based selection, b-domi-
nance, ε-dominance, α-dominance, and weighted average
rank strategies, have the poor selection approach for the
global best.

Table 3 presents the difference [rank] values of each
variant computed in terms of hypervolume over all five
problem instances. )e difference [rank] values of variants
show that the EMPSO and GMPSO perform better than the
rest of the variants. Among EMPSO and GMPSO, the
EMPSO is having better results than the GMPSO. If we see
the ranking values of these two variants, the EMPSO has
achieved rank 1 in 3 cases of 5 cases, whereas the GMPSO
has achieved rank 1 in 2 cases of five cases. Similar to the
IGD results, the hypervolume results of GMPSO, FMPSO,
and IMPSO show that they are performing nearly equiva-
lent, as each of them has rank 1 in only one case and in the
rest of the cases they have either rank 2, rank 3, rank 4, rank
5, or rank 6. )e variants DMPSO, BMPSO, SMPSO,
AMPSO, and WMPSO show that they could achieve rank 1
and rank 2, and has either rank 3, rank 4, rank 5, rank 6, rank
7, rank 8, or rank 9.

Table 4 presents difference [rank] values of each variant
computed in terms of MQ measure. )e MQ values of the
candidate solution measure the quality of the candidate
solution concerning the strength of intra- and inter-package
dependencies, whereas IGD and hypervolume measure the
candidate solutions concerning the quality of Pareto front.
)e difference [rank] values presented in Table 4 show that
EMPSO and GMPSO have achieved better ranking values
than the other variants. )e ranking values of EMPSO and
GMPSO are rank 1 or rank 2 in most cases. In particular, the
ranking values of these two variants are as follows: the
EMPSO has achieved rank 1 in 3 cases of 5 cases, whereas the
GMPSO has achieved rank 1 in 2 cases of five cases. Similar
to the IGD and hypervolume results of FMPSO, IMPSO, and
DMPSO, they are performing nearly equivalent. )e results
of the variants DMPSO, BMPSO, SMPSO, AMPSO, and
WMPSO show that they are performing poorer.

)e summary of the ranking results of all the variants
computed in IGD, hypervolume, and MQ measures is
provided in Figure 5. )e proposed global best selection
approach employed in the EMPSO variant has achieved
better ranks (i.e., rank 1) than the other global best selection-
based approaches over most problem instances. )e grid
dominance-based (GMPSO) approach has achieved rank 2
in most of the cases. )e rest of the strategies, i.e., fuzzy
Pareto dominance (FMPSO), indicator-based ranking
(IMPSO), distance-based ranking (DMPSO), b-dominance
strategy (BMPSO), ε-dominance strategy (SMPSO),
α-dominance strategy (AMPSO), and weighted average
ranking strategy (WMPSO), are performing in increasing
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Table 1: Java-based software projects.

System #Classes Brief description
JUnit (v3.81) 100 A Java-based unit testing framework
DOM (4J v1.5.2) 195 A Java-based library to parse XML documents
JHotDraw (v6.0. b.1) 398 A Java-based graphic framework
JDI-Ford (v5.8) 638 A Java-based open-source software system
Xerces-J (v2.7.0) 991 A Java-based library to parse XML documents

Table 2: Difference [rank] values of each variant in terms of the IGD.

Problems EMPSO GMPSO FMPSO IMPSO DMPSO BMPSO SMPSO AMPSO WMPSO
JUnit +8[1] +6[2] +4[3] −2[5] +2[4] −2[5] −2[5] −6[8] −2[5]
DOM 4J +7[1] −6[3] +4[3] +7[1] +0[5] −3[6] +2[4] −3[6] −8[9]
JHotDraw +5[2] +8[1] +2[4] +5[2] +0[5] −3[6] −7[8] −3[6] −7[8]
JDI-Ford +8[1] +3[3] +6[2] +2[4] +1[5] −7[8] −3[6] −3[6] −7[8]
Xerces-J +6[2] +4[3] +8[1] +2[4] −1[5] −6[7] −6[7] −1[5] −6[7]

Table 3: Difference [rank] values of each variant in terms of the hypervolume.

Problems EMPSO GMPSO FMPSO IMPSO DMPSO BMPSO SMPSO AMPSO WMPSO
JUnit +6[2] +4[3] +2[4] +8[1] +0[5] −4[6] −4[6] −8[9] −4[6]
DOM 4J +8[1] +1[2] +1[2] +1[2] −1[5] −1[5] −4[8] −1[5] −4[8]
JHotDraw +7[1] +7[1] +3[4] +4[3] +0[5] −6[8] −2[6] −4[7] −8[9]
JDI-Ford +6[2] +6[2] +8[1] +2[4] +4[3] −1[5] −6[8] −8[9] −4[7]
Xerces-J +7[1] +7[1] +3[4] +4[3] −4[7] +0[5] −2[6] −6[8] −8[9]

Table 4: Difference [rank] values of each variant in terms of the MQ.

Problems EMPSO GMPSO FMPSO IMPSO DMPSO BMPSO SMPSO AMPSO WMPSO
JUnit +6[1] +5[2] +5[2] +4[4] −2[6] −1[5] −5[8] −4[7] −8[9]
DOM 4J +4[2] +8[1] +1[3] +1[3] −2[6] −2[6] +0[5] −6[9] −4[8]
JHotDraw +8[1] +6[2] +3[3] +2[4] +0[5] −3[7] −2[6] −6[8] −8[9]
JD-Ford +8[1] +6[2] +3[3] +3[3] −2[6] +0[5] −8[9] −4[7] −6[8]
Xerces-J +5[2] +8[1] +2[4] +5[2] −2[6] −5[7] −5[7] +0[5] −8[9]
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order. Overall, the selection strategies that influence the
convergence and divergence more appropriately in the
optimization algorithm have generated a better Pareto front.

3.1. Discussion. )e different global best selection tech-
niques used in the proposed many-objective PSO algorithms
had a distinct influence on the generation of Pareto optimal
front. )e better results obtained through the proposed
indicator and entropy-based global best selection technique
implied that it has enough capability to lead the optimization
process towards a well-distributed approximation of Pareto
front. In the proposed global best selection, the indicator-
based fitness evaluation helps guide the optimization process
towards Pareto front; i.e., it increases the convergence speed,
while on the other hand entropy-based fitness evaluation
helps maintain the diversity of the approximation set. )is
encourages the researchers and practitioners to design a
global best selection strategy with both properties, i.e.,
convergence and diversity.

)e existing grid dominance-based (GMPSO) approach
where both convergence and diversity components are in-
volved also has good performance. )e grid dominance-
based (GMPSO) approach is the second best performing
approach. In contrast, fuzzy Pareto dominance (FMPSO),
indicator-based ranking (IMPSO), distance-based ranking
(DMPSO), b-dominance strategy (BMPSO), ε-dominance
strategy (SMPSO), α-dominance strategy (AMPSO), and
weighted average ranking strategy (WMPSO) have shown
the poor performance compared with the proposed indi-
cator and entropy-based global best selection. Overall, the
comparative results obtained through the proposed global
best technique and existing global best techniques demon-
strate that the proposed approach can produce the well-
distributed approximation of Pareto front compared with
the existing global best techniques.

3.2.;reats to Validity. Informally, the validity of a research
result is concerned with “How the results might be wrong?”
[54]. In our proposed approach, some factors may affect the
validity of the achieved results. Wohlin et al. [55] have
provided detailed concepts regarding the different types of
threats to validity related to software engineering.

3.2.1. ;reats to Internal Validity. )e internal validity
measures the degree of surety to what extent the treatment
causes the outcome. )is validity ensures that the experi-
ment’s outcome is not governed by any other factors except
the actual treatment. In our proposed approach, the out-
come of the many-objective PSO may be affected by the
selection of parameter values and randomness. To mitigate
these threats, we tuned the parameters of each proposed
variant, ran each variant 31 times, and applied the Man-
n–Whitney Wilcoxon rank-sum test.

3.2.2. ;reats to External Validity. )e external validity
deals with the generalization of experimental results out of
the scope of the current configuration of the study. In this

study, we have applied our proposed approach to five object-
oriented software systems. Apart from that, our problem
instances, i.e., object-oriented software systems, are the
different sizes and complexity. To mitigate the external
threats to the validity of our proposed approach, we have
treated all problem instances as the module dependency
graph, which neutralizes the dependency of the proposed
approach over the problem instance.

4. Conclusion and Future Work

)is study proposed entropy-driven many-objective PSO
(named EMPSO) to address the MaOSPR problems. In this
approach, a global best selection strategy based on indicator
fitness and entropy fitness was designed and incorporated in
the framework of many-objective PSO. To justify the po-
tential of the proposed EMPSO, it was tested over the five
MaOSPR problems and compared with the eight different
variants of many-objective PSO, i.e., GMPSO, FMPSO,
IMPSO, DMPSO, BMPSO, SMPSO, AMPSO, and WMPSO.
Extensive computational results showed that the EMPSO
was the best performing approach, the GMPSO, FMPSO,
and IMPSO were the average performer, and the DMPSO,
BMPSO, SMPSO, AMPSO, and WMPSO were the poor
performer in most of the cases. )is indicates that the
proposed entropy-based global best selection approach has
enough potential to generate better results compared with
the existing global best selection strategies. )ese results also
imply that the inclusion of both convergence and diversity
properties in the definition of global best selection strategy
can generate a good approximation of the Pareto front. In
our future work, we will try to extendmany-objective PSO to
more effective large-scale many-objective PSO that can
address more complicated large-scale many-objective soft-
ware package restructuring problems.
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application of metaheuristic optimization algorithms for
solving the flexible job-shop scheduling problem,” Opera-
tional Research in Engineering Sciences: ;eory and Applica-
tions, vol. 3, no. 3, pp. 13–28, 2020, https://oresta.rabek.org/
index.php/oresta/article/view/57.

[40] N. Zeng, Z. Wang, W. Liu, H. Zhang, K. Hone, and X. Liu, “A
dynamic neighborhood-based switching particle swarm op-
timization algorithm,” in IEEE Transactions on
CyberneticsIEEE, 2020.

[41] Y. Zhang, X. Liu, F. Bao, C. Jing, C. Zhang, and P. Liu,
“Particle swarm optimization with adaptive learning strat-
egy,” Knowledge-Based Systems, vol. 196, Article ID 105789,
2020.

[42] W. Hu, G. G. Yen, and G. Luo, “Many-objective particle
swarm optimization using two-stage strategy and parallel cell
coordinate system,” IEEE Transactions on Cybernetics, vol. 47,
no. 6, pp. 1446–1459, June 2017.

[43] S. Saeedi, R. Khorsand, S. Ghandi Bidgoli, and
M. Ramezanpour, “Improved many-objective particle swarm
optimization algorithm for scientific workflow scheduling in
cloud computing,” Computers & Industrial Engineering,
vol. 147, Article ID 106649, 2020.

[44] J. Branke and S. Mostaghim, “About selecting the personal
best in multi-objective particle swarm optimization,” in
Parallel Problem Solving from Nature, pp. 523–532, Springer,
Berlin, Heidelberg, 2006.

[45] K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary
algorithm for constrained multiobjective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 23, no. 2,
pp. 303–315, 2019.

[46] A. Prajapati, A. Parashar, and J. K. Chhabra, “Restructuring
Object-oriented software systems using various aspects of
class information,” Arabian Journal for Science and Engi-
neering, vol. 45, pp. 10433–10457, 2020.

[47] K. Praditwong, M. Harman, and X. Yao, “Software module
clustering as a multi-objective search problem,” IEEE
Transactions on Software Engineering, vol. 37, no. 2,
pp. 264–282, 2011.

[48] A. Prajapati and J. K. Chhabra, “Improving package structure
of object-oriented software using multi-objective optimiza-
tion and weighted class connections,” Journal of King Saud
University - Computer and Information Sciences, vol. 29, no. 3,
pp. 349–364, 2017.

[49] T. Ting, Y. Shi, S. Cheng, and S. Lee, “Exponential inertia
weight for particle swarm optimization,” in Advances in
Swarm Intelligence, pp. 83–90, Springer, Berlin, Heidelberg,
2012.

[50] A. Ratnaweera, S. Halgamuge, and H. Watson, “Self-orga-
nizing hierarchical particle swarm optimizerwith time-vary-
ing acceleration coefficients,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 240–255, 2004.

[51] H. Liu, X. W. Zhang, and L. P. Tu, “A modified particle swarm
optimization using adaptive strategy,” Expert Systems with
Applications, vol. 152, Article ID 113353, 2020.

[52] C. K. Goh and K. C. Tan, “Evolving the tradeoffs between
pareto-optimality and robustness in multi-objective evolu-
tionary algorithms,” in Evolutionary Computation in Dynamic
and Uncertain Environments. Studies in Computational In-
telligence, S. Yang, YS. Ong, and Y. Jin, Eds., Vol. 51, Springer,
Berlin, Heidelberg, 2007.

[53] E. Zitzler and L. )iele, “Multiobjective evolutionary algo-
rithms: a comparative case study and the strength pareto
approach,” IEEE Transactions on Evolutionary Computation,
vol. 3, no. 4, pp. 257–271, 1999.

[54] J. Maxwell, Qualitative Research Design: An Interactive Ap-
proach, Sage Publications Inc., )ousand Oaks, California,
2004.

[55] C.Wohlin, M. H¨ost, P. Runeson, M. Ohlsson, B. Regnell, and
A. Wessl´en, Experimentation in Software Engineering: An
Introduction, Kluwer Academic Publishers, MA London, UK,
2000.

[56] A. Parashar and J. K. Chhabra, “Package-restructuring based
on software change history,” National Academy Science Let-
ters, vol. 40, pp. 21–27, 2017.

[57] A. Nebro, J. Durillo, J. Garcia-Nieto, C. CoelloCoello, F. Luna,
and E. Alba, “SMPSO: a new PSO-based metaheuristic for
multi-objective optimization,”vol. 11, pp. 66–73, in Pro-
ceedings of the 2009 IEEE Symposium on Computational In-
telligence inMilti-Criteria Decision-Making, vol. 11, pp. 66–73,
IEEE, Nashville, TN, USA, 30 March 2009.

Complexity 11

https://oresta.rabek.org/index.php/oresta/article/view/57
https://oresta.rabek.org/index.php/oresta/article/view/57

