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a b s t r a c t 

The existing sets of benchmark instances for the inventory routing problem (IRP) have been beneficial 

for investigating and illustrating the properties of the problem. However, they possess certain features 

and design choices that are not necessarily representative of all real-world IRPs. Therefore, we propose 

a new collection of 270 real-world-like instances ranging from 10 to 200 customers. These instances 

vary in terms of the number of vehicles and their capacity, the length of the planning horizon, the de- 

mand structure, and the geographical distribution of customers. Transportation and inventory holding 

costs resemble costs found in practice. We present an instance space analysis showing that the new in- 

stances nicely complement the original instances. To derive lower and upper bounds for each instance, 

we present computational experiments with two high-quality solution methods: a matheuristic and an 

exact branch-and-cut method. The results confirm that the new set of instances is hard to solve with the 

proposed methods, and they demonstrate the need for developing new solution methods. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The inventory routing problem (IRP) was introduced by Bell 

t al. (1983) and arises in the context of vendor-managed inven- 

ory. It has attracted an increasing amount of attention in recent 

ears. In the standard IRP, a single supplier, denoted 0, delivers a 

ingle product to a set of customers, NC , over a planning horizon 

ivided into a set of discrete time periods T . In each time period

 ∈ T , the supplier produces St units of the product, while each 

ustomer i ∈ NC consumes Dit units of the same product. Both the 

upplier and the customers, i ∈ N = NC ∪ { 0 } , have an initial inven-

ory level Ii at the beginning of the planning horizon, a required 

inimum inventory level L i , and a maximum storage capacity L i . 

nventory holding costs Hit are incurred for each unit of product 

t each node i ∈ N at the end of time period t ∈ T . In a given pe-

iod we assume that deliveries are made before the demands are 

onsumed. 

In order to serve the demands, the supplier has a homoge- 

eous fleet of K vehicles, each with a capacity to hold Q units of 

he product. The problem of routing the vehicles to serve the cus- 

omers can be defined on a graph G = (N , A ) , where N is the set
∗ Corresponding author. 

E-mail address: jorgen.skalnes@ntnu.no (J. Skålnes) . 
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f nodes and A = { (i, j) ∈ {N × N }| i � = j} is the set of arcs connect-

ng the nodes. A cost Ci j is incurred when traversing the arc (i, j) , 

nd a customer can be visited at most once per time period. Thus, 

 route driven by a vehicle can be seen as a simple cycle in the

raph starting and ending at the supplier. The objective of the IRP 

s to create at most one route per vehicle in each time period, min- 

mizing the total transportation and inventory holding costs, while 

eeping the inventory at each node between its upper and lower 

imits, L i and L i , respectively. This implies that the decision-maker 

ust simultaneously decide (1) when to visit a customer, (2) how 

uch to deliver to a customer upon a visit, and (3) how to route 

he available vehicles serving the visited customers at most once 

n each time period. 

Archetti, Bertazzi, Laporte, & Speranza (2007) proposed a 

ranch-and-cut (B&C) algorithm for the single-vehicle IRP and 

emonstrated that the maximum-level inventory (ML) policy is su- 

erior to the order-up-to inventory policy, while also establishing 

hat later has become the most popular set of benchmark in- 

tances for this problem. There are a total of 160 instances ranging 

rom five to 50 customers, with three and six-time periods, respec- 

ively. Subsequently, Archetti, Bertazzi, Hertz, & Speranza (2012) re- 

eased 60 additional instances, having a planning horizon of six- 

ime periods and 50, 100, and 200 customers. Later, both sets of in- 

tances were adapted by Coelho, Cordeau, & Laporte (2012) to the 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ejor.2023.08.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2023.08.010&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jorgen.skalnes@ntnu.no
https://doi.org/10.1016/j.ejor.2023.08.010
http://creativecommons.org/licenses/by/4.0/


J. Skålnes, M. Ben Ahmed, L.M. Hvattum et al. European Journal of Operational Research 313 (2024) 992–1014 

m

t

T

(

i

t

v

s

C

&

2

S

T

S

g

f

o

s

p

g

o

s

f

t

t

h

t

l

m

a

l

t

a

f

n

s

m

e

m

t

k

I

D

l

d

t

d

o

n

w

t

r

t

t

m

t

s

u

a

b

p

r

v

I

t

B

i

e

d

i

i

p

s

W

i

c

i

d

a

I

p

p

p

t

a  

s

m

h

l

m

o

s

d

i

s

i

m

s

r

s

n

i

p

t

2

N

a

w

d

f

t

p

t

fl

c

i

v

m

i

d

t

p

(

p

ulti-vehicle IRP by dividing the overall single-vehicle capacity by 

he number of vehicles considered, rounded to the nearest integer. 

he instances proposed by Archetti et al. (2007) and Archetti et al. 

2012) are usually referred to as the small and large benchmark 

nstances, respectively. Considering vehicle fleets ranging from one 

o five vehicles, this yields 798 small instances (two of the five- 

ehicle instances are infeasible) and 300 large instances. 

The exact methods developed for the IRP can mainly be clas- 

ified into branch-cut-and-price algorithms ( Desaulniers, Rakke, & 

oelho, 2016 ) or branch-and-cut algorithms ( Adulyasak, Cordeau, 

 Jans, 2014; Archetti et al., 2007; Avella, Boccia, & Wolsey, 

018; Coelho & Laporte, 2014; Guimarães, Schenekemberg, Coelho, 

carpin, & Pécora, 2023; Manousakis, Repoussis, Zachariadis, & 

arantilis, 2021; Skålnes, Andersson, Desaulniers, & Stålhane, 2022; 

kålnes, Vadseth, Andersson, & Stålhane, 2023 ). Branch-and-cut al- 

orithms have also been the most popular among exact methods 

or other variants of the IRP, such as the IRP with zero-inventory 

rdering policy ( Diabat, Bianchessi, & Archetti, 2023 ), the IRP with 

plit deliveries ( Dinh, Archetti, & Bertazzi, 2023 ) and the IRP with 

roduct substitution ( Mahmutoğullari & Yaman, 2023 ). 

Archetti & Ljubić (2022) presented a comparison of various ag- 

regated and disaggregated formulations, i.e., formulations with- 

ut or with vehicle indices, respectively, for the IRP. They demon- 

trated that both types of formulations give the same lower bound 

or the linear relaxation, but that the aggregated formulations ob- 

ain better results at the termination of the B&C method they used 

o solve the problem. 

Considerable effort has also been put into developing efficient 

euristic algorithms. Archetti et al. (2012) proposed a matheuris- 

ic for the single-vehicle IRP combining a tabu search with the so- 

ution of a mixed-integer linear program (MILP), which was later 

odified also to handle multiple vehicles ( Archetti, Boland, & Sper- 

nza, 2017 ), and improved the best-known solutions for 92% of the 

arge multi-vehicle instances. Many of these solutions were fur- 

her improved by Chitsaz, Cordeau, & Jans (2019) who proposed 

 three-phase decomposition matheuristic. Despite being designed 

or the assembly routing problem, their algorithm was able to find 

ew best-known solutions for 194 out of the 300 large IRP in- 

tances. 

Alvarez, Cordeau, Jans, Munari, & Morabito (2021) presented a 

atheuristic for the IRP with perishable products, combining an it- 

rative local search metaheuristic with two mathematical program- 

ing components. This algorithm found high-quality solutions for 

he variant with perishable products, but it also improved the best- 

nown solution for a few of the small instances on the standard 

RP. Another matheuristic for the standard IRP was developed by 

iniz, Martinelli, & Poggi (2020) , where they combined an iterative 

ocal search algorithm with a randomized variable neighborhood 

escent. Using this heuristic, they improved the best-known solu- 

ions for several of the small benchmark instances. Vadseth, An- 

ersson, & Stålhane (2021) further improved the solutions for 178 

f the large benchmark instances by solving the problem with a 

ovel iterative matheuristic. They used a column generation frame- 

ork where they created an initial route pool by splitting a giant 

our. Then they iteratively solved a master problem that combines 

outes into a feasible solution and a heuristic that identifies poten- 

ially improving routes. In addition to obtaining high-quality solu- 

ions, they solved the instances considerably faster than the other 

ethods presented in the literature. 

Solyalı & Süral (2022) proposed a novel matheuristic for the IRP 

hat relies on a sequential solution of three different MILPs of a re- 

tricted version of the problem only once. The first two MILPs are 

sed to construct a good feasible solution, while the third MILP 

ttempts to improve the solution. The improvement is performed 

y transforming feasible routes into distinct giant routes for each 

eriod and vehicle, and next, choosing the best routes from giant 
993
outes by determining the customers to visit in each period and 

ehicle. Many other techniques have been proposed to solve the 

RP. We mention here the hyper-heuristic method of Kheiri (2020) , 

he local search-based matheuristic of Su, Zhipeng, Wang, Qi, & 

enlic (2020) , and the kernel search-based matheuristic presented 

n Archetti, Guastaroba, Huerta-Muñoz, & Speranza (2021) . 

Both best-known lower and upper bounds have been consid- 

rably improved for all benchmark instances, driven by the rapid 

evelopment of both exact methods and heuristics, thus highlight- 

ng how these instances have provided a solid ground for evaluat- 

ng various solution methods. However, these benchmark instances 

ossess specific characteristics that can be exploited by tailoring 

olution methods specifically for these instances. Avella, Boccia, & 

olsey (2015) pointed out that the inventory capacities in these 

nstances are integer multiples (specifically two and three) of the 

ustomer demands, which allows for the development of special- 

zed valid inequalities, whose efficiency is data-dependent. In ad- 

ition, the abundant vehicle capacity in many of these instances 

llows for easily computing optimal or near-optimal delivery dates. 

n these cases, the IRP reduces to a capacitated vehicle routing 

roblem for each period or traveling salesman problems, for each 

eriod and vehicle, where the customer visits are determined a 

riori. This is especially clear for the 212 three-period instances 

hat are solved to optimality by our B&C method. Here, on aver- 

ge 5 . 3% , 94% , and 7 . 3% of the customers are visited in the first,

econd, and third period, respectively. Several heuristics, e.g., the 

atheuristics of Archetti et al. (2017) and Solyalı & Süral (2022) , 

ave exploited this aspect. Moreover, the difficulty of solving prob- 

ems with long planning horizons diminishes with stationary de- 

ands, because repeating distribution patterns can be identified. 

To avoid a research direction of overfitting new solution meth- 

ds, we propose a new set of real-world-like instances for the 

tandard IRP to complement the current benchmark instances. In 

oing so, we respond to calls from several practitioners advocat- 

ng more diversity in IRP instances by allowing for different in- 

tance characteristics when it comes to the parameters govern- 

ng the inventories ( Avella et al., 2015 ), including time-varying de- 

ands ( Manousakis et al., 2021; Solyalı & Süral, 2022 ) and con- 

idering longer planning horizons ( Ben Ahmed, Okoronkwo, Oko- 

onkwo, & Hvattum, 2021 ). Our endeavor also finds inspiration in 

everal contributions in the literature that dealt with generating 

ew benchmark instances for routing problems, such as the capac- 

tated vehicle routing problem ( Uchoa et al., 2017 ), the liner ship- 

ing problem ( Brouer, Alvarez, Plum, Pisinger, & Sigurd, 2014 ), the 

ramp shipping problem ( Hemmati, Hvattum, Fagerholt, & Norstad, 

014 ), and the maritime inventory routing problem ( Papageorgiou, 

emhauser, Sokol, Cheon, & Keha, 2014 ). Kendall et al. (2016) also 

dvocate the importance of focusing on the instances themselves 

hen proposing a new benchmark set, without distractions from 

escriptions of new solution methods. In this paper, we therefore 

ocus on the properties of the new instances. 

The new instances have non-stationary demands, i.e., a cus- 

omer does not necessarily have the same demand in every time 

eriod of the planning horizon, which we believe corresponds bet- 

er to customers’ demands in practice. We also scale the vehicle 

eet based on real-life vehicles such that the routes typically be- 

ome shorter than in the current benchmark instances. In the new 

nstances, the inventory capacity of the customers has a higher 

ariance, potentially resulting in greater differences in the mini- 

um visiting frequency between each pair of customers. We also 

ntroduce an explicit upper bound of the inventory capacity at the 

epot. Furthermore, we propose instances where the node loca- 

ions have different structures. In some instances, the nodes are 

ositioned randomly (R), in others, they are positioned in clusters 

C), and finally, some are positioned as a mix between the two 

rior location structures (RC). This describes different realistic situ- 
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Table 1 

Types of vehicles used for the instances. 

Vehicle type Capacity (EUR-pallets) 

Small truck 8 

Truck 18 

Trailer truck 38 
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tions where the supplier serves customers scattered across a large 

ity or in the countryside (R) or where the supplier serves several 

maller towns or neighborhoods (C) represented by clusters. With 

he mixed node locations (RC), we allow for a combination of the 

wo prior settings. 

We additionally incorporate an assumption of economies of 

cale for the inventories, thus resulting in the supplier having the 

owest inventory cost. Hence, the inventory cost at a customer rep- 

esents the marginal cost increase of storing a product unit at the 

ustomer rather than at the supplier. We aim to use realistic val- 

es for inventory and transportation costs, thus correctly reflecting 

heir relative importance when solving the IRP. Finally, we apply 

 rounding of the distances between each pair of nodes such that 

he triangular inequality is fulfilled. 

The new set of benchmark instances is analyzed and compared 

ith the original benchmark instances through an instance space 

nalysis ( Smith-Miles & Muñoz, 2023 ) using the MATILDA platform 

 Smith-Miles, Muñoz, & Neelofar, 2020 ). This analysis shows that 

he new set of instances have different features than the existing 

et of benchmark instances. 

Furthermore the new instances are solved using an exact B&C 

ethod, and a matheuristic from the literature to establish initial 

pper and lower bounds for the instances. These tests show that 

he new instances are both diverse and complex, and that existing 

olution methods struggle to obtain high quality solutions to many 

f them. These results suggest that there is still room for new and 

mproved solution methods for the IRP. 

The remainder of this paper is organized as follows: In 

ection 2 we present the new set of instances and how they are 

enerated, Section 3 presents a model formulation for the problem, 

nd Section 4 gives a brief description of the B&C method, and the 

atheuristic used to obtain lower and upper bounds on the new 

nstances. Finally, we present the instance space analysis and the 

ower and upper bounds obtained by these methods in Section 5 , 

efore the concluding remarks are presented in Section 6 . 

. Instance generation 

In this section, we describe how the new benchmark instances 

re generated. The instances are generic and may represent a wide 

ange of practical applications, but lie mainly within the sector 

f road-based transportation. More specifically, the instances are 

ased on the transportation of pallets, but can easily be trans- 

ated to instead represent, e.g., transportation of cubic meters of 

as, liquid, or mass. In the case of transportation of pallets, the in- 

tances may represent any business that transports their products 

oaded onto pallets, such as electronics, beverages, or groceries. 

he instances are closely aligned with the transportation of ho- 

ogeneous products, but may also represent simplified problems 

ith heterogeneous products as long as they are loaded onto pal- 

ets, and thus the pallets themselves can be viewed as the products 

o be transported. 

We believe that the vehicle capacity is the feature of an IRP in- 

tance that is the most constrained in practice. In practice, there 

s a limited number of vehicle types, at least for road-based 

ransportation. The vehicles cannot be larger than what is con- 

rolled by the regulations set by the authorities. Therefore, we 

egin by presenting the available vehicle types used in the ve- 

icle fleet of the new instances in Section 2.1 . Section 2.2 de- 

cribes how the demand is determined and Section 2.3 explains 

ow the initial inventory levels and inventory capacities are se- 

ected. Section 2.4 presents how the node locations are drawn, and 

ection 2.5 presents the mechanism we use to ensure that the gen- 

rated instances are feasible, i.e., how the vehicle fleet size and 

emand are scaled. Finally, we give an overview of the main char- 

cteristics of the proposed instances in Section 2.6 . 
994 
.1. Vehicle fleet 

All instances presented in this paper have a vehicle fleet with 

haracteristics based on real-life vehicle types. We have defined 

 set of three vehicle types commonly used. Table 1 shows the 

ifferent vehicle types used to generate the instances where the 

olumn ‘Vehicle type’ defines the vehicle name/ID and the col- 

mn ‘Capacity’ denotes the corresponding capacity expressed in 

UR-pallets. A EUR-pallet has the dimensions 120 0mm × 80 0mm ×
44mm (47 . 2in × 31 . 5in × 5 . 7in ) , and has a total safe loading

eight of 1500 kg. The demands and the inventory capacities are 

lso expressed in EUR-pallets. 

An instance is based on a homogeneous fleet consisting of one 

f the vehicle types in Table 1 , where the number of vehicles is 

caled according to the number of customers and the total de- 

and. This is explained in more detail in Section 2.5 . 

.2. Demand generation 

Like previous research, we assume that customers allow at most 

ne visit in each time period. Therefore we scale the average 

emand at each customer so that total demand over the plan- 

ing horizon can always be satisfied by a maximum of one visit 

er time period. To reflect the demand patterns seen in practice, 

here the demand typically varies from time period to time pe- 

iod, and where it is positively correlated between customers op- 

rating within the same sector, we draw random deviations from a 

onstructed demand trajectory for each customer. Such a demand 

rajectory can capture various demand patterns, e.g., the one seen 

y grocery stores where the demand is typically high at the be- 

inning of the week, decreasing in the middle of the week, before 

ncreasing towards the weekend. To capture this volatile behavior 

ften seen in practice we build the demand trajectory, D it for cus- 

omer i ∈ NC and time period t ∈ T , using a sine function. With the

ine function we can for each customer i ∈ NC set the frequency 

etween each peak demand with a frequency coefficient θi . For 

ach customer i ∈ NC , we also define a shift coefficient φi to de- 

ne where on the trajectory we are in the first period, e.g. rising or 

ecreasing demand. Furthermore, for each customer i ∈ NC , we de- 

ne the relative magnitude of the peak demands with a coefficient 

i , and we define the average demand, Ki , by adding a constant 

erm to the sine function. The demand trajectory D it for customer 

 ∈ NC and time period t ∈ T can then be expressed as follows: 

 it = Bi Ki sin 

(
θi t + φi 

)
+ Ki , i ∈ N 

C , t ∈ T . (1) 

All of the above coefficients are drawn from uniform distribu- 

ions. An illustration of the demand trajectory for a customer can 

e seen in Fig. 1 , where the solid middle line represents a cus- 

omer’s demand trajectory. Finally, the demand Dit for customer 

 in time period t , seen as squared boxes in the figure, is drawn

rom a uniform distribution with the mean D it and a relative sym- 

etric support a from the interval 0 , 1] . For instance, if D it = 10

nd a = 0 . 2 , the demand Dit is drawn from a uniform distribution

ith the lower support being 8 and the upper support being 12, 

ounded to the nearest integer. The lower and upper support are 

epresented with dot-dashed lines in the figure. 

For the depot, we assume a constant production rate, St , in each 

ime period t ∈ T , which is set to be equal to the total demand
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Fig. 1. Illustration of a customer demand distribution. 
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ivided by the number of time periods, rounded up to the nearest 

nteger: 

t =
⌈ ∑ 

i ∈NC 

∑ 

t∈T 
Dit / |T |

⌉ 

, t ∈ T . (2) 

.3. Inventory 

In practice, the inventory capacity varies from customer to cus- 

omer. Some customers practice a just-in-time inventory policy 

here they have the smallest possible inventory capacity, while 

thers want to be less dependent on frequent deliveries and have 

arge inventory capacities. Therefore, we determine the inventory 

apacity by selecting a minimum visiting frequency, F , in the in- 

erval [1 , | T | ] for each customer i . This visiting frequency is drawn

andomly from a continuous uniform distribution. The inventory 

apacity Ii is then calculated as: 

i =
⌈ 

max {max 
t∈T 

{ Dit } ,
∑ 

t∈T 
Dit /F } 

⌉ 

, i ∈ N 

C . (3) 

In the case that the visiting frequency of a customer is equal to 

ne, we set its inventory capacity equal to its total demand over 

he planning horizon. Conversely, if the visiting frequency is equal 

o | T | , the inventory capacity is set equal to the maximum demand

ncurred over the planning horizon. We ensure that it is always 

ossible to satisfy customer demands without exceeding the inven- 

ory capacity. 

Similarly, as for the customers, the inventory capacity also 

aries from supplier to supplier. Some aim to ship out their prod- 

cts directly from production just having a bare minimum of 

nventory, while others keep large inventories to easier handle 

eaks in demand. Therefore, we draw the inventory capacity at 

he depot from a uniform distribution with the following support 

max { St , max 
i ∈N C {

∑ 

t∈T Dit }} , ∑ 

i ∈NC 

∑ 

t∈T Dit ] . 

The initial inventory represents the remaining inventory from 

he last time period of the previous planning period. Therefore, 

e assume that the initial inventory at each customer i ∈ NC lies 

n the interval [0 , min { Di 1 + Di 2 , L i } ] . We use the demand of the

rst two periods as an upper limit to not make the first part 
995 
f the planning horizon trivial to solve. The initial inventory is 

hen drawn from a uniform distribution with the mentioned sup- 

ort. Similarly, the initial inventory at the depot is drawn from a 

niform distribution with the support [
∑ 

i ∈NC Di 0 , min { S1 + S2 , L 0 } ] . 
he lower support is set to 

∑ 

i ∈NC Di 0 in order to guarantee that 

he first-period deliveries are feasible. 

Furthermore, we assume that the depot has the smallest inven- 

ory cost due to economies of scale. The customers then have a 

arginal inventory cost increase relative to the depot. The cus- 

omers’ marginal inventory cost per unit of product per time 

eriod is drawn from a uniform distribution with the support 

0 . 0 , 0 . 3] . The support is based on a multi-case study that covers

he inventory holding costs on automated inventory systems ( Azzi, 

attini, Faccio, Persona, & Sgarbossa, 2014 ). 

.4. Node locations 

The nodes, i.e., the depot and the customers, are located on a 

D map defined over a 500 × 500 grid. The depot’s coordinates are 

rawn from a uniform distribution, while the geographical distri- 

ution of customers follows either the random (R), clustered (C), 

r random-clustered (RC) positioning, similar to those of Solomon 

1987) for the vehicle routing problem with time windows. The 

andom location method randomly draws the customers’ coordi- 

ates from a uniform distribution. The clustered location method 

andomly draws the cluster’s center from a uniform distribution. 

hen the customers’ coordinates are determined by drawing an an- 

le and a radius from the cluster center. The angle is drawn from 

 uniform distribution before the radius r is drawn from an expo- 

entially decaying distribution: 

p(x | λ) = λe−λr 

 high value of λ results in a dense cluster where most of the cus- 

omers are located close to the cluster’s center. The customers be- 

ome more dispersed with a lower value of λ. By testing different 

alues we found λ = 50 to be a reasonable value to better reflect 

he appearance of a city or town. The random-clustered location 

ethod combines the latter two, where 50% of the customers are 

ocated with the random method, and the remaining customers are 

ocated with the clustering method. The node positions for one of 
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Fig. 2. An example of random, clustered, and random-clustered node positioning. 
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Algorithm 1: Feasibility inspection heuristic. 

1 repeat 

2 Run an IRP construction heuristic (Algorithm 2) 

3 for i ∈ NC , t ∈ T do 

4 Let σit = max (Dit − Iit , 0) 

5 end 

6 Let k̄ = min (Kmax − K,

⌈ ∑ 

i ∈NC 
∑ 

t∈T σit 

Q×|T | 
⌉ 

) 

7 if k̄ > 0 then 

8 K ← K + k̄ 

9 end 

10 else 

11 Let d̄ =
∑ 

i ∈NC 
∑ 

t∈T σit 

|T | 
12 for i ∈ NC , t ∈ T do 

13 Dit ← Dit − d̄ 

14 end 

15 end 

16 until no stock-outs 
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he 50-customer instances are shown in Fig. 2 for the three loca- 

ion methods: random, clustered, and random-clustered. The depot 

s represented by a dark square, while the customers are repre- 

ented by small circular nodes. 

van der Meulen et al. (2020) reported an average freight rate of 

.52 euros/km on road transport of containers for a ‘trailer truck’ 

ype of vehicle. Ti&Upply (2020) reported a similar average in the 

econd quarter of 2020, 1.58 euros/km, but also reported the range 

n a selected benchmark of direct routes, namely from 0.80 eu- 

os/km to 3.16 euros/km. The freight rates involve a profit margin, 

o the actual variable cost faced by a transportation company is 

xpected to be lower than this. Therefore, for simplicity, we use a 

ost of 1 euro/km. In addition, we propose two different versions 

f the cost matrix depending on whether the 2D-grid represents 

n urban area, Curban 
i j 

, or a rural area, Crural 
i j 

. We let one unit of dis-

ance in the 2D grid represent 0.1 km for the urban area and 0.5 

m for the rural area. This impacts the ratio between the trans- 

ortation cost and the inventory holding cost, which is expected 

o be the largest for the latter case. Both cost matrices are based 

n a distance matrix, Ei j , which represents the Euclidean distance 

etween each pair of nodes (i, j) . 

i j =
√ 

(yj − yi )2 + (x j − xi )2 , i, j ∈ N , (4) 

urban 
i j =

⌊
0 . 1 Ei j + 1

⌋
, i, j ∈ N , (5) 

rural 
i j =

⌊
0 . 5 Ei j + 1

⌋
, i, j ∈ N . (6) 

dding one to the term involving an element of the dis- 

ance matrix and rounding down to the nearest integer ensures 

hat the triangular inequality is satisfied. For example, in the 

ural case, Crural 
ik 

= � 0 . 5 Eik + 1 � ≤ � 0 . 5 Ei j + 0 . 5 E jk + 1 � ≤ 	 0 . 5 Ei j 
 +
 0 . 5 E jk + 1 � ≤ � 0 . 5 Ei j + 1 � + � 0 . 5 E jk + 1 � = Crural 

i j 
+ Crural 

jk 
. In addi-

ion, it is worth noting that many algorithms only work well when 

he triangle inequality is satisfied ( Fleming, Griffis, & Bell, 2013; 

oth & Vigo, 2002 ). 

.5. Feasibility inspection heuristic 

We developed an inspection heuristic to ensure that the in- 

tances are feasible. It checks if the given customer demands can 

e covered by a given fleet of vehicles. If this is not possible, the 

euristic expands the vehicle fleet or reduces the demand. For each 

ustomer i ∈ NC and period t ∈ T , let Iit = max (Ii −
∑ t 

s =0 Dis , 0) be 

he inventory in period t remaining from the initial inventory. 

The basic scheme of our feasibility inspection heuristic is illus- 

rated in Algorithm 1 . The heuristic starts by invoking a construc- 

ion heuristic for the IRP, which computes the delivered quantities 

o each customer in each time period. Next, given the inventory 
996 
osition at the beginning of each time period t , and the demand 

equirements Dit , the feasibility heuristic estimates the stock-out 

alue σit , i ∈ NC , t ∈ T . If the solution comprises stock-outs at cus-

omers, two procedures are invoked to recover feasibility. The first 

rocedure increases the fleet size by k̄ identical vehicles. The value 

f k̄ is chosen such that the shortages at customers are covered and 

uch that the fleet size K does not exceed a preset limit Kmax . If no

ore vehicles can be added, the second procedure is performed. It 

educes customer demands by an amount of d̄ , which absorbs the 

ncountered stock-out. Whenever a change in the fleet size or the 

emand requirements occurs, a new IRP solution is generated, and 

he process is iterated until a feasible one is obtained. 

Construction heuristic for the IRP: For the sake of complete- 

ess, we describe the construction heuristic we developed to de- 

ive IRP solutions. For each time period t ∈ T , we construct two 

ubsets of customers. The first one, referred by urgent customers , 
UC 
t , t ∈ T , which includes all customers whose remaining inven- 

ory level from the initial inventory, Iit , is not sufficient to cover 

he demand Dit in the current time period t ∈ T , while the non- 

rgent customers subset, NNUC 
t , t ∈ T , contains the remaining ones. 

tarting with the first subset, each customer is considered sequen- 

ially, and the delivered quantity qit is set as the potential stock- 

ut, that we denote by σit , i ∈ NUC 
t , t ∈ T . The customer is assigned

o the vehicle with the highest residual capacity rkt , t ∈ T , k ∈ K.

ote that such a solution might be infeasible in terms of stock-outs 

t the supplier and vehicles’ capacities. However, when combined 

ith the feasibility inspection heuristic described in Algorithm 1 , 

e guarantee that it is always possible to satisfy all customers’ de- 
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ands. Next, for every element i in the second subset, we add a 

isit at day t < |T | using the vehicle with the highest residual ca-

acity rkt , t ∈ T , k ∈ K. The quantity qit delivered to customer i on

ay t is the minimum between: ( i ) the maximum quantity that 

an be delivered without exceeding the maximum inventory ca- 

acity L i , ( ii ) the highest available vehicle’s residual capacity, and 

 iii ) the quantity I0 ,t available at the supplier. Each vehicle’s route 

s ultimately constructed using the Lin-Kernighan heuristic ( Lin 

 Kernighan, 1973 ). The proposed construction heuristic is pre- 

ented in Algorithm 2 . The route generating part of the construc- 

Algorithm 2: A construction heuristic for the inventory rout- 

ing problem. 

1 for t ∈ T do 

2 Let NUC 
t := { i ∈ NC : Iit < Dit } 

3 for i ∈ NUC 
t do 

4 Let k be the index of the vehicle with the highest 

residual capacity rkt 

5 qitk ← σit 

6 Update vehicle and inventory calculations 

7 end 

8 Let NNUC 
t := { i ∈ NC : Iit ≥ Dit } 

9 for i ∈ NNUC 
t do 

10 if t < T then 

11 if ( i is visited) then 

12 Let k be the index of the vehicle serving 

customer i 

13 qitk ← qitk + min (rkt , min (Ui − Iit , I0 t )) 

14 end 

15 else 

16 Let k be the index of the vehicle with the 

highest residual capacity rkt 

17 qitk ← min (rkt , min (Ui − Iit , I0 t )) 

18 end 

19 Update vehicle and inventory calculations 

20 end 

21 end 

22 for k ∈ K do 

23 Build the vehicle’s route using the Lin-Kernighan 

algorithm 

24 end 

25 end 

ion heuristic is not necessary to ensure a feasible solution, but for 

implicity, we do not present a separate construction heuristic just 

or evaluating feasibility during the instance generation procedure. 

.6. Instance overview 

This section provides an overview of the main attributes of the 

nstances proposed in this paper, and a brief comparison with the 

riginal instances. The instances are ordered by the number of cus- 

omers ranging from 10 to 200. We defined two geographical ar- 

as: urban and rural. Each area yields a different transportation to 

nventory costs ratio as described in Section 2.4 . Node positioning 

an be random, clustered, or random-clustered. The planning hori- 

on length varies between 6, 9, and 12 time periods. A vehicle can 

ave a capacity of either 8, 18, or 38 EUR-pallets. In so doing, it 

s likely that the average route length on instances with different 

ehicle types varies. The number of available vehicles K is calcu- 

ated by running the feasibility inspection heuristic presented in 

ection 2.5 . For each instance, only one vehicle type is selected, 

reating a homogeneous fleet of vehicles. An overview of the in- 

tances’ main attributes is presented in Table 2 . By varying these 
997 
ttributes, one at a time, we obtain 270 instances with distinct 

onfigurations. Finally, the name of an instance follows the format 

-P-N-Q-T, where A is the geographical area (rural or urban), P 

s the node positioning (random, clustered, or random clustered), 

 is the number of customers, Q represents the vehicle capacity, 

nd T is the length of the planning horizon. The new benchmark 

nstances are publicly available on the AXIOM project web page: 

ttp://axiomresearchproject.com/publications/ . The best-known so- 

utions from the B&C method and the matheuristic are also avail- 

ble on this web page. 

Disregarding the vehicle capacity, some of the new instances 

verlap with the original instances, namely those set in a rural 

rea with random node positioning, six periods, and 10 or 25 cus- 

omers. Since we scale the vehicle fleet to the number of cus- 

omers, only some of the 10- and 25-customer instances have a 

ehicle fleet of the same size as in the original instances, while 

he remaining instances have a vehicle fleet strictly larger than 

he original instances. Even though these instances have overlap- 

ing attributes, some key features such as the vehicle capacity and 

he demand are different and we expect this to affect the solution 

tructure. Since there are several features that are different across 

he old and the new instances it is difficult to predict whether it 

ecomes easier or harder to find good solutions even though they 

re similar with respect to the attributes listed in Table 2 . 

The new instances have smaller average vehicle capacity to 

nventory capacity ratios than the original instances, which hy- 

othetically can reduce the maximum feasible route length, thus 

ielding a smaller solution space. On the other hand, instances 

ith a large vehicle fleet have been proven to be more challeng- 

ng for B&C methods ( Adulyasak et al., 2014; Avella et al., 2018; 

oelho & Laporte, 2014; Manousakis et al., 2021; Skålnes et al., 

022 ). The new instances have time-varying demands for each cus- 

omer, while the original instances have constant demands. This 

ight affect the diversity of routes in a good solution. When the 

emands are time-varying, it might be worse to re-use a route in 

ther time periods than when the demands are stationary. 

Another feature that differs from the original instances is the 

nventory holding costs. Since the depot in the new instances al- 

ays has the lowest inventory holding cost, it is possible to derive 

n upper bound on the delivered quantity to each customer, which 

s equal to the total demand over the planning horizon. This is only 

ossible for a subset of customers in the original instances, poten- 

ially making the dual bounds in an exact method better for the 

ew instances. However, calculating such a bound is possible only 

f the inventory capacity at the depot cannot be violated, which 

ight occur in the new instances. This makes it hard to predict 

hether it is possible to use such a bound or not without as- 

essing each individual instance. In the new instances, the inven- 

ory capacities and the initial inventory levels also make the min- 

mum visiting frequency vary more across customers compared to 

he original instances. Some customers must be visited more fre- 

uently than in the original instances, while others may be visited 

ess frequently. The net effect of this behavior is hard to predict. 

ue to the mentioned features of the new instances, we show in 

ection 5.2 that the net effect of these features does not make the 

roblem significantly easier to solve with either the B&C method 

r the matheuristic than for the corresponding original instances, 

.e., those with the same number of customers, number of periods 

nd number of vehicles. 

. Model formulation 

In this section, we present a MILP formulation for the IRP. In 

ddition to the notation presented in Section 1 , we introduce the 

ollowing decision variables. Let xi jt be 1 if a vehicle traverses arc 

i, j) ∈ A in time period t ∈ T , 0 otherwise. To improve the read-

http://axiomresearchproject.com/publications/
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Table 2 

Overview of the main attributes of the new set of benchmark instances for the IRP. 

Area Positioning Customers Vehicle capacity Periods 

Urban, Rural R,C,RC 10, 25, 50, 100, 200 8, 18, 38 6, 9, 12 
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bility of the model we introduce for each node i ∈ N and time

eriod t ∈ T an integer variable δit , which denotes the number of 

imes node i is visited in time period t (binary for the customers 

 ∈ NC ). For each node i ∈ N and time period t ∈ T , we also in-

roduce a non-negative variable sit , which represents the inventory 

evel at node i at the end of time period t . Finally, we define for

ach customer i ∈ NC and time period t ∈ T a non-negative vari- 

ble qit , which determines the quantity delivered to customer i in 

ime period t . We can now formulate the standard IRP as the MILP 

escribed by Skålnes et al. (2022) : 

in 

∑ 

(i, j) ∈A 

∑ 

t∈T 
Ci j xi jt +

∑ 

i ∈N 

∑ 

t∈T 
Hit sit (7) 

0 t = St −
∑ 

i ∈NC 

qit + s0(t−1) , t ∈ T , (8) 

it = qit − Dit + si (t−1) , i ∈ NC , t ∈ T , (9) 

 i ≤ sit ≤ L i , i ∈ N , t ∈ T , (10) 

∑ 

 ∈NC 

qit ≤ Qδ0 t , t ∈ T , (11) 

it ≤ L i − si (t−1) , i ∈ NC , t ∈ T , (12) 

it ≤ min {L i − Iit , Q} δit , i ∈ NC , t ∈ T , (13) 

∑ 

j∈N\{ i } 
xi jt = δit , i ∈ N , t ∈ T , (14) 

∑ 

j∈N\{ i } 
xi jt =

∑ 

j∈N\{ i } 
x jit , i ∈ N , t ∈ T , (15) 

∑ 

(i, j) ∈ (S : S ) 
xi jt ≤

∑ 

i ∈S 
δit − δmt , S ⊂ NC , |S| ≥ 2 , 

t ∈ T , m ∈ S, (16) 

∑ 

i, j) ∈ (S : N\S ) 
Qxi jt ≥

∑ 

i ∈S 
qit , S ⊂ NC , |S| ≥ 2 , t ∈ T , (17) 

it ≥ 0 , i ∈ NC , t ∈ T , (18) 

it ∈ { 0 , 1 } , i ∈ NC , t ∈ T , (19)

0 t ∈ { 0 , 1 , . . . , K} , t ∈ T , (20) 

i jt ∈ { 0 , 1 } , (i, j) ∈ A , t ∈ T , (21)

here s00 = I0 and si 0 = Ii , i ∈ NC . The objective function (7) min- 

mizes the sum of the transportation cost and the inventory hold- 

ng cost. The inventory holding cost associated with the initial in- 

entory level is a constant term and thus has been omitted from 

he objective function and the cost calculation of the solution. Con- 

traints (8) and (9) balance the inventory at the supplier and the 

ustomers, respectively, while constraints (10) make sure that the 
998 
nventory levels always stay between their lower and upper lim- 

ts at the supplier and at the customers. Constraints (11) state 

hat the vehicles used in a given period never deliver more than 

heir capacity. The maximum level inventory policy is enforced by 

onstraints (12) , and constraints (13) ensure that a delivery only 

an be made to a customer if the customer is visited. Constraints 

14) are the degree constraints and constraints (15) ensure a cor- 

ect vehicle-flow between nodes. The standard subtour and ca- 

acitated subtour-elimination constraints are stated in constraints 

16) and (17) , respectively, where the notation on the form (E : 
) = { (i, j) : i ∈ E, j ∈ F \ { i }} denotes the set of arcs going from

he nodes in the set of nodes, E , to the nodes in the set of nodes,

. Finally, constraints (18) –(21) define the variable domains. 

. Solution methods 

This section describes the B&C method and the matheuristic 

sed to derive primal and dual bounds on the new benchmark in- 

tances. For instances where these methods fail to obtain a feasible 

olution, we show that they are feasible by running the construc- 

ion heuristic given in Algorithm 2 . Section 4.1 briefly describes the 

&C algorithm, and Section 4.2 describes the matheuristic. 

.1. Branch-and-cut method 

The B&C method starts by solving the linear relaxation of the 

ILP defined by the formulation (7) –(15) and (18) –(21) . The stan- 

ard and capacitated subtour-elimination constraints, (16) and (17) , 

espectively, are added dynamically at every node of the branch- 

nd-bound tree. In addition, we use the same valid inequalities 

s Skålnes et al. (2022) , i.e., those of Coelho & Laporte (2014) ,

he capacity inequalities of Desaulniers et al. (2016) and the Dis- 

oint Route (DR) inequalities of Avella et al. (2018) , but where we 

mit the h -DR inequalities. For the 100 and 200 customer instances 

hese valid inequalities become too expensive to separate using 

he suggested route length of h = 8 . Finding the best parameter 

ettings for these valid inequalities on larger instances is outside 

he scope of this paper and is better left to future research. In 

ddition, it is worth pointing out that we are not using the cus- 

omer schedule formulation of Skålnes et al. (2022) since the enu- 

eration of the customer schedules is too time-consuming for 9 

nd 12 time periods. The a priori generation of these schedules is 

etter suited for six time periods or less. The capacity inequali- 

ies of Desaulniers et al. (2016) and the simple DR inequalities of 

vella et al. (2018) are separated exactly, and added only in the 

oot node due to the computational complexity of these separa- 

ion algorithms. Further details on these separation algorithms are 

resented by Skålnes et al. (2022) and Avella et al. (2018) . 

.2. Matheuristic 

We have implemented the matheuristic of Archetti et al. (2017) , 

hich has been successful for the original benchmark instances of 

he IRP. The proposed method involves three phases: a construc- 

ion phase, a tabu search algorithm, and an improvement phase. 

oth the construction and improvement phases rely on the solu- 

ion of MILP models. 

The construction phase aims to generate a starting solution and 

elies on a relaxation of an exact MILP formulation, where only the 
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ntegrality of the δ-variables is retained. The relaxation does not 

ave to be optimal, and any feasible relaxation obtained within 

 specified time limit is accepted. A solution to the IRP is next 

ompleted by applying the Lin-Kernighan algorithm to derive ve- 

icle routes. The construction phase includes a fail-safe heuristic 

hat constructs an IRP solution when the MILP relaxation fails to 

chieve that within the given time limit. However, the feasibility 

f the fail-safe solution is not guaranteed. 

The tabu search looks for an enhanced solution to the IRP 

ithin the neighborhood of the starting solution. The neighbor- 

ood exploration employs five move operators: adding a visit, re- 

oving a visit, moving a visit to another day, swapping two vis- 

ts, or moving to a different route. Delivered quantities are mean- 

hile adjusted to avoid stock-outs at customers. Vehicle capacity 

iolations and stock-outs at the supplier are permitted during the 

abu search, and specific recovery mechanisms are incorporated to 

estore the solution’s feasibility. The improvement phase incorpo- 

ates information collected during the tabu search and attempts to 

x the values of certain variables to zero. The MILP formulation 

ecomes easier to solve, and it is rerun to obtain a new solution. 

Finally, we emphasize that our reimplementation of the 

atheuristic may not be identical to the one used by Archetti et al. 

2017) , although when solving the original instances, we obtain the 

ame solutions as the original implementation after most phases 

f the matheuristic. That is, we believe any differences in perfor- 

ance from the original implementation are due to implementa- 

ion details such as the choice of data structures. 

. Computational results 

In this section, we compare the new instances with the original 

nstances and we discuss which attributes of the problem seem to 

e the drivers of an instance’s difficulty, assessed by the perfor- 

ance of the matheuristic and the B&C method. The algorithms 

re implemented in C++, and the MILPs are solved by the com- 

ercial solver Gurobi 9.5, with default settings, except that we 

se a single thread for the computations. The experiments have 

een run on a Lenovo NextScale nx360 M5 machine, with a dual 

.3GHz Intel E5-2670v3 processor with 64 GB RAM memory. Most 

xact methods have used a computational time limit of 7,200 sec- 

nds ( Coelho & Laporte, 2014; Desaulniers et al., 2016; Skålnes 

t al., 2022 ), while the matheuristic of Archetti et al. (2017) had 

 computational time limit of 1800 seconds. Therefore, our B&C 

ethod has a computational time limit of 7,200 seconds, while 

he matheuristic has a computational time limit of 1800 seconds 

or the instances with 25 customers or less. For the remaining in- 

tances, we used 2400 seconds to give the matheuristic a better 

hance of finding feasible solutions. The detailed results can be 

ound in Appendix B and online ( http://axiomresearchproject.com/ 

ublications ). 

In Section 5.1 , we present an instance space analysis com- 

aring the new set of instances to the original. Section 5.2 fur- 

her compares the original and new instances by examining how 

he matheuristic and the B&C method perform across these in- 

tances. Then, the remaining part of this computational study fo- 

uses on the new instances and investigates potential drivers of an 

nstance’s difficulty, such as the number of customers and node lo- 

ations in Section 5.3 , the number of periods in Section 5.4 and 

he vehicle capacity in Section 5.5 . 

.1. Instance space analysis 

In this section, we present an instance space analysis ( Smith- 

iles & Muñoz, 2023 ) of both the original and the new set of

nstances, by using the research platform MATILDA ( Smith-Miles 

t al., 2020 ). Based on a defined set of features, we can describe
999 
n instance space for the IRP. We aim to create an instance space 

s a 2D projection of a multi-dimensional feature space, that both 

escribes the similarities and differences between instances well 

nd organizes the instances into regions of difficulty or easiness 

or different solvers. 

Once MATILDA has selected a subset of useful features that cor- 

elate with algorithm performance, a 2D projection from the multi- 

imensional feature space is performed to create an instance space, 

isualizing the instances in this space along with an estimate of 

he theoretical boundary of the instance space. In addition, we use 

he gap as a performance criterion, in this case, the difference be- 

ween the upper bound ( UB 

i ) of a method i and the lower bound 

LB) obtained by the B&C method, gap = (UB 

i − LB ) /UB 

i , where i 

efers to either the matheuristic or the B&C method. This is an 

verestimate of the optimality gap, since the lower bound, LB, is 

maller than or equal to the optimal solution. 

To describe the instance space of the IRP, we define a total of 

3 features: 

1. Number of customers, |NC | . 
2. Number of periods, |T | . 
3. Number of vehicles, |K| . 
4. Average standard deviation of demand, σ D = ∑ 

i ∈NC (
√ ∑ 

t∈T (Dit − μD 
i 
)2 / |T | ) / |NC | , where the 

average demand for customer i ∈ NC is defined as 

μD 
i 

= ∑ 

t∈T Dit 

/ |T | . 
5. Standard deviation of inventory capacity, σ I = √ ∑ 

i ∈N (L i − μI )2 / |N | , where the average inventory 

capacity μI is defined as μI = ∑ 

i ∈N L i / |N | . 
6. Standard deviation of edge cost, σ E = √ ∑ 

(i, j) ∈AE (Ci j − μE )2 / |AE | , where the average edge 

cost μE is defined as μE = ∑ 

(i, j) ∈AE Ci j / |AE | , where 

AE = { (i, j) ∈ A | i < j} is the set of edges. 

7. Average inventory cost to average edge cost ratio, RIE = 

μIC / μE , where μIC = ∑ 

i ∈N 
∑ 

t∈T Hit / |N ||T | is the aver- 

age inventory cost. 

8. Average demand to average inventory capacity ratio, RDI = 

μD / μI . 

9. Average demand to vehicle capacity ratio, RDQ = μD / Q . 

10. Average inventory capacity to vehicle capacity ratio, RIQ = 

μI / Q . 

11. Average inventory cost ratio between the depot and the cus- 

tomers, μDC = ∑ 

i ∈NC 

∑ 

t∈T (H0 t / Hit ) / |N ||T | . 
12. Average ratio between demand and initial inventory capac- 

ity, RDS = (
∑ 

i ∈NC μi / Ii ) / |NC | . 
13. Average ratio between initial inventory and inventory capac- 

ity, RSI = (
∑ 

i ∈NC Ii / L i ) / |NC | . 

It is recommended to use 10 or fewer instance fea- 

ures for the instance space analysis in order to return sta- 

le results (video tutorial: https://matilda.unimelb.edu.au/matilda/ 

howMobileHomePage) . Therefore we use the auto-selection tool 

f MATILDA to select the 10 features that have the strongest cor- 

elation with the performance criterion and that have the smallest 

ossible overlap across features. After this selection procedure, we 

btain the set of 10 instance features listed in the matrix below. 

he MATILDA toolkit then calculates a 2D projection matrix that 

ims to retain as much as possible of the variation of the original 

0D instance space in the new 2D instance space. The 2D projec- 

ion matrix maps the original feature values onto a new coordinate 

ystem [ z1 , z2 ] . The axes z1 and z2 do not have a practical interpre- 

ation, but instances that lie close in the 2D space have similar 

eature values, while those that lie far apart have large differences 

n feature values. The coordinates for each instance are calculated 

http://axiomresearchproject.com/publications
https://matilda.unimelb.edu.au/matilda/showMobileHomePage)
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Fig. 3. Distribution of instances across the 2D projection of the instance space. 
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Table 3 

Average difference in upper bounds from the results of Archetti et al. (2017) in %. 

N \ K 2 3 4 5 Average 

5 0.00 0.00 0.00 0.00 0.00 

10 −0 . 03 1.94 −1 . 10 −1 . 89 −0 . 27 

15 −0 . 04 −1 . 07 −2 . 57 −2 . 56 −1 . 56 

20 0.18 −0 . 16 0.97 0.56 0.39 

25 0.28 2.13 −0 . 33 0.64 0.68 

30 0.77 2.92 5.09 6.01 3.70 

Average 0.19 0.96 0.34 0.48 0.49 
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y doing the following 2D projection: 

z1 

z2 

]
=

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−0 . 0085 −0 . 9575 

0 . 2198 −0 . 2447 

0 . 3135 0 . 1163 

0 . 826 0 . 6239 

−0 . 1582 −0 . 1542 

0 . 4289 −0 . 6853 

0 . 7837 0 . 2983 

0 . 8883 −0 . 668 

0 . 2576 −0 . 864 

−0 . 077 1 . 1409 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

T ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

σ D 

σ E 

RIE 

σ I 

RDI 

|K| 
|NC | 
|T | 
RDS 

RSI 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

here the features are normalized to [0,1] within the MATILDA 

latform. Fig. 3 shows the 2D projection of the instance space gen- 

rated by the MATILDA toolkit. The red dots represent the new in- 

tances while the blue dots represent the original instances. We 

ee that the red and blue dots lie in distinct areas of the projected 

D instance space, which indicates that the new instances nicely 

omplement the original instances. 

Furthermore, we visualize the instance features across the 2D 

nstance space in Fig. 4 , where the red line around the instances is

he theoretical boundary of the instance space. This helps us iden- 

ify which subsets of instances belong to a specific area of the in- 

tance space. For example, Fig. 4 f shows that the new instances 

ith a small number of vehicles are located in the left-most area 

f the 2D instance space. In contrast, the new instances with a 

arge number of vehicles are located in the right-most part of the 

D instance space. 

Not surprisingly, we see in Fig. 4 a, that there is a big differ-

nce in the average standard deviation of demands between the 

ew and original set of instances. In Fig. 4 b we see that the stan-

ard deviation of the edge costs varies much more in the new 

et of instances than for the original set of instances. This re- 

ects the various node location structures found in the new in- 

tances, i.e., random, clustered, and random-clustered node loca- 

ions. Moreover, we can see in Fig. 4 c that the smallest and largest

verage inventory-cost-to-edge-cost ratio ( RIE ) are fairly similar be- 

ween the two sets of instances, but that the gradient from the 

mallest to the largest value is smoother for the new instances 

han for the original instances. From Fig. 4 d and g we see that the

tandard deviation of inventory capacity and the number of cus- 

omers are distributed similarly across both the new and the orig- 

nal instances. 
10 0 0 
The average demand to average inventory capacity ratio for the 

riginal instances appears to have three to four distinct levels, 

hile there seems to be a more continuous transition from the 

mallest to the largest values for the new instances. This reflects 

hat the new instances do not have the same demand-to-inventory 

apacity ratio as the original instances, i.e., the inventory capac- 

ty for a customer in the original instances is a multiple of two or 

hree times the demand. 

In Fig. 4 h, we see how the instances are distributed by the 

umber of time periods. The blue, green, orange, and yellow dots 

epresent three, six, nine, and 12 time periods, respectively. Fur- 

hermore, we observe in Fig. 4 i that the average demand to average 

nitial inventory level ratio ( RDI ) is much lower for the original in- 

tances than for the new instances. This indicates that the new in- 

tances have fewer customers that can be served in the first period 

y the initial inventory. Finally, Fig. 4 j shows that the original in- 

tances have an average initial-inventory-to-inventory-capacity ra- 

io larger than the new instances. This indicates that on average 

he initial inventory at a customer is emptier for the new instances 

han for the original instances. 

.2. Performance across all instances 

In this section, we compare the solutions of the new instances 

ith those of the original instances obtained by the matheuristic 

nd the B&C method. We first demonstrate that we have a rea- 

onable re-implementation of the matheuristic of Archetti et al. 

2017) , before showing how the two solution methods perform 

cross all instances. Table 3 reports the average relative difference 

etween the upper bound found by our re-implementation ( UBR ) 

nd the original matheuristic ( U BA ): 
U BR − U BA 

U BA 
. In this compari- 

on we have only included the six-period instances, to not skew 

he average results by including many easy three-period instances. 

his subset can be further partitioned into smaller disjoint sub- 

ets defined by the number of customers ( N) and the number of 

ehicles ( K). A negative number in the table denotes an improve- 

ent in favor of our re-implementation, highlighted in bold. From 

able 3 we see that our re-implementation obtains slightly worse 

pper bounds on average, but obtains better average gaps than 

he original implementation of Archetti et al. (2017) on the small- 

st instances. The subsets with the worst performance are the 30- 

ustomer instances with 4 and 5 vehicles. Despite this, we consider 

ur re-implementation to be of sufficient quality to carry on with 

he analyses presented in this paper. 

Using the instance space defined in Section 5.1 , we now fo- 

us on the performance of the matheuristic and the B&C method 

cross all instances. Fig. 5 a highlights the instances where the al- 

orithms obtained a gap of less than 5% . In this case, the yellow, 

reen, and blue dots represent instances where both algorithms, 

ne of the algorithms or none of the algorithms obtained a gap 

f less than 5% , respectively. This clearly shows that the two algo- 

ithms tested in this paper obtained worse gaps on the new set of 

nstances than for the original set of instances. Comparing this fig- 

re to Fig. 4 we see that the most difficult instances to solve, with
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Fig. 4. Feature distributions. 

Fig. 5. Algorithm performance. 
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Table 4 

Overview of the number of feasible solutions. 

Constructive Matheuristic B&C 

N R C RC Sum R C RC Sum R C RC Sum 

10 18 18 18 54 18 18 18 54 18 18 18 54 

25 18 18 18 54 18 18 18 54 18 18 18 54 

50 18 18 18 54 0 0 0 0 5 3 10 18 

100 18 18 18 54 0 0 0 0 3 0 4 7 

200 18 18 18 54 0 0 0 0 0 0 0 0 

Sum 90 90 90 270 36 36 36 108 44 39 50 133 
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he two methods tested in this work, are those with many vehi- 

les and many customers across both sets of instances. In Fig. 5 a it

ooks like most of the 200-customer instances are equally difficult 

o solve across the two sets of instances, but Fig. 5 b tells a differ-

nt story. Fig. 5 b shows the normalized gap of the B&C method, i.e., 

ap normalized = gap i /gap largest , where gap i is the gap on an instance 

 , and gap largest is the largest gap across all instances. Here we see 

hat the B&C method generally obtains better gaps for the original 

nstances than for the new instances indicating that the new in- 

tances are more difficult to solve than the original instances when 

sing the B&C method. See Appendix A for additional figures of the 

nstance space analysis. 

In most of the published research on the IRP ( Avella et al., 2018;

oelho & Laporte, 2014; Desaulniers et al., 2016 among others), it 

as been common to report the results across three of the ten 

eatures defining our instance space, namely the number of cus- 

omers, the number of vehicles, and the number of periods. There 

re 18 of the new instances that have the same number of cus- 

omers, vehicles, and periods as at least one of the original in- 

tances. Vice versa, 40 original instances have the same number 

f customers, vehicles, and periods as at least one of the new in- 

tances. It is therefore interesting to analyze these instances in 

ore detail to determine the net effect on algorithmic performance 

rom the remaining seven features of the instance space, e.g., the 

verage standard deviation of demand, σ D , which is larger for the 

ew instances than for the original instances (See Fig. 4 a). 

Comparing these instances, we found that the matheuristic on 

he 12 new 10-customer instances with the same number of ve- 

icles (2, 4, or 5) and periods (6) as at least one of the original

nstances, on average obtained 23% better gaps than the 30 corre- 

ponding original 10-customer instances. However, it spent on av- 

rage 83 . 6% longer time to solve these new instances compared 

ith the original ones. For the six new 25-customer instances the 

atheuristic obtained an average gap 12 . 3% worse than the 10 

riginal 25-customer instances with the same number of vehicles 

nd periods, in roughly the same computational time. The B&C 

ethod performs similarly across these 18 new instances and 40 

riginal instances. Thus, the different f eature values on the seven 

eatures other than the number of customers, vehicles, and peri- 

ds, do not make it easier on average for the matheuristic or the 

&C method to solve the new instances compared with the orig- 

nal instances. Here we define easier as finding better or equally 

ood solutions (measured by the gap) in the same or shorter com- 

utational time. 

.3. Impact of node locations on algorithm performance 

In this section, we examine how the number of customers and 

he node locations affect the performance of the B&C method and 

he matheuristic on the new instances. Table 4 gives an overview 

f the number of feasible solutions obtained by the construction 

euristic, the matheuristic, and the B&C method. The left-most 
1002
olumn denotes the number of customers, and for each block of 

he table, ‘R’, ‘C’, and ‘RC’ denote random, clustered, and random- 

lustered node distributions. The columns ‘Sum’ shows the to- 

al number of feasible solutions on each row for each solution 

ethod, and the row ‘Sum’ shows the total number of feasible so- 

utions for each column. The matheuristic found feasible solutions 

n all instances of 10 and 25 customers, a total of 108 instances, 

ut the computational time limit was reached before the algorithm 

uccessfully obtained any feasible solutions for the remaining in- 

tances. The B&C algorithm found feasible solutions on the same 

nstances, but only on some of the 50 and 100-customer instances. 

o feasible solutions were found by either the matheuristic or the 

&C method on the 200-customer instances. As expected, the B&C 

ethod struggles to find feasible solutions within the time limit 

hen the number of customers becomes high, i.e., 50 customers or 

ore. However, it is more surprising that the matheuristic does not 

nd any feasible solutions for 50 customers or more. A likely rea- 

on for this is that the vehicle fleet is scaled proportionally to the 

umber of customers, making the relaxed vehicle-indexed MILPs 

f the matheuristic much slower than when the vehicle fleet is 

mall. 

Another interesting observation is that the B&C method strug- 

les to find feasible solutions for the clustered instances, and 

t finds the most feasible solutions in the random-clustered in- 

tances. The phase transition phenomenon might explain such be- 

avior. Gent & Walsh (1996) defined the phase transition phe- 

omenon as a sudden and drastic change in the solvability of a 

ombinatorial optimization problem, whereby the problem transi- 

ions from being easily solved to hard or intractable. This sharp 

ransition occurs when the value of a randomly generated prob- 

em’s parameter increases beyond a specific threshold. Subsequent 

esearch has demonstrated that phase transitions exist in various 

ombinatorial optimization problems, including the TSP. For in- 

tance, Zhang (2004) showed that the phase transition in TSP is in- 

uenced by the number of distinct distance values. Moreover, van 

emert & Urquhart (2004) and Smith-Miles, van Hemert, & Lim 

2010) demonstrated that adjusting the ratio of clusters to nodes in 

SP instances can trigger a phase transition phenomenon. As such, 

hese insights may help to explain why the B&C method strug- 

les to solve the clustered IRP instances, as these instances may 

e crossing the phase transition threshold, thereby making them 

ore challenging to solve. 

Moreover, the B&C method can prove optimality on only 13 out 

f 270 instances. These 13 instances are all among the 10 customer 

nstances, where six are among the random, one among the clus- 

ered, and six among the random-clustered instances, respectively. 

his further supports the theory that the MILP solver especially 

truggles to find feasible solutions and close the gap for the clus- 

ered instances. In addition, the matheuristic found one of the op- 

imal solutions among the random-clustered instances. 

Table 5 reports the average gaps between the upper bound and 

he best-known lower bound (LB), i.e., the lower bound obtained 
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Table 5 

Overview of average gaps (%). 

Constructive Matheuristic B&C 

N R C RC All R C RC All R C RC All 

10 49.9 52.8 53.9 52.2 2.35 0.91 1.33 1.53 1.24 0.50 0.52 0.75 

25 53.0 45.3 60.4 52.9 14.10 10.01 14.50 12.87 3.54 1.03 2.42 2.33 

50 64.1 51.5 65.5 60.3 n/a n/a n/a n/a 25.99 25.59 34.50 30.65 

100 89.1 71.7 104.5 88.4 n/a n/a n/a n/a 252.7 n/a 293.6 276.1 

200 135.8 146.4 145.0 142.5 n/a n/a n/a n/a n/a n/a n/a n/a 

All 77.8 73.5 85.2 78.8 8.22 5.46 7.92 7.20 22.14 2.67 31.44 19.93 

Table 6 

Overview of average gaps per number of customers and per number of time periods (%). 

Constructive Matheuristic B&C 

N \ T 6 9 12 All 6 9 12 All 6 9 12 All 

10 56.14 49.67 50.80 52.20 0.90 1.47 2.22 1.53 0.52 0.66 1.08 0.75 

25 55.50 48.73 54.47 52.90 9.46 12.49 16.66 12.87 2.01 1.82 3.15 2.33 

50 65.05 61.39 54.56 60.34 n/a n/a n/a n/a 19.16 39.90 44.94 30.65 

100 91.32 89.06 84.92 88.43 n/a n/a n/a n/a 276.3 334.8 40.8 276.1 

200 135.0 155.5 136.2 142.5 n/a n/a n/a n/a n/a n/a n/a n/a 

All 80.61 80.88 74.82 78.80 5.18 6.98 9.44 7.20 16.39 35.18 7.24 19.93 

Table 7 

Average computational times for the 10 customer instances in seconds. 

Matheuristic B&C 

Q \ T 6 9 12 All 6 9 12 All 

Small truck (8) 1800 1800 1800 1800 1498 3617 5265 3460 

Truck (18) 1800 1800 1800 1800 4808 7200 7200 6403 

Trailer truck (38) 1339 1800 1800 1646 4812 7200 7200 6404 

All 1646 1800 1800 1749 3706 6006 6555 5422 

Table 8 

Overview of average gaps per number of customers and vehicle capacity (%). 

Constructive Matheuristic B&C 

N \ Q 8 18 38 All 8 18 38 All 8 18 38 All 

10 49.52 37.83 69.27 52.20 0.52 1.53 2.54 1.53 0.11 0.39 1.76 0.75 

25 42.60 36.79 79.31 52.90 9.17 13.79 15.65 12.87 0.68 2.47 3.83 2.33 

50 41.58 38.50 100.92 60.34 n/a n/a n/a n/a 27.45 50.30 24.72 30.65 

100 47.62 53.21 164.5 88.43 n/a n/a n/a n/a 42.23 n/a 587.8 276.1 

200 61.78 97.19 284.2 142.5 n/a n/a n/a n/a n/a n/a n/a n/a 

All 48.62 52.70 136.3 78.80 4.84 7.66 9.10 7.20 9.51 5.19 45.65 19.93 
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rom the B&C algorithm. We define this as Gap = UB 

j − LB 

LB 

, where 

B 

j is the upper bound found by method j. Moreover, the table 

nly includes the gaps for the instances where the method j found 

 feasible solution, i.e., for the construction heuristic, all instances 

re included except for two instances where no lower bound was 

btained. In contrast, for the matheuristic, 108 instances are in- 

luded, and for the B&C method, 133 instances are included. The 

ame is valid for Tables 5–8 . Results obtained using the construc- 

ion heuristic are displayed, albeit not being the main focus of 

his study, only to assess the quality of solutions found by the 

atheuristic and the B&C methods. Recall that the construction 

euristic in practice represents a naive planning approach where 

eliveries are allocated more or less randomly onto vehicles, and 

hen the routes are found by solving a TSP for each vehicle. Such 

 solution is likely to perform badly, as seen in the 10 and 25-

ustomer instances. However, for the B&C method, the solution 

uality drops significantly for the 50-customer instances, and for 

he 100-customer instances, the feasible solutions are much worse 

han those obtained by the construction heuristic. Therefore, it is 
1003
ot easy to draw conclusions from the 50 and 100-customer in- 

tances, but we present the results of these instances for the sake 

f completeness. 

The most interesting observation from Table 5 is that the clus- 

ered instances have smaller average gaps than the other instances 

or both the matheuristic and the B&C method. For the B&C 

ethod, this is somewhat skewed because the B&C method finds 

ewer feasible solutions for the set of clustered instances. However, 

f we focus on the 10 and 25 customer instances where both meth- 

ds found a feasible solution on all instances of this subset, we ob- 

erve the same trend: the clustered instances have a better average 

ap. One possible explanation for this finding is that the main cost 

rivers are the arcs connecting the clusters in these instances. The 

rcs within a cluster contribute little to the overall cost, so once 

he solution method has determined which arcs to use between 

he clusters, the lower bound is quite strong. It still needs to de- 

ermine which arcs to use within the cluster to find a feasible so- 

ution, but the visiting sequence within the cluster has a relatively 

mall impact on the overall cost, thus affecting the lower bound 

uch less than the inter-cluster decisions. 
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Fig. 6. Overview of the route length on a subset of the new instances. 
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.4. Impact of number of periods on algorithm performance 

In this section, we investigate how the number of periods af- 

ects the performance of the B&C method and the matheuristic on 

he new instances. We expect the methods to obtain worse so- 

utions on instances with a large number of periods than on in- 

tances with a small number of periods. Table 6 reports the av- 

rage gaps per number of customers and per number of periods. 

or the matheuristic, we notice that the average gap is higher 

hen the number of periods increases. The same can be observed 

or the B&C method, but with a few exceptions. The 25-customer 

nd nine-period instances have an average gap lower than the 25- 

ustomer and six-period instances. This is most likely because the 

nternal Gurobi heuristics managed to find a few more good feasi- 

le solutions for the nine-period instances than for the six-period 

nstances. The same goes for the 100-customer instances where 

he feasible solutions for the six and nine-period instances are ex- 

remely bad, skewing the overall average. Disregarding the seven 

00 customer instances where the B&C method found a feasible 

olution, the average gap for six, nine, and twelve periods becomes 

 . 84% , 5 . 96% and 6 . 40% , respectively. This confirms that it becomes

arder to solve the instances with either of these methods when 

he number of periods increases. However, it is interesting to see 

ow small the impact of the number of periods has on the average 

ap compared with the number of customers. A possible reason for 

his is that a higher number of customers comes with a larger ve- 

icle fleet, making the instances much more challenging. 

In addition to the average gaps, let us investigate the number 

f periods’ impact on the computational time. For most of the in- 

tances, the matheuristic and the B&C method did not terminate 

efore they reached their respective time limits. However, they did 

or some of the 10 customer instances, and here the trend is clear, 

 higher number of periods require longer computational times. 

able 7 reports the average computational times for the 10 cus- 

omer instances across the vehicle capacity Q and the number of 

eriods T . It is quite clear that the six-period instances require 

ess computational time to be solved for both methods. However, 

 more surprising observation from this table is the impact on the 

verage computational times from the vehicle capacity. The B&C 

ethod recorded the shortest solution time for the small truck in- 

tances, while the matheuristic has the shortest solution time for 

he trailer truck instances. A possible explanation for this is that 

he matheuristic heavily relies on the solution of a MILP formula- 
t

1004 
ion, which does not perform well for instances with a large num- 

er of vehicles. 

.5. The impact of vehicle capacity on algorithm performance 

The somewhat surprising impact on the average computational 

imes from the vehicle capacity motivates some further analysis 

long this dimension. We first investigate how the vehicle capacity 

ffects the performance of the B&C method and the matheuristic 

n the new instances, before we examine the structure of the so- 

utions in more detail. Table 8 reports the average gaps per num- 

er of customers and for each type of vehicle fleet denoted by the 

ehicle capacity. Let us start by focusing on the matheuristic. De- 

pite having the shortest average computational time for the trailer 

ruck ( Q = 38 ) instances, it does not seem to reflect the quality of

he solutions. The matheuristic obtained better solutions for the 

mall truck ( Q = 8 ) instances. This indicates that even though the 

elatively high number of vehicles has a negative impact on the av- 

rage computational time for the matheuristic, it is easier to find 

easonably good solutions for these instances. 

The B&C method seems to obtain average gaps more correlated 

ith the average computational time than the matheuristic. Here 

he solution quality seems to drop when the vehicle capacity goes 

p. The average gaps are so large for the 50- and 100-customer 

nstances that it becomes hard to identify any trend, skewing the 

verall average. The apparent drop in solution quality could also 

e caused by a weaker linear relaxation when the vehicle capac- 

ty is large. Due to constraints (13) , the delivered quantity to a 

iven customer requires a smaller arc-flow the larger the vehicle 

apacity Q is. Thus, a large vehicle capacity might give a worse 

ower bound on the objective function value than when the vehi- 

le capacity is small. Nevertheless, from the 10- and 25-customer 

nstances, where the average gaps are reasonably good, it is clear 

hat it is harder to prove that we have obtained an optimal or near- 

ptimal solution when the vehicle capacity is large. 

The solutions found by the B&C method obtained the best aver- 

ge gaps, so let us now shift our attention to how the vehicle ca- 

acity affects the structure of these solutions. We focus on how the 

verage route length of the solutions obtained by the B&C method 

hanges with the vehicle capacity. Let us define the route length 

s the number of customers in a route. For the instances that have 

ot been solved to optimality, the route length is also a property of 

he solution, because the optimal solution might consist of differ- 
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Fig. 7. Overview of the route lengths on a subset of the original instances. 

e

t

t

l

a  

(  

r

t

w

f

b

p

c

o

 

j

r

t  

t

c  

2

t

o

c

t

f

o

s

s

s

m

1

T

s

t

n

6

m

o

l

m

s

g

r

i

p

s

t

p

a

o

w

(

t

g

f

i

s

R

t

f

p

t

s

o

l

d

t

t

t

fi

A

t

i

a

i

fi

p

nt routes than the solution found by our method. However, when 

he gap is fairly small it should still give a reasonable indication of 

he structure of the optimal solution. 

Fig. 6 presents a box-plot giving an overview of the route 

engths across the new 10-, 25- and 50-customer instances, and 

cross the small truck ( Q = 8 ), truck ( Q = 18 ) and trailer truck

 Q = 38 ) instances. The bottom and top edges of the boxes rep-

esent the first and third quartiles, respectively, while the slightly 

icker line within the edges of a box represents the median. The 

hiskers extend to 1.5 times the interquartile range, i.e., the dif- 

erence between the third and first quartile, on both sides of the 

ox. However, the whisker is limited to never exceeding any data 

oint, so we do not see the whisker on the bottom side of the 

orresponding box for the small truck and the truck instances. The 

utliers are marked with a small circle. 

For the small truck ( Q = 8 ) instances, we can see that the ma-

ority of the routes, i.e., more than 75% of the routes, are direct 

outes visiting only one customer. For the truck ( Q = 18) instances, 

here are still more than 50% of the routes that only visit one cus-

omer, but there is also a significant portion of routes with several 

ustomer visits. For the trailer truck ( Q = 38 ) instances, less than

5% of the routes visit only one customer, and more than half of 

he routes visit three or more customers. 

Focusing on the distribution of the route lengths for a subset 

f the original instances, we can see how the new instances nicely 

omplement the original instances. In Fig. 7 , the route lengths for 

he original 10-, 25-, and 50-customer instances and two, three, 

our, and five vehicles are displayed in a box plot. In general, we 

bserve that the route lengths are much longer for the original in- 

tances than for the new instances. This indicates that the new in- 

tances represent a different business segment than the original in- 

tances. We can also observe that the route lengths increase much 

ore for the original instances than the new instances going from 

0 to 25 customers and going from 25 customers to 50 customers. 

his indicates that the vehicle fleet is scaled well for the new in- 

tances, capturing a behavior expected to see in practice, namely 

hat an increase of customers is met by expanding the vehicle fleet, 

ot the capacity of each vehicle. 

. Conclusion 

In this work, we proposed a new set of real-world-like bench- 

ark instances for the IRP, intended to complement the existing 

nes. The generated instances exhibit new features that should al- 
1005 
ow for a better assessment of the performance of the existing 

ethodology and perhaps stimulate further development of new 

olution methods for the IRP. A total of 270 new instances were 

enerated. Each instance is characterized by varied problem pa- 

ameters. We conducted extensive computational experiments us- 

ng two high-quality solution methods to derive lower and up- 

er bounds for each instance and to study the impact of the in- 

tances’ features on the methods’ performance. Our analysis shows 

hat the instances have the desired level of diversity and com- 

lexity and suggest the need to adapt the existing methodology 

ccordingly. 

We believe that these instances will possibly favor the use 

f commodity flow formulations since these formulations scale 

ell for instances with a large number of vehicles and periods 

 Manousakis et al., 2021 ). The new instances may also promote 

he application of branch-cut-and-price algorithms over B&C al- 

orithms, which are more effective when vehicle routes contain a 

ew numbers of customer visits ( Desaulniers et al., 2016 ). Besides, 

nvestigating the impact of valid inequalities and branching deci- 

ions on the new instances becomes a possible path for research. 

egarding heuristic and matheuristic solution methods, we expect 

hat the design of more complex neighborhoods will be important 

or obtaining good results. The existing algorithms may also be im- 

roved by exploiting instance-specific information, such as parti- 

ioning the nodes into clusters by location or consumption rate, as 

uggested by Cao & Glover (2010) . 

Finally, we emphasize that these instances can be extended to 

ther rich IRP variants as needed by providing additional attributes 

ike multiple depots, multiple and perishable products, time win- 

ows, or heterogeneous fleets of vehicles. For the variant where 

he inventory holding costs of the customers are not relevant to 

he decision maker, i.e., these costs are zero, we recommend set- 

ing the inventory holding cost at the depot equal to that of the 

rst customer in the instance files. 
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A

&C method obtained a gap lower than or equal to 5% . 

atheruistic obtained a gap lower than or equal to 5% . 
ppendix A. Additional figures from the instance space analysis 

Fig. A.1. Highlighting each instance where the B

Fig. A.2. Highlighting each instance where the m
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Fig. A.3. The normalized gap obtained by the matheuristic. 

Fig. A.4. Footprint analysis. Recommendation of which algorithm to use on a given subset of the instances. 
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A

T

R

theuristic B&C 

 Seconds LB UB Seconds 

06.35 1800 7,218.91 7,219.63 404 

,279.60 1800 14,221.30 14,222.50 38 

,773.20 1800 24,734.90 24,736.60 44 

01.70 1800 6,615.15 6,667.00 7200 

41.41 1800 5,934.52 5,950.01 7200 

,555.20 1800 15,529.90 15,531.70 7200 

72.80 1800 4,693.04 4,772.80 7200 

32.67 1800 5,906.97 5,959.90 7200 

87.88 1800 6,930.60 7,366.15 7200 

,132.90 1800 21,113.60 21,321.20 7199 

,615.29 1800 24,078.50 24,087.20 7198 

,443.73 1800 47,852.10 48,185.00 7200 

,371.50 1800 13,717.50 14,097.90 7199 

,496.78 1800 21,082.10 21,227.60 7199 

,500.75 1800 23,609.30 25,369.20 7199 

55.82 1800 6,052.46 6,394.81 7199 

,048.16 1800 15,614.20 16,179.90 7198 

,574.61 1800 13,381.30 14,347.20 7199 

a 2400 35,542.70 n/a 7191 

a 2400 72,789.60 78,321.40 7198 

a 2400 111,912.00 160,103.00 7193 

a 2400 22,625.80 n/a 7194 

a 2400 39,625.60 n/a 7192 

a 2400 42,969.50 n/a 7193 

a 2400 13,628.00 n/a 7194 

a 2400 22,461.90 n/a 7192 

a 2400 27,160.60 n/a 7192 

a 2400 108,699.00 150,078.00 7194 

a 2400 130,462.00 187,451.00 7192 

a 2400 162,883.00 n/a 7196 

a 2400 60,412.00 n/a 7192 

a 2400 79,301.30 n/a 7192 

a 2400 118,391.00 n/a 7193 

a 2400 28,554.80 n/a 7193 

a 2400 36,732.20 285,172.00 7194 

a 2400 32,620.90 n/a 7193 

a 2400 161,239.00 n/a 7211 

a 2400 221,085.00 n/a 7214 

a 2400 355,401.00 n/a 7229 

a 2400 85,232.60 n/a 7209 

a 2400 121,943.00 n/a 7226 

a 2400 112,595.00 n/a 7221 

a 2400 28,436.90 n/a 7207 

a 2400 40,962.30 n/a 7215 

a 2400 n/a n/a 7221 
ppendix B. Detailed results for the new instances 

able B.1 

andom node positioning and rural area. 

Construction Ma

N Q T UB Seconds UB

10 8 6 13,249.40 0 7,3

10 8 9 19,075.70 0 14

10 8 12 30,074.00 0 24

10 18 6 9,608.84 0 6,7

10 18 9 7,930.06 0 6,0

10 18 12 18,126.80 0 15

10 38 6 6,820.39 0 4,7

10 38 9 8,627.35 0 6,1

10 38 12 10,626.20 0 7,5

25 8 6 27,700.70 0 22

25 8 9 34,568.40 0 25

25 8 12 70,433.90 0 51

25 18 6 18,932.20 0 15

25 18 9 25,445.00 0 24

25 18 12 27,839.80 0 27

25 38 6 11,952.20 0 6,5

25 38 9 25,691.90 0 18

25 38 12 24,918.10 0 17

50 8 6 50,979.30 0 n/

50 8 9 101,604.00 0 n/

50 8 12 174,307.00 0 n/

50 18 6 39,387.90 0 n/

50 18 9 54,725.60 0 n/

50 18 12 53,320.40 0 n/

50 38 6 28,851.40 0 n/

50 38 9 43,120.80 0 n/

50 38 12 52,335.40 0 n/

100 8 6 139,690.00 1 n/

100 8 9 182,648.00 1 n/

100 8 12 286,004.00 2 n/

100 18 6 100,660.00 0 n/

100 18 9 121,369.00 1 n/

100 18 12 166,628.00 1 n/

100 38 6 62,345.10 0 n/

100 38 9 130,663.00 1 n/

100 38 12 83,495.90 0 n/

200 8 6 220,954.00 7 n/

200 8 9 331,363.00 13 n/

200 8 12 591,800.00 18 n/

200 18 6 190,499.00 3 n/

200 18 9 236,283.00 4 n/

200 18 12 212,598.00 11 n/

200 38 6 108,353.00 1 n/

200 38 9 154,284.00 2 n/

200 38 12 168,727.00 3 n/
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Table B.2 

Random node positioning and urban area. 

Construction Matheuristic B&C 

N Q T UB Seconds UB Seconds LB UB Seconds 

10 8 6 2,166.93 0 1,553.46 1800 1,551.68 1,551.68 6 

10 8 9 4,190.46 0 2,572.59 1800 2,560.31 2,562.70 7200 

10 8 12 5,160.40 0 2,607.86 1800 2,601.48 2,601.74 2745 

10 18 6 1,733.17 0 1,341.72 1800 1,321.26 1,321.38 22 

10 18 9 2,771.31 0 2,146.03 1800 2,045.30 2,087.51 7200 

10 18 12 2,478.89 0 1,810.38 1800 1,787.96 1,791.45 7200 

10 38 6 1,229.15 0 822.15 1800 799.41 822.15 7200 

10 38 9 1,929.21 0 1,135.59 1800 1,088.90 1,125.80 7200 

10 38 12 2,301.88 0 1,353.49 1800 1,271.05 1,319.16 7200 

25 8 6 5,749.55 0 4,810.25 1800 4,480.08 4,539.95 7199 

25 8 9 12,520.30 0 9,246.15 1800 8,520.40 8,607.99 7200 

25 8 12 13,054.20 0 9,993.56 1800 8,747.69 8,799.26 7199 

25 18 6 5,564.38 0 3,449.67 1800 3,065.11 3,214.79 7200 

25 18 9 5,981.87 0 5,350.71 1800 4,556.26 4,676.05 7198 

25 18 12 7,492.67 0 6,961.32 1800 6,155.47 6,597.74 7199 

25 38 6 3,064.04 0 2,048.07 1800 1,704.36 1,761.59 7200 

25 38 9 5,057.60 0 3,219.04 1800 2,777.69 2,924.19 7199 

25 38 12 6,339.94 0 4,263.77 1800 3,387.46 3,666.35 7199 

50 8 6 13,709.20 0 n/a 2400 10,477.80 14,218.80 7197 

50 8 9 21,808.00 0 n/a 2400 16,178.10 n/a 7197 

50 8 12 33,512.70 0 n/a 2400 22,389.20 n/a 7189 

50 18 6 7,043.67 0 n/a 2400 4,534.75 5,620.24 7196 

50 18 9 14,865.40 0 n/a 2400 11,237.50 n/a 7191 

50 18 12 12,781.60 0 n/a 2400 10,417.30 n/a 7191 

50 38 6 5,202.06 0 n/a 2400 2,259.37 2,703.34 7195 

50 38 9 7,160.50 0 n/a 2400 3,298.60 n/a 7194 

50 38 12 10,657.40 0 n/a 2400 5,104.72 n/a 7193 

100 8 6 24,079.90 1 n/a 2400 18,481.20 n/a 7193 

100 8 9 33,563.50 1 n/a 2400 20,165.80 n/a 7192 

100 8 12 61,970.90 2 n/a 2400 35,747.80 n/a 7197 

100 18 6 18,042.50 0 n/a 2400 10,587.80 n/a 7191 

100 18 9 33,142.80 1 n/a 2400 20,134.20 n/a 7195 

100 18 12 29,412.30 1 n/a 2400 19,330.20 n/a 7196 

100 38 6 11,643.90 0 n/a 2400 4,860.50 n/a 7191 

100 38 9 18,641.90 0 n/a 2400 7,874.87 n/a 7193 

100 38 12 20,587.40 0 n/a 2400 8,725.20 n/a 7194 

200 8 6 53,322.90 8 n/a 2400 38,237.50 n/a 7209 

200 8 9 101,567.00 11 n/a 2400 59,031.80 n/a 7222 

200 8 12 117,193.00 18 n/a 2400 59,462.40 n/a 7231 

200 18 6 33,304.20 2 n/a 2400 16,994.80 n/a 7209 

200 18 9 52,886.60 5 n/a 2400 25,762.30 n/a 7217 

200 18 12 87,014.10 7 n/a 2400 44,956.90 n/a 7226 

200 38 6 24,142.50 1 n/a 2400 6,918.92 n/a 7206 

200 38 9 34,372.80 2 n/a 2400 8,755.60 n/a 7217 

200 38 12 40,483.20 3 n/a 2400 11,656.00 n/a 7218 
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Table B.3 

Clustered node positioning and rural area. 

Construction Matheuristic B&C 

N Q T UB Seconds UB Seconds LB UB Seconds 

10 8 6 7,378.79 0 5,974.75 1800 5,970.01 5,970.59 16 

10 8 9 26,506.30 0 19,177.50 1800 19,155.10 19,162.40 7200 

10 8 12 16,663.70 0 9,957.34 1800 9,879.11 9,887.20 7200 

10 18 6 3,034.10 0 2,008.91 1800 2,006.73 2,008.91 7200 

10 18 9 7,101.85 0 5,378.35 1800 5,348.75 5,363.36 7200 

10 18 12 11,167.30 0 10,039.70 1800 10,001.00 10,007.00 7200 

10 38 6 4,065.59 0 2,396.66 1800 2,334.55 2,396.66 7200 

10 38 9 10,382.00 0 6,595.08 1800 6,569.73 6,579.44 7200 

10 38 12 5,132.08 0 3,274.09 1800 3,207.78 3,245.02 7200 

25 8 6 45,732.00 0 36,479.54 1800 35,983.70 36,031.90 7200 

25 8 9 46,746.30 0 36,989.90 1800 35,091.30 35,133.30 7200 

25 8 12 75,355.40 0 56,066.15 1800 53,010.90 53,398.70 7200 

25 18 6 11,162.70 0 8,121.86 1800 7,486.21 7,544.34 7200 

25 18 9 24,357.60 0 22,772.79 1800 19,759.70 19,845.30 7199 

25 18 12 45,552.70 0 40,399.06 1800 38,486.70 38,807.80 7198 

25 38 6 13,505.20 0 10,233.00 1800 9,875.91 9,939.82 7198 

25 38 9 12,521.80 0 8,444.52 1800 8,189.84 8,389.26 7198 

25 38 12 18,705.50 0 13,598.35 1800 11,983.20 12,125.40 7198 

50 8 6 44,692.20 0 n/a 2400 32,347.70 n/a 7193 

50 8 9 110,306.00 0 n/a 2400 83,448.80 n/a 7192 

50 8 12 184,403.00 0 n/a 2400 117,340.00 175,306.00 7196 

50 18 6 36,146.50 0 n/a 2400 23,041.80 n/a 7195 

50 18 9 45,238.80 0 n/a 2400 32,299.30 n/a 7190 

50 18 12 79,602.80 0 n/a 2400 62,552.50 n/a 7192 

50 38 6 23,797.20 0 n/a 2400 11,096.80 13,255.00 7195 

50 38 9 27,925.80 0 n/a 2400 17,947.50 n/a 7192 

50 38 12 54,763.90 0 n/a 2400 35,803.60 n/a 7191 

100 8 6 141,390.00 1 n/a 2400 108,073.00 n/a 7194 

100 8 9 258,958.00 1 n/a 2400 169,036.00 n/a 7195 

100 8 12 348,544.00 2 n/a 2400 222,959.00 n/a 7196 

100 18 6 93,699.70 0 n/a 2400 58,222.20 n/a 7191 

100 18 9 117,709.00 0 n/a 2400 84,778.20 n/a 7195 

100 18 12 149,969.00 1 n/a 2400 110,995.00 n/a 7195 

100 38 6 50,587.00 0 n/a 2400 20,827.90 n/a 7192 

100 38 9 113,412.00 0 n/a 2400 63,231.70 n/a 7192 

100 38 12 137,057.00 0 n/a 2400 49,841.50 n/a 7195 

200 8 6 272,759.00 7 n/a 2400 188,649.00 n/a 7214 

200 8 9 417,595.00 11 n/a 2400 252,938.00 n/a 7218 

200 8 12 575,146.00 18 n/a 2400 296,848.00 n/a 7229 

200 18 6 148,659.00 3 n/a 2400 81,160.80 n/a 7210 

200 18 9 178,887.00 4 n/a 2400 120,529.00 n/a 7220 

200 18 12 220,543.00 8 n/a 2400 112,696.00 n/a 7225 

200 38 6 108,826.00 1 n/a 2400 26,556.60 n/a 7212 

200 38 9 165,433.00 2 n/a 2400 26,911.30 n/a 7216 

200 38 12 192,580.00 3 n/a 2400 53,081.60 n/a 7217 
1010 



J. Skålnes, M. Ben Ahmed, L.M. Hvattum et al. European Journal of Operational Research 313 (2024) 992–1014 

Table B.4 

Clustered node positioning and urban area 

Construction Matheuristic B&C 

N Q T UB Seconds UB Seconds LB UB Seconds 

10 8 6 4,203.77 0 2,740.34 1,800 2,734.91 2,737.54 7,200 

10 8 9 1,451.46 0 761.47 1,800 755.78 760.09 7,200 

10 8 12 2,780.42 0 2,365.05 1,800 2,344.25 2,347.97 7,200 

10 18 6 2,241.91 0 1,349.57 1,800 1,324.16 1,330.42 7,200 

10 18 9 3,368.29 0 2,392.42 1,800 2,378.90 2,386.55 7,200 

10 18 12 2,252.80 0 1,608.34 1,800 1,573.25 1,585.20 7,200 

10 38 6 837.50 0 392.74 17 391.43 392.74 7,200 

10 38 9 1,473.92 0 974.40 1,800 967.23 972.35 7,200 

10 38 12 2,100.12 0 1,445.75 1,800 1,423.43 1,440.85 7,200 

25 8 6 5,772.65 0 4,136.52 1,800 3,982.84 4,006.99 7,200 

25 8 9 15,238.00 0 12,585.90 1,800 10,883.20 10,907.20 7,199 

25 8 12 7,098.12 0 5,133.01 1,800 4,395.11 4,425.63 7,199 

25 18 6 4,596.90 0 3,426.52 1,800 3,143.10 3,165.20 7,200 

25 18 9 5,803.28 0 4,491.19 1,800 4,104.70 4,130.00 7,199 

25 18 12 9,553.81 0 8,721.10 1,800 7,517.90 7,598.05 7,199 

25 38 6 3,427.58 0 2,052.57 1,800 1,866.49 1,872.77 7,199 

25 38 9 3,997.25 0 2,767.21 1,800 2,531.43 2,573.73 7,199 

25 38 12 5,036.39 0 3,748.18 1,800 2,911.35 3,066.03 7,198 

50 8 6 13,007.20 0 n/a 2,400 9,892.00 10,674.90 7,199 

50 8 9 28,165.30 0 n/a 2,400 20,447.70 n/a 7,193 

50 8 12 35,976.20 0 n/a 2,400 23,746.30 n/a 7,198 

50 18 6 9,711.41 0 n/a 2,400 6,975.62 n/a 7,193 

50 18 9 9,689.91 0 n/a 2,400 7,568.99 n/a 7,189 

50 18 12 15,197.80 0 n/a 2,400 12,167.40 n/a 7,190 

50 38 6 6,116.38 0 n/a 2,400 3,346.83 n/a 7,193 

50 38 9 9,128.50 0 n/a 2,400 4,620.78 n/a 7,193 

50 38 12 13,589.20 0 n/a 2,400 8,571.61 n/a 7,190 

100 8 6 27,875.30 1 n/a 2,400 21,270.10 n/a 7,192 

100 8 9 50,044.00 1 n/a 2,400 34,266.30 n/a 7,196 

100 8 12 54,894.90 2 n/a 2,400 35,553.90 n/a 7,195 

100 18 6 13,161.80 0 n/a 2,400 8,039.71 n/a 7,193 

100 18 9 23,473.10 1 n/a 2,400 16,339.10 n/a 7,194 

100 18 12 35,407.50 1 n/a 2,400 23,779.80 n/a 7,194 

100 38 6 13,010.20 0 n/a 2,400 7,362.41 n/a 7,192 

100 38 9 14,554.20 0 n/a 2,400 6,350.41 n/a 7,192 

100 38 12 22,218.20 0 n/a 2,400 9,915.23 n/a 7,193 

200 8 6 56,418.80 7 n/a 2,400 41,554.30 n/a 7,209 

200 8 9 82,638.70 12 n/a 2,400 52,455.70 n/a 7,222 

200 8 12 137,197.00 17 n/a 2,400 75,059.20 n/a 7,232 

200 18 6 33,339.80 2 n/a 2,400 18,954.60 n/a 7,209 

200 18 9 35,706.50 4 n/a 2,400 19,328.30 n/a 7,220 

200 18 12 38,809.10 7 n/a 2,400 21,532.70 n/a 7,230 

200 38 6 24,819.30 1 n/a 2,400 7,281.76 n/a 7,208 

200 38 9 37,574.80 2 n/a 2,400 12,931.70 n/a 7,216 

200 38 12 46,372.40 3 n/a 2,400 12,584.70 n/a 7,226 
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Table B.5 

Random-clustered node positioning and rural area. 

Construction Matheuristic B&C 

N Q T UB Seconds UB Seconds LB UB Seconds 

10 8 6 14,746.00 0 10,773.70 1800 10,762.00 10,763.10 96 

10 8 9 19,977.10 0 15,627.00 1800 15,613.10 15,614.50 45 

10 8 12 35,659.60 0 25,085.60 1800 24,873.20 25,054.50 7200 

10 18 6 5,847.09 0 3,907.04 1800 3,895.65 3,896.01 29 

10 18 9 11,346.40 0 8,317.24 1800 8,224.23 8,238.37 7200 

10 18 12 13,658.70 0 12,196.21 1800 12,143.80 12,157.90 7200 

10 38 6 6,531.75 0 3,519.75 1800 3,516.06 3,516.38 39 

10 38 9 5,375.90 0 2,789.97 1800 2,744.25 2,786.52 7200 

10 38 12 8,660.96 0 4,977.98 1800 4,953.73 4,956.09 7200 

25 8 6 39,952.40 0 34,477.90 1800 31,545.30 31,573.30 7199 

25 8 9 48,728.30 0 40,879.19 1800 38,927.00 38,956.40 7199 

25 8 12 67,835.20 0 48,196.47 1800 44,421.30 45,072.10 7200 

25 18 6 18,837.20 0 14,086.27 1800 12,809.30 13,015.70 7199 

25 18 9 47,348.10 0 36,437.21 1800 31,439.10 32,128.90 7199 

25 18 12 25,956.60 0 25,724.00 1800 20,560.50 20,691.10 7198 

25 38 6 11,935.00 0 5,909.60 1800 5,371.96 5,665.70 7199 

25 38 9 20,617.00 0 13,019.36 1800 11,234.00 11,747.40 7199 

25 38 12 26,483.50 0 14,865.39 1800 11,957.70 12,412.10 7199 

50 8 6 50,984.10 0 n/a 2400 40,202.50 42,396.10 7199 

50 8 9 112,998.00 0 n/a 2400 89,475.10 94,072.70 7195 

50 8 12 201,268.00 0 n/a 2400 129,804.00 186,777.00 7189 

50 18 6 36,566.20 0 n/a 2400 24,173.70 30,263.80 7194 

50 18 9 79,805.40 0 n/a 2400 67,172.60 n/a 7192 

50 18 12 102,798.00 0 n/a 2400 81,865.20 n/a 7193 

50 38 6 26,320.50 0 n/a 2400 12,590.50 n/a 7194 

50 38 9 55,307.10 0 n/a 2400 18,657.80 25,312.40 7191 

50 38 12 51,830.00 0 n/a 2400 21,724.00 n/a 7192 

100 8 6 115,596.00 1 n/a 2400 90,296.80 n/a 7195 

100 8 9 171,176.00 1 n/a 2400 116,568.00 170,638.00 7197 

100 8 12 232,299.00 2 n/a 2400 152,972.00 215,387.00 7198 

100 18 6 83,117.20 0 n/a 2400 50,908.10 n/a 7192 

100 18 9 137,352.00 0 n/a 2400 93,443.60 n/a 7191 

100 18 12 170,774.00 1 n/a 2400 111,287.00 n/a 7193 

100 38 6 47,831.70 0 n/a 2400 18,874.10 n/a 7192 

100 38 9 96,818.10 1 n/a 2400 24,790.00 166,749.00 7194 

100 38 12 118,733.00 0 n/a 2400 41,977.30 n/a 7194 

200 8 6 239,608.00 7 n/a 2400 173,200.00 n/a 7208 

200 8 9 274,577.00 12 n/a 2400 156,459.00 n/a 7221 

200 8 12 659,002.00 18 n/a 2400 375,560.00 n/a 7230 

200 18 6 161,923.00 4 n/a 2400 67,216.70 n/a 7211 

200 18 9 263,219.00 8 n/a 2400 145,809.00 n/a 7216 

200 18 12 251,454.00 9 n/a 2400 94,148.20 n/a 7225 

200 38 6 108,641.00 1 n/a 2400 30,227.20 n/a 7208 

200 38 9 158,884.00 2 n/a 2400 31,767.40 n/a 7212 

200 38 12 188,558.00 2 n/a 2400 n/a n/a 7224 
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Table B.6 

Random-clustered node positioning and urban area. 

Construction Matheuristic B&C 

N Q T UB Seconds UB Seconds LB UB Seconds 

10 8 6 1,507.98 0 1,208.53 1800 1,203.28 1,203.40 1267 

10 8 9 5,979.09 0 5,064.45 1800 5,040.68 5,040.75 20 

10 8 12 2,958.27 0 1,484.66 1800 1,456.79 1,459.00 7200 

10 18 6 2,026.22 0 1,253.13 1800 1,237.02 1,239.60 7200 

10 18 9 1,835.79 0 1,520.50 1800 1,474.35 1,486.45 7200 

10 18 12 4,064.09 0 3,001.28 1800 2,874.87 2,885.74 7200 

10 38 6 1,396.33 0 851.73 818 851.66 851.73 31 

10 38 9 1,364.44 0 750.02 1800 742.18 748.12 7200 

10 38 12 1,970.40 0 1,162.62 1800 1,095.75 1,143.27 7200 

25 8 6 7,881.24 0 6,916.03 1800 6,083.32 6,090.56 7200 

25 8 9 9,582.61 0 6,966.52 1800 5,796.21 5,900.69 7199 

25 8 12 8,743.74 0 5,623.77 1800 5,081.56 5,158.15 7200 

25 18 6 4,008.62 0 3,145.32 1800 2,734.26 2,848.64 7199 

25 18 9 4,853.19 0 3,736.42 1800 3,253.77 3,331.08 7198 

25 18 12 9,535.76 0 8,820.58 1800 7,577.99 7,842.27 7199 

25 38 6 2,480.00 0 1,501.74 1800 1,356.69 1,391.07 7200 

25 38 9 4,664.00 0 3,231.86 1800 2,815.71 2,899.55 7199 

25 38 12 3,401.56 0 2,111.68 1800 1,749.59 1,831.33 7199 

50 8 6 14,865.10 0 n/a 2400 11,296.50 12,546.20 7197 

50 8 9 20,473.10 0 n/a 2400 13,166.30 19,658.10 7193 

50 8 12 31,809.10 0 n/a 2400 21,075.70 30,221.80 7193 

50 18 6 8,856.05 0 n/a 2400 5,571.00 n/a 7195 

50 18 9 14,832.60 0 n/a 2400 9,488.87 19,145.80 7192 

50 18 12 11,391.40 0 n/a 2400 9,553.21 n/a 7189 

50 38 6 6,571.21 0 n/a 2400 3,558.33 4,416.37 7196 

50 38 9 9,889.73 0 n/a 2400 4,783.31 n/a 7193 

50 38 12 10,968.90 0 n/a 2400 6,577.93 n/a 7191 

100 8 6 27,094.80 1 n/a 2400 18,362.60 n/a 7193 

100 8 9 47,738.90 1 n/a 2400 34,366.50 n/a 7196 

100 8 12 54,547.80 2 n/a 2400 34,542.80 n/a 7196 

100 18 6 19,644.60 0 n/a 2400 11,673.90 n/a 7193 

100 18 9 22,151.20 0 n/a 2400 15,039.10 n/a 7197 

100 18 12 41,255.70 1 n/a 2400 29,504.90 n/a 7194 

100 38 6 29,838.00 1 n/a 2400 5,701.85 35,035.90 7194 

100 38 9 17,568.80 0 n/a 2400 7,784.86 n/a 7193 

100 38 12 25,214.40 0 n/a 2400 11,719.40 n/a 7195 

200 8 6 67,897.60 7 n/a 2400 50,067.60 n/a 7211 

200 8 9 81,475.30 12 n/a 2400 52,485.00 n/a 7218 

200 8 12 117,634.00 18 n/a 2400 61,796.00 n/a 7231 

200 18 6 29,050.60 2 n/a 2400 14,342.20 n/a 7210 

200 18 9 38,011.90 5 n/a 2400 19,778.40 n/a 7219 

200 18 12 40,045.00 18 n/a 2400 20,321.40 n/a 7228 

200 38 6 26,596.30 1 n/a 2400 7,878.25 n/a 7208 

200 38 9 36,289.10 2 n/a 2400 10,530.10 n/a 7217 

200 38 12 48,586.90 3 n/a 2400 13,074.40 n/a 7230 
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