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by moving from one of those to a so-called neighbor one-factorization. This approach
amounts to modifying locally the coloring associated with a one-factorization. We consider
some particular types of modifications and describe various constructions which give
one-factorizations which may be modified or not by these techniques. Among those are
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1. Introduction

A classical model used to solve some sports tournament scheduling problems is the one-factorization of a complete
graph K>, on 2n nodes. In that model nodes of the graph represent teams, edges represent games to be scheduled, and
factors (or colors) represent rounds [10]. A schedule for the tournament is then represented by a one-factorization of Ky,. A
popular computational approach consists of using local search methods that move from a schedule to a so-called neighbor
schedule until getting a locally optimal solution regarding some objective function.

The efficiency of local search relies heavily on the choice of a suitable neighborhood in the set of one-factorizations of
K>n. A neighbor solution is found by recoloring an appropriate partial subgraph of K»,. We shall consider in this work some
possible choices of the subgraph to be recolored which lead to simple and hence practical recoloring techniques. Such an
approach may be viewed as the reconfiguration of a one-factorization. We intend to examine the existence of adequate
subgraphs to be recolored. This will lead us to exhibit some properties of one-factorizations that have some interest in their
own.

This work deals with the existence of certain colored subgraphs in one-factorizations. We show results both on general
one-factorizations and on particular types of one-factorizations.

The rest of the work is organized as follows: In Section 2 we define the colored subgraphs we deal with in this work:
colorful chordless lanterns and optimally colored cliques of even size. We also describe some particular types of one-
factorizations of interest. In Section 3 we investigate the existence of colorful chordless lanterns in one-factorizations of
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Fig. 1. Two colorful chordless lanterns L(u, v, W1) and L(u, v, W3) by taking W1 = {w1, wy, wa, ws, w7, wg} and Wy = {ws, wg}. It is easy to check that
C(B(u, Wy)) = C(B(v,W1)) and C(B(u, W3)) = C(B(v, W2)).

different sizes and in Section 4 our focus is on the existence of optimally colored cliques of even size. In Section 5 we give
results for one-factorizations of graphs with a small number of nodes. The last section consists of concluding remarks.

2. Definitions and basic concepts

In a graph G = (V, E) on node set V and edge set E we consider a node v and a set W C N(v) where N(v) is the set of
all neighbors of v. Then B(v, W) called the bundle of v constructed on W is the set of edges vw with w e W.If W =N(v)
we simply write B(v). We will consider complete graphs unless mentioned otherwise. That is N(v) =V \ {v} for all ve V.
For graph theoretical terms and notations not defined in here, the reader is referred to [2].

A one-factorization of K, is a partition of E(Kp,) into 2n — 1 one-factors Fq,..., Fon—1. Each one-factor is a perfect
matching on K»,. We also call a one-factorization a (proper edge, optimal) coloring and each one-factor is indeed a color
class. Since this work does not deal with any other type of factorizations, in the remainder of this manuscript we use the
term factorization as an equivalent of the term one-factorization.

It is well-known that a schedule for a single round-robin tournament with 2n teams has a one to one correspondence
with a (proper edge) coloring of Ko, [10]. Neighborhoods used in local search procedures for round-robin tournament
scheduling problems can then be associated with partial recolorings of a given coloring. It is interesting then to find, in a
given colored graph, subgraphs that can be recolored while maintaining the coloring of the rest of the graph unaltered.

One such type of subgraph is the class of bichromatic cycles. Given a bichromatic cycle, one can exchange the colors
of the edges of the cycle, thus obtaining a new proper coloring. If the bichromatic cycle is hamiltonian then the coloring
obtained after the recoloring is isomorphic to the original one since the recoloring amounts to just exchanging two one-
factors. Whenever the cycle under consideration is not hamiltonian the coloring obtained is different and possibly not
isomorphic to the original one.

A factorization Fp,..., Foq_1 is perfect if F; U Fj is a hamiltonian cycle in Ky, for any i, j (i # j) [8,13]. Notice that in
a perfect factorization the recoloring of bichromatic cycles does not allow us to obtain factorizations non-isomorphic to
the original one. The size of bichromatic cycles and the perfectness of factorizations have been thoroughly studied. In the
context of this work, perfect factorizations are also-called C-blocking (for Cycle blocking) factorizations.

We will study two other types of colored subgraphs that allow local recolorings of factorizations. Those subgraphs are
called colorful chordless lanterns and optimally colored even cliques.

Let v, v2 be two nodes of Ky, and W C N(v1) N N(v3) \ {v1, v2}. We will consider the subgraph formed by B(v{, W)U
B(va, W). Let C(X) be the set of colors occurring on the edges of X C E in a coloring of Ku,. Then, given a coloring
of a graph Ky, with color set C, if C(B(vy, W)) = C(B(v2, W)), W # @ and inclusionwise minimal for the equality to
hold, we say that the subgraph on vi, vy, W with edge set B(vy{, W) U B(vy, W) is a (Chinese) colorful chordless lantern
L(v1,va, W).! An illustration is shown in Fig. 1. Here we have two colorful chordless lanterns L(u, v, W1) and L(u, v, W>)
by taking W1 = {w1, ws, w7, wg, wq, Wy} and Wy = {ws, wg}. A chordless colorful lantern L(vq, vy, W) is trivial if W =
N(v1) \ {v2} = N(v2) \ {v1}. In K3y, this means that when there is a trivial colorful chordless lantern, the smallest set W
that can be used to construct a colorful chordless lantern has size 2n — 2.

1 In [12] a lantern was defined as a graph K ,_» with bipartition ({v1, v2}, V \ {v1,v32}) plus the edge [v1, v]. Here, chordless colorful graphs do not
have the edge [v1, v2], have a color assigned to each of its edges and obey restrictions on those colors.
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12A3948576B  21B3A495867  3124A59687B

4132B5A6978  514236A798B  615243B7A89

71625348A9B  81726354B9A  918273645AB
A192837465B B1A29384756

Fig. 2. An L-blocking one-factorization of Ki,. Each block of duodecimal digits is a one-factor, with 0 omitted, so that, for example, 12A3948576B denotes
the one-factor with edges [01], [2A], [39], [48], [57] and [6B].

Factor Fq Factor F»

Factor F3 Factor F4 Factor Fs5

Fig. 3. Canonical factorization of K.

Note that it is essential to require that W is inclusion-wise minimal, since otherwise by taking W = N(vq) \ {v2} =
N(v2) \ {v1} =V \ {v1, v2} we would always get a trivial colorful chordless lantern.

Furthermore we shall say that a factorization is L-blocking (for Lantern blocking) if for any two nodes v1, v2 of K, the
colorful chordless lantern L(v1, v2, W) is trivial (see Fig. 2). Notice that in an L-blocking factorization, recoloring a colorful
chordless lantern L(vq, vy, W) does not allow us to obtain a factorization not isomorphic to the original one since the
recoloring amounts to exchange the labels of v{ and v,.

A factorization is L-flexible, if for any two nodes v1, vy of K, there is a nontrivial colorful chordless lantern L(v{, vo, W),
i.e. if |W| <2n — 2 for any minimal W.

The recoloring operations concerning bi-chromatic cycles and colorful chordless lanterns have been previously studied in
[11] under different names.

Let Y C V be a set with even cardinality smaller than 2n. We say that the subgraph induced by Y (K(Y)) is an optimally
colored even clique if K(Y) is colored with |Y| — 1 colors. We say that a factorization is K-blocking (for “Klique” blocking)
when such a set does not exist, i.e., the only optimally colored even clique in the graph is the graph itself. Note that
in terms of one-factorizations an optimally colored even clique induce a sub one-factorization. With that name optimally
colored even clique were previously studied in the literature (see [16]).

We define now some types of factorizations. Most of the results of this work will hold for specific types of factorizations.

We remind that a factorization Fq, ..., Fop—1 of Ko, is called canonical whenever F; = {[2n,ilU{[i+k,i—k]lk=1,...,n—
1} fori=1,...,2n—1 where all integers i +k, i —k are taken modulo 2n — 1 between 1 and 2n — 1. Fig. 3 shows a canonical
factorization for Kg.>

Assume that the number 2n of nodes is divisible by 4 and let us split the set of nodes into two sets V! = {v}, ey v;} and
VZ={v2 ..., v2}. We call a factorization of K2, binary if it contains a factorization of K,(V1!) and a factorization of K,(V?)
using colors 1,...,n — 1. Consequently, colors n,...,2n — 1 form a factorization of 1<n,n(v1, V2). Also, if the factorizations
of Kn(V1) and K,(V?2) are canonical, we call the factorization bicanonical.®

A binary factorization is bisymmetric if it satisfies the following:

2 The name canonical is widely used in sport scheduling literature (see [5,15]). In literature related to one-factorizations of graphs the same factorization
is often called a GKa, (see [16]).
3 A particular bicanonical factorization using a standard factorization of Kn’n(Vl, V2) is called GAy, in the lirerature (see [16]).
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Factor Fg Factor F5

Fig. 4. A bisymmetric one-factorization of Ks.

1. the factorization of K,(V') and that of K,(V?) are the same, ie., [v], v}] and [v?, v?] have the same color for any
1<i<j<nm

2. if [v], v}] has color c, then both [v}v?] and [v?, v}] have color c+n—1forany 1<i<j<n.

3. [v}!,v?] has color 2n —1 for 1 <i<n

A bisymmetric factorization of Kg is given in Fig. 4.

The above definitions assume that 2n is a multiple of 4. When 2n =4s+2, V! and V2 have 25+ 1 nodes. One cannot
construct a binary factorization as above.

We can however construct a (2s + 1)-coloring of K(V1) and K(V2) with colors 1,2,...2s 4+ 1. At every node vg of
K (V') some color among 1,2, ...2s+ 1 is missing on the edges of B(vz.). Since we may take the same coloring for K (V1)

and K(V2), we may assume that j is the color missing both at v} and v?. So, we color edges [v}., v?] with color j for
j=1,2,...2s+1.

So far we have obtained a factorization Fy, Fa, ..., Fas41 of K(V1) + K(V?) + M where M is the matching {[v}, v?]i=
1,2,...25+ 1}. The edges of K(V!, V%) — M (regular bipartite subgraph) can then be colored with 2s colors, which gives
Fs42, ..., Fasyq1 (take for instance Fosipy1 = {[v}, vi2+p] i=1,2,...2s+ 1} for p=1,...2s and i + p taken modulo 2s
between 1 and 2s).

Such a factorization of K4sy» will be called almost binary.
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Observation. [6] We recall that there is a simple property which may be used to show that a factorization is not canonical:
In a canonical factorization F1, ... Fap_1 of Koy, for any choice of F;, Fj, Fy(1<i< j<k<2n-1), G(F;UF;UFy) contains
a triangle. This shows, in particular, that binary and almost binary factorizations of K3, with n >4 are not canonical.

3. L-blockingness

In this section, we investigate the existence of colorful chordless lanterns of different sizes on different classes of factor-
izations.
Lemma 1 is Theorem 1.4 in [12].

Lemma 1. Let G be a graph K3 n—» with bipartition ({v1, v2}, V \{v1, v2}) plus the edge [v1, vo] where n > 4. Then any edge coloring
of G using 2n — 1 colors can be extended to a proper edge coloring of K>, using the same set of colors.

The first proposition shows that colorful chordless lanterns of any size (with 2 < |W| < 2n—2) may exist in factorizations
of Ky, for any n > 2.

Proposition 1. Any colorful chordless lantern can be extended to a proper coloring of Koy

Proof. This is a direct consequence of Lemma 1. We may construct a colorful chordless lantern of any size and then extend
the coloring to a graph G as defined in the lemma. The application of the lemma now shows that there is a factorization of
K>, containing the constructed colorful chordless lantern. O

In Theorem 2 of [11] the L-blockingness property of factorizations is characterized by the hamiltonian property of the
rows (or columns) of the folds of the latin square associated with the factorization.

The next proposition characterizes the values of 2n for which the canonical factorization of K3, is L-blocking. It uses the
concept of faro shuffle permutation. A faro shuffle, also known as riffle shuffle [1], is a permutation ;v of 2n elements from
0 to 2n — 1, such that the sequence (7 (0),...,w(2n — 1)) is composed by precisely two interleaved increasing sequences.
For instance, the faro shuffle permutation of the ordered set (0,1, 2, 3,4,5,6,7,8,9) can be expressed as:

7@ |0 5 1 6 2 7 3 8 4 9
i o 1 2 3 4 5 6 7 8 9

To apply a faro shuffle permutation in the ordered set (0, 1,2, 3,4,5,6,7,8,9), first split the set in two halves (0,1, 2, 3,4)
and (5,6,7,8,9). Then, interleave elements one-by-one from each half to get a new ordering (0,5,1,6,2,7,3,8,4,9).
Notice that the elements of each subset {3,6} and {1,2,4,5,7,8} change places in a cyclic way within its own subset.
These permutation subsets are called “orbits” [9]. A list of the values of 2n for which the faro shuffle permutes all except
the first and last elements, i.e., has an orbit of size 2n — 2, can be found in [14].

Proposition 2. The canonical factorization of Koy is L-blocking if and only if 2n — 1 is prime and the faro shuffle permutation with 2n
elements has an orbit of size 2n — 2.

Proof. This is theorem 1 in [9]. O
Proposition 3. In the canonical factorization of Ky, (n > 2), the colorful chordless lantern L(1,2n — 2, W) is trivial.
Proof. In the canonical coloring of K, the neighbors of node 2n — 2 in consecutive one-factors Fi,...Fa;—1 are
3,5,7,...,2n—1,2,4,...,2n — 4,2n, 1. Those of node 1 are 2n,3,5,...,2n —3,2n —1,2,4,...,2n — 6,2n — 4,2n — 2.
Let W=V \{1,2n—2}.

Then, ignoring edge [1, 2n — 2] which has color 2n — 1, one can construct a colorful chordless lantern L(1,2n — 2, W).
The colors of the edges of each path (2n — 2, w, 1) are cyclically consecutive from 1 to 2n — 2 if we consider each possible

value of w in the order 3,5,7,...,2n—1,2,4,...,2n—4, 2n, see Fig. 5. In consequence it is not possible to take any proper
subset of W to obtain a nontrivial colorful chordless lantern. O

The previous proposition shows how to find a trivial colorful chordless lantern in the canonical coloring of K.
Corollary 1. The canonical factorization of K>y, is not L-flexible for any n > 2.

The next proposition shows that the presence of trivial colorful chordless lanterns is not restricted to canonical colorings.
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2)1\2

Fig. 6. Initial pre-coloring.

Proposition 4. Whenever n is even there is a binary factorization of K»;, that is not L-flexible.

Proof. Nodes v’i, w"l, e wf.l_] are the nodes of V! (i =1, 2). First, we construct a trivial lantern L(v}, v%, W) as shown in
Fig. 6.

For k=1 to n— 1, we have edges [v], w}] with color k and [w}, v3] with color k+n — 1.

For [=n to 2n — 3 we have edges [v], W127n+2] with color I and [W127n+2’ v3] with color [ —n + 2 and finally we have
[vl, w?] with color 2n — 2 and [w2, v2] with color 1.

So edges [v}, w}(] for k=1,...,n—1 are in K(V'!) and they are the edges adjacent to v% with colors 1,...,n—1 in
Fio... Fn1.
Similarly, edges [v§, w} ] for [=n,...,2n—3 are in K(V?2), they are the edges adjacent to v with colors 2,...,n—1

in Fq, ..., Fp_1.

Furthermore, [vZ, w?] is the edge of color 1 adjacent to v2 in K(V?).

One verifies that L(v%, v%, W) constructed above is a trivial colorful chordless lantern: starting with [v%, W}] of color
1, we go through [wl, v4] of color n, then from [v], w3] of color n, we go through [w3, v2] of color 2 and we continue.
The colors of the edges followed are consecutively 1 - n—2—-n+1—...>k—-k+n—-1—-...-2n-3—->n—-1—
2n—2—1.

Now the edges of color n,n+1,...,2n—2 in L(v}, v%, W) together with edge [v%, v%] that is colored with color 2n —1,
give us a set of precolored edges in K(V1, V?). See Fig. 7.

We now construct the factorization. Renaming and reordering the nodes W}, wi2 (i=1,...,n—1) our problem now
reduces to extending a precoloring of a complete bipartite graph K(W, W) with Vi = {v"l,...,v;}, (i=1,2), edges
[vi, v?][v}, v2] precolored with color n—2+ j (j=2,...,n). We can take the last one-factor in the coloring as Fap_1 =
[v%,v%]u{[w},w?] |j=2,...,n}.
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Fig. 7. Precoloring.

Consider now an arbitrary one-factorization F = (IA:],...,I:‘n_l) of Ky. We construct F,_p,; with precolored edges
[vi, v?], [v}, v2] as follows:

Let I:‘k be the one-factor of F containing edge [1, j]; we consider every edge [p, q] of I:‘k (#[1, j1) and introduce [v},, vg]
and [vj, vf,] into Fp_o4;.

We repeat this construction for j=2,...,n.

It will give us the one-factors Fy, Fp41, ..., Fan—2 which together with Fq, ..., Fy—1 and Fy;_1, obtained earlier, will give
us the required factorization of Ky,. O

The following proposition shows that bisymmetric factorizations are L-flexible.

Proposition 5. In a bisymmetric factorization of Ko, for any two nodes u, v there is a colorful chordless lantern L(u, v, W) with
W|=2.

Proof. The nodes are divided in two sets V! ={vl, ..., vl} and VZ={v2, ..., v2}. We have three cases to examine:

1. u,ve V! oru,ve V2 Without loss of generality, let u = v} and v = v]. Consider [v], v4]; its color is 2n— 1. If [v], v}]
has color c, edge [v%, v;] has color ¢ +n — 1; by construction [v}, v%] has the same color and [v%, v%] has color 2n — 1.
These edges form a colorful chordless lantern L(v}, v%, W) with W = {v%, v%} and colors c+n—1 and 2n — 1.

2. ue V!, v e V2 Let, without loss of generality, u = v]

(a) assume v = v?,i# 1; then [v], v!] has some color ¢, [v], v4] and [v}, v?] have color 2n —1; [v2, v#] also has color

¢ and we have a colorful chordless lantern L(v}, viz, W) with W = {v}, v%} and colors ¢ and 2n — 1.

(b) let v =v%; then consider edge [v},v%]; it has the same color ¢, as does edge [v%,v%]; the edges [v},v%] and
[vZ, v1] have color ¢ +n — 1. They form a colorful chordless lantern L(v}, vZ, W) with W = {v], v2} and colors ¢
andc+n—-1. O

The following easy proposition shows that binary factorizations are not L-blocking.
Proposition 6. A binary factorization of K, has a colorful chordless lantern L(u, v, W) with |W| <n — 2.
Proof. Take any two nodes u, v, both belonging to K, (V). Call W the set of the other nodes in the subgraph. Observe that
the set of colors of edges [u, w], w € W are the same as the set of colors of edges [w, v], w € W and, in consequence, u, v
and W induce a colorful chordless lantern or there is a W/ ¢ W for which u, v and W’ induce a colorful chordless lantern.
The set W has size at mostn —2. O

We have shown that canonical factorizations of K3, are L-blocking for certain values of 2n and that binary factorizations
are not L-blocking. Then, it is natural to ask if there is a non-canonical L-blocking factorization of K3, for any n. In [11] it

is shown that K1, has 8 L-blocking factorizations (7 of them not canonical).
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Some of the above propositions show that certain factorizations including the canonical and some binary are not L-
flexible. Then, Proposition 5 shows that bisymmetric factorizations are L-flexible. One would like to know if L-flexible
factorizations exist for values of 2n with n odd. The cases with 2n < 10 are investigated in section 5, but for larger val-
ues of 2n we state the following open problem.

Open problem 1. Is there at least one L-flexible factorization of K452 for each s > 3?

4. Optimally colored even cliques of one-factorizations

In this section, we study optimally colored even cliques inside factorizations. We notice that any factorization of Ko, is
an optimally colored even clique of size 2n. So, here we deal with proper subgraphs of K3, inducing optimally colored even
cliques.

First we note that optimally colored even cliques of any size r (4 <r <n) exist in some factorizations of Ka.

Observation. For any two even numbers r and n larger than 2, a factorization of K, can be extended to a factorization of
Ky, if and only if r <n

For a proof, see Theorem 2 in [4] or Theorem 14.2 in [16].
We continue with a complete characterization of the optimally colored cliques within the canonical factorizations of K.

Proposition 7. A canonical factorization of Ky, contains an optimally colored even clique K5, (p < n) ifand only if2n = 2p —1)s+1.

Proof. Notice that s is necessarily odd. To have a canonical coloring we place nodes 1,2,...,2n — 1 on a circle with the
same distance between any consecutive nodes and node 2n is in the center of the circle as in Fig. 3.

a) Assume first that 2n = (2p — 1)s + 1 for some fixed p and s. Consider the set W ={1,s+1,2s+1,...,2p —2)s+1};
there are exactly s — 1 nodes between any two consecutive nodes of W ((2p —2)s+ 1 and 1 are considered consecutive in
W). Let F| be the edges of F; with both endpoints in W U{2n} fori=1,s41,2s+1,..., (2p —2)s+ 1. We have for instance
Fi={[2n,11,[s+1,2p—2)s+1],[2s+1,(2p —3)s+11,...[ps+1, (p + 1)s + 1]}. Since s — 1 is even all these p edges are
indeed in F; and it is a perfect matching in W U {2n}. This last property holds for all F;,i=1,s4+1,25+1,...,(2p—2)s+1.
So, Fi, F;H, Fﬁs+1 ""FEZp—2)5+1 is a factorization of the complete subgraph of K, induced by W U {2n} which has 2p
nodes.

b) Conversely, let us assume that there is no s such that 2n = (2p — 1)s + 1. In other words 2n — 1 # (2p — 1)s for any
integral (odd) s.

First, we show that such a Kjp must necessarily contain node 2n. Consider a canonical coloring of Ky, and let
F1,..., Fan_1 be the coloring induced on K, — 2n. Each F; consists of parallel edges in Fig. 3.

Claim 1. There is no optimally colored clique K>, in the canonical factorization of Ko, without node 2n for p > 2.

Proof. Let W be a set of 2p nodes of K3, placed in the circle among 1,2,...,2n — 1. If K(W) is optimally colored, the

canonical coloring of K3, induces on K(W) a coloring IA:CH’ coos Fayy g with colors ay, az, ..., a2p—1 €{1,...,2n—1} and each
Fi consists of parallel edges since F; c F. But it is not possible to find such a coloring where each F; consists of parallel
edges covering exactly the nodes of W: if the nodes of W, in the order they appear in the circle, are by, by, ..., byp—1, the

perfect matching I:'g containing [b1, b3] cannot consist of parallel edges since the edge [by, b;] € I:‘g will cross with [bq, b3]
for any 4 <I < 2p — 1. Therefore, no such optimally colored K3, can possibly exist. O

So, an optimally colored K»p involves node 2n and 2p — 1 nodes ag, az, ..., azp—1 distributed arbitrarily among positions
1,2,...,2n—1 on the circle. Since 2n # (2p — 1)s+1 there will necessarily be three (cyclically) consecutive nodes in the set
{ay,az,...,azp_1}, say azp_1,4ay, az, such that the number d of nodes of the circle between az,_1 and a; is different from

the number ¢ of nodes between a; and a,. Now, since we have a canonical coloring the matching containing [2n, a;] should
contain [azp_1,az], but this is impossible since d is different from c. So, we cannot find an optimally colored Kyp. O

In the previous proposition, if s =1, then p =n and the result is trivial. So, if we have s > 3, the largest value of p is
obtained for the smallest odd s such that p = 2";%1 We cannot find values of s and p satisfying the equality if 2n — 1 is
prime. Then, the next corollary characterizes the values of 2n for which the canonical coloring of K3, is K-blocking.
Corollary 2. The canonical coloring of Koy, is K-blocking if and only if 2n — 1 is prime.

Next, we study binary factorizations. The next remark notes that they are trivially not K-blocking.
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Table 1
A classification of the six non-isomorphic factorizations of Kg.
1 1234567 2134657 3124756 4152637 5142736 6172435 7162534 L-flexible
2 1234567 2134657 3124756 4152637 5142736 6172534 7162435 L-flexible
3 1234567 2134657 3124756 4162537 5172634 6142735 7152436 -
4 1234567 2134657 3124756 4162735 5172634 6142537 7152436 -
5 1234567 2134657 3142756 4162537 5172634 6123547 7152436 K-blocking
6 1234567 2143657 3162547 4172635 5123746 6152734 7132456 C-blocking and K-blocking

Observation. Binary factorizations of K;, have, by definition, two optimally colored cliques of size n.

The next proposition shows that for some values of 2n there are almost binary factorizations of K, that are not K-
blocking.

Proposition 8. For K4, there is an almost binary factorization which contains two optimally colored cliques of size s + 1 if s is odd.

Proof. We divide the 4s+2 nodes into Vi = {v’i, vg} and Wi= {W’i, w§+]} for i =1, 2. In this proof, the factorizations
constructed for K(Viuw),i=1,2, are symmetrical. For i=1,2 we construct in ViUW! a factorization of the complete graph
K(W") with colors 1,2, ...,s and a coloring of K(V') with colors 1,2, ...,s. These cplorings exist since s+ 1 is even (and
s is odd). Let j be the color among 1, 2, ..., s which is missing on the edges of B(v’j). Color edge [v}, v?] with color j for
j=1,..,s. ) )

Then for i =1, 2 we color the edges of the complete bipartite graph K(W', V' Uvg) (where vy is an artificial node) with
colors s+1, ...,2s+ 1. Consider the edges B(vf)) fori=1,2:if [vf,, wg] has color ¢ (s+1 <c¢ <2s+1) then replace [v}), w}]
and [v3, w?] by [w}., w?] and give it color c.

So far we have obtained 2s 4+ 1 one-factors of K(V1 UW1)UK(V2U W?2) + M where M is a matching of size 2s + 1
between V1 UW? and V2 U W2 whose edges have colors 1,2, ...,2s + 1.

The edges of K(V! UW!, V2 U W?2) — M can then be colored with colors 2s + 2, ..., 4s + 1 (since the degree of each
node is 2s).

In the factorization of Kys.2 constructed, K(W1) and K(W?) are optimally colored cliques of size s +1. O

Before ending this section the next remark shows that K-blockingness is a precondition for both L-blockingness and
perfectness.

Observation. In a non-K-blocking factorization of K, there is at least one optimally colored even clique K;,r <n. Taking
any 2 nodes of the clique u, v and setting W as the nodes of K, minus u and v, we obtain a chordless colorful lantern
L(u, v, W). If we take the edges of K, with any of two colors used in K, we obtain a cycle or a set of cycles through the
nodes of K;. Then, non-K-blocking factorizations of Ky, are neither L-blocking nor perfect.

5. Results for one-factorizations of small complete graphs

In this section, we show some blocking results for factorizations of K3, for small values of 2n. For 2n < 10 we were able
to obtain results by enumeration of all non-isomorphic factorizations or Kap.

For 2n =4 and 2n = 6 there is only one non-isomorphic factorization of K3;,. Both are K-blocking, perfect, and L-blocking.

For 2n = 8 there are 6 non-isomorphic factorizations of Kg. Table 1 shows all of the 6 factorizations of Kg and classifies
them according to the blocking properties studied in this work. Notice that there is no L-blocking factorization of Kg.

After checking each factorization of Ko available on [3] we obtained the following classification: 227 are just K-blocking,
one (the canonical) is C-blocking and K-blocking, three are L-flexible and the remaining 115 do not fall in any category. There
is no L-blocking factorization of Kig.

In [11] it is shown that K1, has 8 L-blocking factorizations.

Observation. There are at least five non-isomorphic K-blocking and one L-flexible factorizations of K1;.

Proof. There are 526,915,620 non-isomorphic one-factorizations of K1, [7]. Among those factorizations, there are five that
are C-blocking [7] and by Observation 4 they must be K — blocking. Moreover, by Proposition 5 the (unique on isomorphism)
bisymmetric factorization of K1, is L-flexible. O
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6. Concluding remarks

In this work, we have studied some blocking properties of one-factorizations of complete graphs K»,. For this purpose
we have introduced two types of colored subgraphs: colorful chordless lanterns L(vq, vo, W) and optimally colored even
cliques Kpp.

These two classes of subgraphs, together with bichromatic cycles, play an important role in recoloring procedures com-
monly used in algorithmic approaches for sport scheduling problems. With these new concepts in hand, we classified
one-factorizations in terms of the existence or not of non-trivial subgraphs of each class. In L-blocking factorizations, there
are no non-trivial colorful chordless lanterns and in K-blocking factorizations there are no non-trivial optimally colored even
cliques.

Among other results, we characterized the values of 2n for which the canonical factorization of K5, is L-blocking, showed
that the canonical factorization is never L-flexible, determined that there are non-canonical non-L-flexible factorizations and
showed how to construct a L-flexible factorization whenever n is even.

Concerning K-blocking, among other results, we characterized the values of 2n for which the canonical factorization of
K>y, is K-blocking and proved that there are almost binary factorizations that are not K-blocking.

Observation 4 showed that K-blockingness is a precondition to both perfection, i.e., C-blockingness, and L-Blockingness.
Moreover, Corollary 2 shows that the canonical factorization of K3, is K-blocking if and only if 2n — 1 is prime. These two
facts combined with Proposition 2 show that 2n — 1 has to be prime for the faro shuffle permutation with 2n elements
to have an orbit of size 2n — 2. Also, knowing that the canonical factorization is perfect whenever 2n — 1 is prime [16],
we conclude that all L-blocking factorizations found in this work are perfect. This might signal that perfection may be a
necessary condition for a factorization to be L-blocking. In [11] it is shown that Ky, has 8 L-blocking factorizations and only
5 perfect factorizations disproving the claim.

As future work we intend to study prohibited precolorings for L-blockingness and K-Blockingness.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

Part of this research was carried out while Sebastian Urrutia was visiting EPFL in December 2019. The support of this
institution is gratefully acknowledged.

References

[1] M. Aigner, G.M. Ziegler, Proofs from THE BOOK, 4th edition, Springer Publishing Company, Incorporated, 2009.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, 1st edition, Springer Publishing Company, Incorporated, 2008.
[3] CJ. Colbourn, J.H. Dinitz, Handbook of Combinatorial Designs, second edition, Discrete Mathematics and Its Applications, Chapman & Hall/CRC, 2006.
[4] A.B. Cruse, On embedding incomplete symmetric latin squares, J. Comb. Theory, Ser. A 16 (1) (1974) 18-22.
[5] D. de Werra, Geography, games and graphs, Discrete Appl. Math. 2 (4) (1980) 327-337.
[6] D. de Werra, Scheduling in sports, in: P. Hansen (Ed.), Annals of Discrete Mathematics (11) Studies on Graphs and Discrete Programming, in: North-
Holland Mathematics Studies, vol. 59, North-Holland, 1981, pp. 381-395.
[7] J.H. Dinitz, D.K. Garnick, B.D. McKay, There are 526,915,620 nonisomorphic one-factorizations of Ki3, J. Comb. Des. 2 (1994) 273-285.
[8] M. Gill, I. Wanless, Perfect 1-factorisations of k16, Bull. Aust. Math. Soc. 101 (2) (Apr. 2020) 177-185.
[9] T. Januario, S. Urrutia, D. de Werra, Sports scheduling search space connectivity: a riffle shuffle driven approach, Discrete Appl. Math. 211 (2016)
113-120.
[10] T. Januario, S. Urrutia, C.C. Ribeiro, D. de Werra, Edge coloring: a natural model for sports scheduling, Eur. ]J. Oper. Res. 254 (1) (2016) 1-8.
[11] P. Kaski, A. de Souza Medeiros, P.RJ. Ostergard, .M. Wanless, Switching in one-factorisations of complete graphs, Electron. J. Comb. 21 (2) (2014) 1-24.
[12] Q. Liu, H. Yap, Edge colorings of K, with a prescribed condition — I, Discrete Math. 212 (3) (2000) 233-244.
[13] M. Meszka, There are 3155 nonisomorphic perfect one-factorizations of Kig, J. Comb. Des. 28 (1) (2020) 85-94.
[14] OEIS, The on-line encyclopedia of integer sequences foundation, http://oeis.org/A217948, 2020. (Accessed 1 October 2020).
[15] J.A.M. Schreuder, Constructing timetables for sport competitions, Math. Program. Stud. 13 (1980) 58-67.
[16] W. Wallis, One-Factorizations, Mathematics and Its Applications., Springer, 1997.

45


http://refhub.elsevier.com/S0304-3975(21)00182-1/bib0E8E090623C1A7FBF4B090A491104E57s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bib5A6663CC9D645C37D8DEF8C5493C9C27s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibF9B55EA3FBC76DA652EC3F224520106As1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibA9CB01EA4386E831F7C5FA4AD0A31977s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bib0A2B79483B95E1EBF17F2C2DF9DC0BFFs1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibB3A3C30659C9899E5FF4F8B58F622653s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibB3A3C30659C9899E5FF4F8B58F622653s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibF55E18798F23C038F7B04A663AE73E2Ds1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bib5A80EB4FDDCB677A1CE9E4028170BB52s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bib2557AD7BC8D6C92B4795E75019BD0F37s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bib2557AD7BC8D6C92B4795E75019BD0F37s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bib0D279B5536175E6AA3E0D89D272E330Fs1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bib3852CD55B5321BB6AA68C06F4A8349C4s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibF3442BA7B3445CA4A17BAB3E1262E910s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibABFD02CF15DF3ED4E96AB45A5DF0D4A8s1
http://oeis.org/A217948
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibCE3F545792ABC29592F86AD2675814F4s1
http://refhub.elsevier.com/S0304-3975(21)00182-1/bibD7006FA82750C7F6C17F9CA5FF8F4D1Cs1

	Recoloring subgraphs of K2n for sports scheduling
	1 Introduction
	2 Definitions and basic concepts
	3 L-blockingness
	4 Optimally colored even cliques of one-factorizations
	5 Results for one-factorizations of small complete graphs
	6 Concluding remarks
	Declaration of competing interest
	Acknowledgements
	References


